


18 Unconventional Essays 
on the Nature of Mathematics



18 Unconventional 
Essays on the Nature 

of Mathematics

Reuben Hersh
Editor



Reuben Hersh
Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM
USA

Cover illustration: Photographs of three contributing authors: Alfréd Rényi,
Gian-Carlo Rota, and Leslie A. White.

Mathematics Subject Classification MSC 2000: 01A05 51–03

Library of Congress Control Number: 2005925514

ISBN-10: 0-387-25717-9 Printed on acid-free paper.
ISBN-13: 978-0387-25717-4

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media,
Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in con-
nection with reviews or scholarly analysis. Use in connection with any form of infor-
mation storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (SPI/EB)

9 8 7 6 5 4 3 2 1

springeronline.com



Contents

Introduction by Reuben Hersh ........................................................................... vii

About the Authors............................................................................................. xvii

Chapter 1
A Socratic Dialogue on Mathematics ................................................................ 1

Alfréd Rényi

Chapter 2
“Introduction” to Filosofia e matematica........................................................... 17

Carlo Cellucci

Chapter 3
On Proof and Progress in Mathematics ............................................................. 37

William P. Thurston

Chapter 4
The Informal Logic of Mathematical Proof ...................................................... 56

Andrew Aberdein

Chapter 5
Philosophical Problems of Mathematics in the Light
of Evolutionary Epistemology........................................................................... 71

Yehuda Rav

Chapter 6
Towards a Semiotics of Mathematics ................................................................ 97

Brian Rotman

Chapter 7
Computers and the Sociology of Mathematical Proof....................................... 128

Donald MacKenzie



Chapter 8
From G.H.H. and Littlewood to XML and Maple:
Changing Needs and Expectations in Mathematical Knowledge Management....... 147

Terry Stanway

Chapter 9
Do Real Numbers Really Move? Language, Thought, and Gesture:
The Embodied Cognitive Foundations of Mathematics .................................... 160

Rafael Núñez

Chapter 10
Does Mathematics Need a Philosophy? ............................................................. 182

William Timothy Gowers

Chapter 11
How and Why Mathematics Is Unique as a Social Practice .............................. 201

Jody Azzouni

Chapter 12
The Pernicious Influence of Mathematics upon Philosophy.............................. 220

Gian-Carlo Rota

Chapter 13
The Pernicious Influence of Mathematics on Science........................................ 231

Jack Schwartz

Chapter 14
What Is Philosophy of Mathematics Looking for? ............................................ 236

Alfonso C. Ávila del Palacio

Chapter 15
Concepts and the Mangle of Practice Constructing Quaternions...................... 250

Andrew Pickering

Chapter 16
Mathematics as Objective Knowledge and as Human Practice.......................... 289

Eduard Glas

Chapter 17
The Locus of Mathematical Reality:
An Anthropological Footnote ........................................................................... 304

Leslie A. White

Chapter 18
Inner Vision, Outer Truth.................................................................................. 320

Reuben Hersh

vi Contents



Introduction

This book comes from the Internet. Browsing the Web, I stumbled on
philosophers, cognitive scientists, sociologists, computer scientists, even
mathematicians!—saying original, provocative things about mathematics.
And many of these people had probably never heard of each other! So I have
collected them here. This way, they can read each other’s work. I also bring
back a few provocative oldies that deserve publicity.

The authors are philosophers, mathematicians, a cognitive scientist, an
anthropologist, a computer scientist, and a couple of sociologists. (Among
the mathematicians are two Fields Prize winners and two Steele Prize win-
ners.) None are historians, I regret to say, but there are two historically ori-
ented articles. These essays don’t share any common program or ideology.
The standard for admission was: Nothing boring! Nothing trite, nothing triv-
ial! Every essay is challenging, thought-provoking, and original.

Back in the 1970s when I started writing about mathematics (instead of
just doing mathematics), I had to complain about the literature. Philosophy
of science was already well into its modern revival (largely stimulated by the
book of Thomas Kuhn). But philosophy of mathematics still seemed to be
mostly foundationist ping-pong, in the ancient style of Rudolf Carnap or
Willard Van Ormond Quine. The great exception was Proofs and Refutations
by Imre Lakatos. But that exciting book was still virtually unknown and
unread, by either mathematicians or philosophers. (I wrote an article enti-
tled “Introducing Imre Lakatos” in the Mathematical Intelligencer in 1978.)

Since then, what a change! In the last few years newcomers—linguists, neu-
roscientists, cognitive scientists, computer scientists, sociologists–are bringing
new ideas, studying mathematics with new tools. (George Lakoff-Rafael
Núñez, Stanislas Dehaene, Brian Butterworth, Keith Devlin).

In previous centuries, old questions–“What Is Man?” “What Is Mind?”
“What Is Language?”–were transformed from philosophical questions, free
for speculation, into scientific problems. The subjects of linguistics, psychol-
ogy and anthropology detached from philosophy to become autonomous dis-
ciplines. Maybe the question, “What is mathematics?” is coming into
recognition as a scientific problem.



In 1981, in The Mathematical Experience, speaking about the prevailing
alternative views of the nature of mathematics, Phil Davis and I asked, “Do
we really have to choose between a formalism that is falsified by our everyday
experience, and a Platonism that postulates a mythical fairyland where the
uncountable and the inaccessible lie waiting to be observed by the mathe-
matician whom God blessed with a good enough intuition? It is reasonable
to propose a different task for mathematical philosophy, not to seek indu-
bitable truth, but to give an account of mathematical knowledge as it really
is–fallible, corrigible, tentative, and evolving, as is every other kind of human
knowledge. Instead of continuing to look in vain for foundations, or feeling
disoriented and illegitimate for lack of foundations, we have tried to look at
what mathematics really is, and account for it as a part of human knowledge
in general. We have tried to reflect honestly on what we do when we use,
teach, invent, or discover mathematics.” (p. 406)

Before long, the historian Michael Crowe said these words were “a pro-
gramme that I find extremely attractive.” In 1986-1987 Crowe visited Donald
Gillies at King’s College in London. Gillies had been a student of Imre
Lakatos. In 1992 Gillies published an anthology, Revolutions in Mathematics,
where historians of mathematics like Crowe collaborated with philosophers
of mathematics like Gillies.

Such collaboration developed further in Emily Grosholz and Herbert
Breger’s anthology, The Growth of Mathematical Knowledge (Kluwer, 2000).
Emily Grosholz wrote, “during the last decade, a growing number of younger
philosophers of mathematics have turned their attention to the history of
mathematics and tried to make use of it in their investigations. The most
exciting of these concern how mathematical discovery takes place, how new
discoveries are structured and integrated into existing knowledge, and what
light these processes shed on the existence and applicability of mathematical
objects.” She mentions books edited by Philip Kitcher and William Aspray,
by Krueger, and by Javier Echeverria. She finds the Gillies volume “perhaps
the most satisfactory synthesis.”

History of mathematics is today a lively and thriving enterprise. It is
tempting to start listing my favorite historians, but I will limit myself to sin-
gling out the monumental work by Sanford L. Segal, Mathematicians Under
the Nazis (Princeton, 2003).

Already in my 1979 article “Some Proposals for Reviving the Philosophy
of Mathematics,” (reprinted in Thomas Tymoczko’s anthology, New Direc-
tions in the Philosophy of Mathematics, Birkhauser, 1986),and at greater
length in my two subsequent books, I explained that, contrary to fictional-
ism, mathematical objects do exist—really! But, contrary to Platonism, their
existence is not transcendental, or independent of humanity. It is created by
human activity, and is part of human culture. I cited the 1947 essay by the
famous anthropologist Leslie White, which is reprinted here. And at last, in
2003 and 2004, a few philosophers are also recognizing that mathematical
objects are real and are our creations. (Jessica Carter, “Ontology and Math-
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ematical Practice,” Philosophia Mathematica 12 (3), October 2004; M. Panza,
“Mathematical Proofs,” Synthese, 134. 2003; M. Muntersbjorn, “Representa-
tional innovation and mathematical ontology,” Synthese, 134, 2003). I know
of recent conferences in Mexico, Belgium, Denmark, Italy, Spain, Switzer-
land, and Hungary on philosophical issues of mathematical practice.

While others are starting to pay more attention to our ways, we mathe-
maticians ourselves are having to look more deeply at what we are doing. A
Special Interest Group on philosophy is now active in the Mathematical
Association of America. A famous proposal by Arthur Jaffe and Frank
Quinn in 1993 in the Bulletin of the American Mathematical Society, to accept
not-so-rigorous mathematics by labeling it as such, provoked a flood of con-
troversy. (The essay by William Thurston in this volume was his contribution
to that controversy.)

After the rest of this book had gone to the editor at Springer, I found an
article on the Web by Jonathan M. Borwein, the leader of the Centre for
Experimental and Constructive Mathematics at Simon Fraser University in
Vancouver. He quoted approvingly this five-point manifesto of mine:

“1. Mathematics is human. It is part of and fits into human culture. It does
not match Frege’s concept of an abstract, timeless, tenseless, objective
reality.

2. Mathematical knowledge is fallible. As in science, mathematics can
advance by making mistakes and then correcting or even re-correcting
them. The “fallibilism” of mathematics is brilliantly argued in Lakatos’
Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary
depending on time, place, and other things. The use of computers in for-
mal proofs, exemplified by the computer-assisted proof of the four color
theorem in 1977, is just one example of an emerging nontraditional stan-
dard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all
can help us decide what to believe in mathematics. Aristotelian logic isn’t
necessarily always the best way of deciding.

5. Mathematical objects are a special variety of a social-cultural–historical
object. Contrary to the assertions of certain post-modern detractors,
mathematics cannot be dismissed as merely a new form of literature or reli-
gion. Nevertheless, many mathematical objects can be seen as shared ideas,
like Moby Dick in literature, or the Immaculate Conception in religion.”

(R. Hersh, “Fresh Breezes in the Philosophy of Mathematics,” American
Mathematical Monthly, August-September 1995, 589-594; quoted by
Jonathan Borwein in “The Experimental Mathematician: The Pleasure of
Discovery and the Role of Proof,” prepared for the International Journal of
Computers for Mathematical Learning, July 2004.)

As more and more important proofs approach and go beyond the limits of
conventional verification, mathematicians are having to face honestly the
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embarrassing ambiguity and temporal dependence of our central sacred
icon—rigorous proof.

In his 1986 anthology Thomas Tymoczko called attention to the trouble-
some philosophical issues raised by the recent proof of the famous four-color
theorem. This was the first time the solution of a major mathematical prob-
lem had relied essentially on machine computation.

Today, the status of several other famous problems raises even more
prominent and severe difficulties. The story of Thomas Hales’ “99%
accepted” proof of the Kepler conjecture makes clear that something new
and strange is happening in the very center of the mathematical enterprise
(see George Szpiro, Kepler’s Conjecture, Wiley, 2003). (Then there is also the
on-going decades-long ups-and-downs, the many thousands of pages proof,
of the classification of simple finite groups. See Ron Solomon, “On Finite
Simple Groups and their Classification,” Notices of the AMS 42 (2), Febru-
ary 1995, 231-239.)

Johannes Kepler in 1611 considered how spherical balls can be packed to
fill space as densely as possible. There are three natural ways to pack spheres,
and it’s clear which of the three is best. Kepler guessed that this way is in fact
the best possible. It turns out that this is fiendishly hard to prove. Wu-Yi
Hsiang of the University of California, Berkeley, claimed to have a proof in
1993, but he failed to convince his colleagues and competitors. He has not
relinquished his claim and continues to hold to it. Thomas Hales of the Uni-
versity of Michigan announced a proof by a different method in 1997. His
proof follows suggestions made earlier by Laszlo Fejes-Toth, and it involves,
like the famous computer proof of the four-color theorem, computer check-
ing of thousands of separate cases, many of them individually very laborious.
The Annals of Mathematics invited Hales to submit his manuscript. It is 250
pages long. A committee of 12 experts was appointed to referee the paper,
coordinated by Gabor Fejes-Toth, Laszlo’s son. After four years, the commit-
tee announced that they had found no errors, but still could not certify the cor-
rectness. They simply ran out of energy and gave up. Robert Macpherson, the
editor of the Annals, wrote, “The news from the referees is bad, from my per-
spective. They have not been able to certify the correctness of the proof, and
will not be able to certify it in the future, because they have run out of energy
to devote to the problem. This is not what I had hoped for.” He reluctantly
acceded to their decision, and accepted the theoretical part of Hales’ paper,
leaving the computer part for publication elsewhere. Hales then announced
that he was affiliating with a group of computer scientists known as the QED
Project. This dormant project had as its original stated goal: to computerize
all of mathematics! Hales’ new project, the Flyspeck Project, proposes to do a
computer coding and verification of his proof of the Kepler conjecture—a
proof which, in ordinary mathematical form, was already too long and com-
plicated to be completely checked, in four years, by a committee of 12 leading
human experts. Project Flyspeck is expected to involve the work of hundreds
of people and take 20 years. I do not know anyone who thinks either that this
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project can be completed, or that even if claimed to be complete it would be
universally accepted as a convincing proof of Kepler’s conjecture. Donald
Mackenzie’s article in this volume sheds some light on these issues.

Such a story undermines our faith that mathematical proof will remain as
we have always thought of it–that after reasonable time and effort, its cor-
rectness must be definitely decidable by unanimous consensus of competent
specialists.

In fact, even without regard to Hales’ theorem, it is easy to see that in prin-
ciple there must be an upper bound on the length and complexity of the
longest proof that at any time can be completely checked and verified by the
mathematical community. In principle it is possible for a recognized, estab-
lished mathematician to submit a proof longer than this upper bound. What
should be the status of such a proof? Should it be accepted for publication?
What degree of conviction or credibility should we attribute to its conclu-
sion? Should it depend on our estimation of the reliability of its creator? May
we use it as a building block in our own research? What if it has “applica-
tions” in physics? Such judgments are made every day in the “real world” of
ordinary life. But in mathematics???!!!

As I explained in my book, What Is Mathematics, Really? (1997, Oxford)
the words “mathematical proof” have two different meanings—and the dif-
ference is not usually acknowledged. One meaning, found in logic texts and
philosophy journals, is “a sequence of formalized statements, starting with
unproved statements about undefined terms, and proceeding by steps per-
mitted in first-order predicate calculus.” The other meaning, not found in a
precise or formal statement anywhere, is “an argument accepted as conclusive
by the present-day mathematical community.” The problem is to clarify and
understand—not justify!!—the second meaning. A first stab at clarification
might be, “an argument accepted as conclusive by the highest levels of
authority in the present-day mathematical community.” Such a clarification
rests on several implicit hypotheses:

(1) that there is a “mathematical community.”
(2) that this “community” has accepted “high levels of authority.”
(3) that these “high authorities” have a legitimacy based on some generally

accepted rationale.
(4) that the highest level of authority can agree on what to accept.
(5) that arguments accepted as proofs by the recognized highest levels of

authority in the mathematical community will remain accepted, at least
for a very long time, at least with very high probability.

What seems to be threatening is that increasing length and complexity of
proposed proofs, whether involving heavy use of computers or not, may go
beyond the capacity of recognized authorities to reach a convincingly
informed consensus.

The first of our eighteen articles is Alfréd Rényi’s “A Socratic Dialogue on
Mathematics” (Dialogues on Mathematics, Holden-Day, 1967.) Rényi was a
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famous probabilist and number theorist, co-creator with Pal Erdos of the sub-
ject random graphs, and for many years director of the Institute of Mathe-
matics in Budapest. This is a most inviting, charming and thought-provoking
tour de force and jeu d’esprit. It poses the basic problem, and answers it in a
way that invites further questioning and deeper development. I have heard
that Prof. Rényi used to give live performances of this work, assisted by his
daughter Zsuzsanna, to whom he dedicated the book from which this excerpt
is taken.

The next article, by the logician-philosopher Carlo Cellucci of Rome, is the
introductory chapter to his book, Filosofia e matematica. He simply lists 13
standard assumptions about mathematics (what he calls “the dominant
view”) and demolishes all of them. A most impressive and stimulating per-
formance. I eagerly await the translation of his whole book into English.

William Thurston’s friendly, down-to-earth article, “On Proof and Progress
in Mathematics,” provides a rare, invaluable glimpse for outsiders at some
aspects of mathematical creation at the highest level. Its frank, unpretentious
look at what really is done, what really happens at that level is told in a style
and language accessible to anyone. It was published in the Bulletin of the
AMS, one of the responses to the Jaffe-Quinn proposal mentioned above.

The U.S.-based English philosopher Andrew Aberdein’s article, “The
Informal Logic of Mathematical Proof,” draws on “informal logic,” a subject
that was revived by Stephen Toulmin. “Informal logic” is closely allied to
“rhetoric”. An old article by Phil Davis and myself called “Rhetoric and
Mathematics” may be relevant to Aberdein’s article. (It appeared in The
Rhetoric of the Human Sciences, edited by John S. Nelson, Allan Megill and
Donald N. McCloskey, University of Wisconsin Press, 1987 and also as a
chapter in our book, Descartes’ Dream).

The article by the Israeli-French mathematician Yehuda Rav is “Philo-
sophical Problems of Mathematics in the Light of Evolutionary Epistemol-
ogy.” He shows that the human ability and inclination to mathematize can be
understood as the result of natural selection. It is necessary and advanta-
geous for our survival as a species. It was first published in the journal Philo-
sophica, and reprinted in the anthology Math Worlds: Philosophical and
Social Studies of Mathematics and Mathematics Education, edited by Sal
Restivo, Jean Paul van Bendegem, and Roland Fischer (Albany; State Uni-
versity of New York Press, 1993.)

The English-American mathematician-turned cognitive scientist, Brian Rot-
man, provides a surprising insight into mathematics in the language of semi-
otics. His article, “Toward a Semiotics of Mathematics,” clarifies what you do
when you write mathematics. Three different personae participate: first of all,
there is the disembodied pure thinker, the impersonal voice who calls himself
“we.” Secondly, there is also an imaginary automaton, who in imagination (“in
principle”) carries out any calculations or algorithms that “we” mention. And
yes, there is also an actual live flesh-and-blood human being, who is sitting in
your chair. This article first appeared in Semiotica 72-1/2 (1988).
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Donald Mackenzie’s article, “Computers and the Sociology of Mathemat-
ical Proof,” gives a detailed history of the computer scientist’s search for pro-
gram correctness, and thereby shines a searchlight on the notion of
mathematical certainty. It was presented at a conference at the University of
Roskilde, Denmark, in 1998, whose proceedings were published as New
Trends in the History and Philosophy of Mathematics, University Press of
Southern Denmark, 2004.

“From G.H.H. and Littlewood to XML and Maple: Changing Needs and
Expectations in Mathematical Knowledge Management,” by computer scien-
tist Terry Stanway of Vancouver, BC, looks at mathematics from a new van-
tage point, as a problem of information storage and retrieval. Stanway is
connected to the Centre for Experimental and Constructive Mathematics at
Simon Fraser University, led by Jonathan and Peter Borwein. Their remark-
able work integrates theory and computation in surprising and fruitful ways.

“Do Real Numbers Really Move? Language, Thought, and Gesture: The
Embodied Cognitive Foundations of Mathematics” is by the Chilean-Swiss
cognitive scientist Rafael Núñez, now at the University of California, San
Diego. Building on his previous work with Berkeley linguist George Lakoff
(Where Mathematics Comes from, Basic Books, 2000), he uses rigorous study
of how we unconsciously produce millisecond-precise hand gestures as we
talk mathematics—literal “hand-waving”!—to prove that mathematics is
indeed built from embodied metaphor. It appears in a collection, Embodied
Artificial Intelligence, edited by F. Iida et al., Springer, 2004.

Timothy Gowers of Cambridge university contributes “Does Mathematics
Need a Philosophy?” He writes as a dedicated teacher who is an outstanding
creator of mathematics. Does a mathematician and a teacher of mathematics
need a philosophy of mathematics? The answer, of course, turns out to be:
“Yes and No.”

The philosopher Jody Azzouni of Boston and Brooklyn analyzes “How
and Why Mathematics Is Unique as a Social Practice.” Addressing “maver-
icks” such as myself, he finds some agreement, and some unanswered ques-
tions.

Gian-Carlo Rota held the unheard of title, “Professor of Applied Mathe-
matics and Philosophy” at M.I.T. Gianco was at once a leading combinatori-
alist and a deep phenomenologist. “The Pernicious Influence of Mathematics
upon Philosophy” sticks some pins into academic analytic philosophy. This
essay was originally a talk at a session on philosophy of mathematics, organ-
ized by me in 1990 at the national meeting of the American Association
for Advancement of Science in New Orleans. It was previously published in
Synthese, 88 (2), August 1991; and in Rota’s book, Indiscrete Thoughts,
Birkhauser, 1997.

Jack Schwartz was Rota’s mentor at Yale, as recounted in Gian-Carlo’s
book. Jack’s mischievous shocker, “The Pernicious Influence of Mathematics
on Science” must have stimulated Gian-Carlo’s parallel demolition piece.
(It appeared in Discrete Thoughts, Birkhauser, 1986, which was coedited by
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Rota, Schwartz, and Mark Kac.) Jack is co-author, with Nelson Dunford, of
the prize-winning three-volume “bible” of functional analysis, Linear Opera-
tors. Having completed that gigantic task, he later transformed himself into
a leading authority in computer science.

Alfonso C. Avila del Palacio, of the University of Durango, Mexico, asks,
“What Is Philosophy of Mathematics Looking for?” He finds that mathe-
maticians, philosophers and historians can’t agree because they are asking
different questions. His article is updated and translated from one that he
published in Syntesis No. 3 (1997), Revista de la Universidad Autonoma de
Chihuahua, Mexico.

Andrew Pickering of Urbana, a physicist who went to Edinburgh to
become a sociologist, tells the story of Hamilton’s invention of the quater-
nion as an exemplary tale. His article, “Concepts and the Mangle of Practice
Constructing Quaternions,” uses this historical material to bring mathemati-
cal practice in line with scientific practice, making the almost unprecedented
move of aligning philosophy of mathematics with philosophy of science! It
appeared in the collection, Mathematics, Science, and Postclassical Theory,
edited by Barbara Herrnstein Smith and Arkady Plotnitsky, Duke University
Press, 1997.

The philosopher Eduard Glas of Delft, in the Netherlands, in his article
“Mathematics as Objective Knowledge and as Human Practice,” shows that
the famous philosopher of science Karl Popper should also be considered a
philosopher of mathematics. Indeed, Popper’s concept of science and math-
ematics as problem-solving avoids the traps of Platonism and formalism.
Glas backs up his case with the illuminating history of descriptive and pro-
jective geometry in revolutionary and post-revolutionary France.

“The Locus of Mathematical Reality: An Anthropological Footnote” is by
the famous anthropologist Leslie White, and is the oldest piece in our collec-
tion. White gave a clear, simple answer to the basic question about the nature
of mathematical existence. He was a close friend to the leading topologist
Raymond Wilder, and inspired Wilder’s writings on a cultural approach to
the nature of mathematics. His article first appeared in the journal, Philoso-
phy of Science, in October, 1947, and was reprinted in James R. Newman’s
huge four-volume anthology, The World of Mathematics (Simon and Schus-
ter, 1956).

Perhaps the most recalcitrant issue in philosophy of mathematics is what
Eugene Wigner famously called the “unreasonable effectiveness” of mathe-
matics. Mark Steiner has written a challenging book, The Applicability of
Mathematics as a Philosophical Problem, that claims to refute naturalism on
the basis of that effectiveness. My attempt to study this question, “Inner
Vision, Outer Truth,” is my contribution to this collection. It is reprinted
from Mathematics and Science, edited by Ronald Mickens, World Scientific,
1990.

The three articles by Aberdein, Azzouni and Glas all come from a confer-
ence I attended in Brussels in 2002, organized by Jean Paul von Bendegem
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(Theories of Mind, Social Science and Mathematical Practice, Kluwer, 2005).
Mackenzie’s is from a conference in Denmark. The journal Philosophia
Mathematica publishes a wide variety of perspectives. Recent books, from
several different directions, have explored the nature of live mathematics. In
English, I know of: Where Mathematics Comes from by George Lakoff and
Rafael E. Núñez, The Number Sense by Stanislas Dehaene, The Math Gene
by Keith Devlin, What Counts by Brian Butterworth, Towards a Philosophy
of Real Mathematics by David Corfield, Doing Mathematics by Martin
H. Krieger, Social Constructivism as a Philosophy of Mathematics by Paul
Ernest, Indiscrete Thoughts by Gian-Carlo Rota, Converging Realities by
Roland Omnès, and a forthcoming book by Alexandre Borovik. There is also
my own What Is Mathematics, Really? (and, with Phil Davis, Descartes’
Dream and The Mathematical Experience.) All in different ways go beyond
traditional philosophizing, try to grapple with mathematical knowledge and
activity as actual phenomena, as part of the real world. (We must mention
forerunners–George Polya, Imre Lakatos, Karl Popper, Ludwig Wittgenstein,
Raymond Wilder, Hans Freudenthal, Hao Wang, Philip Kitcher.) I know that
there are also recent relevant books in several other languages. But I must
leave it to others to compile those lists.

The articles here are largely limited to the cognitive aspect of mathematics.
Of course the emotional, social and political aspects are also vitally impor-
tant. The forthcoming book, Loving and Hating Mathematics, coauthored
with Vera John-Steiner, turns to those aspects of mathematical life.

Although these articles were written independently, without contact
between the authors, it’s not surprising that there are several mutual refer-
ences. Rav quotes Rényi and White; Aberdein quotes Thurston, Rav, and
Rota; Azzouni, Núñez, Avila and Cellucci quote Hersh. But I have made no
effort to weave these articles together, or to summarize what they add up to,
or to announce what needs to be done next. The goal is to show the possibi-
lities of thinking fresh, sticking close to actual practice, fearlessly letting go
of standard shibboleths.

Reuben Hersh
Santa Fe, NM
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A Socratic Dialogue on Mathematics

ALFRÉD RÉNYI

SOCRATES Are you looking for somebody, my dear Hippocrates?

HIPPOCRATES No, Socrates, because I have already found him, namely you.
I have been looking for you everywhere. Somebody told me at the agora
that he saw you walking here along the River Ilissos; so I came after you.

SOCRATES Well then, tell me why you came, and then I want to ask you
something about our discussion with Protagoras. Do you still remember it?

HIPPOCRATES How can you ask? Since that time not a single day has passed
without my thinking about it. I came today to ask your advice because that
discussion was on my mind.

SOCRATES It seems, my dear Hippocrates, that you want to talk to me about
the very question I wish to discuss with you; thus the two subjects are one
and the same. It seems that the mathematicians are mistaken in saying that
two is never equal to one.

HIPPOCRATES As a matter of fact, Socrates, mathematics is just the topic I
want to talk to you about.

SOCRATES Hippocrates, you certainly know that I am not a mathematician.
Why did you not take your questions to the celebrated Theodoros?

HIPPOCRATES You are amazing, Socrates, you answer my questions even
before I tell you what they are. I came to ask your opinion about my
becoming a pupil of Theodoros. When I came to you the last time, with the
intention of becoming a pupil of Protagoras, we went to him together and
you directed the discussion so that it became quite clear that he did not
know the subject he taught. Thus I changed my mind and did not follow
him. This discussion helped me to see what I should not do, but did not
show me what I should do. I am still wondering about this. I visit banquets
and the palaestra with young men of my age, I dare say I have a pleasant
time, but this does not satisfy me. It disturbs me to feel myself ignorant.
More precisely, I feel that the knowledge I have is rather uncertain. During
the discussion with Protagoras, I realized that my knowledge about
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familiar notions like virtue, justice and courage was far from satisfactory.
Nevertheless, I think it is great progress that I now see clearly my own
ignorance.

SOCRATES I am glad, my dear Hippocrates, that you understand me so well.
I always tell myself quite frankly that I know nothing. The difference
between me and most other people is that I do not imagine I know what in
reality I do not know.

HIPPOCRATES This clearly shows your wisdom, Socrates. But such knowl-
edge is not enough for me. I have a strong desire to obtain some certain and
solid knowledge, and I shall not be happy until I do. I am constantly pon-
dering what kind of knowledge I should try to acquire. Recently, Theaite-
tos told me that certainty exists only in mathematics and suggested that I
learn mathematics from his master, Theodoros, who is the leading expert
on numbers and geometry in Athens. Now, I should not want to make the
same mistake I made when I wanted to be a pupil of Protagoras. Therefore
tell me, Socrates, shall I find the kind of sound knowledge I seek if I learn
mathematics from Theodoros?

SOCRATES If you want to study mathematics, O son of Apollodoros, then you
certainly cannot do better than go to my highly esteemed friend Theodoros.
But you must decide for yourself whether or not you really do want to study
mathematics. Nobody can know your needs better than you yourself.

HIPPOCRATES Why do you refuse to help me, Socrates? Perhaps I offended
you without knowing it?

SOCRATES You misunderstand me, my young friend. I am not angry; but
you ask the impossible of me. Everybody must decide for himself what he
wants to do. I can do no more than assist as a midwife at the birth of your
decision.

HIPPOCRATES Please, my dear Socrates, do not refuse to help me, and if you
are free now, let us start immediately.

SOCRATES Well, if you want to. Let us lie down in the shadow of that plane-
tree and begin. But first tell me, are you ready to conduct the discussion in the
manner I prefer? I shall ask the questions and you shall answer them. By this
method you will come to see more clearly what you already know, for it brings
into blossom the seeds of knowledge already in your soul. I hope you will not
behave like King Darius who killed the master of his mines because he
brought only copper out of a mine the king thought contained gold. I hope
you do not forget that a miner can find in a mine only what it contains.

HIPPOCRATES I swear that I shall make no reproaches, but, by Zeus, let us
begin mining at once.
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SOCRATES All right. Then tell me, do you know what mathematics is? I sup-
pose you can define it since you want to study it.

HIPPOCRATES I think every child could do so. Mathematics is one of the sci-
ences, and one of the finest.

SOCRATES I did not ask you to praise mathematics, but to describe its
nature. For instance, if I asked you about the art of physicians, you would
answer that this art deals with health and illness, and has the aim of heal-
ing the sick and preserving health. Am I right?

HIPPOCRATES Certainly.

SOCRATES Then answer me this: does the art of the physicians deal with
something that exists or with something that does not exist? If there were
no physicians, would illness still exist?

HIPPOCRATES Certainly, and even more than now.

SOCRATES Let us have a look at another art, say that of astronomy. Do you
agree with me that astronomers study the motion of the stars?

HIPPOCRATES To be sure.

SOCRATES And if I ask you whether astronomy deals with something that
exists, what is your answer?

HIPPOCRATES My answer is yes.

SOCRATES Would stars exist if there were no astronomers in the world?

HIPPOCRATES Of course. And if Zeus in his anger extinguished all mankind,
the stars would still shine in the sky at night. But why do we discuss astron-
omy instead of mathematics?

SOCRATES Do not be impatient, my good friend. Let us consider a few other
arts in order to compare them with mathematics. How would you describe
the man who knows about all the creatures living in the woods or in the
depths of the sea?

HIPPOCRATES He is a scientist studying living nature.

SOCRATES And do you agree that such a man studies things which exist?

HIPPOCRATES I agree.

SOCRATES And if I say that every art deals with something that exists,
would you agree?

HIPPOCRATES Completely.

SOCRATES Now tell me, my young friend, what is the object of mathemat-
ics? What things does a mathematician study?
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HIPPOCRATES I have asked Theaitetos the same question. He answered that
a mathematician studies numbers and geometrical forms.

SOCRATES Well, the answer is right, but would you say that these things
exist?

HIPPOCRATES Of course. How can we speak of them if they do not exist?

SOCRATES Then tell me, if there were no mathematicians, would there be
prime numbers, and if so, where would they be?

HIPPOCRATES I really do not know what to answer. Clearly, if mathematicians
think about prime numbers, then they exist in their consciousness; but if
there were no mathematicians, the prime numbers would not be anywhere.

SOCRATES Do you mean that we have to say mathematicians study non-
existing things?

HIPPOCRATES Yes, I think we have to admit that.

SOCRATES Let us look at the question from another point of view. Here, I
wrote on this wax tablet the number 37. Do you see it?

HIPPOCRATES Yes, I do.

SOCRATES And can you touch it with your hand?

HIPPOCRATES Certainly.

SOCRATES Then perhaps numbers do exist?

HIPPOCRATES O Socrates, you are mocking me. Look here, I have drawn on
the same tablet a dragon with seven heads. Does it follow that such a
dragon exists? I have never met anybody who has seen a dragon, and I am
convinced that dragons do not exist at all except in fairy tales. But suppose
I am mistaken, suppose somewhere beyond the pillars of Heracles dragons
really do exist, that still has nothing to do with my drawing.

SOCRATES You speak the truth, Hippocrates, and I agree with you com-
pletely. But does this mean that even though we can speak about them, and
write them down, numbers nevertheless do not exist in reality?

HIPPOCRATES Certainly.

SOCRATES Do not draw hasty conclusions. Let us make another trial. Am I
right in saying that we can count the sheep here in the meadow or the ships
in the harbor of Pireus?

HIPPOCRATES Yes, we can.

SOCRATES And the sheep and the ships exist?

HIPPOCRATES Clearly.
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SOCRATES But if the sheep exist, their number must be something that
exists, too?

HIPPOCRATES You are making fun of me, Socrates. Mathematicians do not
count sheep; that is the business of shepherds.

SOCRATES Do you mean, what mathematicians study is not the number of
sheep or ships, or of other existing things, but the number itself ? And thus
they are concerned with something that exists only in their minds?

HIPPOCRATES Yes, this is what I mean.

SOCRATES You told me that according to Theaitetos mathematicians study
numbers and geometrical forms. How about forms? If I ask you whether
they exist, what is your answer?

HIPPOCRATES Certainly they exist. We can see the form of a beautiful ves-
sel, for example, and feel it with our hands, too.

SOCRATES Yet I still have one difficulty. If you look at a vessel what do you
see, the vessel or its form?

HIPPOCRATES I see both.

SOCRATES Is that the same thing as looking at a lamb? Do you see the lamb
and also its hair?

HIPPOCRATES I find the simile very well chosen.

SOCRATES Well, I think it limps like Hephaestus. You can cut the hair off
the lamb and then you see the lamb without its hair, and the hair without
the lamb. Can you separate in a similar way the form of a vessel from the
vessel itself ?

HIPPOCRATES Certainly not, and I dare say nobody can.

SOCRATES And nevertheless you still believe that you can see a geometric
form?

HIPPOCRATES I am beginning to doubt it.

SOCRATES Besides this, if mathematicians study the forms of vessels,
shouldn’t we call them potters?

HIPPOCRATES Certainly.

SOCRATES Then if Theodoros is the best mathematician would he not be the
best potter, too? I have heard many people praising him, but nobody has
told me that he understands anything about pottery. I doubt whether he
could make even the simplest pot. Or perhaps mathematicians deal with
the form of statues or buildings?

HIPPOCRATES If they did, they would be sculptors and architects.
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SOCRATES Well, my friend, we have come to the conclusion that mathe-
maticians when studying geometry are not concerned with the forms of
existing objects such as vessels, but with forms which exist only in their
thoughts. Do you agree?

HIPPOCRATES I have to agree.

SOCRATES Having established that mathematicians are concerned with
things that do not exist in reality, but only in their thoughts, let us examine
the statement of Theaitetos, which you mentioned, that mathematics gives
us more reliable and more trustworthy knowledge than does any other
branch of science. Tell me, did Theaitetos give you some examples?

HIPPOCRATES Yes, he said for instance that one cannot know exactly how
far Athens is from Sparta. Of course, the people who travel that way agree
on the number of days one has to walk, but it is impossible to know exactly
how many feet the distance is. On the other hand, one can tell, by means
of the theorem of Pythagoras, what the length of the diagonal of a square
is. Theaitetos also said that it is impossible to give the exact number of peo-
ple living in Hellas. If somebody tried to count all of them, he would never
get the exact figure, because during the counting some old people would
die and children would be born; thus the total number could be only
approximately correct. But if you ask a mathematician how many edges a
regular dodecahedron has, he will tell you that the dodecahedron is
bounded by 12 faces, each having 5 edges. This makes 60, but as each edge
belongs to two faces and thus has been counted twice, the number of edges
of the dodecahedron is equal to 30, and this figure is beyond every doubt.

SOCRATES Did he mention any other examples?

HIPPOCRATES Quite a few, but I do not remember all of them. He said that
in reality you never find two things which are exactly the same. No two
eggs are exactly the same, even the pillars of Poseidon’s temple are slightly
different from each other; but one may be sure that the two diagonals of a
rectangle are exactly equal. He quoted Heraclitus who said that everything
which exists is constantly changing, and that sure knowledge is only possi-
ble about things which never change, for instance, the odd and the even, the
straight line and the circle.

SOCRATES That will do. These examples convince me that in mathematics
we can get knowledge which is beyond doubt, while in other sciences or in
everyday life it is impossible. Let us try to summarize the results of our
inquiry into the nature of mathematics. Am I right in saying we came to
the conclusion that mathematics studies non-existing things and is able to
find out the full truth about them?

HIPPOCRATES Yes, that is what we established.
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SOCRATES But tell me, for Zeus’s sake, my dear Hippocrates, is it not mys-
terious that one can know more about things which do not exist than about
things which do exist?

HIPPOCRATES If you put it like that, it certainly is a mystery. I am sure there
is some mistake in our arguments.

SOCRATES No, we proceeded with the utmost care and we controlled every
step of the argument. There cannot be any mistake in our reasoning. But
listen, I remember something which may help us to solve the riddle.

HIPPOCRATES Tell me quickly, because I am quite bewildered.

SOCRATES This morning I was in the hall of the second archon, where the
wife of a carpenter from the village Pitthos was accused of betraying and,
with the aid of her lover, murdering her husband. The woman protested
and swore to Artemis and Aphrodite that she was innocent, that she never
loved anyone but her husband, and that her husband was killed by pirates.
Many people were called as witnesses. Some said that the woman was
guilty, others said that she was innocent. It was impossible to find out what
really happened.

HIPPOCRATES Are you mocking me again? First you confused me com-
pletely, and now instead of helping me to find the truth you tell me such
stories.

SOCRATES Do not be angry, my friend, I have serious reasons for speaking
about this woman whose guilt it was impossible to ascertain. But one thing
is sure. The woman exists. I saw her with my own eyes, and of anyone who
was there, many of whom have never lied in their lives, you can ask the
same question and you will receive the same answer.

HIPPOCRATES Your testimony is sufficient for me, my dear Socrates. Let it
be granted that the woman exists. But what has this fact to do with math-
ematics?

SOCRATES More than you imagine. But tell me first, do you know the story
about Agamemnon and Clytemnestra?

HIPPOCRATES Everybody knows the story. I saw the trilogy of Aeschylus at
the theatre last year.

SOCRATES Then tell me the story in a few words.

HIPPOCRATES While Agamemnon, the king of Mycenae, fought under the
walls of Troy, his wife, Clytemnestra, committed adultery with Aegisthus,
the cousin of her husband. After the fall of Troy, when Agamemnon
returned home, his wife and her lover murdered him.

SOCRATES Tell, me Hippocrates, is it quite sure that Clytemnestra was
guilty?
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HIPPOCRATES I do not understand why you ask me such questions. There
can be no doubt about the story. According to Homer, when Odysseus vis-
ited the underworld he met Agamemnon, who told Odysseus his sad fate.

SOCRATES But are you sure that Clytemnestra and Agamemnon and all the
other characters of the story really existed?

HIPPOCRATES Perhaps I would be ostracized if I said this in public, but my
opinion is that it is impossible either to prove or disprove today, after so
many centuries, whether the stories of Homer are true or not. But this is
quite irrelevant. When I told you that Clytemnestra was guilty, I did not
speak about the real Clytemnestra–if such a person ever lived–but about
the Clytemnestra of our Homeric tradition, about the Clytemnestra in the
trilogy of Aeschylus.

SOCRATES May I say that we know nothing about the real Clytemnestra?
Even her existence is uncertain, but as regards the Clytemnestra who is a
character in the triology of Aeschylus, we are sure that she was guilty and
murdered Agamemnon because that is what Aeschylus tells us.

HIPPOCRATES Yes, of course. But why do you insist on all this?

SOCRATES You will see in a moment. Let me summarize what we found out.
It is impossible in the case of the flesh and blood woman who was tried
today in Athens to establish whether she is guilty, while there can be no
doubt about the guilt of Clytemnestra who is a character in a play and who
probably never existed. Do you agree?

HIPPOCRATES Now I am beginning to understand what you want to say. But
it would be better if you drew the conclusions yourself.

SOCRATES The conclusion is this: we have much more certain knowledge
about persons who exist only in our imagination, for example about char-
acters in a play, than about living persons. If we say that Clytemnestra was
guilty, it means only that this is how Aeschylus imagined her and presented
her in his play. The situation is exactly the same in mathematics. We may
be sure that the diagonals of a rectangle are equal because this follows
from the definition of a rectangle given by mathematicians.

HIPPOCRATES Do you mean, Socrates, that our paradoxical result is really
true and one can have a much more certain knowledge about non-existent
things–for instance about the objects of mathematics–than about the real
objects of nature? I think that now I also see the reason for this. The
notions which we ourselves have created are by their very nature com-
pletely known to us, and we can find out the full truth about them because
they have no other reality outside our imagination. However, the objects
which exist in the real world are not identical with our picture of them,
which is always incomplete and approximate; therefore our knowledge
about these real things can never be complete or quite certain.
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SOCRATES That is the truth, my young friend, and you stated it better than
I could have.

HIPPOCRATES This is to your credit, Socrates, because you led me to under-
stand these things. I see now not only that Theaitetos was quite right in
telling me I must study mathematics if I want to obtain unfailing knowl-
edge, but also why he was right. However, if you have guided me with
patience up to now, please do not abandon me yet because one of my ques-
tions, in fact the most important one, is still unanswered.

SOCRATES What is this question?

HIPPOCRATES Please remember, Socrates, that I came to ask your advice as
to whether I should study mathematics. You helped me to realize that
mathematics and only mathematics can give me the sort of sound knowl-
edge I want. But what is the use of this knowledge? It is clear that if one
obtains some knowledge about the existing world, even if this knowledge
is incomplete and is not quite certain, it is nevertheless of value to the indi-
vidual as well as to the state. Even if one gets some knowledge about things
such as the stars, it may be useful, for instance in navigation at night. But
what is the use of knowledge of non-existing things such as that which
mathematics offers? Even if it is complete and beyond any doubt, what is
the use of knowledge concerning things which do not exist in reality?

SOCRATES My dear friend, I am quite sure you know the answer, only you
want to examine me.

HIPPOCRATES By Heracles, I do not know the answer. Please help me.

SOCRATES Well, let us try to find it. We have established that the notions of
mathematics are created by the mathematician himself. Tell me, does this
mean that the mathematician chooses his notions quite arbitrarily as it
pleases him?

HIPPOCRATES As I told you, I do not yet know much about mathematics.
But it seems to me that the mathematician is as free to choose the objects
of his study as the poet is free to choose the characters of his play, and as
the poet invests his characters with whatever traits please him, so can the
mathematician endow his notions with such properties as he likes.

SOCRATES If this were so, there would be as many mathematical truths as
there are mathematicians. How do you explain, then, that all mathemati-
cians study the same notions and problems? How do you explain that, as
often happens, mathematicians living far from each other and having no
contact independently discover the same truths? I never heard of two poets
writing the same poem.

HIPPOCRATES Nor have I heard of such a thing. But I remember Theaitetos
telling me about a very interesting theorem he discovered on incommensurable
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distances. He showed his results to his master, Theodoros, who produced a let-
ter by Archytas in which the same theorem was contained almost word for
word.

SOCRATES In poetry that would be impossible. Now you see that there is a
problem. But let us continue. How do you explain that the mathematicians
of different countries can usually agree about the truth, while about ques-
tions concerning the state, for example, the Persians and the Spartans have
quite opposite views from ours in Athens, and, moreover, we here do not
often agree with each other?

HIPPOCRATES I can answer that last question. In matters concerning the
state everybody is personally interested, and these personal interests are
often in contradiction. This is why it is difficult to come to an agreement.
However, the mathematician is led purely by his desire to find the truth.

SOCRATES Do you mean to say that the mathematicians are trying to find a
truth which is completely independent of their own person?

HIPPOCRATES Yes, I do.

SOCRATES But then we were mistaken in thinking that mathematicians
choose the objects of their study at their own will. It seems that the object
of their study has some sort of existence which is independent of their per-
son. We have to solve this new riddle.

HIPPOCRATES I do not see how to start.

SOCRATES If you still have patience, let us try it together. Tell me, what is the
difference between the sailor who finds an uninhabited island and the
painter who finds a new color, one which no other painter has used before
him?

HIPPOCRATES I think that the sailor may be called a discoverer, and the
painter an inventor. The sailor discovers an island which existed before
him, only it was unknown, while the painter invents a new color which
before that did not exist at all.

SOCRATES Nobody could answer the question better. But tell me, the math-
ematician who finds a new truth, does he discover it or invent it? Is he a dis-
coverer as the sailor or an inventor as the painter?

HIPPOCRATES It seems to me that the mathematician is more like a discov-
erer. He is a bold sailor who sails on the unknown sea of thought and
explores its coasts, islands and whirlpools.

SOCRATES Well said, and I agree with you completely. I would add only that
to a lesser extent the mathematician is an inventor too, especially when he
invents new concepts. But every discoverer has to be, to a certain extent, an
inventor too. For instance, if a sailor wants to get to places which other
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sailors before him were unable to reach, he has to build a ship that is bet-
ter than the ships other sailors used. The new concepts invented by the
mathematicians are like new ships which carry the discoverer farther on the
great sea of thought.

HIPPOCRATES My dear Socrates, you helped me to find the answer to the
question which seemed so difficult to me. The main aim of the mathemati-
cian is to explore the secrets and riddles of the sea of human thought.
These exist independently of the person of the mathematician, though not
from humanity as a whole. The mathematician has a certain freedom to
invent new concepts as tools, and it seems that he could do this at his dis-
cretion. However, he is not quite free in doing this because the new con-
cepts have to be useful for his work. The sailor also can build any sort of
ship at his discretion, but, of course, he would be mad to build a ship which
would be crushed to pieces by the first storm. Now I think that everything
is clear.

SOCRATES If you see everything clearly, try again to answer the question:
what is the object of mathematics?

HIPPOCRATES We came to the conclusion that besides the world in which we
live, there exists another world, the world of human thought, and the mathe-
matician is the fearless sailor who explores this world, not shrinking back
from the troubles, dangers and adventures which await him.

SOCRATES My friend, your youthful vigor almost sweeps me off my feet, but
I am afraid that in the ardor of your enthusiasm you overlook certain ques-
tions.

HIPPOCRATES What are these questions?

SOCRATES I do not want to disappoint you, but I feel that your main ques-
tion has not yet been answered. We have not yet answered the question:
what is the use of exploring the wonderful sea of human thought?

HIPPOCRATES You are right, my dear Socrates, as always. But won’t you put
aside your method this time and tell me the answer immediately?

SOCRATES No, my friend, even if I could, I would not do this, and it is for
your sake. The knowledge somebody gets without work is almost worthless
to him. We understand thoroughly only that which-perhaps with some out-
side help-we find out ourselves, just as a plant can use only the water which
it sucks up from the soil through its own roots.

HIPPOCRATES All right, let us continue our search by the same method, but
at least help me by a question.

SOCRATES Let us go back to the point where we established that the math-
ematician is not dealing with the number of sheep, ships or other existing
things, but with the numbers themselves. Don’t you think, however, that
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what the mathematicians discover to be true for pure numbers is true for
the number of existing things too? For instance, the mathematician finds
that 17 is a prime number. Therefore, is it not true that you cannot distrib-
ute 17 living sheep to a group of people, giving each the same number,
unless there are 17 people?

HIPPOCRATES Of course, it is true.

SOCRATES Well, how about geometry? Can it not be applied in building
houses, in making pots or in computing the amount of grain a ship can
hold?

HIPPOCRATES Of course, it can be applied, though it seems to me that for
these practical purposes of the craftsman not too much mathematics is
needed. The simple rules known already by the clerks of the pharaohs in
Egypt are sufficient for most such purposes, and the new discoveries about
which Theaitetos spoke to me with such overflowing fervor are neither
used nor needed in practice.

SOCRATES Perhaps not at the moment, but they may be used in the future.

HIPPOCRATES I am interested in the present.

SOCRATES If you want to be a mathematician, you must realize you will be
working mostly for the future. Now, let us return to the main question. We
saw that knowledge about another world of thought, about things which
do not exist in the usual sense of the word, can be used in everyday life to
answer questions about the real world. Is this not surprising?

HIPPOCRATES More than that, it is incomprehensible. It is really a miracle.

SOCRATES Perhaps it is not so mysterious at all, and if we open the shell of
this question, we may find a real pearl.

HIPPOCRATES Please, my dear Socrates, do not speak in puzzles like the Pythia.

SOCRATES Tell me then, are you surprised when somebody who has trav-
elled in distant countries, who has seen and experienced many things,
returns to his city and uses his experience to give good advice to his fellow
citizens?

HIPPOCRATES Not at all.

SOCRATES Even if the countries which the traveller has visited are very far
away and are inhabited by quite a different sort of people, speaking
another language, worshipping other gods?

HIPPOCRATES Not even in that case, because there is much that is common
between different people.

SOCRATES Now tell me, if it turned out that the world of mathematics is, in
spite of its peculiarities, in some sense similar to our real world, would you
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still find it miraculous that mathematics can be applied to the study of the
real world?

HIPPOCRATES In that case no, but I do not see any similarity between the
real world and the imaginary world of mathematics.

SOCRATES Do you see that rock on the other side of the river, there where
the river broadens out and forms a lake?

HIPPOCRATES I see it.

SOCRATES And do you see the image of the rock reflected in the water?

HIPPOCRATES Certainly I do.

SOCRATES Then tell me, what is the difference between the rock and its
reflection?

HIPPOCRATES The rock is a solid piece of hard matter. It is made warm by
the sun. If you touched it, you would feel that it is rough. The reflected
image cannot be touched; if I put my hand on it, I would touch only the
cool water. As a matter of fact, the reflected image does not really exist; it
is illusion, nothing else.

SOCRATES Is there nothing in common between the rock and its reflected
image?

HIPPOCRATES Well, in a certain sense, the reflected image is a faithful pic-
ture of the rock. The contour of the rock, even its small abutments, are
clearly visible in the reflected image. But what of it? Do you want to say
that the world of mathematics is a reflected image of the real world in the
mirror of our thinking?

SOCRATES You said it, and very well.

HIPPOCRATES But how is that possible?

SOCRATES Let us recall how the abstract concepts of mathematics devel-
oped. We said that the mathematician deals with pure numbers, and not
with the numbers of real objects. But do you think that somebody who has
never counted real objects can understand the abstract notion of number?
When a child learns counting, he first counts pebbles and small sticks. Only
if he knows that two pebbles and three pebbles make five pebbles, and the
same about sticks or coins, is he able to understand that two and three
make five. The situation is essentially the same with geometry. The child
arrives at the notion of a sphere through experiences with round objects
like balls. Mankind developed all fundamental notions of mathematics in
a similar way. These notions are crystallized from a knowledge of the real
world, and thus it is not surprising but quite natural that they bear the
marks of their origin, as children do of their parents. And exactly as chil-
dren when they grow up become the supporters of their parents, so any
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branch of mathematics, if it is sufficiently developed, becomes a useful tool
in exploring the real world.

HIPPOCRATES Now it is quite clear to me how a knowledge of the non-
existent things of the world of mathematics can be used in everyday life.
You rendered me a great service in helping me to understand this.

SOCRATES I envy you, my dear Hippocrates, because I still wonder about
one thing which I should like to have settled. Perhaps you can help me.

HIPPOCRATES I would do so with pleasure, but I am afraid you are mocking
me again. Do not make me ashamed by asking my help, but tell me frankly
the question which I overlooked.

SOCRATES You will see it yourself if you try to summarize the results of our
discussion.

HIPPOCRATES Well, when it became clear why mathematics is able to give
certain knowledge about a world different from the world in which we live,
about the world of human thought, the question remained as to the use of
this knowledge. Now we have found that the world of mathematics is noth-
ing else but a reflection in our mind of the real world. This makes it clear
that every discovery about the world of mathematics gives us some infor-
mation about the real world. I am completely satisfied with this answer.

SOCRATES If I tell you the answer is not yet complete, I do so not because I
want to confuse you, but because I am sure that sooner or later you will
raise the question yourself and will reproach me for not having called your
attention to it. You would say: “Tell me, Socrates, what is the sense of
studying the reflected image if we can study the object itself ?”

HIPPOCRATES You are perfectly right; it is an obvious question. You are a
wizard, Socrates. You can totally confuse mc by a few words, and you can
knock down by an innocent-looking question the whole edifice which we
have built with so much trouble. I should, of course, answer that if we are
able to have a look at the original thing, it makes no sense to look at the
reflected image. But I am sure this shows only that our simile fails at this
point. Certainly there is an answer, only I do not know how to find it.

SOCRATES Your guess is correct that the paradox arose because we kept too
close to the simile of the reflected image. A simile is like a bow-if you
stretch it too far, it snaps. Let us drop it and choose another one. You cer-
tainly know that travellers and sailors make good use of maps.

HIPPOCRATES I have experienced that myself. Do you mean that mathemat-
ics furnishes a map of the real world?

SOCRATES Yes. Can you now answer the question: what advantage would it
be to look at the map instead of looking at the landscape?
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HIPPOCRATES This is clear: using the map we can scan vast distances which
could be covered only by travelling many weeks or months. The map shows
us not every detail, but only the most important things. Therefore it is use-
ful if we want to plan a long voyage.

SOCRATES Very well. But there is something else which occurred to me.

HIPPOCRATES What is it?

SOCRATES There is another reason why the study of the mathematical image
of the world may be of use. If mathematicians discover some property of
the circle, this at once gives us some information about any object of cir-
cular shape. Thus, the method of mathematics enables us to deal with dif-
ferent things at the same time.

HIPPOCRATES What about the following similes: If somebody looks at a city
from the top of a nearby mountain, he gets a more comprehensive view
than if he walks through its crooked streets; or if a general watches the
movements of an enemy army from a hill, he gets a clearer picture of the
situation than does the soldier in the front line who sees only those directly
opposite him.

SOCRATES Well, you surpass me in inventing new similes, but as I do not
want to fall behind, let me also add one parable. Recently I looked at a
painting by Aristophon, the son of Aglaophon, and the painter warned
me, “If you go too near the picture, Socrates, you will see only colored
spots, but you will not see the whole picture.”

HIPPOCRATES Of course, he was right, and so were you, when you did not
let us finish our discussion before we got to the heart of the question. But
I think it is time for us to return to the city because the shadows of night
are falling and I am hungry and thirsty. If you still have some patience, I
would like to ask something while we walk.

SOCRATES All right, let us start and you may ask your

HIPPOCRATES Our discourse convinced me fully that I should start studying
mathematics and I am very grateful to you for this. But tell me, why are you
yourself not doing mathematics? Judging from your deep understanding of
the real nature and importance of mathematics, it is my guess that you
would surpass all other mathematicians of Hellas, were you to concentrate
on it. I would be glad to follow you as your pupil in mathematics if you
accepted me.

SOCRATES No, my dear Hippocrates, this is not my. business. Theodoros
knows much more about mathematics than I do and you cannot find a bet-
ter master than him. As to your question why I myself am not a mathe-
matician, I shall give you the reasons. I do not conceal my high opinion
about mathematics. I think that we Hellenes have in no other art made such
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important progress as in mathematics, and this is only the beginning. If do
not extinguish each other in mad wars, we shall obtain wonderful results as
discoverers as well as inventors. You asked me why I do not join the ranks
of those who develop this great science. As a matter of fact, I am some sort
of a mathematician, only of a different kind. An inner voice, you may call
it an oracle, to which I always listen carefully, asked me many years ago,
“What is the source of the great advances which the mathematicians have
made in their noble science?” I answered, “I think the source of the success
of mathematicians lies in their methods, the high standards of their logic,
their striving without the least compromise to the full truth, their habit of
starting always from first principles, of defining every notion used exactly
and avoiding self-contradictions.” My inner voice answered, “Very well,
but why do you think, Socrates, that this method of thinking and arguing
can be used only for the study of numbers and geometric forms? Why do
you not try to convince your fellow citizens to apply the same high logical
standards in every other field, for instance in philosophy and politics, in
discussing the problems of everyday private and public life?” From that
time on, this has been my goal. I have demonstrated (you remember, for
instance, our discussion with Protagoras) that those who are thought to be
wise men are mostly ignorant fools. All their arguing lacks solid foundation,
since they use-contrary to mathematicians-undefined and only half-under-
stood notions. By this activity I have succeeded in making almost every-
body my enemy. This is not surprising because for all people who are
sluggish in thinking and idly content to use obscure terms, I am a living
reproach. People do not like those who constantly remind them of the
faults which they are unable or unwilling to correct. The day will come
when these people will fall upon me and exterminate me. But until that day
comes, I shall continue to follow my calling. You, however, go to
Theodoros.

16 Alfréd Rényi



2

“Introduction” to Filosofia
e matematica*

CARLO CELLUCCI

Mathematics has long been a preferential subject of reflection for philoso-
phers, inspiring them since antiquity in developing their theories of knowl-
edge and their metaphysical doctrines. Given the close connection between
philosophy and mathematics, it is hardly surprising that some major philoso-
phers, such as Descartes, Leibniz, Pascal and Lambert, have also been major
mathematicians.

In the history of philosophy the reflection on mathematics has taken sev-
eral forms. Since it is impossible to deal with all of them in a single volume,
in this book I will present what seems to me the most satisfactory form today.
My own view, however, differs considerably from the dominant view, and on
a number of accounts.

1. According to the dominant view, the reflection on mathematics is the task
of a specialized discipline, the philosophy of mathematics, starting with
Frege, characterized by its own problems and methods, and in a sense “the
easiest part of philosophy”1. In this view, the philosophy of mathematics
“is a specialized area of philosophy, but not merely a specialized area.
Many of the questions that arise within it, though by no means all, are
particular cases of more general questions that arise elsewhere in philos-
ophy, and occur within the philosophy of mathematics in an especially
pure, or especially simplified, form”2. Thus, “if you cannot solve these prob-
lems, what philosophical problems can you hope to solve?”3.

The view expressed in this book is instead that entrusting reflection on
mathematics to a specialized discipline poses serious limitations, because
one cannot assume that philosophical problems occur in mathematics in an
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especially pure, or especially simplified, form. The reflection on mathemat-
ics entails dealing with such problems in all their impurity and complexity,
and cannot be carried out adequately without dealing with them.

The idea that philosophical problems occur in mathematics in an espe-
cially pure or especially simplified form depends on the assumption that,
whereas applied mathematics draws its “concepts from experience, obser-
vation, scientific theories, and even economics”, pure mathematics does
not; on the contrary, “it is its purity that gives rise to many of the ques-
tions” on mathematics “we have been puzzling over”4. Pure mathematics
“requires no input from experience: it is exclusively the product of
thought”5.

This view is unjustified, however, since, like applied mathematics, pure
mathematics draws its concepts from experience, observation, scientific
theories and even economics. The questions considered by the reflection
on mathematics have, therefore, all the impurity and complexity of which
philosophical problems are capable.

2. According to the dominant view, the main problem in the philosophy
of mathematics is the justification of mathematics. This problem arises
because “our much-valued mathematics rests on two supports: inex-
orable deductive logic, the stuff of proof, and the set theoretic axioms”,
which raises “the question of what grounds our faith in logical infer-
ence” and “what justifies the axioms of set theory”6. To answer such
questions one must clarify the foundations of mathematics, providing a
justification for them. On the other hand, the philosophy of mathe-
matics does not concern itself with the problem of mathematical dis-
covery, since it is only “concerned with the product of mathematical
thought; the study of the process of production is the concern of psy-
chology, not of philosophy”7.

The view expressed in this book is instead that the main problem in the
reflection on mathematics is discovery. This includes the problem of jus-
tification, since discovery is not merely a part of mathematical activity
but encompasses the whole of it, and therefore includes justification.
Indeed, discovery requires making hypotheses capable of solving given
problems, and in order to choose the hypotheses one must carefully eval-
uate the reasons for and against them. The evaluation process is inter-
twined with the process of hypothesis-formation, since one must
compare alternative hypotheses in order to select one of them. This blurs
the distinction between discovery and justification. In fact no such dis-
tinction is possible, since there are normally so many possible hypotheses
to be formed and evaluated for any given problem that an exhaustive
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search cannot take place. Given that one cannot first make all possible
hypotheses and then evaluate them, making hypotheses and evaluating
them must be concurrent processes.

The idea that the main problem in the philosophy of mathematics is
the justification of mathematics has made the philosophy of mathemat-
ics an increasingly less attractive subject, devoted to the study of ques-
tions – such as Frege’s: ‘What is the number one?’ – which seem irrelevant
to mathematicians, neglecting those which are more important for under-
standing mathematics. No wonder, then, that there is widespread disre-
gard and misunderstanding, and often outright antagonism, between
philosophers of mathematics and mathematicians. The problem of the
justification of mathematics seems unpalatable to the vast majority of
mathematicians, who consider it irrelevant to their work.

Moreover, the idea that solving the problem of the justification of
mathematics consists of clarifying the foundations of mathematics con-
tradicts mathematical experience, which shows that mathematics is by no
means a static structure, based on foundations given once and for all, but
is a dynamic process, multifarious and articulated, whose ways of justifi-
cation are also multifarious and articulated.

3. According to the dominant view, another important problem in the
philosophy of mathematics is the existence of mathematical objects.
This problem arises because “the point of view of common sense is
perhaps that, if a proposition is true, it is because there are entities
existing independently of the proposition which have the properties or
stand in the relations which the proposition asserts of them”8. This
“suggests that since mathematical propositions are true, that there are
entities in virtue of which the propositions are true. The ontological
issue is whether there are such entitities and if so what their nature
is”9. This problem supplements “the epistemological question” of the
justification of mathematics, namely, “how mathematical beliefs come to
be completely justified”10.

The view expressed in this book is instead that the problem of the exis-
tence of mathematical objects is irrelevant to mathematics because, as
Locke pointed out, “all the discourses of the mathematicians about the
squaring of a circle” – or any other geometrical figure – “concern not the
existence of any of those figures”, and their proofs “are the same
whether there be any square or circle existing the world, or no”11. Indeed,
it is compatible with mathematical practice that there are no mathemati-
cal objects of which its theorems are true. Mathematical objects are
simply hypotheses introduced to solve specific problems. To speak of
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mathematical objects is misleading because the term ‘object’ seems to
designate the things the investigation is about, whereas hypotheses are
the tools for the investigation. The latter is intended not to study proper-
ties of mathematical objecs but to solve problems.

4. According to the dominant view, the philosophy of mathematics does
not add to mathematics. Since its main problem is the justification of
mathematics, it aims at clarifying the foundations of mathematics, not at
expanding mathematics. Thus, “as the philosophy of law does not legis-
late, or the philosophy of science devise or test scientific hypotheses, so –
we must realize from the outset – the philosophy of mathematics does
not add to the number of mathematical theorems and theories”12. Its
“arguments should have no doctrinal or practical impact on mathemat-
ics at all”13. For “mathematics comes first, then philosophizing about it,
not the other way around”14. This is simply a special case of the fact that
“philosophy does not contribute to the progress of knowledge: it merely
clarifies what we already know”15.

The view expressed in this book is instead that the reflection on math-
ematics is relevant to the progress of mathematics. Since its main prob-
lem is mathematical discovery, it aims at improving existing methods of
discovery and at inventing new ones. In this way the reflectiom on math-
ematics may contribute to the progress of mathematics, because the
improvement in existing methods of discovery and the invention of new
ones are of the utmost importance to that aim. Even Frege acknowledges
that “a development of method, too, furthers science. Bacon, after all,
thought it better to invent a means by which everything could easily be
discovered than to discover particular truths, and all steps of scientific
progress in recent times have had their origin in an improvement of
method”16.

That the reflection on mathematics can contribute to the progress of
mathematics entails that mathematics does not come first, with philoso-
phizing about it following. On the contrary, they proceed together, both
contributing to the advancement of learning.

5. According to the dominant view, the philosophy of mathematics does
not require any detailed knowledge of mathematics, because its main
aim – the justification of mathematics through a clarification of its
foundations – does not require any detailed knowledge of the edifice
built up on such foundations. Thus, even “if you have little knowledge of
mathematics, you do not need to remedy that defect before interesting
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yourself in the philosophy of mathematics”17. You can “very well
understand a good deal of the debates on the subject and a good deal
of the theories advanced concerning it without an extensive knowledge
of its subject-matter”18. Similarly, the philosophy of mathematics does
not require any detailed knowledge of the history of mathematics,
because “the etiology of mathematical ideas, however interesting, is not
something whose study promises to reveal much about the structure of
thought: for the most part, the origin and development of mathemati-
cal ideas are simply far too determined by extraneous influences”19. On
the other hand, the philosophy of mathematics requires detailed knowl-
edge of mathematical logic, “not so much as part of the object of study
as serving as a tool of inquiry”20.

The view expressed in this book is instead that the reflection on
mathematics does in fact require detailed knowledge of mathematics.
Neglecting this has led the philosophy of mathematics to deal with
marginal issues, deliberately excluding the broader ones. The philoso-
phy of mathematics has done so on the assumption that, although the
broader questions are “more interesting, more pressing, more signifi-
cant than the narrower logical questions that are properly founda-
tional”, the latter are “amenable to solution, whereas solutions to the
broader questions may depend upon further advances in mathematics
itself, advances which we cannot as yet foresee”21. But this assumption
overlooks the fact that, owing to Gödel’s incompleteness theorems and
related results, no logical question that is properly foundational has
been solved by the philosophy of mathematics. Moreover, neither is
there any evidence that the solutions to the broader questions may
depend upon further advances in mathematics itself. As Wittgenstein
put it, “even 500 years ago a philosophy of mathematics was possible,
a philosophy of what mathematics was then”22.

The reflection on mathematics also requires a detailed knowledge of
the history of mathematics. Neglecting this has led the philosophy of
mathematics to consider mathematics as a static building, based on lin-
ear relations of logical dependence between a priori determined axioms
and theorems. On the contrary, the history of mathematics shows that
mathematics is a dynamic process, which often develops through tortu-
ous and tormented paths not determined a priori, and proceeds through
false starts and standstills, routine periods and sudden turnings. This
has prevented the philosophy of mathematics from accounting not only
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for mathematical discovery but also for the real processes of mathemat-
ical justification.

As to the idea that the philosophy of mathematics requires detailed
knowledge of mathematical logic, not so much as part of the object of
study as serving as a tool of inquiry, it risks being empty. For, although
the philosophy of mathematics has carried out an intense study of the
foundations of mathematics using mathematical logic as a tool of
inquiry, the hard core of mathematics has turned out to be impervious to
what is found there. Thus the aim of clarifying the foundations of math-
ematics has lost momentum. Even supporters of mathematical logic, like
Simpson, acknowledge that “foundations of mathematics is now out of
fashion. Today, most of the leading mathematicians are ignorant of
foundations”, and “foundations of mathematics is out of favor even
among mathematical logicians”23. Indeed, the mainstream of mathemat-
ical logic has abandoned foundations to become a conventional albeit
somewhat marginal branch of mathematics.

The idea that mathematical logic is the tool of inquiry of the philoso-
phy of mathematics has its roots in the distrust towards the approach to
philosophical problems of the philosophical tradition. This distrust has
led to viewing the history of mathematical logic as a persistent struggle
to free the subject from the grip of philosophy.

This distrust emerges among the first practitioners of the art, for exam-
ple Russell, who maintains that “philosophy, from the earliest times, has
made greater claims, and achieved fewer results, than any other branch of
learning”24. Indeed, “so meagre was the logical apparatus that all the
hypotheses philosophers could imagine were found to be inconsistent with
facts”25. Nonetheless, “the time has now arrived when this unsatisfactory
state of things can be brought to an end”26. This is made possible by
mathematical logic, which has “introduced the same kind of advance into
philosophy as Galilei introduced into physics”27. Mathematical logic
“gives the method of research in philosophy, just as mathematics gives the
method in physics. And as physics” finally “became a science through
Galileo’s fresh observation of facts and subsequent mathematical manip-
ulation, so philosophy, in our own day, is becoming scientific through the
simultaneous acquisition of new facts and logical methods”28.

Statements of this kind are recurrent in the philosophy of mathemat-
ics. For example, Lukasiewicz claims that “philosophy must be recon-
structed from its very foundations; it should take its inspiration from
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scientific method and be based on the new logic”29. Beth maintains that
“the lack of an adequate formal logic has strongly hampered the devel-
opment of a systematic philosophy. Therefore”, although reflection on
the philosophy of the past will remain one of the elements of future phi-
losophy, “an adequate formal logic will be a second element of future
philosophy”30. Kreisel claims that the approach to philosophical prob-
lems of the philosophical tradition is viable only “at an early stage, when
we know too little about the phenomenon involved and about our knowl-
edge of it in order to ask sensible specific questions”31. Such an approach
must be replaced by one based on mathematical logic, which is “a tool in
the philosophy of mathematics; just as other mathematics, for example
the theory of partial differential equations, is a tool in what used to be
called natural philosophy”32.

Distrust of the approach of the philosophical tradition and the urge to
replace it by one based on mathematical logic are two basic features of
the philosophy of mathematics which, on account of their very fruitless-
ness, have led to its progressive impoverishment and decline. This decline
has become increasingly marked since the discovery of Gödel’s incom-
pleteness theorems, so much so that Mac Lane claimed that the philoso-
phy of mathematics is “a subject dormant since about 1931”33.

6. According to the dominant view, mathematics is theorem proving
because it “is a collection of proofs. This is true no matter what stand-
point one assumes about mathematics – platonism, anti-platonism, intu-
itionism, formalism, nominalism, etc.”34. Perhaps “in ‘doing
mathematics’ proving theorems isn’t everything, but it’s way ahead of
whatever is in second place”35. Of course, “the activity of mathematics is
not just randomly writing down formal proofs for random theorems”,
because “the choices of axioms, of problems, of research directions, are
influenced by a variety of considerations – practical, artistic, mystical”,
but the latter are “really non-mathematical”36. Therefore they are not a
concern of the philosophy of mathematics.

The view expressed in this book is instead that mathematics is problem
solving. That does not mean that mathematics is only problem solving.
First one must pose problems, then one can refine them, exhibit them,
dismiss them or even dissolve them. But problem solving is the core of
mathematical activity, so it seems justified to maintain that it is an essen-
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tial feature of mathematics. Problem solving, however, does not concern
single separated problems nor leads to a final solution. For each solution
generates new problems, and depends on the solutions found for these
new problems. Thus, no solution is final but is always subject to further
reconsideration.

7. According to the dominant view, the method of mathematics is the
axiomatic method. For “proof must begin from axioms that are not
themselves proved”37. In fact, “to prove a proposition, you start from
some first principles, derive some results from those axioms, then, using
those axioms and results, push on to prove other results”38. The
axiomatic method is available for the whole of mathematics, because “all
mathematical theories, when sufficiently developed, are capable of
axiomatization”39. Moreover, the axiomatic method provides “a strategy
both for finding and remembering proofs”, because “relatively few prop-
erties, Bourbaki’s few, so-called basic structures, have been found ade-
quate for similar strategies in a very broad domain of mathemathics”,
although “the use of axiomatic analysis as a proof strategy does not seem
to be well known to people writing on heuristics, like Polya”40. Since the
method of mathematics is the axiomatic method, “mathematics and sci-
ence are intellectual undertakings which are complementary but
opposed, distinguished by the direction of their view”41. For “the former
proceeds forwards, from hypotheses to conclusions: i.e., from axioms to
the theorems derivable from them. The latter proceeds backwards, from
conclusions to premisses: i.e., from experimental data to physical laws
from which they can be drawn”42.

The view expressed in this book is instead that the method of math-
ematics is the analytic method, a method which, unlike the axiomatic
method, does not start from axioms which are given once and for all
and are used to prove any theorem, nor does it proceed forwards from
axioms to theorems, but proceeds backwards from problems to
hypotheses. Thus proof does not begin from axioms that are not them-
selves proved. Unlike axioms, hypotheses are not given from the start,
but are the very goal of the investigation. They are never definitive, but
liable to be replaced by other hypotheses, and are introduced to solve
specific problems43.

24 Carlo Cellucci

37 Maddy 1990, p. 144.
38 Leary 2000, p. 48.
39 Dummett 1991, p. 305.
40 Kreisel-MacIntyre 1982, pp. 232-233.
41 Odifreddi 2001, p. 233.
42 Ibid.
43 The analytic method is meant here not in the sense of Aristotle or Pappus but in
the sense of Hippocrates of Chios and Plato. On this distinction see Cellucci 1998a.



The idea that, to prove a proposition, you start from some first princi-
ples, derive some results from those axioms, then, using those axioms and
results, push on to prove other results, contrasts with mathematical expe-
rience which shows that in mathematics one first formulates problems,
then looks for hypotheses to solve them. Thus one does not proceed, as
in the axiomatic method, from axioms to theorems but proceeds, as in the
analytic method, from problems to hypotheses. As Hamming points out,
in mathematics deriving theorems from axioms “does not correspond to
simple observation. If the Pythagorean theorem were found to not follow
from postulates, we would again search for a way to alter the postulates
until it was true. Euclid’s postulates came from the Pythagorean theorem,
not the other way”44.

Similarly, the idea that the axiomatic method is available for the whole
of mathematics because all mathematical theories, when sufficiently
developed, are capable of axiomatization, contrasts with mathematical
experience, which shows that axiomatization does not naturally apply to
all parts of mathematics. Some of them are not suitable for axiomatiza-
tion, and exist as collections of solved or unsolved problems of a certain
kind. This is true, for example, of number theory and of much of the the-
ory of partial differential equations.

The idea that the axiomatic method provides a strategy both for find-
ing and remembering proofs also contrasts with mathematical experi-
ence, which shows that proofs based on the axiomatic method often
appear to be found only by a stroke of luck, and seem artificial and dif-
ficult to understand. Showing only the final outcome of the investiga-
tion, established in a way that is completely different from how it was first
obtained, such proofs hide the actual mathematical process, thus con-
tributing to make mathematics a difficult subject.

Similarly, the idea that, since the method of mathematics is the
axiomatic method, mathematics and science are intellectual undertakings
which are complementary but opposed, distinguished by the direction of
their view, contrasts with mathematical experience, which shows that
mathematics, like other sciences, proceeds backwards from conclusions
to premises, i.e. from problems to hypotheses which provide conditions
for their solution. This is adequately accounted for by the analytic
method, which assimilates mathematics to other sciences, and in particu-
lar assimilates the concept of mathematical proof to the concepts of
proof of other sciences.

The limitations of the axiomatic method are acknowledged by several
mathematicians. For example, Lang stresses that “axiomatization is what
one does last, it’s rubbish”, it is merely “the hygiene of mathematics”45.
Giusti states that “setting out axioms is never the starting point, but is
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rather the arrival point of a theory”, and “the occasions where one
started from the axioms are rather the exception than the rule”46. Hersh
points out that, “in developing and understanding a subject, axioms
come late”, and even if “sometimes someone tries to invent a new branch
of mathematics by making up some axioms and going from there”, still
“such efforts rarely achieve recognition or permanence. Examples, prob-
lems, and solutions come first. Later come axiom sets on which the exist-
ing theory can be ‘based’. The view that mathematics is in essence
derivations from axioms is backward. In fact, it’s wrong”47.

The limitations of the axiomatic method are also acknowledged by
some supporters of the dominant view, like Mayberry, who recognizes
that “no axiomatic theory, formal or informal, of first or of higher order
can logically play a foundational role in mathematics”48. For “it is obvi-
ous that you cannot use the axiomatic method to explain what the
axiomatic method is”49. Since any theory put forward “as the foundation
of mathematics must supply a convincing account of axiomatic defini-
tion, it cannot, on pain of circularity, itself be presented by means of an
axiomatic definition”50.

8. According to the dominant view, the logic of mathematics is deductive
logic. For theorems “are justified by deductive inference”51. In fact,
“deductive inference patently plays a salient part in mathematics. The
correct observation that the discovery of a theorem does not usually
proceed in accordance with the strict rules of deduction has no force: a
proof has to be set out in sufficient detail to convince readers, and,
indeed, its author, of its deductive cogency”52. Admittedly, “deduction
is only one component in mathematical reasoning understood in the
broad sense of all the intellectual work that goes on when solving a
mathematical problem. But this does not mean that the notion of
deduction is not the key concept for understanding validity in mathe-
matics, or that the distinction between discovery and justification loses
its theoretical importance”53. For, “when it comes to explaining the
remarkable phenomenon that work on a mathematical problem may
end in a result that everyone finds definitive and conclusive, the notion
of deduction is a central one”54. Indeed, “mathematics has a method-
ology unique among all the sciences. It is the only discipline in which
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deductive logic is the sole arbiter of truth. As a result mathematical
truths established at the time of Euclid are still held valid today and are
still taught. No other science can make this claim”55.

The view expressed in this book is instead that the logic of mathemat-
ics is not deductive logic but a broader logic, dealing with non-deductive
(inductive, analogical, metaphorical, metonymical, etc.) inferences in
addition to deductive inferences. It is by non-deductive inferences that
one finds the hypotheses by which mathematical problems are solved.
The logic of mathematics is not, therefore, that studied by mathematical
logic, which is simply a branch of mathematics, but consists of a set of
non-deductive methods and techniques in addition to deductive methods
and techniques, and hence is not a theory but a set of tools.

To claim that the logic of mathematics is deductive logic because the-
orems are justified by deductive inference, restricts mathematical experi-
ence to ways of reasoning found only in textbooks of mathematical logic,
and neglects those that are really used in mathematical activity. More-
over, it does not account for the real nature of mathematics, because
mathematical reasoning is based mainly on non-deductive inferences, not
on deductive inferences, which play a somewhat restricted role within it.
Contrary to widespread misunderstanding, mathematics is never deduc-
tive in the making, since mathematicians first state problems, then find
hypotheses for their solution by non-deductive inferences. As even some
supporters of the dominant view, like Halmos, acknowledge, mathemat-
ics “is never deductive in its creation. The mathematician at work makes
vague guesses, visualizes broad generalizations, and jumps to unwar-
ranted conclusions. He arranges and rearranges his ideas, and he
becomes convinced of their truth long before he can write down a logical
proof”56. The “deductive stage, writing the result down, and writing
down its rigorous proof are relatively trivial once the real insight arrives;
it is more like the draftsman’s work, not the architect’s”57. Furthermore,
to claim that the logic of mathematics is deductive logic clashes with the
results of the neurosciences, which show that the human brain is very
inefficient even in moderately long chains of deductive inferences.

Similarly, to claim that, when it comes to explaining the remarkable
phenomenon that work on a mathematical problem may end in a result
that everyone finds definitive and conclusive, the notion of deduction is
a central one, overlooks the fact that, according to the dominant view,
several Euclid’s proofs are flawed. Thus, in this view, the fact that every-
one finds Euclid’s results definitive and conclusive cannot depend on
Euclid’s proofs. The same applies to contemporary mathematics, where
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several published proofs are flawed – somewhat surprising if mathematics
is the rigorous deduction of theorems from axioms.

Moreover, to claim that mathematics has a methodology unique
among all the sciences because it is the only discipline in which deductive
logic is the sole arbiter of truth, begs the question since it assumes that
the logic of mathematics is deductive logic. On the contrary, the broader
logic on which mathematics is based does not distinguish but rather
assimilates the methodology of mathematics to that of the other sciences,
which is based on inferences of the very same kind.

9. According to the dominant view, mathematical discovery is an irrational
process based on intuition, not on logic. For “some intervention of intu-
ition issuing from the unconscious is necessary at least to initiate the log-
ical work”58. The activity “of a creating brain has never had any rational
explanation, neither in mathematics nor in other fields”59. In particular,
the discovery of axioms has nothing to do with logic, because “there is
no hope, there is, as it were, a leap in the dark, a bet at any new axiom”,
so “we are no longer in the domain of science but in that of poetry”60.
Generally, “the creative and intuitive aspects of mathematical work
evade logical encapsulation”61. The “mathematician at work relies on
surprisingly vague intuitions and proceeds by fumbling fits and starts
with all too frequent reversals. In this picture the actual historical and
individual processes of mathematical discovery appear haphazard and
illogical”62. The role of intuition in mathematical discovery is decisive “in
most researchers, who are often put on the track that will lead them to
their goal by an albeit confused intuition of the mathematical phenom-
ena studied by them”63.

The view expressed in this book is instead that mathematics is a
rational activity at any stage, including the most important one: discov-
ery. Intuition does not provide an adequate explanation as to how we
reach new hypotheses, so, either we must give up any explanation thus
withdrawing into irrationalism, or we must provide an explanation, but
then cannot appeal to intuition.

In fact, there is no need to appeal to intuition. Since ancient times,
many have recognised not only that mathematical discovery is a rational
process, but also that a method exists for it, namely the analytic method.
This method gave great heuristic power to ancient mathematicians in
solving geometrical problems, and has had a decisive role in the new
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developments of mathematics and physics since the beginning of the
modern era. Within the analytic method, logic plays an essential role in
the discovery of hypotheses, provided of course that logic is taken to
include non-deductive inferences, unlike in the limited and somewhat
parochial dominant view.

Not only is there no need to appeal to intuition, but Pascal even sets
the mathematical mind against the intuitive mind. For he claims that
“there are two kinds of mind, one mathematical, and the other what one
might call the intuitive. The first takes a slow, firm and inflexible view,
but the latter has flexibility of thought which it applies simultaneously to
the diverse lovable parts of that which it loves”64.

10. According to the dominant view, in addition to mathematical discovery,
mathematical justification too is based on intuition. For, if one assumes
that the method of mathematics is the axiomatic method, then justifying
mathematics amounts to justifying the certainty of its axioms, and their
certainty is directly or indirectly based on intuition. Directly, when
through intuition “the axioms force themselves upon us as being true”65.
Indirectly, when “we apply contentual” – and hence intuitive – “inference,
in particular, to the proof of the consistency of the axioms”66. Thus,
“accounting for intuitive ‘knowledge’ in mathematics is the basic prob-
lem of mathematical epistemology”67.

The view expressed in this book is instead that justification is not
based on intuition but on the fact that the hypotheses used in mathemat-
ics are plausible, i.e., compatible with the existing knowledge, in the sense
that, if one compares the reasons for and against the hypotheses, the rea-
sons for prevail. It is often claimed that ‘plausible’ has a subjective, psy-
chological connotation, so that it is almost equivalent to ‘rhetorically
persuasive’, hence plausible arguments are of little interest in mathemat-
ics. But ‘plausible’, in the sense explained above, has nothing subjective
or psychological about it.

To assess whether a given hypothesis is plausible, one examines the rea-
sons for and against it. This examination is carried out using facts which
confirm the hypothesis or refute it, where these facts belong to the exist-
ing knowledge. Admittedly, such an assessment is fallible, because one’s
choice of facts may be inadequate, and moreover the existing knowledge
is not static but develops continuously, each new development providing
further elements for assessing the hypothesis, which may lead to its rejec-
tion. But this procedure is neither subjective nor psychological. On the
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contrary, a justification of mathematics based on intuition is subjective
and psychological.

11. According to the dominant view, mathematics is a body of truths – indeed
a body of absolutely certain and hence irrefutable truths. For mathemat-
ics is “the paradigm of certain and final knowledge: not fixed, to be sure,
but a steadily accumulating coherent body of truths obtained by succes-
sive deduction from the most evident truths. By the intricate combination
and recombination of elementary steps one is led incontrovertibly from
what is trivial and unremarkable to what can be nontrivial and surpris-
ing”68. This derives from the fact that, “while a physical hypothesis can
only be verified to the accuracy and the interpretation of the best work in
the laboratory”, a mathematical truth is established by a proof based on
the axiomatic method, which “has the highest degree of certainty possible
for man”69. Indeed, “there is at present no viable alternative to axiomatic
presentation if the truth of a mathematical statement is to be established
beyond reasonable doubt”70. While physical hypotheses come and go,
none is definitive, and so “in physics nothing is completely certain”, math-
ematics, as based on the axiomatic method, “lasts an eternity”71.

The view expressed in this book is instead that mathematics is a body
of knowledge but contains no truths. Speaking of truth is not necessary
in mathematics, just as it is not necessary in the natural sciences, and is
not necessary anywhere except perhaps in theology and in lovers’ quar-
rels. Assuming that mathematics is a body of truths leads to an inextri-
cable muddle, which results in self-defeating statements such as: It is
legitimate “to argue from ‘this theory has properties we like’ to ‘this the-
ory is true’” 72. On this basis Frege could have argued that, since his
ideography had the property he liked of reducing arithmetic to logic, his
ideography was true, only to be belied by Russell’s paradox.

That mathematics is not a body of truths does not mean that it has no
objective content. It only means that, as with any other science, mathe-
matics does not consist of truths but only of plausibile statements, i.e.,
statements compatible with existing knowledge. The objectivity of math-
ematics does not depend on its being a body of truths but on its being a
body of plausible statements.

Moreover, the idea that mathematics is a body of absolutely certain
and hence irrefutable truths, overlooks the fact that we cannot be sure of
the current proofs of our theorems. For, by Gödel’s incompleteness the-
orems and related results, we cannot be sure of the hypotheses on which
they are based.
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As regards certainty, mathematics has no privilege and is as risky
as any other human creation. Mathematical knowledge is not absolutely
certain, but only plausible, i.e. compatible with the existing knowledge,
and plausibility does not grant certainty, because the existing knowl-
edge is not absolutely certain, but only plausible. For centuries mathe-
matics was considered a body of absolutely certain truths, but now this
is increasingly perceived as an illusion. Uncertainty and doubt have
replaced the self-complacent certainty of the past. As some supporters
of the dominant view, like Leary, also acknowledge, by Gödel’s in-
completeness theorems and related results, “mathematics, which had
reigned for centuries as the embodiment of certainty, had lost that
role”73.

12. According to the dominant view, the question of the applicability of
mathematics to the physical sciences is inessential for the philosophy
of mathematics. Mathematics is “a unified undertaking which we
have reason to study as it is, and the study of the actual methods of
mathematics, which includes pure mathematics, quickly reveals that mod-
ern mathematics also has goals of its own, apart from its role in sci-
ence”74. Admittedly, “it is a wonderful thing when a branch of
mathematics suddenly becomes relevant to new discoveries in another
science; both fields benefit enormously. But many (maybe most) areas of
mathematics will never be so fortunate. Yet most mathematicians feel
their work is no less valid and no less important than mathematics that
has found utility in other sciences. For them it is enough to experience
and share the beauty of a new theorem. New mathematical knowledge”
is “an end in itself”75.

The view expressed in this book is instead that the question of the
applicability of mathematics to the physical sciences is important for the
reflection on mathematics. While, on the one hand, mathematics is con-
tinuous with philosophy, on the other hand it is also continuous with the
physical sciences, and many of its developments, even in pure mathemat-
ics, are inextricably linked to the physical sciences.

13. According to the dominant view, mathematics is based only on concep-
tual thought. For mathematics “is the purest product of conceptual
thought, which is a feature of human life that both pervasively structures
it and sets it apart from all else”76. Mathematics is “unconstrained by
experience”, enters “the world touched only by the hand of reflection”,
and is “justified by pure ratiocination, perceptual observation via any of
our five sensory modalities being neither necessary nor even relevant”77.
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Thus, from the standpoint of the philosophy of mathematics, it is
inessential to study questions concerning perception, or, more generally,
“such questions as ‘What brain, or neural activity, or cognitive architec-
ture makes mathematical thought possible?’”78. These questions focus on
“phenomena that are really extraneous to the nature of mathematical
thought itself”, i.e., “the neural states that somehow carry thought”,
whereas “philosophers, by contrast, are interested in the nature of those
thoughts themselves, in the content carried by the neural vehicles”79.

The view expressed in this book is instead that mathematics is based
not only on conceptual thought but also on perception, which plays an
important role in it, for example, in diagrams. Thus, from the viewpoint
of the reflection on mathematics, it is important to study questions con-
cerning perception and more generally the brain, the neural activity or
the cognitive architecture which make mathematical thought possible.
Mathematics, after all, is a human activity, and the only mathematics
humans can do is what their brain, neural activity and cognitive archi-
tecture enable them to do. Therefore, what mathematics is essentially
depends on what the human brain, neural activity or cognitive architec-
tures are.

The idea that mathematics is based only on conceptual thought, and
indeed is the purest product of conceptual thought, neglects the fact that
the ability to distinguish shape, position and number is not restricted to
humankind but is shared by several other forms of animal life. This abil-
ity is vital to these forms of life: they could not have survived without it.
Mathematics, therefore, is not a feature of human life that distinguishes
it from all the rest, but has its roots in certain basic abilities belonging
both to humans and to several other forms of animal life, and is part of
the process of adapting to the environment.

This brings to an end our examination of the main differences between
the view expressed in this book and the dominant view. Not that there are
no further differences, but those considered above will suffice to show to
what extent the two views differ.

The arguments sketched above provide reasons for rejecting the domi-
nant view. In short, the rejection is motivated by the fact that the
dominant view does not explain how mathematical problems arise and
are solved. Rather, it presents mathematics as an artificial construction,
which does not reflect its important aspects, and omits those features
which make mathematics a vital discipline. Thus the dominant view does
not account for the richness, multifariousness, dynamism and flexibility
of mathematical experience.
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In showing the limitations of the dominant view, in this book I do not
describe it in all its historical and conceptual articulations, which would
require considerably more space than is available in a single book. I only
present as much as is necessary to show that it is untenable.

For statements of the dominant view, the interested reader may wish
to consult, in addition to introductory texts80, the primary sources, many
of which are readily available81. As to the different ways in which the
reflection on mathematics has been carried out in the history of philoso-
phy, he may wish to consult, in addition to introductory texts82, the pri-
mary sources, from Plato to Mill, most of which are also readily
available83.

Partial challenges to the dominant view have been put forward by
Pólya, Lakatos, Hersh and others84. The position stated in this book is,
however, somewhat more radical, and perhaps more consequential.

For instance, unlike Pólya, I do not claim that “the first rule of dis-
covery is to have brains and good luck”, nor that the “the second rule of
discovery is to sit tight and wait till you get a bright idea”85. Nor do I dis-
tinguish between, on the one hand, mathematics in a finished form,
viewed as “purely demonstrative, consisting of proofs only”, and, on the
other hand, “mathematics in the making”, which “resembles any other
human knowledge in the making”86. Moreover, I do not claim that
axiomatic reasoning, characteristic of mathematics in finished form, “is
safe, beyond controversy, and final”, unlike conjectural reasoning, char-
acteristic of mathematics in the making, which “is hazardous, controver-
sial, and provisional”87. Nor do I maintain that axiomatic reasoning is
for the mathematician “his profession and the distinctive mark of his sci-
ence”88. These views have prevented Pólya from developing a full alter-
native to the dominant view.

The view expounded in this book is a development of that pre-
sented in my earlier publications89. The reader might wish to consult
them for matters which are not discussed or are discussed only too
briefly here.

In this book I do not consider all philosophical questions concerning
mathematics, even less all philosophical questions concerning knowledge,

“Introduction” to Filosofia e matematica 33

80 See, for example, Giaquinto 2002, Shapiro 2000.
81 See Benacerraf-Putnam 1983, Ewald 1996, Hart 1996, Jacquette 2002, Mancosu
1998, van Heijenoort 1977.
82 See, for example, Barbin-Caveing 1996.
83 A basic choice can be found in Baum 1973.
84 See, for example, Tymoczko 1998.
85 Pólya 1948, p. 158.
86 Pólya 1954, I, p. vi.
87 Ibid., I, p. v.
88 Ibid., I, p. vi.
89 See, for example, Cellucci 1998a, 1998b, 2000, 2002b.



because that would require far more space than is available. To my mind,
however, the questions discussed here should be dealt with in any inves-
tigation concerning the nature of mathematics.

The book consists of a number of short chapters, each of which can
be read independently of the others, although its full meaning will
emerge only within the context of the whole book. To illustrate my view,
I often use fairly simple mathematical examples, which can be presented
briefly and do not require elaborate preliminary explanations. Nonethe-
less, their simplicity does not detract from their exemplarity.

Since my view differs radically from the dominant view, which has
exerted its supremacy for so long as to be now mistaken for common
sense, I do not expect readers to agree with me immediately. I only ask
that you to try and find counterarguments, and carefully assess whether
they would stand up to the objections which could be raised against them
from the viewpoint of this book.
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3

On Proof and Progress
in Mathematics

WILLIAM P. THURSTON

This essay on the nature of proof and progress in mathematics was stimulated
by the article of Jaffe and Quinn, “Theoretical Mathematics: Toward a cultural
synthesis of mathematics and theoretical physics”. Their article raises interesting
issues that mathematicians should pay more attention to, but it also perpetuates
some widely held beliefs and attitudes that need to be questioned and examined.

The article had one paragraph portraying some of my work in a way that
diverges from my experience, and it also diverges from the observations of
people in the field whom I’ve discussed it with as a reality check.

After some reflection, it seemed to me that what Jaffe and Quinn wrote was
an example of the phenomenon that people see what they are tuned to see.
Their portrayal of my work resulted from projecting the sociology of mathe-
matics onto a one-dimensional scale (speculation versus rigor) that ignores
many basic phenomena.

Responses to the Jaffe-Quinn article have been invited from a number of
mathematicians, and I expect it to receive plenty of specific analysis and criti-
cism from others. Therefore, I will concentrate in this essay on the positive rather
than on the contranegative. I will describe my view of the process of mathe-
matics, referring only occasionally to Jaffe and Quinn by way of comparison.

In attempting to peel back layers of assumptions, it is important to try to
begin with the right questions:

1. What is it that mathematicians accomplish?

There are many issues buried in this question, which I have tried to phrase in
a way that does not presuppose the nature of the answer.

It would not be good to start, for example, with the question

How do mathematicians prove theorems?

This question introduces an interesting topic, but to start with it would be to
project two hidden assumptions:
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(1) that there is uniform, objective and firmly established theory and prac-
tice of mathematical proof, and

(2) that progress made by mathematicians consists of proving theorems.

It is worthwhile to examine these hypotheses, rather than to accept them as
obvious and proceed from there.

The question is not even

How do mathematicians make progress in mathematics?

Rather, as a more explicit (and leading) form of the question, I prefer

How do mathematicians advance human understanding of mathematics?

This question brings to the fore something that is fundamental and perva-
sive: that what we are doing is finding ways for people to understand and
think about mathematics.

The rapid advance of computers has helped dramatize this point, because
computers and people are very different. For instance, when Appel and Haken
completed a proof of the 4-color map theorem using a massive automatic
computation, it evoked much controversy. I interpret the controversy as hav-
ing little to do with doubt people had as to the veracity of the theorem or the
correctness of the proof. Rather, it reflected a continuing desire for human
understanding of a proof, in addition to knowledge that the theorem is true.

On a more everyday level, it is common for people first starting to grapple
with computers to make large-scale computations of things they might have
done on a smaller scale by hand. They might print out a table of the first
10,000 primes, only to find that their printout isn’t something they really
wanted after all. They discover by this kind of experience that what they
really want is usually not some collection of “answers”—what they want is
understanding.

It may sound almost circular to say that what mathematicians are accom-
plishing is to advance human understanding of mathematics. I will not try to
resolve this by discussing what mathematics is, because it would take us far
afield. Mathematicians generally feel that they know what mathematics is,
but find it difficult to give a good direct definition. It is interesting to try. For
me, “the theory of formal patterns” has come the closest, but to discuss this
would be a whole essay in itself.

Could the difficulty in giving a good direct definition of mathematics be an
essential one, indicating that mathematics has an essential recursive quality?
Along these lines we might say that mathematics is the smallest subject satis-
fying the following:

● Mathematics includes the natural numbers and plane and solid geometry.
● Mathematics is that which mathematicians study.
● Mathematicians are those humans who advance human understanding of

mathematics.
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In other words, as mathematics advances, we incorporate it into our think-
ing. As our thinking becomes more sophisticated, we generate new mathe-
matical concepts and new mathematical structures: the subject matter of
mathematics changes to reflect how we think.

If what we are doing is constructing better ways of thinking, then psycho-
logical and social dimensions are essential to a good model for mathematical
progress. These dimensions are absent from the popular model. In caricature,
the popular model holds that

D. mathematicians start from a few basic mathematical structures and a
collection of axioms “given” about these structures, that

T. there are various important questions to be answered about these
structures that can be stated as formal mathematical propositions,
and

P. the task of the mathematician is to seek a deductive pathway from the
axioms to the propositions or to their denials.

We might call this the definition-theorem-proof (DTP) model of mathematics.
A clear difficulty with the DTP model is that it doesn’t explain the source

of the questions. Jaffe and Quinn discuss speculation (which they inappro-
priately label “theoretical mathematics”) as an important additional ingredi-
ent. Speculation consists of making conjectures, raising questions, and
making intelligent guesses and heuristic arguments about what is probably
true.

Jaffe and Quinn’s DSTP model still fails to address some basic issues. We
are not trying to meet some abstract production quota of definitions, theo-
rems and proofs. The measure of our success is whether what we do enables
people to understand and think more clearly and effectively about mathe-
matics.

Therefore, we need to ask ourselves:

2. How do people understand mathematics?

This is a very hard question. Understanding is an individual and internal
matter that is hard to be fully aware of, hard to understand and often hard to
communicate. We can only touch on it lightly here.

People have very different ways of understanding particular pieces of
mathematics. To illustrate this, it is best to take an example that practicing
mathematicians understand in multiple ways, but that we see our students
struggling with. The derivative of a function fits well. The derivative can be
thought of as:

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a
function to the infinitesimal change in a function.

(2) Symbolic: the derivative of xn is nxn-1, the derivative of sin(x) is cos(x),
the derivative of f ο g is f′ ο g * g′, etc.
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(3) Logical: f′ (x) = d if and only if for every e there is a d such that when
0 < ⎥ ∆x ⎥ < d,

( ) ( )
< .x

f x x f x
dO

O+ -
- d

(4) Geometric: the derivative is the slope of a line tangent to the graph of
the function, if the graph has a tangent.

(5) Rate: the instantaneous speed of f(t), when t is time.
(6) Approximation: The derivative of a function is the best linear approxi-

mation to the function near a point.
(7) Microscopic: The derivative of a function is the limit of what you get

by looking at it under a microscope of higher and higher power.

This is a list of different ways of thinking about or conceiving of the deriv-
ative, rather than a list of different logical definitions. Unless great efforts are
made to maintain the tone and flavor of the original human insights, the dif-
ferences start to evaporate as soon as the mental concepts are translated into
precise, formal and explicit definitions.

I can remember absorbing each of these concepts as something new and
interesting, and spending a good deal of mental time and effort digesting and
practicing with each, reconciling it with the others. I also remember coming
back to revisit these different concepts later with added meaning and under-
standing.

The list continues; there is no reason for it ever to stop. A sample entry fur-
ther down the list may help illustrate this. We may think we know all there is
to say about a certain subject, but new insights are around the corner. Fur-
thermore, one person’s clear mental image is another person’s intimidation:

37. The derivative of a real-valued function f in a domain D is the
Lagrangian section of the cotangent bundle T* (D) that gives the con-
nection form for the unique flat connection on the trivial R-bundle D ×
R for which the graph of f is parallel.

These differences are not just a curiosity. Human thinking and under-
standing do not work on a single track, like a computer with a single central
processing unit. Our brains and minds seem to be organized into a variety of
separate, powerful facilities. These facilities work together loosely, “talking”
to each other at high levels rather than at low levels of organization.

Here are some major divisions that are important for mathematical
thinking:

(1) Human language. We have powerful special-purpose facilities for speak-
ing and understanding human language, which also tie in to reading and
writing. Our linguistic facility is an important tool for thinking, not just
for communication. A crude example is the quadratic formula which peo-
ple may remember as a little chant, “ex equals minus bee plus or minus
the square root of bee squared minus four ay see all over two ay.” The
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mathematical language of symbols is closely tied to our human language
facility. The fragment of mathematical symbolese available to most cal-
culus students has only one verb, “=”. That’s why students use it when
they’re in need of a verb. Almost anyone who has taught calculus in the
U.S. has seen students instinctively write “x3 = 3x2” and the like.

(2) Vision, spatial sense, kinesthetic (motion) sense. People have very pow-
erful facilities for taking in information visually or kinesthetically, and
thinking with their spatial sense. On the other hand, they do not have a
very good built-in facility for inverse vision, that is, turning an internal
spatial understanding back into a two-dimensional image. Conse-
quently, mathematicians usually have fewer and poorer figures in their
papers and books than in their heads.

An interesting phenomenon in spatial thinking is that scale makes a
big difference. We can think about little objects in our hands, or we can
think of bigger human-sized structures that we scan, or we can think of
spatial structures that encompass us and that we move around in. We
tend to think more effectively with spatial imagery on a larger scale: it’s
as if our brains take larger things more seriously and can devote more
resources to them.

(3) Logic and deduction. We have some built-in ways of reasoning and put-
ting things together associated with how we make logical deductions:
cause and effect (related to implication), contradiction or negation, etc.

Mathematicians apparently don’t generally rely on the formal rules
of deduction as they are thinking. Rather, they hold a fair bit of logi-
cal structure of a proof in their heads, breaking proofs into intermedi-
ate results so that they don’t have to hold too much logic at once. In
fact, it is common for excellent mathematicians not even to know
the standard formal usage of quantifiers (for all and there exists), yet all
mathematicians certainly perform the reasoning that they encode.

It’s interesting that although “or”, “and” and “implies” have identi-
cal formal usage, we think of “or” and “and” as conjunctions and
“implies” as a verb.

(4) Intuition, association, metaphor. People have amazing facilities for
sensing something without knowing where it comes from (intuition);
for sensing that some phenomenon or situation or object is like some-
thing else (association); and for building and testing connections
and comparisons, holding two things in mind at the same time
(metaphor). These facilities are quite important for mathematics. Per-
sonally, I put a lot of effort into “listening” to my intuitions and asso-
ciations, and building them into metaphors and connections. This
involves a kind of simultaneous quieting and focusing of my mind.
Words, logic, and detailed pictures rattling around can inhibit intu-
itions and associations.

(5) Stimulus-response. This is often emphasized in schools; for instance, if
you see 3927 × 253, you write one number above the other and draw a
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line underneath, etc. This is also important for research mathematics:
seeing a diagram of a knot, I might write down a presentation for the
fundamental group of its complement by a procedure that is similar in
feel to the multiplication algorithm.

(6) Process and time. We have a facility for thinking about processes or
sequences of actions that can often be used to good effect in mathe-
matical reasoning. One way to think of a function is as an action, a
process, that takes the domain to the range. This is particularly valuable
when composing functions. Another use of this facility is in remember-
ing proofs: people often remember a proof as a process consisting of
several steps. In topology, the notion of a homotopy is most often
thought of as a process taking time. Mathematically, time is no differ-
ent from one more spatial dimension, but since humans interact with it
in a quite different way, it is psychologically very different.

3. How is mathematical understanding communicated?

The transfer of understanding from one person to another is not automatic.
It is hard and tricky. Therefore, to analyze human understanding of mathe-
matics, it is important to consider who understands what, and when.

Mathematicians have developed habits of communication that are often
dysfunctional. Organizers of colloquium talks everywhere exhort speakers to
explain things in elementary terms. Nonetheless, most of the audience at an
average colloquium talk gets little of value from it. Perhaps they are lost
within the first 5 minutes, yet sit silently through the remaining 55 minutes.
Or perhaps they quickly lose interest because the speaker plunges into tech-
nical details without presenting any reason to investigate them. At the end of
the talk, the few mathematicians who are close to the field of the speaker ask
a question or two to avoid embarrassment.

This pattern is similar to what often holds in classrooms, where we go
through the motions of saying for the record what we think the students
“ought” to learn, while the students are trying to grapple with the more fun-
damental issues of learning our language and guessing at our mental mod-
els. Books compensate by giving samples of how to solve every type of
homework problem. Professors compensate by giving homework and tests
that are much easier than the material “covered” in the course, and then
grading the homework and tests on a scale that requires little understand-
ing. We assume that the problem is with the students rather than with com-
munication: that the students either just don’t have what it takes, or else just
don’t care.

Outsiders are amazed at this phenomenon, but within the mathematical
community, we dismiss it with shrugs.

Much of the difficulty has to do with the language and culture of mathe-
matics, which is divided into subfields. Basic concepts used every day within
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one subfield are often foreign to another subfield. Mathematicians give up on
trying to understand the basic concepts even from neighboring subfields,
unless they were clued in as graduate students.

In contrast, communication works very well within the subfields of math-
ematics. Within a subfield, people develop a body of common knowledge
and known techniques. By informal contact, people learn to understand and
copy each other’s ways of thinking, so that ideas can be explained clearly
and easily.

Mathematical knowledge can be transmitted amazingly fast within a sub-
field. When a significant theorem is proved, it often (but not always) happens
that the solution can be communicated in a matter of minutes from one per-
son to another within the subfield. The same proof would be communicated
and generally understood in an hour talk to members of the subfield. It
would be the subject of a 15- or 20-page paper, which could be read and
understood in a few hours or perhaps days by members of the subfield.

Why is there such a big expansion from the informal discussion to the talk
to the paper? One-on-one, people use wide channels of communication that
go far beyond formal mathematical language. They use gestures, they draw
pictures and diagrams, they make sound effects and use body language. Com-
munication is more likely to be two-way, so that people can concentrate on
what needs the most attention. With these channels of communication, they
are in a much better position to convey what’s going on, not just in their log-
ical and linguistic facilities, but in their other mental facilities as well.

In talks, people are more inhibited and more formal. Mathematical audi-
ences are often not very good at asking the questions that are on most peo-
ple’s minds, and speakers often have an unrealistic preset outline that inhibits
them from addressing questions even when they are asked.

In papers, people are still more formal. Writers translate their ideas into
symbols and logic, and readers try to translate back.

Why is there such a discrepancy between communication within a subfield
and communication outside of subfields, not to mention communication out-
side mathematics?

Mathematics in some sense has a common language: a language of sym-
bols, technical definitions, computations, and logic. This language efficiently
conveys some, but not all, modes of mathematical thinking. Mathematicians
learn to translate certain things almost unconsciously from one mental mode
to the other, so that some statements quickly become clear. Different mathe-
maticians study papers in different ways, but when I read a mathematical
paper in a field in which I’m conversant, I concentrate on the thoughts that
are between the lines. I might look over several paragraphs or strings of equa-
tions and think to myself “Oh yeah, they’re putting in enough rigamarole to
carry such-and-such idea.” When the idea is clear, the formal setup is usually
unnecessary and redundant—I often feel that I could write it out myself more
easily than figuring out what the authors actually wrote. It’s like a new toaster
that comes with a 16-page manual. If you already understand toasters and if
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the toaster looks like previous toasters you’ve encountered, you might just
plug it in and see if it works, rather than first reading all the details in the
manual.

People familiar with ways of doing things in a subfield recognize various
patterns of statements or formulas as idioms or circumlocution for certain
concepts or mental images. But to people not already familiar with what’s
going on the same patterns are not very illuminating; they are often even mis-
leading. The language is not alive except to those who use it.

I’d like to make an important remark here: there are some mathematicians
who are conversant with the ways of thinking in more than one subfield,
sometimes in quite a number of subfields. Some mathematicians learn the
jargon of several subfields as graduate students, some people are just quick
at picking up foreign mathematical language and culture, and some people
are in mathematical centers where they are exposed to many subfields. Peo-
ple who are comfortable in more than one subfield can often have a very pos-
itive influence, serving as bridges, and helping different groups of
mathematicians learn from each other. But people knowledgeable in multiple
fields can also have a negative effect, by intimidating others, and by helping
to validate and maintain the whole system of generally poor communication.
For example, one effect often takes place during colloquium talks, where one
or two widely knowledgeable people sitting in the front row may serve as the
speaker’s mental guide to the audience.

There is another effect caused by the big differences between how we think
about mathematics and how we write it. A group of mathematicians inter-
acting with each other can keep a collection of mathematical ideas alive for
a period of years, even though the recorded version of their mathematical
work differs from their actual thinking, having much greater emphasis on
language, symbols, logic and formalism. But as new batches of mathemati-
cians learn about the subject they tend to interpret what they read and
hear more literally, so that the more easily recorded and communicated for-
malism and machinery tend to gradually take over from other modes of
thinking.

There are two counters to this trend, so that mathematics does not become
entirely mired down in formalism. First, younger generations of mathemati-
cians are continually discovering and rediscovering insights on their own,
thus reinjecting diverse modes of human thought into mathematics.

Second, mathematicians sometimes invent names and hit on unifying defini-
tions that replace technical circumlocutions and give good handles for insights.
Names like “group” to replace “a system of substitutions satisfying ...”, and
“manifold” to replace

We can’t give coordinates to parametrize all the solutions to our equa-
tions simultaneously, but in the neighborhood of any particular solution
we can introduce coordinates
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(f1(u1, u2, u3), f2(u1, u2, u3), f3(u1, u2, u3), f4(u1, u2, u3), f5(u1, u2, u3))

where at least one of the ten determinants

...[ten 3 × 3 determinants of matrices of partial derivatives]...

is not zero

may or may not have represented advances in insight among experts, but they
greatly facilitate the communication of insights.

We mathematicians need to put far greater effort into communicating
mathematical ideas. To accomplish this, we need to pay much more attention
to communicating not just our definitions, theorems, and proofs, but also our
ways of thinking. We need to appreciate the value of different ways of think-
ing about the same mathematical structure.

We need to focus far more energy on understanding and explaining the
basic mental infrastructure of mathematics—with consequently less energy
on the most recent results. This entails developing mathematical language
that is effective for the radical purpose of conveying ideas to people who
don’t already know them.

Part of this communication is through proofs.

4. What is a proof?

When I started as a graduate student at Berkeley, I had trouble imagining
how I could “prove” a new and interesting mathematical theorem. I didn’t
really understand what a “proof” was.

By going to seminars, reading papers, and talking to other graduate students,
I gradually began to catch on. Within any field, there are certain theorems and
certain techniques that are generally known and generally accepted. When you
write a paper, you refer to these without proof. You look at other papers in the
field, and you see what facts they quote without proof, and what they cite in
their bibliography. You learn from other people some idea of the proofs. Then
you’re free to quote the same theorem and cite the same citations. You don’t
necessarily have to read the full papers or books that are in your bibliography.
Many of the things that are generally known are things for which there may be
no known written source. As long as people in the field are comfortable that the
idea works, it doesn’t need to have a formal written source.

At first I was highly suspicious of this process. I would doubt whether a
certain idea was really established. But I found that I could ask people, and
they could produce explanations and proofs, or else refer me to other people
or to written sources that would give explanations and proofs. There were
published theorems that were generally known to be false, or where the
proofs were generally known to be incomplete. Mathematical knowledge and
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understanding were embedded in the minds and in the social fabric of the
community of people thinking about a particular topic. This knowledge was
supported by written documents, but the written documents were not really
primary.

I think this pattern varies quite a bit from field to field. I was interested in
geometric areas of mathematics, where it is often pretty hard to have a docu-
ment that reflects well the way people actually think. In more algebraic or
symbolic fields, this is not necessarily so, and I have the impression that in
some areas documents are much closer to carrying the life of the field. But in
any field, there is a strong social standard of validity and truth. Andrew
Wiles’s proof of Fermat’s Last Theorem is a good illustration of this, in a
field which is very algebraic. The experts quickly came to believe that his
proof was basically correct on the basis of high-level ideas, long before
details could be checked. This proof will receive a great deal of scrutiny and
checking compared to most mathematical proofs; but no matter how the
process of verification plays out, it helps illustrate how mathematics evolves
by rather organic psychological and social processes.

When people are doing mathematics, the flow of ideas and the social stan-
dard of validity is much more reliable than formal documents. People are
usually not very good in checking formal correctness of proofs, but they are
quite good at detecting potential weaknesses or flaws in proofs.

To avoid misinterpretation, I’d like to emphasize two things I am not say-
ing. First, I am not advocating any weakening of our community standard of
proof; I am trying to describe how the process really works. Careful proofs
that will stand up to scrutiny are very important. I think the process of proof
on the whole works pretty well in the mathematical community. The kind of
change I would advocate is that mathematicians take more care with their
proofs, making them really clear and as simple as possible so that if any
weakness is present it will be easy to detect. Second, I am not criticizing the
mathematical study of formal proofs, nor am I criticizing people who put
energy into making mathematical arguments more explicit and more formal.
These are both useful activities that shed new insights on mathematics.

I have spent a fair amount of effort during periods of my career exploring
mathematical questions by computer. In view of that experience, I was aston-
ished to see the statement of Jaffe and Quinn that mathematics is extremely
slow and arduous, and that it is arguably the most disciplined of all human
activities. The standard of correctness and completeness necessary to get a
computer program to work at all is a couple of orders of magnitude higher
than the mathematical community’s standard of valid proofs. Nonetheless,
large computer programs, even when they have been very carefully written
and very carefully tested, always seem to have bugs.

I think that mathematics is one of the most intellectually gratifying of
human activities. Because we have a high standard for clear and convincing
thinking and because we place a high value on listening to and trying
to understand each other, we don’t engage in interminable arguments and
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endless redoing of our mathematics. We are prepared to be convinced by oth-
ers. Intellectually, mathematics moves very quickly. Entire mathematical
landscapes change and change again in amazing ways during a single career.

When one considers how hard it is to write a computer program even
approaching the intellectual scope of a good mathematical paper, and how
much greater time and effort have to be put into it to make it “almost” for-
mally correct, it is preposterous to claim that mathematics as we practice it is
anywhere near formally correct.

Mathematics as we practice it is much more formally complete and precise
than other sciences, but it is much less formally complete and precise for its
content than computer programs. The difference has to do not just with the
amount of effort: the kind of effort is qualitatively different. In large com-
puter programs, a tremendous proportion of effort must be spent on myriad
compatibility issues: making sure that all definitions are consistent, develop-
ing “good” data structures that have useful but not cumbersome generality,
deciding on the “right” generality for functions, etc. The proportion of
energy spent on the working part of a large program, as distinguished from
the bookkeeping part, is surprisingly small. Because of compatibility issues
that almost inevitably escalate out of hand because the “right” definitions
change as generality and functionality are added, computer programs usually
need to be rewritten frequently, often from scratch.

A very similar kind of effort would have to go into mathematics to make it
formally correct and complete. It is not that formal correctness is prohibi-
tively difficult on a small scale—it’s that there are many possible choices of
formalization on small scales that translate to huge numbers of interdepend-
ent choices in the large. It is quite hard to make these choices compatible; to
do so would certainly entail going back and rewriting from scratch all old
mathematical papers whose results we depend on. It is also quite hard to
come up with good technical choices for formal definitions that will be valid
in the variety of ways that mathematicians want to use them and that will
anticipate future extensions of mathematics. If we were to continue to coop-
erate, much of our time would be spent with international standards com-
missions to establish uniform definitions and resolve huge controversies.

Mathematicians can and do fill in gaps, correct errors, and supply more
detail and more careful scholarship when they are called on or motivated to
do so. Our system is quite good at producing reliable theorems that can be
solidly backed up. It’s just that the reliability does not primarily come from
mathematicians formally checking formal arguments; it comes from mathe-
maticians thinking carefully and critically about mathematical ideas.

On the most fundamental level, the foundations of mathematics are much
shakier than the mathematics that we do. Most mathematicians adhere to
foundational principles that are known to be polite fictions. For example, it
is a theorem that there does not exist any way to ever actually construct
or even define a well-ordering of the real numbers. There is considerable 
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evidence (but no proof) that we can get away with these polite fictions with-
out being caught out, but that doesn’t make them right. Set theorists con-
struct many alternate and mutually contradictory “mathematical universes”
such that if one is consistent, the others are too. This leaves very little confi-
dence that one or the other is the right choice or the natural choice. Gödel’s
incompleteness theorem implies that there can be no formal system that is
consistent, yet powerful enough to serve as a basis for all of the mathematics
that we do.

In contrast to humans, computers are good at performing formal
processes. There are people working hard on the project of actually formal-
izing parts of mathematics by computer, with actual formally correct formal
deductions. I think this is a very big but very worthwhile project, and I am
confident that we will learn a lot from it. The process will help simplify and
clarify mathematics. In not too many years, I expect that we will have inter-
active computer programs that can help people compile significant chunks of
formally complete and correct mathematics (based on a few perhaps shaky
but at least explicit assumptions), and that they will become part of the stan-
dard mathematician’s working environment.

However, we should recognize that the humanly understandable and
humanly checkable proofs that we actually do are what is most important to
us, and that they are quite different from formal proofs. For the present, for-
mal proofs are out of reach and mostly irrelevant: we have good human
processes for checking mathematical validity.

5. What motivates people to do mathematics?

There is a real joy in doing mathematics, in learning ways of thinking that
explain and organize and simplify. One can feel this joy discovering new
mathematics, rediscovering old mathematics, learning a way of thinking from
a person or text, or finding a new way to explain or to view an old mathe-
matical structure.

This inner motivation might lead us to think that we do mathematics solely
for its own sake. That’s not true: the social setting is extremely important. We
are inspired by other people, we seek appreciation by other people, and we like
to help other people solve their mathematical problems. What we enjoy
changes in response to other people. Social interaction occurs through face-to-
face meetings. It also occurs through written and electronic correspondence,
preprints, and journal articles. One effect of this highly social system of math-
ematics is the tendency of mathematicians to follow fads. For the purpose of
producing new mathematical theorems this is probably not very efficient: we’d
seem to be better off having mathematicians cover the intellectual field much
more evenly. But most mathematicians don’t like to be lonely, and they have
trouble staying excited about a subject, even if they are personally making
progress, unless they have colleagues who share their excitement.
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In addition to our inner motivation and our informal social motivation for
doing mathematics, we are driven by considerations of economics and status.
Mathematicians, like other academics, do a lot of judging and being judged.
Starting with grades, and continuing through letters of recommendation, hir-
ing decisions, promotion decisions, referees reports, invitations to speak,
prizes, ... we are involved in many ratings, in a fiercely competitive system.

Jaffe and Quinn analyze the motivation to do mathematics in terms of a
common currency that many mathematicians believe in: credit for theorems.

I think that our strong communal emphasis on theorem-credits has a neg-
ative effect on mathematical progress. If what we are accomplishing is
advancing human understanding of mathematics, then we would be much
better off recognizing and valuing a far broader range of activity. The people
who see the way to proving theorems are doing it in the context of a mathe-
matical community; they are not doing it on their own. They depend on
understanding of mathematics that they glean from other mathematicians.
Once a theorem has been proven, the mathematical community depends on
the social network to distribute the ideas to people who might use them fur-
ther—the print medium is far too obscure and cumbersome.

Even if one takes the narrow view that what we are producing is theorems,
the team is important. Soccer can serve as a metaphor. There might only be
one or two goals during a soccer game, made by one or two persons. That
does not mean that the efforts of all the others are wasted. We do not judge
players on a soccer team only by whether they personally make a goal; we
judge the team by its function as a team.

In mathematics, it often happens that a group of mathematicians advances
with a certain collection of ideas. There are theorems in the path of these
advances that will almost inevitably be proven by one person or another.
Sometimes the group of mathematicians can even anticipate what these the-
orems are likely to be. It is much harder to predict who will actually prove the
theorem, although there are usually a few “point people” who are more likely
to score. However, they are in a position to prove those theorems because of
the collective efforts of the team. The team has a further function, in absorb-
ing and making use of the theorems once they are proven. Even if one per-
son could prove all the theorems in the path single-handedly, they are wasted
if nobody else learns them.

There is an interesting phenomenon concerning the “point” people. It reg-
ularly happens that someone who was in the middle of a pack proves a theo-
rem that receives wide recognition as being significant. Their status in the
community—their pecking order—rises immediately and dramatically. When
this happens, they usually become much more productive as a center of ideas
and a source of theorems. Why? First, there is a large increase in self-esteem,
and an accompanying increase in productivity. Second, when their status
increases, people are more in the center of the network of ideas—others take
them more seriously. Finally and perhaps most importantly, a mathematical
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breakthrough usually represents a new way of thinking, and effective ways of
thinking can usually be applied in more than one situation.

This phenomenon convinces me that the entire mathematical community
would become much more productive if we open our eyes to the real values
in what we are doing. Jaffe and Quinn propose a system of recognized roles
divided into “speculation” and “proving”. Such a division only perpetuates
the myth that our progress is measured in units of standard theorems
deduced. This is a bit like the fallacy of the person who makes a printout of
the first 10,000 primes. What we are producing is human understanding. We
have many different ways to understand and many different processes that
contribute to our understanding. We will be more satisfied, more productive
and happier if we recognize and focus on this.

6. Some personal experiences

Since this essay grew out of reflection on the misfit between my experiences
and the description of Jaffe and Quinn’s, I will discuss two personal experi-
ences, including the one they alluded to.

I feel some awkwardness in this, because I do have regrets about aspects of
my career: if I were to do things over again with the benefit of my present
insights about myself and about the process of mathematics, there is a lot
that I would hope to do differently. I hope that by describing these experi-
ences rather openly as I remember and understand them, I can help others
understand the process better and learn in advance.

First I will discuss briefly the theory of foliations, which was my first sub-
ject, starting when I was a graduate student. (It doesn’t matter here whether
you know what foliations are.)

At that time, foliations had become a big center of attention among geo-
metric topologists, dynamical systems people, and differential geometers. I
fairly rapidly proved some dramatic theorems. I proved a classification theo-
rem for foliations, giving a necessary and sufficient condition for a manifold
to admit a foliation. I proved a number of other significant theorems. I wrote
respectable papers and published at least the most important theorems. It was
hard to find the time to write to keep up with what I could prove, and I built
up a backlog.

An interesting phenomenon occurred. Within a couple of years, a dramatic
evacuation of the field started to take place. I heard from a number of math-
ematicians that they were giving or receiving advice not to go into folia-
tions—they were saying that Thurston was cleaning it out. People told me
(not as a complaint, but as a compliment) that I was killing the field. Grad-
uate students stopped studying foliations, and fairly soon, I turned to other
interests as well.

I do not think that the evacuation occurred because the territory was intel-
lectually exhausted—there were (and still are) many interesting questions that
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remain and that are probably approachable. Since those years, there have
been interesting developments carried out by the few people who stayed in
the field or who entered the field, and there have also been important devel-
opments in neighboring areas that I think would have been much accelerated
had mathematicians continued to pursue foliation theory vigorously.

Today, I think there are few mathematicians who understand anything
approaching the state of the art of foliations as it lived at that time, although
there are some parts of the theory of foliations, including developments since
that time, that are still thriving.

I believe that two ecological effects were much more important in putting
a damper on the subject than any exhaustion of intellectual resources that
occurred.

First, the results I proved (as well as some important results of other peo-
ple) were documented in a conventional, formidable mathematician’s style.
They depended heavily on readers who shared certain background and cer-
tain insights. The theory of foliations was a young, opportunistic subfield,
and the background was not standardized. I did not hesitate to draw on any
of the mathematics I had learned from others. The papers I wrote did not
(and could not) spend much time explaining the background culture. They
documented top-level reasoning and conclusions that I often had achieved
after much reflection and effort. I also threw out prize cryptic tidbits of
insight, such as “the Godbillon-Vey invariant measures the helical wobble of
a foliation”, that remained mysterious to most mathematicans who read
them. This created a high entry barrier: I think many graduate students and
mathematicians were discouraged that it was hard to learn and understand
the proofs of key theorems.

Second is the issue of what is in it for other people in the subfield. When I
started working on foliations, I had the conception that what people wanted
was to know the answers. I thought that what they sought was a collection of
powerful proven theorems that might be applied to answer further mathe-
matical questions. But that’s only one part of the story. More than the knowl-
edge, people want personal understanding. And in our credit-driven system,
they also want and need theorem-credits.

I’ll skip ahead a few years, to the subject that Jaffe and Quinn alluded to,
when I began studying 3-dimensional manifolds and their relationship to
hyperbolic geometry. (Again, it matters little if you know what this is about.)
I gradually built up over a number of years a certain intuition for hyperbolic
three-manifolds, with a repertoire of constructions, examples and proofs.
(This process actually started when I was an undergraduate, and was strongly
bolstered by applications to foliations.) After a while, I conjectured or specu-
lated that all three-manifolds have a certain geometric structure; this conjec-
ture eventually became known as the geometrization conjecture. About two
or three years later, I proved the geometrization theorem for Haken mani-
folds. It was a hard theorem, and I spent a tremendous amount of effort
thinking about it. When I completed the proof, I spent a lot more effort
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checking the proof, searching for difficulties and testing it against independ-
ent information.

I’d like to spell out more what I mean when I say I proved this theorem. It
meant that I had a clear and complete flow of ideas, including details, that
withstood a great deal of scrutiny by myself and by others. Mathematicians
have many different styles of thought. My style is not one of making broad
sweeping but careless generalities, which are merely hints or inspirations: I
make clear mental models, and I think things through. My proofs have
turned out to be quite reliable. I have not had trouble backing up claims or
producing details for things I have proven. I am good in detecting flaws in my
own reasoning as well as in the reasoning of others.

However, there is sometimes a huge expansion factor in translating from
the encoding in my own thinking to something that can be conveyed to some-
one else. My mathematical education was rather independent and idiosyn-
cratic, where for a number of years I learned things on my own, developing
personal mental models for how to think about mathematics. This has often
been a big advantage for me in thinking about mathematics, because it’s easy
to pick up later the standard mental models shared by groups of mathemati-
cians. This means that some concepts that I use freely and naturally in my
personal thinking are foreign to most mathematicians I talk to. My personal
mental models and structures are similar in character to the kinds of models
groups of mathematicians share—but they are often different models. At the
time of the formulation of the geometrization conjecture, my understanding
of hyperbolic geometry was a good example. A random continuing example
is an understanding of finite topological spaces, an oddball topic that can
lend good insight to a variety of questions but that is generally not worth
developing in any one case because there are standard circumlocutions that
avoid it.

Neither the geometrization conjecture nor its proof for Haken manifolds
was in the path of any group of mathematicians at the time—it went
against the trends in topology for the preceding 30 years, and it took peo-
ple by surprise. To most topologists at the time, hyperbolic geometry was an
arcane side branch of mathematics, although there were other groups of
mathematicians such as differential geometers who did understand it from
certain points of view. It took topologists a while just to understand what
the geometrization conjecture meant, what it was good for, and why it was
relevant.

At the same time, I started writing notes on the geometry and topology of
3-manifolds, in conjunction with the graduate course I was teaching. I dis-
tributed them to a few people, and before long many others from around the
world were writing for copies. The mailing list grew to about 1200 people to
whom I was sending notes every couple of months. I tried to communicate
my real thoughts in these notes. People ran many seminars based on my
notes, and I got lots of feedback. Overwhelmingly, the feedback ran some-
thing like “Your notes are really inspiring and beautiful, but I have to tell you
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that we spent 3 weeks in our seminar working out the details of §n.n. More
explanation would sure help.”

I also gave many presentations to groups of mathematicians about the ideas
of studying 3-manifolds from the point of view of geometry, and about the
proof of the geometrization conjecture for Haken manifolds. At the beginning,
this subject was foreign to almost everyone. It was hard to communicate—the
infrastructure was in my head, not in the mathematical community. There were
several mathematical theories that fed into the cluster of ideas: three-manifold
topology, Kleinian groups, dynamical systems, geometric topology, discrete
subgroups of Lie groups, foliations, Teichmüller spaces, pseudo-Anosov dif-
feomorphisms, geometric group theory, as well as hyperbolic geometry.

We held an AMS summer workshop at Bowdoin in 1980, where many
mathematicans in the subfields of low-dimensional topology, dynamical sys-
tems and Kleinian groups came.

It was an interesting experience exchanging cultures. It became dramati-
cally clear how much proofs depend on the audience. We prove things in a
social context and address them to a certain audience. Parts of this proof I
could communicate in two minutes to the topologists, but the analysts would
need an hour lecture before they would begin to understand it. Similarly,
there were some things that could be said in two minutes to the analysts that
would take an hour before the topologists would begin to get it. And there
were many other parts of the proof which should take two minutes in the
abstract, but that none of the audience at the time had the mental infra-
structure to get in less than an hour.

At that time, there was practically no infrastructure and practically no con-
text for this theorem, so the expansion from how an idea was keyed in my
head to what I had to say to get it across, not to mention how much energy
the audience had to devote to understand it, was very dramatic.

In reaction to my experience with foliations and in response to social pres-
sures, I concentrated most of my attention on developing and presenting the
infrastructure in what I wrote and in what I talked to people about. I
explained the details to the few people who were “up” for it. I wrote some
papers giving the substantive parts of the proof of the geometrization theo-
rem for Haken manifolds—for these papers, I got almost no feedback. Simi-
larly, few people actually worked through the harder and deeper sections of
my notes until much later.

The result has been that now quite a number of mathematicians have what
was dramatically lacking in the beginning: a working understanding of the
concepts and the infrastructure that are natural for this subject. There has
been and there continues to be a great deal of thriving mathematical activity.
By concentrating on building the infrastructure and explaining and publish-
ing definitions and ways of thinking but being slow in stating or in publish-
ing proofs of all the “theorems” I knew how to prove, I left room for many
other people to pick up credit. There has been room for people to discover
and publish other proofs of the geometrization theorem. These proofs helped
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develop mathematical concepts which are quite interesting in themselves, and
lead to further mathematics.

What mathematicians most wanted and needed from me was to learn my
ways of thinking, and not in fact to learn my proof of the geometrization
conjecture for Haken manifolds. It is unlikely that the proof of the general
geometrization conjecture will consist of pushing the same proof further.

A further issue is that people sometimes need or want an accepted and val-
idated result not in order to learn it, but so that they can quote it and rely on it.

Mathematicians were actually very quick to accept my proof, and to start
quoting it and using it based on what documentation there was, based on
their experience and belief in me, and based on acceptance by opinions of
experts with whom I spent a lot of time communicating the proof. The theo-
rem now is documented, through published sources authored by me and by
others, so most people feel secure in quoting it; people in the field certainly
have not challenged me about its validity, or expressed to me a need for
details that are not available.

Not all proofs have an identical role in the logical scaffolding we are build-
ing for mathematics. This particular proof probably has only temporary log-
ical value, although it has a high motivational value in helping support a
certain vision for the structure of 3-manifolds. The full geometrization con-
jecture is still a conjecture. It has been proven for many cases, and is sup-
ported by a great deal of computer evidence as well, but it has not been
proven in generality. I am convinced that the general proof will be discovered;
I hope before too many more years. At that point, proofs of special cases are
likely to become obsolete.

Meanwhile, people who want to use the geometric technology are better off
to start off with the assumption “Let M3 be a manifold that admits a geo-
metric decomposition,” since this is more general than “Let M3 be a Haken
manifold.” People who don’t want to use the technology or who are suspi-
cious of it can avoid it. Even when a theorem about Haken manifolds can be
proven using geometric techniques, there is a high value in finding purely
topological techniques to prove it.

In this episode (which still continues) I think I have managed to avoid the
two worst possible outcomes: either for me not to let on that I discovered
what I discovered and proved what I proved, keeping it to myself (perhaps
with the hope of proving the Poincaré conjecture), or for me to present an
unassailable and hard-to-learn theory with no practitioners to keep it alive
and to make it grow.

I can easily name regrets about my career. I have not published as much as
I should. There are a number of mathematical projects in addition to the
geometrization theorem for Haken manifolds that I have not delivered well or
at all to the mathematical public. When I concentrated more on developing
the infrastructure rather than the top-level theorems in the geometric theory
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of 3-manifolds, I became somewhat disengaged as the subject continued to
evolve; and I have not actively or effectively promoted the field or the careers
of the excellent people in it. (But some degree of disengagement seems to me
an almost inevitable by-product of the mentoring of graduate students and
others: in order to really turn genuine research directions over to others, it’s
necessary to really let go and stop oneself from thinking about them very
hard.)

On the other hand, I have been busy and productive, in many different
activities. Our system does not create extra time for people like me to spend
on writing and research; instead, it inundates us with many requests and
opportunities for extra work, and my gut reaction has been to say ‘yes’ to
many of these requests and opportunities. I have put a lot of effort into non-
credit-producing activities that I value just as I value proving theorems: math-
ematical politics, revision of my notes into a book with a high standard of
communication, exploration of computing in mathematics, mathematical
education, development of new forms for communication of mathematics
through the Geometry Center (such as our first experiment, the “Not Knot”
video), directing MSRI, etc.

I think that what I have done has not maximized my “credits”. I have been
in a position not to feel a strong need to compete for more credits. Indeed,
I began to feel strong challenges from other things besides proving new 
theorems.

I do think that my actions have done well in stimulating mathematics.
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4

The Informal Logic of
Mathematical Proof

ANDREW ABERDEIN

The proof of mathematical theorems is central to mathematical practice and
to much recent debate about the nature of mathematics: as Paul Erdös once
remarked, ‘a mathematician is a machine for turning coffee into theorems’
[9, p. 7]. This paper is an attempt to introduce a new perspective on the argu-
mentation characteristic of mathematical proof. I shall argue that this
account, an application of informal logic to mathematics, helps to clarify and
resolve several important philosophical difficulties.

It might be objected that formal, deductive logic tells us everything we need
to know about mathematical argumentation. I shall leave it to others [14, for
example] to address this concern in detail. However, even the protagonists
of explicit reductionist programmes—such as logicists in the philosophy of
mathematics and the formal theorem proving community in computer sci-
ence—would readily concede that their work is not an attempt to capture
actual mathematical practice. Having said that, mathematical argumentation
is certainly not inductive either. Mathematical proofs do not involve inference
from particular observations to general laws. A satisfactory account of math-
ematical argumentation must include deductive inference, even if it is not
exhausted by it. It must be complementary, rather than hostile, to formal
logic. My contention is that a suitable candidate has already been developed
independently: informal logic.

Informal logic is concerned with all aspects of inference, including those
which cannot be captured by logical form. It is an ancient subject, but has
been a degenerating research programme for a long time. Since the nineteenth
century it has been overshadowed by the growth of formal logic. More fun-
damentally, it has suffered by identification with the simplistic enumeration
of fallacies, without any indication of the circumstances in which they are
illegitimate. Since most fallacies can be exemplified in some contexts by per-
suasive, indeed valid, arguments, this approach is of limited use. In recent
decades more interesting theories have been developed. I shall look at two of
the most influential, and discuss their usefulness for the analysis of mathe-
matical proof.
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1. Toulmin’s pattern of argument

One of the first modern accounts of argumentation is that developed in
Stephen Toulmin’s The Uses of Argument [18]. Toulmin offers a general
account of the layout of an argument, as a claim (C) derived from data (D),
in respect of a warrant (W). Warrants are general hypothetical statements of
the form ‘Given D, one may take it that C’ [18, p. 99]. Hence the laws of logic
provide a warrant for deductive inferences. However, the pattern is intended
to be more general, and provides for different, weaker warrants, although
these would not permit us to ascribe the same degree of certainty to C. This
is recognized by the inclusion of a modal qualifier (Q), such as ‘necessarily’,
‘probably’, ‘presumably’,..., in the pattern. If the warrant is defeasible, we
may also specify the conditions (R) under which it may be rebutted. Finally,
the argument may turn on the backing (B) which can be provided for W.
Toulmin’s claim is that the general structure of a disparate variety of argu-
ments may be represented as in Figure 1.

Interpreting the letters as above, this diagram may be read as follows:
“Given D, we can (modulo Q) claim C, since W (on account of B), unless R”.
In Toulmin’s vintage example: “Given that Harry was born in Bermuda, we
can presumably claim that he is British, since anyone born in Bermuda will
generally be British (on account of various statutes ...), unless he’s a natural-
ized American, or his parents were aliens, or ...”. In simpler examples B, Q and
R may not all be present, but D, W and C are taken to be essential to any argu-
ment, hence the description of this model as the DWC pattern. Toulmin
stresses the field dependency of the canons of good argument: what counts as
convincing may vary substantially between the law court, the laboratory and
the debating chamber. In particular, what counts as acceptable backing will
turn significantly on the field in which the argument is conducted [18, p. 104].

Toulmin’s work has been very influential in the study of argument, despite
an initially chilly reception amongst philosophers and logicians.1 It was
quickly adopted by communication theorists, after the publication in 1960 of
a celebrated paper by Wayne Brockriede and Douglas Ehninger [4]. Toul-
min’s account of argumentation is now the dominant model in this field.
More recently, his work has been widely studied by computer scientists
attempting to model natural argumentation [13, for example]. One purpose
of Toulmin’s critique of logic is to dispute the utility of formal logic for the
analysis of any argumentational discourse other than mathematics: he
regards mathematical proof as one of the few success stories for the formal
logic tradition. Nevertheless, mathematical proofs can be subsumed under

1 ‘Unanimous ... condemnation’ according to van Eemeren & al. [7, p. 164], who sur-
vey the book’s reviewers.
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the DWC pattern, where the warrant is backed by various axioms, rules of
inference and mathematical techniques providing grounds for supposing the
claim to be necessary, given the data. Toulmin provides an example in a later
collaborative work [19, p. 89], by reconstructing Theaetetus’s proof that there
are exactly five polyhedra. The data and warrant consist of various facts
about the platonic solids, the warrant is backed by the axioms, postulates and
definitions of three-dimensional Euclidean geometry, and the modal qualifier
‘with strict geometrical necessity’ admits of no rebuttal or exception within
the bounds of Euclidean geometry.

2 Applying Toulmin to mathematics

The significance of Toulmin’s work for mathematical proof is explored at
greater length in what I believe to be the only study so far of the application
of informal logic to mathematics, a paper written in Catalan by Jesús Alcolea
Banegas [1].2 Alcolea makes use of a further distinction of Toulmin’s, intro-
duced in [19]: that between regular and critical arguments. This distinction
echoes Thomas Kuhn’s contrast between normal and revolutionary science: a
regular argument is an argument within a field which appeals to the already
well-established warrants characteristic of the field, whereas a critical argu-
ment is an argument used to challenge prevailing ideas, focusing attention on
the assumptions which provide a backing for the warrants of regular argu-
ments. Critical arguments must therefore appeal to different warrants. Math-
ematical proofs are regular arguments, although they may give rise to critical
arguments if they are especially interesting or controversial. Conversely,
metamathematical debates are critical arguments, but they often provide new
opportunities for proofs, that is, regular arguments.

Alcolea uses Toulmin’s layout to reconstruct one regular and one critical
argument from mathematics. The critical argument, the debate over the
admissibility of the axiom of choice, is the more fully developed and persua-
sive of Alcolea’s case studies. It is perhaps not too surprising that critical
arguments in mathematics are similar to critical arguments in the other sci-
ences, since ultimately they are not arguments in mathematics, but arguments
about mathematics, that is to say they are metamathematical. However, my
concern is primarily with the argumentation of mathematics itself, rather
than that of metamathematics. Hence I shall concentrate on Alcolea’s exam-
ple of a regular argument: Kenneth Appel and Wolfgang Haken’s proof of
the four colour conjecture.3 He reconstructs the central argument of the
proof as a derivation from the data D1−D3

2 I am grateful to Miguel Gimenez of the University of Edinburgh for translating this
paper.
3 For further detail of the proof see [2], [25] or [12].
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(D1) Any planar map can be coloured with five colours.
(D2) There are some maps for which three colours are insufficient.
(D3) A computer has analysed every type of planar map and verified that
each of them is 4-colorable.

of the claim C, that

(C) Four colours suffice to colour any planar map.

by employment of the warrant W, which has backing B

(W) The computer has been properly programmed and its hardware has no
defects.
(B) Technology and computer programming are sufficiently reliable. [1, pp.
142f.]

He regards this as making clear that, since the warrant is not wholly mathe-
matical, the proof must leave open the possibility of ‘a specific counterex-
ample, that is to say, a particular map that cannot be coloured with four
colours might still exist’ [1, p. 143].4

This example demonstrates both the strengths and the dangers of this
approach. To complete Toulmin’s layout we are obliged to make explicit not
merely the premises and the conclusion, but also the nature of the support
which the former is supposed to lend the latter. Thus the focus of Appel and
Haken’s critics, the heterodox deployment of a computer in a mathematical
proof, is made glaringly obvious. However, it is premature to draw from this
surface dissimilarity the inference that Appel and Haken’s result is less con-
vincing than other mathematical proofs. A closer reading of Alcolea’s recon-
struction may clarify this point. Premises D1 and D2 have conventional
mathematical proofs, as Alcolea points out. (D1 is not strictly relevant to the
derivation of C, although its proof originated techniques which were instru-
mental to Appel and Haken’s work.) D3 is a very concise summary of the cen-
tral results of Appel and Haken’s work. It may help to spell out the details at
greater length.

There are two essential ideas behind the Appel and Haken proof: unavoid-
ability and reducibility. An unavoidable set is a set of configurations, that is
countries or groups of adjacent countries, at least one of which must be pres-
ent in any planar map. For example, all such maps must contain either a two-
sided, a three-sided, a four-sided or a five-sided country, so these
configurations constitute an unavoidable set. A configuration is reducible if
any map containing it may be shown to be four-colorable. Two-sided, three-
sided, and four-sided countries are all reducible. To prove the four colour the-
orem it suffices to exhibit an unavoidable set of reducible configurations.

4 ‘... un contraexemple específic, és a dir, que es trobe un mapa particular que no puga
colarar-se amb quatre colors’
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Alfred Kempe, who introduced the concepts of unavoidability and reducibil-
ity, was believed to have proved the four colour theorem in 1879 by showing
that five-sided countries were also reducible [11]. However, in 1890 a flaw was
discovered in his reasoning: the five-sided country is not reducible, hence a
larger unavoidable set is required if all its configurations are to be reducible.
Appel and Haken used a computer to search for such a set, eventually dis-
covering one with 1,482 members. The unavoidability of this set could be
demonstrated by hand, but the reducibility of all its members would be far
too protracted a task for human verification. Subsequent independent
searches have turned up other unavoidable sets. The smallest to date is a set
of 633 reducible configurations found by Neil Robertson, Daniel Sanders,
Paul Seymour and Robin Thomas in 1994.5 Verifying the reducibility of these
configurations still requires a computer.

So for there to be a non-four-colourable planar map, as Alcolea suggests,
Appel and Haken (and their successors) must have erred either in the identi-
fication of the unavoidable set, or in the demonstration of the reducibility of
its member configurations. Since the former step can be verified by conven-
tional methods, the computer can only be suspected of error in demonstrat-
ing reducibility. Two sorts of computer error should be distinguished: a
mistake may be made in the programming, or a fault may arise in the com-
puter itself (the hardware or firmware). The former error would arise due to
a human failure to correctly represent the mathematical algorithms which the
computer was programmed to implement. This sort of mistake does not seem
to be interestingly different from the traditional type of mathematical mis-
take, such as that made by Kempe in his attempt to prove the four colour con-
jecture. The second sort of error is genuinely new. However, it would seem to
be profoundly unlikely.

Computer hardware can exhibit persistent faults, some of which can be
hard to detect.6 However, the potential risks of such faults can be minimized
by running the program on many different machines. One might still worry
about Appel and Haken’s programs, since they were written in machine code
and would therefore be implemented in more or less exactly the same manner
on any computer capable of running them, perhaps falling foul of the same
bug each time. This sort of checking might be suspected of being no better
than buying two copies of the same newspaper to check the veracity of its
reporting.7 However, the same reducibility results were achieved independ-
ently, using different programs, as part of the refereeing process for Appel
and Haken’s work. Moreover, the more recent programs of Robertson & al.
were written in higher level languages, as are the programs employed in most

5 For details of their publications, see [25, p. 244].
6 For example, the notorious Pentium FDIV bug.
7 As Wittgenstein once remarked in a different context: [26, §265].
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other computer-assisted proofs. The existence of different compilers and dif-
ferent computer platforms ensures that these programs can be implemented
in many intrinsically different ways, reducing the likelihood of hardware or
firmware induced error to the astronomical.

Thus we may derive an alternative reconstruction of Appel and Haken’s
argument: “Given that (D4) the elements of the set U are reducible, we can
(Q) almost certainly claim that (C) four colours suffice to colour any planar
map, since (W) U is an unavoidable set (on account of (B) conventional math-
ematical techniques), unless (R) there has been an error in either (i) our math-
ematical reasoning, or (ii) the hardware or firmware of all the computers on
which the algorithm establishing D4 has been run.” If, in addition, we observe
that (i) appears to be orders of magnitude more likely than (ii), then C would
seem to be in much less doubt than it did in the light of Alcolea’s recon-
struction. The purpose of the preceding has been not so much to rescue the
four colour conjecture from Alcolea’s critique (although few if any graph the-
orists would accept that a counterexample is possible), but to show up the
limitations of Toulmin’s pattern as a descriptive technique. As other critics
have pointed out, reconstructing an argument along Toulmin’s lines ‘forces us
to rip propositions out of context’ [24, p. 318]. The degree of abstraction nec-
essary to use the diagram at all can make different, incompatible, reconstruc-
tions possible, leaving the suspicion that any such reconstruction may involve
considerable (and unquantified) distortion.

3 Walton’s new dialectic

There has been significant progress in informal logic since the publication of
The uses of argument. One milestone was the publication of Charles Ham-
blin’s Fallacies [8] in 1970. This demonstrated the inadequacies of much of
traditional fallacy theory and, by way of remedy, proposed an influential
dialectical model of argumentation. Further impetus has come from the
recent work of communication theorists such as Frans van Eemeren and Rob
Grootendorst [6]. One contemporary logician who shows the influence of
both traditions is Douglas Walton.8 The focus of his work is the dialectical
context of argument. Walton distinguishes between ‘inference’, defined as a
set of propositions, one of which is warranted by the others, ‘reasoning’,
defined as a chain of inferences, and ‘argument’, defined as a dialogue
employing reasoning. This dialectical component entails that arguments
require more than one arguer: at the very least there must be an assumed
audience, capable in principle of answering back.

8 Walton has published a great number of works on informal logic. [22] provides an
overview of the general method common to many of them.
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Winston Churchill once praised the argumentational skills of the cele-
brated barrister and politician F. E. Smith, 1st Earl of Birkenhead, by stress-
ing their suitability to context: ‘The bludgeon for the platform; the rapier for
a personal dispute; the entangling net and unexpected trident for the Courts
of Law; and a jug of clear spring water for an anxious perplexed conclave’ [5,
p. 176]. Toulmin also stresses the domain specificity of good practice in
argument. What is distinctive about Walton’s analysis is the attempt to char-
acterize dialectical context in terms of general features which are not them-
selves domain specific. Without pretending to have an exhaustive
classification of argumentational dialogue, he is able to use these features to
draw several important distinctions. The principal features with which he is
concerned are the ‘initial situation’ and the ‘main goal’ of the dialogue. The
initial situation describes the circumstances which give rise to the dialogue, in
particular the differing commitments of the interlocutors. The main goal is
the collective outcome sought by both (all) participants, which may be dis-
tinct from their individual goals.

If we simplify the situation by permitting each discussant to regard some
crucial proposition as either true, false or unknown, four possibilities
emerge. Either (0) the discussants agree that the proposition is true (or that
it is false), in which case there is no dispute; or (1) one of them takes it to
be true and the other false, in which case they will be in direct conflict with
each other; or (2) they both regard it as unknown, which may result in a
dialogue as they attempt to find out whether it is true or false; or (3) one of
them believes the proposition to be true (or false) but the other does not
know which it is. Thus we may distinguish three types of initial situation
from which an argumentational dialogue may arise: a conflict, an open
problem, or an unsatisfactory spread of information. A conflict may pro-
duce several different types of dialogue depending on how complete a res-
olution is sought. For a stable outcome one interlocutor must persuade the
other, but, even if such persuasion is impossible they may still seek to nego-
tiate a practical compromise on which future action could be based. Or they
may aim merely to clear the air by expressing their contrasting opinions,
without hoping to do more than merely agree to disagree: a quarrel. These
three goals—stable resolution, practical settlement and provisional accom-
modation—can also be applied to the other two initial situations, although
not all three will be exemplified in each case. So open problems can lead to
stable resolutions, or if this is not achievable, to practical settlement. How-
ever, provisional accommodation should not be necessary if the problem is
genuinely open, since neither discussant will be committed to any specific
view. Where the dialogue arises merely from the ignorance of one party
then a stable resolution should always be achievable, obviating the other
goals. The interplay of these different types of initial situation and main
goal thus allows Walton to identify six principal types of dialogue, Persua-
sion, Negotiation, Eristic, Inquiry, Deliberation and Information Seeking,
which may be represented diagrammatically as in Table 1. The contrasting
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properties of these different types of dialogue are set out in Table 2. This
table also states the individual goals of the interlocutors typical to each
type, and includes two derivative types: the debate, a mixture of persuasion
and eristic dialogue, and the pedagogical dialogue, a subtype of the infor-
mation seeking dialogue. Many other familiar argumentational contexts
may be represented in terms of Walton’s six basic types of dialogue by such
hybridization and subdivision.9

TABLE 2: Walton’s types of dialogue [21, p. 605]
Individual Collective 

Type of Goals of Goal of
Dialogue Initial Situation Participants Dialogue Benefits

Persuasion Difference of Persuade Resolve difference Understand 
opinion other party of opinion positions

Inquiry Ignorance Contribute Prove or Obtain 
findings disprove knowledge

conjecture
Deliberation Contemplation Promote Act on a Formulate 

of future personal thoughtful personal 
consequences goals basis priorities

Negotiation Conflict of Maximize Settlement Harmony
interest gains (without undue

(self-interest) inequity)
Information- One party Obtain Transfer of Help in goal 

Seeking lacks information knowledge activity
information

Quarrel Personal Verbally hit Reveal deeper Vent emotions
(Eristic) conflict out at and conflict

humiliate 
opponent

Debate Adversarial Persuade Air strongest Spread 
third party arguments for information

both sides
Pedagogical Ignorance of Teaching and Teaching and Reserve transfer

one party learning knowledge

TABLE 1: Walton & Krabbe’s ‘Systematic survey of dialogue types’ [23, p. 80]
Main Goal Initial Situation

Conflict Open Problem Unsatisfactory 
Spread of
Information

Stable Agreement/ Persuasion Inquiry Information
Resolution Seeking
Practical Settlement/
Decision (Not) to Act Negotiation Deliberation
Reaching a (Provisional) 
Accommodation Eristic

9 See Table 3.1 in [23, p. 66] for some further examples.



It is central to Walton’s work that the legitimacy of an argument should
be assessed in the context of its use: what is appropriate in a quarrel may
be inappropriate in an inquiry, and so forth. Although some forms of
argument are never legitimate (or never illegitimate), most are appropriate
if and only if they are “in the right place”. For example, threats are
inappropriate as a form of persuasion, but they can be essential in negoti-
ation. In an impressive sequence of books, Walton has analyzed a wide
variety of fallacious or otherwise illicit argumentation as the deployment
of strategies which are sometimes admissible in contexts in which they are
inadmissible. However, Walton has not directly addressed mathematical
argumentation. In the next section I shall set out to explore how well his
system may be adapted to this purpose.

4 Applying Walton to mathematics

In what context (or contexts) do mathematical proofs occur? The obvious
answer is that mathematical proof is a special case of inquiry. Indeed, Wal-
ton states that the collective goal of inquiry is to ‘prove or disprove [a]
conjecture’. An inquiry dialogue proceeds from an open problem to a stable
agreement. That is to say from an initial situation of mutual ignorance, or at
least lack of commitment for or against the proposition at issue, to a main
goal of shared endorsement or rejection of the proposition. This reflects a
standard way of reading mathematical proofs: the prover begins from a
position of open-mindedness towards the conjecture, shared with his
audience. He then derives the conjecture from results upon which they both
agree, by methods which they both accept.

But this is not the only sort of dialogue in which a mathematical proof
may be set out. As William Thurston has remarked, mathematicians
‘prove things in a certain context and address them to a certain audience’ [17,
p. 175]. Indeed, crucially, there are several different audiences for any
mathematical proof, with different goals. Satisfying the goals of one audience
need not satisfy those of the others. For example, a proof may be read by:

● Journal referees, who have a professional obligation to play devil’s advocate;
● Professional mathematicians in the same field, who may be expected to

quickly identify the new idea(s) that the proof contains, grasping them
with only a few cues, but who may already have a strong commitment to
the falsehood of the conjecture;

● Professional mathematicians in other (presumably neighbouring) fields,
who will need more careful and protracted exposition;

● Students and prospective future researchers in the field, who could be put
off by too technical an appearance, or by the impression that all the
important results have been achieved;
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● Posterity, or in more mercenary terms, funding bodies: proof priority can
be instrumental in establishing cudos with both.

This list suggests that the initial situation of a proof dialogue cannot always
be characterized as mutual open-mindedness. Firstly, in some cases, the rela-
tionship between the prover and his audience will be one of conflict. If the
conjecture is a controversial one, its prover will have to convince those who
are committed to an incompatible view. And if an article is refereed thor-
oughly, the referees will be obliged to adopt an adversarial attitude, irrespec-
tive of their private views.

Secondly, as the later items indicate, proofs have a pedagogic purpose.
Thurston relates his contrasting experiences in two fields to which he made
substantial contributions. As a young mathematician, he proved many
results in foliation theory using powerful new methods. However, his
proofs were of a highly technical nature and did little to explain to the
audience how they too might exploit the new techniques. As a result, the
field evacuated: other mathematicians were afraid that by the time they
had mastered Thurston’s methods he would have proved all the important
results. In later work, on Haken manifolds, he adopted a different
approach. By concentrating on proving results which provided an infra-
structure for the field, in a fashion which allowed others to acquire his
methods, he was able to develop a community of mathematicians who
could pursue the field further than he could alone. The price for this altru-
ism was that he could not take all the credit for the major results. Proofs
which succeed in the context Thurston advocates proceed from an initial
situation closer to Walton’s ‘unsatisfactory spread of information’. This
implies that information seeking is another context in which mathematical
proofs may be articulated. Of course, the information which is being
sought is not merely the conjecture being proved, but also the methods
used to prove it.

An unsatisfactory spread of information, unlike a conflict or an open
problem, is an intrinsically asymmetrical situation. We have seen that proofs
can arise in dialogues wherein the prover possesses information sought by his
interlocutors. Might there be circumstances in which we should describe as a
proof a dialogue in which the prover is the information seeker? This is the
question considered by Thomas Tymoczko [20, p. 71] and Yehuda Rav [14],
to somewhat different ends. Tymoczko considers a community of Martian
mathematicians who have amongst their number an unparalleled mathemat-
ical genius, Simon. Simon proves many important results, but states others
without proof. Such is his prestige, that “Simon says” becomes accepted
as a form of proof amongst the Martians. Rav considers a fantastical
machine, Pythiagora, capable of answering mathematical questions instanta-
neously and infallibly. Both thought experiments consider the admission of a
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dialogue with an inscrutable but far better informed interlocutor as a possi-
ble method of proof.

In both cases we are invited to reject this admission, although, interest-
ingly, for different reasons. Rav sees his scenario as suggesting that proof
cannot be purely epistemic: if it were then Pythiagora would give us all that
we needed, but Rav suggests that we would continue to seek conventional
proofs for their other explanatory merits. He concludes that Pythiagora
could not give us proof. Tymoczko draws an analogy between his thought
experiment and the use of computers in proofs such as that of the four
colour theorem. He argues that there is no formal difference between claims
backed by computer and claims backed by Simon: they are both appeals
to authority. The difference is that the computer can be a warranted author-
ity. Hence, on Tymoczko’s admittedly controversial reading, computer
assisted proof is an information seeking dialogue between the prover and the
computer.

So far we have seen that the initial situation of a proof dialogue can vary
from that of an inquiry. What of the main goal—must this be restricted to
stable resolution? Some recent commentators have felt the need for a less
rigorous form of mathematics, with a goal closer to Walton’s practical set-
tlement. Arthur Jaffe and Frank Quinn [10] introduced the much discussed,
if confusingly named, concept of ‘theoretical mathematics’. They envisage
a division of labour, analogous to that between theoretical and experimen-
tal physics, between conjectural or speculative mathematics and rigorous
mathematics. Where traditional, rigorous mathematicians have theorems
and proofs, theoretical mathematicians make do with ‘conjectures’ and
‘supporting arguments’. This echoes an earlier suggestion by Edward Swart
[16] that we should refrain from accepting as theorems results which depend
upon lengthy arguments, whether by hand or computer, of which we can-
not yet be wholly certain. He suggests that ‘these additional entities could
be called agnograms, meaning theoremlike statements that we have verified
as best we can but whose truth is not known with the kind of assurance that
we attach to theorems and about which we must thus remain, to some
extent, agnostic’ [16, p. 705]. In both cases the hope is that further progress
will make good the shortfall: neither Jaffe and Quinn’s conjectures
nor Swart’s agnograms are intended as replacements for rigorously proved
theorems.

More radical critics of the accepted standards of mathematical rigour sug-
gest that practical settlement can be a goal of proof and not merely of lesser,
analogous activities. For instance, Doron Zeilberger [27] envisages a future of
semi-rigorous (and ultimately non-rigorous) mathematics in which the ready
availability by computer of near certainty reduces the pursuit of absolute cer-
tainty to a low resource allocation priority. Hence he predicts that a mathe-
matical abstract of the future could read “We show, in a certain precise sense,
that the Goldbach conjecture is true with probability larger than 0.99999,
and that its complete truth could be determined with a budget of $10 billion”
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[27, p. 980]. ‘Proofs’ of this sort explicitly eschew stable resolution for practi-
cal settlement. Thus Zeilberger is arguing that proofs could take the form of
deliberation or negotiation.

The last of Walton’s dialogue types is the eristic dialogue, in which no set-
tlement is sought, merely a provisional accommodation in which the com-
mitments of the parties are made explicit. This cannot be any sort of proof,
since no conclusion is arrived at. But it is not completely without interest.
A familiar diplomatic euphemism for a quarrel is “a full and frank
exchange of views”, and such activity does have genuine merit. Similarly,
even failed mathematical proofs can be of use, especially if they clarify pre-
viously imprecise concepts, as we saw with Kempe’s attempted proof of the
four colour conjecture [11]. This process has something in common, if not
with a quarrel, at least with a debate, which we saw to be a related type of
dialogue.

To take stock, we have seen that most of Walton’s dialogue types are
reflected to some degree in mathematical proof. Table 3, an adaptation of
Table 2, sets out the difference between the various types of proof dialogue
introduced.

TABLE 3: Some types of proof dialogue
Type of Initial Goal of Prover Goal of
Dialogue Situation Main Goal Prover Interlocutor

Proof as Open- Prove or Contribute to Obtain 
Inquiry mindedness disprove outcome knowledge

conjecture
Proof as Difference of Resolve Persuade Persuade 

Persuasion opinion difference of interlocutor prover
opinion with 
rigour

Proof as Interlocutor Transfer Disseminate Obtain 
Information- lacks of knowledge knowledge knowledge
Seeking information of results & 
(Pedagogical) methods

‘Proof’ as Prover lacks Transfer of Obtain Presumably 
Information- information knowledge information inscrutable
Seeking (e.g.
Tymoczko)

‘Proof’ as Open- Reach a Contribute Obtain 
Deliberation mindedness provisional to outcome warranted 
(e.g. Swart) conclusion belief

‘Proof’ as Difference of Exchange Contribute Maximize 
Negotiation opinion resources for to outcome value of
(e.g. Zeilberger) a provisional exchange

conclusion
‘Proof’ as Irreconcilable Reveal deeper Clarify Clarify 

Eristic/Debate difference of conflict position position
opinion
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5 Proof dialogues

In this last section I shall explore how the classification of proof dialogues
may help to clarify many of the problems that have arisen in the philosophi-
cal debate over the nature of mathematical proof. We can see that proofs may
occur in several distinct types of dialogue, even if we do not count the sus-
pect cases (the entries for Table 3 where ‘proof’ is in scare quotes). An ideal
proof will succeed within inquiry, persuasion and pedagogic proof dialogues.
Suboptimal proofs may fail to achieve the goals of at least one of these dia-
logue types. In some cases, this may be an acceptable, perhaps inevitable,
shortcoming; in others it would fatally compromise the argument’s claim to
be accepted as a proof.

As Thurston’s experience with foliation theory demonstrated, not every
proof succeeds pedagogically. Proofs in newly explored areas are often hard
to follow, and there are some results which have notoriously resisted all
attempts at clarification or simplification.10 Yet, if these proofs succeed in
inquiry and persuasion dialogues, we have no hesitation in accepting them.
Conversely, there are some ‘proofs’ which have a heuristic usefulness in edu-
cation, but which would not convince a more seasoned audience. Pedagogic
success is neither necessary nor sufficient for proof status—but it is a desir-
able property, nonetheless.

An argument might convince a neutral audience, but fail to persuade a
determined sceptic. Just this happened to Andrew Wiles’s first attempt at a
proof of the Fermat conjecture: the initial audience were convinced, but the
argument ran into trouble when exposed to determined criticism from its ref-
erees. Such a case might be seen as success within an inquiry proof dialogue,
followed by failure in a persuasion proof dialogue. A similar story could be
told about Kempe’s ‘proof’ of the four colour conjecture: a result which
received far less scrutiny than Wiles’s work, and was thereby widely accepted
for eleven years. On the other hand, if even the sceptics are convinced, then
an open-minded audience should follow suit. Thus, on the conventional
understanding of mathematical rigour, success within both inquiry and per-
suasion proof dialogues is necessary for an argument to count as a proof.

We saw in the last section how a variety of differently motivated departures
from the prevailing standards of mathematical rigour may be understood as
shifts to different types of proof dialogue. Indeed, one of Walton’s principal
concerns in his analysis of natural argumentation is the identification of
shifts from one type of dialogue to another. Such shifts can take a variety of
forms: either gradual or abrupt, and either replacing the former type of dia-
logue or embedding the new type within the old. These processes are an

10 For example, von Staudt’s proof of the equivalence of analytic and synthetic pro-
jective geometry has retained its difficulty for nearly two centuries. See [15, pp. 193 f.]
for a discussion.
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essential and productive aspect of argumentation, but they are also open to
abuse. Similar warnings apply to shifts towards less rigorous types of proof
dialogue.

Many of the concerns which the critics of these forms of argumentation
have advanced may be understood as an anxiety about illicit shifts of proof
dialogue type. For example, the published discussion of mathematical con-
jecture is something which Jaffe and Quinn welcome: their concern is that
such material not be mistaken for theorem-proving. Although some of their
critics interpreted their advocacy of ‘theoretical mathematics’ as a radical
move, their primary goal was a conservative one: to maintain a sharp demar-
cation between rigorous and speculative work. Their ‘measures to ensure
“truth in advertising”’ [10, p. 10] are precisely calculated to prevent illicit
shifts between inquiry and deliberation proof dialogues.11 A similar story
could be told about Tymoczko or Swart’s discussion of methods they see as
falling short of conventional rigour. Zeilberger is advocating the abandon-
ment of rigour, but he recognizes at least a temporary imperative to separate
rigorous from ‘semi-rigorous’ mathematics.

As Toulmin & al. remark ‘it has never been customary for philosophers to
pay much attention to the rhetoric of mathematical debate’ [19, p. 89]. The
goal of this article has been to exhibit some of the benefits that may accrue
from a similarly uncustomary interest in the dialectic of mathematical
debate—a dialectic which informal logic can do much to illuminate.
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5

Philosophical Problems
of Mathematics in the Light
of Evolutionary Epistemology

YEHUDA RAV

Introduction

When one speaks of the foundations of mathematics or of its foundational
problems, it’s important to remember that mathematics is not an edifice which
risks collapse unless it is seated on solid and eternal foundations that are sup-
plied by some logical, philosophical, or extra-mathematical construction.
Rather, mathematics ought to be viewed as an ever-expanding mansion floating
in space, with new links constantly growing between previously separated com-
partments, while other chambers atrophy for lack of interested or interesting
habitants. The foundations of mathematics also grow, change, and further inter-
connect with diverse branches of mathematics as well as with other fields of
knowledge. Mathematics flourishes on open and thorny problems, and founda-
tional problems are no exception. Such problems arose already in antiquity, but
the rapid advance in the second half of the nineteenth century toward higher
levels of abstraction and the recourse to the actual infinite by Dedekind1 and
Cantor all pressed for an intense concern with foundational questions. The dis-
covery of irrational numbers, the use of negative numbers (from the Latin
negare, literally, “to deny,” or “to refuse”), the introduction of imaginary num-
bers, the invention of the infinitesimal calculus and the (incoherent) calculations
with divergent series, and so forth, each of these novelties precipitated at their
time uncertainties and resulted in methodological reflections. But starting with
the creation of non-Euclidean geometries2 and culminating in Cantor’s theory
of transfinite numbers, the rate at which new foundational problems presented
themselves grew to the point of causing in some quarters a sense of crisis-hence
the talk of a foundational crisis at the beginning of this century.

The philosophy of mathematics is basically concerned with systematic
reflection about the nature of mathematics, its methodological problems,
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its relations to reality, and its applicability. Certain foundational inquiries,
philosophical at the outset, were eventually internalized. Thus, the impetus
resulting from philosophically motivated researches produced spectacular
developments in the field of logic, with their ultimate absorption within math-
ematics proper. Today, the various descendants of foundational work, such as
proof theory, axiomatic set theory, recursion theory, and so on, are part and
parcel of the mainstream of mathematical research. This does not mean that
the philosophy of mathematics has or ought to have withered away. On the
contrary. Nowadays, many voices hail a renaissance in the philosophy of
mathematics and acclaim its new vigor. Note also the current dynamic preoc-
cupation by biologists and philosophers alike with foundational problems of
biology. (A special journal, Biology and Philosophy, was created in 1986 to
serve as a common forum.) By contrast, the mathematical community is
rather insular, and most mathematicians now have a tendency to spurn philo-
sophical reflections. Yet without philosophy we remain just stone heapers: “Tu
peux certes raisonner sur l’arrangement des pierres du temple, tu ne toucheras
point l’essentiel qui échappe aux pierres.” (“You can certainly reason about
the arrangement of the stones of the temple, but you’ll never grasp its essence
which lies beyond the stones,” (my translation; SaintExupéry, 1948:256).

It is significant to notice that in the current literature on the philosophy of
mathematics there is a marked shift towards an analysis of mathematical prac-
tice (cf. Feferman, 1985; Hersh, 1979; Kitcher, 1983; Kreisel, 1973; Resnik, 1975,
1981, 1982; Resnik and Kusher, 1987; Shapiro, 1983; Steiner, 1978a, 198Th,
1983; Van Bendegem, 1987). This is most refreshing, for it is high time that the
philosophy of mathematics liberates itself from ever enacting the worn-out
tetralogy of Platonism, logicism, intuitionism, and formalism. As Quine
(1980:14) has pointed out, the traditional schools of the philosophy of mathe-
matics have their roots in the medieval doctrines of realism, conceptualism and
nominalism. Whereas the quarrel about universals and ontology had its mean-
ing and significance within the context of medieval Christian culture, it is an
intellectual scandal that some philosophers of mathematics can still discuss
whether whole numbers exist or not. It was an interesting question to compare
mathematical “objects” with physical objects as long as the latter concept was
believed to be unambiguous. But, with the advent of quantum mechanics, the
very concept of a physical object became more problematic than any mathe-
matical concept.3 In a nutshell, philosophy too has its paradigms, and a fertile
philosophy of mathematics, like any other “philosophy of,” must be solidly ori-
ented towards the practice of its particular discipline and keep contact with
actual currents in the philosophy of science. The purpose of this essay is to
explore one such current in the philosophy of science, namely, evolutionary epis-
temology, with the tacit aim of hopefully obtaining some new insights concern-
ing the nature of mathematical knowledge. This is not a reductionist program.
But the search for new insights seem more fruitful than treading forever on the
quicksand of neo-scholasticism and its offshoots. I concur with Wittgenstein
that “a philosophical work consists essentially of elucidations” (1983:77).
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The Main Tenets of Evolutionary Epistemology

Evolutionary Epistemology (EE) was independently conceived by Lorenz, a
biologist; Campbell, a psychologist; and Volimer, a physicist and philosopher.
Though its origins can be traced to nineteenth-century evolutionary thinkers,
EE received its initial formulation by Lorenz (1941) in a little-noticed paper
on Kant. Christened in 1974 by Campbell and systematically developed in a
book by Voilmer in 1975, evolutionary epistemology has quickly become
a topic of numerous papers and books (see Campbell, Hayes, and Calle-
baut, 1987). In the opening paragraph of an essay in honor of Sir Karl Pop-
per, where the term evolutionary epistemology appears for the first time,
Campbell states:

An evolutionary epistemology would be at minimum an epistemology tak-
ing cognizance of and compatible with man’s status as a product of biologi-
cal and social evolution. In the present essay it is also argued that
evolution-even in its biological aspects-is a knowledge process, and that the
natural-selection paradigm for such knowledge increments can be general-
ized to other epistemic activities, such as learning, thought, and science
(Campbell, 1974:413).

My aim is to add mathematics to that list. Riedl characterizes evolutionary
epistemology as follows:

In contrast to the various philosophical epistemologies, evolutionary epis-
temology attempts to investigate the mechanism of cognition from the point
of view of its phylogeny. It is mainly distinguished from the traditional posi-
tion in that it adopts a point of view outside the subject and examines differ-
ent cognitive mechanisms comparatively. It is thus able to present objectively
a series of problems [including the problems of traditional epistemologies,
not soluble on the level of reason alone but soluble from the phylogenetic
point of view]. (Reidel, 1984:220,1988:287.)

In an extensive survey article, Bradie (1986) introduced a distinction between
two interrelated but distinct programs that go under the name of evolutionary
epistemology. One one hand, there is an “attempt to account for the character-
istics of cognitive mechanisms in animals and humans by a straightforward
extension of the biological theory of evolution to those aspects or traits of ani-
mals which are the biological substrates of cognitive activity, e.g., their brains,
sensory systems, motor systems, etc.” (Bradie 1986:403). Bradie refers to this as
the “Evolutionary Epistemology Mechanism program” (EEM). On the other
hand, the EE Theory program, EET, “attempts to account for the evolution of
ideas, scientific theories and culture in general by using models and metaphors
drawn from evolutionary biology.’ Both programs have their roots in 19th cen-
tury biology and social philosophy, in the work of Darwin, Spencer and oth-
ers” (Bradie, 1986:403). Popper is generally considered to be the main
representative of the EET program, though Popper himself would not
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call himself an evolutionary epistemologist.5 The great impetus to the EE
Mechanisms program came from the work of Konrad Lorenz and his school
of ethology. Through extensive studies of the behavior of animals in their nat-
ural habitat, Lorenz has deepened our understanding of the interplay between
genetically determined and learned behavioral patterns. To Lorenz, the evolu-
tion of the cognitive apparatus is not different in kind from the evolution of
organs. The same evolutionary mechanisms account for both. As Lorenz puts
it in a famous passage:

Just as the hoof of the horse, this central nervous apparatus stumbles over
unforeseen changes in its task. But just as the hoof of the horse is adapted to
the ground of the steppe which it copes with, so our central nervous appara-
tus for organizing the image of the world is adapted to the real world with
which man has to cope. Just like any organ, this apparatus has attained its
expedient species-preserving form through this coping of real with the real
during its genealogical evolution, lasting many eons (Lorenz, 1983:124).

In the fascinating 1941 paper already mentioned, Lorenz reinterpreted the
Kantian categories of cognition in the light of evolutionary biology. By pass-
ing from Kant’s prescriptive epistemology to an evolutionary descriptive epis-
temology, the category of a priori cognition is reinterpreted as the individual’s
inborn (a priori) cognitive mechanisms that have evolved on the basis of the
species’ a posteriori confrontation with the environment. In short, the phylo-
genetically a posteriori became the ontogenetically a priori. In the words of
Lorenz, “The categories and modes of perception of man’s cognitive appara-
tus are the natural products of phylogeny and thus adapted to the parame-
ters of external reality in the same way, and for the same reason, as the horse’s
hooves are adapted to the prairie, or the fish’s fins to the water”
(1977:37,1985:57).

Any epistemology worthy of its name must start from some postulate of
realism: that there exists a real world with some organizational regularities.
“In a chaotic world not only knowledge, but even organisms would be impos-
sible, hence non-existent” (Volimer, 1983:29). But the world includes also the
reflecting individual. Whereas the idealist, to paraphrase Lorenz, looks only
into the mirror and turns a back to reality, the realist looks only outwardly
and is not aware of being a mirror of reality. Each ignores the fact that the
mirror also has a nonreflecting side that is part and parcel of reality and con-
sists of the physiological apparatus that has evolved in adaptation to the real
world. This is the subject of Lorenz’s remarkable book Behind the Mirror. Yet
reality is not given to immediate and direct inspection. “Reality is veiled,” to
use the deft expression of d’Espagnat. But the veil can progressively be trans-
luminated, so to speak, by conceptual modeling and experimentation. This is
the credo of the working scientist. Evolutionary epistemology posits a mini-
mal ontology, known under the name of hypothetical realism, following a
term coined and defined by Campbell as follows:
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My general orientation I shall call hypothetical realism. An “external”
world is hypothesized in general, and specific entities and processes are
hypothesized in particular, and the observable implications of these hypothe-
ses (or hypostatizations, or reifications) are sought out for verification. No
part of the hypotheses has any “justification” or validity prior to, or other
than through, the testing of these implications. Both in specific and in gen-
eral they are always to some degree tentative (Campbell, 1959:156).

The reader is referred to the treatises by Voilmer (1987a, 1985; 1986) for a
systematic discussion of evolutionary epistemology. See also Ursua (1986)
and Volimer’s (1984) survey article. Subsequently, I will also draw on the
insights furnished by the genetic (or developmental) epistemology of Piaget
and his school (which I consider part of the EE Mechanisms program), as
well as on the work of Oeser (1987, Oeser and Seitelberger 1988).

Some Perennial Questions in the Philosophy
of Mathematics

The Hungarian mathematician Alfréd Rényi has written a delightful little
book entitled Dialogues on Mathematics.’ The first is a Socratic dialogue on
the nature of mathematics, touching on some central themes in the philoso-
phy of mathematics. From the following excerpts, 1 shall extract the topics of
our subsequent discussion.

SOCRATES What things does a mathematician study? ... Would you say that
these things exist? ... Then tell me, if there were no mathematicians, would
there be prime numbers, and if so, where would they be?

SOCRATES Having established that mathematicians are concerned with
things that do not exist in reality, but only in their thoughts, let us examine
the statement of Theaitetos, which you mentioned, that mathematics gives
us more trustworthy knowledge than does any other branch of science.

HIPPOCRATES ... [Im reality you never find two things which are exactly the
same; ... but one may be sure that the two diagonals of a rectangle
are exactly equal ... Heraditus ... said that everything which exists is con-
stantly changing, but that sure knowledge is only possible about things that
never change, for instance, the odd and the even, the straight line and the
circle.

SOCRATES ... We have much more certain knowledge about persons who
exist only in our imagination, for example, about characters in a play, than
about living persons ... The situation is exactly the same in mathematics.

HIPPOCRATES But what is the use of knowledge of non-existing things such
as that which mathematics offers?
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SOCRATES: . . . How to explain that, as often happens, mathematicians living
far apart from each other and having no contact, independently discover
the same truth? I never heard of two poets writing the same poem ... It
seems that the object of [mathematicians’] study has some sort of existence
which is independent of their person.

SOCRATES: But tell me, the mathematician who finds new truth, does he dis-
cover it or invent it?

HIPPOCRATES The main aim of the mathematician is to explore the secrets
and riddles of the sea of. These exist independently of the mathematician,
though not from humanity as a whole [italics mine].

SOCRATES: We have not yet answered the question: what is the use of
exploring the wonderful sea of human thought?

SOCRATES: If you want to be a mathematician, you must realize you will be
working mostly for the future [italics mine]. Now, let us return to the main
question. We saw that knowledge about another world of thought, about
things which do not exist in the usual sense of the word, can be used in
everyday life to answer questions about the real world. Is this not surpris-
ing?

HIPPOCRATES More than that, it is incomprehensible. It is really a mira-
cle.

HIPPOCRATES [B]ut I do not see any similarity between the real world and
the imaginary world of mathematics.

HIPPOCRATES Do you want to say that the world of mathematics is a
reflected image of the real world in the mirror of our thinking?

SOCRATES: [D]o you think that someone who has never counted real objects
can understand the abstract notion of number? The child arrives at the
notion of a sphere through experience with round objects like balls.
Mankind developed all fundamental notions of mathematics in a similar
way. These notions are crystallized from a knowledge of the real world,
and thus it is not surprising but quite natural that they bear the marks of
their origin, as children do of their parents. And exactly as children when
they grow up become the supporters of their parents, so any branch of
mathematics, if it is sufficiently developed, becomes a useful tool in explor-
ing the real world,

HIPPOCRATES Now we have found that the world of mathematics is nothing
else but a reflection in our mind of the real world,

SOCRATES: ... I tell you [that] the answer is not yet complete.

SOCRATES: We have kept too close to the simile of the reflected image. A sim-
ile is like a bow-if you stretch it too far, it snaps [italics mine].
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Schematically, the key issues that emerge from the dialogue are the fol-
lowing:

1. Ontology. In what sense can one say that mathematical “objects” exist?’ If
discovered, what does it mean to say that mathematical propositions are
true independently of the knowing subject(s) and prior to their discovery?

2. Epistemology. How do we come to know “mathematical truth” and why is
mathematical knowledge considered to be certain and apodictic?

3. Applicability. Why is mathematical knowledge applicable to reality?
4. Psychosociology. If invented, how can different individuals invent the

“same” proposition? What is the role of society and culture?

It has been stressed by Körner (1960) and by Shapiro (1983) that problem
3 is least adequately dealt with by each of the traditional philosophies of
mathematics. As Shapiro rightly observes: “many of the reasons for engaging
in philosophy at all make an account of the relationship between mathemat-
ics and culture a priority ... Any world view which does not provide such an
account is incomplete at best” (1983:524). To answer this challenge, there are
voices that try to revive Mill’s long-buried empiricist philosophy of mathe-
matics, notwithstanding the obvious fact that mathematical propositions are
not founded on sense impressions nor could any ever be refuted by empirical
observations. How are we supposed to derive from experience that every con-
tinuous function on a closed interval is Riemann integrable? A more shaded
empiricism has been advocated by Kalmar and Lakatos. Their position was
sharply criticized by Goodstein (1970) and I fully agree with Goodstein’s
arguments (cf. the discussion in Lolli, 1982). In a different direction, Kòrner
(1965) has sought an empiicist justification of mathematics via empirically
verifiable propositions modulo translation of mathematical propositions into
empirical ones. The problematics of translation apart, the knotty question of
inductive justification “poppers” up again, and not much seems to be gained
from this move. Though the road to empiricism is paved with good inten-
tions, as with all such roads, the end point is the same. Yet the success of
mathematics as a scientific tool is itself an empirical fact.

Moreover, empirical elements seem to be present in the more elementary
parts of mathematics, and they are difficult to account for. To say that some
mathematical concepts were formed by “abstraction” from experience only
displaces the problem, for we still don’t know how this process of abstraction
is supposed to work. Besides, it is not the elementary part of mathematics
that plays a fundamental role in the elaboration of scientific theories; rather,
it is the totality of mathematics, with its most abstract concepts, that serves
as a pool from which the scientist draws conceptual schemes for the elabora-
tion of scientific theories. In order to account for this process, evolutionary
epistemology starts from a minimal physical ontology, known as “hypotheti-
cal realism”; it just assumes the existence of an objective reality that is inde-
pendent of our taking cognizance of it. Living beings, idealistic philosophers
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included, are of course part of objective reality. It is sufficient to assume that
the world is nonchaotic; or, put positively, the world is assumed to possess
organizational regularities. But I would not attribute to reality ‘objective rela-
tions’, ‘quantitative relations’, ‘immutable laws’, and so forth. All these are
epistemic concepts and can only have a place within the frame of scientific
theories. Some philosophers of mathematics have gone far beyond hypothet-
ical realism and thereby skirt the pitfalls of both empiricism and Platonism,
such as Ruzavin when he writes: “In complete conformity with the assertions
of science, dialectical materialism considers mathematical objects as images,
photographs, copies of the real quantitative relations and space forms of the
world which surrounds us” (1977:193). But we are never told how, for
instance, Urysohn’s metrization theorem of topological spaces could reflect
objective reality. Are we supposed to assume that through its pre-image
in objective reality, Urysohn’s theorem was already true before anybody ever
thought of topological spaces? Such a position is nothing but Platonism
demystified, and it would further imply that every mathematical problem is
decidable independently of any underlying theoretical framework.

To reiterate: mathematics and objective reality are related, but the rela-
tionship is extremely complex, and no magic formula can replace patient epis-
temological analysis. We turn now to the task of indicating a direction for
such an analysis from the point of view of evolutionary epistemology (cf.
Vollmer, 1983).

MATHEMATICS AND REALITY

Many consider it a miracle-as Rényi had Hippocrates say-that mathematics
is applicable to questions of the real world. In a famous article, Wigner
expressed himself in a similar way: “the enormous usefulness of mathemat-
ics in the natural sciences is something bordering on the mysterious and...
there is no rational explanation for it” (Wigner, 1960:2) It is hard to believe
that our reasoning power was brought, by Darwin’s process of natural selec-
tion, to the perfection which it seems to possess.

With due respect to the awe of the great physicist, there is a rational explanation for
the usefulness of mathematics and it is the task of any epistemology to furnish one.
Curiously, we’ll find its empirical basis in the very evolutionary process which puz-
zled Wigner. Here is the theory that I propose.

The core element, the depth structure of mathematics, incorporates cogni-
tive mechanisms, which have evolved like other biological mechanisms, by
confrontation with reality and which have become genetically fixed in the
course of evolution. I shall refer to this core structure as the logico-operational
component of mathematics. Upon this scaffold grew and continues to grow
the thematic component of mathematics, which consists of the specific con-
tent of mathematics. This second level is culturally determined and origi-
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nated, most likely, from ritual needs. (The ritual origin of mathematics has
been discussed and documented by numerous authors (cf. Seidenberg, 1981;
Carruccio, 1977:10; Michaels, 1978, and their respective bibliographies).
Notice that ritual needs were practical needs, seen in the context of the pre-
vailing cultures; hence there is no more doubt about the practical origin of
mathematics Marchack (1972) has documented the presence of mathematical
notations on bones dating to the Paleolithic of about thirty thousand years
ago. This puts it twenty thousand years prior to the beginnings of agriculture;
hence some mathematical knowledge was already available for the needs of
land measurements, prediction of tides, and so forth. Given this remarkably
long history, mathematics has been subjected to a lengthy cultural molding
process akin to an environmental selection. Whereas the thematic component
of mathematics is culturally transmitted and is in a continuous state of
growth, the logico-operational component is based on genetically transmit-
ted cognitive mechanisms and this is fixed. (This does not mean that the
logico-operational level is ready for use at birth; it is still subject to an onto-
genetic development.9 The genetic program is an open program (Mayr,
1974:651-52) that is materialized in the phenotype under the influence of
internal and external factors and is realized by stages in the development
of the individual).

Let us look closer at the nature of cognitive mechanisms. Cognition is a funda-
mental physical process; in its simplest form it occurs at the molecular level when
certain stereospecific configurations permit the aggregation of molecules into
larger complexes. (There is no more anthropomorphism here in speaking of molec-
ular cognition than in using the term force in physics.) As we move up the ladder of
complexity, cognition plays a central role in prebiotic chemical evolution, and in the
formation of self-replicating units. Here, in the evolution of macromolecules, “sur-
vival of the fittest” has a literal meaning: that which fits, sticks (chemically so!). That
which doesn’t fit, well, it just stays out of the game; it is “eliminated.” These simple
considerations should have a sobering effect when looking at more complicated
evolutionary processes. The importance of cognition in the process of the self-
organization of living matter cannot be overemphasized. Thus Maturana writes:
“Living systems are cognitive systems, and living as a process is a process of cogni-
tion” (1980:13). What I wish to stress here is that there is a continuum of cognitive
mechanisms, from molecular cognition to cognitive acts of organisms, and that
some of these fittings have become genetically fixed and are transmitted from gen-
eration to generation. Cognition is not a passive act on the part of an organism but
a dynamic process realized in and through action. Lorenz (1983:102) has percep-
tively pointed out that the German word for reality, Wirklichkeit, is derived from
the verb wirken, “to act upon.” The evolution of cognitive mechanisms is the
story of successive fittings of the organism’s actions upon the internal and external
environments.

It is remarkable how complicated and well adapted inborn behavioral pat-
terns can be, as numerous studies by ethologists have shown.

Consider, for instance [writes Bonner], a solitary wasp. The female deposits
her eggs in small cavities, adds some food, and seals off the chamber. Upon
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emergence the young wasp has never seen one of its own kind, yet it can
walk, fly, eat, find a mate, mate, find prey, and perform a host of other com-
plex behavioral patterns. This is all done without any learning from other
individuals. It is awesome to realize that so many (and some of them com-
plex) behavioral patterns can be determined by the genes. (1980:40)

Isn’t this as remarkable as “that our reasoning power was brought, by Dar-
win’s process of natural selection, to the perfection which it seems to pos-
sess?” (Recall the quote from Wigner.) From the rigid single-choice behavior,
as in the case of the solitary wasp, through the evolution of multiple-choice
behavior 10 and up to our capacity of planned actions, all intermediate stages
occur and often concur.

As behavior and sense organs became more complex [writes Simpson], per-
ception of sensation from those organs obviously maintained a realistic rela-
tionship to the environment. To put it crudely but graphically, the monkey
who did not have a realistic perception of the tree branch he jumped for was
soon a dead monkey and therefore did not become one of our ancestors. Our
perceptions do give true, even though not complete, representations of the
outer world because that was and is a biological necessity, built into us by
natural selection. If we were not so, we would not be here! We do now reach
perceptions for which our ancestors had no need, for example, of X-rays or
electric potentials, but we do so by translating them into modalities that are
evolution-tested. (1963:84)

The nervous system is foremost a steering device for the internal and exter-
nal coordination of activities. There is no such thing as an “illogical” biolog-
ical coordination mechanism, else survival would not have been possible.
“For survival,” writes Oeser, “it is not the right images which count but the
corresponding (re)actions” (1988:38). The coordinating activities of the nerv-
ous system proceed mostly on a subconscious level; we become aware of the
hand that reaches out to catch a falling glass only at the end of the action. (It
is estimated that from an input of 10 bits/sec, only 102 bits/sec reach con-
sciousness.) Yet another crucial mechanism has evolved, known on the
human level as planned action. It permits a choice of action or hypothetical
reasoning: we can imagine, prior to acting, the possible outcome of an action
and thereby minimize all risks. The survival value of anticipatory schemes is
obvious. When we form a representation for possible action, the nervous system
apparently treats this representation as if it were a sensory input, hence
processes it by the same logico-operational schemes as when dealing with an
environmental situation (cf. Shepard and Cooper, 1981, for some fascinating
data). From a different perspective, Maturana and Varela express it this way:
“all states of the nervous system are internal states, and the nervous system
cannot make a distinction in its process of transformations between its inter-
nally and externally generated changes” (1980:131). Thus, the logical schemes
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in hypothetical representations are the same as the logical schemes in the
coordination of actions, schemes that have been tested through eons of evo-
lution and which by now are genetically fixed.

The preceding considerations have far reaching implications for mathemat-
ics. Under “logico-mathematical schemes” Piaget understands the cognitive
schemes that concern groupings of physical objects, arranging them in order,
comparing groupings, and so on. These basic premathematical schemes have
a genetic envelope but mature by stages in the intellectual development of the
individual. They are based on the equally genetically fixed logico-operational
schemes, a term that I have introduced, as these schemes operate also on the
nonhuman level. The logico-operational schemes form the basis of our logical
thinking. As it is a fundamental property of the nervous system to function
through recursive loops, any hypothetical representation that we form is dealt
with by the same “logic” of coordination as in dealing with real life situations.
Starting from the elementary logico-mathematical schemes, a hierarchy is
established. Under the impetus of sociocultural factors, new mathematical
concepts are progressively introduced, and each new layer fuses with the pre-
vious layers.” in structuring new layers, the same cognitive mechanisms oper-
ate with respect to the previous layers as they operate with respect to an
environmental input. This may explain, perhaps, why the working mathemati-
cian is so prone to Platonistic illusions. The sense of reality that one experi-
ences in dealing with mathematical concepts stems in part from the fact that
in all our hypothetical reasonings, the object of our reasoning is treated in the
nervous system by cognitive mechanisms, which have evolved through inter-
actions with external reality (see also the quotation from Borel in note 16).

To summarize: mathematics does not reflect reality. But our cognitive
mechanisms have received their imprimatur, so to speak, through dealing
with the world. The empirical component in mathematics manifests itself not
on the thematic level, which is culturally determined, but through the logico-
operational and logico-mathematical schemes. As the patterns and structures
that mathematics consists of are molded by the logico-operational neural
mechanisms, these abstract patterns and structures acquire the status of
potential cognitive schemes for forming abstract hypothetical world pictures.
Mathematics is a singularly rich cognition pool of humankind from which
schemes can be drawn for formulating theories that deal with phenomena
that lie outside the range of daily experience and, hence, for which ordi-
nary language is inadequate. Mathematics is structured by cognitive mecha-
nisms, which have evolved in confrontation with experience, and, in its
turn, mathematics is a tool for structuring domains of indirect experience.
But mathematics is more than just a tool. Mathematics is a collective work of
art that derives its objectivity through social interaction. “A mathematician,
like a painter or a poet, is a maker of patterns,” wrote Hardy (1969:84). The
metaphor of the weaver has been frequently evoked. But the mathematician
is a weaver of a very special sort. When the weaver arrives at the loom, it is
to find a fabric already spun by generations of previous weavers and whose
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beginnings lie beyond the horizons. Yet with the yarn of creative imagination,
existing patterns are extended and sometimes modified. The weaver may only
add a beautiful motif, or mend the web; at times, the weaver may care more
about the possible use of the cloth. But the weaving hand, for whatever
motive it may reach out for the shuttle, is the very prehensile organ that
evolved as a grasping and branch clutching organ, and its coordinating
actions have stood the test of an adaptive evolution.” In the mathematician,
the artisan and artist are united into an inseparable whole, a unity that
reflects the uniqueness of humankind as Homo artifex.

The Trilemma of a Finitary Logic and
Infinitary Mathematics

In 1902, L’enseignement mathématique launched an inquiry into the working
methods of mathematicians. The questionnaire is reproduced (in English
translation) as appendix I in Hadamard (1945). Of particular interest is ques-
tion thirty, which, among others, Hadamard addressed to Einstein. (No date
for the correspondence is given, but I situate it in the forties when Hadamard
was at Columbia University). Question thirty reads as follows:

It would be very helpful for the purpose of psychological investigation to know
what internal or mental images, what kind of “internal world” mathematicians
make use of, whether they are motor, auditory, visual, or mixed, depending on the
subject which they are studying.

In his answer to Hadamard (1945, appendix 2:142-43), Einstein wrote:

(a) The words or the language, as they are written or spoken, do not seem to
play any role in my mechanism of thought. The physical entities which
seem to serve as elements in thought are certain signs and more or less
clear images which can be “voluntarily” reproduced and combined

(b) The above mentioned elements are, in my case, of visual and some of mus-
cular type. Conventional words or other signs have to be sought for labo-
riously only in a secondary stage, when the mentioned associative play is
sufficiently established and can be reproduced at will [italics mine],

In the previous section I have discussed the core structures of mathematics
which consist of the logico-operational schemes for the coordination of
actions. Throughout the evolution of hominoids, the coordinating mecha-
nisms of the hand and eye played a particularly important role, leading to the
feasibility of extensive use of tools and, thereby, to further cortical develop-
ments. It is therefore not surprising that in dealing with concepts, where the
same neural mechanisms are involved, visual and traces of kinesthetic ele-
ments manifest themselves in consciousness, as Einstein’s testimonial confirms.

The world of our immediate actions is finite, and the neural mechanisms
for anticipatory representations were forged through dealing with the finite.
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Formal logic is not the source of our reasoning but only codifies parts of the
reasoning processes. But whence comes the feeling of safety and confidence
in the soundness of the schemes that formal logic incorporates? To an evolu-
tioiary epistemologist, logic is not based on conventions; rather, we look for
the biological substrata of the fundamental schemes of inference. Consider
for instance modus ponens:

A ‡ B

A

B

If a sheep perceives only the muzzle of a wolf, it promptly flees for its life.
Here, “muzzle -wolf” is “wired” into its nervous system. Hence the mere sight
of a muzzle the muzzle of any wolf, not just the muzzle of a particular wolf-
results in “inferring” the presence of a wolf. Needless to say, such inborn
behavioral patterns are vital. For related examples, see Lorenz (1973) and
Riedl (1979). The necessary character of logic, qua codified logico-operational
schemes, thus receives a coherent explanation in view of its phylogenetic ori-
gin. It follows furthermore that as far as logic is concerned, finitism does not
need any further philosophical justification. It is biologically imposed. The situ-
ation is different with respect to the thematic component of mathematics. Once
the cultural step was taken in inventing number words and symbols which can
be indefinitely extended, mathematics proper, as the science of the infinite,
came into being. The story of the early philosophical groping with mathemat-
ical and possible physical infinity is well known. When at last full citizenship
was conferred on the actual infinite-de facto by Kummer and Dedekind; de
jure by Cantor and Zermelo-an intense preoccupation with foundational prob-
lems was set in motion.14 The first school to emerge was logicism à la Frege
and Russell. “The logicistic thesis is,” writes Church, “that logic and mathe-
matics are related, not as two different subjects, but as earlier and later parts of
the same subject, and indeed in such a way that mathematics can be obtained
from pure logic without the introduction of additional primitives or additional
assumptions” (Church, 1962:186). Had the logicist programme succeeded,
then infinitary mathematics, a cultural product, would have received a finitary
foundation in finitary, biologically based logic. But as early as 1902, Keyser
already showed that mathematical induction required an axiom of infinity,
and, finally, Russell had to concede that such an axiom (plus the axiom of
reducibility) had to be added to his system. Thus, the actual infinite is the rock
upon which logicism foundered. Still, the efforts of the logicist school were not
in vain, as Church has pointed out: “it does not follow that logicism is barren
of fruit. Two important things remain. One of these is the reduction of math-
ematical vocabulary to a surprisingly brief list of primitives, all belonging to
the vocabulary of pure logic. The other is the basing of all existing mathemat-
ics on one comparatively simple unified system of axioms and rules of infer-
ence” (1962:186).15
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The second attempt in finitist foundations for mathematics was undertaken
by Hilbert in his famous program. It may not be inopportune to stress that
Hilbert never maintained seriously that mathematics is devoid of content,
and his oft-cited mot d’esprit that “mathematics is a game played according
to certain simple rules with meaningless marks on paper” has regrettably
resulted in unwarranted philosophical extrapolations. Hilbert’s formalist pro-
gram is a technique, a device, for proving the consistency of infinitary math-
ematics by finitistic means. In the very article in which he outlines his
program, Hilbert said the following concerning Cantor’s theory of transfinite
numbers: “This appears to me the most admirable flower of the mathemati-
cal intellect and in general one of the highest achievements of purely rational
human activity” (1967:373). A meaningless game? Hardly!

Through formalization of thematic mathematics, Hilbert proposed that
“contentual inference [be] replaced by manipulation of signs according to
rules” (1967:381). This manipulation (manus, literally “hand”), this handling
of inscriptions in the manner one handles physical objects would be founded,
from the perspective of evolutionary epistemology, on the safe logico-opera-
tional schemes for dealing with the finite. It was a magnificent program, and
though in view of Gödel’s incompleteness theorem it could not be carried out
as originally conceived, its offshoot, proof theory, is a major flourishing
branch of mathematical logic. Thus, the contributions of logicism and
Hilbert’s program are of lasting value. As to the original intent, we just have
to accept that one cannot catch an infinite fish with a finite net! Thus there
remain three alternatives:

1. Use an infinite net, say of size ε0 (Gentzen)
2. Eat only synthetic fish (Brouwer)
3. Be undernourished and settle for small fish (strict finitism).

Chacun à son goût!

Invention Versus Discovery

“But tell me,” asked Socrates in Rényi’s dialogue, “the mathematician who
finds new truth, does he discover it or invent it?” We all know that a time-
honored way to animate an after-dinner philosophical discussion is to ask
such a question. People agree that following common usage of language,
Columbus did not invent America, nor did Beethoven discover the ninth
symphony. But when a new drug has been synthesized we commonly speak
of a discovery, though the molecule never existed anywhere prior to the cre-
ative act of its synthesizers. Hadamard, in the introduction to his book The
Psychology of Invention in the Mathematical Field, observes that “there are
plenty of examples of scientific results which are as much discoveries as
inventions,” and thus he prefers not to insist on the distinction between inven-
tion and discovery (1945:xi). Yet there are philosophers of mathematics who
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are committed to an essential distinction between discovery and invention. To
the intuitionist, mathematical propositions are mental constructions and, as
such, could not result from a discovery. The Platonist, on the other hand,
believes “that mathematical reality lies outside us, that our function is to dis-
cover or observe it,” as Hardy (1969:123) put it. The conventionalist, though
for different reasons, would side with the intuitionist and consider mathe-
matics to be invented. Apparently, neither logicism nor formalism is commit-
ted to a discovery/ invention dichotomy. Is the debate about invention versus
discovery an idle issue, or can one use the commonsense distinction between
the two terms in order to elucidate the distinct components in the growth of
mathematical knowledge? Let us examine the issue through a standard exam-
ple. I propose to argue that: (1) the concept of ‘prime number’ is an invention;
(2) the theorem that there are infinitely many prime numbers is a discovery.
(N.b., Euclid’s formulation, book 9, prop. 20, reads: “Prime numbers are
more than any assigned multitude of prime numbers.”)

Why should the concept of prime number be considered an invention, a
purely creative step that need not have been taken, while contrariwise it
appears that an examination of the factorization properties of the natural
numbers leads immediately to the “discovery” that some numbers are com-
posite and others are not, and this looks like a simple “matter of fact”?
Weren’t the prime numbers already there, tucked away in the sequence of nat-
ural numbers prior to anyone noticing them? Now things are not that simple.
First of all, the counting numbers, like other classificatory schemes, did not
make a sudden appearance as an indefinitely extendable sequence. Some cul-
tures never went beyond coining words for the first few whole numbers. There
are even languages destitute of pure numeral words. But even in cultures with
a highly developed arithmetic, like the ones in ancient Babylonia, Egypt, or
China, the concept of prime number was absent. Mo (1982) has shown how
mathematicians in ancient China, though lacking the concept of prime num-
ber, solved problems such as reduction of fractions to lowest terms, addition
of fractions, and finding Pythagorean triplets. Could it reasonably be said
that the Chinese just missed “discovering” the prime numbers, and that so did
the Babylonians and the Egyptians, in spite of their highly developed mathe-
matical culture extending over thousands of years? I don’t think so. In retro-
spect it seems to us that there was some sort of necessity that the concept of
prime number be stumbled upon. But this is a misleading impression. Evolu-
tion, be it biological or cultural, is opportunistic. Much of our modern mathe-
matics would still stay intact if the concept of prime number were lacking,
though number theory and, hence, portions of abstract algebra would be dif-
ferent. There are 2 0 subsets of N of which only 0 can be defined by any lin-
guistic means. We neither discover nor invent any one of these subsets
separately. But when the inventive step was taken in formulating the concept
of prime numbers, one of the subsets of N was singled out (that is, to serve
as a model, in modern terminology). Some historians of mathematics attrib-
ute to the Pythagoreans certain theorems involving primes, but it is more
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likely that the concept of prime number is of a later date. It is conceivable
that there is a connection between cosmological reflections about the ulti-
mate constituents of matter by the Greek atomists and thoughts about
numerical atoms, that is, prime numbers. Whatever the tie may be, one thing
is certain: the invention of mathematical concepts is tied to culture. As White
(1956) affirmed contra Platonistic doctrines, the “locus of mathematical real-
ity is cultural tradition.” The evolution of mathematical concepts can be
understood only in the appropriate sociocultural context.16

Let us note that concepts can be defined explicitly, as in the case of prime
numbers, or implicitly, by a system of axioms, like the concept of a group.
In either case it is an inventive act. Theorems, on the other hand, have more
the character of a discovery, in the sense that one discovers a road linking
different localities. Once certain concepts have been introduced and, so to
speak, are already there, it is a matter of discovering their connection, and
this is the function of proofs. To come back to the theorem that no finite
set of primes can contain all the prime numbers, it has the character of a
discovery when one establishes a road map (Goodstein, 1970) linking “set of
primes,” “number of elements,” and so on, to yield a path to the conclusion.
A proposed path may or may not be valid, beautiful, or interesting. But to
say that a proof renders a proposition “true” is as metaphorical as when
one claims to have found a “true” path. It seems best to dispense altogether
with the notion of mathematical truth. (This has no bearing on the technical
metamathematical notion of ‘truth’ in the sense of Tarski.) Gone is, then,
too the outdated Aristotelian conception of ‘true axioms’. (Think of
Euclidean and non-Euclidean geometries.) Such a “no truth” view also
resolves the infinite regress involved in the apparent flow of truth from
axioms to theorems that Lakatos (1962) endeavored to eliminate by an
untenable return to empiricism. The creative work of the mathematician
consists of inventing concepts and developing methods permitting one to
chart paths between concepts.17 This is how mathematics grows in response
to internal and external problems and results in an edifice that is beautiful
and useful at the same time.

Recapitulation and Concluding Remarks

The evolutionary point of view dominated this essay, both in its metaphori-
cal as well as in its strict biological sense. I started with the view of mathe-
matics as an evolving mansion, foundations included. In harmony with the
current emphasis in the philosophy of mathematics on actual mathematical
practice, one of my chief concerns was to elucidate the relationship between
mathematics and external reality. Though I rejected empiricism as an inade-
quate philosophy of mathematics, I endeavored to account for the empirical
components in mathematics whose presence is clearly felt but which are dif-
ficult to locate. Mathematics is a science of structures, of abstract patterns
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(cf. Resnik, 1981, 1982). It is a human creation, hence it is natural to look for
biological as well as sociocultural factors that govern the genesis of mathe-
matical knowledge. The success of mathematics as a cognitive tool leaves no
doubt that some basic biological mechanisms are involved. The acquisition of
knowledge by organisms, even in its simplest form, presupposes mechanisms
that could have evolved only under environmental pressure. Evolutionary
epistemology starts from the empirical fact that our cognitive apparatus is the
result of evolution and holds that our world picture must be appropriate for
dealing with the world, because otherwise survival would not have been pos-
sible (cf. Bollmer, 1975:102). Indeed, it is from the coordination of actions in
dealing with the world that anticipatory schemes of action have evolved;
these, in turn, are at the root of our logical thinking. Thus, the phylogeneti-
cally but not individually empirical element manifests itself in our logico-
operational schemes of actions, which lie at the root of the elementary
logico-mathematical operations as studied by Piaget. On the other hand, the
content of mathematical theories is culturally determined, but the overall
mathematical formation sits on the logico-operational scaffold. Mathematics
is thus seen as a twotiered web: a logico-operational level based on cognitive
mechanisms which have become fixed in adaptation to the world, and a the-
matic level determined by culture and social needs and hence in a continuous
process of growth. This special double-tiered structure endows mathematics
in addition to its artistic value with the function of a cognition pool which is
singularly suitable beyond ordinary language for formulating scientific con-
cepts and theories.

In the course of my discussion I also reassessed the rationale of logicism
and Hilbert’s program. Of the traditional philosophies of mathematics, only
Platonism is completely incompatible with evolutionary epistemology. “How
is it that the Platonistic conception of mathematical objects can be so con-
vincing, so fruitful and yet so clearly false?” writes Paul Ernest in a review
(1983).18 I disagree with Ernest on only one point: I do not think that Pla-
tonism is fruitful. As a matter of fact, Platonism has negative effects on
research by blocking a dynamical and dialectic outlook. Just think of set the-
orists who keep looking for “the true axioms” of set theory, and the working
mathematician who will not explore on equal footing the consequences of the
negation of the continuum hypothesis as well as the consequences of the
affirmation of the continuum hypothesis. For the same reason too many logi-
cians still ignore paraconsistent and other “deviant” (!) logics. Like the bio-
logical theory of preformation-which is just another side of the same
coin-Platonism has deep sociological and ideological roots. What Dobzhan-
sky had to say about the preformist way of thinking applies mutatis mutandis
to Platonism:

The idea that things are preformed, predestined, just waiting around the
corner for their turn to appear, is pleasing and comforting to many people.
Everything is destiny, fate. But to other people predestination is denial of
freedom and novelty. They prefer to think that the flow of events in the world
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may be changed creatively, and that new things do arise. The influence of
these two types of thinking is very clear in the development of biological the-
ories. (1955:223)

And so it is in the philosophy of mathematics.
Starting with the misleading metaphor of mathematical truth, Platonists

graft onto it the further misleading metaphor of mathematical objects as
physical objects to which “truth” is supposed to apply. Metaphors are illumi-
nating, but when metaphors are stacked one upon the other without end, the
result is obscurity and finally obscurantism. I frankly confess that I am
absolutely incapable of understanding what is meant by “ontological com-
mitment” and the issue of the “existence of abstract objects,” and I begin to
suspect that the emperor wears no clothes. No, there are no preordained, pre-
determined mathematical “truths” that lie just out or up there. Evolutionary
thinking teaches us otherwise.

Caminante, son tus huellas el camino y nada mas; caminante, no hay camino,
se hace camino al andar. (Antonio Machado)

Walker, just your footsteps are the path and nothing more; walker, no path
was there before, the path is made by act of walking.

NOTES

This is an expanded version of talks presented at the International Congress “Com-
munication and Cognition. Applied Epistemology,” Ghent, December 6-10, 1987; at
the Logic Seminar of the Kurt-Gödel-Gesellschaft, Technical University, Vienna,
May 30,1988; and at the Séminaire de Philosophie et Mathématique, Ecole Normale
Supérieure, Paris, November 7, 1988. I thank the various organizers and participants
for numerous stimulating conversations and discussions.
1. Concerning the role of Dedekind, often neglected in foundational discussions, see

Edwards (1983). In his review of Edwards’s paper, Dieudonné makes the following
significant observation: “Dedekind broke entirely new ground in his free use of
‘completed’ infinite sets as single objects on which one could compute as with num-
bers, long before Cantor began his work on set theory” (Mathematical Reviews
84d:01028).

2. “With non-Euclidean geometry came into being a new state of mind which
impressed its spirit of freedom on the whole development of modem mathematics”
(Toth, 1986:90; this fascinating essay deals in considerable depth with the episte-
mological problem of non-Euclidean geometries).

3. From a current point of view, physical objects are considered as events or states
that rest unaltered for a nonnegligible time interval. Though “event” and “state”
refer to reality, in order to speak of them one needs the mathematical apparatus
incorporated in physical theories. Thus one ends up again with mathematical con-
cepts. Hence it is futile to look at mathematical concepts as objects in the manner
of physical objects and then, to crown it all, relegate them to a Platonic abode. For
a further discussion of ontological questions concerning physical objects, see Dalla
Chiara, 1985; Dalla Chiara and Toraldo di Francia, 1982; Quine, 1976.
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4. Volimer (1987a, 198Th) also stresses the difference between EE à la Lorenz as a
biological theory of the evolution of cognitive systems and EE à la Popper as a the-
ory of the evolution of scientific ideas.

5. Cf. Popper’s disclaimer in Riedl et al., 1987:24. In Popper’s philosophy, factual
knowledge cannot serve as a basis for an epistemology, whereas evolutionary epis-
temology is committed to an “irresolvable nexus between empirical knowledge
and metatheoretical reflections,” following Vollmer. Moreover, the great strides of
science in the last fifty years are due to ever-refined experimental techniques and
technologies coupled with piecemeal modeling, rather than to the elaboration of
grand theories. When one peeks into a modern research institute, one scarcely
finds scientists engaging in a grandiose search for bold hypotheses and a frantic
pursuit of refutations, but rather humbly approaching “nature with the view,
indeed, of receiving information from it, not, however, in the character of a pupil,
who listens to all that his master chooses to tell him, but in that of a judge, who
compels the witness to reply to those questions which he himself thinks fit to pro-
pose” (Kant, 1934:10-11)

6. See Rényi, 1967. The booklet contains three dialogues: (1) “A Socratic Dialogue
on Mathematics,” whose protagonists are Socrates and Hippocrates; (2) “A Dia-
logue on the Applications of Mathematics,” featuring Archimedes and Hieron;
and (3) “A Dialogue on the Language of the Book of Nature,” whose chief char-
acter is Galileo.

7. I have excerpted this material from pages 7-25 in A. Rényi, Dialogues on Mathe-
matics (San Francisco: Holden Day, 1967). These excerpts are quoted with the
kind permission of the publishers.

8. Aristotle, 1941 discussed the difficulties with the Platonist notion of mathemati-
cal objects and their existence. See Metaphysics, book 13, chap. 1-3, 1076a 33-
s1078b 6.

9. We owe much of our understanding of the ontogenetic development of the vari-
ous logico-mathematical schemes to the work of Piaget and his school. Compare
MUller, 1987:102-6, for a succinct summary of Piaget’s theory. Note that much
though not all of Piaget’s (onto)genetic epistemology is compatible with evolu-
tionary epistemology. See the discussions by Apostel (1987) and Oeser
(1988:40,165).

10. These terms are given by Bonner (1980). Of particular importance is Bonner’s
extension of the concept of ‘culture’, which he defines as follows: By culture I
mean the transfer of information by behavorial means, most particularly by the
process of teaching and learning, It is used in a sense that contrasts with the trans-
mission of genetic information passed by direct inheritance of genes. The infor-
mation passed in a cultural fashion accumulates in the form of knowledge and
tradition, but the stress of this definition is on the mode of transmission of infor-
mation, rather than its result. In this simple definition I have taken care not to
limit it to man. (1980:10; italics mine)

11. It is a “fundamental principle of neuro-epistemology,” writes Oeser, “that each
new cognitive function results from an integration with previously formed and
already existing functions” (1988:158).

12. The evolution of the hand as a prehensile organ not only enabled humans to
grasp physical objects but led concomitantly to neural mechanisms enabling them
to grasp relationships between objects. This is the path from prehension to com-
prehension, or in German, as Lorenz has pointed out, from greifen (to grasp), via
begreifen (to understand), to Begriff (concept) (see Lorenz, 1973:192-94; Vollmer,
1975:104-5; Oeser and Seitelberger, 1988:159). From a neurophysiological point
of view, notice the large area of the cortical maps of the hands (see Granit,
1977:64-65).
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13. For a collection of most of the relevant passages in Aristotle, see Apostel (1952).
Augustine had no qualms about the actual infinite in mathematics, to wit: “Every
number is defined by its own unique character, so that no number is equal to any
other. They are all unequal to one another and different, and the individual num-
bers are finite but as a class they are infinite” (1984:496; my italics).

14. The “paradoxes” played only a minor role in this process and none in the case of
Frege. For a discussion, compare Garciadiego, 1986 and the review by Corcoran
in Mathematical Reviews 1988 (88a:01026).

15. However, there is no unique set theory with a unique underlying logic from which
all presently known mathematics can be derived. (Just recall the numerous inde-
pendence results and the needs of category theory.) Moreover, when one examines
actual mathematical practice, the deficiencies of “standard logic” are apparent, as
Corcoran (1973) has perspicaciously pointed out. Furthermore, cognitive psy-
chologists and workers in artificial intelligence are keenly aware of the fact that
our current schemes of formal logic are inapplicable for analyzing actual reason-
ing processes. (cf. Gardner, 1985:368-70 and the references cited therein). Much
work needs to be done in developing a logic of actual reasoning.

16. For a further discussion, see White, 1956; Wilder, 1981. And Borel adds the fol-
lowing perceptive observation:
[W]e tend to posit existence on all those things which belong to civilization or cul-
ture in that we share them with other people and can exchange thoughts about
them. Something becomes objective (as opposed to “subjective”) as soon as we
are convinced that it exists in the minds of others in the same form as it does in
ours, and that we can think about it and discuss together. Because the language
of mathematics is so precise, it is ideally suited to defining concepts for which
such a consensus exists. In my opinion, that is sufficient to provide us with a feel-
ing of an objective existence, of a reality of mathematics (1983:13)

17. A radioscopy of mathematical proofs reveals their logical structure, and this
aspect has traditionally been overemphasized at the expense of seeing the meat
and flesh of proofs. The path between concepts not only has a logical part which
serves to convince; such paths also establish interconnections which modify and
illuminate complexes of mathematical ideas, and this is how proofs differ from
derivations.

18. Similarly, Machover writes concerning Platonism: “The most remarkable thing
about this utterly incredible philosophy is its success” (1983:4). And further down:
“The clearest condemnation of Platonism is not so much its belief in the occult
but its total inability to account for constructive mathematics” (1983:5).
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Toward a Semiotics of Mathematics

BRIAN ROTMAN

Preface
As the sign system whose grammar has determined the shape of Western cul-
ture’s techno-scientific discourse since its inception, mathematics is implicated,
at a deeply linguistic level, in any form of distinctively intellectual activity;
indeed, the norms and guidelines of the ‘rational’ - valid argument, definitional
clarity, coherent thought, lucid explication, unambiguous expression, logical
transparency, objective reasoning - are located in their most extreme, focused,
and highly cultivated form in mathematics. The question this essay addresses -
what is the nature of mathematical language? should therefore be of interest to
semioticians and philosophers as well as mathematicians.

There are, however, certain difficulties. inherent in trying to address such
disparate types of readers at the same time which it would he disingenuous
not to acknowledge at the outset.

Consider the mathematical reader. On the one hand it is no accident that
Peirce, whose writings created the possibility of the present essay, was a math-
ematician: nor one that I have practiced as a mathematician; nor that Hilbert,
Brouwer, and Frcge - the authors of the accounts of mathematics I shall dis-
pute - were mathematicians. Mathematics is cognitively difficult, technical,
abstract, and (for many) defeatingly impersonal: one needs, it seems, to have
been inside the dressing room in order to make much sense of the play. On
the other hand, one cannot stay too long there if the play is not to disappear
inside its own performance. In this respect mathematicians confronted with
the nature of their subject arc no different from anybody else. The language
that textual critics, for example, use to talk about criticism will be permeatcd
by precisely those features - figures of ambiguity, polysemy, compression of
meaning, subtlety and plurality of interpretation, rhetorical tropes, and so on
- which these critics value in the texts they study; likewise mathematicians will
create and respond to just those discussions of mathematics that ape what
attracts them to their subject matter. Where textual critics literize their rne-
talanguage. mathematicians mathcmatize theirs. And since for mathemati-
cians the principal activity is proving new theorems, what they will ask of
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my description of their subject is: can it be the source of new mathematical
material? Does it suggest new notational systems, definitions, assertions,
proofs? Now it is certainly the case that the accounts offered by Frege.
Brouwer, and Hilbert all satisfied this requirement: each put forward a pro-
gram that engendered new matbematics: each acted in and wrote the play
and, in doing so, gave a necessarily truncated and misleading account of
mathematics. Thus, if a semiotic approach to mathematics can be made to
yield theorems and be acceptable to mathematicians, it is unlikely to deliver
the kind of exterior view of mathematics it promises; if it does not engender
theorems, then mathematicians will be little interested in its project of re-
describing their subject -‘queen of sciences’ – via an explanatory formalism
that (for them) is in a pre-scientific stage of arguing about its own funda-
mental terms. Since the account I have given is not slanted toward the cre-
ation of new mathematics, the chances of interesting mathematicians
- let alone making a significant impact on them - look slim.

With readers versed in semiotics the principal obstacle is getting them suf-
ficiently behind the mathematical spectacle to make sense of the project with-
out losing them in the stage machinery. To this end I’ve kept the presence of
technical discussion down to the absolute minimum. If I have been successful
in this then a certain dissatisfaction presents itself: the sheer semiotic skimpi-
ness of the picture I offer. Rarely do I go beyond identifying an issue, clearing
the ground, proposing a solution, and drawing a consequence or two. Thus, to
take a single example, readers familiar with recent theories of narrative are
unlikely to feel more than titillated by being asked to discover that the per-
suasive force of proofs, of formal arguments within the mathematical Code,
are to be found in stories situated in the metaCode. They would want to know
what sort of stories, how they relate to each other, what their genres are,
whether they are culturally and historically invariant, how what they tell
depends on the telling, and so on. To have attempted to enter into these ques-
tions would have entailed the very technical mathematical discussions I was
trying to avoid. Semioticians, then, might well feel they have been served too
thin a gruel. To them I can only say that beginnings are difficult and that if
what I offer has any substance, then others - they themselves, perhaps - will be
prompted to cook it into a more satisfying sort of semiotic soup.

Finally, there are analytic philosophers. Here the difficulty is not that of
unfamiliarity with the mathematical issues. On the contrary, no one is morc
familiar with them: the major thrust of twentieth-century analytic philoso-
phy can be seen as a continuing responsc to the questions of reference, mean-
ing, truth, naming, existence, and knowledge that emergcd from work in
mathematics, logic, and metamathematics at the end the last century. And
indeed, all the leading figures in the modern analytic tradition - from Frege,
Russell, and Carnap to Quine, Wittgenstein, and Kripke - have directly
addressed the question of mathematics in some way or other. The problem is
rather that of incompatibility, a lack of engagement between forms of
enquiry. My purpose has been to describe mathematics as a practice, as an
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ongoing cultural endeavor: and while it is unavoidable that any description
I come up with will be riddled with unresolved philosophical issues, these are
not - they cannot be if I am to get off the ground - my concern. Confronted,
for example, with thc debates and counter-debates contained in the elaborate
secondary and tertiary literature on Frege, my response has been to avoid
them and regard Frege’s thought from a certain kind of semiotic scratch.
So that if entering these debates is the only route to the attention of analytic
philosophers, then the probability of engaging such readers seems not
very great.

Obviously, I hope that these fears arc exaggerated and misplaced, and that
there will be readers from each of these three academic specialisms prepared
to break through what are only, after all, disciplinary barriers.

Introduction

My purpose here is to initiate the project of giving a semiotic analysis of
mathematical signs; a project which, though implicit in the repeated refer-
ences to mathematics in Peirce’s writings on signs, seems not so far to have
been carried out. Why this is so - why mathematics, which is so obviously a
candidate for semiotic attention, should have have received so little of it - will,
I hope, emerge. Let me begin by presenting a certain obstacle, a difficulty of
method, in the way of beginning the enterprise.

It is possible to distinguish, without being at all subtle about it, three axes
or aspects of any discourse that might serve as an external starting point for
a semiotic investigation of the code that underlies it. There is the refcrential
aspect, which concerns itself with the code’s secondarity, with the objects of
discourse, the things that are supposedly talked about and referred to by the
signs of the code; the formal aspect, whose focus is on the manner and form
of the material means through which the discourse operates, its physical
manifestation as a medium; and the psychological aspect, whose interest is
primarily in those interior meanings which the signs of the code answer to
or invoke. While all three of these axes can be drawn schematically through
any given code, it is nonetheless the case that some codes seem to present
themselves as more obviously biased toward just one of them. Thus, so-
called representational codes such as perspectival painting or realistically
conceived literature and film come clothed in a certain kind of secondarity;
before all else they seem to he ‘about’ some world external to themselves.
Then there are those signifying systems, such as that of non-representational
painting for example, where secondarity seems not to be in evidence, but
where there is a highly palpable sensory dimension - a concrete visual order
of signifiers - whose formal material status has a first claim on any semiotic
account of these codes. And again, there are codes such as those of music
and dance where what is of principal semiotic interest is how the dynamics
of performance, of enacted gestures in space or time, are seen to be in the



service of some prior psychological meanings assumed or addressed by
the code.

With mathematics each of these external entry points into a semiotic
account seems to be highly problematic: mathematics is an art that is prac-
ticed, not performed; its signs seem to be constructed - as we shall see - so as
to sever their signifieds, what they are supposed to mean, from the real time
and space within which their material signifiers occur; and the question of
secondarity, of whether mathematics is ‘about’ anything, whether its signs
have referents, whether they are signs of something outside themselves, is pre-
cisely what one would expect a semiotics of mathematics to be in the business
of discussing. In short, mathematics can only offer one of these familiar
semiotic handles on itself-the referential route through an external world, the
formal route through material signifiers, the psychological route through
prior meanings - at the risk of begging the very semiotic issues requiring
investigation.

To clarify this last point and put these three routes in a wider perspective,
let me anticipate a discussion that can only be given fully later in this essay,
after a semiotic model of mathematics has been sketched. For a long time
mathematicians, logicians, and philosophers who write on the foundations of
mathematics have agreed that (to put things at their most basic) there are
really only three serious responses - mutually antagonistic and incompatible
- to the question ‘what is mathematics?’ The responses - formalism, intu-
itionism, and platonism - run very briefly as follows.

For the formalist, mathematics is a species of game, a determinate play of
written marks that are transformed according to explicit unambiguous for-
mal rules. Such marks are held to be without intention, mere physical inscrip-
tions from which any attempt to signify, to mean, is absent: they operate like
the pieces and moves in chess which, though they can be made to carry sig-
nificance (rcpresenting strategies, for example), function independently of
such - no doubt useful but inherently posterior, after the event - accretions of
meaning. Formalism, in other words, reduces mathematical signs to material
signifiers which are, in principle, without signifieds. In Hilbert’s classic state-
ment of the formalist credo, matheniatics consists of manipulating ‘mean-
ingless marks on paper’.

Intuitionists, in many ways the natural dialectical antagonists of formalists,
deny that signifiers - whether written, spoken, or indeed in any other medium
- play any constitutive role in mathematical activity. For intuitionism mathe-
matics is a species of purely mental construction, a form of internal cerebral
labor, performed privately and in solitude within the individual - but cog-
nitively universal - mind of the mathematician. If formalism characterizes
mathematics as the manipulation of physical signifiers in the visible,
intersubjective space of writing, intuitionism (in Brouwer’s formulation) sees
it as the creation of immaterial signifieds within the Kantian - inner, a priori,
intuited - category of time. And as the formalist reduces the signified to an
inessential adjunct of the signifier, so the intuitionist privileges the signified
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and dismisses the signifier as a useful but theoretically unnecessary epiphe-
nomenon. For Brouwer it was axiomatic that ‘mathematics is a languageless
activity’.

Last, and most important, since it is the orthodox position representing
the view of all but a small minority of mathematicians, there is platonism.
For platonists mathematics is neither a formal and meaningless game nor
some kind of languageless mental construction, but a science, a public dis-
cipline concerned to discover and validate objective or logical truths.
According to this conception mathematical assertions are true or false
propositions, statements of fact about some definitc state of affairs, some
objective reality, which exists independently of and prior to the mathemati-
cal act of investigating it. For Frege, whose logicist program is the principal
source of twentieth-century platonism, mathematics seen in this way
was nothing other than an extension of pure logic. For his successors there
is a separation: mathematical assertions are facts - specifically, they
describe the properties of abstract collections (sets) - while logic is merely a
truth-preserving form of inference which provides the means of proving that
these descriptions are ‘true’. Clearly, then, to the platonist mathematics is a
realist science, its symbols are symbols of certain real - pre-scientific - things,
its assertions are consequently assertions about some determinate, objective
subject matter, and its epistemology is framed in terms of what can be
proved true concerning this reality,

The relevance of these accounts of mathematics to a semiotic project is
twofold. First, to have persisted so long each must encapsulate, however
partially, an important facet of what is felt to be intrinsic to mathematical
activity. Certainly, in some undeniable but obscure way, mathematics seems
at the same time to be a meaningless game, a subjective construction, and a
source of objective truth. The difficulty is to extract these part truths: the
three accounts seem locked in an impasse which cannot be escaped from
within the common terms that have allowed them to impinge on each other.
As with the scholastic impasse created by nominalism, conceptualism, and
realism - a parallel made long ago by Quine - the impasse has to be tran-
scended. A semiotics of mathematics cannot, then, be expected to offer a
synoptic reconciliation of these views; rather, it must attempt to explain -
from a semiotic perspective alien to all of them - how each is inadequate,
illusory, and undeniably attractive. Second, to return to our earlier diffi-
culty of where to begin, each of these pictures of mathematics, though it is
not posed as such, takes a particular theory-laden view about what mathe-
matical signs are and are not; so that, to avoid a sell-fulfilling circularity, no
one of them can legitimately serve as a starting point for a semiotic investi-
gation of mathematics. Thus, what we called the route through material sig-
nifiers is precisely the formalist obsession with marks, the psychological
route through prior meaning comprehends intuitionisni, and the route
through an external world of referents is what all forms of mathematical
platonism require.
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A semiotic model of mathematics

Where then can one start? Mathematics is an activity, a practice. If one
observes its participants it would be perverse not to infer that for large
stretches of time they are engaged in a process of communicating with them-
selves and each other; an inference prompted by the constant presence of
standardly presented formal written texts (notes, textbooks, blackboard lec-
tures, articles, digests, reviews, and the like) being read, written, and
exchanged, and of informal signifying activities that occur when they talk,
gesticulate, expound, make guesses, disagree, draw pictures, and so on. (The
relation between the formal and informal modes of communication is an
important and interesting one to which we shall return later; for the present
I want to focus on the written mathematical text.)

Taking the participants’ word for it that such texts are indeed items in a
communicative network, our first response would be to try to ‘read’ them, to
try to decode what they arc about and what sorts of things they are saying.
Pursuing this, what we observe at once is that any mathematical text is writ-
ten in a mixture of words, phrases, and locutions drawn from some recogniz-
able natural language together with mathematical marks, signs, symbols,
diagrams, and figures that (wc suppose) are being used in some systematic
and previously agreed upon way. We will also notice that this mixture of nat-
ural and artificial signs is conventionally punctuated and divided up into
what appear to he complete grammatical sentences; that is, syntactically self-
contained units in which noun phrases (‘all points on X’, ‘the number y’, ‘the
first and second derivatives of’, ‘the theorem alpha’, and so on) are system-
atically related to verbs (‘count’, ‘consider’, ‘can be evaluated’, ‘prove’, and so
on) in what one takes to be the accepted sense of connecting an activity to an
object.

Given the problem of ‘objects’. and of all the issues of ontology, reference,
‘truth’, and secondarity that surface as soon as one tries to identify what
mathematical particulars and entities such as numbers, points, lines, func-
tions, relations, spaces, orderings, groups, sets, limits, morphisms, functors,
and operators ‘are’, it would be sensible to defer discussion of the interpreta-
tion of nouns and ask questions about the ‘activity’ that makes up the
remaining part of the sentence; that is, still trusting to grammar, to ask about
verbs.

Linguistics makes a separation between verbs functioning in different
grammatical moods; that is, between modes of sign use which arise, in the
case of speech, from different roles which a speaker can select for himself and
his hearer. The primary such distinction is between the indicative and the
imperative.

The indicative mood has to do with asking for (interrogative case) or con-
veying (declarative case) information - ‘the speaker of a clause which has
selected the indicative plus declarative has selected for himself the role of
informant and for his hearer the role of informed’ (Berry 1975: 166). For



mathematics, the indicative governs all those questions, assumptions, and
statements of information - assertions, propositions, posits, theorems,
hypotheses, axioms, conjectures, and problems - which either ask for, grant,
or deliver some piece of mathematical content, some putative mathematical
fact such as ‘there are infinitely many prime numbers’, ‘all groups with 7 ele-
ments are abelian’. ‘5 + 11 + 3 = 11 + 3 + 5’, ‘there is a continuous curve with
no tangent at any point’, ‘every even number can he written as the sum of two
prime numbers’, or, less obviously, those that might be said to convey met-
alingual information such as ‘assertion A is provable’, ‘x is a counterexample
to proposition P’, ‘definition D is legitimate’, ‘notational system N is incon-
sistent’, and so on.

In normal parlance, the indicative bundles information, truth, and validity
indiscriminately together; it being equivalent to say that an assertion is ‘true’,
that it ‘holds’, that it is ‘valid’, that it is ‘the case’, that it is informationally
‘correct’, and so on. With mathematics it is necessary to be more discrimi-
nating: being ‘true’ (whatever that is ultimately to mean) is not the same
attribute of an assertion as being valid (that is, capable of being proved): con-
versely, what is informationally correct is not always, even in principle, sus-
ceptible of mathematical proof. The indicative mood, it seems, is inextricably
tied up with the notion of mathematical proof. But proof in turn involves the
idea of an argument, a narrative structure of sentences, and sentences can be
in the imperative rather than the indicative.

According to the standard grammatical description, ‘the speaker of a
clause which has chosen the imperative has selected for himself the role of
controller and for his hearer the role of controlled. The speaker expects more
than a purely verbal response. He expects some form of action’ (Berry 1975:
166). Mathematics is so permeated by instructions for actions to be carried
out, orders, commands, injunctions to be obeyed -‘prove theorem T’, ‘sub-
tract x from y’, ‘drop a perpendicular from point P onto line L’, ‘count the
elements of set S’, ‘reverse the arrows in diagram D’, ‘consider an arbitrary
polygon with k sides’, and similarly for the activities specified by the verbs
add’, ‘multiply’, ‘exhibit’, ‘find’, ‘enumerate’, ‘show’, ‘compute’, ‘demon-
strate’, ‘define’, ‘eliminate’, ‘list’, ‘draw’, ‘complete’, ‘connect’, ‘assign’, eval-
uate’, ‘integrate’, ‘specify’, ‘differentiate’, ‘adjoin’, ‘delete’, ‘iterate’, ‘order’,
‘complete’, ‘calculate’, ‘construct’, etc. - that mathematical texts seem at
times to be little more than sequences of instructions written in an entirely
operational, exhortatory language.

Of course, mathematics is highly diverse, and the actions indicated even in
this very incomplete list of verbs differ very widely. Thus, depending on their
context and their domain of application (algebra. calculus. arithmetic, topol-
ogy, and so on), they display radical differences in scope, fruitfulness, com-
plexity, and logical character: some (like ‘adjoin’) might he finitary, others
(like ‘integrate’) depend essentially on an infinite process; some (like ‘count’)
apply solely to collections, others solely to functions or relations or diagrams,
whilst others (like ‘exhibit’) apply to any mathematical entity; some can he
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repeated on the states or entities they produce, others cannot. To pursue these
differences would require technical mathematical knowedge which would be
out of place in the present project. It would also be beside the point: our
focus on these verbs has to do not with the particular mathematical charac-
ter of the actions they denote, but with differences between them - of an epis-
temological and semiotic kind - which are reflected in their grammatical
status, and specifically in their use in the imperative mood.

Corresponding to the linguist’s distinction between inclusive imperatives
(‘Let’s go’) and exclusive imperatives (‘Go’), there seems to be a radical split
between types of mathematical exhortation: inclusive commands marked by
the verbs ‘considcr’, ‘define’, ‘prove’ and their synonyms - demand that
speaker and hearer institute and inhabit a common world or that they share
some specific argued conviction about an item in such a world; and exclusive
commands - essentially the mathematical actions denoted by all other verbs -
dictate that certain operations meaningful in an already shared world be
executed.

Thus, for example, the imperative ‘consider a Hausdorff space’ is an
injunction to establish a shared domain of Hausdorff spaces: it commands
its recipient to introduce a standard, mutually agreed upon ensemble of signs
- symbolized notions, definions, proofs, and particular cases that bring into
play the ideas of topological neighborhood, limit point, a certain separabil-
ity condition in such a way as to determine what it means to dwell in the
world of such spaces. By contrast, an imperative like ‘integrate the function f’,
for example, is mechanical and exclusive: it takes for granted that a shared
frame (a world within the domain of calculus) has already been set, and asks
that a specific operation relevant to this world be carried out on the function f.
Likewise, the imperative ‘define ...’ (or equivalently, ‘let us define . . .’) dic-
tates that certain sign uses be agreed upon as the shared givens for some par-
ticular universe of discourse. Again, an imperative of the type ‘prove (or
demonstrate or show) there are infinitely many prime numbers’ requires its
recipient to construct a certain kind of argument, a narrative whose persua-
sive force establishes a commonality between speaker and hearer with respect
to the world of integers. By contrast, an imperative like ‘multiply the integer
x by its successor’ is concerned not to establish commonality of any sort, but
to effect a specific operation on numbers.

One can gloss the distinction between inclusive and exclusive cornmands
by observing that the familiar natural language process of forming nouns
from verbs - the gerund ‘going’ from the verb ‘go’ - is not available for verbs
used in the mood of the inclusive imperative. Thus, while exclusive com-
mands can always (with varying degrees of artificiality, to be sure) be made
to yield legitimate mathematical objects -‘add’ gives rise to an ‘adding’ in the
sense of the binary operation of addition, ‘count’ yields a ‘counting’ in
the sense of a well-ordered binary relation of enumeration, and so on - such
is not the case with inclusive commands: normal mathematical practice does
not allow a ‘defining’ or a ‘considering’ or a ‘proving’ to be legitimate objects
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of mathematical discourse. One cannot, in other words, prove results about
or consider or define a ‘considering’, a ‘proving’, or a ‘defining’ in the way
that one can for an ‘adding’, a ‘counting’, etc. (An apparent exception to this
occurs in meta mathematics, where certain sorts of definitions and proofs are
themselves considered and defined, and have theorems proved about them;
but metamathematics is still mathematics - it provides no violation of what is
being elaborated here.)

The grammatical line we have been following formulates the imperative in
terms of speakers who dictate and hearers who carry out actions. But what is
to be understood by ‘action’ in relation to mathematical practice? What does
the hearer-reader, recipient, addressee actually do in responding to an imper-
ative? Mathematics can be an activity whose practice is silent and sedentary.
The only things mathematicians can be supposed to do with any certainty are
scribble and think; they read and write inscriptions which seem to be
inescapably attached to systematically meaningful mental events. If this is so,
then whatever actions they perform must be explicable in terms of a scrib-
bling/thinking amalgam. It is conceivable, as we have seen, to deny any neces-
sary amalgamation of these two terms and to construe mathematics purely as
scribbling (as entirely physical and ‘real’: formalism’s ‘meaningless marks on
paper’) or purely as thinking (as entirely mental and ‘imaginary’: intuition-
ism’s ‘languageless activity’); but to adopt either of these polemical extremes
is to foreclose on any semiotic project whatsoever, since each excludes inter-
preting mathematics as a business of using those signifier/signified couples
one calls signs. Ultimately. then, our object has to be to articulate what mode
of signifying, of scribbling/thinking, mathematical activity is, to explain how,
within this mode, mathematical imperatives are discharged; and to identify
who or what semiotic agency issues and obeys these imperatives.

Leaving aside scribbling for the moment, let us focus on mathematical
‘thinking’. Consider the imperative ‘consider a Hausdorfl space’. ‘Consider’
means view attentively, survey, examine, reflect, etc.; the visual imagery here
being part of’ a wider pattern of cognitive body metaphors such as under-
stand, comprehend, defend, grasp, or get the feel of an idea or thesis. There-
fore, any attempt to explicate mathematical thought is unlikely to escape the
net of’ such metaphors; indeed, to speak (as we did) of ‘dwelling in a world
of Hausdorff spaces’ is metaphorically to equate mathematical thinking with
physical exploration. Clearly, such worlds are imagined, and the actions that
take place within these worlds are imagined actions. Someone has to be imag-
ining worlds and actions, and something else has to be performing these
imaginary actions. In other words, someone - some subjective agency - is
imagining itself ’ to act. Seen in this way, mathematical thinking seems to have
much in common with the making of self-reflective thought experiments.
Such indeed was the conclusion Peirce arrived at:

It is a familiar experience to every human being to wish for some-
thing quite beyond his present mcans, and to follow that wish by
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the question, ‘Should I wish for that thing just the same, if I had
ample means to gratify it?’. To answer that question, he searches
his heart, and in so doing makes what I term an abstractive obser-
vation. He makes in his imagination a sort of skeleton diagram,
or outline sketch of himself, considers what modifications the
hypothetical state of things would require to be made in that pic-
ture, and then examines it, that is, observes what he has imagined,
to see whether the same ardent desire is there to be discerned. By
such a process, which is at bottom very much like mathematical
reasoning, we can reach conclusions as to what would be true of
signs in all cases...(Buehler 1940: 98)

Following the suggestion in Peirce’s formulation, we are led to distinguish
between sorts of mathematical agency: the one who imagines (what Peirce
simply calls the ‘self ’ who conducts a reflective observation), which we shall
call the Mathematician, and the one who is imagined (the skeleton diagram
and surrogate of this self), which we shall call the Agent. In terms of the dis-
tinction between imperatives, it is the Mathematician who carries out inclu-
sive demands to ‘consider’ and ‘define’ certain worlds and to ‘prove’ theorems
in relation to these, and it is his Agent who executes the actions within such
fabricated worlds, such as ‘count’, ‘integrate’, and so on, demanded by exclu-
sive imperatives.

At first glance, the relation between Mathematician and Agent seems no
more than a version of that which occurs in the reading of a road map, in
which one propels one’s surrogate, a fingertip model of oncself, around the
world of roads imaged by the lines of the map. Unfortunately. the parallel is
misleading, since the point of a road map is to represent real roads - real in
the sense of beirg entities which exist prior to and independently of the map,
so that an imagined journey by an agent is conceived to be (at least in prin-
ciple) realizable. With mathematics the existence of such priorly occurring
‘real’ worlds is, from a semiotic point of view, problematic; if mathematical
signs are to he likened to maps, they are maps of purely imaginary territory.

In what semiotic sense is the Agent a skeleton diagram of the Mathemati-
cian? Our picture of the Mathematician is of a conscious - intentional, imag-
ining subject who creates a fictional self, the Agent, and fictional worlds
within which this self acts. But such creation cannot. of course, be effected as
pure thinking: signifieds are inseparable from signifiers: in order to create fic-
tions, the Mathematician scribbles.

Thus in response to the imperative ‘add the numbers in the list S’, for
example, he invokes a certain imagined world and - inseparable from this
invocation - he writes down an organized sequence of marks ending with the
mark which is to be interpreted as the sum of S. These marks are signifiers of
signs by virtue of their interpretation within this world. Within this world
‘to add’ might typically involve an infinite process, a procedure which
requires that an infinity of actions be performed. This would be the case if,
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for example, S were the list of fractions 1, 1/2, 1/4, 1/8, etc. obtained by
repeated halving. Clearly, in such a case, if ‘add’ is to be interpreted as an
action, it has to be an imagined action, one performed not by the Mathe-
matician – who can only manipulate very small finite sequences of written
signs - but by an actor imagined by the Mathematician. Such an actor is not
himself required to imagine anything. Unlike the Mathematician, the Agent
is not reflective and has no intentions: he is never called upon to ‘consider’,
‘define’, or ‘prove’ anything, or indeed to attribute any significance or mean-
ing to what he does; he is simply required to behave according to a prior pat-
tern - do this then this then . . . -imagined for him by the Mathematician. The
Agent, then, is a skeleton diagram of the Mathematician in two senses: he
lacks the Mathematician’s subjectivity in the face of signs; and he is free of
the constraints of finitude and logical feasibility - he can perform infinite
additions, make infinitely many choices, search through an infinite array,
operate within nonexistent worlds -that accompany this subjectivity.

If the Agent is a truncated and idealized image of the Mathematician, then
the latter is himself a reduced and abstracted version of the subject - let us
call him the Person who operates with the signs of natural language and can
answer to the agency named by the ‘I’ of ordinary nonmathematical dis-
course. An examination of the signs addressed to the Mathematician reveals
that nowhere is there any mention of his being immersed in public historical
or private durational time, or of occupying any geographical or bodily space.
or of possessing any social or individualizing attributes. The Mathematician’s
psychology, in other words, is transcultural and disembodied. By writing its
codes in a single tense of the constant present, within which addressees have
no physical presence, mathematics dispenses entirely with the linguistic appa-
ratus of dcixis: unlike the Person, for whom demonstrative and personal pro-
nouns are available, the Mathematician is never called upon to interpret any
sign or message whose meaning is inseparable from the physical circum-
stances - temporal, spatial, cultural – of its utterance. If the Mathematician’s
subjectivity is ‘placed’ in any sense, if he can be said to be physically selfsitu-
ated, his presence is located in and traced by the single point - the origin -
which is required when any system of coordinates or process of counting is
initiated: a replacement Hermann Wcyl once described as ‘the necessary
residue of’ the extinction of the ego’ (1949: 75).

I want now to being this trio of semiotic actors-Agent. Mathematician,
and Person - together and to display them as agencies that operate in relation
to each other on different levels of the same mathematical process: namely,
the centrally important process of mathematical proof. In the extract quoted
above, Peirce likened what he called ‘reflective observation’, in which a skele-
ton of the self takes part in a certain kind of thought experiment, to mathe-
matical reasoning. For the Mathematician, reasoning is the process of giving
and following proofs, of reading and writing certain highly specific and inter-
nally organized sequences of mathematical sentences - sequences intended to
validate, test, prove, demonstrate, show that some particular assertion holds
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or is ‘true’ or is ‘the case’. Proofs are tied to assertions, and the semiotic sta-
tus of assertions, as we observed earlier, is inextricable from the nature of
proof. So, if we want to give a semiotic picture of mathematical reasoning as
a kind of Peircean thought experiment, an answer has to be given to the ques-
tion we dodged before: how, as a business having to do with signs, are we to
interpret the mathematical indicative?

The answer we propose runs as follows. A mathematical assertion is a pre-
diction, a foretelling of the result of performing certain actions upon signs. In
making an assertion the Mathematician is claiming to know what would hap-
pen if the sign activities detailed in the assertion were to he carried out. Since
the actions in question are ones that fall within the Mathematician’s own
domain of activity, the Mathematician is in effect laying claim to knowledge
of his own future signifying states. In Peirce’s phrase, the sort of knowledge
being claimed is ‘what would be true of signs in all cases’. Thus, for example,
the assertion ‘2 + 3 = 3 + 2’ predicts that if the Mathematician concatenates
1l with 11l, the result will be identical to hisconcatenating 1l1 with 1l. And
more generally, ‘x + y = y + x’ predicts that his concatenating any number of
strokcs with any other number will turn out to he independent of the order
in which these actions are performed. Or, to take a different kind of examplc,
the assertion that the square root of 2 is irrational is the prediction that what-
ever particular integers x and y are taken to be, the result of calculating x
SQUARED - 2ySQUARED will not be zero.

Obviously such claims to future knowledge need to he validated: the Math-
ematician has to persuade himself that if he performed the activities in ques-
tion, the result would be as predicted. How is he to do this? In the physical
sciences predictions are set against actualities: an experiment is carried out
and, depending on the result, the prediction (or rather the theory which gave
rise to it) is either repudiated or receives some degree of confirmation. It
would seem to he the case that in certain very simple cases such a direct pro-
cedure will work in mathematics. Assertions like ‘2 + 3 = 3 + 2’ or ‘101 is a
prime number’ appear to be directly validatable: the Mathematician ascer-
tains whether they correctly predict what he would experience by carrying out
an experiment - surveying strokes or examining particular numbers - which
delivers to him precisely that experience. But the situation is not, as we shall
see below, that straightforward; and in any case assertions of this palpable
sort, though undoubtedly important in any discussion of the epistemological
status of mathematical truths’, are not the norm. (The Mathematician cer-
tainly cannot by direct experiment validate predictions like ‘x + y = y + x’ or
‘the square root of 2 is irrational’ unless he carries out infinitely many oper-
ations. lnstead, as we have observed, he must act indirectly and set up an
imagined experience - a thought experiment -in which not he but his Agent,
the skeleton diagram of himself, is required to perform the appropriate infin-
ity of actions.

By observing his Agent performing in his stead, by ‘reflective observation’,
the Mathematician becomes convinced -persuaded somehow by the thought
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experiment-that were he to perform these actions the result would be as
predicted.

Now the Mathematician is involved in scribbling as well as thinking. The
process of persuasion that a proof is supposed to achieve is an amalgam of
fictive and logical aspects in dialectical relation to each other: Each layer of
the thought experiment (that is, each stage of the journey undertaken by the
Agent) corresponds to some written activity, some manipulation of written
signs performed by the Mathematician: so that, for example, in reading/writ-
ing an inclusive imperative the Mathematician modifies or brings into being
a suitable facet of the Agent, and in reading/writing an exclusive imperative
he requires this Agent to carry out the action in question, observes the result,
and then uses the outcome as the basis for a further bout of manipulating
written signs. These manipulations form the steps of the proof in its guise as
a logical argument: any given step is taken either as a premise, an outright
assumption about which it is agreed no persuasion is necessary, or is taken
because it is a conclusion logically implied by a previous step. The picture
offered so far, then, is that a proof is a logically correct series of implications
that the Mathematician is persuaded to accept by virtue of the interpretation
given to these implications in the fictive world of a thought experiment.

Such a characterization of proof is correct but inadequate. Proofs are argu-
ments and, as Peirce forcefully pointed out, every argument has an underlying
idea - what he called a leading principle - which converts what would otherwise
be merely an unexceptionable sequence of logical moves into an instrument of
conviction. The leading principle, Peirce argued, is distinct from the premise
and the conclusion of an argument, and if added to these would have the
effect of requiring a new leading principle and so on, producing an infinite
regress in place of a finitely presentable argument. Thus, though it operates
through the logical sequence that embodies it, it is neither identical nor
reducible to this sequence; indeed, it is only by virtue of it that the sequence is
an argument and not an inert, formally correct string of implications.

The kading principle corresponds to a familiar phenomenon within mathe-
matics. Presented with a new proof or argument, the first question the math-
ematician (but not, see below, the Mathematician) is likely to raise concerns
‘motivation’: he will in his attempt to understand the argument that is, follow
and be convinced by it - seek the idea behind the proof. He will ask for the story
that is belng told, the narrative through which the thought experiment or
argument is organized. It is perfectly possible to follow a proof, in the more
restricted, purely formal sense of giving assent to each logical step, without
such an idea. If in addition an argument is based on accepted familiar patterns
of inference, its leading principle will have been internalized to the extent of
being no longer retrievable: it is read automatically as part of’ the proof.
Nonetheless a leading principle is always present, acknowledged or not - and
attempts to read proofs in the absence of their underlying narratives are
unlikely to result in the experience of felt necessity, persuasion, and conviction
that proofs are intended to produce, and without which they fail to be proofs.
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Now mathematicians - whether formalist, intuitionist, or platonist - when
moved to comment on this aspect of their discourse might recognize the
importance of such narratives to the process of persuasion and understand-
ing, but they are inclined to dismiss them, along with any other ‘motivational’
or ‘purely psychological’ or merely ‘esthetic’ considerations, as ultimately
irrelevant and epiphenomenal to the real business of doing mathematics.
What are we to make of this?

It is certainly true, as observed, that the leading principle cannot be part of
the proof itself: it is not, in other words, addressed to the subject who reads
proofs that we have designated as the Mathematician. Indeed, the underlying
narrative could not be so addressed, since it lies outside the linguistic
resources mathematics makes available to the Mathematician. We might call
the total of all these resources the mathematical Code, and mean by this the
discursive sum of all legitimately defined signs and rigorously formulated
sign practices that are permitted to figure in mathematical texts. At the same
time let us designate by the metaCode the penumbra of informal, unrigorous
locutions within natural language involved in talking about, referring to, and
discussing the Code that mathematicians sanction. The Mathematician is the
subject pertaining to the Code - the one who reads/writes its signs and inter-
prets them by imagining experiments in which the actions inherent in them
are performed by his Agent. We saw earlier that mathematicians prohibit the
use of any deictic terms from their discourse: from which it follows that no
description of himself is available to the Mathematician within the Code.
Though he is able to imagine and observe the Agent as a skeleton diagram of
himself, he cannot - within the vocabulary of the Code - articulate his rela-
tion to that Agent. He knows the Agent is a simulacrum of himself, but he
cannot talk about his knowledge. And it is precisely in the articulation of this
relation that the semiotic source of a proof’s persuasion lies: the Mathemati-
cian cm be persuaded by a thought experiment designed to validate a predic-
tion about his own actions only if he appreciates the resemblance - for the
particular mathematical purpose at hand - between the Agent and himself. It
is the business of the underlying narrative of a proof to articulate the nature
of this resemblance. In short, the idea behind a proof is situated in the meta-
Code; it is not the Mathematician himself who can be persuaded by the idea
behind a proof, but the Mathematician in the presence of the Person, the nat-
ural language subject of the metaCode for whom the Agent as a simulacrum
of the Mathematician is an object of discourse.

What then, to return to the point above, is meant by the ‘real business’ of
doing mathematics? In relation to the discussion so far, one can say this: if it
is insisted that mathematical activity be described solely in terms of manipu-
lations of signs within the Code, thereby restricting mathematical subjectiv-
ity to the Mathematician and dismissing the metaCode as an
epiphenomenon, a domain of motivational and psychological affect, then
one gives up any hope of a semiotic view of mathematical proof able to give
a coherent account - in terms of sign use - of how proofs achieve conviction.
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There are two further important reasons for refusing to assign to the meta-
Code the status of mere epiphenomenon. The first concerns the completion
of the discussion of the indicative. As observed earlier, there are, besides the
assertions within the Code that we have characterized as predictions, other
assertions of undeniable importance that must be justified in thecourse of
normal mathematical practice. When mathematicians make assertions like
‘definition D is well-founded’, or ‘notation system N is coherent’, they are
plainly making statements that require some sort of justification. Equally
plainly, such assertions cannot be interpreted as predictions about the Math-
ematician’s future mathematical experience susceptible of proof’ via a
thought experiment. Indeed, indicatives such as ‘assertion A is provable’ or ‘x
is a counter-example to A’. where A is a predictive assertion within the Code,
cannot themselves be proved mathematically without engendering an infinite
regress of proofs.

It would seem that such metalingual indicatives-which of coursc belong to
the metaCodc - admit ‘proof’ in the same way that the proof of the pudding
is in the eating: one justifies the statement ‘assertion A is provable’ by exhibit-
ing a proof of A. The second reason for treating the metaCode as important
to a semiotic account of mathematics relates to the manner in which mathe-
matical codes and sign usages come into being, since it can be argued (though
I will not do so here) that Code and metaCode are mutually constitutive, and
that a principal way in which new mathematics arises is through a process of
catachresis - that is, through the sanctioning and appropriation of sign prac-
tices that occur in the first place as informal and unrigorous elements, in a
merely descriptive, motivational, or intuitive guise, within the metaCodc.

The model I have sketched has required us to introduce three separate lev-
els of mathematical activity corresponding to the sub-lingual imagined
actions of an Agent, the lingual Coded manipulations of the Mathematician,
and the metalingual activities of the Person, and then to describe how these
agencies fit together. Normal mathematical discourse does not present itself
in this way; it speaks only of a single unfractured agency, a ‘mathematician’,
who simply ‘does’ mathematics. To justify the increase in complexity and arti-
ficiality of its characterization of mathematics, the model has to be useful; its
picture of mathematics ought to illuminate and explain the attraction of the
three principal ways of regarding mathematics we alluded to earlier.

Formalism, intuitionism, platonism

We extracted the idea of proof as a kind of thought experiment from Peirce’s
general remarks on reflective observation; we might have gotten a later and
specifically mathematical version straight from Hilbert, from his formalist
conception of metalogic as amounting to those ‘considerations in the form of
thought-experiments on objects, which can be regarded as concretely given’
(Hilbert and Bernays 1934: 20). But this would have sidetracked us into a
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description of Hilbert’s metamathematical program, which it was designed
to serve,

The object of this progam was to show by means of mathematical reason-
ing that mathematical reasoning was consistent, that it was incapable of
arriving at a contradiction. In order to reason about reasoning without incur-
ring the obvious circularity inherent in such an enterprise, Hilbert made a
separation between the reasoning that mathematicians use - which he char-
acterized as formal manipulations, finite sequences of logically correct
deductions performed on mathematical symbols - and the reasoning that the
metamathematician would use, the metalogic, to show that this first kind of
reasoning was consistent. The circularity would be avoided, he argued, if the
metalogic was inherently safe and free from the sort of contradiction that
threatened the object logic about which it reasoned. Since the potential
source of contradiction in mathema tics was held to he the ocurrcnce of
objects and processes that were interpreted by mathematicians is to be infini-
tary, the principal requirement of his metalogic was that it be finitary and
that it avoid interpretations, that is. that it attribute no meanings to the sub-
ject matter about which it reasoned. Hilbert’s approach to mathematics, then,
was to ignore what mathematicians thought they meant or intended to mean,
and instead to treat it as a formalism, as a system of meaningless written
marks finitely manipulated by the mathematician according to explicitly
stated formal rules. It was to this formalism that his rnetalogic, characterized
as thought experiment on things, was intended to apply.

The first question to ask is to concern the ‘things’ that are supposed to fig-
ure in thought experiments: what are these concretely given entities about
which thought takcs place? The formalist answer - objects concretely given as
visible inscriptions, as definite but meaningless written marks - would have
been open to the immediate objection that meaningless marks, while they can
undoubtedly be manipulated and subjected to empirical (that is, visual)
scrutiny, are difficult to equate to the sort of entities that figure in the finitary
arithmetical assertions that form the basis for distinguishing experiments
from thought experiments. Thus, in order to validate a unitary assertion like
‘2 + 3 = 3 + 2’. the formalist mathematician supposes that a direct experiment
is all that is needed: the experimenter is convinced that concatenating ‘11’ and
‘111 ‘ is the same as concatenating ‘111’ and ‘11’ through the purely empiri-
cal observation that in both cases the result is the assemblage of marks
‘11111’. But such an observation is a completely empirical validation a pure
ad oculo demonstration free of any considerations of meaning - only the
mathematical mark ‘1’ is purely and simply an empirical mark, a mark all of
whose significance lies in its visible appearance: and this, as philosophical
critics of formalism from Frege onward have pointed out, is manifestly not
the case. If it were, then arithmetical assertions would lack the generality uni-
versally ascribed to them; they would be about the physical perceptual char-
acteristics of particular inscriptions—their exact shape. color, and size; their
durability; the depth of their indentation on the page; the exact identity of
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one with another; and so on – and would need reformulating and revalidat-
ing every time one of these variables altered - a conclusion that no formalist
of whatever persuasion would want to accept.

In fact, regardless of any considerations of intended meaning, the mathe-
matical symbol ‘I’ cannot be identified with a mark at all. In Peirce’s termi-
nology ‘I’ is not a token (a concretely given visible object), but a type, an
abstract pattern of writing, a general form of which any given material
inscription is merely a perceptual instance. For us the mathematical symbol
‘I’ is an item of thinking/scribbling, a sign, and we can now flesh out one
aspect of our semiotic model by elaborating what is to be meant by this.
Specifically, we propose: the sign ‘I’ has for its signifier the type of the mark
‘1’ used to notate it, and for its signified that relation in the Code - which we
have yet to explicate - between thought and writing accorded to the symbol
‘1’ by the Mathematician.

This characterization of ‘I’ has the immediate consequence that mathemat-
ical signifiers are themselves dependent on some prior signifying activity, since
types as entities with meaningful attributes - abstract, generaI, unchanging,
permanent, exact, and so on - can only come into being and operate through
the semiotic separation between real and ideal marks. Now neither the cre-
ation nor recognition of this ideality is the business of what we have called the
Mathematician: it takes place before his mathematical encounter with signs.
Put differently, the Mathematician assumes this separation but is not, and
cannot be, called upon to mention it in the course of interpreting signs within
the Code; it forms no part of the meaning of these signs insofar as this mean-
ing is accessible to him as the addressee of the Code. On the contrary, it is the
Person, operating from a point exterior to the Mathematician, who is respon-
sible for this ideality; for it is only in the metaCode, where mathematical sym-
bols are discussed as signs, that any significance can be attributed to the
difference between writing tokens and using types.

We can apply this view of signs to the question of mathematical ‘experi-
ence’ as it occurs within formalism’s notion of a thought experiment. The
pressure for inserting the presence of an Agent into our model of mathemat-
ical activity came from the fact that whatever unitary actions upon signs the
Mathematician might in fact be able to carry out, such as concatenating ‘1l’
and ‘111’, these were the exception; for the most part the actions which he
was called upon to perform (such as evaluating x + y for arbitrary integers x
and y) could only be carried out in principle, and for these infinitary actions
he had to invoke the activity of an Agent. I suggested earlier that for the for-
mer sort of actions there appeared to he no need for him to invoke an Agent
and a thought experiment: that the Mathematician might experience for him-
self by direct experiment the validity of assertions such as ‘2 + 3 = 3 + 2’. This
idea that (at least some) mathematical assertions are capable ol being directly
‘experienced’ is precisely what formalists - interpreting experience as meaning
visual inspection of objects in space - claim. One needs therefore to be more
specific about the meaning of. direct mathematical ‘experience’. From what
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has been said so far, no purely physical manipulation of purely physical
marks can, of itself, constitute mathematical persuasion. The Mathematician
manipulates types: he can be persuaded that direct experiments with tokens
constitute validations of assertions like ‘2 + 3 = 3 + 2’ only by appealing to
the relationship between tokens and types, to the way tokens stand in place
of types. And this he, as opposed to the Person, cannot do. The upshot, from
a semiotic point of view, is that in no case can thought experiments be sup-
planted by direct experirnentation; an Agent is always required. Validating
finitary assertions is no different from validating assertions in general, where
it is the Person who, by being able to articulate the relation between Mathe-
matician and Agent within a thought experiment, is persuaded that a predic-
tion about the Mathematician’s future encounter with signs is to be accepted.

This way of seeing matters does not dissolve the difference between finitary
and non-finitary assertions. Rather, it insists that the distinction - undoubt-
edly interesting, but for us limitedly so in comparison to its centrality within
the formalist program - between mathematical actions executable in fact and
in principle (in reified form: how big can a ‘small’ concretely surveyable col-
lection of marks be before it becomes ‘large’ and unsurvcyable?) makes sense
only in terms of what constitutes mathematical persuasion, which in turn can
only be explicated by examining the possible relationships between Agent.
Mathematician, and Person that mathematicians are prepared to counte-
nance as legitimate.

Hilbert’s program for proving the consistency of mathematics through a
unitary metamathematics was, as is well known, brought to an effective halt
by Gòdel’s Theorem. But this refutation of what was always an overambi-
tious project does not demolish formalism as a viewpoint; nor, without much
technical discussion outside the scope of this essay, can it he made to shed
much light on how formalism’s inadequacies arise. Thus, from a semiotic
point of view the problems experienced by formalism can he seen to rest on
a chain of mis-identifications. By failing to distinguish between tokens and
types, and thereby mistaking items possessing significance for pre-semiotic
‘things’, formalists simultaneously misdescribe mathematical reasoning as
syntactical manipulation of meaningless marks and metamathematical rea-
soning as thought experiments that theoreticalize these manipulations–in the
sense that the formalists ‘experiment”, of which the thought experiment is an
imagined thoretical version, is an entirely empirical procss of checking the
perceptual properties of visible marks.. As a consequence, the formalist
account of mathematical agency–which distinguishes merely between a
mathematician who manipulates mathematical symbols as if they were marks
and a ‘metamathematician’ who reasons about the results of this manipula-
tion - is doubly reductive of the picture offered by the present model, since at
one point it shrinks the role of Mathematician to that of Agent and at
another manages to absorb it into that of Person.

If formalism projects the mathematical amalgam of thinking/scribbling
onto a plane of formal scribble robbed of meaning, intuitionism projects it
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onto a plane of thought devoid of any written trace. Each bases its trunca-
tion of the sign on the possibility of an irreducible mathematical ‘experience’
which is supposed to convey by its very unmediated directness what it takes
to be essential to mathematical practice: formalism, positivist and suspicious
in a behaviorist way about mental events, has to locate this experience in the
tangible written product, surveyable and ‘real’; intuitionism, entirely
immersed in Kantian apriorism, identifies the experience as the process,
the invisible unobservable construction in thought, whereby mathematics
is created.

Brouwcr’s intuitionism, like Hilbert’s formalism, arose as a response to the
paradoxes of the infinite that emerged at the turn of the century within the
mathematics of infinite sets. Unlike Hilbert, who had no quarrel with the pla-
tonist conception of such sets and whose aim was to leave mathematics as it
was by providing a post facto metamathernatical justification of its consis-
tency in which all existing infinitary thought would be legitimated, Brouwer
attacked the platonist notion of infinity itself and argued for a root and
branch reconstruction from within in which large areas of classically secure
mathematics - infinitary in character but having no explicit connection to any
paradox - would have to he jettisoned as lacking any coherent basis in
thought and therefore, meaningless. The problem, as Brouwer saw it, was the
failure on the part of orthodox - platonist-inspired -mathematics to separate
what for him are the proper objects of mathematics (namely constructions in
the mind) from the secondary aspect of these objects, the linguistic appara-
tus that mathematicians might use to describe and communicate about in
words the features and results of any particular such construction. Confus-
ing the two allowed mathematicians to believe, Brouwer argued, that linguis-
tic manipulation was an unexceptional route to the production of new
mathematical entities. Since the classical logic governing such manipulation
has its origins in the finite states of affairs described by natural language, the
confusion results in a false mathematics of the infinite: verbiage that fails to
correspond to any identifiable mental activity, since it allows forms of infer-
ence that make sense’ only for finite situations, such as the law of excluded
middle or the principle of double negation, to appear to validate what are in
fact illegitimate assertions about infinite ones.

Thus the intuitionist approach to mathematics, like Hilbert’s scheme for
metamathematics, insists that a special and primary characteristic of logic
lies in its appropriateness to finitary mathematical situations. And though
they accord different functions to this logic-for Hilbert it has to validate uni-
tary metamathematics in order to secure infinitary mathematics, while for
Brouwer it is an after-the-fact formalization of the principles of correct men-
tal constructions finitary and inflnitary - they each require it to be convinc-
ing: formalism grounding the persuasive force of its logic in the empirical
certainty of ad oculo demonstrations, intuitionism being obliged to ground it,
as we shall see, in the felt necessity and self-evidence of the mathematician’s
mental activity.
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If mathematical assertions are construed platonistically, as unambiguous,
exact, and precise statements of fact, propositions true or false about some
objective state of allairs, Brouwer’s rejection of the law of excluded middle
(the principle of logic that declares that an assertion either is the case or is
not the case) and his rejection of double negation (the rule that not being not
the case is the same as being the case) seem puzzling and counterintuitive:
about the particulars of mathematics conceived in this exact and determinate
way there would appear to be no middle ground between truth and falsity,
and no way of distinguishing between an assertion and the negation of the
negation of that assertion. Clearly, truth and falsity of assertions will not
mean for intuitionists if indeed they are to mean anything at all for them -
what they do for orthodox mathematicians: and. since platonistic logic is
founded on truth, intuitionists cannot be referring to the orthodox process of
deduction when they talk about the validation of assertions.

For the intuitionist, an assertion is a claim that a certain mental construc-
tion has been carried out. To validate such claims the intuitionist must either
exhibit the construction in question or, less directly, show that it can be car-
ried out by providing an effective procedure, a finite recipe, for executing it.
This effectivity is not an external requirement imposed on assertions after
they have been presented, but is built into the intuitionist account of the log-
ical connectives through which assertions are formulated. And it is from this
internalized logic that principles such as the laws of excluded middle, double
negation, and so on are excluded. Thus, in contrast to the platonist validation
of an existential assertion (x exists if the assumption that it doesn’t leads to
a contradiction), for the intuitionist x can only be shown to exist by exhibit-
ing it, or by showing effectively how to exhibit it. Again, to validate the nega-
tion of an assertion A, it is not enough - as it is for the platonist - to prove
the existence of a contradiction issuing from the assumption A: the intu-
itionist must exhibit or show how one would exhibit the contradiction when
presented with the construction that is claimed in A. Likewise for implica-
tion: to validate ‘A implies B’, the intuitionist must provide an effective pro-
cedure for converting the construction claimed to have been carried out in A
into the construction being claimed in B.

Clearly, the intuitionist picture of mathematical assertions and proofs
depends on the coherence and acceptability of what it means by an effective
procedure and (inseparable from this) on the status of claims that mental
constructions have been or can he carried out. Proofs, validations, and argu-
ments, in order to ‘show’ or ‘demonstrate’ a claim, have before all else to be
convincing; they need to persuade their addressees to accept ‘what is claimed.
Where then in the face of Brouwer’s characterization that “intuitionist math-
ematics is an essentially languageless activity of the mind having its origin in
the perception of a move in time” (1952), with its relegation of language -
that is, all mathematical writing and speech - to an epiphenomenon of math-
ematical activity, a secondary and (because it is after the fact) theoretically
unnecessary business of mere description, are we to locate the intuitionist

116 Brian Rotman



version of persuasion? The problem is fundamental. Persuading, convincing,
showing, and demonstrating are discursive activities whose business it is to
achieve intersubjective agreement. But for Brouwer, the intersubjective col-
lapses into the subjective: there is only a single cognizing subject privately
carrying out constructions - sequences of temporally distinct moves - in the
Kantian intuition of time. This means that, for the intuitionist, conviction
and persuasion appear as the possibility of a replay, a purely mental reenact-
ment within this one subjectivity: perform this construction in the inner intu-
ition of time you share with me and you will - you must - experience what
I claim to experience.

Validating assertions by appealing in this way to felt necessity, to what is
supposed to be self-evident to the experiencing subject, goes back to
Descartes’ cogito, to which philosophers have raised a basic and (this side of
solipsism) unanswerable objection: what is self-evidently the case for one may
be not self-evident - or worse, may be self-evidently not the case - for another;
so that, since there can be no basis other than subjective force for choosing
between conflicting self-evidence, what is put forward as a process of rational
validation intended to convince and persuade is ultimately no more than a
refined reiteration o! the assertion it claims to he validating.

That intuitionism should be unable to give a coherent account of persua-
sion is what a semiotic approach which insists that mathematics is a business
with and about signs, conceived as public, manifest amalgams of scrib-
bling/thinking. would lead one to believe. The inability is the price intuition-
ism pays for believing it possible to first separate thought from writing and
then demote writing to a description of this prior and languageless - pre-
semiotic thought. Of course, this is not to assert that intuitionism’s fixation
on thinking to the exclusion of writing is not useful or productive; within
mathematical practice, by providing an alternative to classical reasoning. it
has been both. And indeed, insofar as a picture of mathematics-as-pure-
thought is possible at all, intuitionism in some form or other could be said to
provide it.

From a semiotic viewpoint, however, any such picture cannot avoid being
a metonymic reduction, a pars pro toto which mistakes a part - the purely
mental activities that seem undeniably to accompany all mathematical asser-
tions and proofs - for the whole writing/thinking business of manipulating
signs, and in so doing makes it impossible to recognize the distinctive role
played by signifiers in the creation of mathematical meaning. Far from being
the written traces of a language that merely describes prior mental construc-
tions appearing as pre-semiotic events accessible only to private introspec-
tion, signifiers mark signs that are interpreted in terms of imagined actions
which themselves have no being independent of their invocation in the pres-
ence of these very signifiers. And it is in this dialectic relation between scrib-
bling and thinking, whereby each creates what is necessary for the other to
come into being, that persuasion - as a tripartite activity involving Agent,
Mathematician, and Person within a thought experiment - has to be located.
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These remarks about formalism and intuitionism are intended to serve not
as philosophical critiques of their claims about the nature of mathematics,
but as means of throwing into relief the contrasting claims of our semiotic
model. From he point of view of mainstream mathematical practice, more-
over, the formalist and intuitionist descriptions of mathematics are of minor
importance. True, formalism’s attempt to characterize fìnitary reasoning is
central to metamathematical investigations such as proof theory, and intu-
itionistic logic is at the front of any constructivist examination of mathemat-
ics; but neither exerts more than a marginal influence on how the
overwhelming majority of mathematicians regard their subject matter. When
they pursue their business mathematicians do so neither as formalist manip-
ulators nor solitary mental constructors, but as scientific investigators
engaged in publicly discovering objective truths. And they see these truths
through platonistic eyes: eternal verities, objective irrefutably-the-case
descriptions of some timeless, spaceless, subjectless reality of abstract
‘objects’.

Though the question of’ the nature of these platonic objects - what are
numbers? - can be made as old as Western philosophy, the version of platon-
ism that interests us (namely, the prevailing orthodoxy in mathematics) is a
creation of nineteenth-century realism. And since our focus is semiotic and
not philosophical, our primary interest is in the part played by a realist con-
ception of language ir forming and legitimizing present-day mathematical
platonism.

For the realist, language is an activity whose principàl function is that of
naming: its character derives from the fact that its terms, locutions, construc-
tions, and narratives are oriented outward, that they point to, refer to, denote
some reality outside and prior to themselves. They do this not as a byprod-
uct, consequentially on some more complex signifying activity, but essentially
and genetically so in their formation: language, for the realist, arises and
operates as a name for the pre-existing world. Such a view issues in a bifur-
cation of linguistic activity into a primary act of reference concerning what
is ‘real’, given ‘out there’ within the prior world waiting to be labeled and
denoted – and a subsidiary act of describing, commenting on, and commu-
nicating about the objects named. Frege, who never tired of arguing for the
opposition between these two linguistic activities - what Mill’s earlier realism
distinguished as connotation/denotation and he called sense/reference -
insisted that it was the latter that provided the ground on which mathemat-
ics was to be based. And if for technical reasons Frege’s ground – the
pre-existing world of pure logical objects - is no longer tenable and is now
replaced by an abstract universe of sets, his insistence on the priority of ref-
erence over sense remains as the linguistic cornerstone of twentieth-century
platonism.

What is wrong with it? Why should one not believe that mathematics is
about some ideal timeless world populated by abstract unchanging objects;
that these objects exist, in all their attributes, independent of any language
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used to describe them or human consciousness to apprehend them; and that
what a theorem expresses is objectively the case, an eternally true description
of a specific and determinate states of affairs about these objects?

One response might be to question immediately the semiotic coherence of
a pre-linguistic referent:

Every attempt to establish what the referent of a sign is forces us to define
the referent in terms of an abstract entity which moreover is only a cultural
convention. (Eco 1976: 66)

If such is the case, then language–in the form of’cultural mediation - is
inextricable from the process of referring. This will mean that the supposedly
distinct and opposing categories of reference and sense interpenetrate each
other, and that the object referred to can neither be separated from nor ante-
date the descriptions given of it. Such a referent will be a social historical
construct; and, notwithstanding the fact that it might present itself as
abstract, cognitively universal, pre-semiotic (as is the case for mathematical
objects), it will he no more timeless, spaceless, or subjectless than any other
social artifact. On this view mathematical platonism never gets off the
ground, and Frege’s claim that mathematical assertions are objectively true
about eternal ‘objects’ dissolves into a psychologistic opposite that he would
have abhorred: mathematics makes subjective assertions - dubitable and sub-
ject to revision - about entities that are time-hound and culturally loaded.

Another response to platonism’s reliance on such abstract referents - one
which is epistemological rather than purely semiotic, but which in the end
leads to the same difficulty - lies in the questions ‘How can one come to know
anything about objects that exist outside space and time?’ and ‘What possible
causal chain could there be linking such entities to temporally and spatially
situated human knowers?’ If knowledge is thought of as some form of justi-
fied belief, then the question repeats itself on the level of validation: what
manner of conviction and persuasion is there which will connect the platon-
ist mathematician to this ideal and inaccessible realm of objects? Plato’s
answer - that the world of human knowers is a shadow of the eternal ideal
world of pure form, so that by examining how what is perceivable partakes of
and mimics the ideal, one arrives at knowledge of the eternal - succeeds only
in recycling the question through the metaphysical obscurities of how con-
crete and palpable particulars arc supposed to partake of and be shadows of
abstract universals. How does Frege manage to deal with the problem?

The short answer is that he doesn’t. Consider the distinctions behind
Frege’s insistence that ‘the thought we express by the Pythagorean theorem is
surely timeless, eternal, unchangeable’ (1967: 37). Sentences express thoughts.
A thought is always the sense of some indicative sentence; it is ‘something for
which the question of truth arises’ and so cannot be material, cannot belong
to the ‘outer world’ of perceptible things which exists independently of truth.
But neither do thoughts belong to the ‘inner world’, the world of sense
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impressions, creations of the imagination, sensations, feelings, and wishes.
All these Frcgc calls ‘ideas’. Ideas are experienced, they need an experient. a
particular person to have them whom Frege calls their ‘bearer’; as individual
experiences every idea has one and only one bearer. It follows that if thoughts
are neither inner ideas nor outer things, then

A third realm must bc recognized. What belongs to this corresponds to
ideas, in that it cannot be perceived by the senses, but with things, in that it
needs no bearer to the contents of whose consciousness to belong. Thus the
thought, for example, which we expressed in the Pythagorean theorem is
timelessly true, true indcpendently of whether anyone takes it to be true. It
needs no bearer. It is not true for the first time when it is discovered, but is
like a planet which, already before anyonc has seen it, has been in interaction
with other planets. (Frege 1967: 29)

The crucial question, however, remains: what is our relation to this non-
inner, non-outer realm of planetary thoughts, and how is it realized? Frege
suggests that we talk in terms of seeing things in the outer world, having ideas
in the inner world, and thinking or apprehending thoughts in this third world;
and that in apprehending a thought we do not create it but come to stand ‘in
a certain relation ... to what already existed before’. Now Frege admits that
while ‘apprehend’ is a metaphor, unavoidable in the circumstances, it is not to
be given any subjectivist reading, any interpretation which would reduce
mathematical thought to a psychologism of ideas:

The apprehension of a thought presupposes someone who apprehends it,
who thinks it. He is the bearer of the thinking but not of the thought.
Although the thought does not belong to the thinker’s consciousness yet
something in his consciousness must be aimed at that thought. But this
should not be confused with the thought itself. (Frege 1967: 35)

Frcge gives no idea, explanation, or even hint as to what this ‘something’
might be which allows the subjective, temporally located bearer to ‘aim’ at an
objective, changeless thought. Certainly he sees that there is a difficulty in
connecting the eternity of the third realm to the time-bound presence of
bearers: he exclaims. ‘And yet: What value could there be for us in the eter-
nally unchangeable which could neither undergo effects nor have effect on
us?’ His concern, however, is not an epistemological one about human know-
ing (how we can know thoughts), but a reverse worry about ‘value’ conceived
in utilitarian terms (how can thoughts be useful to us who apprehend them).
The means by which we manage to apprehend them are left in total mystery.

It does look as if platonism, if it is going to insist on timeless truth, is inca-
pable of giving a coherent account of knowing, and a fortiori of how mathe-
matical practice comes to create mathematical knowledge.

But we could set aside platonism’s purely philosophical difficulties about
knowledge and its aspirations to eternal truths (though such is the principal
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attraction to its adherents), and think semiotically: we could ask whether
what Frege wants to understand by thoughts might not be interpreted in
terms of the amalgamations al’ thinking/scribbling have called signs. Thus,
can one not replace Frcge’s double exclusion (thoughts are neither inner sub-
jectivities nor outer materialities) with a double inclusion (signs are both
materially based signifiers and mentally structured signifieds), and in this way
salvage a certain kind of semiotic sense from his picture of mathematics as a
science of objective truths? Of course, such ‘truths’ would have to relate to
the activities of a sign-interpreting agency; they would not be descriptions of
some non-temporal extra-human realm of objects but laws - freedoms and
limitations - of the mathematical subject. A version of such an anthropolog-
ical science seems to have occurred to Frege as a way of recognizing the ‘sub-
ject’ without at the same time compromising his obsessive rejection of any
form of psychologism:

Nothing would be a greater misunderstanding of mathematics than its
subordination to psychology. Neither logic nor mathematics has the task of
investigating minds and the contents of consciousness whose bearer is a sin-
gle person. Perhaps their task could be represented rather as the investigation
of the mind, of the mind not minds, (Frege 1967: 35)

But in the absence of any willingness to understand that both minds and
mind are but different aspects of a single process of semiosis, that both are
inseparable from the social and cultural creation of meaning by sign-using
subjects, Frege’s opposition of mind/minds degenerates into an unexamined
Kantianism that explains little (less than Brouwer’s intuitionism, for exam-
ple) about how thoughts - that is, in this suggested reading of him, the signi-
fieds of assertion signs - come to inhabit and be ‘apprehended’ as objective
by individual subjective minds.

In fact, any attempt to rescue platonism from its incoherent attachment to
‘eternal’ objects can only succeed by destroying what is being rescued: the
incoherence, as we said earlier, lies not in the supposed eternality of its refer-
ents but in the less explicit assumption, imposed by its realist conception of
language, that they are pre-linguistic, pre-semiotic, precultural. Only by being
so could objects - existing, already out there, in advance of language that
comes after them - possess ‘objective’ attributes untainted by ‘subjective’
human interference. Frege’s anti-psychologism and his obsession with eternal
truth correspond to his complete acceptance of the two poles of the subjec-
tive/objective opposition - an opposition which is the sine qua non of nine-
teenth-century linguistic realism. If this opposition and the idea of a ‘subject’
it promotes is an illusion, then so too is any recognizable form of platonism.

That the opposition is an illusion becomes apparent once one recognizes
that mathematical signs play a creative rather than merely descrip-tive func-
tion in mathematical practice. Those things which are ‘described’– thoughts,
signifieds, notions - and the means by which they are described - scribbles - are
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mutually constitutive: each causes the presence of the other; so that mathe-
maticians at the same time think their scribbles and scribble their thoughts.
Within such a scheme the attribution of ‘truth’ to mathematical assertions
becomes questionable and problematic, and with it the platonist idea that
mathematical reasoning and conviction consists of giving assent to deductive
strings of truth-preserving inferences.

On the contrary, as the model that we have constructed demonstrates, the
structure of mathematical reasoning is more complicated and interesting
than any realist interpretation of mathematical language and mathematical
‘subjectivity’ can articulate. Persuasion and the dialectic of thinking/scrib-
bling which embodies it is a tripartite activity: the Person constructs a narra-
tive, the leading principle of an argument, in the metaCode; this argument or
proof takes the Form of a thought experiment in the Code; in following the
proof the Mathematician imagines his Agent to perform certain actions and
observes the results; on the basis of these results, and in the light of the nar-
rative, the Person is persuaded that the assertion being proved - which is a
prediction about the Mathematician’s sign activities - is to be believed.

By reducing the function of mathematical signs to the naming of presemi-
otic objects, platonism leaves a hole at precisely the place where the think-
ing/scribbling dialectic occurs. Put simply, platonism occludes the
Mathematician by flattening the trichotomy into a crude opposition: Frege’s
bearer-subjective, changeablc, immersed in language, mortal - is the Person,
and the Agent - idealized, infinitary—is the source (though he could not say
so) of objective eternal ‘thoughts’. And, as has become clear, it is precisely
about the middle term, which provides the epistemological link between the
two, that platonism is silent.

If platonic realism is an illusion, a myth clothed in the language of some
supposed scientific ‘objectivity’, that issues from the metaphysical desire for
absolute eternal truth rather than from any non-theistic wish to characterize
mathematical activity, it does nonetheless - as the widespread belief in it indi-
cates - answer to some practical need. To the ordinary mathematician, uncon-
cerned about the nature of mathematical signs, the ultimate status of
mathematical objects, or the semiotic basis of mathematical persuasion, it
provides a simple working philosophy: it lets him get on with the normal sci-
entific business of research by legitimizing the feeling that mathematical lan-
guage describes entities and their properties that are ‘out there’, waiting
independently of mathematicians, to be neither invented nor constructed nor
somehow brought into being by human cognition, but rather discovered as
planets and their orbits are discovered.

It is perfectly possible, however, to accomodate the force of this feeling
without being drawn into any elaborate metaphysical apparatus of
eternal referents and the like. All that is needed is the very general recogni-
tion -familiar since Hegel -that human products frequently appear to their
producers as strange, unfamiliar, and surprising: that what is created need
bear no obvious or transparent markers of its human (social, cultural, his-
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torical, psychological) agency, but on the contrary can, and for the most part
does, present itself as alien and prior to its creator.

Marx, who was interested in the case where the creative activity was eco-
nomic and the product was a commodity, saw in this masking of agency a
fundamental source of social alienation, whereby the commodity appeared as
a magical object, a fetish, separated from and mysterious to its creator; and
he understood that in order to be bought and sold commmoditics had to be
fetishized, that it was a condition of their existence and exchangeability
within capitalism. Capitalism and mathematics are intimately related: math-
ematics functions as the grammar of techno-scientific discourse which every
form of capitalism has relied upon and initiated. So it would be feasible to
read the widespread acceptance of mathematical platonism in terms of the
effects of this intimacy, to relate the exchange of meaning within mathemat-
ical languages to the exchange of commodities, to see in the notion of a ‘time-
less, eternal, unchangeable’ object the presence of a pure fetishized meaning,
and so on: feasible, in other words, to see in the realist account of mathe-
matics an ideological formation serving certain (techno-scientific) ends
within twentieth-century capitalism.

But it is unnecessary to pursue this reading. Whether one sees realism as a
mathematical adjunct of capitalism or as a theistic wish for eternity, the semi-
otic point is the same: what present-day mathematicians think they are doing
- using mathematical language as a transparent medium for describing a
world of pre-semiotic reality - is semiotically alienated from what they are,
according to the present account, doing – namely, creating that reality
through the very lanuage which claims to ‘describe’ it.

What Is mathematics ‘about’?

To claim, as I have done, that mathematical thought and scribbling enter into
each other, that mathematical language creates as well as talks about its
worlds of objects, is to urge a thesis antagonistic not only to the present-day
version of mathematical platonism, but to any interpretation of mathemati-
cal signs, however sanctioned and natural, that insists on the separateness of
objects from their descriptions.

Nothing is nearer to mathematical nature than the integers, the progression
of those things mathematicians allow to be called the ‘natural’ numbers. And
no opposition is more sanctioned and acknowledged as obvious than that
between these numbers and their names, the numerals, which denote and label
them. The accepted interpretation of this opposition runs as follows: first
(and the priority is vital) there are numbers, abstract entities of some sort
whose ultimate nature, mysterious though it might be, is irrelevant for the dis-
tinction in hand; then there arc numerals - notations, names such as
1111111111, X, 10, and so on - which are attached to them. According to this
interpretation, the idea that numerals might precede numbers, that the order
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of creation might be reversed or neutralized, would be dismissed as absurd:
for did not the integers named by Roman X or Hindu 10 exist before the
Romans took up arithmetic or Hindu mathematicians invented the place
notation with zero? and does not the normal recognition that X, 10, ‘ten’,
‘dix’, etc., name the same number require one to accept the priority of that
number as the common referent of these names?

Insisting in this way on the prior status of the integers, and with it the pos-
terior status of numerals, is by no means a peculiarity of Fregean realism.
Hilbert’s formalism, for all its programmatic abolition of meaningful entities,
had in practice to accept that the whole numbers are in some sense given at
the outset - as indeed does constructivism, either in the sense of Brouwcr’s
intuitionism, where they are a priori constructions in the intuition of time, or
in the version urged by Kronecker according to which ‘God made the inte-
gers, all the rest being the work of man’.

In the face of such a universal and overwhelming conviction that the inte-
gers - whether conceived as eternal platonic entities, pre-formal givens, prior
intuitions, or divine creations - are before us, that they have always been there,
that they are not social, cultural, historical artifacts but natural objects, it
is necessary to he more specific about the semiotic answer to the fundamen-
tal question of what (in terms of sign activity) the whole numbers are or
might be.

However possible it is for them to be individually instantiated, exemplified,
ostensively indicated in particular, physically present. pluralities such as piles
of stones, collections of marks, fingers, and so on, numbers do not arise, nor
can they be characterized, as single entities in isolation from each other: they
form an ordered sequence, a progression. And it seems impossible to imagine
what it means for ‘things’ to be the elements of this progression except in
terms of their production through the process of counting, And since count-
ing rests on the repetition of an identical act, any semiotic explanation of the
numbers has to start by invoking the familiar pattern of figures

1. 11, 111, 1111, 11111, 111111, 1111111, etc.

created by iterating the operation of writing down some fixed but arbi-
trarily agreed upon symbol type. Such a pattern achieves mathematical mean-
ing as soon as the type ‘1’ is interpreted as the signifier of a mathematical sign
and the ‘etc.’ symbol as a command, an imperative addressed to the mathe-
matician, which instructs him to enact the rule: copy previous inscription
then add to it another type. Numbers, then, appear as soon as there is a sub-
ject who counts. As Lorenzen - from an operationalist viewpoint having much
in common with the outlook of the present project - puts it: ‘Anybody who
has the capacity of producing such figures can at any time speak of numbers’
(1955). With the semiotic model that we have proposed, the subject to whom
the imperative is addressed is the Mathematician, while the one who enacts
the instruction, the one who is capable of this unlimited written repetition, is
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his Agent. Between them they create the possibility of a progression of num-
bers, which is exactly the ordered sequence of signs whose signifiers are
‘1’, ‘11’, and so on.

Seen in this way, numbers are things in potentia, theoretical availabilities of
sign production, the elementary and irreducible signifying acts that the
Mathematician, the one-who-counts, can imagine his Agent to perform via a
sequence of iterated ideal marks whose paradigm is the pattern 1, 11, 111,
etc. The meaning that numbers have -what in relation to this pattern they are
capable of signifying within assertions -lies in the imperatives and thought
experiments that mathematics can devise to prove assert ions; that is, can
devise to persuade the mathematician that the predictions being asserted
about his future encounters with number signs are to be believed.

Thus, the numbers are objects that result - that is, are capable of resulting
- from an amalgam of two activities, thinking (imagining actions) and scrib-
bling (making ideal marks), which are inseparable: mathematicians think
about marks they themselves have imagined into potential existence. In no
sense can numbers be understood to precede the signifiers which bear
them; nor can the signifiers occur in advance of the signs (the numbers)
whose signifiers they are. Neither has meaning without the other: they are co-
terminous, co-creative, and co-significant.

What then, in such a scheme, is the status of numerals? Just this: since it
seems possible to imagine pluralities or collections or sets or concatenates of
marks only in the presence of notations which ‘describe’ these supposedly
prior pluralities, it follows that every system of numerals gives rise to its own
progression of’ numbers. But this seems absurd and counter-intuitive. For is
it not so that the ‘numbers’ studied by Babylonian, Greek, Roman, and pres-
ent-day mathematicians, though each of these mathematical cultures pre-
sented them through a radically different numeral system, are the same
numbers? If they arc not, then (so the objection would go) how can we even
understand, let alone include within current mathematics, theorems about
numbers produced by, say, Greek mathematics? The answer is that we do so
through a backward appropriation: mathematics is historically cumulative
not because both we and Greek mathematicians are talking about the same
timeless ‘number’ - which is essentially the numerals-name-numbers view -
but because we refuse to mean anything by ‘number’ which does not square
with what we take them to have meant by it. Thus, Euclid’s theorem ‘given
any prime number one can exhibit a larger one’ is not the same as the mod-
ern theorem ‘there exist infinitely many prime numbers’ since, apart from any
other considerations, the nature of Greek numerals makes it highly unlikely
that Greek mathematicians thought in terms of an infinite progression of
numbers. That the modern form subsumes the Greek version is the result not
of the timelessness of mathematical objects, but of a historically imposed
continuity - an imposition that is by no means explicitly acknowl-edged,
on the contrary presenting itself as the obvious ‘fact’ that mathematics is
timeless.
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In relation to this issue one can make a more specific claim, one which
I have elaborated elsewhere (Rotman 1987), that the entire modern concep-
tion of integers in mathematics,was made possible by the system of signifiers
provided by the Hindu numerals based on zero; so that it was the introduc-
tion of the sign zero - unknown to either classical Greek or Roman mathe-
maticians - into Renaissance mathematics that created the present-day
infinity of numbers.

Insofar, then, as the subject matter of mathematics is the whole numbers,
we can say that its objects - the things which it countenances as existing and
which it is said to be ‘about’ – are unactualizcd possibles, the potential sign
productions of a counting subject who operates in the presence of a nota-
tional system of signifiers. Such a thesis, though. is by no means restricted to
the integers. Once it is accepted that the integers can be characterized in this
way, essentially the same sort of analysis is available for numbers in general.
The real numbers, for example, exist and are created as signs in the presence
of the familiar extension of Hindu numerals - the infinite decimals - which
act as their signifiers, Of course, there are complications involved in the idea
of signifiers being infinitely long, but from a semiotic point of view the prob-
lem they present is no different from that presented by arhitrarily long finite
signifiers. And moreover, what is true of numbers is in fact true of the entire
totality of mathematical objects: they are all signs – thought/scribbles - which
arise as the potential activity of a mathematical subject.

Thus mathematics, characterized here as a discourse whose assertions are
predictions about the future activities of its participants, is ‘about’ -insofar as
this locution makes sense - itself. The entire discourse refers to, is ‘true’ about,
nothing other than its own signs. And since mathematics is entirely a human
artifact, the truths it establishes - if such is what they are - are attributes of
the mathematical subject: the tripartite agent’ of Agent/Mathematician/Per-
son who reads and writes mathematical signs and suffers its persuasions.

But in the end, ‘truth’ seems to be no more than an unhelpful relic of the
platonist obsession with a changeless eternal heaven. The question of
whether a mathematical assertion, a prediction, can be said to be ‘true’ (or
accurate or correct) collapses into a problem about the tense of the verb. A
prediction - about some determinate world for which true and false
make sense-might in the future be seen to be true, but only after what it fore-
told has come to pass; for only then, and not before, can what was pre-dicted
be dicted. Short of’ fulfillment, as is the condition of all but trivial mathe-
matical cases, predictions can only be believed to be true. Mathematicians
believe because they are persuaded to believe; so that what is salient about
mathematical assertions is not their supposed truth about some world that
precedes them, but the inconceivability of persuasively creating a world ii
which they are denied. Thus, instead of a picture of logic as a form of truth-
preserving inference, a semiotics of mathematics would see it as an incon-
ceivability-preserving mode of persuasion - with no mention of ‘truth’
anywhere.
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7

Computers and the Sociology
of Mathematical Proof

DONALD MACKENZIE

1. Introduction

In this paper, I shall explore the relationship between mathematical proof
and the digital computer. This relationship is at the heart of the six scientific
and technological activities shown in Figure 1.

Proofs are conducted about computers in at least three areas: those sys-
tems upon which human lives depend; key aspects of some microproces-
sors; and those systems upon which national security depends. These
proofs about computers are themselves normally conducted using com-
puter programs that prove theorems: automated theorem provers. But
mathematicians themselves have also turned to the computer for assistance
in proofs of great complication, and automated theorem provers are of
considerable interest and importance within artificial intelligence. They
raise, for example, the question of whether a computer can be an “artifi-
cial mathematician.”

I have explored in other papers aspects of the evolution of these six areas
since the 1950s: for an outline chronology, see appendix1. Here, I shall explore
the questions how knowledge about computers, and knowledge produced using
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computers, become seen as trustworthy? In particular, I shall address the ques-
tion of variation: the way in which demonstrations that are convincing to some
actors are unconvincing to others; the way in which “mathematical proof” can
mean different things to different people. In Galison’s terminology,2 we are
dealing here with a “trading zone”: an arena within which different communi-
ties, with different traditions of demonstration, achieve a measure of practical
coordination of their activities. I have focused upon differences in usage of
“proof,” but in a sense this is an arbitrary choice: it would also be possible to
examine how they have developed what Galison calls a “pidgin,” which allows
fruitful communication between, for example, the National Security Agency,
mathematicians, philosophers, and computer hardware designers.

2 (Galison 1997).
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Before turning to variation in the meaning of “proof,” however, it is first
necessary for me to explain briefly why proof about computers, and proof
using computers, are thought necessary by many in these interacting com-
munities.

2. Computers, Inductive Testing and Deductive Proof

Why might deductive, mathematical, proofs about computers be thought to
be necessary? Computer systems can, of course, simply be tested empirically,
for example by selecting sets of input data and checking that the correspon-
ding output is correct. Surely that is a clear-cut, inductive way to demonstrate
that computer systems will behave as intended?

For testing to yield certainty it would, at a minimum,3 have to be exhaus-
tive: otherwise, errors clearly could lurk in the untested aspects of computer
systems. Computer scientists do not agree on whether exhaustive testing of
computer hardware or software (I intend the generic term “computer sys-
tems” to encompass both) is possible.4 Not surprisingly, the answer given
tends to depend upon what “exhaustive” is taken to mean. If it is taken to
mean coverage of all possible sets of inputs, exhaustive testing will normally
be out of the question because the number of possible inputs is intractably
large.5 On the other hand, “exhaustive” can have more restrictive meanings:
for example, that the test cases have exercised all possible execution paths
through a program. In that meaning of exhaustive, then as Myers’s standard
textbook of program testing puts it (rather equivocally), “possibly the pro-
gram can be said to be completely tested.”6

Unfortunately, the practicalities of exhaustive testing, even in the more
restrictive meanings, are typically daunting. Myers’s text, for example, shows
that the number of possible execution paths through even simple programs -
ten to twenty lines long -can be enormously large, of the order of as much
as 1014, or 100 trillion.7 It takes only modest complexity in the system being

3 There are other issues here too, for example concerning (a) what it means for out-
put to be correct and (b) the possibility of physical failure of a computer system or its
components.
4 In interviews and other discussions, proponents of testing have told me emphati-
cally that exhaustive testing is possible, while proponents of formal verification fre-
quently deny the possibility of exhaustive empirical testing.
5 There may be only a finite number of valid inputs (e.g. integers may be restricted to
a certain size), but it can be argued that “to be sure of finding all ... errors, one has to
test using not only all valid inputs, but all possible inputs” ((Myers 1979, p. 8). In
other situations, the number even of valid inputs will be, effectively, infinite. The valid
inputs to a compiler, for example, are all the possible executable programs written in
the corresponding language.
6 (Myers 1979, p. 10).
7 (Myers 1979, p. 10.)
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tested to render exhaustive testing infeasible in practice, even with the fastest
and most highly automated testing techniques currently available.

There are two broad responses to the practical limitations of exhaustive test-
ing. On the one hand, proponents of testing point out that it can nevertheless be
a very powerful way to discover errors, if enough resources are devoted to it, if
the systems in question are designed to facilitate it, if it is systematic, and if it is
planned and conducted by suitably skilled and suitably motivated people (espe-
cially people not directly involved in the development of the system in question).
The world of commercial computing - of mainframe computers, microproces-
sors, packaged software and the like - has almost always accepted that (in com-
bination, perhaps, with review of designs and programs by persons other than
their authors) testing, however imperfect, is the best practical means of gaining
knowledge of the properties of computer systems in advance of their use. In an
environment where priorities are shaped by the need to control development
costs and to move products to the market quickly, the general feeling has been
that there is no alternative but to live with the limitations of testing. Intriguingly,
there is evidence that the practical efficacy of the testing of deployed systems is
considerably greater than its abstract statistical analysis might suggest.8 One
possible explanation is that programmers develop a good understanding of
where mistakes are likely to lie, and choose test cases with this in mind.9

Since the late 1960s, however, a significant strand of thought - originating
with academic computer scientists, but influential also in government (espe-
cially, in the U.S., in the national security community) and in limited sectors
of industry - has begun to take a different approach.10 Practitioners of this
approach seek to verify programs and hardware designs mathematically,
rather than just by empirical testing. The key practical appeal of this
approach is that a deductive, mathematical analysis can claim to cover all
cases, not merely the finite number that can be subject to empirical testing.
A mathematician who wants to demonstrate the truth of a theorem about,
for example, triangles does not embark on the endless task of drawing and
checking all possible triangles. He or she looks for a compelling argument -a
mathematical proof-that the result must be true for every triangle. The pro-
ponents of “formal verification” in computer science have argued since the
1960s that the way to get round the limitations of empirical testing is to pro-
ceed as the geometer does: to prove theorems about computer systems.

To verify mathematically the properties of a computer system requires the
drawing up of an exact specification of its intended behaviour. Because of
their many ambiguities, natural languages such as English are not considered
adequate: the specification has to be expressed in a mathematical formalism.

8 See (Hoare 1994).
9 It is also possible, however, that there is an element of selection bias here: that sys-

tems that come into widespread use are better than those that are not brought to mar-
ket, or are little used; and widely-used systems are, of course, “debugged” by their
many users as well as by their developers.
10 For examples, see (MacKenzie 2001).
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From this specification one can attempt to derive deductively a detailed
design that would implement it. More commonly, a program is written, or a
hardware design produced, by more traditional methods, and then a mathe-
matical proof is constructed to show that the program or design is a correct
implementation of the specification.

3. Proofs Using Computers

In the first academic work in the 1960s on formal, mathematical, program ver-
ification, computer scientists used the traditional mathematician’s tools of
pencil and paper to prove that some simple examples of computer programs
corresponded to their specifications. Mainstream opinion in this field, how-
ever, quickly came to the conclusion that hand-proof is of limited use: the rea-
soning involved is too tedious, intricate and error-prone, especially for
real-world systems rather than “toy” examples. Since the 1970s, therefore, the
field has turned to specially-written computer programs for assistance in proof
construction: either proof checkers (“book-keeping” programs, intended to
store proofs and to detect errors in them) or automated theorem provers
(which are programs with a limited capacity to find proofs for themselves).11

Computer scientists interested in formal verification were, however, not the
only people to use computer systems to conduct proofs. The earliest auto-
mated theorem provers were developed by those who wanted to construct
“thinking machines” to demonstrate the feasibility of artificial intelligence:
by common consent, the first AI program was Newell, Shaw, and Simon’s
“Logic Theory Machine,” designed to prove simple theorems in the proposi-
tional calculus. However, early work on automated theorem proof was also
done by philosophers and logicians such as Martin Davis, Hao Wang, and
Hilary Putnam. Wang, in particular, seemed to see the artificial intelligence
work as incompetent intrusion into the terrain of the logician, and there
certainly was tension between the two approaches; tension replicated within
artificial intelligence as the latter field bifurcated in the 1970s into contend-
ing camps of logicist “neats” and proceduralist “scruffies.”12

Mathematicians, too, also turned to the computer for proof, though not, in
general, to automated theorem-provers: their use of the computer was rather
for ad hoc assistance in particular parts of complicated proofs. The best-
known, and most debated, instance is the use of computer analysis by Ken-
neth Appel and Wolfgang Haken of the University of Illinois in their 1976
proof of the four-colour conjecture (that four colours suffice to colour in any
map drawn upon a plane in such a way that countries which share a border
are given different colours). First put forward in 1852, the conjecture had

11 For an outline history of the latter, see (MacKenzie 1995).
12 For these debates, see (MacKenzie 1995). For “neats” and “scruffies” see (Hayes
1987) and (Crevier 1993).
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become perhaps the most famous unsolved problem in mathematics, resisting
a multitude of efforts at proof for over a century. Appel and Haken’s demon-
stration rested upon computerized analysis, occupying 1,200 hours of com-
puter time, of over 1,400 graphs. The analysis of even one of those graphs
typically went beyond what an unaided human being could plausibly do: the
ensemble of their demonstration certainly could not be checked in detail by
human beings. In consequence, whether that demonstration constituted
“proof” was deeply controversial.13 It will be of great interest to discover
whether the computerized proof of the Kepler conjecture14 announced in
August 1998 by Thomas Hales of the University of Michigan will be equally
controversial, since that is the first instance since the four-colour theorem of
computer proof of a “famous” conjecture.

4. A Prediction and its (Near) Confirmation

That there might be variation in the kinds of argument that are taken to con-
stitute mathematical proof should come as no surprise to either the sociolo-
gist of scientific knowledge or the historian of mathematics. Although nearly
all subsequent empirical work in the sociology of scientific knowledge has
concerned the natural sciences, rather than mathematics or logic, David
Bloor clearly intended his “strong programme” to be applied to those latter
fields as well.15 In the work of Bloor, and also, for example, that of Eric Liv-
ingston, at least schematic arguments can be found to suggest that a sociol-
ogy of mathematical proof should be possible.16

The history of mathematics is even more unequivocal in revealing varia-
tion in the kinds of argument that have been taken as constituting mathe-
matical proof.17 Eighteenth-century work in calculus, for example, often
relied upon manipulating infinitesimally small quantities or infinite series in
ways that became unacceptable in the nineteenth century. Early twentieth-
century mathematics was riven by dispute over the acceptability, in proofs
involving infinite sets, of the law of the excluded middle (the principle that if
a proposition is meaningful, either it or its negation must be true).

These are clues that mathematical proof is a less straightforward, absolute
matter than it is often taken to be. In 1987, colleagues and I drew upon this evi-
dence to make a prediction about the effort (by then widely pursued) to apply

13 For a history, see (MacKenzie 1999).
14 The Kepler conjecture is that there is no tighter way of packing identical spheres in
infinite space than the “face-centered cubic” packing, in which infinite triangular lay-
ers of spheres are placed one on top of the other, the higher layer being positioned so
that its spheres sit in the depressions between the spheres of the lower layer, in a way
similar to that in which grocers often stack oranges.
15 (Bloor 1973, 1976).
16 See (Bloor 1983, 1994, 1997) and (Livingston 1986), (Barnes et al. 1996, chapter 7).
17 There is a useful survey in (Kleiner 1991).
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mathematical proof to computer systems. We noted that this effort involved
moving mathematical proof into a commercial and regulatory arena. We spec-
ulated that the pressures of that arena would force potential variation in the
meaning of proof out into the open, but that disputes about proof would no
long simply be academic controversies. We suggested that it might not be long
before a court of law had to rule on what a mathematical proof is.18

That prediction was nearly borne out in 1991, when litigation broke out in
Britain over the application of mathematical proof to a microprocessor chip
called VIPER (Verificable Integrated Processor for Enhanced Reliability),
which had been developed by computer scientists working for the Ministry of
Defence’s Royal Signals and Radar Establishment. At stake was whether the
chain of mathematical reasoning connecting the detailed design of VIPER to
its specification was strong enough and complete enough to be deemed a
proof. Some members of the computer-system verification community denied
that it was,19 and (largely for unconnected reasons) sales of VIPER were dis-
appointing. Charter Technologies Ltd., a firm which had licensed aspects of
VIPER technology from the Ministry of Defence, took legal action against
the Ministry, alleging, amongst other things, that VIPER’s design had not
been proven to be a correct implementation of its specification.

No “bug” had been found in the VIPER chips; indeed, their design had
been subjected to an unprecedented amount of testing, simulation, checking
and mathematical analysis. At issue was whether or not this process, as it
stood immediately prior to the litigation,20 amounted to a mathematical
proof. Matters of fact about what had or had not been done were not central;
the key questions that had been raised by critics were about the status, ade-
quacy and completeness, from the viewpoint of mathematical proof, of par-
ticular kinds of argument. With the Ministry of Defence vigorously
contesting Charter’s allegations, the case failed to come to court only because
Charter became bankrupt before the High Court heard it. Had it come to
court, it is hard to see how the issue of what, in this context, mathematical
proof consists in could have been avoided.

The VIPER controversy has been reported elsewhere,21 and a single episode
has inevitable idiosyncrasies. Let me turn, therefore, to wider issues about
mathematical proof raised by the attempt to apply it to computer systems.

5. Mathematical Proof, Intentions 
and the Material World

The first issue is not contentious amongst specialists in the mathematical ver-
ification of computer systems, but it is important to highlight it nonetheless

18 (Peláez et al. 1987, p. 5).
19 (Brock and Hunt 1990); see also (Cohn 1989).
20 There has been considerable further proof work since then on VIPER.
21 (MacKenzie 1991, 1993b).
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because it reveals a potential gap between what these specialists mean by
“proof” and what the layperson might take them as meaning. Specialists
agree that human intentions, as psychological entities, and computer systems,
as physical artefacts, cannot be the objects of mathematical proof. For exam-
ple, one specialist interviewed for the research upon which this paper is based
observed that:

When the President of the United States says, “Shoot down all incoming Russky
missiles,” that’s not quite in predicate logic. ... To translate the requirement into a
formal specification introduces a gulf which is not verifiable in any formal system.

Specialists in the field believe that “proof” applied to a computer program
or computer hardware can only be proof of correspondence between two
mathematical models: a model (the formal specification) of the intended
behaviour of the program or hardware; and a model of the program or of the
detailed design of the hardware.

To specialists, therefore, “proof,” or “formal verification,” refers to the cor-
respondence between two mathematical models, not to the relationship
between these models and either psychological or physical reality. This imme-
diately opens up a potential discrepancy between specialist and lay views of
the assurance conveyed by terms such as “proven” or “verified.” To the spe-
cialist, they do not mean that systems are correctly designed, or cannot fail
(as the lay person might infer), merely that a mathematical model of their
detailed design corresponds to their formal specification.22

The potential discrepancy matters because lay people’s views of the trust-
worthiness of computer systems can be of considerable importance. The
safety of many systems depends on the interaction between computers and
human users (who will normally be lay people in terms of their knowledge of
computer system verification). Computer-related fatal accidents are caused
more commonly by problems in this interaction than by failures of the com-
puter system itself, and users’ undue trust in computer systems plays a sig-
nificant role in these interaction problems.23

6. Formal Proof and Rigorous Argument

Substantively important though it is, the potential discrepancy between lay
and specialist views of “proof” is less interesting intellectually than variation
amongst specialist views. This variation is caused less by the fact that proof
is applied to computer systems than by the fact that proof is conducted using
computer systems; but it also goes beyond the latter.

If we examine proofs within the disciplines (mathematics, logic and com-
puter science) where deductive proof is central, we find a large variety of

22 For a trenchant statement of this by a specialist, see (Cohn 1989). The celebrated cri-
tique of program verification by (Fetzer 1988) amounts largely to the same point.
23 (MacKenzie 1994).
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types of argument. Much of this variety is, of course, simply the result of
variation in the subject-matter being reasoned about. However, it is also pos-
sible to class proofs into two more over-arching categories:

1. Formal proof. A formal proof is a finite sequence of formulae, in which
each formula is either an axiom or derived from previous formulae by
application of rules of logical inference such as modus ponens.24 The
steps in a formal proof are “mechanical” or syntactic applications of
inference rules; their correctness can therefore be checked without
understanding the meaning of the formulae involved.

2. Rigorous argument. This broader category includes all those arguments
that are accepted by mathematicians (or other relevant specialists) as
constituting mathematical proofs, but that are not formal proofs in the
above sense. The proofs of ordinary Euclidean geometry, for example,
are rigorous arguments, not formal proofs: even if they involve deduc-
ing a theorem from axioms (and some involve reasoning that it is not,
at least directly, of this form), the steps in the deduction are typically
not simply applications of rules of logical inference. This is not simply
a reflection of the antiquity of Euclidean geometry: articles in modern
mathematics journals, whatever their subjects, almost never contain
formal proofs.25

The distinction between formal proof and rigorous argument bears a close -
though not one-to-one -relation to the computerization of proof. Formal proof
has been relatively easy to automate. The application of rules of inference to
formulae, considered simply as strings of symbols, can be implemented on a
digital computer using syntactic pattern matching.26 The automation of rigor-
ous argument, on the other hand, has been a far more difficult problem. There
are some parts of specific rigorous arguments that can be reduced to calcula-
tion or algorithmic checking, and there the potential for automation is high.
Furthermore, there are now widely-used commercial programs that automate

24 Let p and q be any propositions. If p and p implies q are either axioms or previous
formulae in the sequence, then (according to modus ponens) we can derive q. The
“meanings” of p and q do not enter into the derivation. On the more general concep-
tion of formal proof used here, see, for example, (Boyer and Moore 1984, p. 181).
25 Although those in this field would all recognise something akin to the distinction
drawn here, there is no entirely standard terminology for capturing it. Thus many
mathematicians would call deductions from axiomatic set theory “formal proofs,”
even if these deductions are not simply applications of rules of logical inference. What
I am calling “rigorous argument” is sometimes called “informal proof”, but I avoid
that phrase because it carries the connotation of inferiority vis-à-vis formal proof. I
draw the term “rigorous argument” from (Ministry of Defence 1991, part 2, p. 28): see
(MacKenzie 1996).
26 Many of the theorem-prover bugs discussed below were caused by subtle mistakes
in these algorithms. Participants recognize these as “errors,” rather than matters of
dispute, indicating a degree of consensus about the basic process.
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symbol manipulation in fields like algebra and calculus.27 There are, however,
as yet no “artificial mathematicians,” in the sense of automated systems
capable of handling the full spectrum of rigorous arguments used in different
fields of mathematics. The proof checkers and theorem provers used in com-
puter system verification automate formal proof, not - in general - rigorous
argument.

Formal proof and rigorous argument are not necessarily inherently opposed.
It is widely held, for example, that rigorous arguments are “sketches” or “out-
lines” of formal proofs: arguments with gaps that could, in principle, usually be
filled by sequences of applications of rules of logical inference.28 Yet formal
proof and rigorous argument remain available to be counterposed, for there is
a sense in which they have complementary virtues. Because the steps in formal
proof do not depend, at least directly, upon the meaning of the formulae being
manipulated, they avoid appeals, often implicit, to intuitions of meaning -
appeals that can contain subtle, deep pitfalls. That formal proofs can be
checked mechanically is a great advantage in a field, like computer system ver-
ification, where proofs are typically not “deep” (in the mathematicians’ sense of
involving profound concepts) but are large and intricate, and where it is partic-
ularly desirable to have a corrective to human wishful thinking.

Rigorous arguments, on the other hand, typically have the virtue of sur-
veyability. They are nearly always very much shorter than corresponding for-
mal proofs, and are thus easier for human beings to read and to understand.
By virtue of their appeal to the meaning of formulae, rigorous-argument
proofs can produce a psychological sense of conviction (“it must be so”) that
is hard to achieve with formal proof, and they have a certain robustness.
Typographical mistakes in them, for example, are commonplace, but what
carries conviction is the overall structure of the argument, which is more than
an aggregate of individual steps. Because this overall structure can be grasped
mentally, it can be checked by others, used by them in other contexts, and
rejected or improved upon as necessary.

At its most extreme, defenders of one variety of proof can deny the label
“proof” to the other. That, for example, was the basis of a famous attack on
the formal verification of computer programs mounted in the late 1970s by the
American computer scientists Richard DeMillo, Richard Lipton and Alan
Perlis. Program verifications, they argued, were mere formal manipulations,
incapable of being read, understood and assessed like “real” mathematical
proofs. A proof, they said “is not ... [an] abstract object with an independent
existence,” independent of these “social processes.” Since program verifica-
tions could not, they claimed, be subject to these social processes, they should

27 For a critical discussion of their soundness, see (Stoutemyer 1991).
28 There is, however, general acceptance of Kurt Gödel’s celebrated conclusion (the
“incompleteness theorem”) that any finite formal system rich enough to encompass
arithmetic must contain a true statement for which there is no formal proof within the
system.
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not be seen as proofs.29 A similar, albeit less sweeping, contrast between formal
proof and rigorous argument also underpinned the most explicit defence of
the VIPER proof, which was mounted by a leading figure in the U.K. software
industry, Martyn Thomas, head of the software house Praxis. “We must
beware,” he wrote, “of having the term ‘proof’ restricted to one, extremely for-
mal, approach to verification. If proof can only mean axiomatic verification
with theorem provers, most of mathematics is unproven and unprovable. The
‘social’ processes of proof are good enough for engineers and other disciplines,
good enough for mathematicians, and good enough for me.... If we reserve the
word ‘proof’ for the activities of the followers of Hilbert [David Hilbert,
1862–1943, leader of ‘formalism’ within mathematics], we waste a useful word,
and we are in danger of overselling the results of their activities.”30

7. Proof and Disciplinary Authority

Over and above particular contexts in which formal proof and rigorous argu-
ment are counterposed is something of a disciplinary divide. Although logic
and mathematics are often though of as similar enterprises, and there is in a
general sense a considerable overlap between their subject-matter, they are, to
a degree, socially distinct. Logic’s origins as a discipline are closer to philos-
ophy than to mathematics, and even now logicians distinguish between math-
ematical logic and philosophical logic. Even the former is sometimes not seen
by university mathematics departments as a genuine part of their province,
and mathematics undergraduates often learn no more than the most elemen-
tary formal logic. “I was going to be a mathematician, so I didn’t learn any
logic,” said one interviewee.

The two general notions of proof - formal proof and rigorous argument -
are, to an extent, underpinned by this social divide. Logic has provided the
notation and conceptual apparatus that make formal proof possible, and
provides a viewpoint from which proof as conducted by mathematicians can
be seen as unsatisfactory. One logician, Peter Nidditch, wrote, in 1957, that
“in the whole literature of mathematics there is not a single valid proof in the
logical sense.”31 An interviewee reported that even as an undergraduate:

I knew, from the point of view of formal logic, what a proof was ... [and was]
already annoyed by the vagueness of what constitutes a mathematics proof.

Mathematics, on the other hand, provides the exemplars of proof as rigor-
ous argument. The main resource for criticism of formal proof is, as we have
seen, appeal to the practice of mathematics.

29 (DeMillo et al. 1979, esp. p. 273); see (MacKenzie 2001, chapter 6)
30 (Thomas 1991), quoted in (MacKenzie 1993b).
31 (Nidditch 1957, p. v.)
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Note, however, that attitudes to proof are not in any simple sense deter-
mined by disciplinary background. Disciplines are not homogeneous, biog-
raphies are complex, and other factors are at work. Many of those who work
in the formal aspects of computer science have training in both mathematics
and logic, and so have three disciplinary identities potentially open to them.
When logicians themselves do proofs about formal logical systems, these
proofs are typically rigorous arguments, not formal proofs. Those who have
wished to computerize proof have had little alternative but to automate for-
mal proof, whatever their disciplinary background. Rather, the connection
between discipline and proof is more a matter of the disciplinary authorities
of mathematics and, in a weaker sense, logic being available to those who,
whatever their backgrounds (Martyn Thomas, for example, was trained as a
biochemist before entering the computer industry), defend rigorous argu-
ment against enthusiasts for formal proof, or vice versa.

8. Logics, Bugs and Certainty

Those who perform computer system verifications are often, in practice,
adherents of formal proof,32 and the regulatory standard in this area that
most sharply distinguishes formal proof from rigorous argument, the U.K.
Ministry of Defence’s interim standard governing safety-critical software,
came down in favour of the former, at least for those situations where the
highest level of assurance is desirable.33 (One reason this area is fascinating is
that a defence procurement standard is forced onto philosophical terrain
such as this!) There is, therefore, perhaps potential consensus - at the heart of
this “trading zone,” within the field of computer system verification, not
more widely - that “proof” should mean formal, mechanized proof. Would
such consensus lead to complete agreement on “proof,” and remove the pos-
sibility for future dispute and litigation?

Agreement on the formal notion of proof still leaves open the question of
the precise nature of the logical system to be used to manipulate formulae.
There are different formal logics. The early twentieth century dispute over the
law of the excluded middle has echoes in a continuing divide between classical
logic (which allows one to prove that a mathematical object exists by showing
that its non-existence would imply a contradiction) and constructive logic
(which requires demonstration of how to construct of the object in question).
Computer science has, furthermore, been an important spur to work on “non-
standard” logics, such as modal and temporal logics. “Relevance logic” - long
thought to be a philosophers’ plaything - is being automated with a view to

32 The main exception to this generalization concerns decision procedures (see
below). There is also variation in attitude to the importance of the surveyability of
formal proofs.
33 (Ministry of Defence 1991; see (Tierney 1992).
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practical applications in inference from databases.34 There is even a vogue, and
several practical applications, for “fuzzy logic,” which permits degrees of simul-
taneous adherence to both a proposition and its negation, so violating what
some have felt to be a cultural invariant.35

This zoo of diverse, sometimes exotic, formal logics is currently a less
potent source of dispute than might be imagined. Not all of them are
regarded as suitable for mathematical reasoning or computer system verifica-
tion. Furthermore, there has been a subtle shift in attitudes to formal logic.
Nowadays, few specialists take a unitary view of logic in which there is only
one true logic and all else is error. It is much more common (especially in
computer science) to find a pluralist, pragmatic attitude, in which different
logics are seen as technical tools appropriate in different circumstance. Direct
clashes between the proponents of different logical systems are far less com-
mon than might be expected by extrapolation from, for example, the bitter
earlier disputes between classical logic and constructivism. One interviewee,
for example, told me that the decision about whether or not to include the law
of excluded middle in his theorem prover, a modern version of the issue that
had caused great philosophical angst early in the twentieth century, had been
simply “a marketing decision”!

Nevertheless, the possibility remains that a pluralist, pragmatic attitude to
different logics is a product of the early, exploratory, academic phase of the
application of formal logic to computer systems.36 It cannot be guaranteed
that it would remain intact in a situation where there are major financial or
political interests in the validity or invalidity of a particular chain of formal
reasoning. Specialists who are called upon to justify their formal logic, under
courtroom cross-examination by a well-briefed lawyer, may face difficulties,
for that process of justification is fraught with philosophical problems.37

At least equal in importance to the diversity of formal logics as a source of
potential dispute is the simple fact that the tools of mechanized formal proof
(proof checkers and automated theorem provers) are themselves computer
programs. As such, they - especially automated theorem provers, which are
quite complicated programs - may contain design faults. In interviews for this

34 (Thistlewaite et al. 1988). Relevance logic excludes the elementary theorem of stan-
dard logic that a contradiction implies any proposition whatsoever (see (Bloor 1983,
123–32)). The database issue is the possible need to make sensible inferences in the
presence of contadictory items of data.
35 See (Archer 1987). A major issue about fuzzy logic is whether it is indeed a logic,
or a version of probability theory. Claude Rosenthal of the École des Mines has
recently completed a PhD thesis dealing with the development of fuzzy logic.
36 (MacKenzie 1993b).
37 Best known is Kurt Gödel’s theorem that a finite formal system rich enough to
express arithmetic cannot be proven consistent without use of a more powerful sys-
tem, the consistency of which in turn would have to be proven, hence beginning an
endless regress. On more general problems of circularity and regress in the justifica-
tion of deduction, see (Haack 1976).
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research, designers of automated theorem provers often reported experience
of bugs in their systems that would have allowed “theorems” that they knew
to be false nevertheless to be proven. Such bugs were not large in number,
they were corrected whenever they were discovered, and no interviewee
reported such a bug causing a false result whose falsity had not been detected
readily. But no designer seemed able to give an unequivocal guarantee that no
such bugs remained.

No automated theorem prover has, to date, itself been subject in its entirety
to formal verification.38 Even if one had been verified - or even if the results
of an unverified prover were checked by an independent proof checking pro-
gram (something several interviewees advocated, but which is rare in prac-
tice) - many specialists in the field would still not regard this as guaranteeing
complete certainty. The reasons given by them ranged from “Gödelian” con-
cerns about the consistency of formal systems39 to the possibility of coinci-
dent errors in different automated theorem provers or proof checkers.

Reactions to the difficulty of achieving certainty with automated theorem
provers varied amongst those interviewed. One interviewee suggested that it
indicates that the overall enterprise of formal verification is flawed, perhaps
because of what he felt to be the impoverishment of its notion of proof:

You’ve got to prove the theorem-proving program correct. You’re in a regression,
aren’t you? ... That’s what people don’t seem to realise when they get into verifica-
tion. They have a hairy great thing they’re in doubt about, so they produce another
hairy great thing which is the proof that this one’s OK. Now what about this one
which you’ve just [used to perform the proof]? ... I say that serves them jolly well
right.

That is not the response of program and hardware verification “insiders.”
While paying considerable attention to soundness, they feel that theorem-
prover bugs are not important practical worries compared to ensuring that
the specification of a system expresses what, intuitively, is intended:

If you ... ask where the risks are, and what are the magnitudes of the risks, the
soundness of the logic is a tiny bit, a really tiny bit, and the correctness of the proof
tool implementing the logic is slightly larger [but] actually ... quite a small risk.

Insiders almost all share the perception that the risk of a serious mistake
in computer system verification being caused by a bug in an automated
prover is small, but they are also wary of claiming that the risk can ever be
shown to be zero. Their judgments differ as to what measures are necessary
to allow claims of proof safely to be made. Some would not be happy with-
out a full formal proof checked by an independent proof checking program;
others feel that this would be a waste of effort, compared to the need for
attention to more likely dangers, notably deficient specifications.

38 The Boyer-Moore prover (a leading U.S. system) is being re-engineered with a view
to using it to verify its own correctness.
39 See note 37 above.



One potentially contentious issue is the use of decision procedures: proce-
dures that can decide, in a wholly deterministic, algorithmic way, whether or
not mathematical statements in particular domains are true. Typically, deci-
sion procedures return simply the judgement “true” or “false,” not a formal
proof of truth or falsity. To some interviewees, decision procedures are a nec-
essary and harmless part of the “real world” of computer system verification.
They offer the great practical advantage that their use does not require the
time-consuming skill that a generic theorem prover typically demands. To
other practitioners, however, decision procedures must themselves be verified
formally (which is currently rare). Otherwise, using them is “like selling your
soul to the Devil - you get this enormous power, but what have you lost?
You’ve lost proof, in some sense.”

9. Conclusion

That there is variation in what proof is taken as consisting in, and that insid-
ers do not believe absolute certainty is achievable, are not arguments against
seeking to apply mathematical proof to computer systems. Even in its current
state, the effort to do so has shown its practical worth in finding errors not
found by conventional methods.40 Furthermore, the field is not static, and
some of the issues I have discussed (such as the verification of decision pro-
cedures) are active research topics. Even the overall divide between formal
proof and rigorous argument is not necessarily unbridgeable, with many
insiders believing it to be possible to construct proofs that are formal in their
detailed steps but that still have a humanly surveyable overall structure. It
is true that the end of the Cold War, and subsequent reductions in
defence budgets, have caused a precipitous decline in the traditional chief
funding source for formal verification: computer security. Nevertheless, a
well-established tradition of academic research, and the emergence of new
spheres of application for formal methods (especially to hardware), give
grounds for at least modest confidence that the field will survive its short-
term difficulties.

Historians and sociologists of science certainly have grounds for hoping
that it does so! The automation of proof, largely fuelled as a practical activ-
ity by the desire to do proofs about computer systems, is a fascinating intel-
lectual experiment. It highlights the fact that our culture contains not one,
but two, ideals of mathematical proof: rigorous argument and formal proof.
The distinction, of course, predates the digital computer. But when David
Hilbert, for example, put forward the notion of formal proof in the 1920s, he
did not intend that mathematicians should actually do their proofs in this
way. Instead, formal proof was a tool of his “metamathematics,” a way of
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making mathematical proof the subject of mathematical analysis by provid-
ing a simple, syntactic, model of it. Nidditch was still able, as we have seen,
to claim in 1957 that the “whole literature of mathematics” contained not a
single formal proof.

From the point of view of the history, philosophy, and sociology of science,
the significance of the automation of proof is that it has turned formal proof
from a tool of metamathematical inquiry into a practical possibility. To some
extent at least, a choice between formal proof and rigorous argument has been
opened up. The mainstream mathematical community remains firmly wedded
to rigorous argument and sceptical of “computer proof,” as was demonstrated
by reactions to the Appel and Haken proof of the four colour theorem, or,
more recently, by the indifference that greeted “QED,” an ambitious proposal
to create a giant computerized encyclopaedia of formally, mechanically
proven mathematics. Nevertheless, formal, mechanized proof is now well
entrenched in a variety of niches outside of pure mathematics. Although, to
be sure, there are many areas of mathematics where such proof is not, or at
least is not yet, a viable alternative to conventional forms of demonstration,
its very existence indicates something of the contingency of the latter.

Furthermore, the automation of proof throws interesting light upon for-
mal proof itself. Just as a choice between formal proof and rigorous argu-
ment has opened up, so those committed to formal, mechanized proof face
decisions. Which logic shall they adopt? How shall they ensure that a puta-
tive formal proof is indeed a proof? Is an independent mechanized proof
checker a necessity? Should a theorem prover itself be subject to formal
verification? Going beyond the current practical state of the art, further
questions can be anticipated: must the compiler for the prover’s language be
verified? What about the machine upon which it runs?

Questions such as these are not merely of academic interest. Formal veri-
fication is, as I have emphasized, a practical activity, often conducted in a
commercial and regulatory arena. As the VIPER controversy showed, epis-
temological questions can, in that context, take on a sharp “real-world” sig-
nificance, as practitioners have to decide what forms of demonstration
constitute mathematical proof. The VIPER episode is as yet sui generis: no
other dispute about formal verification or automated proof has led to litiga-
tion. If, however, formal verification prospers, it will be of great interest to
discover whether (in Galison’s terminology) a stable creole, with a stable
meaning of “proof,” will emerge in this trading zone, or whether the VIPER
episode becomes the first of many disputes over what proof consists in.

10. Appendix: An Outline Chronology

1955/56: Newell, Shaw, Simon: Logic Theory Machine
1959: Herbert Gelernter: Geometry Machine
1960: Hao Wang champions algorithmic against heuristic theorem provers
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1962: John McCarthy: “Towards a Mathematical Science of Computation”
1963: Alan Robinson: Resolution, a machine-oriented inference rule
1966: Peter Naur: “Proof of Algorithms by General Snapshots”
1967: R. W. Floyd: “Assigning Meanings to Programs”
1967: First public discussion of computer security vulnerabilities of US
defence systems
1968: NATO conference on Software Engineering at Garmisch: diagnosis of
“software crisis”
1969: C. A. R. Hoare: “An Axiomatic Basis for Computer Programming”
1971: Robert Boyer and J Strother Moore begin collaboration that leads to
their theorem prover
1973-80: SRI PSOS project. Provably Secure Operating System
1976: Appel and Haken prove four-colour conjecture, using 1200 hours com-
puter time
1978-87: SRI proof work on SIFT fault-tolerant avionics computer
1979: DeMillo, Lipton and Perlis attack program proof in Communications
of the ACM
1983: “Orange Book.” Design proof required for A1 secure systems
1983: SIFT Peer Review
1984-85: VIPER proof effort begins at Royal Signals and Radar Establish-
ment
1985: Honeywell Secure Communications Processor: first system to achieve
A1 rating.
1986-90: Disputes over Trip Computer Software delay licensing of Darling-
ton, Ontario, nuclear power station
1986: First clear-cut software error deaths: overdoses from Therac-25 radia-
tion therapy machines
1987: Inmos T800 transputer: floating-point unit microcode formally verified
1987-88: Commercialisation of VIPER begins
1988-89: Entry into service of Airbus A320, first fly-by-wire airliner
1988: Crash of A320 at Habsheim air show triggers fierce controversy in
France
1988: James Fetzer attacks program proof in Communications of the ACM
1989: Formally verified SACEM train protection software enters service on
RER, Paris
1991: UK Interim Defence Standard 00-55: proof required for systems most
critical to safety
1991: VIPER law suit
1994: Hackers seize control of computer network at USAF Rome (N.Y.) Lab
1994: Pentium divide bug
1995: Entry into service of Boeing 777, most computer-intensive airliner to
date
1996: New computer-assisted proof of four-colour theorem by Robertson et al.
1998: Thomas Hales announces computer-assisted proof of Keplers conjec-
ture
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From G.H.H. and Littlewood
to XML and Maple: Changing Needs
and Expectations in Mathematical
Knowledge Management

TERRY STANWAY

Abstract: This paper concerns changing needs and expectations in the way mathe-
matics is practiced and communicated. The time frame is mainly the early twentieth
century to the present and the scope is all activity that can be considered to fall under
the purview of the mathematical community. Unavoidably, the idea of a mathemati-
cal community is confronted; what it means to claim ownership in this community
and how knowledge management practices affect the community. Finally, a descrip-
tion of an extendable mathematical text-based database which can be used to manage
user defined forms of mathematical knowledge is presented.

Hardy and Littlewood: A Study in Collaboration

The anecdote is related by C.P. Snow in his introduction to A Mathematician’s
Apology. It is a pleasant May evening some time in the 1930’s and Hardy is in
his fifties. He and Snow are walking at Fenner’s cricket ground when the 6
o’clock chimes ring out from the nearby Catholic chapel. “It is rather unfor-
tunate”, Hardy remarks, “that some of the happiest hours of my life should
have been spent within sound of a Roman Catholic church”.

One of the preeminent mathematicians of his day and indeed, of the cen-
tury, it is perhaps not entirely surprising that, living as he did, in the intellec-
tual communities of Cambridge and Oxford, Gottfried Harold Hardy was an
atheist. While our immediate concern is not his views on religion, it is ger-
mane only that Hardy was, in this fundamental domain, a non-conformist in
an age that put a great deal of stock in conformity. Our concern is with
his mathematics and, in particular, with his lively and productive collabora-
tion with John Edensor Littlewood. Commencing in 1912, spanning some
36 years, and resulting in enough papers to fill several thick volumes of
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Hardy’s seven volume Collected Papers the Hardy-Littlewood collaboration
stands as one of the most celebrated and productive academic partnerships
of the twentieth century. It also provides an excellent starting point for an
examination of mathematical knowledge management; but first, a little back-
ground is in order.

Hardy was already established in his career when at 33 years old he first met
the 25 year-old John Edensor Littlewood at Cambridge in 1910. Prior to their
meeting, each man had distinguished himself as a first rate mathematician.
Falling into the broader definitions of the fields of Number Theory and Analy-
sis, the work that they did together contributed immensely to the reputation of
each and helped to bring about a renewal in English mathematics which had,
for some time, been overshadowed by work from schools on the continent.
There are several reasons why the Hardy-Littlewood collaboration provides a
good backdrop to a discussion about mathematical knowledge management.
One of the most important is the very fact that it was a collaboration between
peers and thus entailed sharing of mathematical knowledge. The fact that their
efforts were prolific and well-documented means that resources are relatively
easy to obtain. Equally important is that both men were very much part of the
mathematical community of their day and they conducted themselves, at least
in the way they practised mathematics, according to community standards. But
there is another reason that their collaboration bears examination in the con-
text of mathematical knowledge management and that is that they lived and
worked in the proverbial interesting times and it is to the intellectual climate of
those times that we first turn our attention.

Towards Foundational Pluralism...

Hardy ‘asked ‘What’s your father doing these days. How about that esthetic meas-
ure of his?’ I replied that my father’s book was out. He said, ‘Good, now he can get
back to real mathematics’. Garrett Birkhoff

The date is 1910 and the location is Cambridge; the time and place of the
first encounter between Hardy and Littlewood. The first world war was still
four years away but tremors were already being felt in old orders both inside
and outside the socio-political domain. In art and literature the modernist
perspective had informed such works as Picasso’s early cubist piece, Les
Desmoiselles d’Avignon and Santayana’s The Life of Reason. In physics, Ein-
stein had published The Special Theory of Relativity, challenging the deter-
minism of Newtonian mechanics. Mathematics did not emerge unscathed.
In his book, What Is Mathematics, Really?, Reuben Hersh describes the
fractures that arose in the philosophy of mathematics after the widely
accepted idea that all of mathematics could be ultimately derived from the
principles of Euclidean geometry fell victim first to logically consistent
non-euclidean geometries and second to geometrically counter-intuitive



concepts such as space filling curves and such unavoidable consequences of
analysis as continuous everywhere but nowhere differentiable curves. In
Hersh’s words:

The situation was intolerable. Geometry served from the time of Plato as proof that
certainty is possible in human knowledge - including religious certainty. Descartes
and Spinoza followed the geometrical style in in establishing the existence of God.
Loss of certainty in geometry threatened loss of all certainty.

The response of mathematicians concerned with the philosophy of their sub-
ject was an attempt to replace geometry at the foundation of mathematical
knowledge with arithmetic and set theory; thus giving rise to the field of Math-
ematical Logic. It is reasonable to state that the culmination of these efforts was
the enunciation by David Hilbert of what came to be known as Hilbert’s Pro-
gram. In an address entitled The Foundations of Mathematics given in July of
1927 at the Hamburg Mathematical Seminar, he stated:

...I pursue a significant goal, for I should like to eliminate once and for all the ques-
tions regarding the foundations of mathematics, in the form that they are now
posed, by turning every mathematical proposition into a formula that can be con-
cretely exhibited and strictly derived, thus recasting mathematical definitions and
inferences in such a way that they are unshakable and yet provide an adequate pic-
ture of the whole science.

Hilbert’s objective and the objectives of others, such as Brouwer, von Neu-
mann, and Weyl, whose goals were similar, albeit while starting from slightly
different sets of assumptions, were famously shown to be impossible to
achieve by the 1931 incompleteness result of the Austrian mathematician,
Kurt Gödel. The result is that by the mid 1930’s, all hope of a unified per-
spective regarding the foundations of mathematics is lost. In the main, at
least initially, the competing perspectives on the foundations of mathematics
are Hilbert’s formalism and Brouwer’s intuitionism. Later, constructivism
articulated by among others, the American mathematician Erret Bishop,
would emerge as a radical extension of some of the ideas of intuitionism.
From the point of view of mathematical knowledge management, the
specifics of these ideologies are not important; what is important is that, in
the end, there is a plurality of perspectives regarding the foundations of
mathematics. Which brings the discussion back to Hardy and Littlewood and
the question of how all of the turmoil in the foundation of their science
affected the lives of the “working mathematician”.

If we could have asked Hardy and Littlewood about how the shifting
philosophical ground affected the way they think, talk, and write about
mathematics as individual mathematicians and, in particular, how the philo-
sophical upheaval affected the nature of their collaboration, it is quite likely
that their reply would have been that the philosophical debate was of little or
no consequence. Like most practicing mathematicians of the time and today,
when pressed, they seemed to adhere to a Neo-Platonist perspective of math-
ematical investigation. Here’s Hardy from the Apology:
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I believe that mathematical reality lies outside us, that our function is to discover or
observe it, and that the theorems which we prove, and which we describe grandilo-
quently as our “creations”, are simply the notes of our observations.

This was all the philosophy that any practicing mathematician needed and
all the philosophy that any mathematician continues to need. It explains
mathematics as a process of discerning truths.

So, what about these two whose intent it was to simply get on with the
business of doing mathematics? What influenced their day to day experience
as mathematicians and what influenced the nature of their collaboration?
The answer lies in the structures of the broader mathematical community in
which they existed and in which, to be certain, both individually and in col-
laboration, they played prominent roles.

The Mathematical Community

A man is necessarily talking error unless his words can claim membership in a col-
lective body of thought. Kenneth Burke

The notion of community is loosely defined and can be used to refer to
a lot of quite different types of social groupings; it is important to
spend some time with the definition of “community”. Intentionally, we
will broadly define the mathematics community to include those involved
with advancing the understanding of mathematics; either at its frontiers, the
primary occupation of researchers, or within the existing body of mathemat-
ical knowledge such as teachers and students. The boundary is a porous one
and relatively few would claim full time membership. Many others are inter-
lopers, jumping in and out as the need arises or circumstances dictate. This
idea of community will need to be passed through a prism, allowing us to
consider separately four inter-related factors that help to bind the commu-
nity: the language of the community, the purposes of the community, the
methods of the community, and the meeting places of the community.

The Language of the Community

A precisian professor had the habit of saying: ‘...quartic polynomial ax4+bx3+cx2+
dx+e, where e need not be the base of natural logarithms.’ J.E. Littlewood

It is tempting, but tautological, to state that the language of the commu-
nity is the language of mathematics and it only extends the tautomerism to
state that anyone who claims membership in the community knows what this
statement means. In reality, it may be argued that the paradigm for mathe-
matical discourse is the language of the published research paper. All other
discourse approximates the paradigm by degree according to what level of
rigor is appropriate to the situation and audience.
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The special symbols of mathematics present a particular challenge to
expressing mathematics in mechanically type set or digital forms. An individ-
ual claiming membership in the mathematical community can generally be
assumed to have some understanding of how to overcome those challenges.

The Purposes of the Community
If intellectual curiosity, professional pride, and ambition are the dominant incen-
tives to research, then assuredly, no one has a fairer chance of gratifying them than
a mathematician. G. H. Hardy

In the sense it is used here, ‘purpose’ does not refer to the overriding raison
d’être of the community; that has already been defined to be an interest in the
advancement of mathematics. Rather, purpose here refers to what motivates
an individual to seek membership in the community; and there are many.
There is a professional motive which expresses itself by the simple statement
that “I am involved with mathematics because this is how I earn my living”.
There is an egotistical motive which is expressed in the statement that “I am
involved with mathematics because I take pleasure from proving to myself
and others that I can overcome the challenges that the field affords”. There is
a social motive which is evident in the statement that “I am involved with
mathematics because I benefit from the company of others who are involved
with mathematics”. And, finally, there is an aesthetic motive that is reflected
in statements like “I am involved with mathematics because I wish to help
unlock the beauty of mathematics”.

With respect to mathematical knowledge management, an individual’s rea-
sons for being involved with mathematics strongly affects the individual’s role
in the community. This sense of purpose in the community in turn helps to
determine the individual’s information management needs.

The Methods of the Community
Next, we look at the methods of the community. Under this rubric, we exam-
ine the question of how do mathematicians do what they do and what tools
do they use. Traditionally, and certainly through the period encompassed by
the Hardy-Littlewood collaboration, mathematics has always been one of the
most purely cerebral of the sciences, depending, for its practice, on little more
than pencil and paper. This austerity is tightly associated with underlying
philosophical assumptions about the nature of mathematics. The founda-
tional shifts of the last century and developments in computer technology
paved the way to the situation we find at present, with mathematicians lining
up with theoretical physicists, molecular biologists, and others to claim time
on the world’s most powerful super computers. An important consideration
regarding the question of how mathematicians do mathematics is the ques-
tion of how and to whom do mathematicians express their mathematics. This
warrants separate treatment.
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The Meeting Places of the Community

J.J. Sylvester sent a paper to the London Mathematical Society. His covering letter
explained, as usual, that this was the most important result in the subject for 20
years. The secretary replied that he agreed entirely with Sylvester’s opinion of the
paper; but Sylvester had actually published the results in the L.M.S. five years
before. J. E. Littlewood

Tightly associated with the methods of the community, is the notion of the
meeting places of the community. These are the venues in which mathematics
is presented and discussed. Not only the offices, classrooms, seminar rooms,
labs, and conference halls, but also the notes, postcards, letters, journals, and,
in our electronic age, their digital equivalents.

The factors that bind the mathematical community help to explain how
Hardy and Littlewood, and, indeed, all mathematicians, could continue their
particular practice of mathematics despite the state of disarray in the under-
lying ideas which attempted to bind their subject on an intellectual level.
Their relationship to the community and their role in the community pre-
vented questions about the intellectual foundations of mathematics from get-
ting in the way of their mathematics. On a formal level, these roles and
relationships were defined by the unwritten rules of community membership.
In Hardy and Littlewood’s case both were, after all, professors at very estab-
lished universities and as such, were expected to mix teaching responsibilities
with research and to submit papers in the accepted form to acceptable jour-
nals. On an informal level however, they were completely free, as were all
community members, to define their own rules of engagement. And they did.
In his foreword to A Mathematician’s Miscellany, Bélla Bollobás quotes a let-
ter in which Harald Bohr describes Hardy and Littlewood’s four “axioms” for
successful collaboration:

The first [axiom] said that when one wrote to the other (they often preferred to
exchange thoughts in writing instead of orally), it was completely indifferent
whether what they said was right or wrong. As Hardy put it, otherwise they could
not write completely as they pleased, but would have to feel a certain responsibility
thereby. The second axiom was to the effect that, when one received a letter from
the other, he was under no obligation whatsoever to read it, let alone answer it,
because, as they said, it might be that the recipient of the letter would prefer not to
work at that particular time, or perhaps that he was just then interested in other
problems....The third axiom was to the effect that, although it did not really matter
if they both thought about the same detail, still, it was preferable that they should
not do so. And, finally, the fourth, and perhaps most important axiom, stated that
it was quite indifferent if one of them had not contributed the least bit to the con-
tents of a paper under their common name; otherwise there would constantly arise
quarrels and difficulties in that now one, and now the other, would oppose being
named co-author.

This example of informal mathematical knowledge management on the
micro scale provides an excellent point of departure for an accelerated trip
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through the remainder of the twentieth century with the goal of examin-
ing the impact of digital technology on the exchange and management of
knowledge within the mathematical community. However, before traveling
forwards in time, it will be useful to travel backwards; back to the inter-
face between scribal and typographic culture in the fifteenth and sixteenth
centuries.

From Scribal Culture to Typographic Culture

The difference between the man of print and the man of scribal culture is nearly as
great as between the non-literate and the literate. The components of Gutenberg
technology were not new. But when brought together in the fifteenth century there
was an acceleration of social and personal action tantamount to “take off” in the
sense that W.W. Rostow develops this concept in The Stages of Economic Growth
“that decisive interval in the history of a society in which growth becomes its nor-
mal condition.” Marshall McLuhan

In The Gutenberg Galaxy, Marshall McLuhan describes the change in cul-
tural orientations, expectations, and assumptions that occurred with the wide
spread adoption of typography in the fifteenth and early sixteenth centuries
and is occurring today with the adoption of electronic media. Typical of
McLuhan’s style, his main ideas are developed from a number of different
perspectives in a non-sequential fashion. Examining the impact of the print-
ing press, McLuhan argues that, while pre-typographic culture was charac-
terized by localized production and limited distribution of production - most
abbeys would have at least one scribe but a single scribe can only produce so
many manuscripts - typographic culture would come to be characterized by
centralized production and mass distribution; a limited number of publish-
ing houses producing and distributing many copies of individual texts.
McLuhan suggests that, with printing, came notions of authority, author-
ship, and intellectual property that were completely unknown in scribal cul-
ture. He cites E.P. Goldschmidt, a scholar in medieval studies:

One thing is immediately obvious: before 1500 or thereabouts, people did not attach
the same importance to ascertaining the precise identity of the author of a book
they were reading or quoting as we do now. We very rarely find them discussing
these points...Not only were users of manuscripts, writes Goldschmidt, mostly
indifferent to the chronology of authorship and to the “identity and personality of
the author of the book he was reading, or in the exact period at which this partic-
ular piece of information was written down, equally little, did he expect his future
readers to be interested in himself.”

Despite the fact that Samuel Morse had brought in the age of electronic
communication with his “What hath God wrought?” transmission of 1844,
electronic technology had made little impact in the early part of the twenti-
eth century. Phones were few and far between and calls were expensive. The
telegraph had found its niche in the long distance communication of simple



messages. With advancements in the technology of typography, the typo-
graphic age was at its apogee. It can reasonably be argued that in so far as
their reputation was earned primarily through the reception by the mathe-
matical community of their published works, the public identities of Hardy
and Littlewood were creations of typographic culture. The question that con-
fronts us today, in this new era of “take off”, is what is the effect of electronic
media on the factors that bind the mathematical community and, in particu-
lar, what is the effect of electronic media on the organization of mathemati-
cal knowledge.

From Typographic Culture to Electronic Culture

Today, with the arrival of automation, the ultimate extension of the electro-
magnetic form to the organization of production, we are trying to cope with such
new organic production as if it were mechanical mass production. Marshall
McLuhan

While the transition from scribal culture to typographic culture repre-
sented a shift from loose notions of authorship with distributed loci of pub-
lication and limited distribution to firm notions of authorship with
centralized loci of publication and mass distribution, the transition to elec-
tronic culture turns the equation inside out, presenting the possibility of dis-
tributed authorship via mass collaboration and multiple nodes of production
with various forms of near instantaneous mass publication. The transforma-
tion that occured in the foundations of mathematics, from a unified perspec-
tive to a plurality of perspectives, finds resonance in the media environment
in which the mathematical community exists and has the potential to
affect the language, purposes, methods, and meeting places of the commu-
nity. In a speech entitled The Medieval Future of Intellectual Culture: Schol-
ars and Librarians in the Age of the Electron, professor Stanley Chodorow
states:

In the not-so-distant future, our own intellectual culture will begin to look some-
thing like the medieval one. Our scholarly and information environment will have
territories dominated by content, rather than by distinct individual contributions.
The current geography of information was the product of the seventeenth-century
doctrine of copyright. We are all worrying about how the electronic medium is
undermining that doctrine. In the long run, the problem of authorship in the new
medium will be at least as important as the problem of ownership of information.
...

Works of scholarship produced in and through the electronic medium will have the
same fluidity - the same seamless growth and alteration and the same de-emphasis
of authorship - as medieval works had. The harbingers of this form of scholarship
are the listservs and bulletin boards of the current electronic environment. In these
forums, scholarly exchange is becoming instantaneous and acquiring a vigor that
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even the great scholarly battlers of old - the legendary footnote fulminators - would
admire. Scholars don’t just work side by side in the vineyard; they work together on
common projects

Applied to mathematics, Chodorow’s ideas suggest the possibility that
the community’s elites, long having been composed of those individuals
who demonstrate a particular “individual vision and brilliance”, may
undergo a process of reconstruction, resulting in elites whose members are
those who have learned how to start with good ideas and develop them by
using the internet to harness the intellectual power of the community. In an
age of massively parallel mathematical computation, the potential exists for
massively parallel mathematical collaboration. Perhaps the best idea of
what a fully digital mathematical scholarship and teaching environment
might look like can be gleaned from the “hacker culture” of the open source
programming community. The meeting places of this community are pri-
marily email, threaded bulletin boards, and implementations of the Con-
current Version System. Those who identify themselves as members, speak
of the community’s “gift culture” which rewards the most talented and gen-
erous of members with status in the community meritocracy. In the opening
section of The Cathedral and the Bazaar, Eric S. Raymond describes hacker
culture:

Many people (especially those who politically distrust free markets) would expect
a culture of self-directed egoists to be fragmented, territorial, wasteful, secretive,
and hostile. But this expectation is clearly falsified by (to give just one example)
the stunning variety, quality and depth of Linux documentation. It is a hallowed
given that programmers hate documenting; how is it, then, that Linux hackers gen-
erate so much of it? Evidently Linux’s free market in egoboo [coined by the
author for ‘ego boost’] works better to produce virtuous, other-directed
behavior than the massively-funded documentation shops of commercial software
producers.

He goes on to invoke the idea of a “community of interest”:

I think the future of open-source software will increasingly belong to people who
know how to play Linus’s game, people who leave behind the cathedral and
embrace the bazaar. This is not to say that individual vision and brilliance will no
longer matter; rather, I think that the cutting edge of open-source software will
belong to people who start from individual vision and brilliance, then amplify it
through the effective construction of voluntary communities of interest.

If, indeed, doing mathematics in the digital age were to develop in a similar
fashion to the way that doing software development has in the open source
community, then the mathematics community must prepare itself for the loss
of fixed notions of authorship and ownership and the accountability and
economic models that those notions sustain. There are good reasons to
believe, however, that despite changes in patterns of collaboration, doing
mathematics in the twenty-first century, will not be too unlike doing mathe-
matics in the twentieth century.
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Implications and a Proposal

Mathematics books and journals do not look as beautiful as they used to. It is
not that their mathematical content is unsatisfactory, rather that the old and well-
developed traditions of type-setting have become too expensive. Fortunately, it now
appears that mathematics itself can be used to solve this problem.
Donald Knuth

In Digital Typography, Donald Knuth describes his efforts to capture the
traditions of mathematical type-setting in a digital publishing environment;
efforts which ultimately led to the development of TEX and METAFONT. It is
noteworthy that, faced with a new technology for communicating and pre-
senting mathematics, one of the first major projects related to mathematical
publishing was a truly awesome effort to preserve the most valued qualities of
traditional typography. The enormous success of Knuth’s enterprise stands
as a testament to the high value that is placed upon traditional methods of
representing mathematical knowledge. It is an interesting aside that the TEX
and METAFONT projects were among the first open source programming
efforts, functioning without the support of the web, the code being released
to collaborators via email.

Apart from the value that members of the mathematical community evi-
dently place on good quality digital typography, there are a number of other
reasons to believe that traditional methods of knowledge representation such
as the refereed journal and the bound textbook together with the ideas of
copyright and accountability that they encapsulate, will not completely fall
victim to the distributed modes of digital technology. The educational and
research institutions that support traditional forms of knowledge representa-
tion are well established and, as evidenced by the success of firms which offer
support for open source software, there is every reason to believe that there
will continue to be a market for mathematical content that comes with some
form of explicit or implicit guarantee and accountablity.

This is not to imply that digital modes of expression can or should be left
to develop unscrutinized. The complexity of modern mathematics and the
volume of work produced has led to classification schema that are being
adapted and extended to digital publication. The use of metatags to describe
digital documents has an interesting antecedent in medieval scholarship. In
his book Medieval Theory of Authorship, A.J. Minnis describes the use of for-
mal prologues found at the beginning of manuscripts. Here, he describes the
so-called ‘type C’ prologue:

In the systematisation of knowledge which is characteristic of the twelfth century,
the ‘type C’ prologue appeared at the beginning of commentaries on textbooks of
all disciplines: the arts, medicine, Roman law, canon law, and theology. Its standard
headings, refined by generations of scholars and to some extent modified through
the influence of other types of prologue, may be outlined as follows:Titulus, the title
of the work...Nomen auctoris, the name of the author...Intentio Auctoris, the inten-
tion of the author...Materia Libri, the subject matter of the work...Modus agendi,
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the method of didactic procedure...Ordo libri, the order of the book...Utilitas, util-
ity...Cui parti philosophiae supponitur, the branch of learning to which the work
belonged.

Cast as medieval metadata, these prologues indicate some effort on the part
of medieval scholars to protect the integrity of scholarly works in a distrib-
uted publishing environment. The question arises as to whether or not the
unique modes of digital publishing that members of the mathematical com-
munity may create to express mathematical thought might be supceptible to
some form of classification via metadata. For example, what might Hardy and
Littlewood’s correspondence look like in a digital environment? The default
answer is that it would look much the same as long as they were to access their
work on devices that presented a viewing area that resembled the paper and
postcards that they used. The qualified answer is that it would look much the
same unless they were reading the information using a display with quite dif-
ferent geometry from note paper or postcards. If, for example, they were to
attempt to read the data using a cell phone, then ideally the logic of the the
digital environment would make the appropriate adaptations and do the best
job possible to make the data readable. The correct answer is that the corre-
spondence wouldn’t look like anything at all because it would never be in dig-
ital form; Hardy would refuse to have anything to do with it. By all accounts,
he was a true Luddite who mistrusted the telephone and would refuse even to
use ball point pens. Hardy’s likely reluctance aside, however, it is possible to
imagine how the appropriate digital environment might have been tremen-
dously useful to the Hardy-Littlewood collaboration. If their correspondence
had been instantly stored in a database, then a minimal effort invested in spec-
ifying metadata would permit them efficient searches and the other digital
data manipulations that we now take for granted such as cutting and pasting.
Depending on what permissions they chose to grant to the data, a wider audi-
ence could be included as observers, or partial or full collaborators.

Emkara, the Extensible Mathematical Knowledge Archiving and Retrieval
Agent, is the working title of a project at Simon Fraser University’s Centre
for Experimental and Constructive Mathematics that is designed to investigate
how user defined mathematical knowledge construction might conform to
metadata driven information management. Emkara is, in effect, a database
management system which affords qualified users the ability to create their
own data structures, while encouraging thoughtful use of metadata to
describe what they are creating. The act of creating a data structure is a table
creation operation on the database. All user-defined metadata is stored inter-
nally as well-formed XML and, at present, mathematical content fields store
data as mathML embedded in xhtml. When a qualified user creates a new
mathematical object, emkara generates a default ‘edit mode’ script, a default
‘view mode’ script, and the corresponding style sheet for each. These scripts
and style sheets are accessible to the object creator for modification or
replacement. The object creation interface requests certain metadata by
default. These include:



● basic elements of the Math-Net metadata set
● some elements of eduML mark-up
● information concerning the copyright of the object data.

The research incentive of this project is two-fold; to gain insight into what
forms of metadata “work” in electronic mathematics knowledge manage-
ment and to develop a framework for describing the characteristics of elec-
tronic mathematics interfaces that meet their objectives.

Sequel...

In the theory of software development processes, Conway’s Law is cited as a
caveat regarding the tendency of a software project’s logical design to take on
the characteristics of the organizational structure of the work groups that
create it. The full statement of the law describes a set of complementary
forces in which software architecture informs organizational structure and
vice versa. Ultimately, however, the two become aligned and it is therefore
important in the early stages of a project to build as much flexibility as pos-
sible into both architecture and organizational structure. While these state-
ments about the software development process were never intended to apply
to an undertaking such as the development of systems for mathematical
knowledge management, the relationship between organizational structure
and system design is worth considering.

Earlier, a broad definition of mathematical community was adopted encom-
passing all “those involved with advancing the understanding of mathematics;
either at its frontiers, the primary occupation of researchers, or within the
existing body of mathematical knowledge such as teachers and students”.
This definition is at odds with the experience of most who might claim either
full or part time membership in the community. If there is truth to the idea
that our individual experience of “community” is formed by the group of peo-
ple with whom we exchange ideas, then it can be argued that any undertaking
that attempts to define systems of mathematical knowledge management is,
perforce, also defining the structure of the mathematical community.

It is possible to argue that many of the factors that have determined the
current divisions within the broad mathematics community, such as domain
specialization in research and age group specialization in education, have
their origin in the perspectives of typographic culture. It is not necessary here
that these arguments be completed. Rather, it is important to point out that
there is the possibility of defining management systems that can support the
exchange of ideas between smaller communities within the broad mathemat-
ics community. These systems would need to create “meeting places” that
bring the broader community together. The schism that presently exists
between school level and university level mathematics provides a good exam-
ple. There is no reason that those interested in exchanging ideas regarding a
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topic in a high school mathematics curriculum could not visit the same elec-
tronic mathematical community centre as members of a particular research
community. While members of one group may never use nor even look at the
resources that are designed for members of the other group, the fact that they
pass through the same digital front doors and may even linger, looking at the
notices posted in the digital entrance hall, offers hope that each group, even
if only accidentally, might gain a better understanding of the priorities and
concerns of the other group.

Conclusion

Men despise religion; they hate it, and they fear it is true.
Pascal, from Pensées, 1670.

The idea of organized religion representing a fixed, centralized view of the
world has come up several times in this paper starting with the anecdote con-
cerning Hardy’s atheism and most recently with the citations from the
metaphorically titled The Cathedral and the Bazaar. With some exceptions, it
is probably inaccurate to imply that modern churches are unyielding and
inflexible in their outlook and community structure. It would be even more
inaccurate to suggest that the broad mathematical community has much in
common with organized religion. If this were true, then in his day, Hardy
would certainly have been one of the high priests; an idea that he surely
would have found either very amusing or very annoying or both. What is true
however is that over the course of this century and particularly with the accel-
erated spread of computer technology that has occured in the last fifteen
years, the mathematical community has been faced with the challenge of
adapting its language, methods, and meeting places to new technology. The
affect that digital technology had on the methods of the community was
clearly reflected in the types of knowledge considered valid by the commu-
nity. For example, it is today not unusual to find mathematical papers with
blocks of Maple code. Networking technology is having a more complicated
effect on the forms of knowledge that are accepted by the community. Bear-
ing in mind that, in 1969, the Culler-Fried Interactive Mathematics Center at
the University of California at Santa Barbara became the third node on the
arpanet, it is fair to say that mathematicians have seen the potential of the
network and encountered its problems from its genesis. At this still early stage
in the development of network technologies for mathematical knowledge
management, it is important to consider the effect that those technologies can
have on the meeting places of the community and, among other things, who
is invited to those meeting places.
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Do Real Numbers Really Move?
Language, Thought, and Gesture:
The Embodied Cognitive
Foundations of Mathematics

RAFAEL NÚÑEZ

Abstract: Robotics, artificial intelligence and, in general, any activity involving
computer simulation and engineering relies, in a fundamental way, on mathematics.
These fields constitute excellent examples of how mathematics can be applied to
some area of investigation with enormous success. This, of course, includes embod-
ied oriented approaches in these fields, such as Embodied Artificial Intelligence and
Cognitive Robotics. In this chapter, while fully endorsing an embodied oriented
approach to cognition, I will address the question of the nature of mathematics
itself, that is, mathematics not as an application to some area of investigation, but
as a human conceptual system with a precise inferential organization that can be
investigated in detail in cognitive science. The main goal of this piece is to show,
using techniques in cognitive science such as cognitive semantics and gestures stud-
ies, that concepts and human abstraction in general (as it is exemplified in a sublime
form by mathematics) is ultimately embodied in nature.

1. A challenge to embodiment: The nature
of Mathematics

Mathematics is a highly technical domain, developed over several millennia,
and characterized by the fact that the very entities that constitute what Math-
ematics is are idealized mental abstractions. These entities cannot be perceived
directly through the senses. Even, say, a point, which is the simplest entity in
Euclidean geometry, can’t be actually perceived. A point, as defined by Euclid
is a dimensionless entity, an entity that has only location but no extension. No
super-microscope will ever be able to allow us to actually perceive a point.
A point, after all, with its precision and clear identity, is an idealized abstract
entity. The imaginary nature of mathematics becomes more evident when the
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entities in question are related to infinity where, because of the finite nature of
our bodies and brains, no direct experience can exist with the infinite itself. Yet,
infinity in mathematics is essential. It lies at the very core of many fundamen-
tal concepts such as limits, least upper bounds, topology, mathematical induc-
tion, infinite sets, points at infinity in projective geometry, to mention only a
few. When studying the very nature of mathematics, the challenging and
intriguing question that comes to mind is the following: if mathematics is the
product of human ideas, how can we explain the nature of mathematics with
its unique features such as precision, objectivity, rigor, generalizability, stability,
and, of course, applicability to the real world? Such a question doesn’t repre-
sent a real problem for approaches inspired in platonic philosophies, which rely
on the existence of transcendental worlds of ideas beyond human existence.
But this view doesn’t have any support based on scientific findings and doesn’t
provide any link to current empirical work on human ideas and conceptual sys-
tems (it may be supported, however, as a matter of faith, not of science, by
many Platonist scientists and mathematicians). The question doesn’t pose
major problems to purely formalist philosophies either, because in that world-
view mathematics is seen as a manipulation of meaningless symbols. The ques-
tion of the origin of the meaning of mathematical ideas doesn’t even emerge
in the formalist arena. For those studying the human mind scientifically,
however (e.g., cognitive scientists), the question of the nature of mathemat-
ics is indeed a real challenge, especially for those who endorse an embodied
oriented approach to cognition. How can an embodied view of the mind
give an account of an abstract, idealized, precise, sophisticated and power-
ful domain of ideas if direct bodily experience with the subject matter is not
possible?

In Where Mathematics Comes From, Lakoff and Núñez (2000) give
some preliminary answers to the question of the cognitive origin of math-
ematical ideas. Building on findings in mathematical cognition, and using
mainly methods from Cognitive Linguistics, a branch of Cognitive Science,
they suggest that most of the idealized abstract technical entities in Math-
ematics are created via human cognitive mechanisms that extend the struc-
ture of bodily experience (thermic, spatial, chromatic, etc.) while
preserving the inferential organization of these domains of bodily experi-
ence. For example, linguistic expressions such as “send her my warm hel-
loes” and “the teacher was very cold to me” are statements that refer to
the somewhat abstract domain of Affection. From a purely literal point
of view, however, the language used belongs to the domain of Thermic
experience, not Affection. The meaning of these statements and the infer-
ences one is able to draw from them is structured by precise mappings
from the Thermic domain to the domain of Affection: Warmth is
mapped onto presence of affection, Cold is mapped onto lack of affec-
tion, X is warmer than Y is mapped onto X is more affectionate than Y,
and so on. The ensemble of inferences is modeled by one conceptual
metaphorical mapping, which in this case is called AFFECTION IS
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WARMTH1. Research in Cognitive Linguistics has shown that these phe-
nomena are not simply about “language,” but rather they are about
thought. In cognitive science the complexities of such abstract and non/lit-
eral phenomena have been studied through mechanisms such as concep-
tual metaphors (Lakoff & Johnson, 1980; Sweetser, 1990; Lakoff, 1993;
Lakoff & Núñez, 1997; Núñez & Lakoff, in press; Núñez, 1999, 2000), con-
ceptual blends (Fauconnier & Turner, 1998, 2002; Núñez, in press), con-
ceptual metonymy (Lakoff & Johnson, 1980), fictive motion and dynamic
schemas (Talmy, 1988, 2003), and aspectual schemas (Narayanan, 1997).
Based on these findings Lakoff and Núñez (2000) analyzed many areas in
mathematics, from set theory to infinitesimal calculus, to transfinite arith-
metic, and showed how, via everyday human embodied mechanisms such
as conceptual metaphor and conceptual blending, the inferential patterns
drawn from direct bodily experience in the real world get extended in very
specific and precise ways to give rise to a new emergent inferential organi-
zation in purely imaginary domains2. For the remainder of this chapter we
will be building on these results as well as on the corresponding empirical
evidence provided by the study of human speech-gesture coordination. Let
us now consider a few mathematical examples.

2. Limits, curves, and continuity

Through the careful analysis of technical books and articles in mathematics,
we can learn a good deal about what structural organization of human every-
day ideas have been used to create mathematical concepts. For example, let us
consider a few statements regarding limits in infinite series, equations of
curves in the Cartesian plane, and continuity of functions, taken from math-
ematics books such as the now classic What is Mathematics? by R. Courant
& H. Robbins (1978).

a) Limits of infinite series
In characterizing limits of infinite series, Courant & Robbins write:

“We describe the behavior of sn by saying that the sum sn approaches the
limit 1 as n tends to infinity, and by writing

1 = 1/2 + 1/22 + 1/23 + 1/24 + ...” (p. 64, our emphasis)

1 Following a convention in Cognitive Linguistics, the name of a conceptual
metaphorical mapping is capitalized.
2 The details of how conceptual metaphor and conceptual blending work go beyond
the scope of this piece. For a general introduction to these concepts see Lakoff &
Núñez (2000, chapters 1-3), and the references given therein.
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Strictly speaking, this statement refers to a sequence of discrete and motion-
less partial sums of sn (real numbers), corresponding to increasing discrete
and motionless values taken by n in the expression 1/2n where n is a natural
number. If we examine this statement closely we can see that it describes
some facts about numbers and about the result of discrete operations with
numbers, but that there is no motion whatsoever involved. No entity is actu-
ally approaching or tending to anything. So, why then did Courant and Rob-
bins (or mathematicians in general, for that matter) use dynamic language to
express static properties of static entities? And what does it mean to say that
the “sum sn approaches,” when in fact a sum is simply a fixed number, a result
of an operation of addition?

b) Equations of lines and curves in the Cartesian Plane
Regarding the study of conic sections and their treatment in analytic geome-
try, Courant & Robbins’ book says:

“The hyperbola approaches more and more nearly the two straight lines qx ± py = 0
as we go out farther and farther from the origin, but it never actually reaches these
lines. They are called the asymptotes of the hyperbola.” (p. 76, our emphasis).

And then the authors define hyperbola as “the locus of all points P the dif-
ference of whose distances to the two points F(√(p2 + q2), 0) and F ’(− √(p2 +
q2), 0) is 2p.” (p. 76, original emphasis).

Strictly speaking, the definition only specifies a “locus of all points P” sat-
isfying certain properties based exclusively on arithmetic differences and dis-
tances. Again, no entities are actually moving or approaching anything. There
are only statements about static differences and static distances. Besides, as
Figure 1 shows, the authors provide a graph of the hyperbola in the Cartesian
Plane (bottom right), which in itself is a static illustration that doesn’t have the
slightest insinuation of motion (like symbols for arrows, for example). The fig-
ure illustrates the idea of locus very clearly, but it says nothing about motion.
Moreover the hyperbola has two distinct and separate loci. Exactly which one
of the two is then “the” moving agent (3rd person singular) in the authors’
statement “the hyperbola approaches more and more nearly the two straight
lines qx ± py = 0 as we go out farther and farther from the origin”?

c) Continuity
Later in the book, the authors analyze cases of continuity and discontinuity
of trigonometric functions in the real plane. Referring to the function f(x) =
sin 1/x (whose graph is shown in Figure 2) they say: “... since the denomina-
tors of these fractions increase without limit, the values of x for which the
function sin(1/x) has the values 1, −1, 0, will cluster nearer and nearer to the
point x = 0. Between any such point and the origin there will be still an infi-
nite number of oscillations of the function” (p. 283, our emphasis).
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Once again, if, strictly speaking, a function is a mapping between elements
of a set (coordinate values on the x-axis) with one and only one of the ele-
ments of another set (coordinate values on the y-axis), all that we have is a
static correspondence between points on the x-axis with points on the y-axis.
How then can the authors (or mathematicians in general) speak of “oscilla-
tions of the function,” let alone an infinite number of them?

These three examples show how ideas and concepts are described, defined,
illustrated, and analyzed in mathematics books. You can pick your favorite

FIGURE 1. Original text analyzing the hyperbola as published in the now classic book
What is Mathematics? by R. Courant & H. Robbins (1978).

x

y

0

1

−1

FIGURE 2. The graph of the function f(x) = sin 1/x.



mathematics books and you will see similar patterns. You will see them in
topology, fractal geometry, space-filling curves, chaos theory, and so on.
Here, in all three examples, static numerical structures are involved, such as
partial sums, geometrical loci, and mappings between coordinates on one
axis with coordinates on another. Strictly speaking, absolutely no dynamic
entities are involved in the formal definitions of these terms. So, if no entities
are really moving, why do authors speak of “approaching,” “tending to,”
“going farther and father,” and “oscillating”? Where is this motion coming
from? What does dynamism mean in these cases? What role is it playing (if
any) in these statements about mathematics facts?

We will first look at pure mathematics to see whether we can find answers to
these questions. Then, in order to get some deeper insight into them, we will
turn to human language and real-time speech-gesture coordination.

3. Looking at pure Mathematics

Among the most fundamental entities and properties the above examples
deal with are the notions of real number and continuity. Let us look at how
pure mathematics defines and provides the inferential organization of these
concepts.

In pure mathematics, entities are brought to existence via formal defini-
tions, formal proofs (theorems) or by axiomatic methods (i.e., by declaring
the existence of some entity without the need of proof. For example, in set
theory the axiom of infinity assures the existence of infinite sets. Without
that axiom, there are no infinite sets). In the case of real numbers, ten axioms
taken together, fully characterize this number system and its inferential
organization (i.e., theorems about real numbers). The following are the
axioms of the real numbers.

1. Commutative laws for addition and multiplication.
2. Associative laws for addition and multiplication.
3. The distributive law.
4. The existence of identity elements for both addition and multiplication.
5. The existence of additive inverses (i.e., negatives).
6. The existence of multiplicative inverses (i.e., reciprocals).
7. Total ordering.
8. If x and y are positive, so is x + y.
9. If x and y are positive, so is x ● y.

10. The Least Upper Bound axiom.

The first 6 axioms provide the structure of what is called a field for a set of
numbers and two binary operations. Axioms 7 through 9, assure ordering
constraints. The first nine axioms fully characterize ordered fields, such as the
rational numbers with the operations of addition and multiplication. Up to
here we have already a lot of structure and complexity. For instance we can
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characterize and prove theorems about all possible numbers that can be
expressed as the division of two whole numbers (i.e., rational numbers). With
the rational numbers we can describe with any given (finite) degree of preci-
sion the proportion given by the perimeter of a circle and its diameter (e.g.,
3.14; 3.1415; etc.). We can also locate along a line (according to their magni-
tude) any two different rational numbers and be sure (via proof) that there
will always be infinitely many more rational numbers between them (a prop-
erty referred to as density). With the rational numbers, however, we can’t
“complete” the points on this line, and we can’t express with infinite exacti-
tude the magnitude of the proportion mentioned above (π = 3.14159 ...). For
this we need the full extension of the real numbers. In axiomatic terms, this
is accomplished by the tenth axiom: the Least Upper Bound axiom. All ten
axioms characterize a complete ordered field.

In what concerns our original question of where is motion coming from in
the above mathematical statements about infinite series and continuity, we
don’t find any answer in the first nine axioms of real numbers. All nine
axioms simply specify the existence of static properties regarding binary
operations and their results, and properties regarding ordering. There is no
explicit or implicit reference to motion in these axioms. Since what makes a
real number a real number (with its infinite precision) is the Least Upper
Bound axiom, it is perhaps this very axiom that hides the secret of motion we
are looking for. Let’s see what this axiom says:

10. Least Upper Bound axiom: every nonempty set that has an upper
bound has a least upper bound.

And what exactly is an upper bound and a least upper bound? This is what
pure mathematics says:

Upper Bound
b is an upper bound for S if
x ≤ b, for every x in S.
Least Upper Bound
b0 is a least upper bound for S if
● b0 is an upper bound for S, and
● b0 ≤ b for every upper bound b of S.

Once again, all that we find are statements about motionless entities such
as universal quantifiers (e.g., for every x; for every upper bound b of S), mem-
bership relations (e.g., for every x in S), greater than relationships (e.g., x ≤ b;
b0 ≤ b), and so on. In other words, there is absolutely no indication of motion
in the Least Upper Bound axiom, or in any of the other nine axioms. In
short, the axioms of real numbers, which are supposed to completely charac-
terize the “truths” (i.e., theorems) of real numbers don’t tell us anything
about a sum “approaching” a number, or a number “tending to” infinity
(whatever that may mean!).

Let’s try continuity. What does pure mathematics say about it?

Mathematics textbooks define continuity for functions as follows:



● A function f is continuous at a number a if the following three condi-
tions are satisfied:
1. f is defined on an open interval containing a,
2. limx → a f(x) exists, and
3. limx → a f(x) = f(a).

Where by limx → a f(x) what is meant is the following:
Let a function f be defined on an open interval containing a, except possi-

bly at a itself, and let L be a real number. The statement

limx → a f (x) = L

means that > , > ,o 06 7f d

such that if < < ,x a0 - d

then < .f x L- f_ i
As we can see, pure formal mathematics defines continuity in terms of limits,
and limits in terms of

● static universal and existential quantifiers predicating on static numbers
(e.g., > , > ,0 06 7f d ), and

● on the satisfaction of certain conditions which are described in terms of
motionless arithmetic difference (e.g., f x L-_ i ) and static smaller than
relations (e.g., < <x a0 - d).

That’s it. Once again, these formal definitions don’t tell us anything about
a sum “approaching” a number, or a number “tending to” infinity, or about
a function “oscillating” between values (let alone doing it infinitely many
times, as in the function f(x) = sin 1/x).

But this shouldn’t be a surprise. Lakoff & Núñez (2000), using techniques
from cognitive linguistics showed what well-known contemporary mathe-
maticians had already pointed out in more general terms (Hersh, 1997; Hen-
derson, 2001):

● The structure of human mathematical ideas, and its inferential organi-
zation, is richer and more detailed than the inferential structure provided
by formal definitions and axiomatic methods. Formal definitions and
axioms neither fully formalize nor generalize human concepts.

We can see this with a relatively simple example taken from Lakoff & Núñez
(2000). Consider the function f(x) = x sin 1/x whose graph is depicted in 
Figure 3.
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According to the ε -δ definition of continuity given above, this function is
continuous at every point. For all x, it will always be possible to find the spec-
ified ε’s and δ’s necessaries to satisfy the conditions for preservation of close-
ness. However, according to the everyday notion of continuity—natural
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continuity (Núñez & Lakoff, 1998)—as it was used by great mathematicians
such as Kepler, Euler, and Newton and Leibniz, the inventors of infinitesimal
calculus in the 17th Century, this function is not continuous. According to
the inferential organization of natural continuity, certain conditions have to
be met. For instance, in a naturally continuous line we are supposed to be able
to tell how long the line is between two points. We are also supposed to be
able to describe essential components of the motion of a point along that
line. With this function we can’t do that. Since the function “oscillates” infi-
nitely many times as it “approaches” the point (0, 0) we can’t really tell how
long the line is between two points located on the left and right sides of the
plane. Moreover, as the function approaches the origin (0, 0) we can’t tell, say,
whether it will “cross” from the right plane to the left plane “going down”
or “going up.” This function violates these basic properties of natural conti-
nuity and therefore it is not continuous. The function f(x) = x sin 1/x is thus
ε -δ continuous but it is not naturally continuous. The point is that the for-
mal ε -δ definition of continuity doesn’t capture the inferential organization
of the human everyday notion of continuity, and it doesn’t generalize the
notion of continuity either.

The moral here is that what is characterized formally in mathematics leaves
out a huge amount of inferential organization of the human ideas that con-
stitute mathematics. As we will see, this is precisely what happens with the
dynamic aspects of the expressions we saw before, such as “approaching,”
“tending to,” “going farther and farther,” “oscillating,” and so on. Motion, in
those examples, is a genuine and constitutive manifestation of the nature of
mathematical ideas. In pure mathematics, however, motion is not captured by
formalisms and axiomatic systems.

x

y

y=1 y=x

FIGURE 3. The graph of the function f(x) = x sin 1/x.
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4. Embodied Cognition

It is now time to look, from the perspective of embodied cognition, at the
questions we asked earlier regarding the origin of motion in the above math-
ematical ideas. In the case of limits of infinite series, motion in “the sum sn
approaches the limit 1 as n tends to infinity” emerges metaphorically from the
successive values taken by n in the sequence as a whole. It is beyond the scope
of this chapter to go into the details of the mappings involved in the various
underlying conceptual metaphors that provide the required dynamic inferen-
tial organization (for details see Lakoff & Núñez, 2000). But we can at least
point out some of the many conceptual metaphors and metonymies3

involved.

● There are conceptual metonymies in cases such as a partial sum standing
for the entire infinite sum;

● there are conceptual metaphors in cases where we conceptualize the
sequence of these metonymical sums as a unique trajector4 moving in space
(as it is indicated by the use of the 3rd person singular in the sum
sn approaches);

● there are conceptual metaphors for conceiving infinity as a single location
in space such that a metonymical n (standing for the entire sequence of val-
ues) can “tend to;”

● there are conceptual metaphors for conceiving 1 (not as a mere natural
number but as an infinitely precise real number) as the result of the infinite
sum; and so on.

Notice that none of these expressions can be literal. The facts described in
these sentences don’t exist in any real perceivable world. They are metaphor-
ical in nature. It is important to understand that these conceptual metaphors
and metonymies are not simply “noise” added on top of pre-defined for-
malisms. They are in fact constitutive of the very embodied ideas that make
mathematical ideas possible. It is the inferential organization provided by our
embodied understanding of “approaching” and “tending to” that is at the
core of these mathematical ideas.

In the case of the hyperbola, the moving agent is one holistic object, the
hyperbola in the Real plane. This object, which has two distinct separate
parts, is conceptualized as one single trajector metaphorically moving away

3 A conceptual metonymy is a cognitive mechanism that allow us to conceive a part
of a whole standing for the whole, as when we say Washington and Paris have quite dif-
ferent views on these issues, meaning the governments of two entire nations, namely,
United States and France.
4 In cognitive linguistics, “trajector” is a technical term used to refer to the distinct
entity that performs the motion traced by a trajectory. The trajector moves against a
background called “landscape.”
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from the origin. Via conceptual metonymies and metaphors similar to
the ones we saw for the case of infinite series, the hyperbola is conceived as a
trajector tracing the line, which describes the geometrical locus of the hyper-
bola itself. In this case, of course, because we are dealing with real num-
bers, the construction is done on non-countable infinite (>

0
" ) discrete real

values for x, which are progressively bigger in absolute terms. The direc-
tion of motion is stated as moving away from the origin of the Cartesian
coordinates, and it takes place in both directions of the path schemas defined
by the two branches of the hyperbola, simultaneously. The hyperbola not
“reaching” the asymptotes is the cognitive way of characterizing the mathe-
matically formalized fact that there are no values for x and y that satisfy
equations

qx ± py = 0 and (x2/p2) − (y2/q2) = 1

Notice that characterizing the hyperbola as “not reaching” the asymptotes
provides the same extensionality (i.e., it gives the same resulting cases) as say-
ing that there is an “absence of values” satisfying the above equations. The
inferential organization of these two cases, however, is cognitively very dif-
ferent5.

Finally, in what concerns our “oscillating” function example, the moving
object is again one holistic object, the trigonometric function in the Real
plane, constructed metaphorically from non-countable infinite (>

0
" ) dis-

crete real values for x, which are progressively smaller in absolute terms. In
this case motion takes place in a specific manner, towards the origin from
two opposite sides (i.e., for negative and positive values of x) and always
between the values y = 1 and y = −1. As we saw, a variation of this func-
tion, f(x) = x sin(x), reveals deep cognitive incompatibilities between the
dynamic notion of continuity implicit in the example above and the static
ε-δ definition of continuity coined by Weierstrass in the second half of the
19th century (based on quantifiers and discrete Real numbers) and which
has been adopted ever since as “the” definition of what Continuity really is
(Núñez & Lakoff, 1998; Lakoff & Núñez, 2000). These deep cognitive
incompatibilities between dynamic-wholistic entities and static-discrete
ones may explain important aspects underlying the difficulties encoun-
tered by students all over the world when learning the modern technical ver-
sion of the notions of limits and continuity (Núñez, Edwards, and Matos,
1999).

5 In order to clarify this point, consider the following two questions: (a) What Alpine
European country does not belong to the European Union?, and (b) What is the coun-
try whose currency is the Swiss Franc? The extensionality provided by the answers to
both questions is the same, namely, the country called “Switzerland.” This, however,
doesn’t mean that we have to engage in the same cognitive activity in order to correctly
answer these questions.



Do Real Numbers Really Move? 171

5. Fictive Motion

Now that we are aware of the metaphorical (and metonymical nature) of the
mathematical ideas mentioned above, I would like to analyze more in detail
the dynamic component of these ideas. From where do these ideas get
motion? What cognitive mechanism is allowing us to conceive static entities
in dynamic terms? The answer is fictive motion.

Fictive motion is a fundamental embodied cognitive mechanism through
which we unconsciously (and effortlessly) conceptualize static entities in
dynamic terms, as when we say the road goes along the coast. The road itself
doesn’t actually move anywhere. It is simply standing still. But we may con-
ceive it as moving “along the coast.” Fictive motion was first studied by Len
Talmy (1996), via the analysis of linguistic expressions taken from everyday
language in which static scenes are described in dynamic terms. The follow-
ing are linguistic examples of fictive motion:

● The Equator passes through many countries
● The border between Switzerland and Germany runs along the Rhine.
● The California coast goes all the way down to San Diego
● After Corvisart, line 6 reaches Place d’Italie.
● Right after crossing the Seine, line 4 comes to Chatêlet.
● The fence stops right after the tree.
● Unlike Tokyo, in Paris there is no metro line that goes around the city.

Motion, in all these cases, is fictive, imaginary, not real in any literal sense. Not
only do these expressions use verbs of action, but they also provide precise
descriptions of the quality, manner, and form of motion. In all cases of fictive
motion there is a trajector (the moving agent) and a landscape (the back-
ground space in which the trajector moves). Sometimes the trajector may be a
real object (e.g., the road goes; the fence stops), and sometimes it is an imagi-
nary entity (e.g., the Equator passes through; the border runs). In fictive
motion, real world trajectors don’t move but they have the potential to move
or the potential to enact movement (e.g., a car moving along that road). In
Mathematics proper, however, the trajector has always a metaphorical com-
ponent. That is, the trajector as such can’t be literally capable or incapable of
enacting movement, because the very nature of the trajectory is imagined via
metaphor (Núñez, 2003). For example, a point in the Cartesian Plane is an
entity that has location (determined by its coordinates) but has no extension.
So when we say “point P moves from A to B” we are ascribing motion to a
metaphorical entity that only has location. First, as we saw earlier, entities
which have only location (i.e., points) don’t exist in the real world, so, as such,
they don’t have the potential to move or not to move in any literal sense. They
simply don’t exist in the real world. They are metaphorical entities. Second, lit-
erally speaking, point A and point B are distinct locations, and no point can
change location while preserving its identity. That is, the trajector (point P,
uniquely determined by its coordinates) can’t preserve its identity throughout



the process of motion from A to B, since that would mean that it is changing
the very properties that are defining it, namely, its coordinates.

We now have a basic understanding of how conceptual metaphor and fic-
tive motion work, so we are in a position to see the embodied cognitive mech-
anisms underlying the mathematical expressions like the ones we saw earlier.
Here we have similar expressions:

● sin 1/x oscillates more and more as x approaches zero
● g(x) never goes beyond 1
● If there exists a number L with the property that f(x) gets closer and
closer to L as x gets larger and larger; limx→∞ f(x) = L.

In these examples Fictive Motion operates on a network of precise concep-
tual metaphors, such as NUMBERS ARE LOCATIONS IN SPACE (which allows us
to conceive numbers in terms of spatial positions), to provide the inferential
structure required to conceive mathematical functions as having motion and
directionality. Conceptual metaphor generates a purely imaginary entity in a
metaphorical space, and fictive motion makes it a moving trajector in this
metaphorical space. Thus, the progressively smaller numerical values taken
by x which determine numerical values of sin 1/x, are via the conceptual
metaphor NUMBERS ARE LOCATIONS IN SPACE conceptualized as spatial loca-
tions. The now metaphorical spatial locus of the function (i.e., the “line”
drawn on the plane) now becomes available for fictive motion to act upon.
The progressively smaller numerical values taken by x (now metaphorically
conceptualized as locations progressively closer to the origin) determine cor-
responding metaphorical locations in space for sin 1/x. In this imaginary
space, via conceptual metaphor and fictive motion now sin 1/x can “oscillate”
more and more as x “approaches” zero.

In a similar way the infinite precision of real numbers themselves can be
conceived as limits of sequences of rational numbers, or limits of sequences
of nested intervals. Because, as we saw, limits have conceptual metaphor and
fictive motion built in, we can now see the fundamental role that these
embodied mechanisms play in the constitution of the very nature of the real
numbers themselves.

5. Dead Metaphors?

Up to now, we have analyzed some mathematical ideas through methods in
cognitive linguistics, such as conceptual metaphor, conceptual metonymy,
and fictive motion. We have studied the inferential organization modeling
linguistic expressions. But so far not much has been said of actual people
speaking, writing, explaining, learning, or gesturing in real-time when
involved in mathematical activities. The analysis so far has been almost exclu-
sively at the level of written and oral linguistic expressions. We must know
whether there is any psychological (and presumably neurological) reality
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underlying these linguistics expressions. The remaining task now is to show
that all these cases are not, as some scholars have suggested, mere instances
of so-called dead metaphors, that is, expressions that once in the past had a
metaphorical dimension but that now, after centuries of usage, have lost their
metaphorical component becoming “dead.” Dead metaphorical expressions
are those that have lost their psychological (and cognitive semantic) original
reality, becoming simply new “lexical items.” Perhaps in the cases we have
seen in mathematics, what once was a metaphorical expression has now
become a literal expression whose meaningful origin speakers of English
don’t know anymore (very much like so many English words whose Latin or
Greek etymology may have been known by speakers at a certain point in his-
tory, but whose original meaning is no longer evoked by speakers today). Is
this what is happening to cases such as “approaching” limits, “oscillating”
functions, or hyperbolae not “reaching” the asymptotes? Maybe, after all, all
that we have in the mathematical expressions we have examined, is simply a
story of dead metaphors, with no psychological (or neurological) reality
whatsoever. As we will see, however, the study of human gesture provides
embodied convergent evidence showing that this is not the case at all. Gesture
studies, via a detailed investigation of real-time cognitive and linguistic pro-
duction, bodily motion (mainly hands and arms), and voice inflection, show
that the conceptual metaphors and fictive motion involved in the mathemat-
ical ideas analyzed above, far from being dead, do have a very embodied psy-
chological (and presumably neurological) reality.

6. Gesture as Cognition

Human beings from all cultures around the world gesture when they speak.
The philosophical and scientific study of human language and thought has
largely ignored this simple but fundamental fact. Human gesture constitutes
the forgotten dimension of thought and language. Chomskian linguistics, for
instance, overemphasizing syntax, saw language mainly in terms of abstract
grammar, formalisms, and combinatorics, you could study by looking at writ-
ten statements. In such a view there was simply no room for meaningful
(semantic) “bodily production” such as gesture. In mainstream experimental
psychology gestures were left out, among others, because being produced in
a spontaneous manner, it was very difficult to operationalize them, making
rigorous experimental observation on them extremely difficult. In main-
stream cognitive science, which in its origins was heavily influenced by classic
artificial intelligence, there was simply no room for gestures either. Cognitive
science and artificial intelligence were heavily influenced by the information-
processing paradigm and what was taken to be essential in any cognitive
activity was a set of body-less abstract rules and the manipulation of physi-
cal symbols governing the processing of information. In all these cases, ges-
tures were completely ignored and left out of the picture that defined what
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constituted genuine subject matters for the study of the mind. At best, ges-
tures were considered as a kind of epiphenomenon, secondary to other more
important and better-defined phenomena.

But in the last decade or so, this scenario has changed in a radical way with
the pioneering work of A. Kendon (1980), D, McNeill (1992), S. Goldin-
Meadow & C. Mylander (1984), and many others. Research in a large variety
of areas, from child development, to neuropsychology, to linguistics, and to
anthropology, has shown the intimate link between oral and gestural pro-
duction. Finding after finding has shown, for instance, that gestures are pro-
duced in astonishing synchronicity with speech, that in children they develop
in close relation with speech, and that brain injuries affecting speech produc-
tion also affect gesture production. The following is a (very summarized) list
of nine excellent sources of evidence supporting (1) the view that speech and
gesture ae in reality two facets of the same cognitive linguistic reality, and (2)
an embodied approach for understanding language, conceptual systems, and
high-level cognition:

1) Speech accompanying gesture is universal. This phenomenon is manifested
in all cultures around the world. Gestures then provide a remarkable “back
door” to linguistic cognition (McNeill, 1992; Iverson & Thelen 1999;
Núñez & Sweetser, 2001).

2) Gestures are less monitored than speech, and they are, to a great extent,
unconscious. Speakers are often unaware that they are gesturing at all
(McNeill, 1992)

3) Gestures show an astonishing synchronicity with speech. They are mani-
fested in a millisecond-precise synchronicity, in patterns which are specific
to a given language (McNeill, 1992).

4) Gestures can be produced without the presence of interlocutors. Studies of
people gesturing while talking on the telephone, or in monologues, and
studies of conversations among congenitally blind subjects have shown
that there is no need of visible interlocutors for people to gesture (Iverson
& Goldin-Meadow, 1998).

5) Gestures are co-processed with speech. Studies show that stutterers stutter
in gesture too, and that impeding hand gestures interrupts speech produc-
tion (Mayberry and Jaques, 2000).

6) Hand signs are affected by the same neurological damage as speech. Studies
in neurobiology of sign language show that left hemisphere damaged sign-
ers manifest similar phonological and morphological errors as those
observed in speech aphasia (Hickok, Bellugi, and Klima, 1998).

7) Gesture and speech develop closely linked. Studies in language acquisition
and child development show that speech and gesture develop in parallel
(Iverson & Thelen 1999; Bates & Dick, 2002).

8) Gesture provides complementary content to speech content. Studies show
that speakers synthesize and subsequently cannot distinguish information
taken from the two channels (Kendon, 2000).
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9) Gestures are co-produced with abstract metaphorical thinking. Linguistic
metaphorical mappings are paralleled systematically in gesture (McNeill,
1992; Cienki, 1998; Sweetser, 1998; Núñez & Sweetser, 2001).

In all these studies, a careful analysis of important parameters of gestures
such as handshapes, hand and arm positions, palm orientation, type of
movements, trajectories, manner, and speed, as well as a careful examination
of timing, indexing, preservation of semantics, and the coupling with envi-
ronmental features, give deep insight into human thought6. An important
feature of gestures is that they have three well-defined phases called prepara-
tion, stroke, and retraction (McNeill, 1992). The stroke is in general the
fastest part of the gesture’s motion, and it tends to be highly synchronized
with speech accentuation and semantic content. The preparation phase is the
motion that precedes the stroke (usually slower), and the retraction phase is
the motion observed after the stroke has been produced (usually slower as
well), when the hand goes back to a resting position or to whatever activity it
was engaged in.

With these tools from gesture studies and cognition, we can now analyze
mathematical expressions like the ones we saw before, but this time focusing
on the gesture production of the speaker. For the purposes of this chapter, an
important distinction we need to make concerns the gestures that refer to real
objects in the real world, and gestures that refer to some abstract idea that in
itself doesn’t exist in the real world.

An example of the first group is shown in Figure 4, which shows renowned
physicist Professor Richard Feynman giving a lecture on physics of particles
at Cornell University many years ago. In this sequence he is talking about
particles moving in all directions at very high speeds (Figure 4, a through e),
and a few milliseconds later he completes his utterance by saying “once in a
while hit” (Figure 4f). The action shown in the first five pictures correspond
to the gesture characterizing the random movements of particles at high
speeds. The precise finger pointing shown in figure 4f occurs when he says
“once in a while hit” (the stroke of the gesture). The particle being indexed
by the gesture is quite abstract and idealized, in the sense that it doesn’t pre-
serve some properties of the real referent, such as the extremely high speed at
which particles move, for instance. But the point here is that although Prof.
Feynman’s talk was about a very abstract domain (i.e., particle physics), it is
still the case that with his finger he is indexing a “particle,” an object with
location, extension, and mass, which does exist in the real world. The trajec-
tor in this dynamic scene is, an extremely small and fast object, but nonethe-
less a real entity in the real world.

6 An analysis of the various dimensions and methodological issues regarding the sci-
entific study of gestures studies is beyond the scope of this chapter. For details see ref-
erences mentioned above.
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Now, the gestures we are about to analyze below are similar in many
respects, but they are even more abstract. In these cases the entities that are
indexed with the various handshapes are purely imaginary entities, like points
and numbers in mathematics. Figure 5, for instance shows a professor of
mathematics lecturing on convergent sequences in a university level class. In
this particular situation, he is talking about a case in which the real values of
an infinite sequence do not get closer and closer to a single real value as n
increases, but “oscillate” between two fixed values. His right hand, with the
palm towards his left, has a handshape called baby O in American Sign Lan-
guage and in gesture studies, where the index finger and the thumb are touch-
ing and are slightly bent while the other three fingers are fully bent. In this
gesture the touching tip of the index and the thumb are metaphorically
indexing a metonymical value standing for the values in the sequence as n
increases (it is almost as if the subject is carefully holding a very tiny object
with those two fingers). Holding that fixed handshape, he moves his right
arm horizontally back and forth while he says “oscillating.”

Hands and arms are essential body parts involved in gesturing. But often
it is also the entire body that participates in enacting the inferential structure
of an idea. In the following example (Figure 6) a professor of mathematics is
lecturing on some important notions of calculus at a university level course.
In this scene he is talking about a particular theorem regarding monotone
sequences.

As he is talking about an unbounded monotone sequence, he is referring to
the important property of “going in one direction.” As he says this he is pro-
ducing frontwards iterative unfolding circles with his right hand, and at the

FIGURE 4. Professor Richard Feynman giving a lecture on physics. He is talking
about particles moving in all directions at very high speeds (a through e), which “once
in a while hit” (f).
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same time he is walking frontally, accelerating at each step (Figure 6a through
6e). His right hand, with the palm toward his chest, displays a shape called
tapered O (Thumb relatively extended and touching the upper part of his
extended index finger bent in right angle, like the other fingers), which he
keeps in a relatively fixed position while doing the iterative circular move-
ment. A few milliseconds later he completes the sentence by saying “it takes
off to infinity” at the very moment when his right arm is fully extended and
his hand shape has shifted to an extended shape called B spread with a fully
(almost over) extension, and the tips of the fingers pointing frontwards at
eye-level.

It is important to notice that in both cases the blackboard is full of math-
ematical expressions containing formalisms like the ones we saw earlier (e.g.,
existential and universal quantifiers \exists and \forall): formalisms, which
have no indication of, or reference to, motion. The gestures (and the linguis-
tic expressions used), however, tell us a very different conceptual story. In
both cases, these mathematicians are referring to fundamental dynamic
aspects of the mathematical ideas they are talking about. In the first exam-
ple, the oscillating gesture matches, and it is produced synchronically with,
the linguistic expressions used. In the second example, the iterative frontally-
unfolding circular gesture matches the inferential structure of the description
of the iteration involved in the increasing monotone sequence, where even the
entire body moves forwards as the sequence unfolds. Since the sequence is
unbounded, it “takes off to infinity,” idea which is precisely characterized in
a synchronous way with the full frontal extension of the arm and the hand.

The moral we can get from these gesture examples is two-fold.

● First, gestures provide converging evidence for the psychological and
embodied reality of the linguistic expressions analyzed with classic tech-
niques in cognitive linguistics, such as metaphor and blending analysis. In
these cases gesture analyses show that the metaphorical expressions we saw

FIGURE 5. A professor of mathematics lecturing on convergent sequences in a uni-
versity level class. Here he is referring to a case in which the real values of a sequence
“oscillate” (horizontally).
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earlier are not cases of dead metaphors. The above gestures show, in real
time, that the dynamism involved in these ideas have full psychological and
cognitive reality.

● Second, these gestures show that the fundamental dynamic contents
involving infinite sequences, limits, continuity, and so on, are in fact con-
stitutive of the inferential organization of these ideas. Formal language in
mathematics, however, is not as rich as everyday language and cannot cap-
ture the full complexity of the inferential organization of mathematical
ideas. It is the job of embodied cognitive science to characterize the full
richness of mathematical ideas.

7. Conclusion

We can now go back to the original question asked in the title of this chap-
ter: Do real numbers really move? Since fictive motion is a real cognitive
mechanism, constitutive of the very notion of a real number, the answer is
yes. Real numbers are metaphorical entities (with a very sophisticated infer-
ential organization), and they do move, metaphorically. But, of course, this
was not the main point of this chapter. The main point was to show that even
the most abstract conceptual system we can think of, mathematics(!), is ulti-
mately embodied in the nature of our bodies, language, and cognition. It fol-
lows from this that if mathematics is embodied in nature, then any abstract
conceptual system is embodied.

a b c

d e f

FIGURE 6. A professor of mathematics at a university level class talking about an
unbounded monotone sequence “going in one direction” (a through e), which “takes
off to infinity” (f).



Conceptual metaphor and fictive motion, being a manifestation of
extremely fast, highly efficient, and effortless cognitive mechanisms that pre-
serve inferences, play a fundamental role in bringing many mathematical con-
cepts into being. We analyzed several cases involving dynamic language in
mathematics, in domains in which, according to formal definitions and
axioms in mathematics, no motion was supposed to exist at all. Via the study
of gestures, we were able to see that the metaphors involved in the linguistic
metaphorical expressions were not simply cases of “dead” linguistic expres-
sions. Gesture studies provide real-time convergent evidence supporting the
psychological and cognitive reality of the embodiment of mathematical
ideas, and their inferential organization. Building on gestures studies we were
able to tell that the above mathematics professors, not only were using
metaphorical linguistic expressions, but that they were in fact, in real time,
thinking dynamically!

For many, mathematics is a timeless set of truths about the universe, tran-
scending our human existence. For others, mathematics is what is character-
ized by formal definitions and axiomatic systems. From the perspective of
our work in the cognitive science of mathematics (itself), however, a very dif-
ferent view emerges: Mathematics doesn’t exist outside of human cognition.
Formal definitions and axioms in mathematics are themselves created by
human ideas (although they constitute a very small and specific fraction of
human cognition), and they only capture very limited aspects of the richness
of mathematical ideas. Moreover, definitions and axioms often neither for-
malize nor generalize human everyday concepts. A clear example is provided
by the modern definitions of limits and continuity, which were coined after
the work by Cauchy, Weierstrass, Dedekind, and others in the 19th century.
These definitions are at odds with the inferential organization of natural con-
tinuity provided by cognitive mechanisms such as fictive and metaphorical
motion. Anyone who has taught calculus to new students can tell how
counter-intuitive and hard to understand the epsilon-delta definitions of lim-
its and continuity are (and this is an extremely well-documented fact in the
mathematics education literature). The reason is (cognitively) simple. Static
epsilon-delta formalisms neither formalize nor generalize the rich human
dynamic concepts underlying continuity and the “approaching” of locations.

By finding out that real numbers “really move,” we can see that even the
most abstract, precise, and useful concepts human beings have ever created
are ultimately embodied.
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10

Does Mathematics Need
a Philosophy?

WILLIAM TIMOTHY GOWERS

Introduction

There is a philosophical doctrine known as bialetheism, with, apparently,
many adherents in Australia, who take the view that there can be true con-
tradictions. I do not wish to defend this view, but nevertheless in the next 45
minutes I will be arguing, sincerely, that mathematics both does and does not
need a philosophy. Of course, the apparent contradiction can in my case be
resolved in a boringly conventional way: the statement “Mathematics needs
philosophy” has at least two reasonable interpretations, and my contention is
that one of them is false and another is true. But before I tell you what these
interpretations are, I would like to say just a bit about what I hope to achieve
in this talk, since as the first speaker in the series I have no precedents to draw
on and have therefore had to decide for myself what kind of talk would be
appropriate.

First, as you can see, I am reading from a script, something I would never
do when giving a mathematics lecture. This, I fondly imagine, is how philoso-
phers do things, at least some of the time, and it is how I prefer to operate
when I need to choose my words carefully, as I do today.

Secondly, I would like to stress that it is not my purpose to say anything
original. I have read enough philosophy to know that it is as hard to be an
original philosopher, at least if one wishes to be sensible at the same time, as
it is to be an original mathematician. When I come across a philosophical
problem, I usually know pretty soon what my opinion is, and how I would
begin to defend it, but if I delve into the literature, I discover that many peo-
ple have had similar instincts and have worked out the defence in detail, and
that many others have been unconvinced, and that whatever I think has
already been labelled as some “-ism” or other. Even if my tone of voice occa-
sionally makes it sound as though I think that I am the first to make some
point, I don’t. I have done a bit of remedial reading and re-reading over the
last couple of weeks, but there are many large gaps and I will often not give
credit where it is due, and for that I apologize to the philosophers here.
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Thirdly, I am very conscious that I am talking to an audience with widely
varying experience of mathematics and philosophy, so I hope you will be
patient if quite a lot of what I say about your own discipline seems rather ele-
mentary and old hat.

Finally, I shall try to make the talk somewhat introductory. Two weeks have
not been enough to develop a fully worked-out position on anything, so, rather
than looking at one small issue in the philosophy of mathematics, I shall dis-
cuss many of the big questions in the subject, but none of them in much depth.
I hope this will give us plenty to talk about when the discussion starts - it cer-
tainly ought to as many of these questions have been debated for years.

If you ask a philosopher what the main problems are in the philosophy of
mathematics, then the following two are likely to come up: what is the status
of mathematical truth, and what is the nature of mathematical objects? That
is, what gives mathematical statements their aura of infallibility, and what on
earth are these statements about?

Let me very briefly describe three main (overlapping) schools of thought
that have developed in response to these questions: Platonism, logicism and
formalism.

The basic Platonist position is rather simple. Mathematical concepts have
an objective existence independent of us, and a statement such as “2+2=4” is
true because two plus two really does equal four. In other words, for a Pla-
tonist mathematical statements are pretty similar to statements such as “that
cup is on the table” even if mathematical objects are less tangible than phys-
ical ones.

Logicism is an attempt to justify our extreme confidence in mathematical
statements. It is the view that all of mathematics can be deduced from a few
simple and undeniably true axioms using simple and undeniably valid logi-
cal steps. Usually these axioms come from set theory, and they are supposed to
form the secure foundation on which the entire edifice of modern mathemat-
ics rests. Notice that one can be a Platonist and a logicist at the same time.

Formalism is more or less the antithesis of Platonism. One can caricature
it by saying that the formalist believes that mathematics is nothing but a few
rules for replacing one system of meaningless symbols with another. If we
start by writing down some axioms and deduce from them a theorem, then
what we have done is correctly apply our replacement rules to the strings of
symbols that represent the axioms and ended up with a string of symbols that
represents the theorem. At the end of this process, what we know is not that
the theorem is “true” or that some actually existing mathematical objects
have a property of which we were previously unaware, but merely that a cer-
tain statement can be obtained from certain other statements by means of
certain processes of manipulation.

There is another important philosophical attitude to mathematics, known
as intuitionism, but since very few working mathematicians are intuitionists,
I shall not discuss it today. Let me just say to those mathematicians
who know a little about intuitionism that certain aspects of it that seem very
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off-putting, such as the rejection of the law of the excluded middle or the idea
that a mathematical statement can “become true” when a proof is found,
should not be dismissed as ridiculous: perhaps on a future occasion we
should have a debate here about whether classical logic is the only logic worth
considering. For what it is worth, I myself am prepared to countenance
other ones.

For the rest of this talk, I shall discuss some fairly specific questions, in
what I judge to be ascending order of complexity, with the idea that they will
give us a convenient focus for discussion of more general issues of the kind I
have been describing. But before I do so, let me give you a very quick idea of
where my own philosophical sympathies lie.

I take the view, which I learnt recently goes under the name of naturalism,
that a proper philosophical account of mathematics should be grounded in
the actual practice of mathematicians. In fact, I should confess that I am a
fan of the later Wittgenstein, and I broadly agree with his statement that “the
meaning of a word is its use in the language”. [Philosophical Investigations
Part I section 43 —actually Wittgenstein qualifies it by saying that it is true
“for a large class of cases”.] So my general approach to a philosophical ques-
tion in mathematics is to ask myself how a typical mathematician would react
to it, and why. I do not mean by this that whatever an average mathematician
thinks about the philosophy of mathematics is automatically correct, but
rather than try to make precise what I do mean, let me illustrate it by my
treatment of the questions that follow.

1. What is 2+2?

The first question I would like to ask is this: could it make sense to doubt
whether 2+2=4? Let me do what I promised, and imagine the reaction of a
typical mathematician to somebody who did. The conversation might run as
follows.

Mathematician: Do you agree that 2 means the number after 1 and that 4
means the number after the number after 2?
Sceptic: Yes.

M: Do you agree that 2=1+1?

S: Yes.

M: Then you are forced to admit that 2+2=2+(1+1).

S: Yes.

M: Do you agree that addition is associative?

S: Yes.

M: Then you are forced to admit that 2+(1+1)=(2+1)+1.
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S: Yes I am.

M: But (2+1)+1 is the number after the number after 2, so it’s 4.

S: OK I’m convinced.

The general idea of the above argument is that we have some precise defi-
nitions of concepts such as 2, 4, “the number after” and +, and one or two
simple axioms concerning them, such as the associativity of addition, and
from those it is easy to prove that 2+2=4. End of story.

That is, of course, roughly what I think, but before we move on I would
nevertheless like to try to imagine a world in which it was natural to think
that 2+2=5 and see what that tells us about our belief that 2+2=4.

In such a world, physical objects might have less clear boundaries than they
do in ours, or vary more over time, and the following might be an observed
empirical fact: that if you put two objects into a container, and then another
two, and if you then look inside the container, you will find not four objects
but five. A phenomenon like that, though strange, is certainly not a logical
impossibility, though one does feel the need for more details: for example, if
a being in this world holds up two fingers on one hand and two on the other,
how many fingers is it holding up? If you put no apples into a bag and then
put no further apples into the bag, do you have one apple? But then why not
a tomato?

We are free to invent any answers we like to such questions if we can some-
how remain logically consistent, so here is a simple suggestion. Perhaps in the
strange world it is really the act of enclosing objects in a container that causes
what seems to us to be peculiar consequences. It might be that this requires
an expenditure of energy so that the container doesn’t just explode the
moment you put anything into it and there isn’t the physical equivalent of
what economists call arbitrage. And yet, the apparent duplication-machine
properties of plastic bags and the like might be sufficiently common for
2+2=5 to seem a more natural statement than 2+2=4.

But what, one wants to ask, about our mental picture of numbers? If we
just think of two apples and then think of another two, surely we are think-
ing of four apples, however you look at it.

But what should we say if we put that point to a being X from the other
world, and X reacted as follows?

X: I don’t know what you’re talking about. Look, I’m thinking of two
apples now. [Holds up three fingers from one hand.] Now I’m thinking of
two more. [Holds up three fingers from the other hand making a row of six
fingers.] The result - five apples.

Suppose that we were initially confused, but after a bit of discussion came
to realize that X was associating the apples not with the fingers themselves
but with the gaps between them. After all, between three fingers there are two
gaps and between six fingers there are five. At any rate this might seem a good
explanation to us. But perhaps X would be so used to a different way of
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thinking that it would resist our interpretation. To X, holding up three fin-
gers and saying “two” could seem utterly natural: it might feel absolutely no
need for a one-to-one correspondence between fingers and apples.

Faced with such a situation, it is a tempting to take the following line: what
X is “really” doing is giving different names to the positive integers. When X
says “2+2=5”, what this actually means is “3+3=6”, and more generally X’s
false sounding statement that “a+b=c” corresponds to our true statement
“(a+1)+(b+1)=c+1”.

But should we say this? Or is it better to say that what X means by addi-
tion is not our notion of addition but the more complicated (or so we judge)
binary operation f(m,n)=m+n+1? Or is it enough simply to say that X uses a
system of arithmetic that we can understand and explain in terms of ours in
more than one way?

These questions are bothersome for a Platonist, particularly one who
believes in direct reference, a philosophical doctrine I shan’t discuss here. If
the word “five”, as used by us, directly refers to the number 5, then surely
there ought to be a fact of the matter as to whether the same word used by X
directly refers to 5 or 6 or something else. And yet there doesn’t seem to be
such a fact of the matter.

I think I will leave that question hanging since the world I have just
attempted to describe is rather fanciful and there are many other ways of
attacking Platonism.

2. The empty set

My next question is whether there is such a thing as the empty set. This ques-
tion might seem more basic than the first, but if it does then I put it to you
that your mind has been warped by a century of logicism, because there is, if
you think about it, something rather odd about the concept of a set with no
elements. What, after all, is a set? It is a collection of objects (whatever that
means). And to say that you have a collection of objects, except that there are
no objects, sounds like a contradiction in terms.

I have various questions like this, and normally I don’t worry about them.
But they do cause me small problems when I lecture on concepts such as sets,
functions and the like. I will explain that a set is a collection of objects, usu-
ally mathematical, but will not go on to say what a collection is, or a mathe-
matical object. The empty set, I recently told the first-year undergraduates to
whom I am lecturing this term, is the set with no elements, but I made no
attempt to justify that there was such a set, and I’m glad to report that I got
away with it.

There are various ways that one could try to argue for the existence of the
empty set. For example, if it doesn’t exist then what is the intersection of the
sets {1,2} and {3,4}? Or what is the set of all natural numbers n such that
n=n+1? These arguments demonstrate that the empty set does indeed exist if
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one is prepared to accept natural statements such as that the sets {1,2} and
{3,4} exist and that given any two sets A and B there is a set C consisting of
exactly the elements that A and B have in common. So if you are going to
doubt the existence of the empty set you will probably find yourself doubt-
ing the existence of any sets at all.

So let us consider the more general question: are there sets? What exactly
are we doing to the numbers 1 and 2 if we separate them with a comma and
enclose them in curly brackets? Similarly, what is the difference between the
number 1 and the set whose sole element is 1?

Let us look at a simple problem that I recently set to the first-years. I asked
them whether there could be a sequence of sets A1, A2, A3,... such that for
every n the intersection of the first n Ai is non-empty but yet the intersection
of all the Ai is empty. The answer is yes and one example that shows it is to
let An={n,n+1,n+2,...}.

Why is this a suitable example? Well, the number n belongs to all the first
n Ai but if m is any number then m does not belong to all Ai since it does not
belong, for example, to Am+1.

We could spell out this justification even more. Why, for example, does n
belong to the first n Ai? Well, n belongs to Ai if and only if n≥i, so n does
indeed belong to all of A1,...,An. Similarly, m does not belong to Am+1.

So an equivalent way to describe the above example is to say that whatever
(finite) number of conditions you impose on a number n of the form n≥i, it
will be possible for them to be all to be satisfied, but there is no n that is
greater than or equal to every i. And the interesting thing about this formu-
lation is that it makes no explicit mention of sets. What’s more, it isn’t just an
artificial translation cooked up with the sole purpose of not talking about
sets. Rather, it reflects quite accurately what actually goes on in our minds
when we go about proving what we want to prove about the sets.

So could it be that all that matters about the empty set is something like
this? Whenever you see the sentence “x is an element of the empty set” it is
false. More generally, could it be that whenever you actually prove something
about sets in a normal mathematical context, one of the first things you do is
get rid of the sets. I had a good example of this recently when proving in lec-
tures that the equivalence classes of an equivalence relation form a partition.
If R is an equivalence relation on a set A and x belongs to A, then the equiv-
alence class of x is the set E(x)={y in A: xRy}, but as the proof proceeded,
every time I wrote down a statement such as “z is an element of E(x)” I imme-
diately translated it into the equivalent and much simpler non-set-theoretic
statement xRz.

3. Subsets of the natural numbers

I think it would be possible to defend a position that set theory could be dis-
pensed with, at least when it involved sets defined by properties. We could
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regard the expression A={x:P(x)} not as actually denoting an object named
A but as being a convenient piece of shorthand. The statement “z belongs to
A”, on this view, means nothing more than P(z). Similarly, if B={x:Q(x)} then
the statement “A cap B = emptyset” means nothing more than that there is
no x such that P(x) and Q(x).

But not all sets that crop up in mathematics, and I am still talking about
“ordinary” mathematics rather than logic and set theory, are defined by prop-
erties. Often we talk about sets in a much more general way, using sentences
like, “Let A be a set of natural numbers,” and proving theorems such as that
there are uncountably many such sets. In such contexts it is not as easy to dis-
pense with the language of set theory. And yet the sets we are supposedly dis-
cussing, general sets of positive integers, are rather puzzling. My third
question is this: what is an arbitrary set of positive integers? Here I have in
mind the sort of utterly general set that cannot be defined, the infinite equiv-
alent of a subset of the first thousand integers chosen randomly. We have a
strong intuition that such sets exist, but why?

Let us look at the proof that there are uncountably many sets of positive
integers, and see what it tells us about our attitude to sets in general. We start
with an arbitrary sequence A1,A2,A3,... of subsets of N, and from those con-
struct a new set A according to the rule

n is an element of A if and only if n is not an element of An.

Then A is a subset of N not in the sequence. Since the sequence we looked
at was arbitrary, no sequence of subsets of N exhausts all of them.

Why was A not in the sequence? Well, if it had been then there would have
had to be some n such that A=An. But for each n we know that it belongs to
A if and only if it does not belong to An, so A is not the same set as An.

This argument shows a very basic property of the two sets A and An - that
they are not equal. And yet even here I did not really reason about the
sets themselves and say some mathematical equivalent of, “Look, they’re 
different.” Instead, I used the standard criterion for when two sets are 
equal:

A=B if and only if every element of A is an element of B and every ele-
ment of B is an element of A.

This tells me that in order to prove that A and An are distinct I must find
a positive integer m and show that either

m belongs to A but not to An

or

m belongs to An but not to A.

So, once again, what I seem to be focusing on is not so much the sets them-
selves but statements such as “m is an element of A”.
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Does this mean that set-theoretic language is dispensable to an ordinary
mathematician? I think it often is, but I wouldn’t want to go too far - after all,
I would certainly feel hampered if I couldn’t use it myself. Here is an analogy
that I have not had time to think about in any detail, so perhaps it won’t stand
up, but let me float it anyway. A central project in philosophy is to explain the
notion of truth. What is it for a statement to be true? There are some who
hold that the word “true” adds very little to our language: if we say that the
sentence, “Snow is white” is true, then what we have said is that snow is white,
and that is all there is to it. And yet the word “true” does seem to be hard to
avoid in some contexts. For example, it isn’t easy to think of a way to para-
phrase the sentence, “Not all of what George Bush says in the next week will
be true” without invoking some notion of a similar nature to that of truth. I
think perhaps it is similar for the language of sets -that it makes it much eas-
ier to talk in generalities, but can be dispensed with when we make more par-
ticular statements.

I must press on, but before I ask my next question, let me tell you, or
remind you, of three useful pieces of terminology.

4. Some terminology

The first is the phrase “ontological commitment”, a phrase associated with
and much used by Quine. One of the standard tricks that we do as mathe-
maticians is “reduce” one concept to another - showing, for example that
complex numbers can be “constructed” as ordered pairs of real numbers, or
that positive integers can be “built out of sets”. People sometimes use extrav-
agant language to describe such constructions, sounding as though what they
are claiming is that positive integers “really are” special kinds of sets. Such a
claim is, of course, ridiculous, and probably almost nobody, when pressed,
would say that they actually believed it.

But another position, taken by many philosophers, is more appealing. In
describing the world, and in particular the rather problematic abstract world
of mathematics, it makes sense to try to keep one’s list of dubious beliefs to
an absolute minimum. One example of a belief that might be thought dubi-
ous, or at least problematic, is that the number 5 actually exists. Questions
about what exists belong to the branch of philosophy known as ontology, a
word derived from the Greek for “to be”; and if what you say implies that
something exists, then you are making an ontological commitment. One view,
which I do not share, is that at least some ontological commitment is implicit
in mathematical language. But those who subscribe to such a view will often
seek to minimize their commitment by reducing concepts to others. Such
people may, for example, be comforted by knowing that complex numbers
can be thought of as ordered pairs of real numbers, so that we are not mak-
ing any further worrying ontological commitments when we introduce them
than we had already made when talking about the reals.
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The second piece of terminology is the distinction between naive and
abstract set theory. A professional set theorist does not spend time worry-
ing about whether sets exist and what they are if they do. Instead, he or
she studies models of set theory, which are mathematical structures contain-
ing things that we conventionally call sets - rather as a vector space contains
things that we conventionally call vectors. And just as, when we do abstract
linear algebra, we do not have to say what a vector is, or at least we do not
have to say any more than that it is an element of a vector space, so, when we
do set theory, we do not need to say what a set is, except to say that it belongs
to a model. (In an appropriate metalanguage one could say that a model is a
set, and sets, in the sense of the object language, are its elements. But this is
confusing and it would be more usual to call the model a proper class.) And
to pursue the analogy further, just as there are rules that tell you how to form
new vectors out of old ones - addition and scalar multiplication - so there are
rules that tell you how to form new sets out of old ones - unions, intersec-
tions, power sets, replacement and so on. To get yourself started you need to
assume that there are at least some sets, so you want an axiom asserting the
existence of the empty set, or perhaps of a set with infinitely many elements.

If you attempt to say what a set is, then you are probably doing naive set
theory. What I have just described, where sets are not defined (philosophers
would call the word “set” an undefined primitive), is abstract set theory.
Notice that as soon as you do abstract set theory, you do not find yourself
thinking about the actual existence or nature of sets, though you might, if
you were that way inclined, transfer your worries into the meta-world and
wonder about the existence of the model. Even so, when you were actually
doing set theory, your activity would more naturally fit the formalist picture
than the Platonist one.

The distinction between naive and abstract set theory gives one possible
answer to the question “What is an arbitrary set of natural numbers?” The
answer is, “Don’t ask.” Instead, learn a few rules that allow you to build new
sets out of old ones (including unions, intersections and the diagonal process
we have just seen) and make it all feel real by thinking from time to time
about sets you can actually define such as the set of all primes - even if in the
end the definition is more important than the set.

Another distinction, which I introduce because it may well have occurred
to those here who have not previously come across it, is one made by Rudolf
Carnap between what he called internal and external questions. Suppose I
ask you whether you accept that there are infinitely many primes. I hope that
you will say that you do. But if I then say, “Ah, but prime numbers are posi-
tive integers and positive integers are numbers and numbers are mathemati-
cal objets so you’ve admitted that there are infinitely many mathematical
objects,” you may well feel cheated. If you do, the chances are that you will
want to say, with Carnap, that there are two senses of the phrase “there
exists”. One is the sense in which it is used in ordinary mathematical dis-
course - if I say that there are infinitely many primes I merely mean that the
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normal rules for proving mathematical statements license me to use appro-
priate quantifiers. The other is the more philosophical sense, the idea that
those infinitely many primes “actually exist out there”. These are the internal
and external uses respectively. And it seems, though not all philosophers
would agree, that this is a clear distinction, and that the answers you give in
the internal sense do not commit you to any particular external and philo-
sophical position. In fact, to many mathematicians, including me, it is not
altogether clear what is even meant by the phrase “there exists” in the exter-
nal sense.

5. Ordered pairs

I will not spend long over my next question, since I have discussed similar
issues already, but it is one of the simplest examples of the slight difficulty I
have when lecturing about basic mathematical concepts from the naive point
of view. The question is, what is an ordered pair?

This is what I take to be the standard account that a mathematician would
give. Let x and y be two mathematical objects. Then from a formal point of
view the ordered pair (x,y) is defined to be the set {{x},{x,y}}, and it can be
checked easily that

{{x},{x,y}}={{z},{z,w}} if and only if x=z and y=w.

Less formally, the ordered pair (x,y) is a bit like the set {x,y} except that “the
order matters” and x is allowed to equal y.

Contrast this account with the way ordered pairs are sneaked in at a
school level. There, the phrase “ordered pair” is not even used. Instead,
schoolchildren are told that points in the plane can be represented by coor-
dinates, and that the point (x,y) means the point x to the right and y up from
the origin. It is then geometrically obvious that (x,y)=(z,w) if and only if
x=z and y=w.

Pupils who are thoroughly used to this idea will usually have no difficulty
accepting later on that they can form “coordinates” not just out of real num-
bers but also out of elements of more general sets. And because of their expe-
rience with plane geometry, they will take for granted that (x,y)=(z,w) if and
only if x=z and y=w, whether or not you bother to spell this out as an axiom
for ordered pairs. In other words, it is possible to convey the idea of an
ordered pair in a way that is clearly inadequate from the formal point of view
but that does not seem to lead to any problems. One can quite easily imagine
an eminent physicist successfully using the language of ordered pairs without
knowing how to formalize it.

It is clear that what matters in practice about ordered pairs is just the con-
dition for when two of them are equal. So why does anybody bother to
“define” the ordered pair (x,y) as {{x},{x,y}}? The standard answer is that if
you want to adopt a statement such as
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(x,y)=(z,w) if and only if x=y and z=w

as an axiom, then you are obliged to show that your axiom is consistent. And
this you do by constructing a model that satisfies the axiom. For ordered
pairs, the strange-looking definition (x,y)={{x},{x,y}} is exactly such a
model. What this shows is that ordered pairs can be defined in terms of sets
and the axiom for ordered pairs can then be deduced from the axioms of set
theory. So we are not making new ontological commitments by introducing
ordered pairs, or being asked to accept any new and unproved mathematical
beliefs.

This account still leaves me wanting to ask the following question.
Granted, the theory of ordered pairs can be reduced to set theory, but that is
not quite the same as saying that an ordered pair is “really” a funny kind of
set. (That view is obviously wrong, since there are many different set-theoretic
constructions that do the job equally well.) And if an ordered pair isn’t really
a set, then what is it? Is there any way of doing justice to our pre-theoretic
notion of an ordered pair other than producing this rather artificial transla-
tion of it into set theory?

I don’t think there is, at least if you want to start your explanation with the
words, “An ordered pair is”. At least, I have never found a completely satis-
factory way of defining them in lectures. To my mind this presents a pretty
serious difficulty for Platonism. And yet, as I have said, it doesn’t really seem
to matter to mathematics. Why not?

I would contend that it doesn’t matter because it never matters what a
mathematical object is, or whether it exists. What does matter is the set of
rules governing how you talk about it - or perhaps I should say, since that
sounds as though “it” refers to something, what matters about a piece of
mathematical terminology is the set of rules governing its use. In the case of
ordered pairs, there is only one rule that matters - the one I have mentioned
several times that tells us when two of them are equal (or, to rephrase again,
the one that tells us when we are allowed to write down that they are equal,
substitute one for another and so on).

I said earlier that I like to think about actual practice when I consider
philosophical questions about mathematics. Another useful technique is to
think what you would have to program into a computer if you wanted it to
handle a mathematical concept correctly. If the concept was an ordered pair,
then it would be ridiculous to tell your computer to convert the ordered pair
(x,y) into the set {{x},{x,y}} every time it came across it. Far more sensible,
for almost all mathematical contexts, would be to tell it the axiom for equal-
ity of ordered pairs. And if it used that axiom without a fuss, we would be
inclined to judge that it understood the concept of ordered pairs, at least if
we had a reasonably non-metaphysical idea of understanding - something
like Wittgenstein’s, for example.

This point applies much more generally. I have sometimes read that com-
puters cannot do the mathematics we can because they are finite machines,
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whereas we have a mysterious access to the infinite. Here, for example, is a
quotation from the famous mathematician Alain Connes:

... this direct access to the infinite which characterizes Euclid’s reasoning
[in his proof that there are infinitely many primes], or in a more mature form
Gödel’s, is actually a trait of the living being that contradicts the reduction-
ist’s model.

But, just as it is not necessary to tell a computer what an ordered pair is,
so we don’t have to embed into it some “model of infinity”. All we have to do
is teach it some syntactic rules for handling, with care, the word infinity -
which is also what we have to do when teaching undergraduates. And, just as
we often try to get rid of set-theoretic language when talking about sets, so
we avoid talking about infinity when justifying statements that are ostensibly
about the infinite. For example, what Euclid’s proof actually gives is a recipe
for extending any finite list of primes. To take a simpler example, if I prove
that there are infinitely many even numbers by saying, “2 is even and if n is
even then so is n+2”, have I somehow exhibited infinite mental powers? I
think not: it would be easy to programme a computer to come up with such
an argument.

6. Truth and provability

I can date my own conversion from an unthinking childhood Platonism from
the moment when I learnt that the continuum hypothesis was independent of
the other axioms of set theory. If as apparently concrete a statement as that
can neither be proved nor disproved, then what grounds can there be for say-
ing that it is true or that it is false? But if you think there is no fact of the mat-
ter either way with the continuum hypothesis, then why stop there? What
about the axiom of infinity -that there is an infinite set? It doesn’t follow from
the other axioms of set theory, and nor, it seems, does its negation. So why
should we believe it? Surely not because of some view that the universe is infi-
nite in extent, or infinitely divisible. What would that show anyway? There
would still be the problem of applying those funny curly brackets. As I have
said, even the axiom that the empty set exists is hard to justify if one inter-
prets it realistically.

So I am driven to the view that there isn’t much to mathematical truth over
and above our accepted procedures of justification - that is, formal proofs.
But something in me still rebels against the intuitionists’ idea that a statement
could become true when a proof is found, and I’m sure most mathematicians
agree with me. So my next question is why, and I would like to look at a few
concrete examples.

Here is one that intuitionists like: consider the statement “somewhere in
the decimal expansion of pi there is a string of a million sevens”. Surely, one
feels, there is a fact of the matter as to whether that is true or false, even if it
may never be known which.
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What is it that makes me want to say that the long string of sevens is defi-
nitely either there or not there - other than a general and question-begging
belief in the law of the excluded middle? Well, actually I am tempted to go
further and say that I believe that the long string of sevens is there, and I have
a definite reason for that stronger belief, which is the following. All the evi-
dence is that there is nothing very systematic about the sequence of digits of
pi. Indeed, they seem to behave much as they would if you just chose a
sequence of random numbers between 0 to 9. This hunch sounds vague, but
it can be made precise as follows: there are various tests that statisticians per-
fom on sequences to see whether they are likely to have been generated ran-
domly, and it looks very much as though the sequence of digits of pi would
pass these tests. Certainly the first few million do. One obvious test is to see
whether any given short sequence of digits, such as 137, occurs with about the
right frequency in the long term. In the case of the string 137 one would
expect it to crop up about one thousandth of the time in the decimal expan-
sion of pi. If after examining several million digits we found that it had in fact
occurred a hundredth of the time, or not at all, then we would be surprised
and wonder whether there was an explanation.

But experience strongly suggests that short sequences in the decimal expan-
sions of the irrational numbers that crop up in nature, such as pi, e or the
square root of 2, do occur with the correct frequencies. And if that is so, then
we would expect a million sevens to occur in the decimal expansion of pi
about 10−1000000 of the time - and it is of course no surprise that we will not
actually be able to check that directly. And yet, the argument that it does
eventually occur, while not a proof, is pretty convincing.

This raises an interesting philosophical question. A number for which
the short sequences of digits occur with the right frequencies is called nor-
mal. Artificial examples have been constructed of normal numbers, but
there is no naturally occurring number that is known to be normal. Perhaps
the normality of pi is not just an unsolved problem but actually an unprov-
able theorem. If so, then it is highly unlikely that we shall ever find
an abstract argument that shows that the expansion of pi contains a mil-
lion sevens in a row, and direct calculation of the number of digits that
would be necessary to verify it “empirically” is out of the question. So
what, then, is the status of the reasonable-sounding heuristic argument that
pi contains a million sevens in a row, an argument that convinces me and
many others?

This question raises difficulties for those who are too ready to identify
truth and provability. If you look at actual mathematical practice, and in par-
ticular at how mathematical beliefs are formed, you find that mathematicians
have opinions long before they have formal proofs. When I say that I think pi
almost certainly has a million sevens somewhere in its decimal expansion, I
am not saying that I think there is almost certainly a (feasibly short) proof of
this assertion - perhaps there is and perhaps there isn’t. So it begins to look
as though I am committed to some sort of Platonism -that there is a fact of
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the matter one way or the other and that that is why it makes sense to specu-
late about which.

There is an obvious way to try to wriggle out of this difficulty, but I’m not
sure how satisfactory it is. One could admit that a simple identification of
truth with provability does not do justice to mathematical practice, but still
argue that what really matters about a mathematical statement is not some
metaphysical notion of truth, but rather the conditions that have to hold to
make us inclined to assert it. By far the most important such condition is the
existence of a formal proof, but it is not the only one. And if I say something
like, “pi is probably normal”, that is just a shorthand for, “there is a convinc-
ing heuristic argument, the conclusion of which is that pi is normal”. Of
course, a move like this leaves very much open the question of which infor-
mal arguments we find convincing and why. I think that is an important
philosophical project, but not one I have carried out, or one that I would have
time to tell you about now even if I had.

Actually, it is closely related to another interesting question, a mathemati-
cal version of the well-known philosophical problem of induction. A large
part of mathematical research consists in spotting patterns, making conjec-
tures, guessing general statements after examining a few specific instances, and
so on. In other words, mathematicians practise induction in the scientific as
well as mathematical sense. Suppose, for example, that f is a complicated func-
tion of the positive integers arising from some research problem and that the
first ten values it takes are 2, 6, 14, 24, 28, 40, 42, 66, 70, 80. In the absence of
any other knowledge about f, it is reasonable to guess that it always takes even
values, or that it is an increasing function, but it would be silly to imagine that
f(n) is always less than 1000. Why? I think the beginning of an answer is that
any guess about f should be backed up by some sort of heuristic argument. In
this case, if we have in the back of our minds some picture of a “typical func-
tion that occurs in nature” then we might be inclined to say that the likelihood
of its first ten values being even or strictly increasing just by chance is small,
whereas the likelihood of their all being less than 1000 is quite high.

Let me return to the question of why it seems so obvious that there is a fact
of the matter as to whether the decimal expansion of pi contains a string of
a million sevens. In the back of many minds is probably an argument like this.
Since pi almost certainly is normal, if we look instead for shorter strings,
such as 137, then we don’t have to look very far before we find them. And in
principle we could do the same for much longer strings - even if in practice
we certainly can’t. So the difference between the two situations is not mathe-
matically interesting and should not have any philosophical significance.

Now let me ask a rather vague question: what is interesting about mathe-
matical theorems that begin “for every natural number n”? There seem to me
to be two attitudes one can take. One is that a typical number of the order of
magnitude of, say, 1010100, will be too large for us to specify and therefore isn’t
really anything more to us than a purely abstract n. So the instances of a the-
orem that starts “for all n” are, after a certain point, no more concrete than
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the general statement, the evidence for which consists of a certain manipula-
tion of symbols, as a formalist would contend. So, in a sense the “real mean-
ing” of the general theorem is that it tells us, in a succinct way, that the small
“observable” instances of the theorem are true, the ones that we might wish
to use in applications.

This attitude is not at all the one taken by most pure mathematicians, as
is clear from a consideration of two unsolved problems. Goldbach’s con-
jecture, that every even number over 4 is the sum of two primes, has been
verified up to a very large number, but is still regarded as completely open.
Conversely, Vinogradov’s three-primes theorem, that every sufficiently large
odd integer is the sum of three primes, is thought of as “basically solving”
that problem, even though in the current state of knowledge “sufficiently
large” means “at least 1013000” which makes checking the remaining cases
way beyond what a computer could do. This last example is particularly
interesting since to date only 79 primes are known above 1013000 (or even
a third of 1013000) are known. So the theorem has almost no observable con-
sequences.

In other words, there are two conclusions you can draw from the fact that
very large integers are inaccessible to us. One is that what actually matters is
small numbers, and the other is that what actually matters is abstract state-
ments.

One small extra comment before I move to a completely new question.
Another conjecture that seems almost certainly true is the twin-primes con-
jecture - that there are infinitely many primes p for which p+2 is also prime.
This time the heuristic argument that backs up the statement is based on the
idea that the primes appear to be “distributed randomly”, and that a sensi-
ble-looking probabilistic model for the primes not only suggests that the
twin-primes conjecture is true but also agrees with our observations about
how often they occur. But I find that my feeling that there must be a fact of
the matter one way or the other is less strong than it was for the sevens in the
expansion of pi, because no amount of finite checking could, even in princi-
ple, settle the question. The difference is that the pi statement began with just
an existential quantifier, whereas “there are infinitely many” gives us “for all”
and then “there exists”. On the other hand, there does seem to be a fact of
the matter about whether there are at least n twin primes, for any n you might
choose to specify. But now I am talking about very subjective feelings, so it is
time to turn to my last question.

7. The axiom of choice

I mentioned earlier that the status of the continuum hypothesis convinced me
that Platonist views of mathematical ontology and truth could not be correct.
Instead of discussing that, let me ask a similar question. Is the axiom of
choice true?
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By now it probably goes without saying that I don’t think that either it or
its negation is true in any absolute, transcendent, metaphysical sense, but
many philosophers disagree. I recently read an article by Hilary Putnam in
which he ridiculed the idea that one could draw any philosophical conclu-
sions from the independence of the continuum hypothesis. But, as nearly
always happens in philosophy, I emerged with my beliefs intact, and will now
try to do what he thinks I can’t with the axiom of choice.

Consider the following statement, which is an infinitary analogue of a
famous theorem of Ramsey.

Let A be a collection of infinite subsets of the natural numbers. Then there
is an infinite set Z of natural numbers such that either all its infinite subsets
belong to A or none of them do.

As it stands, that statement is false (or so one usually says) because it is
quite easy to use the axiom of choice to build a counterexample. But there are
many mathematical contexts in which the result could be applied if only it
were true, and actually for those contexts - that is, for the specific instances of
A that crop up “in nature”, as mathematicians like to say - the result is true.
In fact, there is a precise theorem along these lines, which comes close to say-
ing that the only counterexamples are ridiculous ones cooked up using the
axiom of choice. So in a way, the statement is “basically true”, or at least true
whenever you care about it. In this context the axiom of choice is a minor
irritant that forces you to qualify your statement by putting some not very
restrictive conditions on A.

There are many results like this. For example, not every function is meas-
urable but all the ones that you might actually want to integrate are, and
so on.

Now let’s consider another statement, the infinite-dimensional analogue of
a simple result of finite-dimensional linear algebra.

Let V be an infinite-dimensional vector space over R and let v be a non-
zero vector in V. Then there is a linear map f from V to R such that f(v) is
non-zero.

To prove this in a finite-dimensional context you take the vector v, call it
v1, and extend it to a basis v1,...,vn. Then you let f(v1)=1 and f(vi)=0 for all
other i.

For an infinite-dimensional space, the proof is exactly analogous, but now
when you extend v1 to a basis, you have to continue transfinitely, and since
each time you are choosing a vi you are not saying how you did it, you have
to appeal to the axiom of choice. And yet it seems unreasonable to say that
you can’t make the choices just because you can’t specify them - after all, you
can’t specify the choices you make in the finite-dimensional context either,
and for the same reason, that nothing has been told to you about the vector
space V.

If you are given an explicit example of V then the picture changes, but
there is still a close analogy between the two situations. Sometimes there is a
fairly obvious choice of the function f, but sometimes there is no canonical
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way to extend v to a basis. Then, what rescues you if V is finite-dimensional
may be merely that you have to make 10 trillion ugly non-canonical choices
rather than infinitely many.

But by and large, for the vector spaces that matter, it is clear that a func-
tion f can be found, so this time it would be the negation of the axiom of
choice that is a minor irritant, telling you that you have to apologize for your
theorem by confessing that it depends on the axiom.

So for good reasons - and this is what I would like to stress - we sometimes
dismiss the consequences of the axiom of choice and we sometimes insist on
them. And in both cases our governing principle is nothing to do with any-
thing like truth, but more a matter of convenience. It is as though when we
talk about the world of the infinite, we think of it as a sort of idealization of
the finite world we actually inhabit. If the axiom of choice helps to make the
infinite world better reflect the finite one then we are happy to use it. If it
doesn’t then we describe its consequences as “bizarre” and not really part of
“mainstream mathematics”. And that is why I do not believe that it is “really”
true or “really” false.

8. Concluding remarks

It may seem as though I have ignored the title of my talk, so here is what I
mean when I say that mathematics both needs and does not need a philosophy.

Suppose a paper were published tomorrow that gave a new and very com-
pelling argument for some position in the philosophy of mathematics, and
that, most unusually, the argument caused many philosophers to abandon
their old beliefs and embrace a whole new -ism. What would be the effect on
mathematics? I contend that there would be almost none, that the develop-
ment would go virtually unnoticed. And basically, the reason is that the ques-
tions considered fundamental by philosophers are the strange, external ones
that seem to make no difference to the real, internal business of doing math-
ematics. I can’t resist quoting Wittgenstein here:

A wheel that can be turned though nothing else moves with it, is not part of the
mechanism.

Now this is not a wholly fair comment about philosophers of mathemat-
ics, since much of what they do is of a technical nature -attempting to reduce
one sort of discourse to another, investigating complicated logical systems
and so on. This may not be of much relevance to mathematicians, but neither
are some branches of mathematics relevant to other ones. That does not
make them unrespectable.

But the point remains that if A is a mathematician who believes that math-
ematical objects exist in a Platonic sense, his outward behaviour will be no
different from that of his colleague B who believes that they are fictitious
entities, and hers in turn will be just like that of C who believes that the very
question of whether they exist is meaningless.

198 William Timothy Gowers



So why should a mathematician bother to think about philosophy? Here
I would like to advance a rather cheeky thesis: that modern mathemati-
cians are formalists, even if they profess otherwise, and that it is good that
they are.

This is the sort of evidence I have in mind. When mathematicians discuss
unsolved problems, what they are doing is not so much trying to uncover the
truth as trying to find proofs. Suppose somebody suggests an approach to an
unsolved problem that involves proving an intermediate lemma. It is common
to hear assessments such as, “Well, your lemma certainly looks true, but it is
very similar to the following unsolved problem that is known to be hard,” or,
“What makes you think that the lemma isn’t more or less equivalent to the
whole problem?” The probable truth and apparent relevance of the lemma
are basic minimal requirements, but what matters more is whether it forms
part of a realistic-looking research strategy, and what that means is that one
should be able to imagine, however dimly, an argument that involves it.

I think that most successful mathematicians are very much aware of this
principle, even if they don’t bother to articulate it. But I also think that it is
a good idea to articulate it - if you are doing research, you might as well have
as clear and explicit an idea as possible of what you are doing rather than
groping about and waiting for that magic inspiration to strike. And it is a
principle that sits more naturally with formalism than with Platonism.

I also believe that the formalist way of looking at mathematics has benefi-
cial pedagogical consequences. If you are too much of a Platonist or logicist,
you may well be tempted by the idea that an ordered pair is really a funny
kind of set - the idea I criticized earlier. And if you teach that to undergrad-
uates, you will confuse them unnecessarily. The same goes for many artificial
definitions. What matters about them is the basic properties enjoyed by the
objects being defined, and learning to use these fluently and easily means
learning appropriate replacement rules rather than grasping the essence of
the concept. If you take this attitude to the kind of basic undergraduate
mathematics I am teaching this term, you find that many proofs write them-
selves - an assertion I could back up with several examples.

So philosophical, or at least quasi-philosophical, considerations do have
an effect on the practice of mathematics, and therein lies their importance.
I have mentioned some other questions I find interesting, such as the prob-
lem of non-mathematical induction in mathematics, and I would justify
those the same way. And that is the sense in which mathematics needs phi-
losophy.

Brief additions in response to the discussion after the talk

1. Thomas Forster informed me that Russell and Whitehead took roughly the
view of ordered pairs that I advocate - treat them as an undefined primi-
tive with a simple rule for equality. So perhaps I did logicists an injustice
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(unless they felt that the construction of ordered pairs out of sets was sig-
nificant progress).

2. It was pointed out by Peter Smith that I had blurred the distinction
between a pure formalism - mere pushing around of symbols - and “if-
then-ism”, the view that what mathematicians do is explore the conse-
quences of axioms to obtain conditional statements (if this set of axioms
is true, then this follows, while this other set implies such and such else),
but nevertheless statements with a definite content over and above the for-
malism. I don’t know exactly where I stand, but probably a bit further
towards the purely formal end than most mathematicians. See my page on
how to solve basic analysis exercises without thinking for some idea of why.
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11

How and Why Mathematics
Is Unique as a Social Practice1

JODY AZZOUNI

I

I’m sympathetic to many things those who self-style themselves “mavericks”
have to say about how mathematics is a social practice. I’ll start with the
uncontroversial point that mathematicians usually reassure themselves about
their results by showing colleagues what they’ve done. But many activities
are similarly (epistemically) social: politicians ratify commonly-held beliefs
and behavior; so do religious cultists, bank tellers, empirical scientists,
and prisoners.

Sociologists, typically, study methods of attaining consensus or conformity2

since groups act in concert. And (after all) ironing out mathematical “mis-
takes” is suppressing a form of deviant behavior. One way to find genuine
examples of socially-induced consensus is to limn the range of behaviors pos-
sible for such groups. One empirically studies, that is, how groups deviate
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1 This paper owes its existence to an invitation by Jean Paul Van Bendegem and Bart
Van Kerkhove to give a talk at a conference on Perspectives on Mathematical Prac-
tices (October 24-25, 2002). I also subsequently gave this talk at Columbia University
on November 21, 2002. I’m grateful to both audiences for their suggestions which
enabled improvements in the paper. I want to single out in this regard: David Albert,
Haim Gaifman, and Philip Kitcher. Thanks also to Isaac Levi, Michael D. Resnik
and Robert Thomas. I’ve made a small—but significant—number of changes for
the appearance of the article in this volume based on the usual run of second-
thoughts, “oops”-reactions, and so on, that are so natural in philosophy (at least when
I do it).
2 Attaining “conformity” and “consensus” are mild-sounding phrases for what’s often
a pretty brutal process. Although what I say is intended to be understood generally,
the reader does best not to think of the practice of torturing political deviants (in
order to bring them and their kind into line), but of doting parents teaching children
to count, to hold forks, to maneuver about in clothing, or to speak.



from one another in their (group) practices. Consider admissible eating
behavior. The options that exist are virtually unimaginable: in what’s eaten,
how it’s eaten (in what order, with what tools, over how much time), how it’s
cooked—if it’s cooked—what’s allowed to be said (or not) during a meal, and
so on. To understand why a group (at a time) eats meals as it does, and why
its members find variants inappropriate (even revolting), we see how consen-
sus is determined by childhood training, how ideology crushes variations by
making them unimaginable or viscerally repulsive (so that, say, when someone
so trained imagines an otherwise innocent cheeseburger, what’s felt is—nearly
instinctive—disgust), and so on. Equally coercive social factors in conjunc-
tion with the ones just mentioned explain why we obey laws, respect property
(in the particular ways we do), and so on: The threat of punishment, corpo-
real or financial.

Before turning specifically to mathematical practice, note two presupposi-
tions of any empirical study of the social inducing of consensus (and which
have been assumed in my sketchy delineation of the sociology of eating).
First, such social inducing presupposes (empirical) evidence of the possibility
of alternative behaviors. The best way (although not the only way) to verify
that a kind of behavior is possible is to find a group engaged in it; but, in any
case, if a behavior is biologically or psychologically impossible, or if the
resources available to a group prevent it, we don’t need social restraints to
explain why individuals uniformly avoid that behavior.

The second presupposition is that the study of social mechanisms should
uncover factors powerful enough to exclude (in a given population) the alter-
natives we otherwise know are possible; either the absence of such factors, or
the presence of empirical reasons that show such factors can’t enforce behav-
ioral consensus, will motivate the hypothesis of internal factors—psychologi-
cal, physiological, or both—in conforming individuals: consider, for example,
the Chomskian argument that internal dispositions in humans strongly con-
strain the general form of the rules for natural languages.

II

Let’s turn to mathematical practice. There are two striking ways it seems to
differ from just about any other group practice humans engage in. One has
been repeatedly noted by commentators on mathematics; the other, oddly, is
(pretty much) overlooked.

It’s widely observed that, unlike other cases of conformity, and where
social factors really are the source of that conformity, one finds in mathe-
matical practice nothing like the variability found in cuisine, clothing, or
metaphysical doctrine. There are examples of deviant computational prac-
tices: Babylonian fractions or the one-two-many form of counting; but over-
all empirical evidence for the possibility of deviation from standard
mathematical practice—at least until the twentieth century—isn’t rich.
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Two points. First, as Kripke and others have noted (in the wake of
Wittgenstein),3 it’s easy to design thought experiments where people, imper-
vious to correction, systematically follow rules differently from us. Despite
the ease of imagining people like this, they’re not found outside philosophical
fiction. One does (unfortunately) meet people who can’t grasp rules at all—
but that’s different. In rule-following thought-experiments someone is por-
trayed who seems to follow a rule but who also understands “similar,” so that
she “goes on” differently from us. (After being shown a finite number of
examples of sums, she sums new examples as we would until she reaches a
particular border (pairs of numbers both over a hundred, say) whereupon she
sums differently—in some systematic way—while claiming she’s still doing
the same thing. This really is different from people who don’t grasp general-
ization at all.)

Despite the absence of empirically real examples of alternative rule-follow-
ing (in counting or summing), such thought experiments are often used to
press the view that it’s (purely) social factors that induce mathematical con-
sensus. Given my remarks about appropriate empirical methods for recogniz-
ing real options in group practices, such a claim—to be empirically
respectable, anyway—can’t batten on thought experiment alone; it needs an
analysis of social factors that arise in every society that counts or adds—and
which force humans to agree to the same numerical claims. The social factors
that are pointed to, however, for example childhood learning, are ones shared
by almost every other group practice (diet, language, cosmetics, and so on)
which—in contrast to mathematical practice—show great deviation across
groups. That is, even when systematic algorithmic rules (such as the ones of
languages or games) govern a practice, that practice still drifts over time—
unlike, as it seems, the algorithmic rules of mathematics.4

One possible explanation for this5 is that practical exigencies exclude
deviant rule-following mathematics: someone who doesn’t add as we do can
be exploited—in business transactions, say. And so it’s thought that deviant
counting would die quickly. But this idea is sociologically naive because, even
if the dangerousness of a practice did imply its quick demise, this wouldn’t
mean it couldn’t emerge to begin with, and leave evidence in our historical
record of its temporary stay among us; all sorts of idiotic and quite danger-
ous practices (medical ones, cosmetic ones, practices motivated by religious
superstition) are widespread. Even shallow historical reading exposes a

How and Why Mathematics Is Unique as a Social Practice 203

3 E.g.: Kripke 1982, Bloor 1983, and, of course, Wittgenstein 1953.
4 I should make this clear: by “drift” I mean a change in the rules and practices
which doesn’t merely involve augmentation of such rules, but the elimination of
at least some of them. Mathematics is always being augmented; the point of deny-
ing “drift” in its case is that such augmentation is overwhelmingly monotonically
increasing.
5 See e.g., Hersh 1997, p. 203.



plethora of, to speak frankly, pretty dumb activities that (i) allowed exploita-
tion of all sorts (and helped shorten lives), and yet (ii) didn’t require too much
insight to realize were both pretty dumb and pretty dangerous. There’s no
shortage of such practices today—as the religious right and the raw-food
movement, both in the United States, make clear. So it’s hard to see why there
can’t have been really dumb counting practices that flourished (by, for exam-
ple, exploiting the rich vein of number superstition we know existed), and
then died out (along with the poor fools practicing them).

Another way around the apparent sociological uniqueness of mathematical
practice is the blunt response that mathematical practice isn’t unique; there are
deviant mathematical practices; we just haven’t looked in the right places for
them. Consider, instead of counting variants, the development of alternative
mathematics—intuitionism, for example, or mathematics based on alternative
logics (e.g., paraconsistent logics). Aren’t these examples of mathematical
deviancy every bit as breathtakingly different as all the things people willingly
put in their mouths (and claim tastes good and is good for them)?

Well, no. What should strike you about “alternative mathematics”—unless
you’re blinded by an a priori style of foundationalism, where a specific style
of mathematical proof (and logic), and a specific subject matter, are defini-
tional of mathematics—is that such mathematics is mathematics as usual. One
mark of the ordinariness of the stuff is that contemporary mathematicians
shift in what they prove results about: they practice one or another branch of
“classical” mathematics, and then try something more exotic—if the mood
strikes. Proof, informal or formal, looks like the same thing (despite princi-
ples of proof being severely augmented or diminished in such approaches).

Schisms among mathematicians, prior to the late nineteenth century, prove
even shallower than this.6 That differences in methodology historically prove
divisive can’t be denied: differences in the methodology of the calculus, in
England and on the continent, for example, retarded mathematical develop-
ments in England for over a century. Nevertheless, one finds British mathe-
maticians (eventually) adopting the continental approach to the calculus, and
doing so because they (eventually) recognized that the results they wanted,
and more generally, the development of the mathematics surrounding the cal-
culus, were easier given continental approaches. British mathematicians did-
n’t deny the cogency of such results on the grounds that the methods that
yielded them occurred in a “different (incomprehensible) tradition.”

Let’s turn to the second (unnoticed) way that mathematics shockingly dif-
fers from other group practices. Mistakes are ubiquitous in mathematics. I’m
not just speaking of the mistakes of professional—even brilliant—mathe-
maticians although, notoriously, they make many mistakes;7 I’m speaking
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6 One point of this paper is to provide an explanation for why this should be so; see
what’s forthcoming, especially section VI.
7 This is especially stressed in the “maverick tradition” to repeatedly hammer home
the point that proof doesn’t confer “certainty.”



of ordinary people: they find mathematics hard—harder, in fact, than just
about any other intellectual activity they attempt. What makes mathemat-
ics difficult is (1) that it’s so easy to blunder in; and (2) that it’s so easy for 
others (or oneself) to see—when they’re pointed out—that blunders have
been made.8

So? This is where it gets cute. When the factors forcing behavioral consen-
sus are genuinely social, mistakes can lead to new practices. This is for two
reasons at least: first, because the social factors imposing consensus are often
blind to details about the behaviors enforced—they’re better at imposing uni-
formity of behavior than at pinning down exactly which uniform behavior the
population is to conform to. If enough people make a certain mistake, and
if enough of them pass the mistake on, the social factors enforcing consen-
sus continue doing so despite the shift in content. Social mechanisms that
impose conformity are good at synchronic enforcement; they’re not as
good at diachronic enforcement. (Thus what’s sometimes described as a “gen-
eration gap.”)9

The second reason is that the power of social factors to enforce conform-
ity often turns on the successful psychological internalization of social stan-
dards; but if such standards are imperfectly internalized (and any
standard—however mechanical, i.e., algorithmic—can be imperfectly inter-
nalized), then the social standards themselves can evolve, since, in certain
cases, nothing else fixes them. Two examples are, first, the drift in natural lan-
guages over time: this is often because of systematic mishearings by speakers,
or interference phenomena (among internalized linguistic rules), so that cer-
tain locutions or sounds drop out (or arise). The second example is when an
external standard supplementing psychological internalization of social stan-
dards is operative, and is taken to prevent drift—for example the holy books
of a religious tradition. Notoriously, such things are open to hermeneutical
drift: the subject population reinterprets them (often inadvertantly) because
of changes in language, “common sense,” and therefore changes in their (col-
lective) view of what a given law-maker (e.g., God) obviously had in mind.

In short, although every social practice is easy to blunder in, it’s not at all
easy to get people to recognize or accept that they’ve made mistakes (and
therefore, if enough of them do so, it’s impossible—nearly enough—to
restore the practice as opposed to—often inadvertantly—starting a new one).

The foregoing remarks about mistakes aren’t meant to imply that conscious
attempts to change traditions aren’t effective: of course they can be (and
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8 What makes mathematics hard is both how easy it is to make mistakes and how dif-
ficult it is to hide them. Contrast this with poetry. It’s as easy to make mistakes in
poetry—write stunningly bad poetry—as it is to blunder in mathematics. But it’s
much easier to cover up poetic blunders. Why that is is extremely interesting, but
something I can’t fully get into now.
9 Consider school uniforms. All sorts of contingent accidents cause mutations in such
uniforms; but that (at a time) the uniforms should be, um, uniform, is a requirement.



often are). But mathematical practice resists willful (deliberate) change too. A
dramatic case of a conscious attempt to change mathematical practice which
failed (in large part because of incompetence at the standard fare) is
Hobbes.10 Another informative failure is Brouwer, because Brouwer was any-
thing but incompetent at the standard practice.

Notice the point: Brouwer wasn’t interested in developing more mathemat-
ics, nor were (and are) the other kinds of constructivists that followed; he
wanted to change the practice, including his own earlier practice. But he only
succeeded in developing more mathematics, not in changing that practice (as
a whole). This makes Hilbert’s response to Brouwer’s challenge, by the way,
misguided, because Hilbert’s response was also predicated on (the fear of)
Brouwer inducing a change in the practice. This is common: fads in mathe-
matics often arise because someone (or a group, e.g., Bourbaki) thinks that
some approach can become the tradition of mathematics—the result, invari-
ably, is just more (additional) mathematics. A related (sociological) phenom-
enon is the mathematical kook—there are enough of these to write books
about.11 Only a field in which the recognition of mistakes is extremely robust
can (sociologically speaking) successfully marginalize so many otherwise
competent people without standard social forms of coercion, e.g., prison.

So (to recap.) mistakes in mathematics are common, and yet mathematical
culture doesn’t splinter because of them, or for any other reason (for that mat-
ter)12; that is, permanent competing practices don’t arise as they can with
other socially-constrained practices. This makes mathematics (sociologically
speaking) very odd. Mathematical standards—here’s another way to put the
point—are robust. Mistakes do persevere, of course; but mostly they’re elim-
inated, even when repeatedly made. More importantly, mathematical practice
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It’s very common for a population to slowly evolve its culinary practices, dress, accent,
religious beliefs, etc., without realizing that it’s doing so.
10 See Jesseph 1999.
11 For example, Dudley 1987.
12 Philip Kitcher, during the discussion period on November 21, 2002, urged other-
wise—not with respect to mistakes, but with respect to conscious disagreement on
method: he invoked historical cases where mathematicians found themselves arrayed
oppositely with respect to methodology—and the suggestion is that this led to schisms
which lasted as long (comparatively speaking) as those found among, say, various
sorts of religious believers: one thinks (again) of the controversy over the calculus, or
the disputes over Cantor’s work in the late nineteenth century. What’s striking—when
the dust settles, and historians look over the episodes—is how nicely a distinction may
be drawn between a dispute in terms of proof procedures and one in terms of admis-
sible concepts. The latter sort of dispute allows a (subsequent) consistent pooling of
the results from the so-called disparate traditions; the former does not. Thus there is
a sharp distinction between the (eventual) outcome of disputes over the calculus, and
(some of) those over Cantor’s work. The latter eventually flowered into a dispute over
proof procedures which proved irresolvable in one sense (the results cannot be pooled)
but not in another. See VI.



is so robust that even if a mistake eludes detection for years, and even if many
results are built on that mistake, this won’t provide enough social inertia—
once the error is unearthed—to resist changing the practice back to what it
was originally: in mathematics, even after lots of time, the subsequent math-
ematics built on the “falsehood” is repudiated.13

This aspect of mathematical practice has been (pretty much) unnoticed, or
rather, misdescribed; and it’s easy to see why. If one focuses on other epistemic
issues, scepticism say, one can confuse the rigidity of group standards in
mathematics with the availability of certainty: one can claim that, if only one
is sufficiently careful, really attends to each step in a proof, carefully analyzes
proofs so that each step immediately follows from earlier ones, dutifully sur-
veys the whole repeatedly until it can be intuited in a flash, then one can rig
it so that—in mathematics, at least—one won’t ever make any mistakes to
begin with: one can be totally certain.14

But there’s a number of, er, mistakes in this Cartesian line. First, it’s a
robust part of mathematical practice that mistakes are found and corrected.
Even though the practice is therefore fixed enough to rule out deviant prac-
tices that would otherwise result from allowing such “mistakes” to change
that practice, this won’t imply that psychologically-based certainty is within
reach. For it’s compatible with the robustness of our (collective) capacity to
correct mathematical mistakes that some mistakes are still undetected—even
old ones.

Apart from this, the psychological picture the Cartesian recipe for certainty
presupposes is inaccurate. It’s very hard to correct your own mistakes, as you
know, having proofread your work in the past. And yet, someone else often
sees your mistakes at a glance. This shows that the Cartesian project of gain-
ing certainty all alone, a strategy crucial for Descartes’ demon-driven epis-
temic program, is quixotic.15

Notice, however, that the Cartesian view would explain, if it were only true,
how individuals can disagree on an answer, look over each other’s work, and
then come to agree on what the error is. (They become CERTAIN of THE
TRUTH, and THE TRUTH is, after all, THE SAME.) Without this story, we
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13 Contrast this with our referential practices: Evans (1973, p. 11) mentions that (a
corrupt form of) the term “Madagascar,” applied to the African mainland, was mis-
takenly taken to apply to an island (indeed, the island we currently use the term to
refer to). Our discovery of this error doesn’t affect our current use of the term “Mada-
gascar”—the social inertial of our current referential practice trumps any social
mechanisms for correcting dated mistakes in that practice.
14 And then one can make this an epistemic requirement on all knowledge (and offer
recipes on how to carry it off). Entire philosophical traditions start this way.
15 One of the ways Newton is so remarkable is that he did so much totally on his own,
by obsessively going over his own work. (See Westfall 1980.) Newton’s work is an
impressive example of what heroic individualistic epistemic practice can sometimes
look like. Despite this, Newton made mistakes.



need to know what practitioners have internalized (psychologically) to allow
such an unnaturally agreeable social practice to arise.16

To summarize: What seems odd about mathematics as a social practice is
the presence of substantial conformity on the one hand, and yet, on the
other, the absence of (sometimes brutal) social tools to induce conformity
that routinely appear among us whenever behavior really is socially con-
strained. Let’s call this “the benign fixation of mathematical practice.”

III

The benign fixation of mathematical practice requires an explanation. And (it
should be said) Platonism is an appealing one: mathematical objects have
their properties necessarily, and we perceive these properties (somehow).
Keeping our (inner) eye firmly on mathematical objects keeps mathematical
practice robust (enables us to find mistakes). The problem with this view—as
the literature makes clear—is that we can’t explain our epistemic access to the
objects so posited.17

One might try to finesse things: demote Platonic objects to socially-
constructed items (draw analogies between numbers and laws, language,
banks, or Sherlock Holmes). Address the worry that socially-constructed
nonmathematical objects like languages, Mickey Mouse, or laws, evolve over
time (and that their properties look conventional or arbitrary) by invoking
the content of mathematics (mathematical rules have content; linguistic
rules are only a “semitransparent transmission medium” without content).
And, claim that such content makes mathematical rules “necessary.”18
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16 Unlike politics, for example, or any of the other numerous group activities we might
consider, mathematical agreement isn’t coerced. Individuals can see who’s wrong; at
least, if someone is stubborn, others (pretty much all the competent others) see it.
Again, see Jesseph 1999 for the Hobbesian example. Also recall Leibniz’s fond hope
that this genial aspect of mathematical practice could be grafted onto other discourses,
if we learned to “calculate together.” By contrast, Protestantism, with all its numerous
sects—in the United States especially—is what results when coercion isn’t possible
(because deviants can, say, move to Rhode Island). And much of the history of the
Byzantine empire with its unpleasant treatment of “heretics” is the normal course of
events when there’s no Rhode Island to escape to. It’s sociologically very surprising that
conformity in mathematics isn’t achieved as in these group practices. Imagine—here’s
a dark Wittgensteinian fable—we tortured numerical deviants to force them to add as
we do. (Recall, for that matter, George Orwell’s 1984.)
17 Current metaphysics robs Platonism of respectability. Judiciously sprinkle mysti-
cism among your beliefs, and the perceptual analogy looks better; surreptitiously
introduce deities to imprint true mathematical principles in our minds, and the
approach also looks appealing. Explicitly deny all this, and Platonism looks bizarre.
18 See Hersh 1997, p. 206. I deny that (certain) socially-constructed objects, mathe-
matical objects and fictional objects, in particular, exist in any sense at all. See my
2004a. Nominalism, though, won’t absolve me of the need to explain the benign fix-
ation of mathematical practice. On the contrary.



As this stands, it won’t work: we can’t bless necessity upon whatever we’d
like by chanting “content.” Terms that refer to fictional objects have content
too—that doesn’t stop the properties attributed to such “things” from evolv-
ing over time; socially-constructed objects are our objects—if we take their
properties to be fixed, that’s something we’ve (collectively) imposed on them.
It’s a good question why we did this with mathematical terms, and not with
other sorts of terms.

If socially-constructed objects are stiffened into “logical constructions” of
some fixed logic plus set theory (say), this doesn’t solve the problem: one still
must explain how logic (of whatever sort) and set theory accrue social rigid-
ity (why won’t we let our set theory and logic change?).

There is no simple explanation for the benign fixation of mathematical
practice because, as with any group practice, even if that practice retains
its properties over time, that doesn’t show that it has those properties (at dif-
ferent times) for the same reasons. Mathematical practice, despite its venera-
ble association with unchanging objects, is an historical entity with a long
pedigree, and so the reasons for why the correction of mistakes, for example,
is robust in early mathematics, are not the same reasons for that robust-
ness now.

IV

So now I’ll discuss a number of factors, social and otherwise, and speculate
how (and when) they contributed to the benign fixation of mathematical
practice. The result, interestingly, is that if I’m right, benign fixation is his-
torically contingent (and complex). That’s a surprise, I suppose, for apriorists,
but not for those of us who long ago thought of mathematics as something
humans do over time.

Let’s start (as it were) at the beginning: the historical emergence of mathe-
matical practice (primarily counting and sums), and as that practice appears
today among people with little or no other mathematics. Here it’s appropri-
ate to consider the role of “hard-wired” psychological dispositions. There
seem two such relevant kinds of disposition. The first is a capacity to carry
out algorithms, and—it’s important to stress—this is a species-wide capacity:
we can carry out algorithms, and teach each other to carry out (specific) algo-
rithms in the same way. That’s why we can play games with each other (as
opposed to past each other), and why we can teach each other games that we
play alone in the same way (e.g., one or another version of solitaire).

I can’t say what it is about us—neurophysiologically I mean—that enables
us to carry out algorithms the same way—no one can (yet); it’s clear that
some of us are better at some algorithms than others (think of games, and
how our abilities to play them varies)—but what’s striking is that those of us
who are better aren’t, by virtue of that, in any danger of being regarded as
doing something else.
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In describing us as able to “carry out” the same algorithms, I don’t mean to
say that we’re executing the same algorithms (otherwise our abilities to carry
out algorithms wouldn’t differ in the so many ways that they do). I understand
“executing an algorithm,” as doing (roughly) what a Turing machine does
when it operates. Perhaps humans do something like that with some algo-
rithm(s) or other (but, surely, different humans execute different algorithms).
In any case, when we learn arithmetic, for example, we’re not learning to exe-
cute any of the numerous (but equivalent) algorithms that officially charac-
terize arithmetic operations—instead what we’re learning is what a particular
algorithm is, and how to imitate its result—or at least some of its results—by
actions of our own. So when I describe us as “carrying out” an algorithm A,
I mean that we’re imitating it by doing something else B, not by executing it.

I mean this. Add two numbers fifteen times, and you do something differ-
ent each time—you do fifteen different things that (if you don’t blunder) are
the same in the respect needed: the sum you write down at the end of each
process is the same (right) one. We can’t do anything twice; it’s only, as it were,
parts of our behavior (at a time) that occur repeatedly. Proof? We remember
much of what we do, and we’re never but never just imitating a numerical
algorithm when we do so; we’re squirming in our chairs, taking in some of
the passing scene (through our ears, if not through our eyes), etc. Machines
execute algorithms and can do so by doing some things twice. We’re (I hope
this isn’t news) animals.

Another way to make the same point about how we imitate rather than
execute the algorithms that we’re officially working on is that our learning
such algorithms enjoys an interesting flexibility: we not only (apparently)
acquire and learn new algorithms, but we can get better at the algorithms
we’ve already learned by practicing them.

Finally, it should be noted that, usually, mathematicians don’t execute the
algorithms they’re officially deriving results from; they short-cut them.19

These considerations—phenomenological ones, it’s true—suggest that we
don’t—probably can’t—execute the official algorithms we’re carrying out;
we’re executing other algorithms instead that imitate the target algorithm
(and over time, no doubt, different ones are used to do this); and this neatly
explains why we can improve our abilities, by practice, to add sums, carry out
other mathematical algorithms, and win games (for that matter).

Having said this, I must stress that I’m speculating about something that
must ultimately be established empirically. So (of course) it could turn out
that I’m just wrong, that we really do execute (some of) these algorithms (or,
at least, some subpersonal part of us does), and that we don’t imitate them
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19 Our ability to imitate algorithms flourishes into mathematical genius (in some indi-
viduals, anyway); for the mathematician, as I said, never (or almost never) figures out
what an algorithm (proof procedure, say) will yield by executing that algorithm
directly. Ordinary mathematical proof—its form, I mean—already shows this. See my
forthcoming for more details.



via other algorithms that we execute. The neurophysiologists, in the end, will
tell us what’s what (if it’s possible for anyone to tell us this, I mean): I’m bet-
ting, however, on my story—it explains our algorithmic flexibility, and our
capacity to make and correct mistakes, in a way that a story that requires us
to actually execute such algorithms doesn’t.20

I’m also unable to say—because this too is ultimately a matter of neuro-
physiology—how general our capacity to mimic algorithms is; that we can
now (since Turing and others) formulate in full generality the notion of
mechanized practice—algorithm—doesn’t mean that we have the innate
capacity to “carry out”—imitate—the results of any such algorithm whatso-
ever. Our capacity to imitate algorithms may be, contrary to (introspective)
appearance, more restricted than we realize.

A (species-wide) capacity to imitate the execution of algorithms in the same
way doesn’t explain the benign fixation of mathematical practice. This is
because that robustness turns on conserving the official rules governing mathe-
matical objects, and a group ability to imitate algorithms the same way won’t
explain why a practice doesn’t evolve by changing the applicable algorithms alto-
gether—in just the way that languages, which involve algorithms too, evolves.

A second innate capacity I’m willing to attribute to us is a disposition to
execute certain specific algorithms.21 I’m still thinking here primarily of our
(primitive) ability to count and handle small sums. My suggestion is that why,
wherever primitive numerical practices emerge, they’re (pretty much) the
same isn’t because of sociological factors that constrain psychologically pos-
sible variants—rather, it’s because of fixed innate dispositions.

Don’t read too much into this second set of dispositions since they’re also
too weak to explain the benign fixation of mathematical practice: they don’t
extend far enough. They’re not rules that apply to, say, any counting number
whatsoever. These dispositions—I suspect—are very specific: they may facil-
itate handling certain small sums by visualizing them, or manipulating tokens
in certain ways. I’m not claiming that such dispositions enable the execution
of (certain) algorithms so that we can count as high as we like, add arbitrar-
ily large sums, and so on.22
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20 The last four paragraphs respond to a line of questioning raised by David Albert;
my thanks for this.
21 Caveat: Given my earlier remarks about the empirical nature of my speculations
about how we imitate the execution of algorithms, I’m not sure I’ve succeeded in
describing two distinct capacities: Our ability to imitate algorithms—in general—
needn’t be a general ability to execute algorithms because, as I’ve said, we don’t “carry
out” algorithms by directly executing them. What we do, perhaps, is apply a quite spe-
cific algorithm or set of algorithms to official algorithms that we want to carry out, a
process which enables us to extract (some) information about any algorithm (once
we’ve psychologically couched it a certain way).
22 Thus I haven’t (entirely) deflected Kripkean attacks on the dispositionalist
approach to rule-following. And: On my view, dispositions have only a partial role in
the benign fixation of mathematical practice.



V

Such innate dispositions as I’ve described, although they explain why the
independent emergence of counting and summing among various popula-
tions always turns out the same, won’t explain why, when mathematics
becomes professionalized—in particular, when informal deduction is hit upon
by the ancient Greeks—benign fixation continues, rather than mathematical
practice splintering.

I introduce something of a sociological idealization, which I’ll call “mature
mathematics,” and which I’ll describe as emerging somewhat before Euclid
and continuing until the beginning of the twentieth century.23 I claim that
several factors conspire to benignly fix mature mathematical practice.

The first is that, pretty much until the twentieth century, mathematics came
with intended empirical domains of application (from which mathematical
concepts so applied largely arose). Arithmetic and geometry, in particular,
come with obviously intended domains of application. These fixed domains
of application prevent, to some extent, drift in the rules governing terms of
mathematics—in these subjects so applied, anyway. This is because successful
application makes us loathe to change successfully applied theorems—if that
costs us applicability.24

But something more must be going on with mathematics, as a comparison
with empirical science indicates. For the history of empirical science (physics,
in particular) proves that drift can occur and yet the intended application of
the concepts and theories not vanish as a result. Newtonian motion, strictly
speaking, occurs only when objects don’t move. But its approximate correct-
ness suffices for successful application. Furthermore, the application of
mathematics—geometry especially—always involves (some) approximation
because of the nature of what geometric concepts are applied to (in particu-
lar, fuzzily-drawn figures).
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23 Twentieth-century mathematics isn’t mature? Well, of course it is, but I’m arguing
that it’s different in important respects that require distinguishing it (sociologically,
anyway) from what I’ve called “mature mathematics.” Maybe—taking a nomenclat-
ural tip from literature studies—we can call it “post-mature mathematics.” On the
other hand, maybe we better not. I’ll contrast “mature” mathematics with “contem-
porary” mathematics.
This idealization is artificial because aspects of mathematical practice present in
“mature” mathematics (they’re in Euclid), and which continue to play an important
role in contemporary mathematics, don’t fit my official characterization of mature
mathematics. I’ll touch on this in due course.
24 The ancient Greeks, it’s pointed out more than once, were disdainful of “applied
mathematics.” Yes, but that disdain is compatible with what I’ve just written. The
view, for example, that the empirical realm is a copy of the mathematical realm both
determines the intended empirical domain in the sense I mean, while simultaneously
demeaning the intellectual significance of that domain.



At work fixing mathematical practice beyond the drift allowed by success-
ful (but approximate) application is a crucial factor, the essential role of infor-
mal proof, or deduction. It’s no doubt debatable exactly what’s involved in
informal proof, but in mature mathematics it can be safely described as this:25

a canonization of logical principles, and an (open-ended) set of additional
(mathematical) principles and concepts which, (1) (partially) characterize
subject matters with intended domains of application, (2) are more or less
tractable insofar as we can, by means of them, informally prove new unan-
ticipated results, and (3) which grow monotonically over time.

The need for tractable informal proofs drives the existential commitments
of mathematics, and in particular, drives such commitments away from the
objects characterized (empirically) in the intended domains of application.
I’ve described this process in two case studies elsewhere, and won’t dwell on
it now.26 But, the particular form mathematical posits take, itself now con-
tributes several ways to benign fixation.

First, ordinary folk practices with empirical concepts allow those con-
cepts to drift in what we can claim about them, and what they refer to, with-
out our taking ourselves, as a result, to be referring to something new. If
we discover that gold is actually blue, we describe that discovery in exactly
those words (and not as a discovery that there is no gold).27 By taking math-
ematical posits as empirically uninstantiated items, we detach mathematical
language from this significant source of drift in what we take to be true of
them.

Second, once mathematical posits are taken to be real but sensorily
unavailable items which provide truths successfully applicable to empirical
domains, mathematical practice opens itself to philosophical concerns both
about the nature of such truths and how such truths are established. For a
number of reasons—mostly involving various philosophical prejudices about
truth28—the conventionalist view that mathematical truths are stipulated, and
that mathematical objects exist in no sense at all, isn’t seen as tenable (or even
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25 Recall, however, the second paragraph of footnote 23.
26 See my 2004a and my 2004b. A discussion of the special qualities that a set of con-
cepts, and principles governing them, needs for amenability to mathematical develop-
ment—qualities that empirically derived notions, and truths about them, usually don’t
have—may be found in my 2000a.
27 I’m alluding here to the sorts of thought experiments Putnam gave in his 1975.
See my 2000b, especially Parts III and IV. There are subtleties and complications
with this view of empirical terms, of course; but they don’t affect points made in
this paper.
28 I have in mind claims like: (i) we can’t have truths about things that don’t exist, and
(ii) even if we could, such truths wouldn’t prove as empirically useful as mathematics
is. Such prejudices are hardly restricted to ancient philosophers—e.g., Plato and Aris-
totle. They are standard fare among contemporaries too. See my 2004a for what things
look like once we purge ourselves of them.



considered), and a view of eternal and unchanging mathematical objects car-
ries the day instead.29

Of course, such an eternalist view of mathematical objects doesn’t, all on
its own, eliminate the possibility of a mathematical practice which allows
drift in what we take to be true of mathematical objects: we could (in princi-
ple) still allow ourselves to be wrong about mathematical objects, and to be
willing to change basic axioms governing them as a result. Imagine this
thought experiment: a possible world much like ours, except that we discover
nonEuclidean geometry centuries earlier, and due to the curvature of space
in that world, its applicability is much more evident than in the actual world.
In that world, we decide that Euclidean geometry is wrong; that is, we take
ourselves to have been wrong about geometric abstracta—there are no
abstracta that obey Euclidean axioms. This attitude is compatible with a view
of mathematical abstracta as eternal, unchanging, etc. What prevented such
a view from emerging among us, I claim, is the relative late discovery of non-
Euclidean geometry (in the actual world). I touch on this later, but my view
is that had (one or another) nonEuclidean geometry emerged in, say, ancient
times, and had it been the case that Euclidean geometry proved useless in its
intended domain of application (in comparison to nonEuclidean geometry),
it would have been supplanted by nonEuclidean geometry—we would have
taken ourselves to have been wrong about geometry and would have changed
the basic axioms of what we called Geometry to suit.30

I’ve stressed how intended domains of application helped to benignly fix
mathematical practice; the (implicit) canonization of logical principles is just
as essential. Had there been shifts in the (implicit) logic, then we would have
found ourselves—when considering early mathematics—in exactly the same
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29 Philosophical views about what positions are sensible or not can’t be ignored in any
sociological analysis of why a group practice develops as it does. There are some, no
doubt, who take philosophical views as mere ideology, as advertising for other more
substantial social motives (e.g., professional or class interests). I can’t see how to take
such a position seriously, especially if it’s the sociology of knowledge-practices (of
one sort or another) that’s under study. What looked philosophically respectable, or
not, I claim, had (and has) a profound impact on mathematical practice. It may be a
mistake to search for that effect in the theorem-proving practices of the ordinary
mathematician, but, in any case, as this paper illustrates, I locate it in, as it might be
described, the general framework of how mathematics operates as a subject-matter (in
particular, in how it’s allowed to change over time).
30 This would have happened, in part, because of an implicit metaphysical role for
mathematical objects in the explanation for why that mathematics applied to its
intended empirical domain—recall the resemblence doctrine mentioned in footnote
24. But in part I attribute the late emergence of nonEuclidean geometry not having a
supplanting effect on Euclidean geometry as due to the already in place change of
“mature” mathematics into “contemporary” mathematics, as I characterize the latter
shortly. I guess I’m hypothesizing a “paradigm shift” although I don’t much like this
kind of talk. It seems that Kline (1980) is sensitive to some of the changes from
mature to contemporary mathematics, although he takes a rather darker view of the
shift than I do.



position that modern Greeks find themselves if they try to read ancient Greek
on the basis of their knowledge of the contemporary stuff: incomprehension.
In addition, shifts in the implicit logical principles utilized would have led to
incompatible branchings in mathematical practice because of (irresolvable)
disagreements about the implications of axioms and the validity of proofs.

VI

In order to motivate my discussion of how twentieth-century mathematics
differs from what came before, I need to amplify my claim about the (tacit)
canonization of logical principles in mature mathematics. Contemporary dis-
cussions of Frege’s logicist program, and the Principia program that followed
it, often dwell—quite melodramatically—on paradox; and the maverick ani-
mus towards such projects focuses on the set-theoretic foundationalism that’s
taken to have undergirded both the ontological concerns and the obsession
with rigor proponents of such programs expressed.31 But this focus obscures
what those projects really showed: Nothing about the (real) subject-matter of
mathematics (I rush to say), for that’s proven to be elusive in any case—ways
of embedding systems of mathematical posits in other systems is so uncon-
strained, ontologically speaking, that it’s inspired structuralist views of that
ontology.32

However, a very good case can be made that the logic of mature mathe-
matics was something (more or less) equivalent to the first-order predicate
logic, and that this was a nontrivial thing to have shown.33 What proves this
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31 In describing the complex history this way, I’m not necessarily agreeing either with
the depiction or with the attribution of these motives to later proponents of set-theo-
retical foundationalism.
32 See, e.g., Resnik 1997.
33 Why fix on first-order logic, and not a higher-order (classical) logic, especially since it
was a higher-order logic that historically arose first? Well, there are a number of reasons;
but the one most pertinent to the topic of this paper is that first-order logic and higher-
order logics are nicely distinguishable because first-order logic is a canonization of rea-
soning principles without a subject matter, but the higher-order stuff (with standard
semantics—where e.g., second order quantifiers range over all the subsets of the
domain) is implicitly saddled with a set-theoretic subject-matter. See my 1994, Part I, §
3, where the point is made that second-order logic is equivalent to what are there called
truncated first-order logics which require an additional logical constant which intro-
duces set-theoretic resources. Notice the point: the intrusion of set-theoretic facts into
the implication relation of higher-order logics constrains them in ways that families of
axiom systems of first-order systems are not so constrained.
There are also grammatical considerations that suggest that the implicit logic of ordi-
nary mathematics is first-order: the direct way that higher-order quantifiers quantify into
predicate positions must be imitated in natural languages (at least in English) via nomi-
nalization. This suggests (again, at least in English) that predicates must be objectified,
and containment relations stipulated between such objectified predicates and the objects
the original predicates hold of. But such is the way of first-order idioms.



is that the project of characterizing (classical) mathematics axiomatically in
first-order classical systems succeeded.34 What shows it isn’t a trivial point is
that, in fact, much of twentieth-century mathematics can’t be so axiomati-
cally characterized.

What’s especially striking about this success is that the classical logic which
is the algorithmic skeleton behind informal proof remained tacit until its
(late) nineteenth-century uncovery (I coin this word deliberately). But, as the
study of ever-changing linguistic rules shows, implicit rules have a slippery
way of mutating; in particular, what seems to be a general rule (at a time) can
subsequently divide into a set of domain-specific rules, only some of which are
retained.35 The logical principles implicit in mathematical practice—until the
twentieth century, however—remained the same topic-neutral ones (at least
relative to mathematical subject-matters). Such uniformity of logical practice
suggests, as does the uniformity of counting and summation practices I dis-
cussed earlier, a “hard-wired” disposition to reason in a particular way.36

This brings us to the points I want to make about twentieth-century math-
ematics. Contemporary mathematics, I claim, breaks away from the earlier
practice in two extremely dramatic respects. First, it substitutes for classical
logic (the tacit canon of logical principles operative in “mature” mathemat-
ics), proof procedures of any sort (of logic) whatsoever provided only that
they admit of the (in principle) mechanical recognition of completely explicit
proofs. That is, not only are alternative logics, and the mathematics based
on such things, now part of contemporary mathematics; but various sorts of
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34 Hersh (1997) and other mavericks deny this but offer only the (weak) argument that
the project hasn’t been carried out in detail for all the mathematics it was supposed to
apply to. But why is that needed? (The same grounds show, I suppose, that Gödel’s sec-
ond incompleteness theorem hasn’t been shown either; and there are other examples
in mathematics as well.) By the way, notice that it’s irrelevant that the ordinary math-
ematician neither now, nor historically, couched any of his or her reasoning in such a
formalism. This is because—as mentioned earlier—nobody carries out an algorithm
by executing that algorithm—especially not gifted mathematicians who strategize
proofs (and their descriptions) routinely, if they give proofs at all. Consider a similar
argument that because ordinary speakers don’t introspectively have access to the rules
of natural language, they (of course) aren’t implementing such rules (or recognizing
the grammaticality of sentences by means of such rules).
35 See, e.g., Anderson 1988, especially pp. 334-335.
36 There is a complication that (potentially) mars this otherwise appealing view of the
implicit role of first-order logic in mathematics: the “logic” of ordinary language
looks much richer than what the first-order predicate calculus can handle—notori-
ously, projects of canonizing the logic of anything other than mathematics using (even
enrichments of) the first-order predicate calculus have proved stunningly unsuccess-
ful. This leaves us without a similar argument that the tacit logic of natural language
is (something similar to) the first-order predicate calculus. But it would be very sur-
prising if the tacit logic of mathematics were different from that of ordinary lan-
guage—especially given the apparent topic-neutrality of that logic. I can’t get further
into this very puzzling issue now.



diagrammatic proof procedures are part of it as well; such (analogue) proof
procedures, which involve conventionalized moves in the construction of dia-
grams, need not be proofs easily replicated in language-based axiomatic sys-
tems of any sort.37

One factor that accelerated the generalization of mathematical practice
beyond the tacit classical logic employed up until the twentieth century was
the explicit formalization of that very logic. For once (a version of) the logic
in use was made explicit, mathematicians could change it. Why? because
what’s conceptually central to the notion of formal proof, and had been all
along (as it had been operating in mature mathematics), isn’t the presence of
any particular logic, or logical axioms of some sort, but only the unarticu-
lated idea that something “follows from” something else. This is neat: since
(until the late nineteenth century) the logic was tacit, its particular principles
couldn’t have been seen as essential to mathematical proof since they weren’t
seen at all. What was seen clearly by mathematicians and fellow-travelers
(recall footnote 16) was the benign fixation of mathematical practice; but
that’s preserved by generalizing proofs to anything algorithmically recogniz-
able, regardless of the logic used.38
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37 There’s lots more to say about diagrammatic proofs, but not now. I’ve now dis-
charged the promissory note of the second paragraph of footnote 23, however: Dia-
grammatic proofs are in Euclid’s elements (see my 2004b), and they continued to
appear in mathematics during its entire mature phase—even though practices using
them are only awkwardly canonized in a language-based theorem-proving picture of
mathematical practice. The discussion of such items in contemporary mathematics is
showing up in the literature on mathematical method. See, e.g., Brown 1999. I should
stress again, however, that such practices require mechanical recognition of proofs; so
they nicely fit within my (1994) characterization of mathematics as an interlocking
system of algorithmic systems. I should also add that diagrammatic practices within
classical mathematics are clearly compatible with the tacit standard logic used there—
they provide consistent extensions of the axiomatic systems they accompany (or so I
conjecture)—something not true of the more exotic items (e.g., logics) invented in the
twentieth century.
38 Haim Gaifman (November 21, 2002) has raised a challenge to the idea that con-
temporary mathematics can (genuinely) substitute algorithmic recognizability for the
implicit logic of mature mathematics. For given the fact—aired previously—that
mathematicians don’t execute the actual algorithmic systems they prove results from,
it must be that they rely on methods (modeling, adopting a metalanguage vantage
point, etc.) which incorporate, or are likely to, the classical logic mathematicians nat-
urally (implicitly) rely on. This suggests that if a mathematician were to attempt to
really desert the classical context (and not merely avoid a principle or two—as intu-
itionists do), he or she would have to execute such algorithms mechanically—any
other option would endanger the validity of the results (because the short-cuts used
could presuppose inadmissible logical principles).
It may be that this is correct: an adoption of a seriously deviant nonclassical logic for
(some) mathematics requires formalization. I’m simply not sure: none of the factors
that distinguish mathematical proof from formal derivation that I discuss in my forth-
coming seem to require any particular logic but my discussion there hardly exhausts
such differences; and so I could easily be wrong about this.



The second way that contemporary mathematics bursts out from the pre-
vious practice is that it allows pure mathematics such a substantial life of its
own that areas of mathematics can be explored and practiced without even a
hope (as far as we can tell) of empirical application.39 This, coupled with the
generalization of mathematical proof to mechanical recognition procedures
(of one sort or another) allows a different way to benignly fix mathematical
practice. For now branches of mathematics can be individuated by families
of algorithmic systems: by (tacit) stipulation, one doesn’t change mathemati-
cal practice; new mathematics is created by the introduction of new algorith-
mic systems (i) with rules different from all the others, and (ii) which aren’t
augmentations of systems already in use. Should such an invention prove
empirically applicable, and should it supplant some other (family of) sys-
tem(s) previously applied to that domain, this doesn’t cause a change in math-
ematics: the old family of systems is still mathematics, and is still something
that can be profitably practiced (from the pure mathematical point of view).
All that changes is the mathematics applied (and perhaps, the mathematics
funded).

Notice that these reasons for the benign fixation of mathematical practice
differ from those at work during mature mathematics. In particular, recall my
thought experiment about the much earlier discovery of nonEuclidean geom-
etry in a nearby possible world; its discovery in our world, given when it hap-
pened, spurred on the detachment of mathematics (as a practice) from
intended domains of application; but that was hardly something that it
started. Mathematical development had already started to explode (in com-
plex analysis, especially)—but although intended domains of application were
still exerting a strong impact on the direction of mathematical research, the
introduction of mathematical concepts was no longer solely a matter of
abstracting and idealizing empirical notions, as the notion of the square root
of −1 makes clear all on its own. I claim (but this is something only historians
of mathematics can evaluate the truth of) that this, coupled with a more
sophisticated view of how mathematical posits could prove empirically valu-
able (not just by a “resemblance” to what they’re applied to), and both of these
coupled with the emergence of a confident mathematical profession not
directly concerned with the application of said mathematics, allowed the birth
of mathematical liberalism: the side-by-side noncompetitive existence of (log-
ically incompatible) mathematical systems. And what a nice outcome that was!
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39 What about classical number theory? Well, I’m not claiming that “mature” mathe-
matics didn’t have subject matters, the exploration of (some) of which wasn’t expected
to yield empirical application; but numbers aren’t the best counterexample to my claim
since they were clearly perceived to have (intended) empirical applications. The con-
temporary invention and exploration of whole domains of abstracta without (any)
empirical application whatsoever is a different matter. Consider, e.g., most of the
explorations of set-theoretic exotica or (all of) degree theory. (None of this is to say,
of course, that empirical applications can’t arise later.)
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The Pernicious Influence
of Mathematics upon Philosophy

GIAN-CARLO ROTA

The Double Life of Mathematics

ARE MATHEMATICAL IDEAS INVENTED or discovered? This question has been
repeatedly posed by philosophers through the ages and will probably be with us
forever. We will not be concerned with the answer. What matters is that by ask-
ing the question, we acknowledge that in the first of its lives mathematics deals
with facts, like any other science. It is a fact that the altitudes of a triangle meet
at a point; it is a fact that there are only seventeen kinds of symmetry in the
plane; it is a fact that there are only five non-linear differential equations with
fixed singularities; it is a fact that every finite group of odd order is solvable.
The work of a mathematician consists of dealing with such facts in various
ways. When mathematicians talk to each other, they tell the facts of mathemat-
ics. In their research, mathematicians study the facts of mathematics with a tax-
onomic zeal similar to a botanist studying the properties of some rare plant.

The facts of mathematics are as useful as the facts of any other science. No
matter how abstruse they may first seem, sooner or later they find their way
back to practical applications. The facts of group theory, for example, may
appear abstract and remote, but the practical applications of group theory
have been numerous, and have occurred in ways that no one could have antic-
ipated. The facts of today’s mathematics are the springboard for the science
of tomorrow.

In its second life, mathematics deals with proofs. A mathematical theory
begins with definitions and derives its results from dearly agreed-upon rules
of inference. Every fact of mathematics must be ensconced in an axiomatic
theory and formally proved if it is to be accepted as true. Axiomatic exposi-
tion is indispensable in mathematics because the facts of mathematics, unlike
the facts of physics, are not amenable to experimental verification.

The axiomatic method of mathematics is one of the great achievements
of our culture. However, it is only a method. Whereas the facts of mathe-
matics once discovered will never change, the method by which these facts are
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verified has changed many times in the past, and it would be foolhardy to
expect that changes will not occur again at some future date.

The Double Life of Philosophy

The success of mathematics in leading a double life has long been the envy of
philosophy, another field which also is blessed- or maybe we should say
cursed - to live in two worlds but which has not been quite as comfortable
with its double life.

In the first of its lives, philosophy sets itself the task of telling us how to look
at the world. Philosophy is effective at correcting and redirecting our thinking,
helping us do away with glaring prejudices and unwarranted assumptions. Phi-
losophy lays bare contradictions that we would rather avoid facing. Philosoph-
ical descriptions make us aware of phenomena that lie at the other end of the
spectrum of rationality that science will not and cannot deal with.

The assertions of philosophy are less reliable than the assertions of math-
ematics but they run deeper into the roots of our existence. Philosophical
assertions of today will be the common sense of tomorrow.

In its second life, philosophy, like mathematics, relies on a method of argu-
mentation that seems to follow the rules of some logic. But the method of philo-
sophical reasoning, unlike the method of mathematical reasoning, has never
been clearly agreed upon by philosophers, and much philosophical discussion
since its Greek beginnings has been spent on method. Philosophy’s relationship
with Goddess Reason is closer to a forced cohabitation than to the romantic liai-
son which has always existed between Goddess Reason and mathematics.

The assertions of philosophy are tentative and partial. It is not even clear
what it is that philosophy deals with. It used to be said that philosophy was
“purely speculative,” and this used to be an expression of praise. But lately
the word “speculative” has become a bad word.

Philosophical arguments are emotion-laden to a greater degree than math-
ematical arguments and written in a style more reminiscent of a shameful
admission than of a dispassionate description. Behind every question of phi-
losophy there lurks a gnarl of unacknowledged emotional cravings which act
as a powerful motivation for conclusions in which reason plays at best a sup-
porting role. To bring such hidden emotional cravings out into the open, as
philosophers have felt it their duty to do, is to ask for trouble. Philosophical
disclosures are frequently met with the anger that we reserve for the betrayal
of our family secrets.

This confused state of affairs makes philosophical reasoning more difficult
but far more rewarding. Although philosophical arguments are blended with
emotion, although philosophy seldom reaches a firm conclusion, although
the method of philosophy has never been clearly agreed upon, nonetheless
the assertions of philosophy, tentative and partial as they are, come far closer
to the truth of our existence than the proofs of mathematics.
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The Loss of Autonomy

Philosophers of all times, beginning with Thales and Socrates, have suffered
from recurring suspicions about the soundness of their work and have
responded to them as well as they could.

The latest reaction against the criticism of philosophy began around the
turn of the twentieth century and is still very much with us.

Today’s philosophers (not all of them) have become great believers in
mathematization. They have recast Galileo’s famous sentence to read, “The
great book of philosophy is written in the language of mathematics.”

“Mathematics calls attention to itself,” wrote Jack Schwartz in a famous
paper on another kind of misunderstanding. Philosophers in this century
have suffered more than ever from the dictatorship of definitiveness. The illu-
sion of the final answer, what two thousand years of Western philosophy
failed to accomplish, was thought in this century to have come at last within
reach by the slavish imitation of mathematics.

Mathematizing philosophers have claimed that philosophy should be made
factual and precise. They have given guidelines based upon mathematical
logic to philosophical argument. Their contention is that the eternal riddles
of philosophy can be definitively solved by pure reasoning, unencumbered by
the weight of history. Confident in their faith in the power of pure thought,
they have cut all ties to the past, claiming that the messages of past philoso-
phers are now “obsolete.”

Mathematizing philosophers will agree that traditional philosophical rea-
soning is radically different from mathematical reasoning. But this difference,
rather than being viewed as strong evidence for the heterogeneity of philoso-
phy and mathematics, is taken as a reason for doing away completely with
non-mathematical philosophy.

In one area of philosophy the program of mathematization has succeeded.
Logic is nowadays no longer part of philosophy. Under the name of mathe-
matical logic it is now a successful and respected branch of mathematics, one
that has found substantial practical applications in computer science, more
than any other branch of mathematics.

But logic has become mathematical at a price. Mathematical logic has
given up all claims of providing a foundation to mathematics. Very few logi-
cians of our day believe that mathematical logic has anything to do with the
way we think. Mathematicians are therefore mystified by the spectacle 
of philosophers pretending to re-inject philosophical sense into the lan-
guage of mathematical logic. A hygienic cleansing of every trace of philo-
sophical reference had been the price of admission of logic into the
mathematical fold. Mathematical logic is now just another branch of
mathematics, like topology and probability. The philosophical aspects of
mathematical logic are qualitatively no different from the philosophical
aspects of topology or the theory of functions, aside from a curious ter-
minology which, by chance, goes back to the Middle Ages.
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The fake philosophical terminology of mathematical logic has mis led
philosophers into believing that mathematical logic deals with the truth in the
philosophical sense. But this is a mistake. Mathematical logic deals not with
the truth but only with the game of truth. The snobbish symbol-dropping
found nowadays in philosophical papers raises eyebrows among mathemati-
cians, like someone paying his grocery bill with Monopoly money.

Mathematics and Philosophy: Success and Failure

By all accounts mathematics is mankind’s most successful intellectual under-
taking. Every problem of mathematics gets solved, sooner or later. Once
solved, a mathematical problem is forever finished: no later event will disprove
a correct solution. As mathematics progresses, problems that were difficult
become easy and can be assigned to schoolchildren. Thus Euclidean geometry
is taught in the second year of high school. Similarly, the mathematics learned
by my generation in graduate school is now taught at the undergraduate level,
and perhaps in the not too distant future, in the high schools.

Not only is every mathematical problem solved, but eventually every math-
ematical problem is proved trivial. The quest for ultimate triviality is charac-
teristic of the mathematical enterprise.

Another picture emerges when we look at the problems of philosophy. Phi-
losophy can be described as the study of a few problems whose statements
have changed little since the Greeks: the mind-body problem and the prob-
lem of reality, to mention only two. A dispassionate look at the history of
philosophy discloses two contradictory features: first, these problems have in
no way been solved, nor are they likely to be solved as long as philosophy sur-
vives; and second, every philosopher who has ever worked on any of these
problems has proposed his own “definitive solution,” which has invariably
been rejected by his successors.

Such crushing historical evidence forces us to conclude that these two par-
adoxical features must be an inescapable concomitant of the philosophical
enterprise. Failure to conclude has been an outstanding characteristic of phi-
losophy throughout its history.

Philosophers of the past have repeatedly stressed the essential role of fail-
ure in philosophy. José Ortega y Gasset used to describe philosophy as “a
constant shipwreck.” However, fear of failure did not stop him or any other
philosopher from doing philosophy.

The failure of philosophers to reach any kind of agreement does not make
their writings any less relevant to the problems of our day. We reread with
interest the mutually contradictory theories of mind that Plato, Aristotle,
Kant and Comte have bequeathed to us, and find their opinions timely and
enlightening, even in problems of artificial intelligence.

But the latter day mathematizers of philosophy are unable to face up to the
inevitability of failure. Borrowing from the world of business, they have
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embraced the ideal of success. Philosophy had better be successful, or else it
should be given up.

The Myth of Precision

Since mathematical concepts are precise and since mathematics has been suc-
cessful, our darling philosophers infer - mistakenly that philosophy would be
better off, that is, would have a better chance of being successful, if it utilized
precise concepts and unequivocal statements.

The prejudice that a concept must be precisely defined in order to be mean-
ingful, or that an argument must be precisely stated in order to make sense,
is one of the most insidious of the twentieth century. The best known expres-
sion of this prejudice appears at the end of Ludwig Wittgenstein’s Tractatus.
The author’s later writings, in particular Philosophical Investigations, are a
loud and repeated retraction of his earlier gaffe.

Looked at from the vantage point of ordinary experience, the ideal of preci-
sion seems preposterous. Our everyday reasoning is not precise, yet it is effective.
Nature itself, from the cosmos to the gene, is approximate and inaccurate.

The concepts of philosophy are among the least precise. The mind, per-
ception, memory, cognition are words that do not have any fixed or clear
meaning. Yet they do have meaning. We misunderstand these concepts when
we force them to be precise. To use an image due to Wittgenstein, philosoph-
ical concepts are like the winding streets of an old city, which we must accept
as they are, and which we must familiarize ourselves with by strolling through
them while admiring their historical heritage. Like a Carpathian dictator, the
advocates of precision would raze the city and replace it with the straight and
wide Avenue of Precision.

The ideal of precision in philosophy has its roots in a misunderstanding of
the notion of rigor. It has not occurred to our mathematizing philosophers that
philosophy might be endowed with its own kind of rigor, a rigor that philoso-
phers should dispassionately describe and codify, as mathematicians did with
their own kind of rigor a long time ago. Bewitched as they are by the success of
mathematics, they remain enslaved by the prejudice that the only possible rigor
is that of mathematics and that philosophy has no choice but to imitate it.

Misunderstanding the Axiomatic Method

The facts of mathematics are verified and presented by the axiomatic method.
One must guard, however, against confusing the presentation of mathematics
with the content of mathematics. An axiomatic presentation of a mathematical
fact differs from the fact that is being presented as medicine differs from food.
It is true that this particular medicine is necessary to keep the mathematician
at a safe distance from the self-delusions of the mind. Nonetheless, under-
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standing mathematics means being able to forget the medicine and enjoy the
food. Confusing mathematics with the axiomatic method for its presentation is
as preposterous as confusing the music of Johann Sebastian Bach with the
techniques for counterpoint in the Baroque age.

This is not, however, the opinion held by our mathematizing philosophers.
They are convinced that the axiomatic method is a basic instrument of dis-
covery. They mistakenly believe that mathematicians use the axiomatic
method in solving problems and proving theorems. To the misunderstanding
of the role of the method they add the absurd pretense that this presumed
method should be adopted in philosophy. Systematically confusing food with
medicine, they pretend to replace the food of philosophical thought with the
medicine of axiomatics.

This mistake betrays the philosophers’ pessimistic view of their own field.
Unable or afraid as they are of singling out, describing and analyzing the
structure of philosophical reasoning, they seek help from the proven tech-
nique of another field, a field that is the object of their envy and veneration.
Secretly disbelieving in the power of autonomous philosophical reasoning to
discover truth, they surrender to a slavish and superficial imitation of the
truth of mathematics.

The negative opinion that many philosophers hold of their own field has
caused damage to philosophy. The mathematician’s contempt for the philoso-
pher’s exaggerated estimation of a method of mathematical exposition feeds
back onto the philosopher’s inferiority complex and further decreases the
philosopher’s confidence.

“Define Your Terms!”

This old injunction has become a platitude in everyday discussions. What
could be healthier than a clear statement right at the start of what it is that
we are talking about? Doesn’t mathematics begin with definitions and then
develop the properties of the objects that have been defined by an admirable
and infallible logic?

Salutary as this injunction may be in mathematics, it has had disastrous
consequences when carried over to philosophy. Whereas mathematics starts
with a definition, philosophy ends with a definition. A clear statement of
what it is we are talking about is not only missing in philosophy, such a state-
ment would be the instant end of all philosophy. If we could define our terms,
then we would gladly dispense with philosophical argument.

The “define your terms” imperative is flawed in more than one way. When
reading a formal mathematical argument we are given to believe that the
“undefined terms,” or the “basic definitions,” have been whimsically chosen
out of a variety of possibilities. Mathematicians take mischievous pleasure in
faking the arbitrariness of definition. In fact no mathematical definition is
arbitrary. The theorems of mathematics motivate the definitions as much as



the definitions motivate the theorems. A good definition is “justified” by the
theorems that can be proved with it, just as the proof of the theorem is 
“justified” by appealing to a previously given definition.

There is, thus, a hidden circularity in formal mathematical exposition. The
theorems are proved starting with definitions; but the definitions themselves are
motivated by the theorems that we have previously decided ought to be correct.

Instead of focusing on this strange circularity, philosophers have pre-
tended it does not exist, as if the axiomatic method, proceeding linearly from
definition to theorem, were endowed with definitiveness. This is, as every
mathematician knows, a subtle fakery to be debunked.

Perform the following thought experiment. Suppose you are given two for-
mal presentations of the same mathematical theory. The definitions of the
first presentation are the theorems of the second, and vice versa. This situa-
tion frequently occurs in mathematics. Which of the two presentations makes
the theory “true?” Neither, evidently: what we have are two presentations of
the same theory.

This thought experiment shows that mathematical truth is not brought
into being by a formal presentation; instead, formal presentation is only a
technique for displaying mathematical truth. The truth of a mathematical
theory is distinct from the correctness of any axiomatic method that may be
chosen for the presentation of the theory.

Mathematizing philosophers have missed this distinction.

The Appeal to Psychology

What will happen to the philosopher who insists on precise statements and
clear definitions? Realizing after futile trials that philosophy resists such a
treatment, the philosopher will proclaim that most problems previously
thought to belong to philosophy are henceforth to be excluded from consid-
eration. He will claim that they are “meaningless,” or at best, can be settled by
an analysis of their statements that will eventually show them to be vacuous.

This is not an exaggeration. The classical problems of philosophy have
become forbidden topics in many philosophy departments. The mere men-
tion of one such problem by a graduate student or by a junior colleague will
result in raised eyebrows followed by severe penalties. In this dictatorial
regime we have witnessed the shrinking of philosophical activity to an
impoverished problématique, mainly dealing with language.

In order to justify their neglect of most of the old and substantial ques-
tions of philosophy, our mathematizing philosophers have resorted to the
ruse of claiming that many questions formerly thought to be philosophical
are instead “purely psychological” and that they should be dealt with in the
psychology department.

If the psychology department of any university were to consider only one
tenth of the problems that philosophers are palming off on them, then

226 Gian-Carlo Rota



The Pernicious Influence of Mathematics upon Philosophy 227

psychology would without question be the most fascinating of all subjects.
Maybe it is. But the fact is that psychologists have no intention of dealing
with problems abandoned by philosophers who have been derelict in their
duties.

One cannot do away with problems by decree. The classical problems
of philosophy are now coming back with a vengeance in the forefront of
science.

Experimental psychology, neurophysiology and computer science may turn
out to be the best friends of traditional philosophy. The awesome complexities
of the phenomena that are being studied in these sciences have convinced sci-
entists (well in advance of the philosophical establishment) that progress in
science will depend on philosophical research in the most classical vein.

The Reductionist Concept of Mind

What does a mathematician do when working on a mathematical problem?
An adequate description of the project of solving a mathematical problem
might require a thick volume. We will be content with recalling an old saying,
probably going back to the mathematician George Polya: “Few mathemati-
cal problems are ever solved directly.”

Every mathematician will agree that an important step in solving a math-
ematical problem, perhaps the most important step, consists of analyzing
other attempts, either those attempts that have been previously carried out
or attempts that he imagines might have been carried out, with a view to
discovering how such “previous” approaches failed. In short, no mathe-
matician will ever dream of attacking a substantial mathematical problem
without first becoming acquainted with the history of the problem, be it the
real history or an ideal history reconstructed by the gifted mathematician.
The solution of a mathematical problem goes hand in hand with the dis-
covery of the inadequacy ofprevious attempts, with the enthusiasm that
sees through and gradually does away with layers of irrelevancies which
formerly clouded the real nature of the problem. In philosophical terms, a
mathematician who solves a problem cannot avoid facing up to the his-
toricity of the problem.

Mathematics is nothing if not a historical subject par excellence, Every
philosopher since Heraclitus with striking uniformity has stressed the lesson
that all thought is constitutively historical. Until, that is, our mathematizing
philosophers came along, claiming that the mind is nothing but a complex
thinking machine, not to be polluted by the inconclusive ramblings of bygone
ages. Historical thought was dealt a coup de grace by those who today occupy
some of the chairs of our philosophy departments. Graduate school require-
ments in the history of philosophy were dropped, together with language
requirements, and in their place we find required courses in mathematical
logic. It is important to uncover the myth that underlies such drastic revision



of the concept of mind, that is, the myth that the mind is some sort of
mechanical device. This myth has been repeatedly and successfully attacked
by the best philosophers of our century (Husserl, John Dewey, Wittgenstein,
Austin, Ryle, Croce, to name a few).

According to this myth, the process of reasoning functions like a vending
machine which, by setting into motion a complex mechanism reminiscent of
Charlie Chaplin’s Modern Times, grinds out solutions to problems. Believers
in the theory of the mind as a vending machine will rate human beings by
“degrees” of intelligence, the more intelligent ones being those endowed with
bigger and better gears in their brains, as may of course be verified by admin-
istering cleverly devised 1. Q. tests. Philosophers believing in the mechanistic
myth assert that the solution of a problem is arrived at in just one way: by
thinking hard about it. They will go so far as to assert that acquaintance with
previous contributions to a problem may bias the well-geared mind. A blank
mind, they insist, is better geared to complete the solution process than an
informed mind.

This outrageous proposition originates from a misconception of the work-
ing habits of mathematicians. Our mathematizing philosophers are failed
mathematicians. They gape at the spectacle of mathematicians at work in
wide-eyed admiration. To them, mathematicians are superminds who spew
out solutions of one problem after another by dint of pure brain power, sim-
ply by staring long enough at a blank piece of paper.

The myth of the vending machine that grinds out solutions may appropri-
ately describe the way to solve the linguistic puzzles of today’s impoverished
philosophy, but this myth is wide of the mark in describing the work of math-
ematicians, or any kind of serious work.

The fundamental error is an instance of reductionism. The process by
which the mind works, which may be of interest to physicians but is of no
help to working mathematicians, is confused with the progress of thought
that is required in the solution of any problem. This catastrophic misunder-
standing of the concept of mind is the heritage of one hundred-odd years of
pseudo-mathematization of philosophy.

The Illusion of Definitiveness

The results of mathematics are definitive. No one will ever improve on a sort-
ing algorithm which has been proved best possible. No one will ever discover
a new finite simple group, now that the list has been drawn after a century of
research. Mathematics is forever.

We could order the sciences by how close their results come to being defin-
itive. At the top of the list we would find sciences of lesser philosophical
interest, such as mechanics, organic chemistry, botany. At the bottom of the
list we would find more philosophically inclined sciences such as cosmology
and evolutionary biology.
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The problems of philosophy, such as mind and matter, reality, perception,
are the least likely to have “solutions.” We would be hard put to spell out
what kind of argument might be acceptable as a “solution to a problem
of philosophy.” The idea of a “solution” is borrowed from mathematics and
tacitly presupposes an analogy between problems of philosophy and prob-
lems of science that is fatally misleading.

Philosophers of our day go one step further in their mis-analogies between
philosophy and mathematics. Driven by a misplaced belief in definitiveness
measured in terms of problems solved, and realizing the futility of any pro-
gram that promises definitive solutions, they have been compelled to get rid
of all classical problems. And where do they think they have found problems
worthy of them? Why, in the world of facts!

Science deals with facts. Whatever traditional philosophy deals with, it is
not facts in any known sense of the word. Therefore, traditional philosophy
is meaningless.

This syllogism, wrong on several counts, is predicated on the assumption
that no statement is of any value unless it is a statement of fact. Instead of
realizing the absurdity of this vulgar assumption, philosophers have swal-
lowed it, hook, line and sinker, and have busied themselves in making their
living on facts.

But philosophy has never been equipped to deal directly with facts, and no
classical philosopher has ever considered facts to be any of his business.
Nobody will ever turn to philosophy to learn facts. Facts are the business of
science, not of philosophy.

And so, a new slogan had to be coined: philosophy should be dealing with
facts.

This “should” comes at the end ofa long normative line of “shoulds.” Phi-
losophy should be precise; it should follow the rules of mathematical logic; it
should define its terms carefully; it should ignore the lessons of the past; it
should be successful at solving its problems; it should produce definitive solu-
tions.

“Pigs should fly,” the old saying goes.
But what is the standing of such “shoulds,” flatly negated as they are by

two thousand years of philosophy? Are we to believe the not so subtle insin-
uation that the royal road to right reasoning will at last be ours if we follow
these imperatives?

There is a more plausible explanation of this barrage of “shoulds.” The
reality we live in is constituted by a myriad contradictions, which traditional
philosophy has taken pains to describe with courageous realism. But contra-
diction cannot be confronted by minds who have put all their eggs in the bas-
ket of precision and definitiveness. The real world is filled with absences,
absurdities, abnormalities, aberrances, abominations, abuses, with Abgrund.
But our latter-day philosophers are not concerned with facing up to these dis-
comforting features of the world, nor to any relevant features whatsoever.
They would rather tell us what the world should be like. They find it safer to
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escape from distasteful description of what is into pointless prescription of
what isn’t. Like ostriches with their heads buried in the sand, they will meet
the fate of those who refuse to remember the past and fail to face the chal-
lenges of our difficult present: increasing irrelevance followed by eventual
extinction.
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The Pernicious Influence
of Mathematics on Science 

JACK SCHWARTZ

I wish to confine myself to the negative aspects, leaving it to others to dwell
on the amazing triumphs of the mathematical method; and also to comment
not only on physical science but also on social science, in which the charac-
teristic inadequacies which I wish to discuss are more readily apparent.

Computer programmers often make a certain remark about comput-
ing machines, which may perhaps be taken as a complaint: that computing
machines, with a perfect lack of discrimination, will do any foolish thing they
are told to do. The reason for this lies of course in the narrow fixation of the
computing machine “intelligence” upon the basely typographical details of
its own perceptions–its inability to be guided by any large context. In a psy-
chological description of the computer intelligence, three related adjectives
push themselves forward: single-mindedness, literal-mindedness, simple-
mindedness. Recognizing this, we should at the same time recognize that this
single-mindedness, literal-mindedness, simple-mindedness also characterizes
theoretical mathematics, though to a lesser extent.

It is a continual result of the fact that science tries to deal with reality that
even the most precise sciences normally work with more or less ill-understood
approximations toward which the scientist must maintain an appropriate
skepticism. Thus, for instance, it may come as a shock to the mathematician
to learn that the Schrodinger equation for the hydrogen atom, which he is
able to solve only after a considerable effort of functional analysis and spe-
cial function theory, is not a literally correct description of this atom, but
only an approximation to a somewhat more correct equation taking account
of spin, magnetic dipole, and relativistic effects; that this corrected equation
is itself only an ill-understood approximation to an infinite set of quantum
field-theoretical equations; and finally that the quantum field theory, besides
diverging, neglects a myriad of strange-particle interactions whose strength
and form are largely unknown. The physicist, looking at the original Schro-
dinger equation, learns to sense in it the presence of many invisible terms,
integral, integrodifferential, perhaps even more complicated types of opera-
tors, in addition to the differential terms visible, and this sense inspires
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an entirely appropriate disregard for the purely technical features of the
equation which he sees. This very healthy self-skepticism is foreign to the
mathematical approach.

Mathematics must deal with well-defined situations. Thus, in its relations
with science mathematics depends on an intellectual effort outside of mathe-
matics for the crucial specification of the approximation which mathematics is
to take literally. Give a mathematician a situation which is the least bit ill-
defined–he will first of all make it well defined. Perhaps appropriately, but per-
haps also inappropriately. The hydrogen atom illustrates this process nicely.
The physicist asks: “What are the eigenfunctions of such-and-such a differen-
tial operator?” The mathematician replies: “The question as put is not well
defined. First you must specify the linear space in which you wish to operate,
then the precise domain of the operator as a subspace. Carrying all this out in
the simplest way, we find the following result...” Whereupon the physicist may
answer, much to the mathematician’s chagrin: “Incidentally, I am not so much
interested in the operator you have just analyzed as in the following operator,
which has four or five additional small terms–how different is the analysis of
this modified problem?” In the case just cited, one may perhaps consider that
nothing much is lost, nothing at any rate but the vigor and wide sweep of the
physicist’s less formal attack. But, in other cases, the mathematician’s habit of
making definite his literal-mindedness may have more unfortunate conse-
quences. The mathematician turns the scientist’s theoretical assumptions, i.e.,
convenient points of analytical emphasis, into axioms, and then takes these
axioms literally. This brings with it the danger that he may also persuade the
scientist to take these axioms literally. The question, central to the scientific
investigation but intensely disturbing in the mathematical context–what hap-
pens to all this if the axioms are relaxed–is thereby put into shadow.

In this way, mathematics has often succeeded in proving, for instance, that
the fundamental objects of the scientist’s calculations do not exist. The sorry
history of the Dirac Delta function should teach us the pitfalls of rigor. Used
repeatedly by Heaviside in the last century, used constantly and systemati-
cally by physicists since the 1920’s, this function remained for mathematicians
a monstrosity and an amusing example of the physicists’ naiveté until it was
realized that the Dirac Delta function was not literally a function but a gen-
eralized function. It is not hard to surmise that this history will be repeated
for many of the notions of mathematical physics which are currently
regarded as mathematically questionable. The physicist rightly dreads precise
argument, since an argument which is only convincing if precise loses all its
force if the assumptions upon which it is based are slightly changed, while an
argument which is convincing though imprecise may well be stable under
small perturbations of its underlying axioms.

The literal-mindedness of mathematics thus makes it essential, if mathe-
matics is to be appropriately used in science, that the assumptions upon
which mathematics is to elaborate be correctly chosen from a larger point of
view, invisible to mathematics itself. The single-mindedness of mathematics
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reinforces this conclusion. Mathematics is able to deal successfully only with
the simplest of situations, more precisely, with a complex situation only to the
extent that rare good fortune makes this complex situation hinge upon a few
dominant simple factors. Beyond the well-traversed path, mathematics loses
its bearings in a jungle of unnamed special functions and impenetrable com-
binatorial particularities. Thus, the mathematical technique can only reach
far if it starts from a point close to the simple essentials of a problem which
has simple essentials. That form of wisdom which is the opposite of single-
mindedness, the ability to keep many threads in hand, to draw for an argu-
ment from many disparate sources, is quite foreign to mathematics. This
inability accounts for much of the difficulty which mathematics experiences
in attempting to penetrate the social sciences. We may perhaps attempt a
mathematical economics–but how difficult would be a mathematical history!
Mathematics adjusts only with reluctance to the external, and vitally neces-
sary, approximating of the scientists, and shudders each time a batch of small
terms is cavalierly erased. Only with difficulty does it find its way to the sci-
entist’s ready grasp of the relative importance of many factors. Quite typi-
cally, science leaps ahead and mathematics plods behind.

Related to this deficiency of mathematics, and perhaps more productive of
rueful consequence, is the simple-mindedness of mathematics–its willingness,
like that of a computing machine, to elaborate upon any idea, however
absurd; to dress scientific brilliancies and scientific absurdities alike in the
impressive uniform of formulae and theorems. Unfortunately however, an
absurdity in uniform is far more persuasive than an absurdity unclad. The
very fact that a theory appears in mathematical form, that, for instance, a the-
ory has provided the occasion for the application of a fixed-point theorem,
or of a result about difference equations, somehow makes us more ready to
take it seriously. And the mathematical-intellectual effort of applying the the-
orem fixes in us the particular point of view of the theory with which we deal,
making us blind to whatever appears neither as a dependent nor as an inde-
pendent parameter in its mathematical formulation.

The result, perhaps most common in the social sciences, is bad theory with
a mathematical passport. The present point is best established by reference to
a few horrible examples. In so large and public a gathering, however, pru-
dence dictates the avoidance of any possible faux pas. I confine myself there-
fore, to the citation of a delightful passage form Keynes’ General Theory, in
which the issues before us are discussed with a characteristic wisdom and wit:
“It is the great fault of symbolic pseudomathematical methods of formaliz-
ing a system of economic analysis...that they expressly assume strict inde-
pendence between the factors involved and lose all their cogency and
authority if this is disallowed; whereas, in ordinary discourse, where we are
not blindly manipulating but know all the time what we are doing and what
the words mean, we can keep ‘at the back of our heads’ the necessary reserves
and qualifications and adjustments which we shall have to make later on, in
a way in which we cannot keep complicated partial differentials “at the back”
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of several pages of algebra which assume they all vanish. Too large a pro-
portion of recent ‘mathematical’ economics are mere concoctions, as impre-
cise as the initial assumptions they rest on, which allow the author to lose
sight of the complexities and interdependencies of the real world in a maze
of pretentious and unhelpful symbols.”

The intellectual attractiveness of a mathematical argument, as well as the
considerable mental labor involved in following it, makes mathematics a pow-
erful tool of intellectual prestidigitation–a glittering deception in which some
are entrapped, and some, alas, entrappers. Thus, for instance, the delicious
ingenuity of the Birkhoff ergodic theorem has created the general impression
that it must play a central role in the foundations of statistical mechanics.
(This dictum is promulgated, with a characteristically straight face, in Dun-
ford-Schwartz, Linear Operators, Vol. 1, Chapter 7.) Let us examine this case
carefully, and see. Mechanics tells us that the configuration of an isolated sys-
tem is specified by choice of a point p in its phase surface, and that after t
seconds a system initially in the configuration represented by p moves into
the configuration represented by Mt p. The Birkhoff theorem tells us that if f
is any numerical function of the configuration p (and if the mechanical
system is metrically transitive), the time average tends (as t →∝) to a certain
constant; at any rate for all initial configurations p not lying in a set e in the
phase surface whose measure µ (e) is zero; µ here is the (natural) Lebesgue
measure in the phase surface. Thus, the familiar argument continues, we
should not expect to observe a configuration in which the long-time average
of such a function f is not close to its equilibrium value. Here I may conve-
niently use a bit of mathematical prestidigitation of the very sort to which I
object, thus paradoxically making an argument serve the purpose of its own
denunciation. Let v(e) denote the probability of observing a configuration in
the set e; the application of the Birkhoff theorem just made is then justified
only if µ (e) = 0 implies that v(e) = 0. If this is the case, a known result of
measure theory tells us that v(e) is extremely small wherever µ(e) is extremely
small. Now the functions f of principal interest in statistical mechanics are
those which, like the local pressure and density of a gas, come into equilib-
rium, i.e., those functions for which f(Mt p) is constant for long periods of
time and for almost all initial configurations p. As is evident by direct com-
putation in simple cases, and as the Birkhoff theorem itself tells us in these
cases in which it is applicable, this means that f(p) is close to its equilibrium
value except for a set e of configurations of very small measure µ. Thus, not
the Birkhoff theorem but the simple and generally unstated hypothesis 
“µ (e)= 0 implies v(e) = 0” necessary to make the Birkhoff theorem relevant
in any sense at all tells us why we are apt to find f(p) having its equilibrium
value. The Birkhoff theorem in fact does us the service of establishing its own
inability to be more than a questionably relevant superstructure upon this
hypothesis.

The phenomenon to be observed here is that of an involved mathematical
argument hiding the fact that we understand only poorly what it is based on.
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This shows, in sophisticated form, the manner in which mathematics, con-
centrating our attention, makes us blind to its own omission–what I have
already called the single-mindedness of mathematics. Typically, mathematics
knows better what to do than why to do it. Probability theory is a famous
example. An example which is perhaps of far greater significance is the quan-
tum theory. The mathematical structure of operators in Hilbert space and
unitary transformations is clear enough, as are certain features of the inter-
pretation of this mathematics to give physical assertions, particularly asser-
tions about general scattering experiments. But the larger question here, a
systematic elaboration of the world-picture which quantum theory provides,
is still unanswered. Philosophical questions of the deepest significance may
well be involved. Here also, the mathematical formalism may be hiding as
much as it reveals.
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What Is Philosophy of Mathematics
Looking for?*

ALFONSO C. ÁVILA DEL PALACIO

1. Dialogue of the deaf

There have been many different and opposing answers to the question, what
is mathematics? I think that one problem is that it is not clear what would be
the most adequate point of view to search for an answer, because of the
vagueness of the question itself.

In addition to diversity of opinions about the nature of mathematics, which
we might resolve by presenting facts or reasons to support one of these opin-
ions or to oppose the others, I affirm that there is a “dialogue of the deaf”.1

There are mathematicians and philosophers who think that they are talk-
ing about the same subject.

...it is characteristic of mathematical theories that they can themselves become the
subject matter of mathematical theories. It is thus in principle possible for mathe-
matical theories and philosophical theories about mathematics to be incompatible.
(Körner [1967], p. 118)

It is generally accepted that mathematics is recursive, as Körner says; but
not all thinkers accept that philosophy is formed by theories. Wittgenstein
[1918], for instance, says that ‘Philosophy aims at the logical clarification of
thoughts. Philosophy is not one doctrine but an activity.’ (4.112)

It seems that Gödel’s mathematical work has generated many philosophi-
cal reflections. Rodriguez-Consuegra [1992], for example, said:
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Gödel proved the existence of propositions true but undemonstrated in a formal system
sufficiently rich for containing arithmetic... It seems to me that the more relevant philo-
sophical consequences are the following: Once they proved that truth and demonstrabil-
ity are different things, then the truth of certain propositions is directly intuitive. (p. 446)

Körner [1967], going far beyond this, concludes that,

...the metamathematical discoveries of the present century imply the falsehood of
the common doctrines shared by the classical philosophies of non-competitive
mathematical theories. (p. 132)

But, against these opinions, Wittgenstein [1967] affirms:

A philosophical problem has the form: ‘I don’t know my way about’ (123). ‘It leaves
everything as it is. It also leaves mathematics as it is, and no mathematical discovery
can advance it.’ (124)

We agree with Wittgenstein that the philosophy of mathematics is different
from mathematics or metamathematics. But we must make precise how philo-
sophical work is performed, and what is its difference with mathematical
work. Wittgenstein [1918] says that ‘A philosophical work consists essentially
of elucidations’ (4.112). But that which is not clear for one person, can be
clear for somebody else. Putnam [1967] affirms that ‘The fact that philoso-
phers all agree that a notion is ‘unclear’ doesn’t mean that it is unclear’
(p. 296). In this difference of opinions between philosophers of mathematics,
we can see that philosophers do not agree unanimously, maybe because they
conceive of mathematics and philosophy in accordance with their own philo-
sophical perspective. For this reason, most mathematicians reject the philo-
sophical attempts to characterize mathematical activity.

In addition, mathematicians are not interested in these philosophical
attempts because they are almost always external to mathematics itself. San-
tiago Ramirez [1990] says:

They have conceived traditionally the relation between philosophy and mathematics as
that in which philosophy, whatever its metaphysical foundation, tries to subject math-
ematics to philosophical discourse, or philosophical norm. From Pythagoras to Ana-
lytical Philosophy the question is to exhibit mathematics as a discipline, discourse, or
special kind of knowledge where philosophical or epistemological hypothesis about
existence, about truth, and about method are confirmed. (p. 419)

But against these pretensions, Ramirez [1989] had said following Cavailles:
‘The essence of mathematics is a problem, among others, which philosophy can
not resolve’ (p. 318). In the same direction, Courant and Robbins [1941] con-
clude that ‘it is not philosophy but active experience in mathematics itself
that alone can answer the question: What is mathematics?’ (p. 7)

Perhaps the difficulty of resolving this question is in philosophy itself, as
Ramirez, Cavailles, Courant and Robbins seem to affirm; that is, it is not philos-
ophy that can answer it. Or maybe, as Hersh [1979] says, the reason is the fact that
‘There do not seem to be many professional philosophers who know functional
analysis or algebraic topology or stochastic processes’ (p. 34). This is reaffirmed
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by Amor [1981] when he says, commenting on Hersh’s work: ‘this is a reflection
of an active mathematician, and not of a philosopher non mathematician, and for
this reason it is an authentic reflection about the real mathematics.’ (p. II)

But, how much mathematics we must know in order to do a philosophical
reflection about mathematics? Maurice Frechet [1955] said: ‘mathematicians
do not know, for example, the whole mathematical analysis’ (p. 21). On the
other hand, some mathematicians say that the number of mathematicians
who really could understand completely the arguments of Wiles about Fer-
mat’s theorem could meet in a meeting hall. Therefore, what is the meaning
of the expression ‘to know mathematics’? Perhaps it is not enough to be a
mathematician. Maybe it would be necessary to be a creator of part of math-
ematics. Maybe even this would not be enough, because of the growing and
unfinished complexity of mathematics.

Then, who or which discipline should answer the question, what is mathe-
matics? What kind of elements are required for this enterprise? Some philoso-
phers, such as Plato, Aristotle, and Kant, were not mathematicians, but they
wrote important ideas about philosophy of mathematics. Other philosophers,
such as Pythagoras, Descartes, and Leibniz, were philosophers and great
mathematicians too. Others, such as Frege and Wittgenstein had mathemati-
cal training. But, it seems that these circumstances are not conclusive for the
importance of their philosophical ideas about mathematics.

On the other hand, some mathematicians, such as Cantor, Poincaré, and
Frechet, among others, have reflected in different ways about their own work,
giving us their rich historical and psychological experiences. But, would that
be doing philosophy? Hersh [1979] says in this connection:

But the art of philosophical discourse is not well developed today among mathe-
maticians, even among the most brilliant. Philosophical issues just as much as
mathematical ones deserve careful arguments, fully developed analysis, and due
consideration of objections. A bald statement of one’s own opinion is not an argu-
ment, even in philosophy. (pp. 34-35)

In consequence, in order to know how we can do philosophy of mathe-
matics, and how we can understand different affirmations about mathemat-
ics, I propose that we must first make precise, what is a philosopher looking
for? what is a mathematician looking for? when either of them pose questions
about mathematics. That is, how one and the other understand the question,
what is mathematics?

2. Mathematical reasoning about mathematics

Mathematicians, in general, do not pay much attention to the question, what
is mathematics? Only a few of them pay attention to it. Nevertheless, it seems
that almost all of them think that it is an internal affair to mathematics itself.
In word of Cavailles [1938]: ‘There is no definition, nor justification of the
mathematical objects, except mathematics itself.’ (p. 172)
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But if this is the case, how is it possible to meditate about mathematics
from mathematics itself ? It seems that there have been, at least, three ways: 1)
doing metamathematics; 2) doing history of mathematics; and 3) practicing
mathematics.

2.1. Metamathematics
In general it is accepted that mathematics is recursive; that is, that mathe-
matics can rework mathematically its own results. Notwithstanding, if we do
not know what mathematics is, it would be difficult to make precise how we
can do mathematics of mathematics. In any case, I believe that we can say, at
least, that it is possible to do mathematics in an axiomatic way, and in a non-
axiomatic way. Polya [1957] says,

Mathematics has two faces... Mathematics presented in the Euclidean way appears
as a systematic, deductive science; but mathematics in the making appears as an
experimental, inductive science. (p. vii)

In the words of Maurice Frechet [1955]:

Mathematics is not a completely logic theory... In spite of the fact that most of the
mathematical works consist in doing logical transformations from propositions admit-
ted as truthful,... it is not hard to admit that intuition guides the work in a specific
direction. (p. 21-22)

Let us remember that the use of axioms is a technique, based on ideas of
Plato and Aristotle, which consists in ordering a certain body of knowledge
(mathematical or non mathematical), by finding some affirmations (axioms)
from which we can deduce all the other affirmation in that body of knowl-
edge. The knowledge ordered in that way can, in theory, substitute for the for-
mer knowledge, gaining in clarity and precision.

In that sense, there could be axiomatic and non axiomatic metamathemat-
ics. It is characteristic of those two forms that both start from a certain math-
ematical theory and build another mathematical theory. It seems that the
difference consists in the circumstance that the axiomatic one is born with the
claim of substituting for the former and being clearer and more precise;
while, the non axiomatic one does not substitute for the primitive theory, but
only subsumes the former in a larger body.

With respect to the axiomatic theories (called foundations), I believe that
all axiomatic mathematics is by its very nature metamathematics, and it tries
to make clear the nature and relations of mathematical entities. In the words
of Gödel:

The so-called logical or set-theoretical ‘foundation’ for number-theory, or of any
other well established mathematical theory, is explanatory, rather than really foun-
dational, exactly as in physics where the actual function of axioms is to explain the
phenomena described by the theorems of this system rather than to provide a gen-
uine ‘foundation’ for such theorems (in Lakatos [1978], p. 27)
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The limitations of the formal systems in the axiomatic work are well known.
For this reason, the axiomatic theories, in general, have not substituted for the
primitive mathematical theories, and both subsist. Hersh [1979] says,

The common presupposition was that mathematics must be provided with an
absolutely reliable foundation. The disagreement was on strategy, on what had to
be sacrificed for the sake of the agreed-on goal. But the goal was never attained,
and there are few who still hope for its attainment. (p. 38)

With respect to non axiomatic metamathematics, we can mention the theory
of groups in its early stages; and, in general, that which Cavailles [1938] called
‘theme’; that is, ‘a transformation of one operation in element of one superior oper-
ational field: example, the topology of the topological transformations’ (p. 173). If
we see the primitive mathematical theories as structures, this metamathematical
work would build other structures formed by simplest structures; that is, it would
build complex structures by means of which they can study and clarify the prop-
erties and relations of some primitive structures and their elements.

Summarizing, metamathematics is a development of mathematics itself in
the direction of becoming more unitary and precise. In any case, we can say
that both metatheories, intending to substitute or subsume primitive struc-
tures, in fact, explain and clarify the primitive mathematical theories, and
tend to make mathematics more homogeneous. In consequence, it seems that
mathematicians who do metamathematics understand the question, what is
mathematics? as asking for the nature and relations of the elements which
constitute mathematics.

2.2. Historical analysis
In opposition to metamathematics, above all to the axiomatic one, some
mathematicians, such as R. Thom [1980], hold that these works are not
enough because,

Formalism denies the status of mathematical to most of that which they commonly
have understood as mathematics, and it does not say something new about its devel-
opment. (p. 27)

For this reason, some people think that an answer that takes into account
more completely the fruitfulness of mathematical work, must be done from a
historical analysis that clarifies the facts and methods which have permitted
its growth.

Among the historical works there are at least two important varieties about
“what is mathematics?”: a) those which study the origin and development of
the mathematical elements; and b) those which are the result of an analysis
or a heuristic-psychological self reflection.

With respect to the former, Garciadiego [1996] says,

As historians of mathematics and sciences we are interested in knowing the origins of
problems which men have tried to solve in the past time, the ideas they used as a start-
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ing point, and what they expected as an answer...; that is, how an idea is born, grows
and changes in order to conform to the science’s field. (p. 14)

All history is an intelligible reconstruction of data which we consider rele-
vant. This implies an interpretation of those data. ‘History emerges when
chronology is selected, organized, related and explained’ (May [1974], p. 28).
So history of mathematics is an explanation, which give us a picture that
takes in count not only the final result of one mathematical theory, but its
origin and development too. And that, I believe, lets us understand better,
how mathematics was born and grew.

On the other hand, with respect to the heuristic-psychological works, we
can mention Pappus, at the end of the third century A. D., Polya [1957] and
Velleman [1994] in our days, passing by Descartes, Leibniz, Bolzano and
Poincaré, among others. They deal, in general, with the conscious and even
unconscious ways which mathematicians have followed trying to solve prob-
lems: regressive reasoning masterfully exposed by Pappus, the method of
analysis-synthesis used in book XIII of Euclid’s Elements, reduction ad
absurdum used by Eleatics, mathematical induction, analogous reasoning,
and the recourse of drawing a figure,2 among others. It seems that in all these
works, mathematicians are guided always by an ‘esthetic feeling which all true
mathematicians know..., because the useful combinations are, just, the more
beautiful’ (Poincaré [1908], p. 52). Occasionally they are helped by the uncon-
scious work too, as Poincaré and Polya say. With all that, they try to describe
how mathematicians work, and so, how has mathematics became what it
is now.

Briefly, history of mathematics gives us an approach to the subjective ele-
ments which have been present in the conformation of the objective elements
of mathematics. In consequence, it seems that historians of mathematics
understand the question, what is mathematics? as asking for the causes or
motors of mathematical development.

2.3. Mathematical practice
Finally, for many mathematicians, such as Courant and Robbins [1941],

What points, lines, numbers “actually” are cannot and need not be discussed in
mathematical science. What matters and what corresponds to “verifiable” facts is
structure and relationship... For scholars and laymen alike it is not philosophy [and
maybe history not either], but active experience in mathematics itself that alone can
answer the question: What is mathematics? (p. iv, v)

For example, that which has preoccupied mathematicians about numbers
is their generalization, the mathematical existence of some numbers, such as
the irrational, the transcendent, the ideal, and so on; and some problems
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derived from there, such as the continuum problem or the infinity problem
(see Frechet [1955], pp. 417-449).

Perhaps, we could say, as Newton Da-Costa said one day: ‘mathematics is
all that which is in mathematical books and reviews’. This is, of course, an
insufficient characterization; but, in its defense, we could say that mathemat-
ics is an interminable field, and ‘with respect to the motor of progress, it seems
to escape to all investigation.’ (Cavailles [1938], p. 175)

There are mathematicians, such as Cavailles himself in some of his works,
who do not stop here but try to characterize mathematics based on their own
mathematical practice. This is the case of J. De Lorenzo [1992] when he says:

It is a myth that all mathematical work is a logic syntactic work... In mathemati-
cal practice, axioms are not the starting point, they are not the key of the knowl-
edge process, but nuclear concepts are, and some times, hypothesis or conjectures.
(pp. 447-448)

Thus it seems that some mathematicians understand the question, what is
mathematics? as questioning about the mathematical doing; that is, ques-
tioning about that which is done by mathematicians.

3. Philosophical reasoning about mathematics

Philosophers, even when they appreciate and use the reflections mentioned
above, in general are not satisfied with it. They can agree with certain meta-
mathematical, or historical versions; but it seems that philosophers3 ask other
questions too.4 But, what is it that philosophers, or mathematicians acting as
philosophers, are looking for? That is, what could be for them an acceptable,
or even controvertible answer to the question, what is mathematics?

3.1. What is philosophy?
When I meditate about philosophy, I ought to confess that it is a genuine
question. I do not know a definitive answer, and I believe that we could not
find one easily. Nevertheless, because the present investigation needs to
make precise what we mean by ‘philosophy’, I will expound my point of view
about that.
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I think we can see philosophy as a Socratic dialogue of a certain commu-
nity5, which starts with doubts about the inherited knowledge, and grows
through history,6 trying to make clear the concepts, or building new concepts,
with which that community thinks its world. As Hegel said, ‘it is to think
about thinking,’ and I add, by means of which, man has questioned about
thought itself, about its limits and capacities, and about its fruits. Maybe we
can sum up these questions this way: how is thought possible? Or, what is its
place in the world?

This characterization is, of course, tentative, and only intends to pick out
some of the more general characteristics of philosophy in order to make clear
the philosophy of mathematics. There are, of course, other characterizations.
It seems that there are not so many, because only a few philosophers have
dedicated their attention to that question. I will comment on two of these
characterizations, which are very common.

The first says that philosophy is the mother of the sciences. For instance,
Cornman, Lehrer and Pappas [1992] say,

Philosophy was once construed so broadly as to cover any field of theoretical
inquiry. Any subject matter for which some general explanatory theory might be
offered would have been a branch of philosophy. However, once a field of study
came to be dominated by some main theory and developed standard methods of
criticism and confirmation, then the field was cut off from the mother country of
philosophy and become independent (p. 5).

Supporting this thesis, we can mention the fact that in the past centuries,
many philosophers were scientists too, such as Aristotle and Descartes; and,
on the other hand, some scientists, such as Newton for example, called their
scientific works ‘natural philosophy.’ Nevertheless, even though since Thales
philosophical work has been very close to scientific work, that does not give
us license to say that philosophy and science have the same subjects and try
to discover the same things.

I believe that we can explain from my perspective why some people see phi-
losophy as the mother of science. In fact, I believe that it would not be hard
to accept that the critical and dialogical work of philosophy about inherited
knowledge can provoke new researches in some scientific fields, or can even
provoke the beginning of new fields. For example, the critical work of Berke-
ley on Analysis provoked Weierstrass’ mathematical work. Most of the time,
mathematicians do not care about the philosophical work, because it leaves
mathematics as it is; as Analysis continued the same in spite of Berkeley’s 
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criticism. But sometimes the philosophical work has effects on the scientific
work, even when this is not its goal. In the same manner, mathematical work
can provoke new philosophical works. I believe that there is a mutual relation
between both works; but each one of those is looking for a different thing,
and has its own road.

Another common idea about philosophy has its roots in phenomenology
and existentialism. We can see it, for example, in the teachings of Ortega y
Gasset [1973] where he says: ‘The radical problem of philosophy is defining that
mode of being, that primary reality which we call our life’ (P. 177). This idea is
close to what many people think philosophy must be: something like a view
of the world, or a personal cosmological view.

Nowadays, people accept that Physics, Chemistry, Astronomy, Psychology,
and so on, are the disciplines that can say how is the world, and philosophy
does not. But these disciplines could not answer, what is the meaning of our
life? Or, as Heidegger would say, why existence is, and nonexistence is not?
They think that philosophy could answer that; they think that philosophy,
helped by the particular sciences, must give us that general view about our
world.

Nevertheless, there is a great problem in this conception, because philoso-
phers must know all the sciences and that is practically impossible in our
days. Philosophy, from my point of view, is not a superior judge for sciences,
and it is not a super-science. I believe that any one philosopher can only know
deeply one scientific discipline, or perhaps, only one theory in that science.
Then, the singular thing which one philosopher can do about that is to
extract from that theory its suppositions or the view of the world which it
implies. This task, surely, is not very different to my characterization of
philosophical activity. I said that philosophy tries to make clear the concepts,
and when we extract the suppositions or the general view of one theory, I
think we can see most clearly the true meaning of the concepts which that
theory uses. In that way, philosophy does not propose a cosmological view,
but it only lets us know the cosmological view which is implicit in the dis-
courses which it analyzes. Philosophy does that when it analyzes the ontology
and epistemology of one theory, for instance.

3.2. Philosophy of mathematics
Consistent with the characterization of philosophy which I proposed above,
I think that we can see philosophy of mathematics as the dialogue about
mathematics by means of which we try to make clear the ontology and epis-
temology of mathematics; or, in other words, how mathematics is possible.

Maybe the first philosopher of mathematics was Pythagoras when he said:
‘number is the principle both as matter for things and as constituting their
attributes and permanent states’ (Aristotle [c-IV BC], A.5, 986-a-16). In the
words of an important member of the Neo-Pythagorean group, Nicomachus
[c-I, A. D.],
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Which of these four methods must we first learn?... this is arithmetic, not solely
because we said that it existed before all the others in the mind of the creating God
like some universal and exemplary plan, relying upon which as a design and arche-
typal example the creator of the universe sets in order his material creations and
makes them attain to their proper ends; but also because it is naturally prior in
birth. (Book 1, Chap. IV)

For these reasons, it seems that Pythagoras himself started the systematic
study of numbers, and Nicomachus wrote the important textbook Introduc-
tion to Arithmetic, which was used throughout the Middle Ages. These
Pythagorean ideas about the place of the mathematical entities in the entire
world are similar to those of Galileo [1623]: ‘The universe is written in math-
ematical language, being its characters triangles, circles and figures’ (6). These
ideas are similar to those of Descartes too when he says that the entire world
is composed only of two substances: extension and thought. He adds that the
first must be studied by means of Geometry. For this reason he studied
Geometry itself. In fact, we can say that almost all empirical sciences which
use mathematics rest on the Pythagorean belief that the world is known only
by means of mathematics, or at least it is better known using mathematics. I
believe that this conception about mathematics implies in actual terms that
mathematical entities and its relations can be seen as the general structure of
the world. In words of Bigelow [1988], ‘Mathematics is the theory of univer-
sals’ (p. 13). That means that mathematics is possible as the study of that
which persists under changes. We can agree with this conception or not; but
certainly, it presents an ontology and epistemology which give an answer to
the questions, how is mathematics possible? Or, what is its place in the world?

Throughout the history of mathematics, there have been mutual influences
between mathematics and philosophy. The first, and maybe the most impor-
tant, influence of philosophy on mathematics was, according to Szabó [1967],
the transformation of mathematics into a deductive science:

Deductive mathematics is born when knowledge acquired by practice alone is no
longer accepted as true...this change was due to the impact of philosophy, and more
precisely of Eleatic dialectic, upon mathematics. (pp. 1-2)

It is not certain that axiomatics came from Eleatic dialectic, because,
according to Proclus [c-V A. D.], Thales and Pythagoras were the first who
started to prove theorems. But, certainly, the pre-Greek mathematics was dif-
ferent from Greek mathematics which was deductive and was born at the
same time as Greek philosophy. Maybe for these reasons, Plato affirmed in
The Republic that mathematics was a hypothetical-deductive science. Addi-
tionally, we ought not forget the logic of Aristotle and later of Frege as a con-
tribution from philosophy to mathematics. The whole of mathematics is not
axiomatic or deductive, but one part of it certainly is.

With respect to the influence of mathematics on philosophy, we can men-
tion the works of such important philosophers as Kant, Frege, Witggenstein,
among others. The mathematical and axiomatic Physics of Newton puzzled
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Kant, who thought that mathematics expresses universal and necessary
knowledge because it refers not to the changeable world, but to fixed forms
of our sensibility: space for geometry, and time for arithmetic. To Kant,
Mathematics proves that a-priori synthetic judgments are possible, and shows
the way which other sciences, such as metaphysics, must follow. I think that it
is not hard to accept that mathematics is in the basis of Kantian philosophy;
and, perhaps, in the basis of almost all contemporary Analytical philosophy
which started with Frege.

There have been not only mutual influences between mathematics and phi-
losophy, but parallel works too. This is the case of some studies on natural
numbers. In mathematics, Peano [1889], Dedekind [1893], and Hilbert [1900]
defined number in terms of classes, systems (series), or the mutual relations
among numbers themselves. For these authors, a number is defined by means
of its relations with other numbers; it is only a place in an infinite series. For
philosophers, nevertheless, that is not enough, as Russell [1919] said: ‘We
want our numbers to be such as can be used for counting common objects,
and this requires that our numbers should have a definite meaning, not
merely that they should have certain formal properties’ (p. 10). Frege, for
instance, defined number in relation with concepts. According to this, an
assertion about numbers is an assertion about concepts and their relations. In
this form, he gave an ontology for numbers, which refers to something extra-
mathematical. Other work in this line is Ávila [1993]. Apparently, all these
authors were looking for an answer to the same question: What is a number?
But, really, they were looking for different answers. Mathematicians, such as
Peano, Dedekind and Hilbert were looking for the mathematical structure of
numbers; meanwhile, philosophers, such as Frege, Russell and Ávila were
looking for, how are numbers possible? Or, what is their place in the world?
It is symptomatic that for mathematicians, in general, Peano is more impor-
tant than Frege; while, for philosophers it is the contrary.

It seems that philosophy of mathematics went into an internal crisis with
the works of Gödel. But his theorems about incompleteness and consistency
of arithmetic are about formal systems in the meaning of Hilbert. They are
important to axiomatic metamathematics (or foundations). They show that
axiomatic pictures of arithmetic do not pick out the whole of arithmetic.
This is interesting for mathematicians and metamathematicians because it let
them examine the place and utility of formal systems in the whole of mathe-
matics. It is an internal business about the interrelations of mathematical
entities. The crisis was really internal to Hilbert’s program and similar pro-
grams, such as Logicism and Intuitionism. Mathematics itself and philoso-
phy of mathematics continued on their own path.

Nevertheless, due to confusion, metamathematics forgot its philosophical
aspirations, and became a part of mathematics itself (see Lakatos [1978]);
and philosophy kept silent for a while. After Gödel, we can mention almost
only the important works of Putnam and Quine until the two famous papers
of Benacerraf [1965] and [1973]. These papers gave new life to the philo-
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sophical discussion because, I believe, they focus on the proper field of phi-
losophy. In fact, with the purpose of solving Benacerraf’s dilemma,

They have urged that the central issue in the philosophy of mathematics is to find
a way to identify an ontology for mathematics that is compatible with an episte-
mology that does not invoke mysterious faculties. (Kitcher [1988], p. 397)

In other words, how is mathematics possible?
Once it was clear what is the goal for the philosophy of mathematics, there

has been a revival in the philosophical discussion. There have even been meet-
ings on this subject (see, for instance, Hersh [1991]). On one hand, a renais-
sance of empiricism with P. Kitcher [1984] and others; the realism of Maddy
[1990] and Bigelow [1988]; or the structuralism of Shapiro and Resnik. On
the other hand, we can find the modal mathematics of Hellman and Putnam
or the nominalism of H. Field, among other interesting conceptions.

4. Conclusion

I believe that the distinction established here lets us understand, at least par-
tially, the limits and capacity of either a philosophical, or mathematical, or
historical view when it faces the question, what is mathematics? The expla-
nation of why, on certain occasions, the answers of some are not important
or satisfactory for others, can be given by saying that these different views ask
different things, with the same question: The mathematical view inquires
about the character and connections of the mathematical entities; the histor-
ical view inquires about the origin and growth of these entities; and the philo-
sophical view inquires about how these entities are possible. Of course, these
points of view are complementary; but misunderstanding arises when they
believe that they are talking about the same thing when they use the same
terms. At that moment, a dialogue of the deaf emerges.
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Concepts and the Mangle of Practice
Constructing Quaternions

ANDREW PICKERING

Similarly, by surrounding √-1 by talk about vectors, it sounds quite natural to talk
of a thing whose square is −1. That which at first seemed out of the question, if you
surround it by the right kind of intermediate cases, becomes the most natural thing
possible.

Ludwig Wittgenstein,
Lectures on the Foundations of Mathematics (p. 226).

How can the workings of the mind lead the mind itself into problems? . . . How can
the mind, by methodical research, furnish itself with difficult problems to solve?

This happens whenever a definite method meets its own limit (and this happens,
of course, to a certain extent, by chance).

Simone Weil,
Lectures on Philosophy (p. 116).

An asymmetry exists in our accounts of scientific practice: machines are located
in a field of agency but concepts are not.1 Thus while it easy to appreciate
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1 Questions of agency in science have been thematised most clearly and insistently in the
actor-network approach developed by Michel Callon, Bruno Latour and John Law. See,
for example, Callon and Latour, ‘Don’t Throw the Baby Out with the Bath School! A
Reply to Collins and Yearley,’ in Science as Practice and Culture, ed. Andrew Pickering
(Chicago, 1992). But Latour is right to complain about the dearth of studies and analy-
ses of conceptual practice in science: ‘almost no one,’ as he puts it, ‘has had the courage
to do a careful anthropological study’ (Science in Action [Cambridge, MA, 1987], 246).
Whether failure of nerve is quite the problem, I am less sure. Much of the emphasis on
the material dimension of science in recent science studies must be, in part, a reaction
against the theory-obsessed character of earlier history and philosophy of science. In
any event, Eric Livingston’s The Ethnomethodological Foundations of Mathematics
(Boston, 1986) is a counter-example to Latour’s claim, and the analysis of conceptual
practice that follows is a direct extension of my own earlier analysis of the centrality of
modelling to theory development in elementary-particle physics: Pickering, ‘The Role of
Interests in High-Energy Physics: The Choice Between Charm and Colour’, in The
Social Process of Scientific Investigation. Sociology of the Sciences, Vol. 4, 1980, eds



that dialectics of resistance and accommodation can arise in our dealings
with machines – I have argued elsewhere that the contours of material agency
only emerge in practice2 – it is hard to see how the same could be said of our
dealings with concepts. And this being the case the question arises of why
concepts are not mere putty in our hands. Why is conceptual practice diffi-
cult? ‘How can the workings of the mind lead the mind itself into problems?’
It seems to me that one cannot claim to have a full analysis of scientific prac-
tice until one can suggest answers to questions like these, and my aim in this
chapter is to argue, first in the abstract then via an example, that a sym-
metrising move is needed. We should think of conceptual structures as them-
selves located in fields of agency, and of the transformation and extension of
such structures as emerging in dialectics of resistance and accommodation
within those fields, dialectics which, for short, I call the mangle of practice.

In section 1 I develop a general understanding of agency in science appro-
priate to the analysis of conceptual practice, and I explain its relation to the
mangle. I then turn to my example, which, for reasons discussed below, is
taken from the history of mathematics rather than from the history of science
proper. Section 2 provides some technical background, and section 3 is the
heart of this essay, offering a reconstruction of Sir William Rowan Hamilton’s
construction of a system of ‘quaternions’ in 1843. Section 4 generalises from
the example in a discussion of temporal emergence and posthumanist decen-
tring in conceptual practice, and of the mangling and interactive stabilisation
of conceptual structures, disciplines and intentions. Section 5 summarises the
overall image of scientific practice and culture that emerges when the findings
of the present essay are taken in conjunction with similar analyses of material
practice in science. Finally, in an attempt to delineate more clearly what is at
stake in my analysis, section 6 reviews David Bloor’s non-(or quasi-)emergent
and humanist account of Hamilton’s metaphysics as an instance of the soci-
ology of scientific knowledge in its empirical application. Bloor argues that
Hamilton’s metaphysics was fixed by the social; I argue instead that meta-
physics, like everything else, is subject to mangling in practice.

1. Disciplinary Agency

When we think, we are conscious that a connection between feelings is determined
by a general rule, we are aware of being governed by a habit. Intellectual power
is nothing but facility in taking habits and in following them in cases essentially
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Karin Knorr, Roger Krohn and Richard Whitley (Dordrecht, 1981) and Constructing
Quarks: A Sociological History of Particle Physics (Chicago, 1984). Nevertheless, resist-
ance and accommodation are not thematised in my earlier analyses, and it might be that
this exemplifies the lack of which Latour complains.
2 Pickering, The Mangle of Practice: Time, Agency and Science (Chicago, forthcom-
ing), chs 2, 3 and 5. The present essay is a slightly revised version of ch. 4 of that book.
I thank Barbara Herrnstein Smith for her editorial suggestions.



analogous to, but in non-essentials widely remote from, the normal cases of con-
nections of feelings under which those habits were formed.

Charles Sanders Peirce, Chance, Love and Logic (p. 167).

The student of mathematics often finds it hard to throw off the uncomfortable feel-
ing that his science, in the person of his pencil, surpasses him in intelligence.

Ernst Mach, quoted by Ernest Nagel, Teleology Revisited (p. 171)

My analysis of conceptual practice depends upon and elaborates three cen-
tral ideas: first, that cultural practices (in the plural) are disciplined and
machine-like; second, that practice, as cultural extension, is centrally a
process of open-ended modelling; and third, that modelling takes place in a
field of cultural multiplicity and is oriented to the production of associations
between diverse cultural elements. I can take these ideas in turn.

Think of an established conceptual practice – elementary algebra, say. To
know algebra is to recognise a set of characteristic symbols and how to use them.
As Wittgenstein put it: ‘Every sign by itself seems dead. What gives it life? – In
use it is alive.’3 And such uses are disciplined; they are machine-like actions, in
Harry Collins’ terminology.4 Just as in arithmetic one completes ‘3 + 4 =’ by writ-
ing ‘7’ without hesitation, so in algebra one automatically multiplies out ‘a(b +
c)’ as ‘ab + ac.’ Conceptual systems, then, hang together with specific disciplined
patterns of human agency, particular routinised ways of connecting marks and
symbols with one another. Such disciplines – acquired in training and refined in
use – carry human conceptual practices along, as it were, independently of indi-
vidual wishes and intents. The scientist is, in this sense, passive in disciplined
conceptual practice. This is a key point in what follows and, in order to mark it
and to symmetrise the formulation I want to redescribe such human passivity in
terms of a notion of disciplinary agency. It is, I shall say, the agency of a disci-
pline – elementary algebra, for example – that leads disciplined practitioners
through a series of manipulations within an established conceptual system.5
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3 The Wittgenstein quotation is taken from Michael Lynch, ‘Extending Wittgenstein:
The Pivotal Move from Epistemology to the Sociology of Science’, in Science as Prac-
tice and Culture, ed. Pickering (Chicago, 1992), 289. Lynch’s commentary continues: ‘If
the “use” is the “life” of an expression, it is not as though a meaning is “attached” to an
otherwise lifeless sign. We first encounter the sign in use or against the backdrop of a
practice in which it has a use. It is already a meaningful part of the practice, even if the
individual needs to learn the rule together with the other aspects of the practice. It is
misleading to ask “how we attach meaning” to the sign, since the question implies that
each of us separately accomplishes what is already established by the sign’s use in the
language game. This way of setting up the problem is like violently wresting a cell from
a living body and then inspecting the cell to see how life would have been attached to it.’
4 Harry Collins, Artificial Experts: Social Knowledge and Intelligent Machines (Cam-
bridge, MA, 1990).
5 The notion of discipline as a performative agent might seem odd to those accus-
tomed to thinking of discipline as a constraint upon human agency, but I want (like
Foucault) to recognise that discipline is productive. There could be no conceptual
practice without the kind of discipline at issue; there could only be marks on paper.



I will return to disciplinary agency in a moment, but now we can turn
from disciplined practices to the practice of cultural extension. A point that
I take to be established about conceptual practice is that it proceeds
through a process of modelling. Just as new machines are modelled on old
ones, so are new conceptual structures modelled upon their forebears.6 And
much of what follows takes the form of a decomposition of the notion of
modelling into more primitive elements. As it appears in my example, at
least, it is useful to distinguish three stages within any given modelling
sequence, which I will describe briefly in order to sketch out the overall
form of my analysis. Modelling, I think, has to be understood as an open-
ended process, having in advance no determinate destination, and this is
certainly true of conceptual practice. Part of modelling is thus what I call
bridging, or the construction of a bridgehead, that tentatively fixes a vector
of cultural extension to be explored. Bridging, however, is not sufficient to
efface the openness of modelling: it is not enough in itself to define a new
conceptual system on the basis of an old one. Instead it marks out a space
for transcription – the copying of established moves from the old system
into the new space fixed by the bridgehead (hence my use of the word
‘bridgehead’). And, if my example is a reliable guide, even transcription can
be insufficient to complete the modelling process. What remains is filling,
completing the new system in the absence of any clear guidance from the
base model.

Now, this decomposition of modelling into bridging, transcription and fill-
ing is at the heart of my analysis of conceptual practice, and I will be able to
clarify what these terms mean when we come to the example. For the
moment, though, I want to make a general remark about how they connect
to issues of agency. As I conceive them, bridging and filling are activities in
which scientists display choice and discretion, the classic attributes of human
agency. Scientists are active in these phases of the modelling process, in
Fleck’s sense.7 Bridging and filling are free moves, as I shall say. In contrast,
transcription is where discipline asserts itself, where the disciplinary agency
just discussed carries scientists along, where scientists become passive in the
face of their training and established procedures. Transcriptions, in this sense,
are disciplined forced moves. Conceptual practice therefore has, in fact, the
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6 Pickering, ‘The Role of Interests’ and Constructing Quarks; for the literature
on metaphor and analogy in science more generally, see Barry Barnes, T. S. Kuhn
and Social Science (London, 1982), David Bloor, Knowledge and Social Imagery
(Chicago, 1991, 2nd ed.), Mary Hesse, Models and Analogies in Science
(Notre Dame, 1966), Karin Knorr-Cetina, The Manufacture of Knowledge: An
Essay on the Constructivist and Contextual Nature of Science (Oxford, 1981)
and Thomas Kuhn, The Structure of Scientific Revolutions (Chicago, 1970,
2nd ed.).
7 Ludwik Fleck, Genesis and Development of a Scientific Fact (Chicago, 1979).



form of a dance of agency, in which the partners are alternately the classic
human agent and disciplinary agency. And two points are worth emphasising
here. First, this dance of agency, which manifests itself at the human end in
the intertwining of free and forced moves in practice, is not optional. Prac-
tice has to take this form. The point of bridging as a free move is to invoke
the forced moves that follow from it. Without such invocation, conceptual
practice would be empty. Second, the intertwining of free and forced moves
implies what Gingras and Schweber refer to (rather misleadingly) as a certain
‘rigidity’ of conceptual ‘networks.’8 I take this reference as a gesture towards
the fact that scientists are not fully in control of where passages of concep-
tual practice will lead. Conceptual structures, one can say, relate to discipli-
nary agency much as do machines to material agency. Once one begins to
tinker with the former, just as with the latter, one has to find out in practice
how the resulting conceptual machinery will perform. It is precisely in this
respect that dialectics of resistance and accommodation can arise in concep-
tual practice. To see how, though, requires some further discussion.

The constitutive role of disciplinary agency in conceptual practice is
enough to guarantee that its end-points are temporally emergent. One simply
has to play through the moves that follow from the construction of specific
bridgeheads and see where they lead. But this is not enough to explain the
emergence of resistance, to get at how the workings of the mind lead the
mind itself into problems. To get at this, one needs to understand what con-
ceptual practice is for. I do not suppose that any short general answer to this
question exists, but all of the examples that I can think of lead to themes of
cultural multiplicity and the making and breaking of associations between
diverse cultural elements. Let me give just two examples to illustrate what
I have in mind.

In science, one prominent object of conceptual practice is bringing theo-
retical ideas to bear upon empirical data, to understand or explain the latter,
to extract supposedly more fundamental information from them, or what-
ever. In Constructing Quarks, I argued that this process was indeed one of
modelling, and now I would add four remarks. First, this process points to
the multiplicity (and heterogeneity) of scientific culture. Data and theory
have no necessary connection to one another; such connections as exist
between them have to be made. Hence my second point: conceptual practice
aims at making associations (translations, alignments) between such diverse
elements – here data and theory. Third, just because of the presence of the
disciplinary partner in the dance of agency in conceptual practice, resistances
can arise in the making of such associations. Because the destinations of con-
ceptual practice cannot be known in advance, the pieces do not necessarily fit
together as intended. And fourth, these resistances precipitate dialectics of
resistance and accommodation, tentative revisions of modelling vectors,
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8 Yves Gingras and S. S. Schweber, ‘Constraints on Construction’, Social Studies of
Science 16 (1986): 380.



manglings that can bear upon conceptual structures as well the form and per-
formance of material apparatus.9

To exemplify these ideas, an obvious strategy would be to document how
disciplines structure practice in theoretical science, but I will not take that
route here because the disciplines and conceptual structures at stake in all of
the interesting cases that I know about – largely in recent theoretical elemen-
tary-particle physics – are sufficiently esoteric to make analysis and exposi-
tion quite daunting. As mentioned already, I propose instead to concentrate
on mathematics, and in particular on an example from the history of mathe-
matics which is at once intellectually and historically interesting and simple,
in that it draws only upon relatively low-level and already familiar disciplines
and structures in basic algebra and geometry. I hope thus to find an example
of the mangle in action in conceptual practice that is accessible while being
rich enough to point to further extensions of the analysis, in science proper
as well as in mathematics. I will come to the example in a moment, but first
some remarks are needed on mathematics in general.

Physics might be said to seek, amongst other things, somehow to describe
the world; but what is mathematics for? Once more, I suppose that there is no
general answer to this question, but I think that Latour makes some impor-
tant and insightful moves. In his discussion of mathematical formalisms,
Latour continually invokes metaphors of joining, linking, association and
alignment, comparing mathematical structures to railway turntables, cross-
roads, clover-leaf junctions and telephone exchanges.10 His idea is, then, that
such structures themselves serve as multipurpose translation devices, making
connections between diverse cultural elements. And, as we shall see, this turns
out to be the case in our example. The details follow, but the general point
can be made in advance. If cultural extension in conceptual practice is not
fully under the control of active human agents, due to the constitutive role of
disciplinary agency, then the making of new associations – the construction
of new telephone exchanges linking new kinds of subscribers – is nontrivial.
Novel conceptual structures need to be tuned if they are to stand a chance of
performing cooperatively in fields of disciplinary agency; one has to expect
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9 A point of clarification in relation to my earlier writings might be useful. In ‘Living
in the Material World: On Realism and Experimental Practice’ (in The Uses of Exper-
iment: Studies in the Natural Sciences, eds David Gooding, Trevor Pinch and Simon
Schaffer [Cambridge, 1989]) I discussed the open-ended extension of scientific culture
in terms of a metaphor of ‘plasticity.’ I said that cultural elements were plastic
resources for practice. The problem with this metaphor is that, if taken too seriously,
it makes scientific practice sound too easy – one just keeps moulding the bits of putty
until they fit together. The upshot of the present discussion of disciplinary agency is
that, unlike putty, pieces of conceptual culture keep transforming themselves in
unpredictable ways after one has squeezed them (and evidently the same can be said
of machinic culture: one can tinker with the material configuration of apparatus, but
that does not determine how it will turn out to perform). This is why achieving asso-
ciations in practice is really difficult (and chancy).
10 Latour, Science in Action, 239, 241 and 242.



that resistances will arise in the construction of new conceptual associations,
precipitating continuing dialectics of resistance and accommodation, man-
glings of modelling vectors – of bridgeheads and fillings, and even of disci-
plines themselves.11

This is the process that we can now explore in an example taken from the
history of mathematics. In the next two sections we will be concerned with
the work of the great Irish mathematician, Sir William Rowan Hamilton, and
in particular with a brief passage of his mathematical practice that culmi-
nated on 16 October 1843 in the construction of his new mathematical sys-
tem of quaternions. Before we turn to the study, however, I want to remark
on the selection of this example. As indicated above, it recommends itself on
several accounts. The disciplinary agency manifest in Hamilton’s work has a
simple and familiar structure, which makes his work much easier to follow
than that of present-day mathematicians or scientists. At the same time,
Hamilton’s achievement in constructing quaternions is of considerable his-
torical interest. It marked an important turning point in the development of
mathematics, involving as it did the first introduction of non-commuting
quantities into the subject matter of the field, as well as the introduction
of an exemplary set of new entities and operations, the quaternion system,
that mutated over time into the vector analysis central to modern physics.
And further, detailed documentation of Hamilton’s practice is available.12
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11 I should mention one important aspect of mathematics that distinguishes it from
science and to which I cannot pay detailed attention here, namely mathematical proof.
Here Imre Lakatos’ (1976) account of the development of Euler’s theorem points once
more to the mangle in conceptual practice: Proofs and Refutations: The Logic of Math-
ematical Discovery (Cambridge, 1976). The exhibition of novel counterexamples to
specific proofs of the theorem counts, in my terminology, as the emergence of resist-
ances, and Lakatos describes very nicely the revision of proof procedures as open-
ended accommodation to such resistances, with interactive stabilisation amounting to
the reconciliation of such procedures to given counterexamples. Other work in the his-
tory and philosophy of mathematics that points towards an understanding of practice
as the mutual adjustment of cultural elements includes that of Philip Kitcher (The
Nature of Mathematical Knowledge [Oxford, 1983] and ‘Mathematical Naturalism,’ in
History and Philosophy of Modern Mathematics [Minneapolis: 1988], eds William
Aspray and Kitcher), who argues that every mathematical practice has five compo-
nents (‘Mathematical Naturalism,’ 299), Michael Crowe (‘Ten Misconceptions about
Mathematics and Its History,’ in Aspray and Kitcher , ibid., ‘Duhem and History and
Philosophy of Mathematics’, Synthese 83 (1990): 431-447, see note 29 below), and
Gaston Bachelard, who understands conceptual practice in terms of ‘resistances’ (his
word) and ‘interferences’ between disjoint domains of mathematics (see Mary Tiles,
Bachelard: Science and Objectivity [Cambridge, 1984]).
12 I would have been entirely unaware of this, were it not for the work of Adam
Stephanides, then a graduate student nominally under my supervision. Stephanides
brought Hamilton’s work to my attention by writing a very insightful essay emphasis-
ing the open-endedness of Hamilton’s mathematical practice, an essay which eventu-
ally turned into Pickering and Stephanides ‘Constructing Quaternions: On the
Analysis of Conceptual Practice,’ in Pickering ed., Science as Practice.



Hamilton himself left several accounts of the passage of practice that led him
to quaternions, especially a notebook entry written on the day of the discov-
ery and a letter to John T. Graves dated the following day.13 As Hamilton’s
biographer puts it: ‘These documents make the moment of truth on Dublin
bridge [where Hamilton first conceived of the quaternion system] one of the
best-documented discoveries in the history of mathematics.’14 On this last
point, some discussion is needed.

Hamilton’s discovery of quaternions is not just well-documented, it is also
much written about. Most accounts of Hamilton’s algebraic researches con-
tain some treatment of quaternions, and at least five accounts in the second-
ary literature rehearse to various ends Hamilton’s own accounts more or less
in their entirety.15 I should therefore make it clear that what differentiates my
account from others is that, as already indicated, I want to show that Hamil-
ton’s work can indeed be grasped within the more general understanding of
agency and practice that I call the mangle. Together with the discussion of
free and forced moves and disciplinary agency, the open-endedness of mod-
elling is especially important here, and in the narrative that follows I seek to
locate free moves in Hamilton’s eventual route to quaternions by setting that
trajectory in relation to his earlier attempts to construct systems of ‘triplets.’

2. From Complex Numbers to Triplets

The early 19th century was a time of crisis in the foundations of algebra, cen-
tring on the question of how the ‘absurd’ quantities – negative numbers and
their square-roots – should be understood.16 Various moves were made in the
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13 Hamilton, ‘Quaternions’, Note-book 24.5, entry for 16 Oct. 1843, and ‘Letter to
Graves on Quaternions; or on a New System of Imaginaries in Algebra’, dated 17 Oct
1843, published in Phil. Mag., 25 (1843): 489-95, both reprinted in Hamilton, The
Mathematical Papers of Sir William Rowan Hamilton. Vol. III, Algebra (Cambridge,
1967), 103-5, 106-10. I cite these below as NBE and LTG; all page number citations
to these and other writings of Hamilton are to the 1967 reprint of his papers. I should
note that my primary source of documentation is a first-person narrative written after
the event. This has to be understood as an edited rather than a complete account
(whatever the latter might mean) but it is sufficient to exemplify the operation of the
mangle in conceptual practice, which is my central concern.
14 Thomas L. Hankins, Sir William Rowan Hamilton (Baltimore, 1980), 295.
15 Hankins, ibid., 295-300, J. O’Neill, ‘Formalism, Hamilton and Complex Numbers,’
Studies in History and Philosophy of Science 17 (1986): 351-72, Helena Pycior, The
Role of Sir William Rowan Hamilton in the Development of Modern British Algebra
(Cornell University, unpublished PhD dissertation, 1976), ch. 7, B. L. van der Waer-
den, ‘Hamilton’s Discovery of Quaternions,’ Mathematics Magazine 49 (1976): 227-
234 and E. T. Whittaker, ‘The Sequence of Ideas in the Discovery of Quaternions,’
Royal Irish Academy, Proceedings 50, Sect. A, No. 6 (1945): 93-98.
16 Hankins, Sir William Rowan Hamilton, 248, Pycior, The Role of Sir William Rowan
Hamilton, ch. 4.



debate over the absurd quantities, only one of which bears upon our story,
and which serves to introduce the themes of cultural multiplicity and associ-
ation as they will figure there. This was the move to construct an association
between algebra and an otherwise disparate branch of mathematics, geome-
try, where the association in question consisted in establishing a one-to-one
correspondence between the elements and operations of complex algebra and
a particular geometrical system.17 I need to go into some detail about the sub-
stance of this association, since it figured importantly in Hamilton’s con-
struction of quaternions.18

The standard algebraic notation for a complex number is x + iy, where x
and y are real numbers and i2 = −1. Positive real numbers can be thought
of as representing measurable quantities or magnitudes – a number of
apples, the length of a rod – and the foundational problem in algebra was
to think what −1 and i (and multiples thereof) might stand for. What sense
can one make of √-1 apples? How many apples is that? The geometrical
response to such questions was to think of x and y not as quantities
or magnitudes, but as coordinates of the end-point of a line-segment ter-
minating at the origin in some ‘complex’ two-dimensional plane. Thus the
x-axis of the plane measured the real component of a given complex num-
ber represented as such a line-segment, and the y-axis the imaginary part,
the part multiplied by i in the algebraic expression (fig. 1a). In this way the
entities of complex algebra were set in a one-to-one correspondence with
geometrical line-segments. Further, it was possible to put the operations of
complex algebra in a similar relation with suitably defined operations
upon line-segments. Addition of line-segments was readily defined on this
criterion. In algebraic notation, addition of two complex numbers was
defined as

(a + ib) + (c + id) = (a + c) + i(b + d),

and the corresponding rule for line-segments was that the x-coordinate of the
sum should be the sum of the x-coordinates of the segments to be summed,
and likewise for the y-coordinate (fig. 1b). The rule for subtraction could be
obtained directly from the rule for addition – coordinates of line-segments
were to be subtracted instead of summed.

The rules for multiplication and division in the geometrical representation
were more complicated, and we need only discuss that for multiplication, since
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17 Michael J. Crowe, A History of Vector Analysis: The Evolution of the Idea of a Vec-
torial System (New York, 1985), 5-11.
18 At this point my analysis starts to get technical. This is inevitable if one’s aim is to
understand technical practice, but readers with limited familiarity with mathematics
might try skimming this and the following section before moving on to section 4, and
returning to them if aspects of the subsequent discussion seem obscure. The impor-
tant thing is to grasp the overall form of the analysis of sections 2 and 3 rather than
to follow all of Hamilton’s mathematical manoeuvres in detail.



this was the operation that became central in Hamilton’s development of
quaternions. The rule for algebraic multiplication of two complex numbers,

(a + ib)(c + id) = (ac − bd) + i(ad + bc),
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FIGURE 1A. Geometrical representation of the complex number z = x + iy in the
complex plane. The projections onto the x- and y-axes of the endpoint of the line Oz
measure the real and imaginary parts of z, respectively.

FIGURE 1B. Addition of complex numbers in the geometrical representation:
z3 = z1 + z2. By construction, the real part of z3 is the sum of the real parts of z1 and
z2 (x3 = x1 + x2), and likewise the imaginary part (y3 = y1 + y2).



followed from the usual rules of algebra, coupled with the peculiar definition
of i2 = −1. The problem was then to think what the equivalent might be in the
geometrical representation. It proved to be stateable as the conjunction of
two rules. The product of two line-segments is another line-segment that
(a) has a length given by the product of the lengths of the two segments to be
multiplied, and that (b) makes an angle with the x-axis equal to the sum of
the angles made by the two segments (fig. 2). From this definition, it is easy
to check that multiplication of line-segments in the geometrical representa-
tion leads to a result equivalent to the multiplication of the corresponding
complex numbers in the algebraic representation.19 Coupled with a suitably
contrived definition of division in the geometrical representation, then, an
association of one-to-one correspondence was achieved between the entities
and operations of complex algebra and their geometrical representation in
terms of line-segments in the complex plane.
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19 The easiest way to grasp these rules is as follows. In algebraic notation, any com-
plex number z = x + iy can be reexpressed as r(cosθ + isinθ), which can in turn be rein-
terpreted geometrically as a line-segment of length r, subtending an angle θ with the
x-axis at the origin. The product of two complex numbers z1 and z2 is therefore
r1r2(cosθ1 + isinθ1)(cosθ2 + isinθ2). When the terms in brackets are multiplied out and
rearranged using standard trigonometric relationships, one arrives at z1z2 = r1r2[cos(θ1
+ θ2) + isin(θ1 + θ2)], which can itself be reinterpreted geometrically as a line-segment
having a length which is the product of the lengths of the lines to be multiplied (part
a of the rule) and making an angle with the x-axis equal to the sum of angles made
by the lines to be multiplied (part b).
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FIGURE 2. Multiplication of complex numbers in the geometrical representation:
z3 = z1 × z2. Here the lengths of line-segments are multiplied (r3 = r1 × r2), while the
angles subtended with the x-axis by line-segments are added (q3 = q1 + q2).



At least three important consequences for 19th-century mathematics
flowed from this association. First, it could be said (though it could also be
disputed) that the association solved the foundational problems centred on
the absurd numbers. Instead of trying to understand negative and imaginary
numbers as somehow measures of quantities or magnitudes of real objects,
one should think of them geometrically, in terms of the orientation of line-
segments. A negative number, for example, should be understood as referring
to a line-segment lying along the negative (rather than positive) x-axis, a pure
imaginary number as lying along the y-axis, and so on (fig. 3). Thus for an
understanding of the absurd numbers one could appeal to an intuition of the
possible differences in length and orientation of rigid bodies – sticks, say – in
any given plane, and hence the foundational problem could be shown to be
imaginary rather than real (so to speak).

Second, more practically, the geometrical representation of complex alge-
bra functioned as a switchyard. Algebraic problems could be reformulated as
geometrical ones, and thus perhaps solved using geometric techniques, and
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vice versa. The third consequence of this association of algebra with geome-
try was that the latter, more clearly than the former, invited extension. Com-
plex algebra was a self-contained field of mathematical practice; geometry, in
contrast, was by no means confined to the plane. The invitation, then, was to
extend the geometrical representation of complex-number theory from a
two- to a three-dimensional space, and to somehow carry along a three-place
algebraic equivalent with it, maintaining the association already constructed
in two dimensions. On the one hand, this extension could be attempted in a
spirit of play, just to see what could be achieved. On the other, there was a
promise of utility. The hope was to construct an algebraic replica of trans-
formations of line-segments in three-dimensional space, and thus to develop
a new and possibly useful algebraic system appropriate to calculations in
three-dimensional geometry, ‘to connect, in some new and useful (or at least
interesting way) calculation with geometry, through some extension [of the
association achieved in two dimensions], to space of three dimensions,’ as
Hamilton put it.20

Hamilton was involved in the development of complex algebra from the
late 1820s onwards. He worked both on the foundational problems just dis-
cussed (developing his own approach to them via his ‘Science of Pure Time’
and a system of ‘couples’ rather than through geometry; I return to this topic
in section 6 below) and on the extension of complex numbers from two- to
three-place systems, or ‘triplets’ as he called them. His attempts to construct
triplet systems in the 1830s were many and various, but Hamilton regarded
them all as failures.21 Then, in 1843, after a period of work on other topics,
he returned to the challenge once more. Yet again he failed to achieve his
goal, but this time he did not come away empty handed. Instead of con-
structing a three-place or three-dimensional system, he quickly arrived at the
four-place quaternion system that he regarded as his greatest mathematical
achievement and to which he devoted the remainder of his life’s work. This is
the passage of practice that I want to analyse in detail.
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20 Hamilton, Preface to Lectures on Quaternions (Dublin, 1853), reprinted in Hamil-
ton, Mathematical Papers, 135.The perceived need for an algebraic system that could
represent elements and operations in three-dimensional space more perspicuously
than existing systems is discussed in Crowe, Vector Analysisector Analysis, 3-12.
Though Hamilton wrote of his desire to connect calculation with geometry some
years after the event, he recalled in the same passage that he was encouraged to per-
severe in the face of difficulties by his friend John T. Graves, ‘who felt the wish, and
formed the project, to surmount them in some way, as early, or perhaps earlier than
myself ’ (ibid, 137). Hamilton’s common interest with Graves in algebra dated back to
the late 1820s (Hankins, Sir William Rowan Hamilton, ch. 17), so there is no reason to
doubt that this utilitarian interest did play a role in Hamilton’s practice. See also
O’Neill, ‘Formalism, Hamilton and Complex Numbers.’
21 Hamilton, Mathematical Papers, 3-100, 117-42, Hankins, Sir William Rowan
Hamilton, 245-301, Pycior, The Role of Sir William Rowan Hamilton, chs 3-6.



3. Constructing Quaternions

On 16 October 1843, Hamilton set down in a notebook his recollection of his
path to quaternions. The entry begins:22

I, this morning, was led to what seems to me a theory of quaternions, which may
have interesting developments. Couples being supposed known, and known to be
representable by points in a plane, so that √-1 is perpendicular to 1, it is natural to
conceive that there may be another sort of √-1, perpendicular to the plane itself. Let
this new imaginary be j; so that j2 = −1, as well as i2 = −1. A point x, y, z in space
may suggest the triplet x + iy + jz.

I can begin my commentary on this passage by noting that a process of
modelling was constitutive of Hamilton’s practice. As is evident from these
opening sentences, he did not attempt to construct a three-place mathemati-
cal system out of nothing. Instead he sought to move into the unknown from
the known, to find a creative extension of the two-place systems already in
existence. Further, as will become evident as we go along, the process of cul-
tural extension through modelling was, in this instance as in general, an open-
ended one: in his work on triplet systems that culminated in the construction
of quaternions Hamilton tried out a large number of different extensions of
complex algebra and geometry. Now I need to talk about how Hamilton
moved around in this open-ended space, a discussion that will lead us into the
tripartite decomposition of modelling mentioned in section 1.

In his reference above to ‘points in a plane,’ Hamilton first invokes the geo-
metrical representation of complex algebra, and the extension that he con-
siders is to move from thinking about line-segments in a plane to thinking
about line-segments in a three-dimensional space. In so doing, I say that he
established a bridgehead to a possible three-dimensional extension of com-
plex algebra. As already stated and as discussed further below, the signifi-
cance of such a bridging operation is that it marks a particular destination
for modelling; at the moment I want to emphasise two points that I suspect
are general about bridging. First, however natural Hamilton’s move here
from the plane to three-dimensional space might seem, it is important to
recognise that it was by no means forced upon him. In fact, in his earlier
attempts at triplet systems, he had proceeded differently, often working
first in terms of an algebraic model and only towards the end of his cal-
culations attempting to find geometrical representations of his findings,
representations which were quite dissimilar from that with which he begins
here.23 In this sense, the act of fixing a bridgehead is an active or free move
that serves to cut down the indefinite openness of modelling. My second
point follows on from this. Such free moves need to be seen as tentative and
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22 NBE, 103.
23 Hamilton, Lectures on Quaternions, 126-32. In such attempts, the intention to pre-
serve any useful association of algebra and geometry does not seem to be central:
Hamilton’s principal intent was simply to model the development of a three-place



revisable trials that carry with them no guarantee of success. Just as Hamil-
ton’s earlier choices of bridgeheads had, in his own estimation, led to failure,
so might this one. His only way of assessing this particular choice was to
work with it and on it – to see what he could make of it. Similar comments
apply to the second model that structured Hamilton’s practice. This was the
standard algebraic formulation of complex numbers, which he extends in the
above quotation to a three-place system by moving from the usual x + iy
notation to x + iy + jz. This seems like another natural move to make. But
again, when set against Hamilton’s earlier work on triplets, it is better seen as
the establishment of a bridgehead in a tentative free move.24

One more remark before returning to Hamilton’s recollections. I noted
above that complex algebra and its geometrical representation were associated
with one another in a relation of one-to-one correspondence, and an intent to
preserve that association characterised the passage of Hamilton’s practice
presently under discussion. In the quotation, he sets up a one-to-one corre-
spondence between the elements defined in his two bridging moves – between
the algebraic notation x + iy + jz and suitably defined three-dimensional line-
segments. In the passage that follows, he considers the possibility of preserv-
ing the same association of mathematical operations in the two systems. This
is where the analysis of modelling becomes interesting, where disciplinary
agency comes into play and the possibility of resistance in conceptual practice
thus becomes manifest. Hamilton’s notebook entry continues:25

The square of this triplet [x + iy + jz] is on the one hand x2 − y2 − z2 + 2ixy + 2jxz +
2ijyz; such at least it seemed to me at first, because I assumed ij = ji. On the other
hand, if this is to represent the third proportional to 1, 0, 0 and x, y, z, considered
as indicators of lines, (namely the lines which end in the points having these coordi-
nates, while they begin at the origin) and if this third proportional be supposed to
have its length a third proportional to 1 and √(x2 + y2 + z2), and its distance twice
as far removed from 1, 0, 0 as x, y, z; then its real part ought to be x2 − y2 − z2 and
its two imaginary parts ought to have for coefficients 2xy and 2xz; thus the term
2ijyz appeared de trop, and I was led to assume at first ij = 0. However I saw that
this difficulty would be removed by supposing that ji = −ij.

This passage requires some exegesis. Here Hamilton begins to think about
mathematical operations on the three-place elements that his bridgeheads
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algebraic system on his existing two-place system of couples. Because the construction
of associations in a multiple field plays a key role in my analysis, I should note that
attention to this concept illuminates even these principally algebraic attempts. Hamil-
ton found it necessary to transcribe parts of his development of couples piecemeal,
and the goal of reassembling (associating) the disparate parts of the system that
resulted again led to the emergence of resistance.
24 The foundational significance of Hamilton’s couples was precisely that the symbol
i did not appear in them, and was therefore absent from the attempts at triplets dis-
cussed in the previous note. A typical bridging move there was to go from couples
written as (a, b) to triplets written (a, b, c).
25 NBE, 103.



have defined, and in particular about the operation of multiplication, spe-
cialised initially to that of squaring an arbitrary triplet. He works first in the
purely algebraic representation and if, for clarity, we write t = x + iy + jz, he
finds:

t2 = x2 − y2 − z2 + 2ixy + 2jxz + 2ijyz                   (1)

This equation follows automatically from the laws of standard algebra, cou-
pled with the usual definition that i2 = −1 and the new definition j2 = −1 that
was part of Hamilton’s algebraic bridgehead. In this instance, then, we see
that the primitive notion of modelling can be partly decomposed into two
more transparent operations, bridging and transcription, where the latter
amounts to the copying of an operation defined in the base-model – in this
instance the rules of algebraic multiplication – into the system set up by the
bridgehead. And this, indeed, is why I use the word ‘bridgehead:’ it defines a
point to which attributes of the base-model can be transferred, a destination
for modelling, as I put it earlier. We can note here that just as it is appropri-
ate to think of fixing a bridgehead as an active, free, move, it is likewise
appropriate to think of transcription as a sequence of passive, forced, moves,
a sequence of moves – resulting here in equation 1 – that follow from what is
already established concerning the base-model. And we can note, further, that
the surrender of agency on Hamilton’s part is equivalent to the assumption
of agency by discipline. While Hamilton was indeed the person who thought
through and wrote out the multiplications in question, he was not free to
choose how to perform them. Anyone already disciplined in algebraic prac-
tice, then or now, can check that Hamilton (and I) have done the multiplica-
tion correctly. This then is our first example of the dance of agency in
conceptual practice, in which disciplinary agency carried Hamilton (and car-
ries us) beyond the fixing of a bridgehead.

The disciplined nature of transcription is what makes possible the emer-
gence of resistance in conceptual practice, but before we come to that we
should note that the decomposition of modelling into bridging and tran-
scription is only partial. Equation 1 still contains an undefined quantity – the
product ij – that appears in the last term of the right-hand side. This was
determined neither in Hamilton’s first free move nor in the forced moves that
followed. The emergence of such ‘gaps’ is, I believe, another general feature
of the modelling process: disciplinary agency is insufficent to carry through
the processes of cultural extension that begin with bridging. Gaps appear
throughout Hamilton’s work on triplets, for example, and one typical
response of his was that which I call filling, meaning the assignment of val-
ues to undefined terms in further free moves.26 Resuming the initiative in the
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26 See, for example, his development of rules for the multiplication of couples: Hamil-
ton, ‘Theory of Conjugate Functions, or Algebraic Couples; With a Preliminary and
Elementary Essay on Algebra as the Science of Pure Time’, Transactions of the Royal
Irish Academy, 17 (1837): 293-422, reprinted in Hamilton, Mathematical Papers, 80-83.



dance of agency, Hamilton could here have, say, simply assigned a value to
the product ij and explored where that led him through further forced moves.
In this instance, though, he proceeded differently.

The sentences that begin ‘On the other hand, if this is to represent the third
proportional . . .’ refer to the operation of squaring a triplet in the geometri-
cal rather than the algebraic representation. Considering a triplet as a line-
segment in space, Hamilton was almost in a position to transcribe onto his
new bridgehead the rules for complex multiplication summarised above in
section 2, but, although not made explicit in the passage, one problem
remained. While the first rule concerning the length of the product of lines
remained unambiguous in three-dimensional space, the second, concerning
the orientation of the product line, did not. Taken literally, it implied that the
angle made by the square of any triplet with the x-axis was twice the angle
made by the triplet itself – ‘twice as far angularly removed from 1, 0, 0 as x,
y, z’ – but it in no way specified the orientation of the product line in space.
Here disciplinary agency again left Hamilton in the lurch. Another gap thus
arose in moving from two to three dimensions and, in this instance, Hamil-
ton responded with a characteristic, if unacknowledged, filling move.

He further specified the rule for multiplication of line-segments in space by
enforcing the new requirement that the square of a triplet remain in the plane
defined by itself and the x-axis (this is the only way in which one can obtain
his stated result for the square of a triplet in the geometrical representation).
As usual, this move seems natural enough, but the sense of naturalness is eas-
ily shaken when taken in the context of Hamilton’s prior practice. One of
Hamilton’s earliest attempts at triplets, for example, represented them as lines
in three-dimensional space, but multiplication was defined differently in that
attempt.27 Be that as it may, this particular filling move sufficed and was
designed to make possible a series of forced transcriptions from the two- to the
three-dimensional versions of complex algebra that enabled Hamilton to
compute the square of an arbitrary triplet. Surrendering once more to the
flow of discipline, he found that the ‘real part [of the corresponding line-
segment] ought to be x2 − y2 − z2 and its two imaginary parts ought to
have for coefficients 2xy and 2xz.’ Or, returning this result to purely algebraic
notation:28
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27 Hamilton, Lectures on Quaternions, 139-40, cites his notes of 1830 as containing an
attempt at constructing a geometrical system of triplets by denoting the end of a line-
segment in spherical polar coordinates as x = rcosθ, y = rsinθcosφ, z = rsinθsinφ,
and extending the rule of multiplication from two to three dimensions as r′′ = rr′,
θ′′ = θ + θ′, φ′′ = φ + φ′. This addition rule for the angle φ breaks the coplanarity
requirement at issue.
28 One route to this result is to write the triplet t in spherical polar notation. Accord-
ing to the rule just stated, on squaring, the length of the line-segment goes from r to
r2, the angle θ doubles, while the angle φ remains the same. Using standard trigono-
metric relations to express cos2θ and sin2θ in terms of cosθ and sinθ one can then
return to x, y, z notation and arrive at equation 2.



t2 = x2 − y2 − z2 + 2ixy + 2jxz (2)

Now, there is a simple difference between equations 1 and 2, both of which
represent the square of a triplet but calculated in different ways. The two
equations are identical except that the problematic term 2ijyz of equation 1 is
absent from equation 2. This, of course, is just the kind of thing that Hamil-
ton was looking for to help him in defining the product ij, and we will exam-
ine the use he made of it in a moment. First, it is time to talk about resistance.
The two base-models that Hamilton took as his points of departure – the
algebraic and geometrical representations of complex numbers – were asso-
ciated in a one-to-one correspondence of elements and operations. Here,
however, we see that as so far extended by Hamilton, the 3-place systems
had lost this association. The definition of a square in the algebraic system
(equation 1) differed from that computed via the geometrical representation
(equation 2). The association of ‘calculation with geometry’ that Hamilton
wanted to preserve had been broken; a resistance to the achievement of
Hamilton’s goal had appeared. And, as I have already suggested, the precon-
dition for the emergence of this resistance was the constitutive role of disci-
plinary agency in conceptual practice and the consequent intertwining of free
and forced moves in the modelling process. Hamilton’s free moves had deter-
mined the directions that his extensions of algebra and geometry would take
in the indefinitely open space of modelling, but the forced moves intertwined
with them had carried those extensions along to the point at which they col-
lided in equations 1 and 2. This, I think, is how ‘the workings of the mind lead
the mind itself into problems.’ We can now move from resistance itself to a
consideration of the dialectic of resistance and accommodation in concep-
tual practice, in other words to the mangle.

The resistance that Hamilton encountered in the disparity between equa-
tions 1 and 2 can be thought of as an instance of a generalised version of the
Duhem-problem.29 Something had gone wrong somewhere in the process of
cultural extension – the pieces did not fit together as desired – but Hamilton
had no principled way of knowing where. What remained for him to do was
to tinker with the various extensions in question – with the various free moves
he had made, and thus with the sequences of forced moves that followed from
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29 The Duhem-problem is usually formulated in terms of open-ended responses to
mismatches between scientific data and theoretical predictions (Pierre Duhem, The
Aim and Structure of Physical Theory [Princeton, 1991]). As far as I am aware, the
only prior discussion of it as it bears on purely mathematical/conceptual practice is to
be found in Crowe, ‘Duhem,’ who argues, following Lakatos, Proofs and Refutations,
that contradictions between proofs and counterexamples need not necessarily disable
the former. Crowe, ‘Ten Misconceptions,’ also discusses the extension of Duhem’s
ideas about physics to mathematics, and gestures repeatedly, though without detailed
documentation or analysis, to the interactive stabilisation of axioms and theorems
proved within them, and of mathematical systems and the results to which they lead.
I thank Professor Crowe for drawing my attention to these essays.



them – in the hope of getting around the resistance that had arisen and
achieving the desired association of algebra and geometry. He was left, as I
say, to seek some accommodation to resistance. Two possible starts towards
accommodation are indicated in the passage last quoted, both of which
amounted to further fillings-in of Hamilton’s extended algebraic system, and
both of which led directly to an equivalence between equations 1 and 2. The
most straightforward accommodation was to set the product ij equal to
zero.30 An alternative, less restrictive but more dramatic and eventually more
far-reaching move also struck Hamilton as possible. It was to abandon the
assumption of commutation between i and the new square-root of −1, j.31 In
ordinary algebra, this assumption – which is to say that ab = ba – was rou-
tine. Hamilton entertained the possibility, instead, that ij = −ji. This did not
rule out the possibility that both ij and ji were zero, but even without this
being the case, it did guarantee that the problematic term 2ijyz of equation 1
vanished, and thus constituted a successful accommodation to the resistance
that had emerged at this stage.32

Hamilton thus satisfied himself that he could maintain the association
between his algebraic and geometrical three-place systems by the assumption
that i and j did not commute, at least as far as the operation of squaring a
triplet was concerned. His next move was to consider a less restrictive version
of the general operation of multiplication, working through, as above, the
operation of multiplying two coplanar but otherwise arbitrary triplets.
Again, he found that the results of the calculation were the same in the alge-
braic and geometrical representations as long as he assumed either ij = 0 or
ij = −ji.33 Hamilton then moved on to consider the fully general instance of
multiplication in the new formalism, the multiplication of two arbitrary
triplets.34 As before, he began in the algebraic representation. Continuing to
assume ij = −ji, he wrote:
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30 The following day, Hamilton described the idea of setting ij = 0 as ‘odd and
uncomfortable’ (LTG, 107). He offered no reasons for this description, and it is per-
haps best understood as written from the perspective of his subsequent achievement.
The quaternion system preserved the geometrical rule of multiplication that the
length of the product was the product of the lengths of the lines multiplied. Since in
the geometrical representation both i and j have unit length, the equation ij = 0 vio-
lates this rule. Here we have a possible example of the retrospective reconstruction of
accounts in the rationalisation of free moves.
31 Pycior, The Role of Sir William Rowan Hamilton, 147, notes that Hamilton had
been experimenting with non-commuting algebras as early as August 1842, though he
then tried the relations ij = j, ji = i. Hankins, Sir William Rowan Hamilton, 292, detects
a possible influence of a meeting between Hamilton and the German mathematician
Gotthold Eisenstein in the summer of 1843.
32 If one multiplies out the terms of equation 1 paying attention to the order of fac-
tors, the coefficient of yz in the last term on the right-hand side becomes (ij + ji);
Hamilton’s assumption makes this coefficient zero.
33 NBE, 103.
34 NBE, 103-4.



(a + ib + jc)(x + iy + jz) = ax − by − cz + i(ay + bx) + j(az + cx) + ij(bz − cy) (3)

He then turned back to thinking about multiplication within the geometri-
cal representation, where a further problem arose. Recall that in defining the
operation of squaring a triplet Hamilton had found it necessary to make a
filling free move, assuming that the square lay in the plane of the original
triplet and the x-axis. This filling move was sufficient to lead him through a
series of forced moves to the calculation of the product of two arbitrary but
coplanar triplets. But it was insufficient to define the orientation in space of
the product of two completely arbitrary triplets: in general, one could not
pass a plane through any two triplets and the x-axis. Once more, Hamilton
could have attempted a filling move here, concocting some rule for the orien-
tation of the product line in space, say, and continuing to apply the sum rule
for the angle made by the product with the x-axis. In this instance, however,
he followed a different strategy.

Instead of attempting the transcription of the two rules that fully specified
multiplication in the standard geometrical representation of complex alge-
bra, he began to work only in terms of the first rule – that the length of the
product line-segment should be the product of the lengths of the line-
segments to be multiplied. Transcribing this rule to three dimensions, and
working for convenience with squares of lengths, or ‘square moduli,’ rather
than lengths themselves, he could surrender his agency to Pythagoras’ theo-
rem and write the square modulus of the left-hand side of equation 3 as 
(a2 + b2 + c2)(x2 + y2 + z2) (another forced move).35 Now he had to compute
the square of the length of the right-hand side. Here the obstacle to the appli-
cation of Pythagoras’ theorem was the quantity ij again appearing in the last
term. If Hamilton assumed that ij = 0, the theorem could be straightfor-
wardly applied, and gave a value for the square modulus of (ax − by − cz)2 +
(ay + bx)2 + (az + cx)2. The question now was whether these two expressions
for the lengths of the line segments appearing on the two sides of equation 3
were equal. Hamilton multiplied them out and rearranged the expression for
the square modulus of the left-hand side, and found that it in fact differed
from that on the right-hand side by a factor of (bz−cy)2. Once again a resist-
ance had arisen, now in thinking about the product of two arbitrary triplets
in, alternatively, the algebraic and geometrical representations. Once more,
the two representations, extended from two- to three-place systems, led to dif-
ferent results. And once more, Hamilton looked for some accommodation to
this resistance, for some way of making the two notions of multiplication
equivalent, as they were in two dimensions.

The new resistance was conditional on the assumption that ij = 0. The
question, then, was whether some other assignment of ij might succeed in
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35 According to Pythagoras’ theorem, the square modulus of a line-segment is simply
the sum of the squares of the coordinates of its end points, meaning the coefficients
of 1, i and j in algebraic notation.



balancing the moduli of the left- and right-hand sides of equation 3.36 And
here Hamilton made a key observation. The superfluous term in the square
modulus of the left-hand side of equation 3, (bz − cy)2, was the square of the
coefficient of ij on the right-hand side. The two computations of the square
modulus could thus be made to balance by assuming not that the product of
i and j vanished, but that it was some third quantity k, a ‘new imaginary,’ dif-
ferent again from i and j, in such a way that Pythagoras’ theorem could be
applied to it too.37

The introduction of the new imaginary k, defined as the product of i
and j, thus constituted a further accommodation by Hamilton to an emer-
gent resistance in thinking about the product of two arbitrary triplets in
terms of the algebraic and geometrical representations at once, and one
aspect of this particular accommodation is worth emphasising. It amounted
to a drastic shift of bridgehead in both systems of representation (recall that
I stressed the revisability of bridgeheads earlier). More precisely, it consisted
in defining a new bridgehead leading from two-place representations of
complex algebra to not three-but four-place systems – the systems that
Hamilton quickly called quaternions. Thus, within the algebraic representa-
tion, the basic entities were extended from 2 to 4, from 1, i to 1, i, j, k, while
within the geometrical representation, as Hamilton wrote the next day,
‘there dawned on me the notion that we must admit, in some sense, a fourth
dimension of space’38 – with the fourth dimension, of course, mapped by the
new k-axis.

We can consider this shift in bridgehead further in the next section; for
now, we can observe that Hamilton had still not completed the initial devel-
opment of quaternions. The quantity k2 remained undefined at this stage, as
did the various products of i and j with k, excepting those intrinsic to his
new bridgehead ij = k. Hamilton fixed the latter products by a combination
of filling assumptions and forced moves following from relations already
fixed:39

I saw that we had probably ik = −j, because ik = iij and i2 = −1; and that in like man-
ner we might expect to find kj = ijj = −i; from which I thought it likely that ki = j,
jk = i, because it seemed likely that if ji = −ij, we should have also kj = −jk, ik =
−ki. And since the order of these imaginaries is not indifferent, we cannot infer that
k2 = ijij is +1, because i2 × j2 = −1 × −1 = +1. It is more likely that k2 = ijij = −iijj =
−1. And in fact this last assumption is necessary, if we would conform the multipli-
cation to the law of multiplication of moduli.
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36 Strictly speaking, this is too deterministic a formulation. The question really was
whether any amount of tinkering with bridgeheads, fillings and so on could get past
this point without calling up this or another resistance.
37 NBE, 104.
38 LTG, 108.
39 Ibid.



Hamilton then checked whether the algebraic version of quaternion multi-
plication under the above assumptions, including k2 = −1, led to results in
accordance with the rule of multiplication concerning products of lengths in
the geometrical representation (‘the law of multiplication of moduli’), and
found that it did. Everything in his quaternion system was thus now defined
in such a way that the laws of multiplication in both the algebraic and geo-
metrical version ran without resistance into one another. Through the move
to four-place systems, Hamilton had finally found a successful accommo-
dation to the resistances that had stood in the way of his three-place exten-
sions. The outcome of this dialectic was the general rule for quaternion
multiplication:40

(a, b, c, d)(a′, b′, c′, d′) = (a′′, b′′, c′′, d′′), where

a′′ = aa′ − bb′ − cc′ − dd′,

b′′ = ab′ + ba′ + cd′ − dc′,

c′′ = ac′ + ca′ + db′ − bd′,

d′′ = ad′ + da′ + bc′ − cb′.

With these algebraic equations, and the geometrical representation of
them, Hamilton had, in a sense, achieved his goal of associating calculation
with geometry. He had found vectors of extension of algebra and geometry
that interactively stabilised one another, as I say, preserving in four dimen-
sions the one-to-one association of elements and operations previously estab-
lished in two dimensions. I could therefore end my narrative here. But before
doing so, I want to emphasise that the qualifier ‘in a sense’ is significant. It
marks the fact that what Hamilton had achieved was a local association of
calculation with geometry rather than a global one. He had constructed a
one-to-one correspondence between a particular algebraic system and a par-
ticular geometric system, not an all-purpose link between algebra and geom-
etry considered as abstract, all-encompassing entities. And this remark makes
clear the fact that one important aspect of Hamilton’s achievement was to
redefine, partially at least, the cultural space of future mathematical and sci-
entific practice: more new associations remained to be made if quaternions
were ever to be ‘delocalised’ and linked into the overall flow of mathematical
and scientific practice, requiring work that would, importantly, have been
inconceivable in advance of Hamilton’s construction of quaternions.

As it happens, from 1843 onwards Hamilton devoted most of his pro-
ductive energies to this task, and both quaternions and the principle of non-
commutation that they enshrined were taken up progressively by many
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sections of the scientific and mathematical communities.41 Here I will discuss
one last aspect of Hamilton’s practice that can serve to highlight the locality
of the association embodied in quaternions. Earlier I described Hamilton’s
organising aim as that of connecting calculation with geometry. And, as just
discussed, quaternions did serve to bring algebraic calculation to a geometry
– to the peculiar four-dimensional space mapped by 1, i, j and k. Unfortu-
nately this was not the geometry for which calculation was desired. The
promise of triplet – not quaternion – systems had been that they would bring
algebra to bear upon the real three-dimensional world of interest to mathe-
maticians and physicists. In threading his way through the dialectic of resist-
ance and accommodation, Hamilton had, in effect, left that world behind.
Or, to put it another way, his practice had, as so far described, served to dis-
place resistance rather than fully to accommodate to it. Technical resistances
in the development of three-place mathematical systems had been trans-
muted into a resistance between moving from Hamilton’s four-dimensional
world to the three-dimensional world of interest. It was not evident how the
two worlds might be related to one another. This was one of the first prob-
lems that Hamilton addressed once he had arrived at his algebraic formula-
tion of quaternions.

In his letter to John Graves dated 17 October 1843, Hamilton outlined a
new geometrical interpretation of quaternions that served to connect them
back to the world of three dimensions. This new interpretation was a straight-
forward but consequential redescription of the earlier four-dimensional repre-
sentation. Hamilton’s idea was to think of an arbitrary quaternion (a, b, c, d)
as the sum of two parts: a real part, a, which was a pure real number and had
no geometrical representation, and an imaginary part, the triplet, ib + jc + kd,
which was to be represented geometrically as a line-segment in three-dimen-
sional space.42 Having made this split, Hamilton was then in a position to spell
out rules for multiplication of the latter line-segments, which he summarised
as follows:43

Finally, we may always decompose the latter problem [the multiplication of two
arbitrary triplets] into these two others; to multiply two pure imaginaries which
agree in direction, and to multiply two which are at right angles with each other. In
the first case, the product is a pure negative, equal to the products of the lengths or
moduli with its sign changed. In the second case, the product is a pure imaginary of
which the length is the product of the lengths of the factors, and which is perpen-
dicular to both of them. The distinction between one such perpendicular and its
opposite may be made by the rule of rotation [stated earlier in this letter].
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There seems to me to be something analogous to polarized intensity in the pure
imaginary part; and to unpolarized energy (indifferent to direction) in the real part
of a quaternion: and thus we have some slight glimpse of a future Calculus of
Polarities. This is certainly very vague, but I hope that most of what I have said
above is clear and mathematical.

These strange rules for the multiplication of three-dimensional line seg-
ments – in which the product of two lines might be, depending upon their rel-
ative orientation, a number or another line or some combination of the two
– served to align quaternions with mathematical and scientific practice con-
cerned with the three-dimensional world.44 Nevertheless, the association of
algebra with geometry remained local. No contemporary physical theories,
for example, spoke of entities in three-dimensional space obeying Hamilton’s
rules. It therefore still remained to find out in practice whether quaternions
could be delocalised to the point at which they might become useful. With
hindsight, one can pick out from the rules of multiplication a foreshadowing
of modern vector analysis with its ‘dot’ and ‘cross’ products, and in the ref-
erences to ‘polarized intensity’ and ‘unpolarized energy’ one can find a ges-
ture towards electromagnetic theory, where quaternions and vector analysis
found their first important use. But, as Hamilton wrote, unlike the mathe-
matics of quaternions this ‘slight glimpse of the future’ was, in 1843, ‘cer-
tainly very vague.’ It was only in the 1880s, after Hamilton’s death, that Josiah
Willard Gibbs and Oliver Heaviside laid out the fundamentals of vector
analysis, dismembering the quaternion system into more useful parts in the
process.45 This key moment in the delocalisation of quaternions was also the
moment of their disintegration.

4. Concepts and the Mangle

I have come to the end of my story of Hamilton and quaternions, and the
analysis that I have interwoven with the narrative is complex enough, I think,
to warrant a general summary and even a little further elaboration.

My overall object in this essay has been to get to grips with the specifically
conceptual aspects of scientific practice (I continue to use ‘scientific’ as an
umbrella term which includes mathematics). My point of departure has been
the traditional one, an understanding of conceptual extension as a process of
modelling. Thus I have tried to show that complex algebra and its geometri-
cal representation in the complex plane were both constitutive models in

Concepts and the Mangle of Practice Constructing Quaternions 273

44 Note that this geometric interpretation included a handedness rule – a ‘rule of rota-
tion’ – which reversed the sign of the product of perpendicular lines when the order
of their multiplication was reversed, thus explaining algebraic noncommutation in
much the same way as the two-dimensional geometrical representation of complex
numbers had explained the ‘absurd’ negative and imaginary quantities.
45 Crowe, Vector Analysis, ch. 5.



Hamilton’s practice. But I have gone beyond the tradition in two ways. First,
instead of treating modelling (metaphor, analogy) as a primitive term, I have
suggested that it bears further analysis and decomposition into the three
phases of bridging, transcription and filling. I have exemplified these phases
and their interrelation in Hamilton’s work, and I have tried to show how the
openness of modelling is tentatively cut down by human discretionary choices
– by human agency, traditionally conceived – in bridging and filling, and by
disciplinary agency – disciplined, machine-like human agency – in transcrip-
tion. I have also exemplified the fact that these two aspects of modelling –
active and passive from the perspective of the human actor – are inextricably
intertwined inasmuch as the object of constructing a bridgehead, for example,
is, as I have stressed, to load onto it disciplined practices already established
around the base model. Conceptual practice thus has the quality of a dance of
agency, specifically in this case between the discretionary human agent and
what I have been calling disciplinary agency. The constitutive part played by
disciplinary agency in this dance guarantees that the free moves of human
agents – bridging and filling – carry those agents along trajectories that can-
not be foreseen in advance, that have to be found out in practice.

My second step beyond traditional conceptions of modelling has been to
note that it does not proceed in a vacuum. Issues of cultural multiplicity sur-
face here. My suggestion is that conceptual practice is organised around the
production of associations, the making (and breaking) of connections and
the creation of alignments between disparate cultural elements, where, in the
present instance, the association in question was that between three-place
algebras and three-dimensional geometries (initially, at least). And the key
observation is that the entanglement of disciplinary agency in practice makes
the achievement of such associations nontrivial in the extreme. Hamilton
wanted to extend algebra and geometry into three dimensions while main-
taining a one-to-one correspondence of elements and operations between
them, but neither he nor anyone subsequently has been able to do so. Resis-
tance thus emerges in conceptual practice in relation to intended associations,
and precipitates the dialectics of accommodation and further resistance that
I call the mangle. Now I want to discuss just what gets mangled.

Most obviously mangled in Hamilton’s practice were the modelling vectors
that he pursued. In the face of resistance, he tinkered with choices of bridge-
heads and fillings, tuning, one can say, the directions along which complex
algebra and its geometrical representation were to be extended. And, as we
saw, this mangling of modelling vectors eventually (not at all necessarily) met
with success. In the quaternion system, Hamilton arrived at an association of
one-to-one correspondence of elements and operations between an extension
of complex algebra and an extension of its geometrical representation. This
achievement constituted an interactive stabilisation of the specific free moves
and the associated forced moves that led up to it. This particular bridgehead,
coupled with these particular transcriptions and fillings, defined the vector
alongst which complex algebra should be extended, and similarly for the

274 Andrew Pickering



associated geometry. Exactly how existing conceptual structures should be
extended was, then, the upshot of the mangle – as was the precise structure
of the quaternion system that these particular extensions defined.

Here it is worth pausing to reiterate for conceptual practice two points that
I have made elsewhere in respect of captures and framings of material
agency. First, the precise trajectory and end-point of Hamilton’s practice
were in no way given in advance. Nothing prior to that practice determined
its course. Hamilton had, in the real time of his mathematical work, to fix
bridgeheads and fillings and to find out where they led via disciplined tran-
scriptions. He had, further, to find out in real time just what resistances would
emerge relative to intended conceptual alignments – such resistances again
could not be foreseen in advance – and to make whatever accommodations
he could find to them, with the success or failure of such accommodations
itself only becoming apparent in practice. Conceptual practice has, therefore,
to be seen as temporally emergent, as do its products.46 Likewise, it is
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46 Barbara Herrnstein Smith has commented to me on the preceding sentences that
‘idioms of discovery (things ‘appearing,’ agents ‘finding’ them) seem to dominate just
where one might expect those of construction to emerge (for better or for worse) most
emphatically.’ There is a point of potential confusion here that can be clarified. I do
want to insist that scientists have to ‘find out,’ in real-time, where practice leads, what
resistances will emerge relative to which associations and alignments. But nothing in
my analysis requires or supports the correspondence or Platonist realist assumption
that a unique pre-existing structure (‘things’) are exposed or discovered in the achieve-
ment of associations. I argue at some length against correspondence realism and in
favour of a non-correspondence ‘pragmatic realism’ (not antirealism) in The Mangle,
ch 6. In this connection, I can remark here that when discussing Hamilton’s unsuc-
cessful attempts at constructing triplet systems, historians often invoke in a Platonist
fashion later mathematical existence proofs that appear to be relevant. Thus, for
example, Hankins, Sir William Rowan Hamilton, 438, note 2, reproduces the follow-
ing quotation from the Introduction to Vol. 3 of Hamilton’s collected papers (xvi):
‘Thirteen years after Hamilton’s death G. Frobenius proved that there exist precisely
three associative division algebras over the reals, namely, the real numbers themselves,
the complex numbers and the real quaternions.’ One is tempted to conclude from such
assertions that Hamilton’s search for triplets was doomed in advance (or fated to
arrive at quaternions) and that the temporal emergence of his practice and its prod-
ucts is therefore only apparent. Against this, one can note that proofs like Frobenius’
are themselves the products of sequences of practices which remain to be examined.
There is no reason to expect that analysis of these sequences would not point to the
temporal emergence of the proofs themselves. Note also that these sequences were
precipitated by Hamilton’s practice and by subsequent work on triplets, quaternions
and other many-place systems, all of which served to mark out what an ‘associative
division algebra over the reals’ might mean. Since this concept was not available to
Hamilton he cannot have been looking for new instances of it. On the defeasibility of
‘proof’ see Lakatos, Proofs and Refutations and Trevor Pinch, ‘What Does a Proof Do
If It Does Not Prove? A Study of the Social Conditions and Metaphysical Divisions
Leading to David Bohm and John von Neumann Failing to Communicate in Quan-
tum Physics’, in The Social Production of Scientific Knowledge. Sociology of the Sci-
ences, I, eds Everett Mendelsohn, Peter Weingart and Richard Whitley (Dordrecht,
1977).



appropriate to note the posthumanist aspect of conceptual practice as exem-
plified in Hamilton’s work. My analysis here, as elsewhere, entails a decen-
tring of the human subject, though this time towards disciplinary agency
rather than the material agency that has been at issue in other discussions.47

It is not, of course, the case that Hamilton as a human agent disappears from
my analysis. I have not sought to reduce him to an ‘effect’ of disciplinary
agency, and I do not think that that can sensibly be done. Hamilton’s free
moves were just as constitutive of his practice and its product as were his
forced ones. It is rather that the centre of gravity of my account is positioned
between Hamilton as a classical human agent, a locus of free moves, and the
disciplines that carried him along. To be more precise, at the centre of my
account is the dance of intertwined human and disciplinary agency that
traced out the trajectory of Hamilton’s practice.

So far I have been talking about the transformation of modelling vectors
and formalisms in conceptual practice. But more was mangled and interac-
tively stabilised in our example than that, and I want to consider first the
intentional structure of Hamilton’s work before returning to its disciplinary
aspects. One must, I think, take seriously Hamilton’s already quoted inten-
tion ‘to connect . . . calculation with geometry, through some extension, to
the space of three dimensions.’ One cannot otherwise make sense of the
dialectics of resistance and accommodation that steered his practice through
the open-ended space of modelling and eventually terminated in the quater-
nion system. The point that I want to stress, however, is that we should think
of specific goals and purposes as situated in the plane of scientific practice.
They are not entities that control practice from without. Thus Hamilton’s
goal was only conceivable within the cultural space in which an association
between complex algebra and geometry had already been constructed, and it
was further transformed (to an orientation to four instead of three dimen-
sions) in the real time of his practice, as part and parcel of the dialectic of
resistance and accommodation that we have examined. Hamilton aimed at an
association in three dimensions, but he finally achieved one in four, via the
shift in bridgehead implicit in the introduction of the new square-root of −1
that he called k. Like the technical elements of scientific culture, then, goals
themselves are always liable to mangling in practice.

From the intentional structure of human agency we can turn to to its dis-
ciplined, repetitive, machine-like aspects. I have emphasised that Hamilton
was carried along in his practice by disciplinary agency, and it was crucial to
my analysis that in his transcriptions he acted without discretion. Such lack
of discretion is the precondition for the emergence of dialectics of resistance
and accommodation. But it is worth emphasising also that Hamilton evi-
dently did exercise discretion in choosing just which disciplines to submit
himself to. Thus, throughout his practice he maintained the first part of the
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geometrical rule already established for the multiplication of lines in the com-
plex plane (that the length of the product of two line-segments was the prod-
uct of their individual lengths). But it was crucial to his path to quaternions
that at a certain point he simply abandoned the second part of the multipli-
cation rule concerning the orientation of product lines in space. He did not
attempt to transcribe this when thinking about the multiplication of two arbi-
trary triplets. Part of Hamilton’s strategy of accommodation to resistance
was, then, a selective and tentative modification of discipline – in this case, an
eliminative one. Hamilton bound himself to a part but not all of established
routine practice.48

One can also understand Hamilton’s introduction of non-commuting
quantities into his extension of complex algebra as a selective modification of
discipline, but in this case an additive one. He continued to follow standard
practice as far as ordinary numbers were concerned – treating their products
as indifferent to the order of terms to be multiplied – but invented a quite new
and non-routine rule for the multiplication of his various square-roots of −1.
In such ways Hamilton both drew upon established routines to carry himself
along and, as part of his accommodation to resistance, transformed those
routines, eliminating or adding to them as seemed to him promising. Disci-
plinary agency, I therefore want to say, has again to be seen as in the plane of
practice and mangled there in the very dialectics of resistance and accom-
modation to which it gives structure. And, further, transformed disciplines
are themselves interactively stabilised in the achievement of cultural associa-
tions. That certain specific transformations of discipline rather than others
should have been adopted was itself determined in the association of calcu-
lation with geometry that Hamilton eventually achieved with quaternions.

5. Science and The Mangle

I opened this essay by suggesting that one cannot claim to understand scien-
tific practice unless one can offer an analysis of its specifically conceptual
aspects, and that is what I have just sketched out. In this section I want to
indicate very briefly how this analysis contributes to a more general picture
of scientific practice and culture.

The present essay is part of a project which seeks to develop an under-
standing of science in a performative idiom, an idiom capable of recognising
that the world is continually doing things and that so are we (in contrast to
the traditional representational image which sees science as being, above all,
in the business of representing a dead nature devoid of agency). Thus I have
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elsewhere paid close attention to the machines and instruments that are inte-
gral to scientific culture and practice, and concluded that we should see the
machinic field of science as being very precisely adjusted in its material con-
tours to capture and frame material agency. The exact configuration of a
machine or an instrument is the upshot of a tuning process that delicately
positions it within the flow of material agency, harnessing and directing the
latter – domesticating it. The image that lurks in my mind seems to be that of
a finely engineered valve that both regulates and directs the flow of water
from a pipe (though perhaps it is some kind of a turbine). The performative
idiom encourages us also to think about human agency, and the argument
that I have sought to exemplify here and elsewhere is that this can be grasped
along similar lines. One should think about the scale and social relations of
scientific agency, and the disciplined practices of such agency, as likewise
being finely tuned in relation to its performativity. And, beyond that, the
engineering of the material and the human do not proceed independently of
one another: in scientific culture particular configurations of material and
human agency appear as interactively stabilised against one another.49

Once one begins to think about knowledge as well as performance the pic-
ture becomes more elaborate but its form remains the same. One can think of
factual and theoretical knowledge in terms of representational chains pass-
ing through various levels of abstraction and conceptual multiplicity and ter-
minating, in the world, on captures and framings of material agency. And, as
we have seen here, conceptual structures (scientific theories and models,
mathematical formalisms) can themselves be understood as positioned in
fields of disciplinary agency much as machines are positioned in fields of
material agency. Conceptual structures are like precisely engineered valves,
too, domesticating disciplinary agency. Again, though, conceptual engineer-
ing should not be thought of as proceeding independently of the engineering
of the human and material. As I have just argued, disciplines, for instance,
are themselves subject to transformation in conceptual practice, and, in gen-
eral, conceptual and machinic elements of culture should be seen as evolving
together in empirical practice. Scientific culture, then, appears as itself a wild
kind of machine built from radically heterogeneous parts, a supercyborg,
harnessing material and disciplinary agency in material and human perform-
ances, some of which lead out into the world of representation, of facts and
theories.50

I confess that I like this image of scientific culture. It helps me to fix in my
mind the fact that the specific contents of scientific knowledge are always
immediately tied to specific and very precisely formed fields of machines and
disciplines. Above all, it helps me to focus on the fact that scientific knowl-
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edge is just one part of the picture, not analytically privileged in any way but
something that evolves in an impure, posthuman, dynamics together with all
of the other cultural strata of science – material, human, social (in the next
section I throw metaphysical systems into this assemblage, too). This is, of
course, in contrast with traditional representationalist images of science,
which can hardly get the nonrepresentational strata of science into focus and
which can never grasp its performative aspect.

I turn now to the question of how the supercyborg of scientific culture is
extended in time. Traditional answers assert that something substantive
within scientific culture (as I define it) endures through cultural extension
and explains or controls it – social interests, epistemic rules, or whatever. Or
perhaps something quite outside culture has the controlling role: the world
itself, Nature. I have previously criticised the idea that the social can play the
required explanatory role,51 and I continue this argument below. I have also
argued against against any necessarily controlling role for epistemic rules and
given my own account of how ‘the world itself ’ plays into cultural exten-
sion.52 Here I want to stress that on my analysis nothing substantive explains
or controls the extension of scientific culture. Existing culture is the surface
of emergence of its own extension, in a process of open-ended modelling hav-
ing no destination given or knowable in advance. Everything within the mul-
tiple and heterogeneous culture of science is, in principle, at stake in practice.
Trajectories of cultural transformation are determined in dialectics of resist-
ance and accommodation played out in real-time encounters with temporally
emergent agency, dialectics which occasionally arrive at temporary oases of
rest in the achievement of captures and framings of agency and of associa-
tions between multiple cultural extensions. I have noted, it is true, that one
needs to think about the intentional structure of human agency to under-
stand this process; vectors of cultural extension are tentatively fixed in the
formulation of scientific plans and goals, and resistances have to be seen as
relative to such goals. But as I have shown, plans and goals are both emergent
from existing culture and at stake in scientific practice, themselves liable to
mangling in dialectics of resistance and accommodation. They do not endure
through, explain or control cultural extension.

So this is my overall claim about science: there is no substantive explana-
tion to be given for the extension of scientific culture. There is however, and
this is also my claim, a temporal pattern to practice that we can grasp, that
we can find instantiated everywhere, and that constitutes an understanding of
what it is going on. It is the pattern just described – of open-ended extension
through modelling, dialectics of resistance and accommodation, and so on.
And in good conscience, this pattern – the mangle – is the only explanation
that I can defend of what scientific culture becomes at any moment: of the
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configuration of its machines, of its facts and theories, of its conceptual
structures, disciplines and social relations, and so forth. Science mangles on.

6. Mathematics, Metaphysics and the Social

The central task of this essay has been to understand how dialectics of resist-
ance and accommodation can arise in conceptual practice. I want to end,
however, by developing two subsidiary topics. It is common knowledge,
amongst historians of mathematics at least, that Hamilton was as much a
metaphysician as a mathematician, and that he felt that his metaphysics was,
indeed, at the heart of his mathematics.53 I therefore want to see how the rela-
tion between mathematics and metaphysics can be understood in this
instance. At the same time, it happens that David Bloor has offered a clear
and interesting explanation of Hamilton’s metaphysics as a case study in the
sociology of scientific knowledge (SSK).54 SSK has been at the heart of
developments in science studies over the past thirty years or so, and I think it
will therefore be useful to try to clarify how my own analysis of practice
diverges from it.55 In what follows I focus upon issues of temporal emergence
and the possibilities for a distinctively sociological explanation of science
(this latter connecting directly to the posthumanism of the mangle). I begin
with Bloor’s account of Hamilton’s metaphysics and then offer my own.

Bloor’s essay on ‘Hamilton and Peacock on the Essence of Mathematics’
focusses upon the different metaphysical understandings of algebra articu-
lated by Hamilton on the one side and a group of Cambridge mathematicians
including Peacock on the other. We can get at this difference by returning to
the foundational crisis in 19th-century algebra. As discussed in section 2
above, the geometrical representation of complex algebra was one way of
defusing the crisis and giving meaning to negative and imaginary quantities.
But various mathematicians did not opt for this commonsense route, prefer-
ring more metaphysical approaches. Peacock and the Cambridge mathemati-
cians took a formalist line, as Bloor calls it, which suggested that
mathematical symbols and the systems in which they were embedded were
sufficient unto themselves, in need of no extra-mathematical foundations and
subject to whatever interpretation proved appropriate to specific uses. Thus,
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from the formalist point of view, there was and could be no foundational cri-
sis in algebra. A quotation from the mathematician George Boole sums up
this position nicely:56

They who are acquainted with the present state of the theory of Symbolical Alge-
bra are aware, that the validity of the processes of analysis does not depend upon
the interpretation of the symbols which are employed, but solely upon the laws of
their combination. Every system of interpretation which does not affect the truth
of the relations supposed, is equally admissible, and it is thus that the same process
may, under one scheme of interpretation, represent the solution of a question on
the properties of numbers, under another, that of a geometrical problem, and under
a third, that of a problem of dynamics or optics.

Hamilton disagreed. He thought that mathematical symbols and opera-
tions must have some solid foundations that the mind latches onto – con-
sciously or not – in doing algebra. And, as Bloor puts it: ‘Hamilton’s
metaphysical interests placed him securely in the Idealist tradition. He
adopted the Kantian view that mathematics is synthetic a priori knowledge.
Mathematics derives from those features of the mind which are innate and
which determine a priori the general form that our experience must take.
Thus geometry unfolds for us the pure form of our intuition of space. Hamil-
ton then said that if geometry was the science of pure space, then algebra was
the science of pure time.’57

And, indeed, Hamilton developed his entire theory of complex algebra
explicitly in such terms. In his ‘Theory of Conjugate Functions, or Algebraic
Couples; With a Preliminary and Elementary Essay on Algebra as the Sci-
ence of Pure Time,’ first read to the Royal Irish Academy in 1833, he showed
how positive real algebraic variables – denoted a, b, c, etc – could be regarded
as ‘steps’ in time (rather than magnitudes of material entities), and how neg-
ative signs in front of them could be taken as denoting reversals of tempo-
rality, changing before into after. He also elaborated the system of couples
mentioned earlier. Written (a, b), these couples transformed like the usual
complex variables under the standard mathematical operations but, impor-
tantly, the problematic symbol ‘i’ was just absent from them. Hamilton’s
claim was thus to have positively located and described the foundations of
complex algebra in our intuitions of time and its passing.58
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This much is well known, but Bloor takes the argument one step further: ‘I
am interested in why men who were leaders in their field, and who agreed
about so much at the level of technical detail, nevertheless failed to agree for
many years about the fundamental nature of their science. I shall propose
and defend a sociological theory about Hamilton’s metaphysics and the
divergence of opinion about symbolical algebra to which he was a party.’59

Bloor’s idea is thus, first, that the technical substance of algebra did not
determine its metaphysical interpretation, and therefore, second, that we need
to invoke something other than technical substance – namely, the social – to
explain why particular individuals and groups subscribed to the metaphysical
positions that they did. This is a standard opening gambit in SSK, and Bloor
follows it up by discussing the different social positions and visions of Hamil-
ton and the Cambridge formalists and explaining how particular metaphysi-
cal views serve to buttress them.60 According to Bloor, Hamilton was aligned
with Coleridge and his circle and, more broadly, with ‘the interests served by
Idealism’61 – conservative, holistic, reactionary interests opposing the grow-
ing materialism, commercialism and individualism of the early 19th century
and the consequent breakdown of the traditional social order. As Bloor
explains it, Hamilton’s idealism assimilated mathematics to the Kantian cat-
egory of Understanding. Understanding in turn was understood to be sub-
ordinate to the higher faculty of Reason. And, on the plane of human affairs,
Reason was itself the province not of mathematics but of religion and the
church. Thus the ‘practical import’ of Hamilton’s idealism ‘was to place
mathematics as a profession in a relation of general subordination to the
Church. Algebra, as Hamilton viewed it, would always be a reminder of, and
a support for, a particular conception of the social order. It was symbolic of
an “organic” social order of the kind which found its expression in
Coleridge’s work on Church and State.’62

So, Hamilton’s social vision and aspirations structured his metaphysics. As
far as the Cambridge group of mathematicians was concerned, the same pat-
tern was repeated but starting from a different point. In mathematics and
beyond they were both ‘reformers and radicals’ and ‘professionals’ keen to
assert their autonomy from traditional sources of authority like the church.63

Their formalism and its opposition to the foundationalism of people like
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59 Bloor, ‘Hamilton and Peacock,’ 203.
60 The only respect in which Bloor’s essay is untypical of SSK is that he stops short,
explaining metaphysics without pressing on into the technical substance of science.
He does remark, however, that ‘should it transpire that this metaphysics is indeed rel-
evant to technical mathematics, then my ideas may help to illuminate these matters as
well’ (ibid., 206). I am more concerned with the overall form of Bloor’s argument than
with its restriction to metaphysics.
61 Ibid., 220.
62 Ibid., 217.
63 Ibid., 222, 228.



Hamilton, then, served this end, defining mathematics as the special province
of mathematicians. It was an anti-metaphysics, one might say, which served
to keep metaphysicians and the church out. Thus Bloor’s analysis of the dif-
ferences between the two parties over the foundations of mathematics. As he
summarises it:64

Stated in its broadest terms, to be a formalist was to say: ‘we can take charge of our-
selves.’ To reject formalism was to reject this message. These doctrines were, there-
fore, ways of rejecting or endorsing the established institutions of social control and
spiritual guidance, and the established hierarchy of learned professions and intel-
lectual callings. Attitudes towards symbols were themselves symbolic, and the mes-
sages they carried were about the autonomy and dependence of the groups which
adopted them.

I have no quarrel with Bloor’s arguments as rehearsed so far. I have no
knowledge of the social locations and aspirations of the parties concerned
that would give me cause to doubt the existence of the social-metaphysical-
mathematical correlations he outlines. But still, something peculiar happens
towards the end of Bloor’s essay. He concludes by stating that ‘I do not pre-
tend that this account is without problems or complicating factors’ and then
lists them.65 For the rest of this section we will be concerned with just one
complicating factor.

‘It is necessary,’ Bloor remarks, ‘to notice and account for the fact that
Hamilton’s opposition to Cambridge formalism seemed to decline with time.
In a letter to Peacock dated Oct. 13, 1846, Hamilton declared that his view
about the importance of symbolical science “may have approximated gradu-
ally to yours.” Interestingly,’ Bloor remarks, ‘Hamilton also noted some four
years later “how much the course of time has worn away my political eager-
ness.”’66 The structure of these sentences is, I think, characteristic of what
SSK, the sociology of scientific knowledge, looks like when brought to bear
upon empirical studies. Note first that the shift in Hamilton’s metaphysics is
viewed as a ‘problem.’ It appears that way to Bloor because he wants to
understand the social as not just a correlate of the metaphysical but as a kind
of cause.67 The social is the solid, reliable foundation that holds specific
metaphysical positions in place in an otherwise open-ended space. Any drift-
ing of Hamilton’s metaphysics threatens this understanding, and Bloor there-
fore tries to recoup this drift, by qualifying it as perhaps apparent – ‘seemed
to decline’ – and then by associating it with a decline in Hamilton’s ‘political
eagerness.’ Perhaps Hamilton’s social situation and views changed first
and gave rise to Hamilton’s concessions to formalism, seems to be Bloor’s
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64 Ibid., 228.
65 Ibid., 228.
66 Ibid., 229.
67 Bloor, Knowledge and Social Imagery, lists causal social explanation as the first dis-
tinguishing mark of the ‘strong programme’ in SSK.



message (though the dates hardly look promising). If so, Bloor’s causal arrow
running from the social to the metaphysical would be secure.68

In what follows, I want to offer a different interpretation of Hamilton’s meta-
physical wandering, but before that I want to comment further on Bloor’s gen-
eral position. Three points bear emphasis. First, although I earlier described
SSK as tending to regard the social as a non-emergent cause of cultural change
in science, it is clear that Bloor does recognise here that the social can itself
change with time. This is precisely how he hopes to cope with the problem
of changing metaphysics. But second, he offers no examination or analysis of
how the social changes. The social, I want to say, is treated as an at most quasi-
emergent category, both in this essay and in the SSK canon in general.69 The
gaze of SSK only ever catches a fixed image of the social in the act of struc-
turing the development of the technical and metaphysical strata of science.
SSK always seems to miss the movie in which the social is itself transformed.70
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68 Thus Bloor’s text immediately following the previous quotation continues: ‘A cor-
responding and opposite movement took place in Whewell’s life. Here, in obliging con-
formity with my thesis, it is known that as Whewell moved to the right . . . he
increasingly moved away from the symbolical approach in his mathematical writings’
(‘Hamilton and Peacock,’ 229-30, emphasis mine).
69 See the works cited in note 55.
70 In its early development, SSK was articulated against philosophical positions that ran-
corously opposed the suggestion that there was anything significantly social about scien-
tific knowledge. A concentration on situations where the social could plausibly be
regarded as both fixed and as explanatory of metaphysical and technical developments
therefore fulfilled a strategic argumentative function for SSK. SSK’s endless deferral of
any enquiry into how the social might itself evolve seems strange, though, even given that
background. It is, I suspect, part and parcel of SSK’s almost principled refusal to inter-
rogate key sociological concepts like ‘interest.’ Thus, in 1977 we find Barry Barnes writ-
ing in Interests and the Growth of Knowledge (London, 1977), 78, that ‘new forms of
activity arise not because men are determined by new ideas, but because they actively
deploy their knowledge in a new context, as a resource to further their interests,’ but then,
on the last page of the book, he shuffles interests out into unexplored regions of social
theory with the remark that, ‘I have deliberately refrained from advancing any precise
definitions of “interest” and “social structure;” this would have had the effect of linking
the claims being advanced to particular schools of thought within sociological theory.
Instead, I have been content, as it were, to latch the sociology of knowledge into the
ongoing general trends of social thought’ (ibid., 86). Nothing has changed in the inter-
vening years. Interests, and de facto their dynamics, are still left out in the cold by SSK.
In a recent essay review of Latour’s Science in Action, Shapin writes: ‘One must . . . wel-
come any pressure that urges analysts further to refine, define, justify and reflect upon
their explanatory resources. If there is misunderstanding, by no means all the blame
needs to be laid at Latour’s door [sic!]. “Interest-explanation” does indeed merit further
justification’ (‘Following Scientists Around,’ Social Studies of Science 18 (1988): 549).
And replying to his critics in the ‘Afterword’ to the second edition of Knowledge and
Social Imagery, Bloor writes that, ‘Undeniably the terminology of interest explanations
is intuitive, and much about them awaits clarification’ (171). In chapter 3 of that same
book, Bloor advances the Durkheimian argument that resistance to the strong pro-
gramme arises from a sacred quality attributed to science in modern society. Perhaps in
SSK the social has become the sacred.



Bloor’s essay, then, exemplifies an important difference between SSK and the
mangle: in contrast to SSK, I would argue that the social should in general be
seen as in the plane of practice, both feeding into technical practice and being
emergently mangled there, rather than as a fixed origin of unidirectional causal
arrows. Third, it is characteristic of SSK that Bloor does not even consider the
possibility that there might be any explanation for Hamilton’s metaphysical
shift other than a change in the social. In contrast, I now want to offer an expla-
nation that refers this shift not outwards to the social but inwards, towards
Hamilton’s technical practice.

Bloor says that Hamilton’s opposition to formalism ‘seemed’ to decline,
but the evidence is that there was no ‘seeming’ about it. As Hamilton put it
in another letter written in 1846 to his friend Robert Graves:71

I feel an increased sympathy with, and fancy that I better understand, the Philo-
logical School [Bloor’s formalists]. It enables me to see better the high functions of
language, to trace more distinctly and more generally the influence of signs over
thoughts, and to understand an answer which I hazarded some years ago to a ques-
tion of yours, What did I suppose to be the Science of Pure Kind? namely, that I
supposed it must be the Science of Symbols.

1846, in fact, seems to be an important date in Hamilton’s metaphysical
biography. It was just around then that he began to indicate in various ways
that his position had changed. One might suspect, therefore, that Hamilton’s
worries about metaphysical idealism had their origins in his technical practice
around quaternions in the early 1840s.72 And this suspicion is supported by
the fact that Hamilton’s technical writings on quaternions – specifically
the preface to his first book on the subject, the massive Lectures on Quater-
nions of 1853 – contain several explicit discussions of his past and present
metaphysical stances. We can peruse a few and try to make sense of what
happened.

Hamilton’s preface to the Lectures takes the form of a historical introduc-
tion to his thought and to related work of other mathematicians, and one
striking feature of it is the tone of regret and retraction that Hamilton adopts
whenever the Science of Pure Time comes up. The preface begins with a sum-
mary of his early work on couples, which he introduces with the remark that:
‘In this manner I was led, many years ago, to regard Algebra as the SCIENCE

OF PURE TIME . . . If I now reproduce a few of the opinions put forward in
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71 Quoted in Nagel, Teleology Revisited, 189.
72 Hankins, Sir William Rowan Hamilton, 310, briefly connects Hamilton’s metaphys-
ical shift with his technical practice along the lines elaborated below. I should mention
that Hamilton’s Kantianism had a second string besides his thinking about time –
namely, a concern with triadic structures grasped in relation to the Trinity (ibid., 285-
91). Besides possible utility, then, Hamilton’s searches for triplets and his concern with
three-dimensional geometry have themselves a metaphysical aspect. My focus here,
though, is with his overall move away from Kantianism towards formalism.



that early Essay, it will be simply because they may assist the reader to place
himself in that point of view, as regards the first elements of algebra, from
which a passage was gradually made by me to that comparatively geometrical
conception which it is the aim of this volume to unfold. And with respect to
anything unusual in the interpretations thus proposed, for some simple and
elementary notations, it is my wish to be understood as not at all insisting on
them as necessary, but merely proposing them as consistent amongst them-
selves, and preparatory to the study of quaternions, in at least one aspect of
the latter.’73 So much for a priori knowledge.

Later, Hamilton verges upon apology for mentioning his old metaphysics:
‘Perhaps I ought to apologise for having thus ventured here to reproduce
(although only historically . . .) a view so little supported by scientific author-
ity. I am very willing to believe that (though not unused to calculation) I may
have habitually attended too little to the symbolical character of Algebra, as
a Language, or organized system of signs: and too much (in proportion) to
what I have been accustomed to consider its scientific character, as a Doctrine
analogous to Geometry, through the Kantian parallelism between the intu-
itions of Time and Space.’74 Later still, Hamilton speaks positively about the
virtues of formalism and their integration into his own mathematical prac-
tice, saying that he ‘had attempted, in the composition of that particular
series [of papers on quaternions understood as quotients of lines in three-
dimensional space, published between 1846 and 1849], to allow a more
prominent influence to the general laws of symbolical language than in some
former papers of mine; and that to this extent I had on this occasion sought
to imitate the Symbolical Algebra of Dr Peacock.’75

Far from being situated on the opposite side of a metaphysical gulf from
Peacock, then, by 1846 Hamilton was imitating Peacock’s formalist approach
in his technical practice (without, I should add, entirely abandoning his ear-
lier Kantianism). And to understand why, we need, I think, to look more
closely at that practice. In the very long footnote that begins with the apology
for mentioning the Science of Pure Time, Hamilton actually goes on to assert
that he could have developed many of the aspects of the quaternion system
to be covered in the rest of the book within his original metaphysical frame-
work, and that this line of development ‘would offer no result which was not
perfectly and easily intelligible, in strict consistency with that original thought
(or intuition) of time, from which the whole theory should (on this supposi-
tion) be evolved . . . Still,’ he continues,76

I admit fully that the actual calculations suggested by this [the Science of Pure
Time], or any other view, must be performed according to some fixed laws of
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74 Ibid., 125.
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combination of symbols, such as Professor De Morgan has sought to reduce, for
ordinary algebra, to the smallest possible compass . . . and that in following out
such laws in their symbolical consequences, uninterpretable (or at least uninter-
preted) results may be expected to arise. . . [For example] in the passage which I have
made (in the Seventh Lecture), from quaternions considered as real (or as geomet-
rically interpreted), to biquaternions considered as imaginary (or as geometrically
uninterpreted), but as symbolically suggested by the generalization of the quater-
nion formulae, it will be perceived . . . that I have followed a method of transition,
from theorems proved for the particular to expressions assumed for the general, which
bears a very close analogy to the methods of Ohm and Peacock: although I have
since thought of a way of geometrically interpreting the biquaternions also.

Now, I am not going to exceed my competence by trying to explain what
biquaternions are and how they specifically fit into the story, but I think one
can get an inkling from this quotation of how and why Hamilton’s meta-
physics changed. While Hamilton had found it possible calmly to work out
his version of complex algebra on the basis of his Kantian notions about
time, in his subsequent mathematical practice leading through quaternions he
was, to put it crudely, flying with the seat of his pants. He was struggling
through dialectics of resistance and accommodation, reacting as best he
could to the exigencies of technical practice, without much regard to or help
from any a priori intuitions of the inner meanings of the symbols he was
manipulating. The variety of the bridging and filling moves that he made on
the way to quaternions that I reviewed above, for example, hardly betray any
‘strict consistency’ with an ‘original thought (or intuition).’ Further, what
guided Hamilton through the open-ended space of modelling was, I argued,
disciplinary agency – the replaying of established formal manipulations in
new contexts marked out by bridging and filling. And, at the level of prod-
ucts rather than processes, a similar situation obtained. Hamilton continually
arrived at technical results and then had to scratch around for interpretations
of them – starting with the search for a three-dimensional geometric inter-
pretation of his initial four-dimensional formulation of quaternions, and
ending up in the quotation just given with biquaternions (‘I have since
thought of a way’). Moreover, Hamilton proved to be able to think of several
ways of interpreting his findings. In the preface to the Lectures he discusses
three different three-dimensional geometrical interpretations, one of which
(not that mentioned above at the end of section 3) forms the basis for his
exposition of quaternions in the body of the book.77 Formal results followed
by an indefinite number of interpretations: this is a description of formalist
metaphysics.
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77 Ibid., 145-54. Of one of these systems, Hamilton wrote: ‘It seemed (and still seems)
to me natural to connect this extra-spatial unit [the non-geometrical part of the
quaternion] with the conception of TIME.’ But then he reverted to the formalist mode:
‘Whatever may be thought of these abstract and semi-metaphysical views, the formu-
lae . . . are in any event a sufficient basis for the erection of a CALCULUS of quater-
nions’ (ibid., 152).



So, there is a prima facie case for understanding the transformation in
Hamilton’s metaphysics in the mid-1840s as an accommodation to resistances
arising in technical-metaphysical practice. A tension emerged between
Hamilton’s Kantian a priorism and his technical practice, to which he
responded by attenuating the former and adding to it an important dash of
formalism. My suggestion is, therefore, that we should see metaphysics as yet
another heterogeneous element of the culture that scientists operate in and
on. Like the technical culture of science, like the conceptual, like the social,
and like discipline, metaphysics is itself at stake in practice, and just as liable
to temporally emergent mangling there in interaction with all of those other
elements. That is the positive conclusion of this section as far as my analysis
of practice is concerned.

Comparatively, I have tried to show how my analysis differs from SSK in
its handling of a specific example. Where SSK necessarily looks outwards
from metaphysics (and technical culture in general) to quasi-emergent aspects
of the social for explanations of change (and stability), I have looked
inwards, to technical practice itself. There is an emergent dynamics there that
goes unrecognised in SSK. I have, of course, said nothing on my own account
about the transformation in Hamilton’s ‘political eagerness’ that Bloor men-
tions. Having earlier argued for the mangling of the social, I find it quite con-
ceivable that Hamilton’s political views might also have been emergently
mangled and interactively stabilised alongside his metaphysics in the evolu-
tion of the quaternion system. On the other hand they might not. I have no
more information on this topic than Bloor – but at least the mangle can indi-
cate a way past the peculiar quasi-emergent vision of the social that SSK
offers us.
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16

Mathematics as Objective 
Knowledge and as Human Practice

EDUARD GLAS

Mathematics is the product of a communal practice, but at the same time this
product becomes partially autonomous from the practice that produced it.
Although created by ourselves, mathematical objects are not entirely
transparent to us: they possess objective properties and give rise to problems
that are certainly not our own inventions. These statements are easily recog-
nizable as aspects of Popper’s theory of objective knowledge. Popper saw
mathematics (as well as science, art and other sociocultural institutions) as an
evolutionary product of the intellectual efforts of humans who, by objec-
tivizing their creations and trying to solve the often unintended and unex-
pected problems arising from those creations, produce new mathematical
objects, problems and critical arguments.

Mathematical propositions are proved by logically compelling arguments,
independently of empirical evidence and therefore free of the interpretational
ambiguities that make empirical scientific knowledge essentially uncertain.
Real alternatives, in the sense of mutually incompatible theories generating
conflicting claims about the truth or falsity of particular statements, seem not
to exist in mathematics. Those who subscribe to this image of mathematics
often conclude that social processes could not possibly play a constitutive
role in the development of mathematical knowledge. On the other hand those
who, like social constructivists and adherents to the ‘strong programme’,
insist on the social nature of the mathematical enterprise, mostly begin by
challenging the said image.

I will argue that in order to acknowledge the social dimension of mathe-
matics there is no need to question the objectivity and partial autonomy of
mathematical knowledge in the Popperian sense. It suffices to shift our focus
from the ways in which new truths are derived to the ways in which new prob-
lems are conceived and tackled. Indeed, there is more to mathematics than
the mere accumulation of true statements. Mathematicians are not interested
just in truths (much less in truisms), but in truths that provide answers to
questions that are worthwhile and promising in the contemporary scene of
inquiry.
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Which problems are considered promising and worthwhile is, of course,
not independent of the communal practice involved. Mathematical develop-
ment is to a certain extent shaped by the shared conceptions of problems,
aims and values of a research community. Differentiation between communi-
ties of practitioners with varying conceptions of what are the relevant ques-
tions, what the appropriate ways of tackling them, what the right criteria for
appraising success, etc., provides ample room for intellectual variation and
selection, and thus may affect the developmental pattern of the discipline.
I will present a historical example that shows this evolutionary mechanism
at work.

My presentation will consist of two parts. In the first part, I will discuss
and defend Popper’s theory of the evolution of objective mathematical
knowledge, as an important alternative to the foundationist schools of for-
malism, intuitionism and platonism. For Popper, the theory of knowledge
ultimately boils down to the theory of problem solving, and it is from this
perspective that the sociocultural side of mathematics can fruitfully be
approached, as I will try to show in the second part.

1. Fallibilism

Popper is not usually regarded as a philosopher of mathematics. As mathe-
matical propositions fail to forbid any observable state of affairs, his demar-
cation criterion clearly divides mathematics from empirical science, and
Popper was primarily concerned with empirical science. When speaking of a
Popperian philosophy of mathematics, we mostly immediately think of
Lakatos, who is usually considered to have applied and extended Popper’s
philosophy of science to mathematics. Like Lakatos, Popper saw considerable
similarity between the methods of mathematics and of science – he held most
of mathematics to be hypothetico-deductive (Popper 1984, p. 70) – and he
thought highly of his former pupil’s quasi-empiricist approach to the logic of
mathematical development (Popper 1981, p. 136-7, 143, 165). His own views
of the matter, however, are not to be identified with those of Lakatos, nor
does their significance consist only in their having prepared the ground for
the latter’s methodological endeavours.

Popper never developed his views of mathematics systematically. However,
scattered throughout his works, and often in function of other discussions,
there are many passages which together amount to a truly Popperian philos-
ophy of mathematics. This side of Popper’s philosophy has remained rather
underexposed, especially as compared with the excitement aroused by
Lakatos’s work, many of whose central ideas were developments of Popper-
ian views, not only of science, but more specifically of mathematics as well 
(cf. Glas 2001).

Already, in Logik der Forschung, Popper had argued that we should never
save a threatened theoretical system by ad hoc adjustments, ‘conventionalist
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stratagems’, that reduce its testability (Popper 1972, p. 82-3) – a view which
was to be exploited by Lakatos to such dramatic effect in the dialogues of
Proofs and Refutations, under the heads of monster barring, exception bar-
ring, and monster adjustment. In Conjectures and Refutations, Popper had
shown how the critical method can be applied to pure mathematics. Rather
than questioning directly the status of mathematical truths, he tackled math-
ematical absolutism from a different angle. Mathematical truths may possess
the greatest possible (though never absolute) certainty, but mathematics is
not just accumulation of truths. Theories essentially are attempts at solving
certain problems, and they are to be critically assessed, evaluated, and tested,
by their ability to adequately solve the problems that they address, especially
in comparison with possible rivals (Popper 1969, p. 197-9, 230).

This form of critical fallibilism obviously differed from Lakatos’s quasi-
empiricism, among other things by avoiding the latter’s considerable prob-
lems with identifying the ‘basic statements’ that can act as potential falsifiers
of mathematical theories. Even so, Lakatos’s referring to what he called Pop-
per’s ‘mistake of reserving a privileged infallible status for mathematics’
(Lakatos 1976, p. 139 footnote) seems unjust. Claiming immunity to one kind
of refutation – empirical – is not claiming immunity to all forms of criticism,
much less infallibility. As a matter of fact, Popper did not consider anything,
including logic itself, entirely certain and incorrigible (Popper 1984, p. 70-2).

2. Objectivity

Central to Popper’s philosophy of mathematics was a group of ideas cluster-
ing around the doctrine of the relative autonomy of knowledge ‘in the objec-
tive sense’ – in contradistinction to the subjective sense of the beliefs of a
knowing subject. Characteristic of science and mathematics is that they are
formulated in a descriptive and argumentative language, and that the prob-
lems, theories, and errors contained in them stand in particular relations,
which are independent of the beliefs that humans may have with respect to
them. Once objectivized from their human creators, mathematical theories
have an infinity of entailments, some entirely unintended and unexpected,
that transcend the subjective consciousness of any human – and even of all
humans, as is shown by the existence of unsolvable problems (Popper 1981,
p. 161). In this sense, no human subject can ever completely ‘know’ the objec-
tive content of a mathematical theory, that is, including all its unforeseeable
and unfathomable implications.

It is of course trivially true that knowledge in the said objective sense can
subsist without anybody being aware of it, for instance in the case of totally
forgotten theories that are later recaptured from some written source. It also
has significant effects on human consciousness – even observation depends
on judgements made against a background of objective knowledge – and
through it on the physical world (for instance in the form of technologies).
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Human consciousness thus typically acts as a mediator between the abstract
and the concrete, or the world of culture and the world of nature. To
acknowledge that linguistically expressed knowledge can subsist without
humans, that it possesses independent properties and relationships, and that
it can produce mental and also – indirectly – physical effects, is tantamount
to saying that it in a way exists. Of course, it does not exist in the way in which
we say that physical or mental objects or processes exist: its existence is of a
‘third’ kind. As is well known, Popper coined the expression ‘third world’ (or
‘world 3’, as he later preferred) to refer to this abstract realm of objectivized
products of human thought and language.

Popper’s insisting upon the crucial distinction between the objective (third-
world) and the subjective (second-world) dimension of knowledge enabled
him to overcome the traditional dichotomies between those philosophies of
mathematics that hold mathematical objects to be human constructions,
intuitions, or inventions, and those that postulate their objective existence.
His ‘epistemology without a knowing subject’ accounts for how mathematics
can at once be autonomous and man-made, that is, how mathematical
objects, relations and problems can be said in a way to exist independently of
human consciousness although they are products of human (especially lin-
guistic) practices. Mathematics is a human activity, and the product of this
activity, mathematical knowledge, is a human creation. Once created, how-
ever, this product assumes a partially autonomous and timeless status (it
‘alienates’ itself from its creators, as Lakatos would have it), that is, it comes
to possess its own objective, partly unintended and unexpected properties,
irrespective of when, if ever, humans become aware of them.

Popper regarded mathematical objects – the system of natural numbers in
particular – as products of human language and human thought: acquiring a
language essentially means being able to grasp objective thought contents. The
development of mathematics shows that with new linguistic means new kinds
of facts and in particular new kinds of problems can be described. Unlike
what apriorists like Kant and Descartes held, being human constructions does
not make mathematical objects completely transparent, clair et distinct, to us.
For instance, as soon as the natural numbers had been created or invented, the
distinctions between odd and even, and between compound and prime num-
bers, and the associated problem of the Goldbach conjecture came to exist
objectively: Is any even number greater than 2 the sum of two primes? Is this
problem solvable or unsolvable? And if unsolvable, can its unsolvability be
proved? (Popper 1984, p. 34). These problems in a sense have existed ever since
humankind possessed a number system, although during many centuries
nobody had been aware of them. Thus we can make genuine discoveries of
independent problems and new hard facts about our own creations, and of
objective (not merely intersubjective) truths about these matters.

Nothing mystical is involved here. On the contrary, Popper brought the
platonist heaven of ideal mathematical entities down to earth, characterizing
it as objectivized human knowledge. The theory of the third world at once
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accounts for the working mathematician’s strong feeling that (s)he is dealing
with something real, and explains how human consciousness can have access
to abstract objects. As we have seen, these objects are not causally inert: for
instance, by reading texts we become aware of some of their objective con-
tents and the problems, arguments, etc., that are contained in them, so that
the platonist riddle of how we can gain knowledge of objects existing outside
space and time does not arise. Of course, speaking of causality here is using
this notion in a somewhat peculiar, not in a mechanistic sense. That reading
texts causes in us a certain awareness of what is contained in those texts is just
a plain fact, for whose acceptance no intricate causal theory of language
understanding is needed.

Cultural artefacts like mathematics possess their own partially
autonomous properties and relationships, which are independent of our
awareness of them: they have the character of hard facts that are to be dis-
covered. In this respect they are very much like physical objects and relations,
which are not unconditionally ‘observable’ either, but are only apprehended
in a language which already incorporates many theories in the very structure
of its usages. Like mathematical facts, empirical facts are thoroughly theory-
impregnated and speculative, so that a strict separation between what tradi-
tionally has been called the analytic and the synthetic elements of scientific
theories is illusory. The effectiveness of pure mathematics in natural science
is miraculous only to a positivist, who cannot imagine how formulas arrived
at entirely independently of empirical data can be adequate for the formula-
tion of theories supposedly inferred from empirical data. But once it is rec-
ognized that the basic concepts and operations of arithmetic and geometry
have been designed originally for the practical purpose of counting and
measuring, it is almost trivial that all mathematics based on them remains
applicable exactly to the extent that natural phenomena resemble operations
in geometry and arithmetic sufficiently to be conceptualized in (man-made)
terms of countable and measurable things, and thus to be represented in
mathematical language. In mathematics and physics alike, theories are often
put forward as mere speculations, mere possibilities, the difference being that
scientific theories are to be tested directly against empirical material, and
mathematical theories only indirectly, if and in so far as they are applied in
physics or otherwise (Popper 1969, p. 210, 331).

3. Interaction

It is especially the (dialectic) idea of interaction and partial overlap between
the three worlds that makes Popper’s theory transcend the foundationist
programmes. Clearly, objective knowledge (at world-3 level) – the objective
contents of theories – can exist only if those theories have been materially
realized in texts (at world-1 level), which cannot be written nor be read with-
out involving human consciousness (at world-2 level). Put somewhat bluntly,
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platonists acknowledge only a third world as the realm to which all mathe-
matical truths pertain, strictly separated from the physical world; intuition-
ists locate mathematics in a second world of mental constructions and
operations, whereas formalists reduce mathematics to rule-governed manip-
ulation with ‘signs signifying nothing’, that is, mere material (first-world)
‘marks’. In all these cases, reality is split up into at most two independent
realms (physical and ideal or physical and mental), as if these were the only
possible alternatives. Popper’s tripartite world view surpasses physicalist or
mentalist reductionism as well as physical/mental dualism, emphasizing that
there are three partially autonomous realms, intimately coupled through
feed-back. The theory of the interaction between all three worlds shows 
how these seemingly incompatible mathematical ontologies can be recon-
ciled and their mutual oppositions superseded (Popper 1984, p. 36-37; cf
Niiniluoto 1992).

The notion of a partially autonomous realm of objective knowledge has
been criticized, most elaborately by O’Hear in his Popper monograph
(O’Hear 1980). O’Hear does not deny that objectivized mathematical theo-
ries have partly unforeseeable and inevitable implications, but he does not
consider this sufficient reason for posing what he calls ‘an autonomous non-
human realm of pure ideas’. Popper, of course, always spoke of a partially
autonomous realm, not of ‘pure ideas’, but especially of fallible theories,
problems, tentative solutions and critical arguments. O’Hear, however, argues
that Popper’s theory is misleading because it implies that we are not in con-
trol of world 3 but are, on the contrary, completely controlled by it (ibid., p.
183, 207). For relationships in world 3 are of a logical character and this
seems to imply that they are completely beyond our control. On O’Hear’s
construal, Popper allowed only a human-constructive input at the very
beginning of the history of mathematics – the phase of primitive concepts
connected with counting and measuring – after which logic took over and
developments were no longer under human control. World 3 would be
entirely autonomous rather than only partially autonomous, and mathemati-
cians would be passive analyzers rather than active synthesizers of mathe-
matical knowledge – almost the opposite of Popper’s earlier emphasis on the
active role of the subject in observation and theory formation. I think that
these conclusions rest on a misunderstanding of the logical character of rela-
tionships in world 3.

To stress the objective and partly autonomous dimension of knowledge is
not to lose sight of the fact that it is created, discussed, evaluated, tested and
modified by human beings. Popper regarded world 3 above all as a product
of intelligent human practice, and especially of the human ability to express
and criticize arguments in language. The objectivity of mathematics rests, as
does that of all science, upon the criticizability of its arguments, so on lan-
guage as the indispensable medium of critical discussion (Popper 1981, p.
136-137). Indeed, it is from language that we get the idea of ‘logical conse-
quence’ in the first place, on which the third world so strongly depends. But
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mathematics is not just language, and neither is it just logic: there are such
things as extra-logical mathematical objects. And although critical discussion
depends on the use of discursive language, mathematics is not bound to one
particular system of logic. O’Hear (1980, p. 191-198) rightly argued that there
is room for choices to fit our pre-systematic intuitions and even physical real-
ities (he for instance discusses deviating logics to fit quantum mechanics). But
the possibility of alternative logics does not invalidate the idea of logical con-
sequence as such, it does not make one or the other of alternative logical sys-
tems illogical. The choice of a specific logical system for mathematics or
science has itself to be decided by ‘logical’ argumentation (in the general sense
of the term).

Although the third world arises together with argumentative language, it
does not consist exclusively of linguistic forms but contains also non-linguis-
tic objects. As is well known, the concept of number, for instance, can be
axiomatically described in a variety of ways, which all define it only up to iso-
morphism. That we have different logical explications of number does not
mean that we are talking about different objects (nor that the numbers with
which our ancestors worked were entirely different from ours). We must dis-
tinguish between numbers as third-world objects and the fallible and chang-
ing theories that we form about these objects. That the third-world objects
themselves are relatively autonomous means that our intuitive grasp of them
is always only partial, and that our theories about them are essentially incom-
plete, unable to capture fully their infinite richness.

4. Popperian Dialectic

The idea that the third world of objective mathematical knowledge is partly
autonomous does not at all imply that the role of mathematicians is reduced
to passive observation of a pre-given realm of mathematical objects and
structures – no more than that the autonomy of the first world would reduce
the role of physicists to passive observation of physical states of affairs. On
the contrary, the growth of mathematical knowledge is almost entirely due to
the constant feed-back or ‘dialectic’ between human creative action upon the
third world and the action of the third world upon human thought. Popper
characterized world 3 as the (evolutionary) product of the rational efforts of
humans who, by trying to eliminate contradictions in the extant body of
knowledge, produce new theories, arguments, and problems, essentially along
the lines of what he called ‘the critical interpretation of the (non-Hegelian)
dialectic schema: P1 → TT → EE → P2’ (Popper 1981, p. 164). P1 is the initial
problem situation, that is, a problem picked out against a third-world back-
ground. TT is the first tentative theoretical solution, which is followed by
error elimination (EE), its severe critical examination and evaluation in com-
parison with any rival solutions. P2 is the new problem situation arising from
the critical discussion, in which the ‘experiences’ (that is, the failures) of the
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foregoing attempts are used to pinpoint both their weak and their strong
points, so that we may learn how to improve our guesses.

Every rational theory, whether mathematical or scientific or metaphysical, is
rational on Popper’s view exactly ‘in so far as it tries to solve certain problems.
A theory is comprehensible and reasonable only in its relation to a given prob-
lem situation, and it can be discussed only by discussing this relation’ (Popper
1969, p. 199). In mathematics as in science, it is always problems and tentative
problem solutions that are at stake: ‘only if it is an answer to a problem – a dif-
ficult, a fertile problem, a problem of some depth – does a truth, or a conjec-
ture about the truth, become relevant to science. This is so in pure mathematics,
and it is so in the natural sciences’ (ibid., p. 230). Popper clearly did not view
mathematics as a formal language game, but as a rational problem solving
activity based, like all rational pursuits, on speculation and criticism.

Although they have no falsifiers in the logical sense – they do not forbid
any singular spatiotemporal statement – mathematical theories (as well as
logical, philosophical, metaphysical and other non-empirical theories) can
nevertheless be critically assessed for their ability to solve the problems in
response to which they were designed, and accordingly improved along the
lines of the situational logic or dialectic indicated above. In particular, math-
ematical and other ‘irrefutable’ theories often provide a basis or framework
for the development of scientific theories that can be refuted (Popper 1969,
chapter 8) – a view which later was to inspire Lakatos’s notion of research
programmes with an ‘irrefutable’ hard core (Lakatos 1978, p. 95).

Most characteristic of Popper’s approach to mathematics was his focussing
entirely on the dynamics of conceptual change through the dialectic process
outlined, replacing the preoccupation of the traditional approach with defi-
nitions and explications of meanings. Interesting formalizations are not
attempts at clarifying meanings but at solving problems – especially eliminat-
ing contradictions – and this has often been achieved by abandoning the
attempt to clarify, or make exact, or explicate the intended or intuitive mean-
ing of the concepts in question – as illustrated in particular by the develop-
ment and rigorization of the calculus (Popper 1983, p. 266). From his
objectivist point of view, epistemology becomes the theory of problem solv-
ing, that is, of the construction, critical discussion, evaluation, and critical
testing, of competing conjectural theories. In this, everything is welcome as a
source of inspiration, including intuition, convention and tradition, espe-
cially if it suggests new problems. Most creative ideas are based on intuition,
and those that are not are the result of criticism of intuitive ideas (Popper
1984, p. 69). There is no sharp distinction between intuitive and discursive
thought. With the development of discursive language, our intuitive grasp
has become utterly different from what it was before. This has become par-
ticularly apparent from the twentieth-century foundation crisis and ensuing
discoveries about incompleteness and undecidability. Even our logical intu-
itions turned out to be liable to correction by discursive mathematical rea-
soning (ibid. p. 70).
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5. Socially Conditioned Change

So, mathematics is primarily conceived as a problem solving practice, and –
as Popper explicitly stated – anything is welcome as a source of inspiration,
especially if it suggests new problems. I will now briefly discuss a case of
socially conditioned mathematical change, that is, a case in which social
processes were the main sources of conceptual innovation, and argue that it
is perfectly well possible to acknowledge the social nature of the mathemati-
cal enterprise without denying its objectivity and partial autonomy (for a
detailed account, see Glas 2003).

Among the important driving forces of mathematical development are
concrete, often scientific or technological problems. The calculus, for
instance, was developed primarily as an indispensable tool for the science of
mechanics. Mathematicians were well aware of its lack of rigor and other
fundamental shortcomings, but its impressive problem solving power was
reason enough not to abandon it. Instead, eighteenth-century mathemati-
cians tried to perfect the calculus by detaching it from its geometric roots and
reformulating it as a linguistic system based on deductions from proposition
to proposition, without any appeals to figure-based reasoning. This was
achieved by interpreting variables as non-designated quantities and by intro-
ducing the notion of function, which replaced the study of curves (cf Ferraro
2001). In the last quarter of the century, Condillac’s view that language was
constitutive of thought, and the langue des calculs its highest manifestation,
was shared by many intellectuals, among them the most prominent French
mathematicians of the time, Lagrange and Laplace (cf Glas 1986, p.
251–256).

A new chapter in the history of mathematics began when the new,
machine-driven industrial technologies gave rise to an entirely new type of
problems, and with it to a new mathematical approach, which entered into
competition with the established analytical doctrine. It was standard proce-
dure in analytical mechanics to deduce from the principles of mechanics the
particular rules of equilibrium and motion in such devices as the lever, the
crank, and the pulley. These ‘machines’, however, were idealized to the point
of ignoring all material aspects of real technical devices. The approach was
therefore of very limited use to the actual practice of mechanical engineering.
Engineers still worked mainly with empirical rules of thumb based on trial
and error. This problem – supplying an exact scientific foundation to the
practice of engineering – lay at the root of the new course that mathematics
embarked on.

The founders of this new approach to mathematics were Carnot and
Monge, who both developed new forms of geometry concurrently with their
involvement with engineering problems. Before the revolution they were not
highly regarded as mathematicians, and without the military needs of the
revolution they could scarcely have stood up to the competition of the lead-
ing analytical and anti-geometric style of thinking. It was their personal
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engagement in revolutionary politics that eventually put Carnot and Monge
in a position to carry through a radical educational reform – embodied in the
Ecole Polytechnique – which was essential to the formation of a new com-
munity of mathematically versed engineers (ingénieurs savants), who shared
their particular views of the problems, aims and methods of mathematics.

Carnot initiated the science of machines as a domain in itself, and devel-
oped a new geometry concurrently with it. Finding the operational principles
of machines required a new conception of geometry, less static and figure-
bound than the classical version, not concerned with the fixed properties of
immutable forms but with the much more general problem of possible move-
ments in spatial configurations. The new geometry was focussed on discover-
ing the general principles of transformation of spatial systems rather than on
deducing the properties of particular figures from a set of pre-established
principles (see Gillispie 1971).

Carnot’s work (Carnot 1783) did not read like the eighteenth-century
analytical mechanics that culminated in Lagrange’s Mécanique analytique
(Lagrange 1811 [1788]). It in fact appears barely to have been read at all and
its author was not known as a scientist before the revolution. His work pre-
supposed the competence of persons versed in abstract scientific thought,
yet was written in a geometric idiom that was not suited to arouse the inter-
est of mathematicians, who were primarily concerned with the further per-
fection of analysis by purging it of all remnants of figure-based reasoning.
It apparently was addressed at scientifically versed engineers like himself,
an intended audience which at the time existed, if at all, only in statu
nascendi.

As an officer of the army’s engineering corps (génie), Carnot had been edu-
cated at the military Ecole du Génie (School of Engineering) at Mézières,
where his fellow revolutionary Monge had been his teacher. The latter’s
Géométrie descriptive (Monge 1811 [1799]) originated in the same practical
engineering context and it likewise gathered geometric subject matter under
a point of view at once more general than classical geometry and operational
in tackling engineering problems.

In Monge’s new approach to geometry, the objects of research were not
defined by the particular forms of geometric figures, but by the methods used
for generating and interrelating spatial configurations. Apart from pure, pro-
jective geometry, descriptive geometry furnished the basis of major develop-
ments in analytical geometry, differential geometry and pure analysis (cf Glas
1986, pp. 256–261). The constant association of analytical expressions with
situations studied in geometry – on which Monge placed so high a pedagogic
value – was of the greatest consequence to the image of mathematics as a
whole and set the stage for what we now call ‘modern’ geometry. It was the
particular combination of synthetic and analytic qualities, bringing analysis
and geometry to bear on each other in entirely new ways, that made Monge’s
approach truly novel and accounts for the fecundity of its leading ideas in the
exploration of various new territories.
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Monge himself linked the aim and object of his geometry directly to its
indispensability as a language-tool for modern industrial practice, based on
division of labour and therefore having to rely on cooperation and commu-
nication between all the heads and hands involved in technical-industrial
projects. Besides providing forceful means of tackling problems of design,
construction and deployment of machines with the mathematical precision
required by the new industrial technologies, descriptive geometry would serve
as the indispensable common language of communication between all par-
ticipants in the productive order of society, who otherwise would remain
divided by boundaries of class, profession, and function.

Monge and Carnot both developed their mathematics concurrently with
their involvement with engineering problems. Paradoxically, despite the prac-
tical and applied nature of the problems that they envisaged, the mathemat-
ics that they developed on this basis stands out by its generality and purity. It
was not of a lesser standard than the authoritative analytical approach, but
was oriented towards different cognitive aims: integrating formal and func-
tional features of spatial systems rather than deducing the consequences of
pre-established principles. Like Carnot’s science of geometric motion,
Monge’s descriptive geometry was the intellectual response to the new prob-
lems, connected with the rise of machine-driven industrial technologies, that
faced their professional community.

6. Alternative Practices

Whatever may be thought of the intellectual value of Monge’s and Carnot’s
contributions to mathematics, this is certainly not a case of ‘superior minds’
bending the course of an entire discipline by force of reason alone. Their
intellectual achievements were inextricably tied up with their professional,
social, and political engagement, which the vicissitudes of the revolution
allowed them to put into effect by the creation of the Ecole Polytechnique. It
was through this educational reform that their work became exemplary for a
whole new generation of mathematicians, who under their inspiration opened
up fresh and fertile fields of inquiry (whereas the analytical ‘language’ view
made mathematics to appear very nearly completed).

The great changes in mathematics that the birth of the new community
engendered – Boyer, for instance, speaks of a geometric and an analytical
‘revolution’ (Boyer 1968, p. 510) – are only understandable in virtue of the
institutional, social and political development of the profession of engineer-
ing. This is not to say that the causal arrow points only in one direction, from
the social to the intellectual. The intellectual and the social developments
were mutually constitutive, but in this particular (perhaps exceptional) case
the changed socio-political and institutional role and organization of the pro-
fessional community of engineers should at least be given explanatory prior-
ity as conditio sine qua non. For without these developments, the conceptual
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innovations that Monge and Carnot carried through would have missed their
target; they would not have found an appreciative audience and could
scarcely have had any impact on the course of mathematical development, as
evidenced by their almost total failure to make any impression on the rest of
the scientific world prior to the revolution.

The case should certainly not be reduced to a simple conflict of interests
between separate specialties, geometry and analysis. Although the followers
of the analytical main stream were in a sense ‘against’ geometry (to the point
of making the discipline nearly extinct), Carnot and Monge were not at all
‘against’ analysis, quite the countary. Like their analytical colleagues, they
considered it ideal for the representation and calculation of variations, and
therefore indispensable for any engineer. Carnot made abundant use of
analysis, and Monge even contributed considerably to its progress. We in fact
owe the modern ‘analytical geometry’ in large measure to Monge’s purely
analytical characterization of lines, surfaces and solids in space.

Monge and Carnot placed themselves outside the ruling analytical tradi-
tion, not because they were geometers rather than analysts, but because they
found themselves confronted with altogether different sorts of problems.
They were not so much concerned with the further ‘linguistic’ perfection of
analysis as with the concrete problems that faced their own professional
(engineering) community, problems that could not be handled adequately by
the contemporary analytical mechanics. The geometry that they developed
in response to these problems differed fundamentally from the classical ver-
sion in that its objects were defined in terms of operations and transforma-
tions, not in terms of particular types of figures. The main reason for
eighteenth-century mathematicians to abandon geometry had been its rely-
ing on figure-based reasoning instead of logical deduction. Rather than
joining in with this general rejection, Carnot and Monge developed a new
conception of geometry altogether, detaching it from consideration of par-
ticular figures and redefining it as the study of spatially extended structures
and their transformations. Although of course figures figured prominently
in Carnot’s and Monge’s works, their mode of reasoning was not figure-
bound. Figures were just heuristic means of investigation, useful to direct
and support the geometric reasoning, which in itself proceeded at a level of
abstraction and generalization that went far beyond what could be repre-
sented figuratively. Their conceptual innovation made the classical distinc-
tions between analytic and synthetic methods obsolete; indeed, it was
precisely the intimate unity of synthetic and analytic reasoning that made
their approach truly novel and fruitful.

Under the Empire, the mathematicians of the analytic tradition regained
much of the territory they had lost to the geometric innovators in the revo-
lutionary days. Laplace in particular, who had not been ‘seen’ by the revolu-
tionaries, was highly regarded by the emperor Napoleon, who clearly was
more sensitive to the value of the ‘old’ tradition in point of respectability and
prestige (cf Bradley 1975). The leading role of Laplace in the ‘imperial’ ref-
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ormation of the Polytechnic is reflected in the changing relative positions of
geometry and analysis in its programme. The time tables of the school show
how geometry dropped from 50 hours in 1795 to 27.5 in 1812, whereas analy-
sis and analytical mechanics in this period rose from 8 to 46, also to the cost
of chemistry (Dhombres 1989, p. 572). But the turning of the tide, and even
the eventual expelling of Carnot and Monge from the scientific institutions
of France under the Restoration, could not make undone what had happened
to mathematics. It had integrated the spirit of the revolutionary method and
had become itself an important element of intellectual and social change.

Until deep into the nineteenth century, a remarkably sharp division sub-
sisted between two groups of mathematicians, the one taking its inspiration
from Carnot and Monge and primarily motivated by constructive problems
in a technological context, the other more in line with Lagrange and Laplace
and chiefly concerned with analytical problems in a general scientific setting
(cf Grattan-Guinness 1993, pp. 408–411, who lists seventeen mathematicians
in each group).

7. Concluding Discussion

The case underscores the explanatory priority of communal practices in
accounting for a type of conceptual change in mathematics that is funda-
mental to its advance. It was their belonging to a different professional group
that accounts for the different viewpoints, problems, aims, values, methods,
and approaches of Carnot and Monge, as compared with the received ana-
lytical tradition. There never was disagreement about the particular contents
of mathematical theories, the correctness of theorems and proofs, and the
like. But the two schools differed fundamentally on such issues as what were
the questions most worth asking, the methods most appropriate for handling
them adequately, and the right criteria for appraising progress. There was no
crisis in the extant doctrine, no accumulation of insuperable problems that
demanded an entirely new approach. At most it can be said that the reigning
tradition had largely exhausted itself: it was regarded as completed, and
interesting new discoveries were no longer considered possible. The revolu-
tion was not sparked off by deep epistemological worries that led to a
replacement of theories; instead, it has to be characterized as a replacement
of research communities, the emergence of a new community of mathemati-
cally versed engineers, setting themselves radically different sorts of prob-
lems, and demanding different methods to solve them.

As a social process, this particular revolution in mathematics shared some
of the features of a Kuhnian revolution, but in other respects it was quite dif-
ferent. The practices of the old and the new ‘school’ were incommensurable
by being at cross-purposes, rather than in disagreement about the truth or fal-
sity of each other’s results. There was no problem of theory choice – the cen-
tral problem in Kuhn’s account of scientific revolutions – but a fundamental
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shift of evaluative standards, which accounts for the impossibility of resolv-
ing the differences by logical argumentation alone. The change was not
induced by serious epistemological problems, but by a radical change in the
social conditions under which mathematicians worked, the most significant
sign of which was the moving of the (military) engineers – with their charac-
teristic view of the objects, problems, aims and values of mathematics – to the
centre of state power.

The case shows that in order to characterize mathematical change as a
social process, there is no need to question the objectivity and rationality of
mathematics in the sense that Popper gave to these notions. A shift of focus,
away from the ways in which new truths are derived, and towards the ways in
which new problems are conceived and handled, is sufficient. Indeed, unlike
the Hegelian dialectic, the Popperian dialectic does not start off with theses
but with problems. Problems are the initial and the central motives in the
development of mathematics, which is understood primarily as a problem
solving practice. It is the dynamics of problem situations, rather than the stat-
ics of definitions and theorems, that is characteristic of the growth of math-
ematical knowledge.

Mathematics is a social practice, shaped by the ways in which its practi-
tioners view the problems that face their community. It is through language
that mathematicians can lay out their thoughts objectively, in symbolic form,
and then develop, discuss, test and improve them. Humankind has used
descriptive and argumentative language to create a body of objective knowl-
edge, stored in libraries and handed down from generation to generation,
which enables us to profit from the trials and errors of our ancestors. Char-
acteristic of science and mathematics is that they are formulated in objective
language, and that the problems, theories, and errors contained in them stand
in logical relations that – pace Kuhn – are independent of individual or col-
lective beliefs and other mental states that humans may have with respect to
the contents involved.
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17

The Locus of Mathematical Reality:
An Anthropological Footnote

LESLIE A. WHITE

“He’s [the Red King’s] dreaming now,” said Tweedledee: “and what do you
think he’s dreaming about?”

Alice said, “Nobody can guess that.”
“Why, about you!” Tweedledee exclaimed, clapping his hands triumphantly.

“And if he left off dreaming about you, where do you suppose you’d be?”
“Where I am now, of course,” said Alice.
“Not you!” Tweedledee retorted contemptuously. “You’d be nowhere. Why,

you’re only a sort of thing in his dream!”
“If that there King was to wake,” added Tweedledum, “you’d go out bang!-

just like a candle.”
“I shouldn’t!” Alice exclaimed indignantly. “Besides, if I’m only a sort of

thing in his dream, what are you, I should like to know?”
“Ditto,” said Tweedledum.
“Ditto, ditto!” cried Tweedledee.
He shouted this so loud that Alice couldn’t help saying “Hush! You’ll be

waking him, I’m afraid, if you make so much noise.”
“Well, it’s no use your talking about waking him,” said Tweedledum, “when

you’re only one of the things in his dream. You know very well you’re not real.”
“I am real!” said Alice, and began to cry.
“You won’t make yourself a bit realler by crying,” Tweedledee remarked:

“there’s nothing to cry about.”
“If I wasn’t real,” Alice said-half laughing through her tears, it all seemed

so ridiculous- “I shouldn’t be able to cry.”
“I hope you don’t suppose those are real tears?” Tweedledum interrupted

in a tone of great contempt.
-Through the Looking Glass
Do mathematical truths reside in the external world, there to be discovered

by man, or are they man-made inventions? Does mathematical reality have
an existence and a validity independent of the human species or is it merely
a function of the human nervous system?
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Opinion has been and still is divided on this question. Mrs. Mary
Somerville (1780-1872), an Englishwoman who knew or corresponded with
such men as Sir John Herschel, Laplace, Gay Lussac, W. Whewell, John Stu-
art Mill, Baron von Humboldt, Faraday, Cuvier, and De Candolle, who was
herself a scholar of distinction1,’ expressed a view widely held when she
said,2

“Nothing has afforded me so convincing a proof of the unity of the Deity as these
purely mental conceptions of numerical and mathematical science which have been
by slow degrees vouchsafed to man, and are still granted in these latter times by the
Differential Calculus, now superseded by the Higher Algebra, all of which must
have existed in that sublimely omniscient Mind from eternity.”

Lest it be thought that Mrs. Somerville was more theological than scien-
tific in her outlook, let it be noted that she was denounced, by name and in
public from the pulpit by Dean Cockburn of York Cathedral for her support
of science.3

In America, Edward Everett (1794-1865), a distinguished scholar (the first
American to win a doctorate at Gottingen), reflected the enlightened view of
his day when he declared,4

“In the pure mathematics we contemplate absolute truths which existed in the
divine mind before the morning stars sang together, and which will continue to exist
there when the last of their radiant host shall have fallen from heaven.”

In our own day, a prominent British mathematician, G. H. Hardy, has
expressed the same view with, however, more technicality than rhetorical
flourish.5

“I believe that mathematical reality lies outside us, and that our function is to dis-
cover or observe it, and that the theorems which we prove, and which we describe
grandiloquently as our ‘creations’ are simply our notes of our observations.6”

1 She wrote the following works, some of which went into several editions: The Mech-
anism of the Heavens, 1831 (which was, it seems, a popularization of the Mécanique
Céleste of Laplace); The Connection of the Physical Sciences, 1858; Molecular and
Microscopic Science, 1869; Physical Geography, 1870.
2 Personal Recollections of Mary Somerville, edited by her daughter, Martha.
3 ibid., p. 375. See, also, A. D. White, The History of the Warfare of Science with The-
ology &c, Vol. I, p. 225, ftn. (New York, 1930 printing).
4 Quoted by E. T. Bell in The Queen of the Sciences, p. 20 (Baltimore, 1931).
5 G. H. Hardy, A Mathematician’s Apology, pp. 63-64 (Cambridge, England; 1941).
6 The mathematician is not, of course, the only one who is inclined to believe that his
creations are discoveries of things in the external world. The theoretical physicist, too,
entertains this belief. “To him who is a discoverer in this field,” Einstein observes, “the
products of his imagination appear so necessary and natural that he regards them,
and would like to have them regarded by others, not as creations of thought but as
given realities.” (“On the Method of Theoretical Physics,” in The World as I See it,
p. 30; New York, 1934).



306 Leslie A. White

Taking the opposite view we find the distinguished physicist, P. W. Bridg-
man, asserting that “it is the merest truism, evident at once to unsophisticated
observation, that mathematics is a human invention.”7 Edward Kasner and
James Newman state that “we have overcome the notion that mathematical
truths have an existence independent and apart from our own minds. It is even
strange to us that such a notion could ever have existed.”8

From a psychological and anthropological point of view, this latter con-
ception is the only one that is scientifically sound and valid. There is no more
reason to believe that mathematical realities have an existence independent of
the human mind than to believe that mythological realities can have their
being apart from man. The square root of minus one is real. So were Wotan
and Osiris. So are the gods and spirits that primitive peoples believe in today.
The question at issue, however, is not, Are these things real?, but ‘Where is the
locus of their reality?’ It is a mistake to identify reality with the external
world only. Nothing is more real than an hallucination.

Our concern here, however, is not to establish one view of mathematical
reality as sound, the other illusory. What we propose to do is to present the
phenomenon of mathematical behavior in such a way as to make clear, on the
one hand, why the belief in the independent existence of mathematical truths
has seemed so plausible and convincing for so many centuries, and, on the
other, to show that all of mathematics is nothing more than a particular kind
of primate behavior, Many persons would unhesitatingly subscribe to the
proposition that “mathematical reality must lie either within us, or outside
us.” Are these not the only possibilities? As Descartes once reasoned in dis-
cussing the existence of God, “it is impossible we can have the idea or repre-
sentation of anything whatever, unless there be somewhere, either in us or out
of us, an original which comprises, in reality9 (emphasis ours). Yet, irresistible
though this reasoning may appear to be, it is, in our present problem, falla-
cious or at least treacherously misleading. The following propositions,
though apparently precisely opposed to each other, are equally valid; one is
as true as the other: 1. “Mathematical truths have an existence and a validity
independent of the human mind,” and 2. “Mathematical truths have no exis-
tence or validity apart from the human mind.” Actually, these propositions,
phrased as they are, are misleading because the term “the human mind” is
used in two different senses. In the first statement, “the human mind” refers
to the individual organism; in the second, to the human species. Thus both
propositions can be, and actually are, true. Mathematical truths exist in the
cultural tradition into which the individual is born, and so enter his mind
from the outside. But apart from cultural tradition, mathematical concepts

7 P. W. Bridgman, The Logic of Modern Physics, p. 60 (New York, 1927).
8 Edward Kasner and James Newman, Mathematics and the Imagination, p. 359
(New York, 1940).
9 Principles of Philosophy, Pt. I, Sec. XVIII, p. 308, edited by J. Veitch (New York,
1901).



The Locus of Mathematical Reality: An Anthropological Footnote 307

have neither existence nor meaning, and of course, cultural tradition has no
existence apart from the human species. Mathematical realities thus have an
existence independent of the individual mind, but are wholly dependent upon
the mind of the species. Or, to put the matter in anthropological terminology:
mathematics in its entirety, its “truths” and its “realities,” is a part of human
culture, nothing more. Every individual is born into a culture which already
existed and which is independent of him. Culture traits have an existence out-
side of the individual mind and independent of it. The individual obtains his
culture by learning the customs, beliefs, techniques of his group. But culture
itself has, and can have, no existence apart from the human species. Mathe-
matics, therefore-like language, institutions, tools, the arts, etc.-is the cumu-
lative product of ages of endeavor of the human species.

The great French savant Emile Durkheim (1858-1917) was one of the first
to make this clear. He discussed it in the early pages of The Elementary Forms
of the Religious Life.10 And in The Rules of Sociological Method 11 especially
he set forth the nature of culture12 and its relationship to the human mind.
Others, too, have of course discussed the relationship to the human mind. Oth-
ers, too, have of course discussed the relationship between man and culture,’13

but Durkheim’s formulations are especially appropriate for our present dis-
cussion and we shall call upon him to speak for us from time to time.

Culture is the anthropologist’s technical term for the mode of life of any
people, no matter how primitive or advanced. It is the generic term of which
civilization is a specific term. The mode of life, or culture, of the human species
is distinguished from that of all other species by the use of symbols. Man is the
only living being that can freely and arbitrarily impose value or meaning upon
any thing, which is what we mean by “using symbols.” The most important and
characteristic form of symbol behavior is articulate speech. All cultures, all of
civilization, have come into being, have grown and developed, as a consequence
of the symbolic faculty, unique in the human species.14

10 Les Formes Elémentaires de la Vie Religieuse (Paris, 1912) translated by J. W. Swain
(London, 1915). Nathan Altshiller-Court refers to Durkheim’s treatment of this point
in “Geometry and Experience,” (Scientific Monthly, Vol. LX, No. 1, pp. 63-66, Jan.,
1945).
11 ‘Les Règles de la Méthode Sociologique (Paris, 1895; translated by Sarah A. Solo-
vay and John H. Mueller, edited by George E. G. Catlin; Chicago, 1938).
12 Durkheim did not use the term culture. Instead he spoke of the “collective con-
sciousness,” “collective representations,” etc. Because of his unfortunate phraseology
Durkheim has been misunderstood and even branded mystical. But it is obvious to
one who understands both Durkheim and such anthropologists as R. H. Lowie, A. L.
Kroeber and Clark Wissler that they are all talking about the same thing: culture.
13 See, e.g., E. B. Tylor, Anthropology (London, 1881); R. H. Lowie, Culture and Eth-
nology, New York, 1917; A. L. Kroeber, “The Superorganic,” (American Anthropolo-
gist, Vol. 19, pp. 163-213; 1917); Clark Wissler, Man and Culture, (New York, 1923).
14 See, White, Leslie A., “The Symbol: the Origin and Basis of Human Behavior,”
(Philosophy of Science, Vol. 7, pp. 451-463; 1940; reprinted in ETC., a Review of Gen-
eral Semantics, Vol. I, pp. 229-237; 1944).
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Every culture of the present day, no matter how simple or primitive, is a
product of great antiquity. The language, tools, customs, beliefs, forms of art,
etc., of any people are things which have been handed down from generation
to generation, from age to age, changing and growing as they went, but
always keeping unbroken the connection with the past. Every people lives not
merely in a habitat of mountains or plains, of lakes, woods, and starry heav-
ens, but in a setting of beliefs, customs, dwellings, tools, and rituals as well.
Every individual is born into a man-made world of culture as well as the
world of nature. But it is the culture rather than the natural habitat that
determines man’s thought, feelings, and behavior. To be sure, the natural
environment may favor one type of activity or render a certain mode of life
impossible. But whatever man does, as individual or as society, is determined
by the culture into which he, or they, are born.15 Culture is a great organiza-
tion of stimuli that flows down through the ages, shaping and directing the
behavior of each generation of human organisms as it goes. Human behav-
ior is response to these cultural stimuli which seize upon each organism at
birth-indeed, from the moment of conception, and even before this- and hold
it in their embrace until death- and beyond, through mortuary customs and
beliefs in a land of the dead.

The language a people speaks is the response to the linguistic stimuli which
impinge upon the several organisms in infancy and childhood. One group of
organisms is moulded by Chinese-language stimuli; another, by English. The
organism has no choice, and once cast into a mould is unable to change. To
learn to speak a foreign language without accent after one has matured, or
even, in most cases, to imitate another dialect of his own language is exceed-
ingly difficult if not impossible for most people. So it is in other realms of
behavior. A people practices polygyny, has matrilineal clans, cremates the
dead, abstains from eating pork or peanuts, counts by tens, puts butter in
their tea, tattoos their chests, wears neckties, believes in demons, vaccinates
their children, scalps their vanquished foes or tries them as war criminals,
lends their wives to guests, uses slide rules, plays pinochle, or extracts square
roots if the culture into which they were born possesses these traits. It is obvi-
ous, of course, that people do not choose their culture; they inherit it. It is
almost as obvious that a people behaves as it does because it possesses a cer-
tain type of culture- or more accurately, is possessed by it.

To return now to our proper subject. Mathematics is, of course, a part of
culture. Every people inherits from its predecessors, or contemporary neigh-
bors, along with ways of cooking, marrying, worshipping, etc., ways of
counting, calculating, and whatever else mathematics does. Mathematics is, in
fact, a form of behavior: the responses of a particular kind of primate organ-
ism to a set of stimuli. Whether a people counts by fives, tens, twelves or

15 Individuals vary, of course, in their constitutions and consequently may vary in
their responses to cultural stimuli.



twenties; whether it has no words for cardinal numbers beyond 5, or pos-
sesses the most modern and highly developed mathematical conceptions,
their mathematical behavior is determined by the mathematical culture which
possesses them.

We can see now how the belief that mathematical truths and realities lie
outside the human mind arose and flourished. They do lie outside the mind
of each individual organism. They enter the individual mind as Durkheim
says from the outside. They impinge upon his organism, again to quote
Durkheim, just as cosmic forces do. Any mathematician can see, by observ-
ing himself as well as others, that this is so. Mathematics is not something
that is secreted, like bile; it is something drunk, like wine. Hottentot boys
grow up and behave, mathematically as well as otherwise, in obedience to
and in conformity with the mathematical and other traits in their culture.
English or American youths do the same in their respective cultures. There
is not one iota of anatomical or psychological evidence to indicate that
there are any significant innate, biological or racial differences so far as
mathematical or any other kind of human behavior is concerned. Had
Newton been reared in Hottentot culture he would have calculated like a
Hottentot. Men like G. H. Hardy, who know, through their own experience
as well as from the observation of others, that mathematical realities enter
the mind from the outside, understandably-but erroneously-conclude that
they have their origin and locus in the external world, independent of man.
Erroneous, because the alternative to “outside the human mind,” the indi-
vidual mind, that is, is not “the external world, independent of man,” but
culture, the body of traditional thought and behavior of the human
species.

Culture frequently plays tricks upon us and distorts our thinking. We tend
to find in culture direct expressions of “human nature” on the one hand and
of the external world on the other. Thus each people is disposed to believe
that its own customs and beliefs are direct and faithful expressions of man’s
nature. It is “human nature,” they think, to practice monogamy, to be jealous
of one’s wife, to bury the dead, drink milk, to appear in public only when
clad, to call your mother’s brother’s children “cousin,” to enjoy exclusive right
to the fruit of your toil, etc., if they happen to have these particular customs.
But ethnography tells us that there is the widest divergence of custom among
the peoples of the world: there are peoples who loathe milk, practice
polyandry, lend wives as a mark of hospitality, regard inhumation with hor-
ror, appear in public without clothing and without shame, call their mother’s
brother’s children “son” and “daughter,” and who freely place all or the
greater portion of the produce of their toil at the disposal of their fellows.
There is no custom or belief that can be said to express “human nature” more
than any other.

Similarly it has been thought that certain conceptions of the external world
were so simple and fundamental that they immediately and faithfully
expressed its structure and nature. One is inclined to think that yellow, blue,
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and green are features of the external world which any normal person would
distinguish until he learns that the Creek and Natchez Indians did not dis-
tinguish yellow from green; they had but one term for both. Similarly, the
Choctaw, Tunica, the Keresan Pueblo Indians and many other peoples make
no terminological distinction between blue and green.16

The great Newton was deceived by his culture, too. He took it for granted
that the concept of absolute space directly and immediately corresponded to
something in the external world; space, he thought, is something that has an
existence independent of the human mind. “I do not frame hypotheses,” he
said. But the concept space is a creation of the intellect as are other concepts.
To be sure, Newton himself did not create the hypothesis of absolute space.
It came to him from the outside, as Durkheim properly puts it. But although
it impinges upon the organism comme les forces cosmiques, it has a different
source: it is not the cosmos but man’s culture.

For centuries it was thought that the theorems of Euclid were merely con-
ceptual photographs, so to speak, of the external world; that they had a valid-
ity quite independent of the human mind; that there was something necessary
and inevitable about them. The invention of non-Euclidean geometries by
Lobatchewsky, Riemann and others has dispelled this view entirely. It is now
clear that concepts such as space, straight line, plane, etc., are no more nec-
essary and inevitable as a consequence of the structure of the external world
than are the concepts green and yellow- or the relationship term with which
you designate your mother’s brother, for that matter.

To quote Einstein again:17

“We come now to the question: what is a priori certain or necessary, respec-
tively in geometry (doctrine of space) or its foundations? Formerly we
thought everything; nowadays we think-nothing. Already the distance-con-
cept is logically arbitrary; there need be no things that correspond to it, even
approximately.”

Kasner and Newman say that “non-Euclidean geometry is proof that
mathematics . . . is man’s own handiwork, subject only to the limitations
imposed by the laws of thought.”18

Far from having an existence and a validity apart from the human species,
all mathematical concepts are “free inventions of the human intellect,” to use
a phrase with which Einstein characterizes the concepts and fundamental
principles of physics.19 But because mathematical and scientific concepts have
always entered each individual mind from the outside, everyone until recently
has concluded that they came from the external world instead of from man-

16 Cf. “Keresan Indian Color Terms,” by Leslie A. White, Papers of the Michigan.
Academy of Science, Arts, and Letters, Vol. XXVIII, pp. 559-563; 1942 (1943).
17 Article “Space-Time.” Encyclopaedia Britannica, 14th edition.
18 0p. cit., p. 359
19 “On the Method of Theoretical Physics,” in The World as I See It, p. 33 (New York,
1934).
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made culture. But the concept of culture, as a scientific concept, is but a
recent invention itself.

The cultural nature of our scientific concepts and beliefs is clearly recog-
nized by the Nobel prize winning physicist, Erwin Schrödinger, in the follow-
ing passage:20

“Whence arises the widespread belief that the behavior of molecules is
determined by absolute causality, whence the conviction that the contrary is
unthinkable? Simply from the custom, inherited through thousands of years,
of thinking causally, which makes the idea of undetermined events, of
absolute, primary causalness, seem complete nonsense, a logical absurdity,”
(Schrodinger’s emphases).

Similarly, Henri Poincaré asserts that the axioms of geometry are mere
“conventions,” i.e., customs: they “are neither synthetic a priori judgments
nor experimental facts. They are conventions21

We turn now to another aspect of mathematics that is illuminated by the
concept of culture. Heinrich Hertz, the discoverer of wireless waves, once
said:22

“One cannot escape the feeling that these mathematical formulas have an
independent existence and an intelligence of their own, that they are wiser
than we are, wiser even than their discoverers [sic], that we get more out of
them than was originally put into them.”

Here again we encounter the notion that mathematical formulas have an
existence “of their own,” (i.e., independent of the human species), and that
they are “discovered,” rather than man-made. The concept of culture clarifies
the entire situation. Mathematical formulas, like other aspects of culture, do
have in a sense an “independent existence and intelligence of their own.” The
English language has, in a sense, “an independent existence of its own.” Not
independent of the human species, of course, but independent of any indi-
vidual or group of individuals, race or nation. It has, in a sense, an “intelli-
gence of its own.” That is, it behaves, grows and changes in accordance with
principles which are inherent in the language itself, not in the human mind.
As man becomes self-conscious of language, and as the science of philosophy
matures, the principles of linguistic behavior are discovered and its laws
formulated.

So it is with mathematical and scientific concepts. In a very real sense they
have a life of their own. This life is the life of culture, of cultural tradition.
As Durkheim expresses it:23 “Collective ways of acting and thinking have a
reality outside the individuals who, at every moment of time, conform to it.
These ways of thinking and acting exist in their own right.” It would be quite

20 Science and the Human Temperament, p. 115 (London, 1935).
21 “On the Nature of Axioms,” in Science and Hypothesis, published in The Founda-
tions of Science (The Science Press, New York, 1913).
22 Quoted by E. T. Bell, Men of Mathematics, p. 16 (New York, 1937).
23 The Rules 0/ Sociological Method, Preface to 2nd edition, p. lvi.
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possible to describe completely and adequately the evolution of mathematics,
physics, money, architecture, axes, plows, language, or any other aspect of
culture without ever alluding to the human species or any portion of it. As a
matter of fact, the most effective way to study culture scientifically is to pro-
ceed as if the human race did not exist. To be sure it is often convenient to
refer to the nation that first coined money or to the man who invented the
calculus or the cotton gin, But it is not necessary, nor, strictly speaking, rele-
vant. The phonetic shifts in Indo-European as summarized by Grimm’s law
have to do solely with linguistic phenomena, with sounds and their permuta-
tions, combinations and interactions. They can be dealt with adequately with-
out any reference to the anatomical, physiological, or psychological
characteristics of the primate organisms who produced them. And so it is with
mathematics and physics. Concepts have a life of their own. Again to quote
Durkheim, “when once born, [they] obey laws all their own. They attract each
other, repel each other, unite, divide themselves and multiply. . . .”24

Ideas, like other culture traits, interact with each other, forming new syn-
theses and combinations. Two or three ideas coming together may form a new
concept or synthesis. The laws of motion associated with Newton were syn-
theses of concepts associated with Galileo, Kepler and others. Certain ideas
of electrical phenomena grow from the “Faraday stage,” so to speak, to those
of Clerk Maxwell, H. Hertz, Marconi, and modern radar. “The application
of Newton’s mechanics to continuously distributed masses led inevitably to
the discovery and application of partial differential equations, which in their
turn first provided the language for the laws of the field-theory,”25 (emphasis
ours). The theory of relativity was, as Einstein observes, “no revolutionary
act, but the natural continuation of a line that can be traced through cen-
turies.”26 More immediately, “the theory of Clerk Maxwell and Lorentz led
inevitably to the special theory of relativity.”27 Thus we see not only that any
given thought system is an outgrowth of previous experience, but that certain
ideas lead inevitably to new concepts and new systems. Any tool, machine,
belief, philosophy, custom or institution is but the outgrowth of previous cul-
ture traits. An understanding of the nature of culture makes clear, therefore,
why Hertz felt that “mathematical formulas have an independent existence
and an intelligence of their own.”

His feeling that “we get more out of them than was originally put into
them,” arises from the fact that in the interaction of culture traits new syn-
theses are formed which were not anticipated by “their discoverers,” or which

24 The Elementary Forms of the Religious Life, p. 424. See also The Rules of Sociolog-
ical Method, Preface to 2nd edition, p. ii, in which he says “we need to investigate . . .
the manner in which social representations [i.e., culture traits] adhere to and repel one
another, how they fuse or separate from one another.”
25 Einstein, “The Mechanics of Newton and their Influence on the Development of
Theoretical Physics,” in The World as I See It, p. 58.
26 “On the Theory of Relativity,” in The World as I See It, p. 69.
27 Einstein, “The Mechanics of Newton &C, p. 57.
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contained implications that were not seen or appreciated until further growth
made them more explicit. Sometimes novel features of a newly formed syn-
thesis are not seen even by the person in whose nervous system the synthesis
took place. Thus Jacques Hadamard tells us of numerous instances in which
he failed utterly to see things that “ought to have struck . . . [him] blind.”28

He cites numerous instances in which he failed to see “obvious and immedi-
ate consequences of the ideas contained”29 in the work upon which he was
engaged, leaving them to be “discovered” by others later.

The contradiction between the view held by Hertz, Hardy and others that
mathematical truths are discovered rather than man-made is thus resolved by
the concept of culture. They are both; they are discovered but they are also
man-made. They are the product of the mind of the human species. But they
are encountered or discovered by each individual in the mathematical culture
in which he grows up. The process of mathematical growth is, as we have
pointed out, one of interaction of mathematical elements upon each other.
This process requires, of course, a basis in the brains of men, just as a tele-
phone conversation requires wires, receivers, transmitters, etc. But we do not
need to take the brains of men into account in an explanation of mathemat-
ical growth and invention any more than we have to take the telephone wires
into consideration when we wish to explain the conversation it carries. Proof
of this lies in the fact of numerous inventions (or “discoveries”) in mathe-
matics made simultaneously by two or more person working independently.30

28 Jacques Hadamard, The Psychology of Invention in the Mathematical Field, p. 50
(Princeton, 1945).
29 ibid., p. 51.
30 The following data are taken from a long and varied list published in Social
Change, by Wm. F. Ogburn (New York, 1923), pp. 90-102, in which simultaneous
inventions and discoveries in the fields of chemistry, physics, biology, mechanical
invention, etc., as well as in mathematics, are listed.

Law of inverse squares: Newton, 1666; Halley, 1684.
Introduction of decimal point: Pitiscus, 1608-12; Kepler, 1616; Napier, 1616-17.
Logarithms: Burgi, 1620; Napier-Briggs, 1614.
Calculus: Newton, 1671; Leibnitz, 1676.
Principle of least squares: Gauss, 1809; Legendre, 1806.
A treatment of vectors without the use of co-ordinate systems: Hamilton, 1843;
Grassman, 1843; and others, 1843.
Contraction hypothesis: H. A. Lorentz, 1895; Fitzgerald, 1895.
The double theta functions: Gopel, 1847; Rosenhain, 1847.
Geometry with axiom contradictory to Euclid’s parallel axiom: Lobatchevsky,
1836-40; Bolyai, 1826-33; Gauss, 1829.
The rectification of the semi-cuba! parabola: Van Heuraet, 1659; Neil, 1657; Fer-
mat, 1657-59.
The geometric law of duality: Oncelet, 1838; Gergone, 1838.
As examples of simultaneity in other fields we might cite: Discovery of oxygen:
Scheele, 1774; Priestley, 1774.
Liquefaction of oxygen: Cailletet, 1877; Pictet, 1877.
Periodic law: De Chancourtois, 1864; Newlands, 1864; Lothar Meyer, 1864.
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If these discoveries really were caused, or determined, by individual minds,
we would have to explain them as coincidences. On the basis of the laws of
chance these numerous and repeated coincidences would be nothing short of
miraculous. But the culturological explanation makes the whole situation
clear at once. The whole population of a certain region is embraced by a type
of culture. Each individual is born into a pre-existing organization of beliefs,
tools, customs and institutions. These culture traits shape and mould each
person’s life, give it content and direction. Mathematics is, of course, one of
the streams in the total culture. It acts upon individuals in varying degree,
and they respond according to their constitutions. Mathematics is the organic
behavior response to the mathematical culture.

But we have already noted that within the body of mathematical culture
there is action and reaction among the various elements. Concept reacts upon
concept; ideas mix, fuse, form new syntheses. This process goes on through-
out the whole extent of culture although more rapidly and intensively in some
regions (usually the center) than in others (the periphery). When this process
of interaction and development reaches a certain point, new syntheses31 are
formed of themselves. These syntheses are, to be sure, real events, and have
location in time and place. The places are of course the brains of men. Since
the cultural process has been going on rather uniformly over a wide area and
population, the new synthesis takes place simultaneously in a number of
brains at once. Because we are habitually anthropocentric in our thinking we
tend to say that these men made these discoveries. And in a sense, a biologi-
cal sense, they did. But if we wish to explain the discovery as an event in the
growth of mathematics we must rule the individual out completely. From this
standpoint, the individual did not make the discovery at all. It was something
that happened to him. He was merely the place where the lightning struck. A
simultaneous “discovery” by three men working “independently” simply
means that cultural-mathematical lightning can and does strike in more than
one place at a time. In the process of cultural growth, through invention or
discovery, the individual is merely the neural medium in which the “culture”32

of ideas grows. Man’s brain is merely a catalytic agent, so to speak, in the
cultural process. This process cannot exist independently of neural tissue, but
the function of man’s nervous system is merely to make possible the interac-
tion and re-synthesis of cultural elements.

To be sure individuals differ just as catalytic agents, lightning conductors
or other media do. One person, one set of brains, may be a better medium for

Law of periodicity of atomic elements: Lothar Meyer, 1869; Mendeleff, 1869.
Law of conservation of energy: Mayer, 1843; Joule, 1847; Helmholz, 1847; Colding,
1847; Thomson, 1847.
A host of others could be cited. Ogburn’s list, cited above, does not pretend to be
complete.

31 Hadamard entitles one chapter of his book “Discovery as a Synthesis.”
32 We use “culture” here in its bacteriological sense: a culture of bacilli growing in a
gelatinous medium.
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the growth of mathematical culture than another. One man’s nervous system
may be a better catalyst for the cultural process than that of another. The
mathematical cultural process is therefore more likely to select one set of
brains than another as its medium of expression. But it is easy to exaggerate
the role of superior brains in cultural advance. It is not merely superiority of
brains that counts. There must be a juxtaposition of brains with the interac-
tive, synthesizing cultural process. If the cultural elements are lacking, supe-
rior brains will be of no avail. There were brains as good as Newton’s in
England 10,000 years before the birth of Christ, at the time of the Norman
conquest, or any other period of English history. Everything that we know
about fossil man, the prehistory of England, and the neuro-anatomy of
homo sapiens will support this statement. There were brains as good as New-
ton’s in aboriginal America or in Darkest Africa. But the calculus was not
discovered or invented in these other times and places because the requisite
cultural elements were lacking. Contrariwise, when the cultural elements are
present, the discovery or invention becomes so inevitable that it takes place
independently in two or three nervous systems at once. Had Newton been
reared as a sheep herder, the mathematical culture of England would have
found other brains in which to achieve its new synthesis. One man’s brains
may be better than another’s, just as his hearing may be more acute or his feet
larger. But just as a “brilliant” general is one whose armies are victorious, so
a genius, mathematical or otherwise, is a person in whose nervous system an
important cultural synthesis takes place; he is the neural locus of an epochal
event in culture history.33

The nature of the culture process and its relation to the minds of men is
well illustrated by the history of the theory of evolution in biology. As is well
known, this theory did not originate with Darwin. We find it in one form or
another, in the neural reactions of many others before Darwin was born: Buf-
fon, Lamarck, Erasmus Darwin, and others. As a matter of fact, virtually all
of the ideas which together we call Darwinism are to be found in the writings
of J. C. Prichard, an English physician and anthropologist (1786-1848).
These various concepts were interacting upon each other and upon current
theological beliefs, competing, struggling, being modified, combined, re-syn-
thesized, etc., for decades. The time finally came, i.e., the stage of develop-
ment was reached, where the theological system broke down and the risng
tide of scientific interpretation inundated the lands.

Here again the new synthesis of concepts found expression simultaneously
in the nervous systems of two men working independently of each other: A.
R. Wallace and Charles Darwin. The event had to take place when it did. If

33 The distinguished anthropologist, A. L. Kroeber, defines geniuses as “the indica-
tors of the realization of coherent patterns of cultural value,” Configurations of Cul-
ture Growth, p. 839 (Berkeley, 1944).
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Darwin had died in infancy, the cultural process would have found another
neural medium of expression.

This illustration is especially interesting because we have a vivid account,
in Darwin’s own words, of the way in which the “discovery” (i.e., the synthe-
sis of ideas) took place:

“In October 1838,” Darwin wrote in his autobiographic sketch, “that is, fifteen
months after I had begun my systematic enquiry, I happened to read for amusement
‘Maithus on Population,’ and being well prepared to appreciate the struggle for
existence which everywhere goes on from long-continued observation of the habits
of animals and plants, it at once struck me that under these circumstances
favourable variations would tend to be preserved, and unfavourable ones to be
destroyed. The result of this would be the formation of a new species. Here then I
had at last got a theory by which to work . . .” (emphasis ours),

This is an exceedingly interesting revelation. At the time he read Malthus,
Darwin’s mind was filled with various ideas, (i.e., he had been moulded,
shaped, animated and equipped by the cultural milieu into which he hap-
pened to have been born and reared-a significant aspect of which was inde-
pendent means; had he been obliged to earn his living in a “counting house”
we might have had “Hudsonism” today instead of Darwinism). These ideas
reacted upon each other, competing, eliminating, strengthening, combining.
Into this situation was introduced, by chance, a peculiar combination of cul-
tural elements (ideas) which bears the name of Malthus, Instantly a reaction
took place, a new synthesis was formed-”here at last he had a theory by which
to work.” Darwin’s nervous system was merely the place where these cultural
elements came together and formed a new synthesis. It was something that
happened to Darwin rather than something he did.

This account of invention in the field of biology calls to mind the well-
known incident of mathematical invention described so vividly by Henri
Poincaré. “One evening, after working very hard on a problem but without
success,” he writes:34 “contrary to my custom, I drank black coffee and could
not sleep. Ideas rose in crowds; I felt them collide until pairs interlocked, so
to speak, making a stable combination. By the next morning I had estab-
lished the existence of a class of Fuchsian functions . . . I had only to write
out the results, which took but a few hours.”

Poincaré further illustrates the process of culture change and growth in its
subjective (i.e., neural) aspect by means of an imaginative analogy.35 He
imagines mathematical ideas as being something like “the hooked atoms of
Epicurus. During complete repose of the mind, these atoms are motionless,
they are, so to speak, hooked to the wall.” No combinations are formed. But
in mental activity, even unconscious activity, certain of the atoms “are

34 “Mathematical Creation,” in Science and Method, published in The Foundations of
Science, p. 397 (The Science Press; New York and Garrison, 1913). I
35 ibid., p. 393.
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detached from the wall and put in motion. They flash in every direction
through space . . . like the molecules of a gas Then their mutual impacts may
produce new combinations.” This is merely a description of the subjective
aspect of the cultural process which the anthropologist would describe objec-
tively (i.e., without reference to nervous systems). He would say that in cul-
tural systems, traits of various kinds act and react upon each other,
eliminating some, reinforcing others, forming new combinations and synthe-
ses. The significant thing about the loci of inventions and discoveries from
the anthropologist’s standpoint is not quality of brains, but relative position
within the culture area: inventions and discoveries are much more likely to
take place at culture centers, at places where there is a great deal of cultural
interaction, than on the periphery, in remote or isolated regions.

If mathematical ideas enter the mind of the individual mathematician from
the outside, from the stream of culture into which he was born and reared,
the question arises, where did culture in general, and mathematical culture in
particular, come from in the first place? How did it arise and acquire its con-
tent?

It goes without saying of course that mathematics did not originate with
Euclid and Pythagoras- or even with the thinkers of ancient Egypt and
Mesopotamia. Mathematics is a development of thought that had its begin-
ning with the origin of man and culture a million years or so ago. To be sure,
little progress was made during hundreds of thousands of years. Still, we find
in mathematics today systems and concepts that were developed by primitive
and preliterate peoples of the Stone Ages, survivals of which are to be found
among savage tribes today. The system of counting by tens arose from using
the fingers of both hands. The vigesimal system of the Maya astronomers
grew out of the use of toes as well as fingers. To calculate is to count with cal-
culi, pebbles. A straight line was a stretched linen cord, and so on.

To be sure, the first mathematical ideas to exist were brought into being by
the nervous systems of individual human beings. They were, however, exceed-
ingly simple and rudimentary. Had it not been for the human ability to give
these ideas overt expression in symbolic form and to communicate them to
one another so that new combinations would be formed, and these new syn-
theses passed on from one generation to another in a continuous process of
interaction and accumulation, the human species would have made no math-
ematical progress beyond its initial stage. This statement is supported by our
studies of anthropoid apes. They are exceedingly intelligent and versatile.
They have a fine appreciation of geometric forms, solve problems by imagi-
nation and insight, and possess not a little originality.36 But they cannot
express their neuro-sensory-muscular concepts in overt symbolic form. They
cannot communicate their ideas to one another except by gestures, i.e., by
signs rather than symbols. Hence ideas cannot react upon one another in their

36 See, W. Köhler’s The Mentality 0/ Apes (New York, 1931).
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minds to produce new syntheses. Nor can these ideas be transmitted from one
generation to another in a cumulative manner. Consequently, one generation
of apes begins where the preceding generation began. There is neither accu-
mulation nor progress.37

Thanks to articulate speech, the human species fares better. Ideas are cast
into symbolic form and given overt expression. Communication is thus made
easy and versatile. Ideas now impinge upon nervous systems from the outside.
These ideas react upon each other within these nervous systems. Some are
eliminated; others strengthened. New combinations are formed, new synthe-
ses achieved. These advances are in turn communicated to someone else,
transmitted to the next generation. In a relatively short time, the accumula-
tion of mathematical ideas has gone beyond the creative range of the indi-
vidual human nervous system unaided by cultural tradition. From this time
on, mathematical progress is made by the interaction of ideas already in exis-
tence rather than by the creation of new concepts by the human nervous sys-
tem alone. Ages before writing was invented, individuals in all cultures were
dependent upon the mathematical ideas present in their respective cultures.
Thus, the mathematical behavior of an Apache Indian is the response that he
makes to stimuli provided by the mathematical ideas in his culture. The same
was true for Neanderthal man and the inhabitants of ancient Egypt,
Mesopotamia and Greece. It is true for individuals of modern nations today.

Thus we see that mathematical ideas were produced originally by the
human nervous system when man first became a human being a million years
ago. These concepts were exceedingly rudimentary, and the human nervous
system, unaided by culture, could never have gone beyond them regardless of
how many generations lived and died. It was the formation of a cultural tra-
dition which made progress possible. The communication of ideas from per-
son to person, the transmission of concepts from one generation to another,
placed in the minds of men (i.e., stimulated their nervous systems) ideas
which through interaction formed new syntheses which were passed on in
turn to others.

We return now, in conclusion, to some of the observations of G. H. Hardy,
to show that his conception of mathematical reality and mathematical behav-
ior is consistent with the culture theory that we have presented here and is, in
fact, explained by it.

“I believe that mathematical reality lies outside us,”38 he says. If by “us”
he means “us mathematicians individually,” he is quite right. They do lie out-
side each one of us; they are a part of the culture into which we are born.

37 See Leslie A. White, ‘On the Use of Tools by Primates” (Journ. of Comparative Psy-
chology, Vol. 34, pp. 369-374, Dec. 1942). This essay attempts to show that the human
species has a highly developed and progressive material culture while apes do not,
although they can use tools with skill and versatility and even invent them, because
man, and not apes, can use symbols.
38 A Mathematician’s Apology, p. 63.
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Hardy feels that “in some sense, mathematical truth is part of objective real-
ity,”39 (my emphasis, L.A.W.). But he also distinguishes “mathematical real-
ity” from “physical reality,” and insists that “pure geometries are not pictures
. . . [of] the spatio-temporal reality of the physical world.”40 What then is the
nature of mathematical reality? Hardy declares that “there is no sort of
agreement . . . among either mathematicians or philosophers”41 on this point.
Our interpretation provides the solution. Mathematics does have objective
reality. And this reality, as Hardy insists, is not the reality of the physical
world. But there is no mystery about it. Its reality is cultural: the sort of real-
ity possessed by a code of etiquette, traffic regulations, the rules of baseball,
the English language or rules of grammar.

Thus we see that there is no mystery about mathematical reality. We need
not search for mathematical “truths” in the divine mind or in the structure of
the universe. Mathematics is a kind of primate behavior as languages, musi-
cal systems and penal codes are. Mathematical concepts are man-made just
as ethical values, traffic rules, and bird cages are manmade. But this does not
invalidate the belief that mathematical propositions lie outside us and have
an objective reality. They do lie outside us. They existed before we were born.
As we grow up we find them in the world about us. But this objectivity exists
only for the individual. The locus of mathematical reality is cultural tradi-
tion, i.e., the continuum of symbolic behavior. This theory illuminates also
the phenomena of novelty and progress in mathematics. Ideas interact with
each other in the nervous systems of men and thus form new syntheses. If the
owners of these nervous systems are aware of what has taken place they call
it invention as Hadamard does, or “creation,” to use Poincaré’s term. If they
do not understand what has happened, they call it a “discovery” and believe
they have found something in the external world. Mathematical concepts are
independent of the individual mind but lie wholly within the mind of the
species, i.e., culture. Mathematical invention and discovery are merely two
aspects of an event that takes place simultaneously in the cultural tradition
and in one or more nervous systems. Of these two factors, culture is the more
significant; the determinants of mathematical evolution lie here. The
human nervous system is merely the catalyst which makes the cultural
process possible.

39 “Mathematical Proof,” p. 4 (Mind, Vol. 38, pp. 1-25, 1929).
40 A Mathematician’s Apology, pp. 62-63, 65.
41 ibid., p. 63.
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Inner Vision, Outer Truth

REUBEN HERSH

There is an old conundrum, many times resurrected: why do mathematics
and physics fit together so surprisingly well? There is a famous article by
Eugene Wigner, or at least an article with a famous title: “The Unreasonable
Effectiveness of Mathematics in Natural Sciences.” After all, pure mathe-
matics, as we all know, is created by fanatics sitting at their desks or scribbling
on their blackboards. These wild men go where they please, led only by some
notion of ‘beauty’, ‘elegance’, or ‘depth’, which nobody can really explain.
Wigner wrote, ‘It is difficult to avoid the impression that a miracle confronts
us here, quite comparable in its striking nature to the miracle that the human
mind can string a thousand arguments together without getting itself into
contradictions, or to the two miracles of the existence of laws of nature and
of the human mind’s capacity to divine them.’

In Lobachevsky’s non-Euclidean geometry, or Cayley’s matrix theory, and
Galois’ and Jordan’s group theory, and the algebraic topology of the mid-
twentieth century, pure mathematics seemed to have left behind any physical
interpretation or utility. And yet, physicists later found these ‘useless’ mathe-
matical abstractions to be just the tools they needed.

Freeman Dyson writes, in his Foreword to Monastyrsky’s Riemann, Topol-
ogy, and Physics, of ‘one of the central themes of science, the mysterious
power of mathematical concepts to prepare the ground for physical discover-
ies which could not have been foreseen or even imagined by the mathemati-
cians who gave the concepts birth.’

On page 135 of that book, there is a quote from C. Yang, co-author of the
Yang-Mills equation of nuclear physics, speaking in 1979 at a symposium
dedicated to the famous geometer, S.-S. Chern.

“Around 1968 I realised that gauge fields, non-Abelian as well as Abelian
ones, can be formulated in terms of nonintegrable phase factors, i.e., path-
dependent group elements. I asked my colleague Jim Simons about the math-
ematical meaning of these nonintegrable phase factors, and he told me they
are related to connections with fibre bundles. But I did not then appreciate
that the fibre bundle was a deep mathematical concept. In 1975 I invited Jim
Simons to give to the theoretical physicists at Stony Brook a series of lectures
on differential forms and fibre bundles. I am grateful to him that he accepted
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the invitation and I was among the beneficiaries. Through these lectures T. T.
Wu and I finally understood the concept of nontrivial bundles and the
Chern-Weil theorem, and realized how beautiful and general the theorem is.
We were thrilled to appreciate that the nontrivial bundle was exactly the con-
cept with which to remove, in monopole theory, the string difficulty which
had been bothersome for over forty years [that is, singular threads emanating
from a Dirac monopole].

“When I met Chern, I told him that I finally understood the beauty of the
theory of fibre bundles and the elegant Chern-Weil theorem. I was struck
that gauge fields, in particular, connections on fibre bundles, were studied by
mathematicians without any appeal to physical realities. I added that it is
mysterious and incomprehensible how you mathematicians would think this
up out of nothing. To this Chern immediately objected. ‘No, no, this concept
is not invented-it is natural and real.”

Why does this happen?
Is there some arcane psychological principle by which the most original

and creative mathematicians find interesting or attractive just those direc-
tions in which Nature herself wants to go? Such an answer might be merely
explaining one mystery by means of a deeper mystery.

Or perhaps the “miracle” is an illusion. Perhaps for every bit of abstract
purity that finds physical application, there are a dozen others that find no such
application, but instead eventually die, disappear and are forgotten. This sec-
ond explanation could even be checked out, by a doctoral candidate in the his-
tory of mathematics. I have not checked it myself. My gut feeling is that it is
false. It seems somehow that most of the mainstream research in pure mathe-
matics does eventually connect up with physical applications.

Here is a third explanation, a more philosophical one that relies on the very
nature of mathematics and physics. Mathematics evolved from two sources, the
study of numbers and the study of shape, or more briefly, from arithmetic and
visual geometry. These two sources arose by abstraction or observation from
the physical world. Since its origin is physical reality, mathematics can never
escape from its inner identity with physical reality. Every so often, this inner
identity pops out spectacularly when, for example, the geometry of fiber bun-
dles is identified as the mathematics of the gauge field theory of elementary
particle physics. This third explanation has a satisfying feeling of philosophical
depth. It recalls Leibnitz’s “windowless monads”, the body and soul, which at
the dawn of time God set forever in tune with each other. But this explanation,
too, is not quite convincing. For it implies that all mathematical growth is pre-
determined, inevitable. Alas, we know that is not so. Not all mathematics
enters the world with that stamp of inevitability. There is also “bad” mathe-
matics, that is, pointless, ugly, or trivial. This sad fact forces us to admit that in
the evolution of mathematics there is an element of human choice, or taste if
you prefer. Thereby we return to the mystery we started with. What enables
certain humans to choose better than they have any way of knowing?
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A good rule in mathematical heuristics is to look at the extreme cases –
when a small parameter becomes zero, or a large parameter becomes infinite.
Here, we are studying the way that discoveries in “pure”mathematics some-
times turn out to have important, unexpected uses in science (especially
physics). I would like to use the same heuristic – “look at the extreme cases”.
But in our present discussion, what does that mean, “extreme case”? Of
course, we could give this expression many different meanings. I propose to
mean “extremely simple”. To start with, let’s take counting, that is to say, the
natural numbers.

These numbers were a discovery in mathematics. It was a discovery that
much later became important in physics and other sciences. For instance, one
counts the clicks of a Geiger counter. One counts the number of white cells
under a microscope. Yet the original discovery or invention of counting was
not intended for use in science; indeed, there was no “science” at that early
date of human culture.

So let us take this possibly childish example, and ask the same question we
might ask about a fancier, more modern example. What explains this luck or
accident, that a discovery in “pure mathematics” turns out to be good for
physics?

Whether we count and find the planets seven, or whether we study the
n-body problem, where n is some positive integer, we certainly do need
and use counting – the natural numbers – in physics and every other
science.

This remark seems trivial. Such is to be expected in the extreme cases. We
do not usually think of arithmetic as a special method or theory, like tensors,
or groups, or calculus. Arithmetic is the all-pervasive rock bottom essence of
mathematics. Of course it is essential in science; it is essential in everything.
There is no way to deny the obvious fact that arithmetic was invented with-
out any special regard for science, including physics; and that it turned out
(unexpectedly) to be needed by every physicist.

We are therefore led again to our central question, “How could this hap-
pen?” How could a mathematical invention turn out, unintentionally, after
the fact, to be part of physics? In this instance, however, of the counting num-
bers, our question seems rather lame. It is not really surprising or unexpected
that the natural numbers are essential in physics or in any other science or
non-science. Indeed, it seems self-evident that they are essential everywhere.
Even though in their development or invention, one could not have foreseen
all their important uses.

So to speak, when one can count sheep or cattle or clam shells, one can also
count (eventually) clicks of a Geiger counter or white cells under a micro-
scope. Counting is counting. So in our first simple example, there really is no
question, ‘How could this happen?’ Its very simplicity makes it seem obvious
how ‘counting in general’ would become, automatically and effortlessly,
‘counting in science’.



Now let’s take the next step. The next simplest thing after counting is cir-
cles. Certainly it will be agreed that the circle is sometimes useful. The Greeks
praised it as ‘the heavenly curve’. According to Otto Neugebauer, “Philo-
sophical minds considered the departure from strictly uniform circular
motion the most serious objection against the Ptolemaic system and invented
extremely complicated combinations of circular motions in order to rescue
the axiom of the primeval simplicity of a spherical universe” (The Exact Sci-
ences in Antiquity). I. B. Cohen wrote, “The natural motion of a body com-
posed of aether is circular, so that the observed circular motion of the
heavenly bodies is their natural motion, according to their nature, just as
motion upward or downward in a straight line is the natural motion for a ter-
restrial object” (The Birth of a New Physics).

And here is a more detailed account of the circle in Greek astronomy:
“Aristotle’s system, which was based upon earlier works by Eudoxus of
Cnidos and Callippus, consisted of 55 concentric celestial spheres which
rotated around the earth’s axis running through the center of the universe. In
the mathematical system of Callippus, on which Aristotle directly founded
his cosmology of concentric spheres, the planet Saturn, for example, was
assigned a total of four spheres, to account for its motion ‘one for the daily
motion, one for the proper motion along the zodiac or ecliptic, and two for
its observed retrograde motions along the zodiac” (E. Grant, Physical Science
in the Middle Ages).

In recent centuries, other plane curves have become familiar. But the circle
still holds a special place. It is the ‘simplest’, the starting point in the study of
more general curves. Circular motion has special interest in dynamics. The
usual way to specify a neighborhood of a given point is by a circle with that
point as center.

So we see that the knowledge of circles which we inherited from the Greeks
(with a few additions) is useful in many activities today, including physics and
the sciences. I suppose this is one reason why 10th grade students are required
to study Euclidean geometry.

Again, we return to the same question. How can we explain this ‘miracle’?
Few people today would claim that circles exist in nature. Any seemingly

circular motion turns out on closer inspection to be only approximately
circular.

Not only that. The notion of a circle is not absolute. If we define distance
otherwise, we get other curves. To the Euclidean circle we must add non-
Euclidean “circles”. If the Euclidean circle retains a central position, it does
so because we choose – for reasons of simplicity, economy, convenience, tra-
dition – to give it that position.

We see, then, two different ways in which a mathematical notion can enter
into science. We can put it there, as Ptolemy put circles into the planetary
motion. Or we can find it there, as we find discreteness in some aspect or
other of every natural phenomenon.
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Let’s take one last example, a step up the ladder from the circle. I mean the
conic sections, especially the ellipse. These curves were studied by Apollonius
of Perga (262-200 B.C.) as the “sections” (or “cross sections” as we would
say) of a right circular cone. If you cut the cone with a cutting plane parallel
to an element of the cone, you get a parabola. If you tilt the cutting plane
toward the direction of the axis, you get a hyperbola. If you tilt it the other
way, against the direction of the axis, you get an ellipse.

This is “pure mathematics”, in the sense that it has no contact with science
or technology. Today we might find it somewhat impure, since it is based on
a visual model, not on a set of axioms.

The interesting thing is that nearly 2,000 years later, Kepler announced that
the planetary orbits are ellipses. (There also may be hyperbolic orbits, if you
look at the comets.)

Is this a miracle? How did it happen that the very curves Kepler needed to
describe the solar system were the ones invented by Apollonius some 1800 or
1900 years earlier?

Again, we have to make the same remarks we did about circles. Ellipses are
only approximations to the real orbits. Engineers using earth satellites nowa-
days need a much more accurate description of the orbit than an ellipse. True,
Newton proved that ‘the orbit’ is exactly an ellipse. And today we reprove it
in our calculus classes. In order to do that, we assume that the earth is a point
mass (or equivalently, a homogeneous sphere). But you know and I know
(and Newton knew) that it is not.

Kepler brought in Apollonius’s ellipse because it was a good approxima-
tion to his astronomical data. Newton brought in Apollonius’s ellipse because
it was the orbit predicted by his gravitational theory (assuming the planets
are point masses, and that the interactive attraction of the planets is ‘negligi-
ble’). Newton used Kepler’s (and Apollonius’s) ellipses in order to justify his
gravitational theory. But what if Apollonius had never lived? Or what if his
eight books had been burned by some fanatic a thousand years before?
Would Newton have been able to complete his work?

We can imagine three different scenarios: (1) Kepler and Newton might
have been defeated, unable to progress; (2) they might have gone ahead by
creating conic sections anew, on their own; (3) they might have found
some different way to study the dynamics of the planets, doing it without
ellipses.

Scenario three is almost inconceivable. Anyone who has looked at the New-
tonian theory will see that the elliptic trajectory is unavoidable. Without
Apollonius, one might not know that this curve could be obtained by cutting
a cone. But that fact is quite unnecessary for the planetary theory. And surely
somebody would have noticed the connection with cones (probably Newton
himself).

Scenario one, that Newton would have been stuck if not for Apollonius, is
quite inconceivable. He, like other mathematical physicists since his time,



would have used what was available and created what he needed to create.
While Apollonius’ forestalling Kepler and Newton is remarkable and impres-
sive, from the viewpoint of Newton’s mechanics it is inessential. In the
sequence of events that led to the Newtonian theory, what mattered were the
accumulation of observations by Brahe, the analysis of data by Kepler, and
the development by Barrow and others of the “infinitesimal calculus”. The
theory of the conic sections, to the extent that he needed it, could have been
created by Newton himself. In other words, scenario two is the only believ-
able one.

If a mathematical notion finds repeated use, in many branches of science,
then such repeated use may testify to the universality, the ubiquitousness, of
a certain physical property – as discreteness, in our first example. On the
other hand, the use of such a mathematics may only be witness to our pref-
erence for a certain picture or model of the world, or to a mental tradition
which we find comfortable and familiar. And also, perhaps, to the amiability
or generosity of nature, which allows us to describe her in the manner we
choose, without being “too far” from the truth.

What then of the real examples – matrices, groups, tensors, fiber bundles,
connections? Maybe they mirror or describe physical reality “by lucky acci-
dent”, so to speak, since the physical application could not have been fore-
seen by the inventors.

On the other hand, maybe they are used as a matter of mere convenience –
we understand them because we invented them, and they work “well enough”.

Maybe we are not even able to choose between these two alternatives. To
do so would require knowledge of how nature “really” is, but all we can ever
have are data and measurements and hypotheses in which we put more or lees
credence.

In fact, it may be deceptive to pose the two alternatives – true to nature,
like the integers, or an imposed model, like the circle. Any useful theory must
be both. Understandable – i.e., part of our known mathematics, either ini-
tially or ultimately – and also “reasonably” true to the facts, the data. Both
aspects – man-made and also faithful to reality –must be present.

These self-critical remarks do not make any simplification in our problem.
The problem is, to state it for the last time, how is it that mathematical

inventions made with no regard for scientific application turn out so often to
be useful in science?

We have two alternative explanations, suggested by our two primitive
examples, counting and circles. Example one, counting, leads to explanation
one: That certain fundamental features of nature are found in many different
parts of physics or science; that a mathematical structure which faithfully
captures such a fundamental feature of nature will necessarily turn out to be
applicable in science.

According to explanation two, (of which the circle was our simple example),
there are several different ways to describe or “model” mathematically any par-
ticular physical phenomenon. The choice of a mathematical model may be
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based more on tradition, taste, habit, or convenience, than on any necessity
imposed by the physical world. The continuing use of such a model (circles, for
example) is not compelled by the prevalence of circles in nature but only by  a
preference for circles on the part of human beings—, scientists, in particular.

What conclusion can we make from all this? I offer one. It seems to me that
there is not likely to be any universal explanation of all the surprising fits
between mathematics and physics. It seems clear that there are at least two
possible explanations; in each instance, we must decide which explanation is
most convincing. Such an answer, I am afraid, will not satisfy our insistent
hankering for a single simple explanation. Perhaps we will have to do with-
out one.
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