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To the Memory of
Victor, Lord Rothschild
L’esprit humain fait toujours de progrés, mais ce progrés est
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Part 1
The Hedrick Lectures






Foreword to
The Hedrick Lectures

Concerning this shell in whose shape I think I can discern
... the work of some hand not acting “at random,” I ask my-
self: Who made it?

But soon my question undergoes a transformation. It takes
a short step forward along the path of my naiveté and I begin
to inquire by what sign we recognize that a given object is or
is not made by a man?

—Paul Valéry, Man and the Sea Shell

The Hedrick Lectures, presented here together with amplifica-
tions, were delivered on the occasion of the seventy-fifth an-
niversary of the Mathematical Association of America (MAA).
The lecture series itself, named after Earl Raymond Hedrick,
the first president of the MAA, has been a central feature of
the association’s annual summer meetings for a long time.
Over the past three quarters of a century, the MAA has played
a tremendous role in supporting mathematical education, pub-
lication, research and in generating mathematical enthusiasm
in the United States. Our inheritance from the past activities
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of the MAA is substantial. We are all heirs to the traditions it
has fostered, and we wish the MAA well as it speeds forward
toward its century mark.

Anniversaries of whatever kind put one in mind of the pass-
ing years, and a mathematical anniversary serves to remind us
that mathematics has been pursued — often with passion! — for
four thousand years at the very least. Its history and its poten-
tialities admit of no ethnic, nationalistic, or gender boundaries.
Mathematics is coexistent and coextensive with civilization it-
self. It has in the past and can in the future act as a powerful
binder between varieties of ethnic sensibilities.

The study of mathematical history displays an arena wherein
group assent must be sought and obtained and yet where indi-
vidual genius is of critical importance. As William James wrote:
“...without individual genius, the community stagnates; with-
out the community, individual genius has no arena.”

The study of mathematical history leads us also to the recog-
nition that mathematics has not remained constant as regards
its inner or outer goals or as regards its philosophical inter-
pretations or orientations. Very often, in the words of Justice
Oliver Wendell Holmes (in another context), mathematics “lays
its course by a star it has never seen. ...” In so doing, and over
such an extended period of time, its material can also become
Time’s Exile in that what were once thought to be major ac-
complishments, insights and connections are found cast into the
dust of irrelevance.

In keeping, then, with the spirit of this anniversary, I have
planned this book so as to exhibit a variety of things: some his-
tory, some philosophy, some anecdotes, a fair amount of mathe-
matics, naturally; some things old, some things absolutely new,
some things proved, and many things that invite exploration
at a variety of levels of sophistication; many things that invite
discussion, conjecture and proof. The lectures and the contem-
porary supplements have been organized loosely around one
central theme: the study of a certain difference equation that
I have called by the name of an ancient Greek mathematician:
Theodorus of Cyrene. I shall look at this difference equation
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in the light of mathematical concerns that have grown and
changed over the past twenty-five hundred years.

I have occasionally taken the liberty of free associating on
some of the ideas. These rambles — often tangential — have been
placed in the notes at the end, and the reader’s attention is di-
rected to them. To me, mathematics has always been more than
its form, or its content, its logic, its strategies, or its applica-
tions. Mathematics is one of the greatest of human intellectual
experiences, and as such merits and requires a rather liberal
approach. But I hope I have been able to moderate my natural
effusiveness so that it won’t be said of me, as it was of George
Eliot’s Casaubon, that “he dreams footnotes.”






Lecture 1

What is a Spiral? Spirals Old and New

The inspiration for these lectures comes from a paper by Ed-
mund Hlawka, of the Technical University in Vienna, on a cer-
tain discrete spiral that in German has been called the Quadrat-
wurzelschnecke [Hlawka 1980]. Translated literally: the square
root snail.? (See Historical Supplement H.)

I, personally, have always thought of a schnecke as one of
those little twisted pastries one finds in European-style bake
shops. In a mathematical age that has discussed Strudelpunkte,
pretzel universes, bakers’ transformations, blue bagel chaostro-
phes and bifurcations, and considering that in the book on my
shelf next to where these things are discussed, there is a math-
ematical “delicatessen” where the rigorous concept of Wiener
sausages is cooked up and digested, it is by no means absurd to
take inspiration from square root continental pastries.

The statement in Plato’s Theaetetus that Theodorus of Cyrene
discussed the irrationality of v/2,v/3, ..., and stopped at v/17,
has, over the millennia, evoked much speculation.? Why did The-
odorus stop at v/17? This speculation continues to this day. The
interested reader will find numerous answers in the literature.*
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Figure 1: The discrete spiral of Theodorus.

An answer of considerable fantasy was provided seventy years
ago by a certain J. H. Anderhub, an inspired mathematical ama-
teur [Anderhub 1941]. Anderhub imagined that Theodorus con-
structed v/2,v/3, ... by a sequence of contiguous right-angled
triangles. In each triangle, each outer leg is of length 1. An-
derhub observed that the resulting snaillike figure is such that
V17 arises from the last triangle for which the total figure is
non-self-overlapping.

If one goes beyond to V18,119, ..., the figure overlaps itself
and would be quite messy to draw in the sandboxes in which
mathematical myth claims all theorems of ancient Greek geom-
etry were drawn. Ergo: he stopped at v/17. (See figs. 1, 2.)

Though Anderhub’s “solution” is interesting, it has little his-
toric cogency or plausibility. Anderhub’s idea was embedded by
the present author in a light literary jeu d’esprit.> Nevertheless,
the figure (when extended indefinitely) has recently attracted
the attention of a number of mathematicians who have raised
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Figure 2: The spiral of Theodorus exhibiting the “solution” of
Anderhub.

contemporary questions concerning it. Thus, E. Hlawka proved
(W. Neiss [1966], originally) that if (ry,6,) are the polar co-
ordinates of the vertices of the spiral, then the angles 6,, are
equidistributed mod (27) in the sense of Hermann Weyl. He
did this essentially in the following steps:

A careful analysis using the Euler—-Maclaurin formula® yields

00 =20+ K + (1/6)(1/v/7) + (1/9)5*(n = 1)~ 4 -,

for a certain constant K.
Since

"‘nz\/ﬁ’

this shows, firstly, that the spiral that emerges from this ge-
ometric process is asymptotic to a spiral of Archimedes. (See
fig. 4.) Secondly, by making use of basic results in the theory of
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Figure 3: The first thousand angles of the spiral of Theodorus
exhibiting the equidistribution property.

equidistribution, in particular, a theorem of Fejér,” we conclude
first that (y/n), that is, the fractional part of y/n, and then 6,
are equidistributed. (See fig. 3.)

I think that, using this approach, we can also show that the
vertex angles are equidistributed integerwise, in the sense of
Ivan Niven.®

Hlawka also demonstrated (E. Teuffel [1958] originally, and
also H. Rindler) that the angles 6,, are algebraically indepen-
dent in the sense that no two hypothenuses, when extended,
will coincide, and that when the sides of length 1 are extended
indefinitely, they will not pass through any of the other vertices
of the total figure. Analytically, the first reduces to showing the
impossibility of satisfying

0n+L —Op=gm

in positive integers g, n, and L.



Lecture I: What Is a Spiral? Spirals Old and New 11

20 T T T T

15F -

10 4

-10+

-20 ‘ ‘ - : :
20 <15 <10 -5 0 5 10 15 20

Figure 4: The spiral of Archimedes.

The proof of Hlawka draws on the circle of ideas of the so-
called postulate of Bertrand—Tschebyscheff that for n > 1, there
is always a prime between n and 2n, and from a theorem of
Besicovitch that implies that if py are the consecutive primes,
then \/p,, ..., /P, are independent over the rationals.?

I should like to generalize Figure 1, raising some questions as
I go along (and answering a few). Some of these questions were
inspired by the hard facts of computation.

But first, I would like to talk about a simple idea: that of a
spiral. In our college courses, we do not teach too much about
spirals. Come to think of it, we might even say: What is there
to teach ? Isn’t a spiral just an exercise in the first-year calculus
book? And if one looks in the indexes of mathematical textbooks
or monographs, one does not come across the notion too often.

In preparation for these talks, I interrogated the silver disc
(marketed by the Silver Platter Co.) that contains the Mathe-
matical Reviews of the past fifty years. I turned up about two



12 Davis

4r 8
2+ 4
of ]
2k _
4}F 4
-6} 1
81 _
-10 L .

-5 0 5 10

Figure 5: Spiral of Bernoulli with chambered nautilus
parameters.

hundred fifty entries under spirals and an equal number under
a variety of related designations. Most of the citations relate to
physics. Many relate to conformal mapping.

I found Pythagorean spirals. I found lambda-spirals; I found
spiral galaxies; spiral waves. There is the marriage of spirals
and convexity theory considered by Bourgin and Renz [1989].
There is the marriage of spirals and quasiconformal mappings
considered by Gehring [1978]. There are the spirals generated by
Diophantine Gauss sums that have been considered by Coutsias
and Kazarinoff [1987].

There are spirallike analytic functions, i.e., functions that
map the unit disc into something that contains a logarithmic
spiral. There are spirals in Hilbert space considered by Wiener
and later by Kolmogoroff in one of the most influential papers in
modern probability theory, and they play an interesting role in
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Figure 6: Inscription on the Bernoulli monument.

13
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Figure 7: The spiral of Norwich.

second-order stochastic processes. There are spirals in Hilbert
space considered by von Neumann and Schoenberg [1941].1°

There are the spirals or the helices of genetics that make us
what we are and to some extent what we will be. There are the
spirals or helices in the internal structure of a tornado, spirals
that can whish us off, like Dorothy, to the Land of Oz.!! There
are the helix-to-random coil transitions of polymer physics in
which configurations pass from minimum energy to maximum
entropy and which provide us with plastics from bank cards
to heart-valve replacements. The arondissements of Paris are
numbered spirally, beginning at the Louvre. And I knew inde-
pendently, a fact not yet on the silver disc, that there had been
a recent conference on spirals.!2

I was in culture shock. So much interesting material on such
a simple idea. And I was in shock not only from informa-
tion overdose, but since the silver disc created information on
the terminal screen in twenty colors, alternately flashing and
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Figure 8: The clothoid or spiral of Cornu.

alternately in polka dots, I had the impression I was standing
on the Strip at Las Vegas and not in the Science Library of
Brown University. It would seem that the new generation can-
not think properly except in color-coded overlays. Marvellous!
One can imagine educational apologetics fifty years from now:
Why should one study the art of polychromatic graphical lay-
out? Answer: It teaches one to think properly. Doesn’t that kind
of argument sound familiar?

The famous ex-Soviet author and poet, Joseph Brodsky, re-
cently gave a talk at one of the publishing fairs in Germany:
How on earth can one deal with the fifty thousand books that
are published annually? Brodsky’s answer was: Convert the
ideas to poetry. Poetry is condensed thought and emotion.

The standard answer in mathematics when one is snowed by
a blizzard of material is to align oneself with a Center (in the
global sense) and then ignore all non-Center work. My answer
to how I could deal with the hundreds of papers on spirals that
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Figure 9: Spider integrated and differentiated.

the silver disc highlighted may not be such a good one, but it
worked for me: Get in touch with a few good friends and tap
them.

Though Plato remarks in the Timaeus that spirals occur
among the planetary motions (see Historical Supplement A),
he does not give any mathematical details; let me therefore
start with what is probably the first spiral to be treated mathe-
matically: the spiral of Archimedes. Archimedes!3 wrote a book
about this spiral: the Peri Elikon. In classical Greek, an ’elix
is a winding, a coil, a curl, a bracelet, or an earring. And, of
course, a twisted Danish pastry. (See fig. 4.)

Archimedes defined his spiral by a ray rotating uniformly cou-
pled with a point that moves uniformly on that ray. This may
have been the first instance in mathematics of defining a curve
as the result of two independent uniform motions. Archimedes
put his spiral to the use of trisecting the angle and squar-
ing the circle. The deepest result of Archimedes, apparently,
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Figure 10: Kronecker (Theodorus, Theodorus).

is his determination of the area swept out by a spiral after one
rotation.!4

Now the spiral of Archimedes may not be due to Archimedes
but to a certain Konon of Samos!'> Who was this Konon of
Samos? He was Court Astronomer (and very likely, Court As-
trologer) to King Ptolemy Euergetes of Egypt. He was a friend
of Archimedes who thought highly of him. After travelling in
the western portions of the Greek world, in search of astronom-
ical and meteoric observations, he settled in Alexandria. He
researched solar eclipses and participated in the development
of the Greek astronomical calendar. He wrote a book on the
mutual contact of conic sections. Konon died young. Alas. Like
Galois; like Urysohn or Paley; like Lippman Lipkin in St. Peters-
burg or Arthur Buchheim at the Manchester Grammar School,
and of whom very few have now heard; like many others.16

Early in his marriage, Ptolemy had to lead his army in a
war against the Seleucids in Syria. (This was in 246 B.C. at the
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Figure 11a: Kronecker (Theodorus, Archimedes).

very height of the Ptolemaic dynasty.) His wife Berenice was
advised to sacrifice a lock of her hair to the Temple of Arsinoé
Zephyritis as an insurance policy for his safe return. She did so,
and King Ptolemy came back to his wife hale and hearty. But
woe! Shortly thereafter, the lock disappeared from the temple.
And the soothsayers naturally interpreted this as a bad omen.
Thereupon, Konon calmed her down by saying that he had
discovered her lock (I conjecture it was a spiral coil) in a new
constellation between Leo, Virgo, and Boétes! (On today’s star
maps: Coma Berenices. In Greek: Berenikes Plokamos).!”

This pretty story was told originally by Callimachus and re-
worked much later by Catullus. Legend? Possibly; but there is
nothing in it that is unbelievable.

But what is a spiral?

Of course, there are the specific instances of spirals. There is
the spiral of Bernoulli (see fig. 5), or of Descartes, or of Gregory,
or of Torricelli, depending upon whose drummer you march by,
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Figure 11b: Cumsum (Kronecker (Marigold, Bernoulli)).

and it is also referred to as the logarithmic, the exponential, or
the equiangular spiral.!® In a certain sense, probably because
of the role it plays in the theory of linear differential equations
and because of its seeming omnipresence in nature, this is the
spiral par excellence.!®

This, also, is the curve designated by Jacob Bernoulli in 1694
as the spira mirabilis, the wonderful spiral, wonderful in virtue
of its numerous self-reproducing properties, which he took as a
symbol for a variety of self-reproducing aspects of the natural
and theological worlds.20 This was the spiral honored by him
with the motto Eadem mutata resurgo (“Though changed, I
rise again the same”). This is the spiral that is carved on his
gravestone, together with the motto quoted either, as some have
conjectured, to assert his belief in the resurrection of the body
or to assert his fervent hope in the same.?!

There are the spirals » = af™, which, for n = —1 is the
hyperbolic spiral (Varignon, 1704), for n = —% is the lituus
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Figure 12a: Toothed spiral.
j = iteration number,d = rem (4, 3); z = z + i%/|z|.

(Cotes, 1722), for n = 1 is the spiral of Fermat (1636), and for
n =1 is the spiral of Archimedes.

There are the sinusoidal spirals, 7™ = a™ (cos or sin) n, which
go back at least as far as Maclaurin in 1718.

There is the Cotes spiral, which is the path of a particle mov-
ing under the inverse cube law of attraction.??

There is the spiral of Norwich, so named by J. J. Sylvester
because of a meeting of the British Association that took place
in Norwich in 1868. (See fig. 7.) It is defined by: the radius
of curvature equals the length of the radius vector. This spiral
coincides with the spiral of Sturm, and it turns out that Jacopo
Riccati had done the general theory of this kind of thing years
before Sylvester.23 (See fig. 8.)

There is the marvellous spiral of Cornu, which I once dubbed
“the most beautiful of the mathematical curves.”?*

There are spirals on a cone and spirals on the surface of a
sphere, ...; and so it goes, on and on. This lecturer cannot
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undertake to name all the special spirals that have been studied
over the centuries; and in the second lecture, he is about to add
one more to the list.25

But what is a spiral, generally speaking? (See figs. 12-22.)
The dictionaries, mathematical or otherwise, aren’t much help.
They give definitions for which counterexamples are easily pro-
vided.

Encyclopaedia Britannica, 11th ed.: A spiral is a curve that
winds around a fixed point.26

American Heritage Dictionary: Locus of a point moving around
a fixed center at a monotonically increasing or decreasing dis-
tance.

An old scientific dictionary in my library, whose cover was
ripped off: Spiral — a term used generally to describe any ge-
ometric entity that winds about a central point while also re-
ceding from it.

James and James’ Mathematical Dictionary: Spiral — No entry.
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d = 5exp(.515); 2 = z + dz/|z|.

What is a discrete spiral? When can an infinite sequence of
points in the plane or in higher dimensions be organized into
a spiral? (In the illustrations in this book, we very frequently
present only a set of points without any attempt to join them
sequentially by a curve.)

What is a fractal spiral? I consulted three books on fractals.
Though there were pictures, there was no definition.

How does one proceed from a common, perhaps visual experi-
ence, to a mathematical definition, or at least to a common but
perhaps unspoken set of agreements? What is a straight line?
What is a curve? What is a number? What is a set? What is
a polyhedron? (If you want an amusing and deeply philosophi-
cal discussion of the historical attempts to define a polyhedron,
read Imre Lakatos’ masterpiece Proofs and Refutations [Lakatos
1976].) What is a quasi-crystal??” What is a spiral tiling??® What
is probability? What is entropy? What is chaos??°
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d = floor(7 * rand); z = z + i%2/|z|.

One makes normative definitions, that is, definitions that pre-
serve some desirable property. For example, as emphasized by
Lakatos, in defining a polyhedron, one would like the Euler-
Descartes theorem on vertices, edges, and faces to survive the
definition. There must be a sense in which a definition, once
promulgated, proves fruitful and stabilizes. This process may
take centuries, millennia; and since a definition is necessarily a
limitation — a finitization — the process is always unsatisfactory
and never ending.30

Would you say that the equation of a spiral cannot, in rect-
angular coordinates, be algebraic?3!

Would you say that the product of two spirals is a third
spiral?32

What transformations would you say preserve spirals? Such
transformations form a semigroup. Perhaps there’s a clue. Sure-
ly, the affine groups preserve spirality.33
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Would you say that if S is a spiral, its image under a diffeo-
morphism or a homeomorphism is also a spiral?

Would you say that the limit (in some sense) of a sequence
of spirals is a spiral?

Would you say that if S is a spiral, and if you change a finite
part of it in any way, it remains a spiral?

Would you say that if S is a spiral and you broke it in two
like a cookie, the half would be a spiral?

Would you say that if you differentiate S, it remains a spiral?
Would you say that if you take two (discrete) spirals and form
their Kronecker product, a spiral will result?3* (See figs. 10,
11a, 11b.) Note a spider spiral, integrated and differentiated?3
(See fig. 9.)

It makes an interesting graphical exercise to take several el-
ementary spirals and subject them to the functions that are
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Figure 16: A labyrinth spiral.

commonly available in a computer package such as MATLAB.
(See figs. 29a-31.)

Would you say that a curve is a spiral if it spins around
indefinitely? Can a closed curve be a spiral?

How does one distinguish spirals from what some writers have
called volutes, whorls, meanders, wanderings, doodles, noodles,
tangles, or explosions? Why not introduce the term and concept
of “spinner,” following the example of E. Cesaro, who renamed
Cornu’s spiral the clothoid?36

Surely, you would not want a spiral to be a primitive un-
defined notion the way a point is. Then why all the wishy-
washiness about its definition?

Listen to the words of Newton’s teacher, Isaac Barrow
Mathematicians “take up for contemplation those features of
which they have in their minds clear and distinct ideas; they
give these appropriate, adequate and unchanging names. ...”

Brave words, spoken from the point of view of the “Monday-
morning quarterback.” Perhaps, as opposed to, say, the notion

37
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Figure 17: Chicken-wire spiral.
a = exp(mi/4); b =sin(j) +sinj/5; z = az + bz/|z|.

of a group, which has been quite stable for almost two centuries,
mathematicians do not yet have “clear and distinct ideas” about
spirals. Perhaps it is not important; perhaps it would be coun-
terproductive to introduce a definition.

But the story is much more complex. Perhaps part of the
answer lies in an observation of Charles Sanders Peirce. Peirce
once wrote that technical words should be introduced that are
“...so unattractive that loose thinkers are not tempted to use
them.”38

Now “spiral” is an ancient word, an attractive word. It has
warmth, juicyness, onomatopoeia; it suggests the lively playful-
ness of the universe. Everybody loves a spiral, wants to have
a spiral of their own.3? We refuse, therefore, in the terminol-
ogy of philosopher W. V. O. Quine, to allow its meaning to be
“regimented.” 40
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Of course, mathematics has ways of accommodating all tastes.
Mathematics slaps on its objects adjectives such as almost, sub,
semi, super, quasi, alpha-quasi, pseudo, true, faithful, fuzzy,
ultra, meta, strong, weak, degenerate, standard, generalized,
pre-, -like, -oid, incomplete, and hundreds more. And of course,
these adjectives can be piled up or multiplied, like so many
operators, so as to produce, for example, a weak, generalized,
fuzzy, alpha-quasi pre-spiral.4!

But let me put some samples on display and ask you whether
or not you would call these figures spirals.4? (See figs. 9-22.)

In the programs for the figures that follow, j stands for the
iteration number, and the programs are given in quasi-MATLAB
notation.

You may not see “spirals” in these figures?® and in some
that follow. You may see instead comets, flowers, bugs, neb-
ulae, pinwheels, meanders, explosions. Many of these figures
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Figure 19: Pyrotechnic spiral.
w = .7896;p = 1.1;d = exp(wiwjP); z = z + dz/|z|.

are instances of the “generalized spiral of Theodorus,” and we
have therefore arrived at a neat theory that unifies bugs and
cosmic dust. But the closest I will claim to bona fide applica-
tions at the moment is to point out that the difference equation
for the spiral of Theodorus (see Lecture II) is identical to re-
sult of applying the Euler method for the numerical solution
of the differential equation 2’ = z/|z|, with a step size h = 1.
The spiral that emerges (instead of the true solution, which is
a circle) is a standard demonstration of the truncation errors of
the discretization process.4

There is another approach; a modern approach to deciding
what a spiral is. Build yourself a “spiral recognizer.” Ask a
hundred people to draw pictures of spirals and pictures of non-
spirals. Then write a program that allows the computer to dis-
criminate between the spirals and the nonspirals. This is easy
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Figure 20: Sums of quadratic exponentials inspired by the
carving on an ancient monumental stone from Gottland, Sweden.

r = .02343; 5 = .0959(1 + i); w = w + exp(rj2); v = exp(sw); plot v.

to do: Just discretize the curve and consider it to be a point in
hyperspace in a finite (and not too large) number of dimensions.
Then go into the stacks of your science library or sit in front
of your terminal and pray to the Shade of Archimedes that the
two sets — the spirals and the nonspirals — can be separated by
something simple such as a hyperplane. Or a hyper-something.

Well, that does not seem to be the way it works. How does it
work? I want to teach a computer what a spiral is.

So I inquired of Dr. Kevin Manbeck, who has been working in
my department on identification problems of arteriograms (of the
heart). His work involves such things as dynamic programming
techniques, and he answered me along the following lines.45

There would be two phases to the process. The learning phase
and the discriminator phase. In the learning phase, we would
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Figure 21: Mendés-France’s Tasmanian noodle (thickness added
for aesthetic reasons). Courtesy of M. Mendés-France.
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Figure 22: Spiral galaxy templates (prototypes). From
B. D. Ripley and A. I. Sutherland [1990)].

need first to work forward from a few templates of what you
might call standard spirals.

Then we would need to specify what are the allowable trans-
formations or perturbations. Having done this, we could move
forward and create images we would call spirals. Then, in the
discriminator phase, given a putative spiral, we could go back-
ward and ask whether it conformed to some allowable template
modulo the allowable perturbations.

I answered: “Thank you. But there are days when I think
I have an infinity of spiral templates in my head. Moreover,
I haven’t been able to make much progress in specifying all
the transformations I think might be allowable. There are even
days,” I added, “when I think that all curves are spirals.”

“In that case, wouldn’t you say that the problem of discrim-
ination is trivial?”

Properly rebuffed, I retorted that I thought one of the ma-
jor problems of the computerization of mathematics was to get
a computer to recognize automatically what was mathematics
and what wasn’t.46






Lecture 11

Lessons from Euler’s Ghost

I return to what, if we are prepared to believe the fantasy of Herr
Anderhub, may very well be the first spiral discussed in a math-
ematical context: Professor Hlawka’s Quadratwurzelschnecke. 1
propose to call it the spiral of Theodorus. After all, if it is the
Ur-spiral, the granddaddy of mathematical spirals, it deserves
a classical name.

I had better begin with a word about Theodorus. Not too
much is known about this gentleman.*” His approximate dates
are 465 to 399 B.C. (so he lived two centuries before Archimedes).
He was born in Cyrene, which was then a flourishing and sub-
stantial Greek colony just south of Greece on the North African
coast. Theodorus was the teacher of both Plato and Theaetetus.
He started out life as a philosopher and switched to mathemat-
ics.

I place the Theodorus spiral in the complex plane and define
its vertices z, in iterative fashion:

Zntl = 2p + izn/lznlai = \/:1, (2'1)

where 29 = 1, for example.
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Now this is a first-order (system, if regarded in real coordi-
nates) nonlinear difference equation.*® But since we are com-
pletely aware that the spiral was used to create the square roots
of the integers, we know that

|zn] = VR + 1. (2.2)

We can therefore replace the original equation (2.1) with
Znt1 = (1+3/vVn+1)z,,n=0,1,2,...,3, (2.3)

and this is a linear, homogeneous difference equation, but with
nonconstant coefficients. Recalling that the factorials n! arise
from a linear, nonconstant difference equation,

Znt1 = NZn, (2.4)

and that the gamma function lurks in the background of (2.4),
we anticipate that interesting difficulties lie ahead with (2.1) or
even (2.3).

We can write immediately from (2.3) a nice formula for z,:

n

zm = [J (1 +iVk), (2.5)

k=1

and on this basis, or on the basis of (2.3), we can study ini-
tially what I shall call the discrete spiral of Theodorus (Fig. 1).
Equations (2.1) or (2.3) are also easy ways of computing it and
getting a picture.

In Lecture I, we have already mentioned some facts about z,.
Now the problem suggests itself immediately, just as it did in
1729 to Christian Goldbach in his correspondence with Euler:
How does one interpolate to the values z, for noninteger values
of n?74% Stated differently: How can we draw a continuous curve
through the sequence of points zg, 21, 22,...7

From the viewpoint of general interpolation theory, where’s
the problem? Draw the curve any way you like, and there’s an
end to the matter. Of course, there are an infinity of ways in
which you can do it. One simply defines a policy or a strategy.
The graphics facility of my MATLAB matrix package has its own
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Figure 23: Continuation of linear segment via the Theodorus
difference equation.

default policy and will oblige by connecting up the points au-
tomatically with straight line segments. Of course the resulting
curve will then have corners.

Oh, you want smoothness? Well, then, why don’t we employ
parametric cubic splines? (A cubic spline is a function that is a
piecewise cubic and is of continuity class C2.)%°

But demands on the interpolant might still be multiplied.
It might be required that the interpolant satisfy the difference
equation (2.3) for noninteger values of n. It might be required
that the interpolant be analytic or that both of these hold si-
multaneously.

If only the first condition is required, we may proceed as fol-
lows. Define a continuous curve from 2y to 2; completely ar-
bitrarily, and use the difference equation to fill in the values
between z; and 29, 29 and z3,....
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Figure 24: Continuation of semicircular segment via the
Theodorus difference equation.

The adjoining figures show what happens when you start out
with a straight line segment (which seems a very natural thing
to try), and with a semicircle (which seems unnatural). Note
the folding of the arc that occurs as the extrapolation via the
difference equation moves forward. This suggests a bit of study.

In fig. 23, a straight line is drawn through the first two points.
The figure is then filled in using the Theodorus difference equa-
tion (2.1).

In fig. 24, the first two Theodorus points are the endpoints of a
semicircle. The remaining figure is filled in using the Theodorus
difference equation (2.1).

We may also adopt a mixed strategy of interpolation: inter-
polate by means of a parametric cubic spline, passing through,
say, fifty points, and then use the portion between zy and z;
to continue the curve forward by the difference equation. This
policy seems to yield good results as far as I have carried it.
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Figure 25: Discrete spiral of Theodorus interpolated by cubic
spline through six points and carried forward.

A parametric cubic spline has been passed through the first
six Theodorus points. The first two points are thereby con-
nected by a certain arc. The remainder of the figure is completed
by using the difference equation on this arc. Note the smooth-
ness and the fact that visually the curve is “spirally convex,”
whatever that term might mean mathematically.5!

But the mathematical heart may require still more: an ana-
lytic solution in the sense of the “special function theory” of the
eighteenth-century mathematicians. Those fellows started from
finite pileups of factors and solved the interpolation to noninte-
ger values by means of infinite pileups of factors, using a certain
cancellation trick. Having recalled and studied Euler’s infinite
product for the gamma function

[(2/1)"1/(n + 1)][(3/2)"2/(n + 2)][(4/3)"3/(n + 3)] - -- =(g!é)
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it occurred to me how to proceed with the difference equation
(2.3), and I wrote down

T(a) = ﬁ(l +1i/VE)/(1 +i/VE + a). (2.7)
k=1

Note that the individual terms, ux(a), in (2.7) are, asymptot-
ically,

uk(a) = 1+ 0(k™/2), (2.8)

so that the product is absolutely (though very slowly) conver-
gent.

The function T'(a) will be called the Theodorus function.5?
(See fig. 26.) It is readily observed that it satisfies the difference
equation (2.3), it satisfies |T'(a)] = va +1 for a > —1, it is an
analytic function of @ and allows an analytic continuation of T
into the complex a-plane.

Setting H(a) = T'(a)/T(a), one arrives at

H(a+1) — H(a) = (-=i/2)/((a + 1)*? +i(a+ 1)/?), (2.9)

which is a linear, constant-coefficient, nonhomogeneous differ-
ence equation. The function H(a) may be considered analogous
to the ¥ (or digamma) function in the theory of the I" function.
In the case of the 1 function, the right-hand side is 1/a and
hence much simpler than (2.9).

I am proposing the Theodorus function (2.7) as the solution
to the difference equation.

Now we are in a sort of dilemma. We may add any function
of period 1 whatever to a solution of (2.9) and arrive at an-
other solution. So there are an infinity of solutions; there are
even an infinity of analytic solutions.’® More than this, there
are several disparate general theories of the solution of such
a difference equation. Among them, we may mention the the-
ory of N. E. Norlund [1924; 1929], the theory of E. Artin [1931]
(worked out for logI" and greatly generalized by W. Krull [1948,;
1949]). These authors speak of “principal solutions,” “normal
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Figure 26: An analytic spiral of Theodorus, as computed from
the infinite product (2.7). Courtesy of W. Gautschi.

solutions,” and so on. There are also uniqueness theorems along
the line of Laugwitz and Rodewald [1987].54

Problem: In what way is the Theodorus function (2.7) dis-
tinguished from among the solutions of the difference equa-
tion? Certainly it is distinguished in terms of the simplicity
of derivation, but what distinguishes it organically? Is it a so-
lution that is “natural,” or “nice,” or, in the terminology of
automotive design, “sweet”; the solution that our eye seems to
“impose” 7%°

The analogous question for the gamma function was not an-
swered until 1922. Now known as the Bohr-Mollerup—Artin the-
orem, it says that the Euler gamma function I'(a) is the unique
function defined for a > 0 for which I'(1) = 1, which satisfies
al'(a) =T'(a + 1), and for which logI'(a) is convex.’¢

It would be nice to have an analogous characterization of
T(a).
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In possession, then, of a “brand new” special function T'(a),
I wanted first of all to compute it, and, regarding its slope as
it crosses the 0° ray as a fundamental world constant and call-
ing this world constant T" in honor of Theodorus, I wanted to
determine T to about eight or ten figures to the right of the
decimal point. A bit of paper work revealed:

oo
T = "1/(k%+ k25 (2.10)
k=l

I wanted ultimately, if possible, to relate T'(a) to individual
members of that large family of special functions whose proper-
ties have been worked out in depth and that, at one time, were
certainly part of the working vocabulary of all analysts.

I tackled the computation naively. Computer power is so im-
mense these days that one wonders whether, in a particular case
at hand, it pays to waste time on being clever.58

The series and products above converge like n=1/2, where n
is the number of terms taken. So I turned on the switch and
let the computer run to a million terms while I went out to
lunch. This, of course, was not enough: I hardly got three sig-
nificant figures. I applied a Richardson speedup procedure and
got three additional figures. Wanting rather more figures (you
will see why in the Notes) and being both impatient and lazy, I
contacted George Phillips at the University of St. Andrews, who
is an expert on how convergence can be speeded up. I knew that
Phillips had shown how, if Archimedes had been really clever in
his computations of m, he might have squeezed out fifteen more
correct decimal digits out of the raw data that he derived from
polygons of ninety-six sides. If Phillips could do that much for
Archimedes, he certainly could do as much for Theodorus.??

Phillips was most obliging and, by return mail, sent me the
following equation, which he obtained by using the Euler—
Maclaurin summation formula%:

T =T, 1+R,, (2.11)



Lecture II: Lessons from Euler’s Ghost 41

where Tj,_; is the sum of the first n — 1 terms of (2.10), while
the remainder R, is approximated by

R,=n"Y2(2 - (1/6)n"! + (1/40)n=2 + (1/168)n =3
—(5/1152)n"% — (3/1408)n =5

—((303/66560)n=C) + 0(n="-°). (2.12)
This strategy is very efficient. With n = 11, it yields the value
T = 1.860025078 (2.13),

which is a remarkably good result for so little computation.
(The last digit to the right of the point should be 9.)

Returning to my earlier approximative attempts, a mystery
emerges: If you take the discrete spiral of Theodorus and spline
it, say, through its first six points, you get a lovely curve that
fits the points. However, will or will not this spline coincide with
the “canonical” curve given by the infinite product (2.7)?

This question is nice because either way you answer, you have
a mystery: something to explain. If it does, why does it? If it
doesn’t, why doesn’t it?

As mentioned, I put a spline through the first six points of
Theodorus. I got a very nice curve that appears spiral-convex.
But its slope at the beginning (a = 0) is 2.0729..., whereas
the slope of the infinite product (2.7) is 1.860025.... End of
the matter. (See fig. 25.)

Could we do better with splines with more points or splines
of a higher degree? But recall: Cubic splines that simply fit a
bunch of points still have two degrees of freedom left. Perhaps
the “cantilevered” spline in which the initial and final slopes
are specified is what one should work with.

Computation is one thing, and the identification of T'(a) is
another matter, and it still eluded me. The Spirit of Euler in-
fused me constantly, but contributed nothing toward the so-
lution. The mistake I made was that I had been consulting
the wrong Swiss mathematician. I should have consulted the
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Swiss-born-and-trained American mathematician, Walter Gaut-
schi, who walked into my office one day before giving a lecture
at our colloquium. I showed him the series for T', and within the
week, he had computed T to twenty places in what I consider to
be an absolute gem of numerical analysis®!; and perhaps more
importantly, in the course of this work, he had also identified
T(a).%? This development is presented in Supplement A. Here
are a few highlights.
Note that

1/(sY% + s%%) = (1/sV3)(1/(1 + 5)) (2.14)

and therefore the left-hand side of this equation equals E(# *

e t), where L designates the Laplace transform and * the op-
eration of convolution.

From this beginning observation, Gautchi was able to express
T, and similarly for T'(a), as

2 o0
T- /0 £1/2¢(t)g(t)dt, (2.15)
where e(t) is the Einstein function
e(t) =t/(et - 1), (2.16)
1
9(t) = —\/—ZF(\/Z)’ (2.17)

and where F is Dawson’s integral®3

F(t) = exp(t™2) /0 ' exp(t2)dt. (2.18)

Now, to compute T', Gautschi suggests that one use Gaussian
rules of approximate integration with either the weight t'/2e(t)
or the weight t'/2 exp(—t). The former is a weight function for
which the recurrence coefficients of the related orthogonal poly-
nomials are not expressible in closed form; hence a special com-
putational strategy must be invoked — one that has been worked
out in great detail by Gautschi (see Supplement A).64
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Gautschi’s basic identity may be written symbolically so as to
display a lineup of famous names: the differentiated argument
of

Theodorus = Laplace (Einstein - Dawson).%

The “identification” of T'(a) in terms of well-studied special
functions opens up many questions such as: What is its charac-
ter as an analytic function of a complex variable a? What other
(if any) functional equations does it satisfy? Is the constant
T transcendental? Is T'(a) transcendentally transcendental, as
one might suppose, thinking that (2.3) is more complicated than
(2.4)766

Allowing one’s imagination to wander freely, since there are
connections in this part of special function theory to the Rie-
mann zeta function, wouldn’t it be grand to be able to come
up with some fact about the spiral of Theodorus whose truth
depends upon the assumption of the Riemann hypothesis!

Before leaving the topic of continuous (or fractional) interpo-
lation to the orbit of a difference equation, one should mention
a certain generalization of the spiral of Bernoulli that, for short,
might be very well called the spiral of Bernoulli-Schroeder. This
relates to the iteration of functions of a complex variable z that
are analytic in a neighborhood of z = 0.

Suppose that f(z) = az+-- - is analytic in a neighborhood of
z = 0, and suppose further that we can find a function H(z) =
z+---, also analytic in a neighborhood of z = 0, and for which

H(f(2)) = aH(z). (2.19)
Again, in a neighborhood of z = 0, this leads to
f(z) = H Y(aH(2)). (2.20)

By analogy to matrices, we can say that H “diagonalizes” the
function f or that f is conjugate to the linear function L(z) =
az under H. The function H will be called the Schroeder
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function for f. If now, we have a sequence of points 29, 21,. ..
defined by

Zn+1 = f(2n); 20 = starting point; (2.21)
then, formally at least,
zn = H Y (a"H(%)),n=0,1,2,.... (2.22)
If one now sets a = rexp(if),
2(t) = H Y (r* exp(itd) H(z)), —00 < t < 00 (2.23)

gives us a continuous interpolation to the discrete orbit and
which satisfies the difference equation 2(t + 1) = f(z(t)) for
all ¢t.

If 0 < r < 1, then z(t) will be called the spiral of Bernoulli-
Schroeder corresponding to the iteration function f and the
initial value zg.

When r # 1, the Schroeder function exists and is constructible
by iteration. When r = 1, the theory of the Schroeder function
is very deep, leading to the problem of small divisors and the
famous theorem of Siegel-Moser. It is known that for almost all
a on the unit circle, a Schroeder function exists.57



Lecture III
Theodorus Goes Wildss

“Man muss immer generalisieren,” wrote C. G. J. Jacobi. Math-
ematicians should always generalize, and moved by this direc-
tive and without excessive exertion of the imagination, one
writes down

Znt1 = aZp + bz /|20, (3.1)

for a and b arbitrary complex numbers, and hopes that this
yields something interesting. It does. The dynamics of (3.1) are
nontrivial.

One may even move out of the space of one complex variable
into a vector formulation and write down

Unt1 = Avp + Bup/ || vn || +¢, (3.2)

where A and B are square matrices (with real or complex ele-
ments), ¢ a column vector, and v, a sequence of column vectors
of appropriate dimension, and the norm equals some accessi-
ble and interesting vector norm. A possible interpretation of
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Figure 27: Pinwheel spiral (construction lines added).

(3.2), with ¢ = 0 (or of any of the previous special cases), in
the spirit of mathematical modeling was pointed out to me by
Neil Miller: vy, is the current state of a number of interacting
populations (say, age-classified populations). A is the geometric
interpopulation growth rate matrix. Since vp/ || vn || has norm
1, the term Buv,/ || vn || can be regarded as an migration term
of bounded size and distributed linearly according to “propor-
tion” of the individual strengths of the current populations. The
matrix A might be assumed, for example, to be a Leslie matrix
(all nonzero elements in the first row and first subdiagonal) and
the 1-norm used.%?

The full panoply of matrix theory is now available to suggest
problems, and MATLAB, an extremely friendly matrix package,
is available for numerical experiments.
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Figure 28: The marigold spiral.
Znt1 = 02 + b2y /|25]
a = exp(mi/4) = (1/v2)(1+1)
b=a

=a.

One could even contemplate a formulation that might occa-
sionally be more convenient:

Gup41 = Avp,B + CupD/ || vn |, (3.3)
where all the symbols now represent square matrices’®; or the
form

where p,, is a sequence of scalars. And, of course, one can also
study stochastic versions of these equations.”

However, one must keep the generalization process under con-
trol, for if one generalizes just a bit too much, one can, in
theory, generate all possible sequences of vectors from such a
recurrence.”?
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Figure 29a: Integrated and differentiated marigold spirals.

Returning to the “complex variable case” (3.1), notice that
it contains within itself the discrete spiral of Theodorus, (a =
1;b = i), the discrete spiral of Bernoulli, |a| # 1 and Im(a) #
0;b = 0, and the discrete spiral of Archimedes, (|a] = 1,a #
1,—1;b = sa,s > 0). This a nice unification.

Thus, for example, the “pinwheel spiral” emerges from the
selection a = .5,b = .5i. (See fig. 27.)

The construction lines suggest how the iterates can be created
with a ruler and a right angle.

Some of the iterations generate figures that are quite strik-
ing, visually speaking, particularly when the discrete values are
plotted as discrete dots and are not connected up by line seg-
ments. The eye then “connects” up the dots in its own way,
often organizing the total figure into many spirals, etc. (See fig.
32.) This phenomenon is related to what in signal processing is
called the aliasing that results from discrete sampling.”
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Figure 29b: 57 + M + 3TM; M = marigold, T = Theodorus.

With a = exp(wi/4), b = @, one obtains a mathematical
marigold, (why shouldn’t we call it the marigold of Theodorus?
with a beautiful inner texture. (See fig. 28.)

The successive rings of petals are particularly nice. Now that
you know what the iteration produces, could you have predicted
it from the equation? What can be said theoretically about the
rings of petals?7 Is it really important to prove anything about
them theoretically?

It is interesting to consider a fringe area where the eye/brain is
confronted with the dilemma of whether to organize the material
into one “traditional” spiral or into multiple “fan blade” spirals.
(See fig. 31.) My experience is that upon steady observation, the
organization shifts from one to the other and back again, and
constitutes yet another instance of a visual paradox or illusion.

Notice also the recurrence

|znt1|2 = |a|?|zn|? + 21e(@b)|2n| + |b]%. (3.5)
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Figure 30: Fifth power of the marigold.

This means that the dynamics of |z,| follows a one dimen-
sional real iteration (the square root of a quadratic). This carries
with it the possibility that orbits (shall I call them spirals?) pos-
sess fixed points, cyclic points, period doubling, invariant curves
and measures, bifurcation, strange attractors, basins, equilib-
rium distributions, and so forth; in short, the whole panoply of
features associated with chaos theory that have received intense
study in the past twenty or so years.”

The values a = 1.3192 + .4751¢; b = —a; zp = 1.5 generate
Figure 33. Chaotic? Yes, and yet the eye discerns patterns. The
eye “wants” to see. It would be an interesting exercise to reduce
what it sees in this figure to a purely verbal description; two
rings surely and with increasing density as one approaches the
center.

So chaos lurks just a short distance from Theodorus. I shall
leave it to others to discuss this question properly; for example,
to Jeffery Leader, whose doctoral thesis deals with some aspects
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Figure 31: Marigold symmetrized in kaleidoscopic fashion.

of this question (particularly the case A = 0 in (3.6), which is
related to the power method for eigenvalue computation); to
Arieh Iserles, who has undertaken a profound study of these
iterations (see Supplement B); and, of course, to whoever wants
to pitch in.

It should be remarked that the eye discerns many aspects
to the patterns that are generated by recurrence; for example,
there are aspects that have to do with the “texture” of the
figure. Until recently, such aspects have been almost totally
ignored in favor of those qualities that arise and are of proved
historical importance in classical dynamics.”® But presumably,
the textural aspects are also open to discussion, to definition,
and to theoremization. A full classification of the orbits of (3.2)
should take into consideration all the “natural” distinctions that
the eye makes, and this would be very difficult indeed.””

A note on figures in dimension > 2: Employing standard tech-
niques of computer graphics, one may exhibit projections of
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Figure 32: Illusion spiral.
Znt1 = aZp + b2 /|2n|; a = .6 + .87, b= .65+ .7599i.

higher-dimensional sequences and animate them, making mov-
ies, for example, by rotating the projections about selected axes.
The results are often spectacular. One may also render them by
applying “skin” in a variety of ways, applying color, and em-
ploying reflectivity strategies. It would be an interesting prob-
lem to ask for analytic interpolants for these higher-dimensional
objects.”®

It should be further remarked that in “most” instances, but
with some interesting exceptions, the root-quadratic iteration
(3.1) does not possess a simple analytic solution (v/n + 1 in the
Theodorus case), and so the passage from a nonlinear system to
a linear system, and from a discrete orbit to an analytic orbit,
cannot be worked out and linked to special function theory
along the lines of Euler-Gautschi.
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Figure 33: Chaos (?) spiral.

We now take a closer look at the iteration
Unt+1 = Avp + Bup/ || vn || (3.6)

First, some figures. Figures 34-39 derive from the work of
Jeffrey Leader. Figures 40-46 derive from the work of Arieh
Iserles.

As far as I am aware, a complete analysis of this iteration has
not yet been made.

Some general observations. It is important to eliminate as
many parameters as possible. Call (A, B; v,) a Theodorus triple,
meaning matrices and vectors that are linked by the basic dif-
ference equation above. Let o be a complex scalar and Q a uni-
tary matrix. Designate the conjugate transpose by *. Then if
(A, B;vy,) is a Theodorus triple, so is (QAQ*, |o|QBQ*; 0Qvy,).
We %)uld factor out the group of rotations and scalings this
way.
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Figure 34: Penta-fanblade spiral.

r=.2347, s = 9721, t = 1.3747, u = —.3319,
A=[r,s;—s,7], B=[t,u;—u,t].

B = 0. This is the linear case and is completely worked out
theoretically. But even in this case, there may be special prob-
lems that suggest themselves and could be attacked. For exam-
ple, the numerical handling of Jordan blocks is highly unstable
and notoriously difficult. (MATLAB will not Jordanize a nondiag-
onalizable matrix.) The Book of Computation (including even
the chapter on the simple arithmetic operations +, —, -, /)
seems never to be closed. New generations of computers (e.g.,
vectorization, VLSI) create new challenges and occasionally dis-
inter old possibilities.

One should also remark, en passant, that if det(A) # 0, the
problem of analytic interpolation to the orbit v, has a natural
solution as follows. For all square matrices M, exp(M) exists,
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Figure 35: Exhibiting invariant curve.
A=[91,.71;-.65,.58]; B = —A.
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Figure 36:

A = [:2128,.1304;.7147,.0910]; B = transpose (—A).

Exhibiting invariant curve.
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Figure 37: The double cornucopia spiral.
A =[51,-.1;.08,-.37); B =[-.12,.71; —.22, — 45].
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Figure 38: Double wreath.
A=[1,-11,1); B=[-.9,.8;-.8,-1].
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Figure 39: Steering wheel.
A = [-.1473, .6316; .8847,.2727]; B = transpose (—A).

and if M and N commute, then exp(M) exp(N) = exp(M + N).
If det(A) # 0, there exist matrices — call them log (A) — such
that exp(log(A4)) = A2 Select such a log(A). For —co <
t < 0o, a fractional power of A - call it A® - can now be de-
fined by A' = exp(tlog(A)) and satisfies the law of exponents
AtA* = AYT¥, Moreover, if t is an integer, then A? coincides
with the usual definition of a matrix power. Since in the case
under discussion (B = 0), we have v, = A", then v; = Alvg
provides an analytic interpolation that satisfies the difference
equation v = Ay, —00 < t < 00.

If det(A) = 0, problems may arise with the interpolation
problem as posed. For example, if A is nilpotent, (i.e., there
exists an integer m > 2 such that A™ = 0 and A™~! # 0),
then v, = 0 for n > m, while in general, v, # 0 for n < m.

A = 0. This is related to the power method for the eigen-
values/vectors of B. If B is nonsingular, the orbit is the
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Figure 40: Invariant curve.
A=3sP, s=.7, P=[1.5,.71;-.41,.58], B= —A.

(hyper)ellipse z* Mz = 1, where M = inv(BB*)~. The lengths
of the semiaxes of the hyperellipse are precisely the singular
values of B. The case of B singular has been studied in some
detail by Leader.

The nonconvergent case (where B has several dominant com-
plex eigenvalues of equal modulus that are not roots of unity
or multiples) looks interesting chaoswise and could use some
additional study.

Some simple but interesting things can be had on the cheap
by working with vector/matrix norms, || - || .

Theorem. If || A|l < 1, then any orbit is bounded. If ||A|| > 1,
then an orbit may be bounded or unbounded.

Theorem. If the spectral radius of A is greater than 1, there is
a vector vy for which the orbit is unbounded. However, it may
happen that || A || > 1, and there is a bounded orbit.%!
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Figure 41a: Butterfly.
A=sP, s=.95 P=[15,.71;—.41,.58]; B=—A.

Theorem. If |A|| <1, then ||vp]| < en+d.
Thus, the rate of growth is at most Archimedean.
Theorem. If B is nonsingular, then
[ (vns1 = Awg)|| 2 1/||B7Y|.

Hence, we cannot have limv, = 0. If vy is a fired point, then
/(I T=ANB D<o I<I BT -4
Hence, if A =1 and B is nonsingular, no fixed point is possible.

What are necessary and sufficient conditions that the itera-
tion be bounded? As far as I am aware, this question is still

open.
What are necessary and sufficient conditions that the orbit
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Figure 41b: Multi-butterfly.

converges to a (finite) fixed point? If the iteration has a fixed
point, then that point is a generalized eigenvector of the pair
(I-A), B with a positive eigenvalue. If, for example, B~!(I— A)
has no positive eigenvalue, then v, cannot converge.

The following “pencil theorem” might be brought into play to
produce a nonexistence theorem for fixed points: Let A be posi-
tive definite symmetric. Let C be positive semidefinite symmet-
ric. Then the roots of det(yA —C) = 0 are real and nonnegative
(see [Lancaster 1965, p. 100]).

If B is rank-deficient, there may be a finite number, an infinite
number, or no generalized eigenvalues. This case therefore leads
to a variety of possibilities.

The case A and B unitary deserves special treatment. If A
and B are unitary, (AA* = I; BB* = I; and * indicates the
conjugate transpose), and if A*B+ B*A = ul, u = scalar, then,
as is easily shown, there is a (one-dimensional) iteration for
|| Vo ||- The case u =0, A and B unitary, A*B skew-Hermitian
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Figure 42: Palette.
A=sP, s=1, P=[1.5,.71;—-41,.58]; B= —A.
1 , . . . — .
a5 a4 s o0 o5 1 15 2
Figure 43: Spooky palette.
A=sP, s=125 P=[15,.71;—.41,.58]; B=—A.
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Figure 44: Mask.
A=3sQ, s=1, Q=[1.1,.71;-.65,.58]; B=—A.

is already interesting and includes the selection

00 01

00-10
A=1,B=Y = 01 o00l"

-10 00

which may be regarded as the “two complex variable” Theodor-
us. If || vg || = 1, then || v, || = v/n + 1, so that the system can be
reduced to one that is linear but with nonconstant coefficients.

In the case under discussion, Iserles makes a full analysis of
the iteration and shows, among other things, how, in even di-
mensions, to select A and B so that the normalized iterants
will be equidistributed on the direct product of two circles, and
hence cannot be equidistributed on the surface of the 4-sphere.

If A and B are unitary and AB* is skew and A and B
commute (they need not commute: Just take B as a unitary
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Figure 45: Embossed shield.
A=3sQ, s=1.15, Q=[1.1,.71;-.65,.58]; B = —A.

matrix at random and A = Y B), we may write an analytic
interpolation formula for the multidimensional Theodorus in a
form analogous to (2.7):

v(a) = A+—B>(A+——B) .
(a) k]‘;ll ( vk vVk+a

Interesting special cases include the n-dimensional (complex)
marigold where A = wF, B = A*; w* = —1, F = the (complex)
Fourier matrix of order n; that is, the matrix that performs the
discrete Fourier transform. If || vg || = 1, then, again, || v, | = /n.82

The Case B = aA
Among Iserles’ many results in Supplement B, my favorite (a

hard choice!) relates to the existence of limit cycles in the case
B = aA.
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Figure 46: Gift wrapping.
A = [1.0465, .8165; —.7475,.6670]; B = —A.

Theorem. In R2, if B = aA,a > 0, and if the spectral radius
p(A) > 1, the sequence v, diverges. If p(A) < 1, the sequence
lies asymptotically on a limit cycle.

Theorem. If B = —aA, and if p(A), the spectral radius of
A, 1s sufficiently small, then asymptotically and up to a linear
transformation, the orbit lies on an invariant curve I' defined
by an equation of the form
k=00
It = Z gr exp(itk0) /(1 + p~ L exp(itkd)), —-m <t<m,
k=—o00
and the “Fourier” coefficients g can be given an explicit repre-
sentation in terms of certain hypergeometric functions.
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Technical Developments






Supplement A

The Spiral of Theodorus, Special
Functions, and Numerical Analysis

Walter Gautschi

A1l. The Theodorus Function

The “Quadratwurzelschnecke,” as smoothed out by P. J. Davis
and represented in parametric form in the complex plane, has
the equation

0o 14 -t
z=T(a), T(a)= H —‘/f-—, a> -1 (A1.1)
=11t Zirg

(cf. Eq. (2.7)). It spirals inward into the origin as a decreases
from 0 to -1, and outward as a increases over positive values (cf.
fig. 26). Replacing « in (A1.1) by o + 1, and compensating for
it in the denominator product by shifting the index k down by
1, immediately yields the useful recurrence relation (cf. (2.3))

T(a+1) = (1 + )T(a), a>—1. (A1.2)

1
va+1
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The function T'() itself can be expressed in terms of infinite
series by taking logarithms in (A1.1) and calculating the loga-
rithmic derivative. This gives

T'(a 1
T(a) Z(k+a)3/2+z (k +a)

1
z(Ic+a(k:-|—a-|—l Z(k+a)3/2 (k + a)V/2’

The first series is easily summed, its nth partial sum being

Z":( 11 )_ 11
“\k+a k+a+l/ 1+a nta+l
and having the limit (o + 1)~! as n — oo. Thus,

T'(a) _1 _z_i 1
T(a) 21+a t3 = (k+ )32 + (k+ )/

Integration from 0 to a, noting that T'(0) = 1, then yields
y (o3
T(a) = V1+ aexp (%/ U(a)da) , (A1.3)
0

where

1
Ule) = Z(k+a3/2 (k+a)i/2

(A1.4)

In polar coordinates (r, @), therefore, the spiral has the para-
metric representation

r=vita,
1 re a>—1.
<P=_/ U(a)daa
2Jo

Straightforward calculus can now be used to determine the
more important geometric characteristics of the spiral, such as
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tangent vector, arc length, curvature, and so on. Inevitably, the
function U(a) in (A1.4) and its derivative

3(k+a)+1
(k+a)(k+a+1)2

U'(a) = —% i(k +a)"1/? (A1.5)
k=1

(in quantities of second order) will figure prominently in the
resulting expressions. For example, the line element turns out

to be

1 {1+ (1+a)2U%a))"?

ds = - ( ) da, (A1.6)
2 1+a

and the slope of the tangent vector to the spiral at @ = 0 (where
it crosses the positive axis for the first time) is given by

s 1
U©0) =Y =57 (A1.7)
= k3/2 + kl/2

the “Theodorus constant” in Davis’s terminology.

The infinite series in (A1.4), (A1.5) and (A1.7) all have one
thing in common: they converge painfully slowly! To illustrate,
take the series in (A1.7) defining the Theodorus constant and
compute its first million partial sums. Here is what you will
find:

n nth partial sum
10 1.2615 . . .
100 1.6611 . ..

1000 1.7968 . . .

10000 1.8400 . . .
100000 1.8537 . ..
1000000 1.8580 . . .

With luck, one gets U(0) ~ 1.86 to three decimal digits! But
what if ten correct decimals, or twenty, were wanted? Straight
summation clearly would be hopeless. In the following sections,
we develop a technique that is capable of computing such se-
ries to very high accuracy. (We will limit ourselves to twenty
decimals.)
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As far as computing the spiral itself is concerned (and also
U(a) and U’(a), for that matter), it suffices to restrict atten-
tion to the interval 0 < a < 1, since for the remaining values
of a, one can apply the recurrence relation (A1.2) in forward
direction for the outward, and in backward direction for the
inward, spiral. The arc {T(a) : 0 < a < 1} is thus seen to be
the core of the spiral — its heart, as it were — and it is also the
most difficult piece to compute.

A2. A Class of Slowly Convergent
Series and Their Summation
by Integration

Factoring out (k+a)~'/2 in the general term of the series (A1.4)

produces the simple rational function (k + a + 1)~! as second
factor. A slightly more complicated rational factor is exhibited
in the series for U’ in (A1.5). Both these series suggest consid-
ering a more general class of series, namely

oo
S=Y k"r(k), O<v<l, (A2.1)
k=1

where r(-) is a rational function,

r(s) = p(s) degp < deggq. (A2.2)

a(s)’
The shift k + a characteristic in the series of Section Al has
been ignored in (A2.1), but will be incorporated a little bit later
(cf. (A3.11)). Since shifting the index by a positive quantity
is easily accomplished, we may assume without compromising
generality that the zeros of the denominator polynomial ¢ in
(A2.2) all have nonpositive real parts:

if g(—a) = 0 then Rea > 0; (A2.3)

if this were not the case, we could in a preliminary step sum a
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few of the initial terms of the series (A2.1) directly and thereby
achieve (A2.3) for the remaining series.

Having generalized the problem considerably, we now proceed
to simplify it again! Any rational function of the form (A2.2),
with real polynomials p and ¢, can be decomposed into partial
fractions,

r6) =30 3 el +a) "

p m=1

Y (s +a0) ™ 4 Em(s 4 )" (A24)

Y m=1

Here the first sum extends over all real zeros (—a,) of ¢ (hav-
ing multiplicities m,), while the second sum is over all pairs
of conjugate complex zeros (—a,, —@,) (having multiplicities
m.). The coefficients are complex, in general, except for those
in the first sum, which are real. We assume that the decomposi-
tion (A2.4) has already been obtained; for relevant constructive
methods, see [Henrici 1984, §7.1]. It is clear, then, that we can
assume 7( - ) to have the form

r(s) = —l Rea>0, Ima>0,m>1, (A2.5)
(s +a)™

so that S in (A2.1) becomes

00 kl/—l

Our objective now is to transform the series (A2.6) into an
integral. There are many ways this can be done; we choose to
use the Laplace transform

(Lf)(s) = /0  emot £ (¢)dt. (A2.7)

Suppose we can represent the general term in (A2.6), say ay,



72 Gautschi
as the Laplace transform of some function f, evaluated at the
integer k,

ax = (Lf)(k). (A2.8)
Then

Sa =S [T “ktf(t)dt
k;ak kgl /0 e
= [T rmet S et ray

k=1

e,
0 t

et —1

assuming that the integral makes sense. Thus, letting

€t) = grt_—l (A2.9)

we have

i ag = /0°° e(t) - @dt, ar, = (Lf)(k). (A2.10)
k=1

This is the desired integral representation.

Integrals of the type (A2.10), (A2.9) occur frequently in prob-
lems of solid-state physics, where they represent quantities of
physical interest, such as the total energy of thermal vibrations
of crystal lattices. In this context, the function € in (A2.9) is
known as Einstein’s function. (Of course, € is also the gener-
ating function of the Bernoulli numbers.) It was these physical
applications that led G.V. Milovanovi¢ and the present writer
to investigate the computational problems associated with in-
tegrals that contain Einstein’s function as a weight function
(and also a related function named after Fermi); see [Gautschi
and Milovanovié¢ 1985]. Trying to find additional applications of
such integrals, we came across the summation procedure out-
lined above, almost as an afterthought, but at the time could
only provide somewhat contrived examples for its use. It is grat-
ifying to see that the procedure indeed has much greater utility
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than originally thought, as it is capable of dealing with the
whole class of series indicated in (A2.1), and indeed also with
the companion class of series having alternating sign factors.
Slowly convergent power series can be dealt with similarly by
applying the Laplace transform technique only to the coeffi-
cients of the series; for an instance of this, see [Gautschi 1991b)].

It remains now, however, to identify the function f in (A2.10)
for series of type (A2.6), and to discuss the numerical evaluation
of the integral on the right of (A2.10). This will be the topic of
the next two sections.

A3. Special Function Theory

We need to express the general term of the series (A2.6) as a
Laplace transform,

kL. (k—:T)m = (Lf)(k). (A3.1)

To do this, we apply the well-known convolution theorem (cf.
[Widder 1941, Theorem 12.1a]),

Lg-Lh = Lgx*h, (A3.2)
where
t
(g% h)(t) = / g()h(t — 7)dr. (A3.3)
0
Since,
v—1 __ 7
K= (ﬁl"(l - 1/)) (k),
—-m tm_l —at
(k + a) = Eme (k),
we then find that (A3.1) holds with f given by

1
1O = = ra =)

/t e_“(t_T)(t — 7)™ vdr,
0
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After a change of variables, 7 = tu, this assumes the form

tm—ue—at

f(t) = (m = DT =) /0 e (1 — u)™ "V du

and reveals the connection of f with Kummer’s function
M(a, 3, 2) involving parameters a = 1 —v, f =m+1—-v
and variable z = at (cf. [Abramowitz and Stegun 1964, Eq.
13.2.1]). Indeed,

Ft) =t"" gm1(t;a,v), (A3.4)
where
gn(t;a,v)
tne—at
= gn(t) = I‘(T+2_——1;5M(1 -v,n+2-vat), n=0,1,2,...,

Rea>0, Ima>0, 0<v<1. (A3.5)

For definiteness we assume that a # 0. (In the case a = 0,
the series (A2.6) is expressible, and therefore easily computable,
in terms of the Riemann zeta function.) The recurrence rela-
tion relative to the second parameter in Kummer’s function
[Abramowitz and Stegun 1964, Eq. 13.4.2] now immediately
yields a three-term recurrence relation for the function g, in
(A3.5), namely

In+1(t) = %H {(t + %H) gn(t) — sgn—l(t)} :

n=012,...
t—l

g-1(t) = m (A3.6)

It suffices, therefore, to focus attention on go(t) = e"*M(1—v,
2—v,at)/T'(2—v), which is expressible [Abramowitz and Stegun
1964, Eq. 13.6.10] in terms of Tricomi’s form of the incomplete
gamma function [Abramowitz and Stegun 1964, Eq. 6.5.4],

g0(t;a,v) = e™*y*(1 — v, —at), (A3.7)
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where
[ LR
A, THAT L. A3.8
T = f e (4338)
This is known to be an entire function of both its variables
[Tricomi 1954, Ch. IV]. Consequently, go is an entire function
in all its variables, and so is g, for each n > 0, considered as a
function of t. Putting (A3.1), (A3.4) and (A2.10) together, we
obtain

[o.¢]

(—k‘:r / tVe(t) - gm-1(t; a,v)dt, (A39)

Rea>0,0<v<l, m2>1.

(The formula (A3.9) holds also for a = 0, if one defines go(t) =
1/T(2—v), gn+1(t) = tgn(t)/(n+2—v),n =0,1,2,....) We have
managed to express the desired series as an integral containing
the weight function t™"e(t), with € given in (A2.9), and the
factor g,,—1, an entire function of ¢. This almost begs for the
use of weighted Gaussian quadrature. We will comply in the
next section, where the issues involved will be further discussed.
Here we conclude with two remarks.

We mentioned earlier that a shift in the summation index is
easy to incorporate. Indeed, a shift in the variable of the Laplace
transform corresponds to an exponential factor in the original
function,

(LF)(s +) = (L1 (1))(s). (A3.10)

Therefore,

yei t~ l/e—bt
(k+b)""" = £I‘(1 )> (k),
and in place of (A3.4), one obtains

f(t) = et gm_1(ta - b,v),
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hence, by (A2.10),

k v—1 00
Z ((k—:bi / tVe(t) - e_btgm—l(t; a—b,v)dt,
0
(A3.11)
Rea >0, Reb>0,0<v <1, m>1.

A shift in the denominator index k, of course, can be absorbed
by the constant a.

We finally remark that in the special case v = %, which is
of prime interest to us, Tricomi’s incomplete gamma function
becomes Dawson’s integral [Abramowitz and Stegun 1964, Eqs.
6.5.18, 7.1.17],

*1 2__2 mtz
7(2, m)—ﬁx/()edt,

and the function go in (A3.7) becomes

1y _ 2 Fa)
g0 (t’a’i)-ﬁ Jat (A3.12)

where
z
F(2) = e / e dt. (A3.13)
0

This is a well-studied special function, related to the Gaussian
error function, for which (almost) best uniform rational approx-
imations on [0,00] are known, yielding accuracies of up to twenty
significant decimal digits [Cody et al. 1970]. It is easy, there-
fore, to compute this function to high accuracy, for any real
argument.

Specializing (A3.11) to v = %, and lettinga=a+1, b = q,
m =1, yields

Ula) = % / ~ t_l/ze(t)e_“t%\/z)dt, (A3.14)

which identifies the mysterious function U(a) in (Al.4) as
Laplace transform, namely

(A3.15)

U(a) = (Lu)(a), u(t) = %t_l/ze(t)i—}f—).
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The function u has a branch point at the origin and poles at
integer multiples of 27¢, but otherwise is regular analytic. The
integral required in (A1.3) is obtained from (A3.14) by inte-
grating with respect to a under the integral sign,

a _2_a oo_/€ .l_e—atF(\/z)
/OU(a)da-ﬁ [y

This, too, is accessible to Gaussian quadrature.

dt. (A3.16)

A4. Numerical Implementation

It is time now to take a look at the numerical aspects of our basic
formula (A3.9). We will concentrate on the case of particular
interest to us, that is, v = %

The first issue, then, is the numerical evaluation of g,,—3
(t; a, %), the function that appears in the integrand of (A3.9).
We naturally use the recurrence relation (A3.6) if m > 1, and
(A3.12) otherwise. For real values of a, this poses no particular
problems, since, as already mentioned, there are high-precision
rational approximations available for Dawson’s integral (A3.13).
When the parameter a is complex, we are dealing essentially
with the complex error function, for which efficient computer
routines are also available (e.g., [Gautschi 1969; Poppe and
Wijers 1990]), though not quite to the same high precision
(approximately 10-14 decimals only).

Thus, it is not so much the integrand, as the integral itself,

Im1(a,v) = /0 T Ve(t) - gmor (£ 0, v)dt, (Ad.1)

that requires special scrutiny. One of its unpleasant features is
the square root singularity at the origin (when v = %), another
the fact that €(t) = t/(e! — 1) has a string of poles along the
imaginary axis (at the integer multiples of 2¢), and finally we
must integrate to infinity. As we will see shortly, an additional
difficulty looms underneath, and surfaces when a becomes large.
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All difficulties, except the last, are swiftly overcome by treat-
ing
w(t) =t7%(t), 0<t< oo, (A4.2)

as a weight function and approximating the integral by Gaus-
sian quadrature relative to this weight function. Thus,

1 ~ 1
Im— (a, -2—) ~ Zwrgm_l (Tr;a, 5) , (A4.3)
r=1

where w, = wﬁn) (w), 7r = Tr(n) (w) are the weights and nodes of
the n-point Gaussian quadrature formula for the weight func-
tion w. The computation of these formulae will be the subject
of Section A5. Here we note that the quadrature process (A4.3)
can be shown to converge as n — 00, since gn,—1(¢; a, %) has at
most polynomial growth as ¢ — oo and the moment problem
for the weight function (A4.2) is determined (cf. [Freud 1971,
Ch. III, Theorem 1.4)).

In Table Al we show the n-point Gaussian approximations
to Im—1(a, 3) for m = 1 and for selected values of a. (Note the
Theodorus constant at the bottom of the third column!) Those
for m > 1 are similar, though a bit more slowly convergent.
As is evident from Table A1, convergence as n — oo is quite
fast when a is small or moderately large, but is slowing down
conspicuously as a gets larger. (The reason for this slowdown
is a peculiar behavior of the function go(¢; a, %) as a — 0o, it
approaches the discontinuous function equal to 72-1; att =0 and
zero for t > 0.) Before we show how to resolve this difficulty,
it may be worthwhile indicating a somewhat simpler, if not
necessarily more efficient, integration procedure.

We note that for large t,

tet
€(t) = 1—et

which suggests writing (A4.1) in the form

o0
I,_i(a,v) = /0 t™vet.

~ te_t, t — 00,

1= e_tgm—l(t; a,v)dt. (A4.4)



Supplement A: Theodorus and Special Functions 79

n a=.5 a=1.
5 2.1344163 1.8599
10 2.1344166429861 1.860025078

15  2.1344166429862372611 1.86002507922117
20 2.1344166429862372611 1.860025079221190306

25 1.8600250792211903071
30 1.8600250792211903072
35
40
n a=2. a=4. a = 8.
5 1.537 1.19 .8
10 1.53967 1.217 91
15 1.539680509 1.21826 .930
20 1.539680512350 1.218273 9312
25 1.563968051235329 1.218274011 93135

30 1.539680512353302010  1.21827401461 931371
35 1.5396805123533020128 1.218274014668  .9313727
40 1.5396805123533020128 1.2182740146698 .93137291

Table A1l: The n-point Gaussian approximations (A4.3) for
m=1,a=.5,1,2,4.,8.

Hence, the new weight function
wi(t) =t7"e™, 0<t< oo, (A4.5)

emerges, giving rise to classical (generalized) Gauss-Laguerre
quadrature. The presence of the poles in the factor t/(1 — e™?)
now retards convergence somewhat, but interestingly enough,
only when a is relatively small. By the time a reaches 2, Gauss—
Laguerre quadrature in (A4.4) catches up with the more so-
phisticated quadrature in (A4.3), and indeed surpasses it as a
is increased beyond 2, although both continue to struggle.

It thus remains to resolve the difficulty pertaining to large
parameters a. (This is of no relevance to spirals, where a = 1,
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but should nevertheless be of intrinsic interest. We again assume
V= %) In this case we use a device, called stratified summation
in [Gautschi 1991a], that consists of “layering” the summation
in (A3.9) as follows:

k= A+ Kkag, ap = |a], a =ap +ay, (A4.6)

where |a| denotes the “floor of a,” that is, the largest integer
less than or equal to a, and 0 < a; < 1. The summation is
now carried out by letting x run from 0 to oo for each A =
1,2,...,aq. Thus,

A N A + Kag) "1/
ZZ ( 0

Z (k +a)™ = = (A + kag +ao +a1)™

(M ag) 1/ }
(14 (A +a1)/ap)™

To the inner sum, we can now apply (A3.11), giving

+ (A4.7)

> (v + A/a())_l/2
Z 1 (K +1+ (A+a1)/ao)™

- / t12¢(t)e~Maodtg ) (t;l-l—al/ao,%) dt. (A4.8)
0

Since the “effective” parameter in g,,—; is now between 1 and 2,
and the coefficient A/ag in the exponential is bounded by 1, ei-
ther of the two quadrature schemes above ought to do quite well
in computing the integral in (A4.8), hence the sum in (A4.7). It
so happens that Gauss-Laguerre quadrature is now the faster
of the two. The results obtained by this rule are shown in Ta-
ble A2.

Although Gauss-Laguerre quadrature is not quite as efficient
as the nonclassical quadrature in (A4.3) when a is small, con-
vergence is then fast anyway, so that on the whole, it would
be preferable to use Gauss-Laguerre if one had to choose
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n a=8. a = 16.
5 .931367 .694928
10 .9313729339 .69493171459
15 .931372934003102 .6949317146410448

20 .93137293400310387164 .69493171464104559014
25 .93137293400310387168 .69493171464104559016
30 .93137293400310387169 .69493171464104559016

n a = 32.

5 .509924

10 .50992651699

15 .5099265170272109

20 .50992651702721134802
25 .50992651702721134803
30 .50992651702721134804

Table A2: Approximations to the series in (A4.7) using n-point
Gauss-Laguerre quadrature in (A4.8).

between one of the two. This is particularly so if many v-values
are involved. When one has to deal with series containing al-
ternating sign factors, the choice is less clear, since then the
appropriate weight function is w(t) = 1/(et + 1) (known as
“Fermi function” in solid-state physics; cf. [Gautschi and Milo-
vanovié¢ 1985]), which has poles at odd multiples of mi, hence
twice as close to the real axis as the poles of Einstein’s function.

A5. Gaussian Quadrature
Formulae and Their Computation

We call w a weight function on the interval (a,b) if w is non-
negative and integrable on (a,b) and has finite moments of all
orders,

b
ps = ps(w) = / t'w(t)dt, s =0,1,2,..., (A5.1)
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with po > 0. The quadrature formula

[ semtya = Zwrf(Tr)+m(f) (45.2)

associated with the weight function w is called Gaussian if it is
exact whenever f is a polynomial of degree < 2n — 1, that is, if

R,(f) =0 for all f € Pyp_;. (A5.3)

This is best possible in the sense that no quadrature formula
of the form (A5.2) exists having degree of exactness > 2n — 1.
It is also well known that the Gaussian nodes 7, = 7™ (w) are
mutually distinct and contained in (a,b), and that all weights
wr = w™ (w) are positive (cf. [Davis and Rabinowitz 1984,
§2.7]).

There is a close connection with orthogonal polynomials rela-
tive to the weight function w. This is a sequence of polynomials
{mk}24, each mx( - ) = mg(- ; w) monic of degree k and such that

(g, me) = 0 for all £ # k. (A5.4)
Here, (-,-) is the inner product defined by

(u,0) = / " w(t)o(tyw(t)dt. (A5.5)

The nodes 7, indeed, are precisely the zeros of the nth-degree
orthogonal polynomial m,(-;w), while the weights w, can also
be expressed (in various ways) in terms of these polynomials.

For computational purposes, however, it is more convenient
to characterize these Gaussian quantities in terms of eigenvalues
and eigenvectors of a symmetric tridiagonal matrix (cf. [Golub
and Welsch 1969)). To arrive at such a characterization, we must
recall that the orthogonal polynomials {7y} satisfy a three-term
recurrence relation

Te1(t) = (8 — ak)mi(t) — Beme—1(8), k=0,1,2,...,
(A5.6)

m_1(t) = 0, mo(t) =
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with coefficients oy = ax(w) € R, Br = Br(w) > 0 uniquely
determined by the weight function w. The coefficient Gy is arbi-
trary (since it multiplies m_; = 0 in (A5.6)), but it is customary
to define it by

b
fo=o(w) = [“witdt (= po). (A5.7)

For the normalized polynomials 7y (satisfying (7, 7x) = 1), it
then follows easily from (A5.6) that

ti(t) = arTr(t) + vVBefe-1(t) + /Brer17rr1(t),

k=0,1,2,.... (A5.8)

We now define the Jacobi matrix associated with the weight
function w to be

J=J(w)=tri(a0,al,...;\//—6; \/B;,...), (A5.9)

the infinite symmetric tridiagonal matrix having the coefficients
ap(w), ai(w), ... down the main diagonal, and the square roots

V51 (w), v/B2(w),... down each side diagonal. The truncated

Jacobi matrix,
In = Jn(w) = [J(W)]nxn, (A5.10)

is the top left n x n section of J(w).
The first n relations in (A5.8) can now be expressed in vector
form as

tit(t) = Ju#(t) + v/ Bnfn(t)en, (A5.11)

where 7 (t) = [7o(t), 71 (t), . . ., in_1(t)]T and e, = 0,0, ...,0,1]T
are vectors in R™. Since 7, is a zero of 7y, it follows from (A5.11)
immediately that

77 (1) = Jnf(7r), r=12,...,n, (A5.12)

that is, the Gaussian nodes 7, = 1™ (w) are the eigenvalues
of Jn = Jn(w), and 7 (1) the corresponding eigenvectors. Note
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indeed that || #(7;) [|# 0, since the first component 7 is a
positive number, namely

= ug 2. (A5.13)

It remains to express the Gaussian weights in terms of the
eigenvectors. To do so, let v, be the normalized eigenvectors,

JnUp = Tr 0y, var =1, (A5.14)

so that

. -1/2
Vp = —:——"——W(Tr (Z 7!'# 1(Tr)) 7~l'(7'1-).

Comparing the first component on each side, and squaring, one
obtains by virtue of (A5.13), (A5.7),
1
—_————— = [v%,, r=12,...,n. A5.15
S A (A5.19)

Here, vr,) denotes the first component of v,. On the other hand,
letting f(t) = #,—1(t) in (A5.2), one gets by orthogonality,
again using (A5.13),

n
,Bcl,/ 26“_1,0 = Z Tu—1(Tr)wr  (64—1,0 = Kronecker delta),
r=1
or, in matrix form,
Pw = ﬁé/zel, (A5.16)

where P € R™ " is the matrix of eigenvectors, w € R" is the
vector of Gauss weights, and e; = [1,0,...,0]T € R™. Since the
columns of P are orthogonal, we have

n
PTp=D, D= diag (dy, ds, .. .,dn), =Z~,24 1(77).

Now multiplying (A5.16) from the left by PT gives
Dw=B*PTe, = g3/*. g7 %e =¢, e=[1,1,...,1]T.
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Therefore, w = D~ le, that is,
1

B ZZ:I éiﬁ—l("’?‘) ’

Comparing this with (A5.15), we get the desired result,

wr r=12...,n.

wr = fov;, T=12,...,n. (A5.17)

Thus, the Gaussian weights w, = w™ (w) are the squares of the
first component of the normalized eigenvectors of J, = Jn(w)
multiplied by By (cf. (A5.7)).

The computation of Gaussian quadrature formulae is thus
reduced to solving an eigenvalue/eigenvector problem for the
symmetric tridiagonal matrix J, = Jp(w). This is a standard
problem in numerical linear algebra that can be solved very
efficiently by the QR (or QL) algorithm with carefully selected
shifts (see, e.g., [Parlett 1980, §§8.9-8.11]).

We must not forget, however, that this process assumes that
the Jacobi matrix J = J(w) is explicitly known, that is, that we
know the recursion coefficients in (A5.6). Fortunately, this is the
case for all classical orthogonal polynomials. Those of interest
to us — the generalized Laguerre polynomials — corresponding
to the weight function w(t) = t~“e~! on (0,00), indeed have
particularly simple coefficients, namely

ox(w)=2k+1-v, k>0
Bo(w) =T(1—v), Pu(w)=k(k—v), k=1, (A5.18)
(w(t) =t7ve™).

Thus, it is a simple matter to generate the associated Gauss—
Laguerre quadrature formulae for any v € (0,1) and any n =
1,23....

Computing the Jacobi matrix for nonclassical weight func-
tions, such as w(t) = t7Ve(t) (cf. (A3.9)), is a much harder
problem. Nevertheless, a number of techniques are available
(for a discussion of these, we must refer to the literature, e.g.,
[Gautschi 1990]). The most appropriate for our purposes here
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consists of approximating the respective inner product (A5.5)
by a discrete inner product,

N
(u,v) = (u, V)N, (u,v)N = Zw,(cN)u(tch))v(tch)), (A5.19)

and then approximating the desired recursion coeflicients by
N N
Qp = a](c )’ /Bk ~ IB]E; )a (A52O)

the recursion coefficients belonging to the polynomials orthog-
onal with respect to the discrete inner product (u,v)n. (These
can be computed in various ways.) The process, if properly im-
plemented, can be made to converge in the sense that

ap = lim ach), By = hm B(N) (A5.21)
N—o0
for any fixed k.

As an example, for the weight function w(t) = t~e(t), we
can use, similarly as in (A4.4), Gauss-Laguerre quadrature,

(u,v) = / t™v u(t)v(t)
- / et u(tyo(t)dt
Z Wk T o= TV (7k),
to obtain the discretization (A5.19) with
w,(cN) = wkl_T—:_Tk, tscN) =
(N)

The quadrature nodes 7, = 7, ' and weights wy, = w,(cN) of the
Gauss-Laguerre formula are computed as discussed above.
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Supplement B

The Dynamics of the
Theodorus Spiral

A. Iserles

B1l. The One-Dimensional
Theodorus Spiral

Let A and B be two arbitrary complex d X d matrices. The
generalized Theodorus spiral is defined by

Zni1 = Azy + B (BL.1)
(EA

with an initial vector zg € C%. Here || - || is, in principle, an
arbitrary vector norm. However, throughout these notes, we
confine our attention to the Euclidean norm

]| = {Zd:lelz}l/z.

i=1

Even this is, actually, too general: the dynamics of (B1.1) is
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nontrivial even in the simplest, one-dimensional case — nontriv-
ial enough to justify a whole introductory section!
Thus, let us consider

|zn|’

where a,b,zp € C, b # 0. Let Z, := 2,/|b|. Therefore,

Fns1 = adp + € 38O (B1.3)
|Zn|
This is almost identical to (B1.2), except that the second con-
stant on the right is of unit modulus. Both equations are equiv-
alent: if we know what “happens” in (B1.3), we can always
translate the answer back to the language of {2,}52, by rescal-
ing. Consequently, we may assume with no loss of generality
that |b| = 1 in (B1.2).
Let a = pe™¥, b = e*, where p > 0, and suppose that each z,
has the polar representation z, = rpe®», n = 0,1,.... Substi-
tution in (B1.2) affirms that

rn+lei9"+‘ = prnei('/’+0") + ei(‘P+0"), n=0,1,....

We take absolute values on both sides:
1/2
Foil = {pzrﬁ + 2pry cosy + 1} , n=01,..., (Bl4)

where v := 19 — ¢.
What are the possible asymptotic values of (B1.4)? Given an
arbitrary d-dimensional functional iteration scheme

zp € C given,
Zn+1 = f(Zn), ’I’L=O, 1’...,

the possible limits are the fixed points, that is, zeros of the
equation z = f(z). Moreover, suppose that f is differentiable at
a fixed point z and that J(z) = 0f(z)/0z. Then z is attractive
— that is, there exists an open neighborhood U of z such that
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zg € U implies lim,,_,, z, = 2z — if and only if all the eigenvalues
of J(z) reside in the open unit disk |z| < 1. In our case,

f(r) = {p*r? + 2pr cosy + 1}'/2,

and there are two fixed points, namely

_ 1 2 . o 1/2
T4 = 1—_—p—2 (pcos*y:i:{l — p“sin 7} ) ,
provided that p # 1 and p|sinvy| < 1. If p = 1, we have just one
fixed point,
1
2cos7y

Ty =

(as long as cosy # 0). However, of course any limit point of
(B1.2) must be positive: Recall that ry, is the absolute value of
zn! This reduces the options, since

0<p<l1 = r— <0< ry;
p=1 = r+ > 0 if and only if cosy < 0,
1
l1<p< ——— = bothr_ >0and r4 >0
| siny]

if and only if cosvy < 0.

Moreover,

df(re) o . o 5 . o Y1/2
3 = p“sin 'y:tpcos'y{l—p sin 7} .

Consequently, attractivity takes place if and only if p < 1 and
only the fixed point r; can be attractive.

Each attractive fixed point ry comes with its own basin of
attraction, namely an open set B(ry) € (0,00) such that

ro € B(r4) = Jim =7y
Provided that v # 0 mod =, we have

d*f(r) _ p*sin’y
a2 f3(r)

>0,
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hence f is strictly convex in (0, 00). This is enough to argue that
B(r4+) = (0,00), by a standard geometrical argument. Suppose
that ro > . Then, by virtue of convexity, r; < < r¢ and,
by induction,

T < <Tp<Tph1<:--- <M <7

for all n. We have a monotonically descending sequence,
bounded from below by 7. It must converge and the only pos-
sible limit is 7! The proof for 0 < 79 < r; is a mirror image:
We now obtain a monotonically ascending sequence. Hence all
(0,00) gives convergence. Actually, we have much more than
this! The convergence is monotone: each consecutive iteration
leads us closer to the fixed point.

The case vy = 0 mod 2 is even easier, since now f(r) = pr+1,
a linear map. Note that v = 0 cannot coexist with p = 1, since
attractivity, in tandem with p = 1, requires cosy < 0. Hence
p < 1. We can easily derive the explicit form of the nth iterate,

1 n 1 1
A (7‘0— 1_p) S,
Again B(ry) = (0,00), and again the sequence {r,}5, con-
verges monotonically.
Finally, let v = 7 mod 2r. We have now f(r) = |pr — 1|,
a convex, nonnegative, piecewise-linear map that vanishes at

r = p~ 1. Let us assume first that p < 1. If g € (0,p™ 1), then,
explicitly,

tn=1=p+p* =+ ()" + (=p)"r0

1 1 1
- L "(r - ) —ry.
1+p (=p) 0 1+p _>1+p *

Note, however, that the convergence is no longer monotone and
the r,’s oscillate about . Next, let 79 belong to an interval of

the form
-m _ 1 —m—l_l
I, = P ,P
1-p 1-p
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for some natural number m. It is straightforward to observe
that, as long as m > 1, r1 € Z,,,—1 and, in general, r, € Z,_,
for n = 0,...,m. Moreover, Tmy1 < p~!. Thus, after m + 1
monotone steps, we reach (0, p~!), switching into a convergent
oscillatory regime.

Next, we need to examine the points ¢, := (p~™ —1)/(1—p),
m=0,1,.... If /¢ = ¢y, say, then r, = tyy_p for n =0,...,m,
whereas 1,11 = 0 and 7,42 = 1. The “jump” through zero is,
actually, accompanied by a little bit of mathematical licence:
clearly, the quotient in (B1.2) is not defined when z, = 0. An
easy way out is to single out all the points {¢, }5°_( as the “basin
of attraction of ill-definition.” It is more interesting by far to
allow a jump through zero as a limiting case of 0 < |z,| < 1.
This extends the “interesting” range of r,’s to [0, ).

Having “bounced” back from zero, there are two possibilities:
Either 1 € (0,00) \ {¢o,t1,...} and we converge to ry or, al-
ternatively, we land on some ¢; and are destined to repeat the
journey through 0 indefinitely in a periodic orbit. Let us exam-
ine the second possibility. To “land” exactly on i, it must be
true that ¢, = 1, thus Ry (p) = 0, where

k-1
Ri(p) =p* - _p.
=0

Clearly, Rx(p) < 0 for all k = 1,2,..., and no periodic orbits
are possible for p < 1. However, recall that we restricted the
range of p purely to ensure the attractivity of r,. As far as
periodic orbits are concerned, there is absolutely no need to
confine ourselves to p < 1, and any positive zero of Ry will do.
But Rg(1) = 1 —k < 0, Rg(2) = 1, and it follows that for
every k > 1, there exists a value of p € [0,2) that leads to a
(k + 1)-periodic orbit. We leave it as an easy exercise to verify
that for every k > 0, there exists a single positive zero px of Ry
and that

n—00

l=p1<p2a<---<pp — 2

(you may start by noticing that Rk, 1(p) = pRk(p) — 1). Thus,
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there always exists a “rogue” p = |a| > 1 that produces periodic
sequences for appropriate r¢’s.

Our analysis of the behavior of (B1.4) near its fixed points is
complete, except for the case p = 1, cosy = —1. This can be
treated by letting p 7 1. Hence, if r¢ is noninteger, we converge
tory = %, whereas integer 79 leads to the 2-cycle {0,1}.

Of course, the dynamics of the modulus is only half of the
story, and we need to look at the argument as well. We have

Tnt+1€0SOpy1 = prypcos(® + 0,) + cos(p + 0r),
Tnt+18in0p41 = prypsin(y + 60,) + sin(p + 6,),
or, in a matrix notation,
cos b1 an —Bn] [cosb,
= , n=0,1,...,
where

pPTy COS Y + COS prapsiny +singp
Qn = y Bn= .
Tn+1 Tn+1

Note that a2 + 82 = 1, by virtue of (B1.4). Thus, for every
n=0,1,..., there exists a unique 7, € (—m, 7] such that /™ =
Qn + 10y, and therefore 6,1, = 6, + 7, mod 27.

Let us consider first the case of 79 = r;. In other words,
we commence from the “right” radius, but not necessarily from
the “right” argument. Since now r, = r, it follows that 7, = 7
and 6, = nt + 6. Thus, if 7 mod = is rational, 7 = 2rK/L,
where L > 1 and the integers K, L are relatively prime, then
On+1 = 0, mod 27 for alln = 0,1,.... We obtain an L-periodic
orbit, hopping along shifted Lth roots of unity. On the other
hand, if 7 is irrational modulo =, then the sequence {2,}52 is
ergodic, equally distributed on the circle of radius r, .

The more interesting case is 79 € B(ry4)\{r+}. Since r,, — 74,
obviously a, — a, B, — B, such that a + i3 = €. Since
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0n+1 = 0, + 7, mod 27, we can express the angle 6,, in terms of
the local revolutions 7y,

n—1
0, = Z T.
£=0

We write vy := f'(r;) and observe that, by virtue of attrac-
tivity, |v4| < 1. Given any € > 0, there exists N such that
|rn — 74| < € for all n > N. Consequently,

Th =T4 + V_':_Né‘ +O(e?),n > N,
and this, in turn, implies
=1+ VTN +0(6%),

where |6| < Ce for a constant C' > 0, uniformly in € and n.
Thus,

n—1 n—N
1-—
O = ON+ Tn = ON+(n—N)T+6——+—1+O(62) mod 2.
k=N 1-vy

Recall that |v;| < 1. It follows that there exists 8* such that
0, =0"+n7+0(1), n—oo mod2n. (B1.5)

Seemingly, the asymptotic behavior is the same as for |zp| = 7.
This is an illusion! For previously everything depended on the
rationality of 7/m, a property that is easily overwhelmed by the
o(1) term in (B1.5).

To recap, the modulus in (B1.2) converges whenever either
la) < 1 or |a| =1, cos(y — ¢) < 0. However, the sequence {2}
itself converges only if 7 = 0 mod 27. Otherwise it is either
eventually periodic or (and this is a much more likely state of
affairs) it is asymptotically ergodic on the circle |z| = ry.

Observe that we considered the magnitude and the orienta-
tion of z, separately. Both their analysis and the pattern of
their behavior are different: it is far more difficult to analyze
the magnitude, whereas the orientation is almost trivial. On the
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other hand, the behavior (as opposed to its analysis) of magni-
tude is straightforward and almost boring, whereas orientation
is allowed all the games and fun. We emphasise this point, since
the dichotomy persists in any number of dimensions, as is evi-
denced by the remainder of this article.

B2. The General Case

The one-dimensional Theodorus spiral being nontrivial, it should
come as no surprise that d dimensions present a more formidable
challenge. Suppose that z = lim,,_, z, exists and (B1.1) has a
fixed point. Thus,

8= (A + LB) ;.
|12l

In other words, there exists a constant ¢ > 0 such that 1 is an
eigenvalue of A+ cB, while z is a member of Ker (A+c¢B—1)\
{0}, scaled so that c||z|| = 1. Of course, not for every pair of
matrices {A, B} there exists such ¢ > 0.

Suppose first that A and B commute and possess a full set of
(joint) eigenvectors {vi,...,vq}, with the corresponding eigen-
values

U(A)z{Ala“-aAd}a U(B)={M1,...,,U/d}'

It is necessary and sufficient for the existence of a fixed point
that
Hp
1-X

for some index p € {1,2,...,d}. Let us assume that this is,
indeed, the case, and that it occurs for just one index p. Then
z := vp, normalized so that ||z| = pp/(1 — Ap).

Of course, we have already seen that the existence of a fixed
point is only part of the story and that it is essential to check
attractivity. For that purpose, we check, in tune with Section 1,
whether the eigenvalues of the Jacobian matrix of the mapping

>0
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at z are all inside the unit disk. It is easy to verify that the
Jacobian is given explicitly by
1 1

J=A+ —B— —_Ba*. (B2.1)
o> [12]3

Set wy := c3upv;‘,v1, £=1,...,d. Hence, for all £in {1,...,d},
Jvp = (Ag + C;l,g)Vg — WyVp. (B2.2)

Since wp = cpyp, it follows that v, is an eigenvector of J, with
the eigenvalue \,. Moreover, if v, is orthogonal to v, (as will be
the case with all £ # p if A and B are symmetric), then wy, =0
and Mg + cuy € o(J). To obtain the remaining eigenvalues, we
consider £ # p, wy # 0. Our contention is that
Ap—A—c¢
W = _pl—mvl + vp
we

is an eigenvector, with the corresponding eigenvalue Ay + cuy.
This is a straightforward consequence of (B2.2), since

Ap— Ao —
Jw = %CM (e + clg)ve — wgvp) + Apvp
0
A=A —c
= (Me+cue) 22 By 4 e + cpe)vp = (e + cur)w.

Except for the special case when A\p+cpp = Ap, we # 0, for some
¢, we recover all the eigenvalues of J,

J)—{A,,}U{Ag+ Z1=p) =1, d,e;ép}

(recall that ¢ = (1 — Ap)/pp). Thus, the conditions for attrac-
tivity are

—21;: >0 (so that the fixed point exists);
Aol < 1

and

e+ B -N)| <1, £=1,....d, L#£p.
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For our next example of a fixed point, we choose another
instance of “extreme” behavior, letting both A and B be d x d
Jordan blocks,

(A1 0 ---0] (1 0 ---0]
0Xx 1 . : 0 p 1

A= :. . .0’ B= . . . O
: A1 oopl
RURERRES 0,\_ _0 ...... 0 |

Again, we denote a fixed point by z. Its components obey the
equations

. A | P
Zg = A&+ Ze+1 t+ m(ﬂzl + zl-i-l)’ L= L...,d—1, (B23)

” 12 n
24 = (/\ + T) 24 B2.4
H (B2.4)

It follows from (B2.4) that either 2, =0 or ||z|| = u/(1 = A). In
the first case we obtain in (B2.3)

Zd-1 = (A-I' lf )éd—l-
12

Thus, by the same token, either 251 = 0 or ||z|| = u/(1 — \).
We continue by induction, proving that either 3, = 0 for all
£=2,...,dor |z| = /(1 = N).

Let us suppose that the second alternative is true. Substitu-
tion into (B2.3) gives

R A 1-A\ .
Zp=Z+ |1+ P Ze+1,

hence

1-A) .
(1+ " )Z[+1=0.
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Since
1-X 1
— = —>0,
T ]|
it follows that 24,7 = 0. But this is true forall £ =1,...,d -1,
and again we have 2, =0, £ = 2,...,d. Either way, z is a scalar

multiple of the first unit vector e;. Moreover, it follows from
(B2.3) (for £ =1) that ||z|| = u/(1 — X), hence

I
1-2A

z= e.
For this, of course, it must be true that u/(1 — A) > 0. Note

that, remarkably, both our alternatives are true!

Is z attractive? We can easily evaluate the Jacobian matrix
(B2.1) and obtain

B 1-) 1-) -
I—T 1+T 0 0
1-) -
0 1 1+T
= o
: 1-)
: 0 1 1+T
0 e 0 1]

The fixed point cannot be attractive! If (1 — A\)/u < 2, it is
a saddle and attracts a lower-dimensional (actually, a single-
dimensional) manifold, otherwise it is a repellor.

Other matrix pencils {A, B} can be considered, with similar
conclusion: fixed points are rare (recall our condition p/(1 —
A) > 0, not very likely for arbitrary complex numbers A and
u...), and their attractivity is a yet rarer event. This, actually,
is why (B1.1) is such a remarkable object to study: Instead of
a tedious approach to a limit, the sequence {z,}3 displays a
much richer dynamics. We have already seen this for the one-
dimensional map (B1.2), but a more interesting case will be
considered in Section 4. First, however, we need to take a closer
look at another intriguing map.
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B3. An Intermezzo:
The Map en + 1 = fpnlen — 1|
Let p > 0 be given. We consider the iterative scheme
en+1 = fnlen — 1], (B3.1)

where {fn}32, is a given positive sequence, uniformly bounded
away from both 0 and oo,

0< fo:=inf{fe: £>0} < fn < fy:=sup{fp: €20} <1

Its importance to our analysis will be made abundantly clear
in the next section. The special case of f, = p € (0,1), n =
0,1,..., deserves a displayed equation on its own,

ent+1 = plen — 1|. (B3.2)

The equation (B3.2) is equivalent (under a simple linear trans-
formation) to the tent map — more about it later. ...

The initial value eg in (B3.1) is, in principle, an arbitrary
real number. Note, however, that e; > 0 if eg # 1. Moreover,
suppose that e, > 1 for some n > 0. Then e, 41 = fo(ep — 1) <
en — 1, ent2 < e, — 2 and so on, until we “hit” the interval
(0,1). In other words, after a finite number of steps, m say, we
have e, € (0,1). Finally, we take cognisance of the fact that
(0,1) remains invariant under the map (B3.1):

All this implies that, sooner or later, the sequence {e,} will
reach (0, 1) and stay there forever, no matter where the initial
value was. Since our interest focuses on the dynamics of this
sequence, we may discard any finite number of elements with
no damage whatsoever. Consequently, we assume without loss
of generality that eg € (0,1).

Proposition 1. Let w := f_f,. It is true for alln = 0,1,...
that

(1) e < f+(1-f-)

n

1

—w
1l-w

+ w"ey,
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+w €g,
— W

@ e > (- f)%

1-—w"
- wnf+607
l—-w

3) enr1<fr—(1-f1)w

1—w"

4) enp12f-—(1-f)w —w" f_eo.

l—-w

Proof. Clearly, both (1) and (2) are true for n = 0. The hy-
pothesis eg € (0,1) implies that

— foll — o) { < f+(1 —eo)

> f-(1—eo)

and also (3) and (4) are true for n = 0. We continue by induc-
tion: Suppose that the proposition is true up to some n > 0.
Since ey, .. .,e2n+1 € (0,1), we have, by virtue of (4),

en+2 = font1(1 — €2n41) < f+(l - 62n+1)

< (1=t 4 o)

wn+1
=fi(1-f_ ) + w"tleg.

This allows us to “advance” the induction a single unit for (1).
Likewise, we use (3), (2) and (1) to “advance” (2), (3) and (4),
respectively, and the proof follows. )

Corollary. Given € > 0, there exists N such that for any
eo € Rand all n > N,
fo—

l1-w

f+—w
1l-w

—e<e, < + €.

Proof. By letting n — oo in (1)—(4) and since 0 < w <1. O

Let us choose p € (0, 1) and define positive numbers ag, a1, . . .
in the following manner:

Qg = l,
Qp = p_nfOfl"'fn—l, n=12....
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Therefore,

fn=Pan+l, n=0,l,
(87

n

We have already seen that it can be assumed without loss of
generality (as far as the dynamics of (B3.1) are concerned) that
eo € (0,1). Then all the e,’s stay in (0,1), and (B3.1) becomes
simply

ent1 = fn(l—en), n=0,1,.... (B3.3)

It follows at once from (B3.3) by induction that

en = 2( 1)¢ (an 1_]) +(-1)" (H fa)

=0

(-l)l l+l _1\nn
= oy Z + (=1)"p"aneq.
an 1- l

Let us suppose that the ay’s are uniformly bounded (actually, a
weaker assumption will do, namely that limsup,,_,, p"an = 0).
Then, for large n, the contribution of ey progressively disap-
pears and we can assume without loss of generality that ey = 0.
This simplifies the discussion somewhat and yields

P (B3.4)
We next assume that there exists an La[—1,1] function g such
that
1
— = g(cos(? + ny)), m=0,1,...,
n

for some numbers ¥ and ¥. Expanding into Fourier series, we
have

Z gk ezknw

k=—o00



Supplement B: The Dynamics of the Theodorus Spiral 103

Let us substitute the last expression into (B3.4):

n—1 [e 9] 0o
en=pon ¥ (-1)f" 3 gV = 3 grda(e*Y),
£=0

k=—00 k=—00
where
n—1 —1
L _ _l)n pn +zn
d — —1)n1 £ n—€ ¢ _ ( .
n(2) = Yt = e
Thus,

(-—l)n lp +ezkn¢
€n = On Z 911 p—1eikd

k=—00

Recall that p € (0,1). Thus, for large n,
. 00 eiknw
en X €n = an Z gk

k=—00

1+ pletk¥”

In other words, for n — oo the point e, lies arbitrarily close to
anl'yn, where
ztkw
Z Ik T ¥ - 1gikd p1eiky
k=—o00

An important consequence is that, in general, {e,}32, does not
tend to a limit. Instead, if ¢ /7 is rational, the “asymptotic
sequence” {€,}52 is periodic. Otherwise it is dense on the in-

In the next section, we will take advantage of the afore-
mentioned analysis of (B3.1). We conclude this section by a
more substantive set of results on the simplified map (B3.2).
As long as p lies in (0,1), it is clear that e, — p/(1 + p). This
we can prove from either the corollary to Proposition 1 (since
f- = f+ = p, w = p?) or by Fourier analysis (since oy, = 1, we
have g(2) = 1,thusgo = 1, gx = 0for k # 0,and I'; = p/(1+p)),
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although a diligent reader might wish to affirm the limit by an
elementary method.

The situation is nontrivial already for p = 1: for any point
a € [0,1], the pair {, 1—a} forms a 2-periodic sequence (except
that, of course, a = 5 gives rise to a fixed point — this is,
incidentally, the limiting case of p/(1 + p) as p — 1). Given
eo € [0, 1], we reach the unit interval in a finite number of steps
and, subsequently, stay on the orbit {, 1 — a}, where a is the
fractional part of eg.

Much can be said also about the behavior of (B3.2) for p > 1,
since it is nothing else than the tent map

nt1=1-— P|Qn|,

after the change of variables ¢, = 1 — e,. We consider it as
acting in the interval [—1, 1] to itself — clearly, it is of the form

slope —p

slope p

-1 0 +1

The theory of the tent map has been exhaustively studied and is
quite comprehensively understood (cf. [van Strien 1988]). True
to our aims in this article, we restrict our discussion to elemen-
tary mathematical tools and “back of the envelope” methods.
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Having stated this, let us just mention that p > 2 causes diver-
gence, whereas in the regime 1 < p < 2, the map displays quite
a convoluted pattern of behavior. A point z € [—1,1] is called
nonwandering if there exists a sequence {z,}52, C [—1, 1] such
that lims .o £ = = and such that lim,_,c gm(n) = = (starting
with go = z) for some subsequence {m(n)}52,. The alternative
to  being non-wandering is either that it lies in a basin of at-
traction of a periodic attractor or that it belongs to a wandering
interval I: Letting Q(z) = 1 — p|z| and Q°(™ being the mth
iterate of @ (that is, a superposition of @ with itself m times),
elements of the sequence Z, Q(T), Q°®(Z), ... are disjoint, and
every point of Z is neither eventually periodic or contained in
a basin of an attractive periodic orbit. The set of all the non-
wandering points in [0, 1] is denoted by .

The set Q is explicitly known and its structure depends, as one
can expect, on the value of p € (1, 2] or, more concretely, on the
integer M = M (p) such that v/2 < pM < 2. The set  is a union
of M disjoint intervals Zy,Z;,...,Zp—1 and a finite number of
periodic points. Moreover, any member of Z, is mapped into an
element of Z(p} 1) mod M-
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The previous figure displays the bifurcation diagram of (B3.2)
for 0 < p < 2. The variable p varies along the z-axis from 0 to
2. For each such value of p, 40000 iterations of (B3.2) were
performed, commencing from ey = 1. The last 20000 iterations
are displayed along the y-axis. As expected, we reach a fixed
point for p < 1, hence the diagram consists of the single curve
p/ (14 p) there. However, for p > 1, most values produce “black”
intervals, filled by the iterates — these are precisely the sets
Zy. In the “white” gaps, the iteration is eventually periodic.
Everything is as predicted by the theory of the tent map....

Were we to display a bifurcation diagram of (B3.1), with a
“sensible” choice of f,’s (and we defer to the next section a
discussion of such “sensibility”), the pattern would have been
quite similar: tendence to a limit, followed by chaotic behavior
with windows of periodicity. Unfortunately, we can no longer
use the relatively simple theory of the tent map to underpin
this observation.

B4. A Simplified Map

We can add with complete impunity an extra scalar unknown
to the map (B1.1). Thus, let

1(1021 = Aw{) +

5 Bw(®), (B4.1)
||W |

where a € C\ {0}. Letting
1
Zp 1= EWS{’), n=0,1,...,
it follows readily that

Zn+1 = Azp + an,

|| Zn|
where e = a/|a|. This is exactly the map (B1.1), except that
the matrix B might need to be rotated. Hence, whatever we
might find for (B1.1) can be suitably adjusted to cater for
(B4.1).
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In the present section, we restrict our attention to the special
Theodorus spiral

1(1021 = <1 (a) ) W(a)v (B42)
[lwn |

where a > 0. By virtue of the analysis in the previous para-
graph, w = 0 and (B4.2) transforms into

Znsy = (1 ! )Azn (B4.3)

||zn||

In the present section, we analyze the behavior of (B4.3).

We stipulate that A possesses a full set of eigenvectors, vy, . . .,
vy, say. The corresponding eigenvalues will be denoted by
AL, ..., Aq. Since the eigenvectors span R¢, we can express zp
in that basis,

d
2= v, n=01,....

It follows from (B4.3) that

Zptl = (1 - ) Zag )/\lvl,
[lzn

therefore

o™ = (1 - ) Mad™, n=0,1,.... (B4.4)
[|2n]|

It now follows readily by induction that

oM = nﬁ(l 1 ) Aral?. (B4.5)
j=0 ”z.?”

Let us stipulate that the eigenvalues are ordered so that

A1) > [A2| > -+ > |Adl,
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and denote by £* the least index such that al.) # 0. There exists
some k* € {¢*,...,d} such that

[Age| = -+ = [Ake| > Akt

It follows from (B4.5) that, for large n,

n—1
Zn R H ( ) Z )\?ago)vg
j=0 “Z]” 0=0*

In other words, z,, approaches the (k*—£*+1)-dimensional linear
subspace that is spanned by the eigenvectors vy, ..., vi«.

Henceforth we assume that £* = 1 — the general case follows
in a very similar manner, albeit with considerably more un-
pleasant notation. Thus, k* is the dimension of the invariant
subspace where the whole “action” takes place. The simplest
case is, obviously, k* = 1: now

~a®TT (1= ) drva = o
Zp N Oy ”z“ 1V1 = Qq "Vi.
§=0 j

In particular, by (B4.4) and letting ||vi|| =1,

el & [af™)] = \1 - ﬁ Pl o] = M) [1 = flzall]-
n
In other words, the norms {||z,||} behave asymptotically like the
solutions {e, } of the one-dimensional map (B3.2) with p = |A;].
Let
(0)

A .
| | =¢?, TX—}I e’, —-rm<o¢,7<m.
al

Then
— ei(d)-l—m') vi,
Izl zll
consequently
= )|z, ||v;.
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Clearly, even if ||z,|| approaches a limit (that is, as long as
[A1] < 1), the “angle” of z, goes on changing indefinitely, unless
7 = 0. Moreover, in line with the results on the tent map,
as reported in the previous section, the behavior of {z}32, is
either periodic or chaotic for p € [1,2]. Note that we have two
mechanisms that produce “interesting” behavior, namely the
modulus ||z, || (which might be periodic or chaotic) via the angle
7 (which is either periodic or ergodic).

As is only fair to expect, k* > 2 brings about considerably
more complicated behavior. However, is the case of “nontriv-
ial” k* really interesting? After all, how likely is it for several
eigenvalues to dominate in unison? Quite likely, actually! Mul-
tiple dominant eigenvalues extensively occur, for example, in
the Frobenius—Perron theory of matrices with positive entries
[Varga 1962]. More importantly, k* = 2 is bound to occur when-
ever the dominant eigenvalues of a real matrix A appear as a
complex conjugate pair. This is quite a common event, and we
devote the remainder of this section to its analysis.

Since the “action” takes place in a two-dimensional subspace,
we might assume just as well that d = 2. Thus, let A = ), there-
fore A2 = X. Clearly, Im A # 0 is necessary for the eigenvalues
to form a genuinely complex conjugate pair, but then A # A
and A possesses a spectral factorization

A=VAV™l,  v= [”l f’l], A
V2 V2

] = 5]

can be normalized arbitrarily, but it is convenient to require
that

Il
—
S >
>0
—

The eigenvectors

[v1|? + |v2)® = 1.
Let wy, := V~lz,, n=0,1,.... Thus, (B4.3) yields

1

Wntl = (1 - m) Aw,, n=0,1,..., (B46)
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where

1 1 { [Im (v120,2 — 'UZZO,I)]

wo =V "2g=——
2Im vV Im (v120,2 — v220,1)

+i [ Re (’Ulzo,z - ’0220,1) ] } [wo]
1 = .
Re (—’Ulzo,z + ’0220,1) wo

It follows easily by induction in (B4.6) that

where the wy’s obey the recurrence

1
[Vwal

Wntl = (1 ) Awn, n=0,1,.... (B4.7)

Thus, (B4.6) can be expressed as a one-dimensional map, ex-
cept that we must somehow get rid of the term ||[Vwy|| in the
denominator. Fortunately,

[VWal? = [v1wn + 010n|* + [vown + Tawn|?
= |wn|2 + 2Re (v% + v%)w,%,

since |v1|2 + |v2|? = 1. This allows us to express all of (B4.7) in
the single currency of wy,’s:

1
wnt1=(1- w
n < {lfal-"nl2 + 2Re ((’U% + ’U%)w%)}l/2> nWn

Let

. l .
wp = rpen X = pert?, v? + v% =coe¥, J:= ¢+ 26y,

where m,,p > 0 and 6,,%,p € (—m, 7. Note that |o] < 1,
because of |v;|2+|v2|? = 1. More importantly, it is obvious from
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(B4.7) that 6, = 6y + %m/), n=0,1,.... Again, the orientation
can be resolved easily! We now have
[Vwal|? = r2 (1 +2Re ((vl +12) i<290+m/f>))
= r2(1 + o cos(¥ + 2n1p))
and obtain from (B4.7) a map for the moduli {r,}, namely

1
V1 + o cos(d + ny)

Tnt1 = |A| |rn —

|, n=0,1,.... (B4.8)

Letting

enzrn\/l+crcos(19+m/)), n=0,1,...,

we can recast (B4.8) in the form

1/2
enis = |A|{1+Ucos(19+(n+l)1/))} len—1], n=0,1

1+ o cos(¥ + ny) (B4.9)

It is now obvious why we have paid all this attention to the
map (B3.1), since (B4.9) is precisely in that form, with

B 1+ 0 cos(®+ (n+ 1))/
fa=1A { 1+ o cos(?¥ + ny) } .

In particular,
l + |o|
= |o|

(recall that |o| < 1). It follows from the corollary to Proposi-
tion 1 that, as long as @ = |A|? < 1, it is true that for every
€ > 0 and sufficiently large n,

e — A . <A\/H%—IAI
ll IA—IZ —E_en_|| 1—|A|2 +

(strictly speaking, the corollary was proved for fi < 1, but it
is quite clear that the proof remains perfectly valid for w < 1).

1-lo|

=[Al 1+||

= |Al

€
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Thus, as long as the eigenvalue A is in the unit disk, the
sequence {en}52, is uniformly bounded. Moreover, if || <
((1=|ah/1+ |a|))1/2 then, in addition, it is bounded away
from zero and, asymptotically, its values are confined to a pos-
itive interval.

Next we observe that, in the notation of Section 3,

=\/1+acos(19+m/)), n=0,1,...,

whereas p plays here the same role as in that section. Thus,
1
V1+ocos(d +np)’

g(cos(? + ny)) =

hence

(2m) ( )
g(Z) (1 +0'Z)1/2 Z( (m' 4
Recall that we are interested in the Fourier coefficients of
g(cos(? + ny)). They are given explicitly by

1

o =5 / %7 g(cos(d + T))dr

= %/ —ikT Z Efnn'l) (——) cos™ (9 + 7)dr

where

1r .
hgcm) = l/ e %" cos™(9 4+ 7)dr, m=0,1,..., k€ Z.
P Y

Since

cos™y = %(e” +e ") cos™ 1y,
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we derive the recurrence
h™ = 1 ( DY+ e PhY), m=1,2,..., ke Z.

But
hY =1, hY =0, kez\{0},

and it follows readily by induction that
1 [m\ ;90
h(_Tr)H-Zl 2m (e)el(2l m)ﬂ’ £=0,1,...,m,

and hscm) = 0 for all |k| > m + 1. The Fourier coefficients can
now be written concisely in terms of hypergeometric functions
[Rainville 1967]: given any three complex numbers a, b, ¢, where
c is neither zero nor a negative integer, the hypergeometric func-
tion is defined as

[ ] mX:O(a m(0)m 2™

Ym  ml’
where
(2)o =1,
@)m = 2@+ 1)@ +2)--- (& +m—1)
= @ma(e+m—1), m=1,2,...,

is the Pochhammer symbol, also known as the generalized fac-
torial. Note that, as long as x is neither zero nor a negative
integer, (z)m = I'(z + m)/I'(x), where I is the familiar gamma
function.

Since

!
omr=(3) - m=01...
m

4mm) 2
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we have, after long, tedious but perfectly straightforward cal-
culation,

o (1
ok =3 (2) ~2om (—) ™A

m=0

= Z, ((27)n)' (_)m (m2+m|k|)

- 2sz ()2m+2|k| ( )2(m+lkl)

< ml(m + 2[k|)!

o2k Z ( )m+lkl (3)m+|k|02(m+lk|)

ml(m + 2|k|)!

1 3
_ ezkw( )Ikl( )Ikl o2l [|k| + LIkl + % ]
(2/k|)! 2|kl +1;

for all integer k. Likewise, we obtain

1 3
Gonpy = —el2hHD) (4)Ikl+1 (4)Ikl 20k|+1
M (2[k| + 1)!

|kl + 3, |kl + %5 2
XF[mm+2

Recall from Section 3 that, for every € > 0, there exists IV, so
that n > N, implies that |e, — é,| < €, where

zkm/;
en = Qn Z /) rum—— 1+ p—le’kw

k=—00
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Moreover, r, = e,/an, thus, asymptotically, the numbers r,
are arbitrarily close to

00 (" )lkl( )[(|k|+1)/2] (%)[|k|/2]
¥)

T T RN+ ple
[(lkl + 1 /2] + 1 [|k|/2] + 4a ik(9+ny)
<[ e
1 1 X cos(¥ + ny) + p~Lcosdd
= =po E . ( _lw) p =,
2 14+2p~lcosky+p
where

1 3
=20k (3) ()
((k+1)/2) \ 4/ /2]

xp[gg(’iﬁl)/zlﬂ’[’“/?]ﬂ’ ] k=0,1,....

In other words, the r,’s lie asymptotically on the interval

1 1 X cos(¥+tp) + pLcosd
— . >
{2p01+p‘1+zp 1+2p1coskiy + p—2 200,

at integer values of t. True to the pattern that has been al-
ready established for “simpler” cases, this might lead either to
accumulation at a finite set of points (an eventually-periodic
sequence) if ¥/ is rational or to a space-filling behavior other-
wise.

We now travel all the way back from the r,’s to the z,’s: we

have
. 1
wp = Tpet®0tam¥)

and

zn = 2Re [vlw"] .
VoWwn



116 Iserles

Hence, we can write the attractor of the sequence zg,z;,...
explicitly, although it is not very illuminating. However, we can
conclude — and this provides a great deal of insight — that in the
case |A| < 1, the z,’s lie asymptotically on a limit cycle in C?
and discern the pattern of their behavior there: they can either
tend to a finite periodic set or fill the whole cycle.

Our point of departure was the map (B4.2) with a > 0. We
may just as well contemplate that map with a < 0. This gives

S (1 + L) Az, (B4.10)

1z

The dynamics of (B4.10) can be worked out similarly to these
of (B4.3). Again, the most interesting case is d = 2, with a
complex conjugate pair of eigenvalues. Maintaining an identical
notation — and sparing the reader all the details — we can prove
that, as long as |A\| < 1, r, = T, for n > 1, where

ikt
gke'
[y = Z —1+ p-letk¥’

k=—o00

t>0.

Figures 40-43 display the attractor of (B4.2) for

1.5 0.71
A=a ,
—0.41 0.58

where a is 0.7, 0.95 ,1 and 1.25 respectively. We “travel” through
three regimes: In Figure 40 the iterants sort themselves out on
a limit cycle that becomes a “butterfly” in Figure 41. As a
(hence p) increases, so does the chaos. This gives the “palette”
in Figure 42 and, finally, the “spooky palette” in Figure 43.
Similar patterns persist for a wide variety of examples. Thus,
in Figures 44 and 45, we display the attractors of

1.1 0.71
A=a
—0.65 0.58
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with @ = 1 and a = 1.15, respectively. Figure 46 originates in

Ao 1.0465 0.8165
" | —0.7475 0.6670

Finally, Figure 47 displays the “evolution” of

with four choices of the parameter, namely b = %, %, 1 and %,

respectively.

B5. Unitary Matrices

Let both A and B be dxd unitary matrices (orthogonal matrices
being a special case), such that A*B + B*A = O. Thus, in
(B1.1),

2
l2n41))? = ||Azn + B” T
(Azn+B ) (4en+ B2 )
[E2] llzn |
=z, A* Az, + ﬂz;(A*B + B*A)z,
Zp

T—32n B B2y = |z + 1.
el

Consequently, by induction on n,

Izl = y/llzoll + n. (B5.1)

We assume for simplicity that ||zg|| = 1 and let up, := z,/||zn||,
n=0,1,.... Then, with the help of (B5.1), (B1.1) becomes

(Vn+14+ B)un. (B5.2)

1
Untl = e
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Note that all the u,’s “live” on the (d — 1)-dimensional surface
of the sphere ||u|| = 1.

The matrix W := AB* plays a central role in the analysis of
(B5.2). Note that W is itself a unitary matrix and that

O=A"B+B*A=A"W*A+A*WA = A*(W+W*)A. (B5.3)

Let us suppose that W + W* # O. Then it has a nonzero
eigenvalue: There exist A # 0 and v € RY, v # 0, such that
(W + W*)v = Av. Set w := A*v. Then

wrA* (W 4+ W) Aw = v (W + W*)v = A||v||? £0,

in contradiction to (B5.3). We conclude that W + W* = O or,
by virtue of unitarity,

W2+1=0. (B5.4)

In a sense, W is a “generalization” of the pure imaginary num-
ber 3.
Given d = 2, an arbitrary unitary matrix can be written as

eier cosT sinT | [¢iBr
0 e || _ginT cosT 0 e |

where 7, a1, az, 1, B2 € (—m,7]. Imposition of (B5.4) is tanta-
mount with the following three equations:

0 = cos(a; + B1)cosT; (B5.5)
0= (ei(a1+ﬂ2) + e—i(a2+ﬂ1)) sin7; (B5.6)
0 = cos(ag + fB2) cosT. (B5.7)

Let 7 ¢ {0,+%,7}. Then cos7,sinT # 0, (B5.5) implies that
ay + B = =7, (B5.7) implies that ag + f2 = +7, whereas, as a
consequence of (B5.6), ay + B2 = a2 + 1 = 7. It follows that

t+icosT sinT
W = . ) .
—sinT FicosT
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This remains valid when 7 = £7, while if 7 € {0, 7}, the re-
maining case, we have

0 ew
W = .
—e ™ 0

for some w € (—m, .

We do not require the aforementioned analysis to find all the
real (i.e., orthogonal) matrices A and B such that ATB+BT A =
O: They are

cosa sina cosb sinb
4= meeme] ' 2= |camtaon)

—sina cosa —sinb cosb

where b=a £ 7.
Let us first assume that b = a+ 5. Then u,41 = Cpuy,, where

c 1 vn+1lcosa —sina v/n + 1sina + cosa
" vn+2 | _—\/n+1sina —cosa v/n+ 1cosa —sina

1 1) [(VeFT4i)en 0
- 2vn+1 [ ] 0 (\/m—l) e—ia:I

di!

All the matrices C,, commute (since they share the same eigen-

vectors) and
1 1][wn O 1 —3
i—i] | 0 @) |1 4]’

n—1 .
; VE+1
'wn:=em“H +1+e n=0,1,....
£=0

o VE+2

1 —1

un =

N =

where
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However, recall that ||u,|| = 1. Consequently, there exists |¢p| <
m such that
cos ¢
ug = )
sin ¢

and it follows at once that
[cos(d; —na — Xn)
n =

. ], n=0,1,..., (B5.8)
sin(¢ — na — xn)

where
ean — —"E—FI-H'
VE+2
Therefore, up to an integer multiple of 2,

n

1
Xn = tan™! —, n=12.... B5.9
n ¢=21 7 (B5.9)

The case b = a— 7 is virtually identical and it leads to (B5.8),
except that the —x, need to be replaced by +xn, throughout.

Recall from the previous sections the two components deter-
mining the asymptotic behavior of (B1.1): namely, the moduli
and the angles. In the present case, the moduli are fixed and we
wish to investigate the asymptotics of the angles ¢ — na + xn
for large n. First we consider the distribution of the values of
Xn mod 27 in the interval [0,2x] (rather than in [—m,n], our
practice elsewhere in this article — this leads to somewhat eas-
ier expressions).

Let f be a continuously differentiable function for all z >
1. The celebrated Fuler’s summation formula [Rainville 1967]
reads

o [ 1)+ £(n)
Y

+/ln (x — =] - -;—) f'(z)dz.
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Letting f(z) = tan~!(1/4/x) yields

ita.n_1 1 = /n tan™? —-l—dx + l + -l-t:a.n_1 —1—
= Ve A NG g8 2 vn

"o fd- }

——=d B5.10
L Vai+e) (35.10)
But
(O | y°°(—1)’“___ 1
tan~! —d =/ =) pk-idz = G(1 G(—),
/1 an 7z T A ,§2k+1 T (1)—+/y ”
where
= (=1)* 1ty 1
Gly) =2 y'=-1——=tan " /y.
2;0419 2] NG
Therefore,
/1tan_l%dtz\/ﬁ-—l-—-72E+(l+n)ta.n_1%.
Moreover,
/f z— €+2
¢ 1\/_(1+93)
1/2 zdz

-3 {z+e- P +e+))

B _/1/2 -1+ 42)—{e-1 -}y ?(e+ 1 ~z)_
- 1/2
0 {(Z—%)2—w2} ((E—I—%)Z-—aﬁ)
_ 1 ~7/2
=0~ m +OE).
It follows that

"z — 2] -

Va(l+z)

d:c = +o(1) =% e,
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where c; is a finite constant. Substituting all this into (B5.10)
shows that x, = 2/n + c2 + o(1) for all n > 1, where cz is yet
another constant.

Recall that our goal is to investigate the behavior of ¢ —
na £+ xn for n > 1. Note first that we may consider x, — na,
since neither uniform rotations nor orientation matter to the
qualitative picture. Let firstly a = 0. Wishing to prove, as we
do, that the sequence {y/n mod 27} is equidistributed in [0, 27]
(that is, that the proportion of times it “hits” any interval — or,
in general, any measurable subset of [0,2n] — of length L is
asymptotically L/2w), we have several options: We can use the
Weyl equidistribution theorem [Korner 1988], the mean ergodic
theorem of von Neumann [Halmos 1956] or a theorem of Fejér
[Pdlya and Szeg6 1979, Vol. 1, Pt. II, Problem 175|. Faced with
this abundance of riches, we opt instead for a direct proof which
contributes an extra useful morsel of information.

Proposition 2. The sequence {y/n mod P}, where P > 0,
is equidistributed in the interval [0, P].

Proof. Let M be a large integer. We examine all the integers in
the interval [M2P2 (M + 1)2P?). Clearly, they are of the form
[M?P?+k,k=0,1,...,[(2M +1)P?] - 1. Let Q@ = {M2P?} =
M?2P? — [M?P?], the fractional part of M2P2. Since

_oN1/2
\/M2P2+k-—Q=MP{l+u}

M2p2
k—-Q _a
= MP + SMP + O(M™%),
we have
gn = VM?2P2+k—-Qmod P = k-9 +O(M™2).
" 2MP

In other words, and provided that M is sufficiently large, the
values of the sequence are equispaced in [0, P], up to O(M~!)
(the “degradation” in the power of M is obvious, since we wish
for a uniform bound and k itself is O(M)). This proves equidis-
tribution. ]
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Equispacing is, of course, a considerably stronger feature than
equidistribution. Thus, the angles x, are not just equidistributed
in [0, 27], but the integers can be decomposed into a direct sum
of sets {Ja}37—¢ of consecutive integers such that each Jjs is of
length ~ 2M and such that the sequence is asymptotically equi-
spaced in each set. In other words, for large n, the sequence re-
peatedly traverses [0, 27| in sweeps of nearly-equispaced points,
and the length of such sweeps increases linearily.

The aforementioned analysis applies only to a = 0. Let Z be
a measurable subset of [0, 27| of measure m(Z). The definition
of equidistribution means that

m(T)

Aim Pr(gn €I) = — =,

consequently,
nli_'ngoPr(gn —an€l) = T}LngoPr (9n €T +an)
_ m(Z+an) m(T)

2T 2T

Since this is true for every measurable subset, it follows that
{gn — an} is also equidistibuted. Observe that, contrary to the
situation in Section 4, the behavior does not hinge on the ra-
tionality — or otherwise — of a/m.

Having proved equidistribution (and noting the ubiquity of
this behavior elsewhere in this article), it is only fair to conjec-
ture that this persists for larger dimensions d. This is false!

Let v be an eigenvector of W with the eigenvalue A. Unitarity
implies that

v=W*Wv =Wy,
consequently v is also an eigenvector of W* with the eigenvalue

A~1. Moreover,

0=W+W*)v= ()\+§)v,

and (B5.4) implies that A2+41 = 0. Thus, o(W), the spectrum of
W, consists of just +i and —i, repeated as necessary. Moreover,
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if we insist on real W, clearly d must be even and the number
of +i and —i must match. Simple calculation affirms that

0—a -8 -y
a 0Fy s

W = T @eperr=,
B £y 0 Fa

YyFBta 0

is the most general form for real W, d = 4, consistent with
(B5.4). Moreover, necessarily

(B5.11)

—il O
volo

O il

where I is the (d/2) x (d/2) identity and Q is itself unitary
(note, however, that whilst every unitary matrix @ in (B5.11)
is consistent with (B5.4), not every choice yields a real W). We

go back to the original map (B1.1) (with the special values of
A and B):

1
Zntl = <A+ —i—B> Zp = (I+—W*> Az,, n=0,1,....
|zl |zl

Letting Z,, := Qz, yields, by virtue of unitarity of Q,
= (1+ 27QW"Q) Q4Q'5,
n

(1+i/l|znl)I ] N
= AQ*z,.
[ o (1 —1i/|zal)I Q4Q

Let A := QAQ* and note that it is unitary. Moreover, similarly
to an earlier normalization, let

i, = =Qu,, n=01,....
||an|
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As before, we stipulate that ||@p]| = 1 to obtain
) 1 [(VaFT+6)1 0 i
Upt1 = —— Un,

T Vnt2 0 (vaFi-di)1] "

an expression that involves just a single matrix A.
We denote by

cos ¢ sin d)]

P = [—sin¢> cos @

the Euler rotation of the plane by the angle ¢ and set

- E, O
A= .
[0 Eﬂ]

It follows by induction that

_ eXnEpg 0 _
u, = ug.
" (0] e Xn Enﬂ

In particular, we can see from our two-dimensional analysis that
the iterants {a,} (thus, also {z,}) are equidistributed on a
direct product of two circles. This is a strict (in fact, lower-
dimensional) subset of the surface of the sphere in R*, and
equidistribution is confined to an infinitely small portion of the
possible range of values.
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Historical Supplements






Foreword to
Historical Supplements

The short historical supplements that follow range over two and
a half millennia and deal with certain aspects of spirals. They
have been included to provide some feeling for the “texture”
of the mathematics of different periods. For the complete dis-
cussions by these authors, the original documents should be
consulted.

Having assembled these selections, and attempted some trans-
lations on my own, I doff my hat in acknowlegement of the
scholars who have devoted years to the translation of and mak-
ing sense of ancient mathematical documents. The manner of
mathematical exposition changes rapidly; I have experienced
the discomforture of changing goals, notations and modes of
mathematical expression within my own professional lifetime.
If ancient material has to be “watered up,” I find that con-
temporary material often has to be “watered down” for my
understanding.

I have placed a few comments of my own within the historical
texts. These are designated by square brackets : [ ].






Historical Supplement A

From Plato: Timaeus

Excerpt from Plato’s [4277-347 B.c.] Timaeus:

Now when all the stars which were necessary for the cre-
ation of time had attained a motion suitable to them, and
had become living creatures having bodies fastened by vi-
tal chains, and learnt their appointed task, moving in the
motion of the diverse, which is diagonal and passes through
and is governed by the motion of the same, they revolved,
some in a larger and some in a lesser orbit, and those which
had the lesser orbit revolving faster, and those which had
the larger more slowly. Now by reason of the motion of the
same, those which revolved fastest appeared to be overtaken
by those which moved slower although they really overtook
them; for the motion of the same made them all turn in a
spiral, and, because some went one way and some another,
that which receded most slowly from the sphere of the same,
which was the swiftest, appeared to follow it most nearly.

— Timaeus, 39. Translation by Benjamin Jowett.
Macmillan, London, 1892.
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From Plato: Theaetetus

Excerpt from Plato’s Theaetetus (SOC. = Socrates. THEA.
Theaetetus):

SOC. Let me offer an illustration [about the nature of knowl-
edge in the abstract]: suppose that a person were to ask about
some very trivial and obvious thing — for example, What is
clay? and we were to reply, that there is a clay of potters,
there is a clay of oven makers, there is a clay of brick makers;
would not the answer be ridiculous?

THEA. Truly.

SOC. In the first place, there would be an absurdity in
assuming that he who asked the question would understand
from our answer the nature of ‘clay’, merely because we added
‘of the image makers’, or of any other workers. How can a man
understand the name of anything when he does not know the
nature of it?

THEA. He cannot.

SOC. Then he who does not know what science or knowl-
edge is, has no knowledge of the art or science of making
shoes?

THEA. None.
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SocC. Nor of any other science?
THEA. No.

SOC. And whan a man is asked what science or knowledge
is, to give in answer the name of some art or science is ridicu-
lous; for the question is ‘What is knowledge?’ and he replies,
‘A knowledge of this or that.’

THEA. True.

SOC. Moreover, he might answer shortly and simply, but
he makes an enormous circuit. For example, he might have
said simply, that clay is moistened earth — what sort of clay
is not to the point.

THEA. Yes, Socrates. there is no difficulty as you put the
question. You mean, if I am not mistaken, something like
what occurred to me and my friend here, your namesake
Socrates, in a recent discussion.

SOC. What was that, Theaetetus?

THEA. Theodorus was writing out for us something about
roots, such as roots of three or five, showing they are incom-
mensurable by the unit: he selected other examples up to
seventeen — there he stopped. Now as there are innumerable
roots, the notion occurred to us to include them all under
one notion or class.

SOC. And did you find such a class?

THEA. I think that we did; but I should like to have your
opinion.

SOC. Let me hear.

THEA. We divided all numbers into two equal classes,
those which are made up of equal factors multiplying into
one another, which we compared to square figures and called
square or equilateral numbers; that was one class.

SOC. Very good.

THEA. The intermediate numbers, such as three and five,
and every other number which is made up of unequal factors,
either of a greater multiplied by a less, or of a less multipled
by a greater, and when regarded as a figure is made up of
unequal sides; all these we compared to oblong figures and
called them oblong numbers.

SocC. Capital; and what followed?

THEA. The lines, or sides, which have for their squares
the equilateral plane numbers, were called by us lengths or
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magnitudes; and the lines which are the roots of (or whose
squares are equal to) the oblong numbers, were called pow-
ers or roots; the reason of this latter name being, that they
are commensurable with the former [i.e., with the so-called
lengths or magnitudes] not in linear measurement, but in the
value of the superficial content of their squares; and the same
about solids.

SOC. Excellent, my boys; I think that you fully justify the
praises of Theodorus, and that he will not be found guilty of
false witness.

THEA. But I am unable, Socrates, to give you a similar
answer about knowledge, which is what you appear to want;
and therefore Theodorus is a deceiver after all.

— Theaetetus, 147. Translation by Benjamin Jowett.
Macmillan, London, 1892.
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Historical Supplement C
From Archimedes: Pert Elikon

Excerpts from Archimedes’ [287-212 B.c.] Peri Elikon [On Spi-
rals]. The brackets { } designate Heath’s remarks. Heath, of
course, has introduced modern notation.

Definitions.

1. If a straight line drawn in a plane revolve at a uniform
rate about one extremity which remains fixed and return to
the position from which it started, and if at the same time
as the line revolves, a point move at a uniform rate along
the straight line beginning from the extremity which remains
fixed, the point will describe a spiral {’elix} in the plane.

2. Let the extremity of the straight line which remains
fixed while the straight line revolves be called the origin
{’archa: literally, the beginning of the spiral}.

Proposition 12.

If any number of straight lines drawn from the origin meet
the spiral make equal angles with one another, the lines will
be in arithmetical progression.

{The proof is obvious}
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-4 -2 0 2 4 6

Figure 47.

Proposition 13.

If a straight line touch the spiral, it will touch it at one point
only.

Let O be the origin of the spiral and BC a tangent to it.
(See fig. 47.)

If possible, let BC touch the spiral in two points P, Q.
Join OP, 0Q, and bisect the angle POQ by the straight line
OR meeting the spiral in R.

Then {Prop. 12} OR is an arithmetic mean between OP
and OQ or

OP +0Q =20R.

But in any triangle POQ, if the bisector of the angle POQ
meets PQ in K,

OP +0Q > 20K.

{Known proposition. Assumed here.}
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Therefore OK < OR, and it follows that some point on
BC between P and @ lies within the spiral. Hence BC cuts
the spiral, which is contrary to the hypothesis.

* X X

Proposition 24

The area bounded by the first turn of the spiral and the initial
line is equal to one third of the ‘first circle’.

{= (37)(2ma)?, where the spiral is r = af}.

* %k ¥

Let O be the origin, OA the initial line, A the extremity
of the first turn.

Draw the ‘first circle’, i.e., the circle with O as centre and
OA as radius.

Then, if C; be the area of the first circle, R; that of the
first turn of the spiral bounded by O A, we have to prove that

Rl = %Cl
For, if not, R; must be either greater or less than C;.

L If possible, suppose R; < 1Ci.

We can then circumscribe a figure about R; made up of
similar sectors of circles such that, if F' be the area of this
figure,

F—R1<%Cl—R1,

whenceF <

Let OP, 5 . be the radii of the circular sectors, begin-
ning from the smallest. The radius of the largest is, of course,
OA.

The radii then form an ascending arithmetical progression
in which the common difference is equal to the least term
OP. If n be the number of the sectors, we have {by Prop. 10,
Cor. 1}

nOA? < 3(OP? + 0Q? + ...+ 04?)

(see fig. 48) and, since the similar sectors are proportional to
the squares on their radii, it follows that

C) < 3F,



140

Archimedes

.
.

Figure 48.

or
F > %Cl

But this is impossible, since F' was less than %C’l.
Therefore

Ry ¢ 10

II. If possible, suppose R; > %Cl.

We can then inscribe a figure made up of similar sectors of
circles such that, if f be its area,

Rl—f<R1—%Cl,

whence f > %Cl.

If there are (n — 1) sectors, their radii, as OP,0Q,...,
form an ascending arithmetical progression in which the least
term is equal to the common difference, and the greatest
term, as OY, is equal to (n — 1)OP.

Thus {Prop. 10, Cor. 1},

nOA? > 3(OP* + 0Q* +--- + OY?),

whence C; > 3f, or f < 3Ci; which is impossible, since
f > 3C1. Therefore R, # 3Ci.
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Since then R; is neither greater nor less than %Cl,

Rl = %Cl

—Excerpted from the T. L. Heath edition of the
Works of Archimedes. See also Dijksterhuis,

pp. 275-277, and the supplemental

notes of W. R. Knorr, p. 435.

It is interesting to contemplate how a modern author would
treat the proof of Proposition 13 into a statement about “spiral
convexity.”
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From Torricelli: De Infinitis Spiralibus

On the rectification of the logarithmic spiral. An excerpt from
Evangelista Torricelli’s De Infinitis Spiralibus [c. 1645]. This
contains the first (known) construction of a line segment equal
in length to the length of a curved arc. This precalculus result
is based on the following geometrical identity.

Section 12.

THE LENGTH OF BR EQUALS THE LENGTH OF THE
BROKEN LINE BC...L. [See fig. 49.]

Starting from the longest ray AB of the spiral with center at
A, and terminating with the shortest ray AL, we construct
consecutively as many equal angles as we wish: BAC,CAD,
DAF,...,ZAL and complete the triangles BAC,CAD,
DAF, ..., ZAL.

Take segments AK and AV on lines AB and AC re-
spectively equal to AL (i.e., to the shortest ray.) Thus the
triangle AKV will be isosceles and hence its base angles
AVK = AKV.

Let the prolongation of the line KV meet the prolonga-
tion of BC at the point R. I say that the length of BR is
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equal to the sum of the lengths of all the inscribed segments
BC,CD,DF,...,ZL.

In fact, because of the equality of the angles constructed
at the center A,BA : AC = AC : AD. [This follows from
Torricelli’s definition of the logarithmic spiral given in the
first section of his manuscript.|

Thus the triangles BAC and CAD are similar, and the
same is true of all the remaining triangles up to the last
triangle which is ZAL. Now if we take alternatively on the
line AB and the line AC the segments AF = AD, AG =
AF, Al = AH,AO = AZ, all the way up until the last
which is AK, and which we have already taken equal to
AL, then according to the fourth proposition of Book I of
Euclid, the triangles AEC and ACD are congruent, as are
AEG and ADF,... We have

CE=CD, EG=DF, GI=FH,...,ZL =OK.

Furthermore, the segments BC, EG,... will be parallel.
The remaining segments [taken alternately] CE, GI will also
be parallel.

For BA: AC=AC: AE=AE: AG...
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and therefore BC and EG are parallel lines. The same is true
of the others.

We now prolong the last segment KO so that it intersects
the line BR at the point P. Segment K P will be equal to the
sum of all of the parallel segments CE,GI, .. .:

KP=CE+GI+---+OK.

For it is clear that if we prolong EG and all of the re-
maining segments which are parallel to it until they meet
K P, these prolongations, will in fact divide the segment K P
into as many parts as there are segments CE,GI,...,OK to
which parts CE,GI,... ,OK will be equal respectively.

Segment BP will also be equal to the sum of all of the
parallel segments BC, EG, ... :

BP=BC+EG+---.

This becomes clear if this time we prolong segments such
as G together with all the segments that are parallel to them
until they intersect BP.

But it is now the case that K P = PR. This can be demon-
strated as follows. Triangles KBR and VOK have equal
angles (i.e., are similar) because ang KBR = ang ABC =
ang ACD = angACD = angACE = ... ang AOK =
ang VOK. But BKR and OV K are both supplementary an-
gles to the angles at the base of the isosceles triangle AKV'.
Thus angles BKR = OV K. Thus, for the remaining angles
KRB and OV K must be equal, and therefore KP = PR.

Therefore BR = K P+ BP. Thus BR will be equal to the
sum of both the sums aforementioned. That is,

BR=BC+CE+---,

and by what we proved above [i.e., CE =CD,GI = FH,...,
ZL = OK] : BR must therefore be equal to the sum of the
segments inscribed in the spiral:

BR=BC+CD+---+ ZL.

The excerpt just given was translated, rearranged and ampli-
fied from the Italian version of E. Carruccio.

Now notice what happens when the angle BAL is subdivided
into more and more equal parts: The equal angles AKV and
AV K approach a right angle, the point C' approaches B, and the
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secant BC approaches the tangent to the spiral at B. Therefore
we arrive at Torricelli’s theorem:

Given a logarithmic spiral with center A. To obtain a line
segment whose length equals that of the spiral arc from B to
L: On the segment AB lay off AK equal in length to AL. At K
erect a perpendicular to AB. At B construct the tangent to the
spiral and allow this tangent to intersect the perpendicular at
R. Then the length BR equals the length of the spiral arc BL.

Torricelli goes beyond. Allow the logarithmic spiral to wrap
itself around infinitely often and approach its center A. At A
erect a perpendicular to AB and at B construct the tangent to
the spiral. Allow the tangent to intersect the perpendicular at
T. The length of the segment BT on the tangent is the total
length of the spiral as it wraps inward from B to A.
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From Bernoulli: Opera Omnia

Excerpt from a letter of Johann (Jean) Bernoulli [Bernoulli
1968], written in Basel on the 10th of January 1711, relating
to the determination of the central force on a moving body in
a resisting medium that is given by the product of the density
and certain powers of the speed of the body.

PROBLEM

Find the central force required in order that a body move
along a given curve in a medium whose density varies ac-
cording to a given law and which resists the body propor-
tionally to the product of the density and the speed raised to
an arbitrary power.

[The solution given by Bernoulli follows.

Remark II. Mr. Newton has made an oversight in his
Proposition XVI on page 288 of his Philosophiae Naturalis
Principiis Mathematicis, in which he says that if a body is
attracted to one point by a central force whose magnitude
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is proportional to the reciprocal of the n + 1 st power of its
distance from that point, and is moving in a medium whose
density is the reciprocal of the nth power of that distance,
that body will describe a logarithmic spiral whose pole or
center will be the point towards which all the forces are di-
rected. I have found, by my own analysis, that this is true
only in the case when n = 1. This is the case of Prop. XV
just prior to XVIL.

For let  be the ray of the spiral, and let h be the secant of
the constant angle that is made with each of its rays, ... Let
¢ be the number whose logarithm is 1; f, the central force
directed toward the center of the spiral; v’ the speed of the
body; R, the resistance of the medium and D its density. If
one assumes, with Mr. Newton, that

D=1:z"
and R = mwvzD, then according to my analysis one finds
that we must have
f= -3 x ci2mh:cl_":(l—n)

and not f =1:z"*!, as Mr. Newton said, to have the body
move in a logarithmic spiral. One concludes from this, that
in contradistinction to the assertion f = 1 : z"*1, the force
will not equal a power of x except in the case when n = 1.

—Johannis Bernoulli, Opera Omnia, 1, pp. 502-508.
Translated from the French with some liberties taken.83



Historical Supplement F

From Sylvester: Note on the Successive Involutes
of a Circle

Excerpts from an 1868 article of James Joseph Sylvester.

...Ishall use ¢, s, 7,6 to denote the angle of contingence, arc,
radius, and vectorial angle of the curves under consideration.

Let now 6 = 29, (a/2)r = p?...
then
® =sin"'(1/2)a/p + (1/a)V/p* — (a/2)?

is the polar equation to a known curve (of the kind used by
Captain Moncrieff in his barbette-gun carriage). It is of the
class of curves generated by a fixed point on a wheel rolling on
a plane. Such a curve may be termed the convolute of a circle
of a pitch denoted by the ratio of the distance of the fixed
point below the centre to the radius of the revolving circle;
thus a convolute of zero pitch is the spiral of Archimedes,
a convolute of unit pitch the first involute to the circle: the
general equation to a convolute, when the distance below the
centre is d and the radius a, is given by the Rev. James White
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in the last September Number of the Educational Times and
is easily shown to be

® =sin""(d/p) + (1/a)V/p* — (d/2)*.

Similarly, we may define the pitch of the second involute to
be the ratio of the distance of its apse from the centre to the
radius; and then we are conducted to the observation that
whilst the convolute of the first pitch is the first involute,
the convolute of half pitch, on applying to it one of simplest
forms of M. Chasles’s or Mr. Roberts method of transforma-
tion (given in Dr. Salmon’s Higher Plane Curves, p. 236),
namely, doubling the vectorial angle and squaring the radius
vector, becomes converted into the second involute of half
pitch. Since for this curve

r = (a/2)(¢* +1) = ds/d,

we see that it may be completely defined, without reference to
any theory of involutes, as the curve whose radius of curvature
at any point is equal to its radius vector reckoned from a given
origin. It is the curve which completely satisfies the equation
rdcos™!(dr/ds) = s [sic|, the two arbitrary parameters which
the complete integral of this equation should contain being
furnished by the linear magnitude and angle of swing of the
curve round the given origin.*

*[Sylvester’s footnote]: This evolute possesses the prop-
erty, which serves to characterize it completely, of cutting the
originating circle (its second evolute) orthogonally. For when
2 = a2,G? = 0, that is, the tangent to the curve passes
through the centre. Moreover, since G = 0 gives ¢ = 1, it fol-
lows that the curve cuts out of the circle an arc equal in length
to the diameter. Summarizing such of its principal properties
as have fallen in our way, we see that it bisects the line joining
the centre of the originating circle and the cusp of the first
involute; that it cuts the said circle orthogonally; that its ra-
dius of curvature is everywhere equal to its elongation from
the centre; that it is a trajectory to a central force varying as
the inverse cube of the shortest distance from the periphery
of the originating circle; that its arco-radial equation is only
of half the number of dimensions of the general involute of
the same order; and that by the simplest form of quadratic
transformation (namely, that which leaves unaltered the in-
clination of the tangent to the radius vector) it changes into
the half-pitch circular convolute; not to add that its polar
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equation is even simpler than that of the first involute. Cer-
tainly, then, as it seems to me, it ought to take permanent
rank among the spirals which have a specific name on the ge-
ometrical register; and for want of a better, with reference to
the place where its properties first came into relief, it might
be termed the Norwich spiral.

—From: “Note on the Successive Involutes to a Circle,”
J. J. Sylvester, Mathematical Papers, vol. 11, pp. 638-9.
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Historical Supplement G

From Poincaré: Mémoire sur les Courbes

This supplement excerpted from an 1882 article by Henri Poin-
caré relates to the nature of the singular points and to the
limit cycles of the direction field of the solutions of first-order
autonomous differential equations in the plane.

Chapter VI
The theory of limit cycles.

From what we have seen previously, the characteristics [or-
bits, trajectories] can be put into four categories:

1. Cycles [closed orbits; periodic solutions];

2. spirals that one can follow indefinitely in two directions
without coming to a node or without turning around a spiral
point [Fr.: foyer = focus = spiral point] and without coming
back to the point of departure;

3. The characteristics that one can follow indefinitely in
one direction without meeting a node or approaches a spiral
point, but which, in the other direction, leads to a node or
approaches infinitely closely to a spiral point;

4. Those that lead on both sides to a node or to a spiral
point.
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Chapter VII
Complete discussion of some examples.

Third example. Consider the equation

dx
(@®+y? - 1) —y(z? +y? + 1)
_ dy
Ty + -1 +x(@2+y2+1)

There is only one singular point [critical point] in each
hemisphere; this is the point £ = y = 0 and it is a spiral
point.

There are no singular points on the equator which is a
characteristic and is therefore a limit cycle. Consider the to-
pographical system of circles whose centers are at the origin,
that is to say, of the circles

% + y2 = const.
The contact curve of this topographical system is
(2 +4°)(=® +4* - 1),

that is to say, all these circles are cycles without contact [non-
tangential; traversal] except for the circle of radius 1 which
is a limit cycle. [Here Poincaré seems to mean the following:
if one rewrites the differential equation above in parametric
form, one has ' = DL,y’ = DR, where DL is the denomina-
tor on the left and DR is the denominator on the right, and
where ’ designates differentiation with respect to the param-
eter t. A slight algebraic manipulation of these two equations
yields

(@ +9?) =22+ )= +y° - 1),

from which his conclusion follows.] There are no other limit
cycles. The system of characteristics therefore has the aspect
of the following figure.
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Figure 50.

Fourth example: Consider the equation
dz
z(z?+y? - 1) (22 +9y2 - 9) —y(z? + y? — 2z — 8)
- dy
Y@ +y? - 1)@ +y? - 9) + (22 +y? — 22 - 8)
We see that there are three singular points:

1. The point O : z = y = 0;
2. The points A and B at the intersection of the circles

224942 -9=0,22+4y2 -2 - 8=0.

The point O is a spiral point; the point A is a node; the
point B is a saddle point. We see that as in the preceding
example, the equator is a limit cycle; that the circles whose
centers are at the origin are cycles without contact, except
for the circles 22 + y? — 1 = 0,22 + y2 — 9 = 0, and these are
characteristics.

The first of these, which doesn’t go through a singular
point, is a limit cycle; the second goes through a node and a
saddle point.

There are therefore three kinds of characteristic: the first
kind twist around the spiral point O and have

2+y2-1=0
for a limit cycle; the second lead to the node A and have

2+9y2-1=0

155
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as a limit cycle; the third lead to the node A and have the
equator as a limit cycle.

The following are exceptional characteristics:

1. The equator;

2. The circle 22 + y2 = 1;

3. The circle 2% + 3% = 9;

4. A characteristic that starts from the saddle point B and
has the equator as a limit cycle.

5. A characteristic that starts from the saddle point B
and has 22 + y? = 1 as a limit cycle.

— From: Henri Poincaré, “Mémoire sur les courbes
définies par une équation différentielle,” Journal de
Mathématiques Pures et Appliquées, v. 8 (1882),
Chap. VII. There are three other articles

in this memoir: v. 7 (1881), 375-422; v. 1

(1885), 167-244; v. 2 (1886), 151-217.



Historical Supplement H

From Hlawka: Gleichverteilung und
Quadratwurzelschnecke

The excerpts that follow constituted the original inspiration for
these Hedrick lectures. They are taken from Edmund Hlawka'’s
1980 article on the equidistribution (also referred to as “uniform
distribution”) of the angles of the square root spiral.

Let us consider the nth triangle OP, _1 P,(n = 1,2,...) in the
square root spiral, i.e., [spiral of Theodorus]. See Figure 51.
Since the angle at P,_; is a right angle,

sina, =1/vVn+1.
Therefore, ¢, the angle between the ray OFy and OPF,, is
given by ¢, = a3 + - - + an. Therefore we have

n+1

Yn = Z arcsin(1/Vk).
k=2

W. Neiss [1966, pp. 241-43] considered the sequence w =
(¢n) and proved that the sequence w = (im)w is equidis-
tributed modulo 1.
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Pn+1

0] sqrt(n) Pn
Figure 51.

A sequence of real numbers 3, is called equidistributed
if the following is the case: Consider all subintervals I of the
half-open unit interval 0 < £ < 1. Next, consider the first N
terms of the sequence 81 — [31],...,8~n — [Bn] (Where [8] is
the Gauss bracket; i.e., the largest integer < () and count
how many of these terms lie in I. Designate by A(N,I) the
number of such terms, and by A*(N,I) = A/N, the relative
frequency. If, for every I, the limit as N — oo of A*(N,I)
exists and is equal to A\([), the length of the interval I, then
the sequence (3, will be called equidistributed modulo 1. From
the theorem of Neiss that the sequence (1/27)(p,) is equidis-
tributed, we may conclude the following: Let J =< p,0 < be
a subinterval of < 0,27 < (more generally, J can be an arbi-
trary interval modulo 27, that is, it can split into two subin-
tervals of < 0,27 <; then with J we associate the subinterval
I = (3)J of the unit interval. Consider the first N rays and
let N’(J) be the number of that lie in the sector bounded
by the rays p and 0. Then we have N'(J) = A(N, I). There-
fore, from the equidistribution of the sequence (5= )¢, we
conclude that

!
fim YU) _ 1

We shall say that the sequence of rays ¢, is equidistributed
modulo 27.
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Neiss’ proof is elementary but not simple. We shall give
another proof (which the author already gave in his 1968
lectures on selected chapters of the theory of numbers.) In
doing so we will have accomplished rather more in that we will
have demonstrated how modern methods of analytic number
theory and of the theory of uniform distributions lead us to
deeper things. It would also be easy to consider sequences
(¢n) that are more general than the specific sequence defined
by (1) below.

Since the author of this work is (as is Theodorus) one of
the older mathematicians, we will explain the method with
the specific sequence w. Our point of departure is the asymp-
totic expansion

On=2Vn+1+ K+ ——— + O(n™%?), 1
A O, ()
where K may be called the “square root spiral”’ constant. Its
value is < 0, 75.
We shall deepen the theorem of Neiss by obtaining bounds
for the discrepancy Dy (w). By this symbol we mean

Dy (w) = sup|A*(N,I) — X(I)]
[where the sup is taken over I].
We shall prove in Theorem 1 that
120

Dn(w) < N 2

In the other direction, we shall prove that there is a constant
¢1, which could be calculated, such that

Dy(w) > ﬁ 3)

In addition to the sequence (), we shall also consider the
sequence w(L) = (¢n+r — ¢L), where L > 1, and we shall
prove that for this sequence,

N -Dn(w(L)) £ Co¥VN+ L
N -Dn(w(L)) > C3vN + L.

The sequence w is therefore not “uniformly equidistributed.”
In Theorem 4 [not reproduced here] we shall prove the

159
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following. Let p;, p2, .- ., ps be distinct prime numbers. Then
the s-dimensional sequence % (Pnpys---»Pnp,) is equidistrib-

uted modulo 1 in R®. This is to be understood as follows.
Let I be an s-dimensional subinterval of the unit hypercube.
Consider the first N points

1
(Burs — Bl B = B}, (B = )

and designate by A(N,I) the number of these points that lie
in I. Then we shall have

. 1
ngnoo NA(N’ I) = A(I), (4)

where (A\(I)) = the volume of I.84
As a rough upper bound on the discrepancy

1
Dy(w) = stllp NA(N’ I — (1)

we obtain
Dy < csN~2 " (log N)*~ 1.

But if we use a deep theorem of W. Schmidt [1970, pp. 189
201], we can obtain

Dy < %N-[2(1+s)(s+1)]—1 )

At the end, we will turn to another type of question. In a nice
piece of work, E. Teuffel [1959] posed and solved the following
problem, which was raised independently by Neiss:

Is it possible to solve the equation

PntL —¥Pn =4

in positive integers g, L, n? By using a theorem of Sylvester—
Schur [given two positive integers n and s with s < n, then
there is a prime p > s and an integer @ withn <a <n+s,
which is divisible by p. I. Schur: Gesammelte Werke, vol. 3, p.
140], we have succeeded in simplifying Teuffel’s proof of his
theorem that this is not possible. [This implies that no other
P,’s can lie on the line joining O and P,.] We also succeeded
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in dealing in a simple manner with the problem, raised by
Teuffel, whether the equation

L
- — t i
Pn+L — Pn = arctan e

is solvable in positive integers. [This implies that no other
P,’s can lie on the line joining P, and P,4;.]

§1. In order to arrive at (1), we use the Euler summation
formula in the following form:

n+l1

n+1
>k = ~(6(2)+o(n+ 1)+ / 9(€)dz+ Ko+ Ruga, (5)

where
Ko = / ” o(@)g" (z)da, (6)
Ros = | f o(@)" (z)dz, (7)

and where g(z) = arcsin f,g(x) 3{z}(1—{z}), and {z} =
z — [z] andaredeﬁnedfora.ll:cm2<x<n+1
Since we have

/(@) =HavE-D)7, ¢"(@) = 33e -2 (@@ - 1)¥?),

then we have

o o)

Ronsl < [ g"(@)dz =g (n+ 1),
n+1
so that

Rpyy = 360732, (8)

(Here and in what follows, 6 will always designate numbers of
absolute value < 1.) From this bound, one can also conclude
the existence of the number K. Moreover, we have

G(z) = /g(w)dw = z arcsin % +vVz -1

161
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To compute G(n + 1), we can insert £ = (n + 1)~/2 in the
expansion

arcsinz = z + 123 + (3)4625, (9)
leading to
1
5
= =) 6(n+1)732 10
n++6\/_<)(n+) (10)
Moreover, inserting the same value of = in the expansion
AFz=1+424-% 4 11)
- 2 4/1T=z’
one obtains
0
=vn+1- 12
Va=vn+ 2\/_ smrn (1Y
We therefore get
1
=2V K 54 —3/2, 13
RTI+E 4 s =1 "1 (13)
where
K= 1a.rcsinL + K, (14)
2 Ve

Therefore K = § + K s, where Ky < %g’ (2) = %. It follows
that we have K < 75 Thus,

1 1
= ViFT= gon-K+0(z).

Thus, to a first approximation, we are dealing with a spiral
of Archimedes, a fact already noticed by Teuffel [1958]. We
now compare the sequence w with the sequence @ = (¥,),
where

1
n =2 1+ ———+ K. 15
Yn=2vntlt o=+ (15)

From (11) we have
€n = |@n — ¥n| < 3-102n7%/2, (16)
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Now it is well known that for all values of ¢ > 0 the sequence
(c/n) is equidistributed modulo 1. So in particular, the se-
quence w; = (2y/n) [when reduced mod 1] is equidistributed.
Since the sequence @ differs from w; only by a convergent
sequence, it follows that w is equidistributed. Moreover, w
and @ differ by a null sequence. Therefore it follows that w
is also equidistributed. This proves the theorem of W. Neiss.
For this purpose, we hardly needed so exact a representation
as that provided by (13). The representation

6
=2V 1+ K + ——
$n n+ + mrl

would have sufficed. However we need (13) to determine the
exact order of the discrepancy Dy (w). The discrepancy Dy (w)
is defined by

N'(J)  A(J)
N  2r

where J is an arbitrary subinterval < g, 0 < of < 0,27 < and
where N'(J) is the number of the ¢,(1 < n < N) that lie in
J. The quantity Dy (&) is defined analogously. We will next
compare the two quantities D (w) and Dy (@) and make use
of the following theorem which was established by the author
(See [Kuipers and Neiderreiter 1974, Chap. 2, Theorem 4.1,
p. 32] but stated there mod 1.)
For every € > 0, we have

sup ; (17)

J

2|

Ay =|Dyw) = Dn(@)| <e+ (18)

where N is the number of the £, with 1 <n < N and e, > €.
Now, from (16) we have N < N, where N is the number of
n with 1 <n < N and 3-102n~3/2 > ¢. Therefore we have

N <N <4072/, (18")
It therefore follows that
AN < e+ 40Ne~?/3, (19)
Now take € = (42)%/5, then with

c1 =2-40%° (20)
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we obtain
AN = |Dn(w) — DN(@)] < et N73/5. (21)

§2. We now have to determine Dy (@) through (18). To
this end it suffices to consider intervals of the form < K,y +
K < where 0 < v < 2m. Let I be such an interval, then we
have to bound the number of solutions of

K<z/zn—27r[¢]<'y+K (22)

with 1 < n < N. Call this number N'(I). Set v = 2n8,
1
gn = [%] B = —n,

then from (15),

Bn = o(n+1), (23)
where
K 1 ,
o) = Vit gz ty) T (23)
Now let K; = K/2r. Then we have to study the inequality
K1+gnS,3n<gn+,3+Kl (24)

for 1 < n < N. Since the derivative o’ is always positive, we
have

gn =[Bn] <[BN] =9gn =g. (25)
We have gy > go + 1 where

2VN+1+K
go= [_2—] -1 (26)
T
Now also
2VN+1+K 2VN+1+K
By 2 > =g+l
2 2m
Therefore, if we set gy = g,
g
N'(I) <) a(L, 1) = N{(D), (27)

L=1
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where a(L, I) designates the number of solutions of

Ki+L<B.<L+B8+K, (28)
with 1 < n < N. Naturally the number a can also be equal
to zero. On the other hand,

90

N2 Y (L, 1) = N(D). (29)

L=0

We have arrived at (28), and therefore we must discuss
the inequality

K
Ki+L<-= (\/n+ + — )<L+ﬁ+K1,

12\/—‘

that is to say, the inequality

a1—7rL<\/_+ < (L+ B)7 < az, (30)

\/_

where we have written n + 1 = m. Now m satisfies the right-
hand side of the inequality precisely if

\/ﬁgé(a2+ ag—%)

then L > 1 and therefore a; > 3. One gets a lower bound for
v/m if one replaces az by a;. Furthermore, for every r > 2,

we have
1 1 6 12
I=se =l gtV 1 ()

(cf. (11)). Therefore, if we apply () with r = a; and r = ay,
we obtain

1 10
<
12a; 12a1 VI <02 Toay T 12a3°

a; —
from which, introducing abbreviations b; and bs,
1 5 s 1 5

bh=dal---5<m<aj—z+—5=b

6 a2~ 6 a?

Therefore, a(L,I) = [by] + [-b1] + 1, and consequently,

a(L,I) < 28Lx? + B°n?

31)
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It follows that
g
1
<n? <2ﬂL+ﬂ2+ §o+1),
L=1
so that

4
Ni(I) < 7°Bg(g +1) + B9 + = + .
As a result, then, of (25),
VN +1 1
g=gn = + t o
™ 2r 12N +1
so that
Ni(I) < BN + 20vV'N +5.

On the other hand, [by] + [—b1] > by — b; —

90
N{(I) > n? Z((zﬂL + 6% - %o) - 2).
L=1

It follows from this that

4
T
Ni(I) > n°Bgo(go + 1) + B*ngo — i 2gom?.

Now we have

VN K
>t -1,
go 2 +21r

so that

N(I) > BN —10v'N — 5.
Using (27) and (29), we arrive at

|N'(I) — BN| < 20V'N +5.

Now since 8 was arbitrary, it follows that
40

Dn(@) < Wiod

Now, using (21), we get

80

Dy(w) < N3

0
VN

(32)

(32)

(33)
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and we finally arrive at:
Theorem 1:

Dy(w) < %% (34)

—Excerpted from: E. Hlawka, Gleichverteilung und
Quadratwurzelschnecke, Herrn Prof. R. M. Redheffer
in Freundschaft zum 60. Geburtstag gewidmet.
Monatshefte fiir Mathematik, 89 (1980), 19-44.






Epilogue

I

You cannot find out what a man means by simply studying
his spoken or written statements even though he has spoken
or written with perfect command of the language and per-
fectly truthful intention. In order to find out his meaning,
you must also know what the question was (a question in his
own mind and presumed by him to be in yours) to which the
thing he has said or written was meant as an answer.

—R. G. Collingwood, An Autobiography, p. 31.

R. G. Collingwood, an historian and philosopher, wrote these
words as a response to a recurrent event in his early profes-
sional life: he had to walk by the Albert Memorial every day on
his way to work, a monument that he considered to be “mis-
shapen, corrupt, crawling, verminous.” Why, he asked himself,
had Scott, the architect, laid out a “thing so obviously, so incon-
trovertibly, so indefensibly bad?” Out of this questioning grew
a philosophy that was anti-logicist and which questioned a view
of knowledge, then popular in British philosophical circles, that
had grown out of the logicist position.
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The spiral, a geometric concept of somewhat vague compass
that often inspires wonder and delight, is found in nature, in art,
in decoration, in myth, in legend, in illusion, in religious sym-
bolism, and, of course, in mathematics both pure and applied.
This small volume on spirals is an assemblage of theorematic
material both old and new, theorematic conjecture, computer
experience, computer graphics, historical monuments of math-
ematics that span two and one half millennia, historical and
philosophical animadversions. Much of the mathematics it con-
tains I believe is beautiful, stimulating, and often of practical
interest. In the process of composing and editing this material, I
have had to pass it before my eyes many times, and this review,
particularly of the historical documents, has led me to marvel
at the continuity that they imply and to appreciate how this
continuity testifies to the continued presence of a living math-
ematical tradition, which sometimes has flickered low but has
always managed to restore itself to full flame.

I began to wonder whether I could ever understand the ma-
terials of the past in the sense in which those materials were
understood by the individual authors who composed them out
of experiences and out of intellectual milieus and sensibilities
that were far different than mine. I performed a thought exper-
iment. I imagined that a well-eyed intellect from Quasar X-9
looked over this material, both the symbolic and the graphic.
Would this intellect make of it what I make of it; would this
intellect be able to bind together the visual and the verbal as I
do? I believe the answer to these questions is “No.” Let us not
think that though we say we have interpreted these materials
in a way that seems to us both accurate and adequate, we are
reading the same article

as the contemporaries of the authors. Perhaps the qualities
they prized most highly are those which escape us; others
which they hardly perceived may affect us deeply. ... The
change of century, which means a change of reader, is com-
parable to an alteration in the text itself, always incalculable
and always unforseen.

—Paul Valéry, Adonis
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Reuben Hersh has called attention to certain normative
“myths” of mathematics. Among them are the myths of unity
and universality that state:

There is only one mathematics, indivisible, now and forever.
... Mathematics as we know it is the only mathematics there

can be. If the little green men (and women?) from Quasar X-9

sent us their math textbooks, we would find again A = 7r2.

While admitting the utility of the various myths, Hersh ques-
tions that of universality by asking:

What would it mean to talk about their (i.e., the little green
beings) literature or art or mathematics? The very notion of
comparing presupposes beings enough like us to make com-
munication conceivable. But then, the possibility of compar-
ison is not universal; it’s conditional on their being ‘enough
like us’.

It is part of the myth structure of mathematics that total
formalization is a possible; that the mathematical substance
can be reduced to a sequence of symbols, of zeros and ones, if
you like, and that such a reduction is not only possible but is
a sufficient, self-standing statement of its own being. However,
such a reduction would not be mathematics as it is created,
intuited, discussed, studied, understood, interpreted or applied.

One might ask — one should ask: “What were the questions
to which the historic monuments on display here were the an-
swers?” When the questions are sharply focused, the answers
may stand out clearly. Thus: the Prince died and Scott received
a commission to do a monument. Result: the Albert Memorial.
Though this simplistic answer would surely not have satisfied
Collingwood, when we turn to the mathematical record, we of-
ten find that clear formulations even at this level are avoided. It
is useful, then, to review briefly the historical selections placed
in this book.

A. Plato’s Timaeus:

Those stars which revolved fastest appeared to be overtaken
by those which moved slower although they really overtook
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them; for the motion of the same made them all turn in a
spiral, and, because some went one way and some another,
that which receded most slowly from the sphere of the same,
which was the swiftest, appeared to follow it most nearly.

How do the planets appear to move? An answer is part of
descriptive astronomy. Even though the descriptions are not
given a precision that might have been possible at the time,
one detects the mathematical spirit at work here. The relative
motions of the planets is made vivid, and the word spiral seems
to be employed to describe combination of daily and annual
rotation, of, say, the sun as it spirals up to the Summer Solstice
and down to the Winter Solstice.

B. Plato’s Theaetetus:

What is the nature of abstract knowledge? Plato’s concern with
square roots is in the service of creating a theory of abstraction.
It has no prima facie relationship to spirals. This connection was
made centuries later by Anderhub, though the figure he envi-
sioned might very well have been drawn by the mathematicians
of Plato’s day.

The connection that I have made in these lectures and notes is
this: given that abstraction is the life blood of the mathematical
process, it seemed appropriate to discuss the problems involved
in abstracting the notion of a spiral.

C. Archimedes’ Peri Elikon:

Archimedes introduces his spiral into the mathematical litera-
ture and answers, among other things, the question of how much
area is swept out by a ray that traces the spiral. Archimedes,
undoubtedly the greatest mathematician and physicist of clas-
sical antiquity, discusses his spiral largely as an object of pure
mathematics, using methods which in some measure anticipate
those of integral calculus. He puts the spiral to the use of angle
trisection and circle quadrature. Perhaps his interest in spirals
was related to “the screw of Archimedes,” a hydraulic device
wherein a helical tube is used to raise water. The spiral is de-
fined mechanically, and Archimedes in The Method has found it
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important to distinguish between a mechanical approach to
matters and a purely mathematical one, assigning a higher sta-
tus to the latter.

D. Torricelli’s De infinitis spiralibus:

Find the length of the arc of the logarithmic spiral. In pre-
calculus days, this was a difficult problem for general curves;
and even for the circle, aspects of the problem were not cleared
up until the 1880s. For the ellipse, the question led to a major
chapter in the history of mathematical analysis: the theory of
elliptic functions.

Comparing Torricelli’s text with that of Archimedes, one ar-
rives at the conclusion that this piece of work would have been
quite within the capabilities of the Archimedean Age.

E. Jean Bernoulli’s Letter:

We are now located squarely within the age of Newtonian celes-
tial mechanics and the calculus. The question to be answered
is put by the author clearly:

Problem: Find the central force required in order that a body
move along a given curve in a medium whose density varies
according to a given law and which resists the body propor-
tionally to the product of the density and the speed raised to
an arbitrary power.

Spirals play a role as orbits under different central force laws.

F. James Sylvester’s Note on the Successive Involutes to a Cir-
cle:

The very particular question leading to the spiral of Norwich is:
find the curve whose radius of curvature at each point equals
its distance to the origin. This is immersed in a large study
of curves that roll on other curves and of the iteration of this
rolling process. Lurking in the back of Sylvester’s mind is Cap-
tain Moncrieff’s application of these ideas to the design of gun
carriages. The more general background is that of mid-Victorian
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kinematic technology with its mechanical linkages, gear trains,
and so on. We may recall that a linkage problem in steam-engine
design led the great Russian mathematician Pafnuty Lvovich
Tschebyscheff to the notion of best approximation by polyno-
mials and to his fundamental theorem in that field.

Hearkening back to the spirit of Bernoulli, Sylvester very elo-
quently (but I think with tongue in cheek) makes great claims
for the spiral of Norwich. Where indeed, on average, are the
great claims of yesteryear?

G. From Henri Poincaré’s Mémoire sur les courbes définies par
une équation différentielle:

Problem: Classify the behavior of a system of first order au-
tonomous differential equations at its singular points. In two
dimensions, the logarithmic spiral emerges as one form of pro-
totypical behavior. Poincaré, who wrote profound treatises on
celestial mechanics and its differential equations, takes us back
to the movement of the heavens. The seeds of doubt as to the
philosophic status of a deterministic universe will sprout in
Poincaré’s later work inasmuch as Newton’s laws can lead to
chaotic orbits.

It might be thought a denigration of the work of this Grand
Master of Mathematics to have reprinted here only some ex-
amples that he gave in this great memoir, examples that might
very well be used in an undergraduate course in differential
equations. However, I recall the remark of the symphonic con-
ductor George Solti to the effect that some of Mozart’s work is
too simple for children and too difficult for professionals.

H. From Edmund Hlawka’s Gleichverteilung und Quadrat-
wurzelschnecke:

Theodorus’ spiral is now perceived to exhibit traces of mild
chaos. The problem is: describe in some detail the chaotic dis-
tribution of the angles of the vertices of this spiral and in this
way, extract some order out of the chaos.

The historical development of the theory of equidistributed
sequences that stands behind the particular results of this paper
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has been described in great depth in the article by Hlawka and
Binder. In the period from 1909 to 1916, many famous math-
ematicians, P. Bohl, H. Bohr, G. H. Hardy, W. Sierpinski, H.
Weyl among them, contributed to this very beautiful union of
analysis and number theory. The beginnings of this theory can
be traced as far back as the 1780s when Joseph-Louis Lagrange
raised questions about the existence of an “average motion” of
planets whose orbits are described by nonharmonic trigonomet-
ric polynomials.

These few words give narrow indications of the questions that
elicited the historical documents reprinted. In some cases, a
wider scientific context of the question has been ventured. These
wider contexts could be extended to a full scale historical study
of the role of spirals. With the exception of the selections by
Sylvester and Hlawka, all the material, if presented today, would
be reformulated in a contemporary style and handled routinely
by what would now be regarded as the elementary portions of
college mathematics.

On the other hand, if Collingwood’s “question—-answer” de-
mand is interpreted in a wider sense than above, we need not
only know the question that was answered by the mathematical
symbols, but, indeed, we need to know the whole contents of
the particular mind and the particular experience from which
it derived. Mathematical historiography has a long way yet to
go toward that goal, and it is a goal that may never be reached.
The tacit knowledge, the experiences and intuitions of the in-
dividual authors are not a part of the written record, and this
material, the thoughts, conscious or unconscious, which are real
enough, are considered by many not to constitute part of math-
ematics as such.

The agreed upon meaning and validity of the mathematical
documents attested by the summaries above and often arrived
at by a long and unrecorded process of social negotiation, dis-
play only the tip of the creative iceberg; it is part of what
we understand by the communication of the mathematics that
exists in the archival sense. The meaning and seeming conti-
nuity of several documents in historic sequence (illustrated in
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the above interpretations) are, in part, an artifact of our own
contemporary desire and ability to create and enforce such con-
tinuity. We have managed to filter out all that does not suit
our current vision. The ability to do so derives from much more
than the naked archival mathematical residue.

In retrospect, if one were asked to point to a common un-
derlying concern in articles reprinted above, one might, with
some justification answer: the Cosmic Dance. The heavens and
all therein twist and turn, now coalescing, now receding; now
organizing themselves into spiral galaxies and now into patterns
of scattered dust. The search for precise descriptions of the ce-
lestial choreography will go on for some time to come and will
be answered by many more lines of mathematical symbols.

Allied to description is the possibility of prediction on the
grand scale: Where are we going; and the possibility of postdic-
tion: Where did we come from? Poincaré was one of the first
post-Newtonians to raise his eyebrows at the strict determinism
that Newtonian mechanics seemed to imply, and today, though
answers to these questions are given regularly in the Sunday
Supplements, the matter is moot.

I1

In examining the material of this book, what also struck me
forcibly was the difference between the formulaic material and
the graphical material. Regarding these two kinds of material
as pure blobs of ink spat out by a laser printer, how different
in visual and semiotic quality they appear to be. Each type can
stand alone, can stand in its own right and need not call upon
the other for justification. Yet, by some miracle of thought,
the mind can fuse the two and bind them together intimately
into a certain totality. It is part of our heritage from the Greek
mathematicians that simple questions about shape have led to
deep symbolic results or to deep processes of computation. The
French author Paul Valéry put it this way:
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They (the Greek mathematicians) adjusted common speech
to precise reasoning, an extraordinarily delicate and improba-
ble achievement. They analyzed motor and visual operations
of great complexity. They made these operations correspond
to grammatical and linguistic properties. Blind seers, they
trusted in speech to guide them through space. And space
itself, as the centuries passed, became an always richer and
more surprising creation; it developed along with thought,
which was acquiring more mastery over itself, and placing
more confidence in the power of reason and in the initial sub-
tlety which had provided it with such incomparable tools:
definitions, axioms, lemmata, theorems, problems, porisms,
and the rest.

—Paul Valéry, The Intellectual Crisis.

It would have been possible to put together a book on spirals
that had not a single picture of a spiral; for if you insist on it,
a spiral may be given an axiomatic formulation. It would have
been possible to put together a book on spirals that did not
display a single line of mathematics, for the spiral also lives in
our visually imaginative but pre-axiomatic lives. The first kind
of book might receive the approbation of those mathematicians
who over the past century or so have come to shun the visual as
totally redundant at best and at worst as an a impure source of
logical errors. The second might be welcomed by artists, anthro-
pologists, semioticians for whom mathematics is a bewildering
territory to be avoided.

All the mathematicians that have been included in the histor-
ical supplements have, on their part, inserted figures into their
manuscripts. I felt that without figures in considerable profu-
sion this book would have been incomplete and impoverished. I
would assert that a mathematician who is blind and can know
only an axiomatic or a prosthetic spiral, blind seer though he
may be, can know only a shadow. And I find it a profound mys-
tery how the two, the formulaic and the visual, live with each
other and give each other strength. Theories of cognition and
brain physiology may ultimately dispel the mystery. At the mo-
ment, the simple knowledge that they do is a great satisfaction
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to me, and is part of the excitement that I am able to draw
from mathematics.

In condemning a dry-as-dust tendency toward purely sym-
bolic statements, and in advocating a balanced partnership be-
tween the visual and the verbal/symbolic, I am well aware of a
contemporary threat that now comes (paradoxically) from the
visual sector. The computer and computer graphics have in the
past generation made and continue to make enormous strides.
The ability of computer graphics to create a fictitious reality,
a reality of the imagination, is easily as great as that of ver-
bal/symbolic material.

The perception of the threat from the visual quarter some-
times takes the form of the complaint that reading will soon be
forgotten, replaced by what is claimed to be a higher, more ef-
ficient mode of communication; replaced by the hieroglyph, the
icon, the interactive nonlinear text, the terminal and the video-
cassette. If that should happen, the world of communicated
ideas will spiral, retrogressing into an advanced technological
barbarism in which people will have little common basis for
conducting elevated discourse within traditional languages. It
will know little of the strength and beauties of language, spoken
or written. Shakespeare, the King James Bible, the Gettysburg
Address will be uninterpretable, and even the aesthetics of ab-
stract symbolic formulations will have moved to another plane.

There is growing evidence that we may be moving into such
a phase of history in which communication is increasingly vi-
sual. The imperialism of the visual derives from the direct and
strong impact of computer graphics. The tendency of our stu-
dents to think only in terms of colored overlays in polywindowed
displays, the tendency of our playwrights to substitute motion
and kinematic sensation for language, the decline of poetry and
recitation, the condemnation of old-fashioned oratory as flatu-
lent and suspicious, are all independent indications of a transi-
tion that has been several centuries in the making. Our future
teachers of mathematics may become impresarios of hardware
and software instead of playwrights, composers or actors, with
the more creative roles in the total mathematical production
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preempted by a small cadre of mathematical élite who work in
conjunction with a large group of people skilled in visuals.

We may inquire as to the extent to which this visual com-
ponent is truly visual in the primitive, nonsymbolic sense that
characterizes, say, the precise gymnastics of a squirrel leaping
from branch to branch. For beneath each display, each pro-
duction in computer graphics, lies a massive infra-structure of
symbols, organized like a meta-onion, and which, if unbalanced,
puts forth imperious claims to precedence and then overwhelms
the image. In the days of Cicero there was an argument, not un-
like the recent “two-culture argument” of C. P. Snow and F. R.
Leavis, as to which was the more important: the word or the
deed. We may soon be debating the hyperword versus the hy-
perimage and then wake up to find they have coalesced into
one.

The computer and computer graphics have clearly widened
old and opened up new creative sources of the mathematical
spirit. A retrospective show of spirals in the year 2500 would
amaze us. One hopes that both the visual and the symbolic will
endure in their individual aspects as well as in fruitful partner-
ship.
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Notes

1T have known many mathematicians who would assert: “N’existe
pour moi que ce qui me passione; cette phrase trace exactement mes
limites” (Julien Green, Journal, p. 352).

2 Hlawka [1980]. For the Quadratwurzelschnecke as inspiration for
a problem in Diophantine approximation, see [Hlawka 1990, p. 435].

3 This is the first place in these lectures where the ideogram . . . (dot,
dot, dot) occurs in a mathematical sense. I have always believed in
giving a finitist interpretation to the so-called infinite insofar as pos-
sible. Now the finite seems totally comprehensible and as such has
occasioned far less philosophical discussion than the infinite. This is
extremely deceptive: I admit that whenever I try to think deeply
about the finite, the more it dissolves into incomprehensibility.

In this connection, I should like to advertise a recent book of con-
siderable significance by Brian Rotman [in press]. Rotman’s work has
“the aim of de-writing the mathematical infinite; that is, replacing
the implicit theism of the ‘endless’ as this occurs in all infinitistic
interpretations of the sequence 0,1,2,... by a semiotic conception of
number tied to the physically realizable and the subjectively feasible.”

4 Hardy and Wright [1960]; Hlawka [1980; 1990]; McCabe [1976;
van der Waerden [1963], among others.

The genesis of these talks having been a certain passage in Plato’s
Theaetetus, it would be amiss not to mention that the general context
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in which the passage occurs is a discussion of what is knowledge and,
more particularly, what is abstraction:

Suppose that a person were to ask about some very trivial
and obvious thing — for example: what is clay? And suppose
that we were to reply that there is the clay of potters, there is
a clay of oven-makers, there is a clay of brick-makers; would
not the answer be ridiculous?”

—Plato, Theaetetus, 147.
See Historical Supplement B.

This is the Problem of Universals, whose discussion, beginning with
Plato and Aristotle, has never really ceased. This is the problem of
the particular and the general and of the relationship between the
two.

What interests me personally is not so much an account along the
lines of epistemology, but historical studies of the interplay between
the particular and the general in the development of mathematics.
An interesting study could be made of the dynamics of the process
of generalization or, to put it slightly differently, of ontogeny and
phylogeny in the mathematical field. The evolution of the number
concept or of the function concept would serve as instances for a
more general description. There are many excellent particular studies
available.

Artistically: The writer’s problem is “how to strike the balance
between the uncommon and the ordinary so as on the one hand to
give interest, on the other, to give reality” (Thomas Hardy). To what
extent does this balance play a role in mathematics?

Returning to the specific mathematical example in Plato’s passage,
general theorems covering the case-by-case presentations of Theodo-
rus are now standardly given in books on the elementary theory of
numbers. For example: if a and n are positive integers, then the nth
root of a is either irrational or it is an integer. If the latter, a is the
nth power of an integer.

5 See [van der Waerden 1964, p. 141]. Readers might enjoy Thomas
Gray, Philosopher Cat [Davis 1988], a fantasy written by the author of
these lectures, placed at the University of Cambridge, and involving
Anderhub’s “solution.”

One person attracted by my fantasy (while he was lecturing on The
Theaetetus) was Prof. Giinter Patzig of the Philosophy Seminar of
Georg-August University, Gottingen. On November 1, 1990, he wrote
to me that Anderhub (1894-1946) was “a businessman attached to the
Kalle Company in Wiesbaden-Bieberich, which produced the famous
‘Cellophan’ foils which were used for many purposes, especially in
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the household.” In 1913 Anderhub enrolled in the Gymnasium in
Laubach, where he read the classics.

Another person so attracted was Dr. Hayo Ahlburg of Alicante,
Spain, who on March 23, 1991, wrote that he had made a bit of a
hobby of the Quadratwurzelschnecke. He provided me with the fol-
lowing additional references which I now pass along. Unfortunately, I
have not had the opportunity to check them out.

Hans Haverman, Problem 789, J. Recr. Math., 11 (4) (1978-9), 301.
Solution: Duane Allen, J. Recr. Math. 13 (4) (1980-1), 300-303. J.
Recr. Math. 12 (4), 310. Shmuel Avital, Cruz Mathematicorum, vol.
11(2), 1985, p.50. Solution: David Singmaster, Crur Mathematicorum
12 (7) (1986), 182-184. Hugo Steinhaus, One Hundred Problems in
Elementary Mathematics, New York: Dover, 1979, p. 14 and p. 69.

6 The Euler-Maclaurin formula expresses the difference between the
value of an integral and its value as computed approximately by the
trapezoidal rule. The difference is expressed as an asymptotic series.
See, e.g., [Davis and Rabinowitz 1984, p. 106-111.

The formula appears to have deen discovered independently and
published by Euler in 1738 and by Maclaurin in 1737. For an inter-
esting historical discussion, see Goldstine, Sec. 2.6.

" Fejér's Theorem: Let z be a sequence of real numbers, and let
dry = Tp41 — k. Let dzyp — 0 monotonically and let kdry — oo as
k — oo. Then the sequence z; mod 1 is equidistributed in [0, 1].

8 Equidistribution of ,, in the sense of Weyl means, roughly, that
every subinterval of 0 < ¢ < 27 contains, asymptotically, a percent-
age of the angles 6,, in proportion to the length of the subinterval.
Integer equidistribution in the sense of Niven means that when the an-
gles 6, are rounded down to the nearest integer, all residue classes are
visited in asymptotically equal proportions. See [Niederreiter 1978];
[Kuipers and Niederreiter 1974]; [Niven 1961]; [Hlawka and Binder
1986). For equidistribution of Gauss sums over finite fields, see [Katz
1988]. Equidistribution (Gleichverteilung in German) is a determinis-
tic and not a probabilistic theory.

Within chaos theory, equidistribution is a simple case of an “invari-
ant measure” (i.e., the uniform measure).

9 At this point a word may be in order regarding the relationship
of the author of these lectures to the dedicatee.

It is in the nature of publishing that authors receive a good deal
of unsolicited mail. This mail variously praises, blames, asks for in-
formation, for clarifications, provides the author with what the cor-
respondent thinks is valuable information and insights, supplies a list
of errata, and so forth. An author who produces popular material, or
even, as the French put it, haute vulgarisations, is rather more liable
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to receive this kind of communication. Over the years, I have received
and dealt with my fair share. Generally speaking, the correspondence
terminates after one exchange.

In January 1986, I received a letter by courier post from N. M.
Rothschild and Sons, the City, London. Lord Rothschild had inter-
ested himself in the distribution of the prime numbers, especially in
their probabilistic aspect, and asked me to clarify a point in one of my
books. From this initial inquiry, our correspondence grew over four
years to a warm friendship. The correspondence dealt almost exclu-
sively with the distribution of prime numbers, but when we met in
Cambridge on numerous occasions, our conversation ranged widely
over personalities and ideas.

I was no expert on number theory. But I had had three graduate
courses in analytic number theory and this proved more than sufficient
to shape my answers. The very last material we discussed was the so-
called Kac-Erd6s theorem, which puts the prime number theorem in
a probabilistic context. This theorem can be found in Marc Kac’s very
beautiful book Statistical Independence in Probability, Analysis and
Number Theory (MAA/John Wiley, 1959). Kac presented the 1955
Hedrick Lectures, and his book derives from the lectures.

Victor Rothschild was a distinguished biologist and a Fellow of the
Royal Society. He was also a considerable public figure. At the time of
his death, I had been working for some while on the material presented
here. I think he would have been pleased by this dedication.

10 Gee, e.g., [Vitale 1975; Kahane 1985]. von Neumann and Schoen-
berg [1941] call P(t) a helix if |P(t) — P(s)| = 6(t — s). This jibes
with the three-dimensional helix. The function @ is called the screw
function and is characterized in their paper.

In the Hilbert space of Brownian trajectories, the variance condi-
tion W (t) describes a helix. That is, the distance between two points
depends only on the difference of the time parameters.

11 There is also a substantial and popular “morphological” litera-
ture about spirals. See, e.g., [Cook 1979; Huntley 1970; Lord and Wil-
son 1989; McMahon and Bonner 1983; Schwenk 1976; Stevens 1973,
1974; Stix and Abbott]. The pioneering work of D’Arcy Wentworth
Thompson {1917, (esp. Chap. 6)] should also be cited here. More tech-
nical citations would include: [S. J. Gould and M. J. Katz 1975], [P.
S. Stevens 1973], [Alberts et al. 1983, pp. 564-570].

Some of the popular literature displays what might be called “®-
morpho-mysticism.” (& = the golden number = (1)(1 + v/5). There
is naturally a spira aurea, a golden spiral linked to ®, whose polar
equation is r = exp(y0), where v = (2/7)log () = .30634896... ..

Some years ago, - and e-mysticism were more frequent than they
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seem to be now. Example: isn’t it remarkable that 7, the circle num-
ber, appears in the normal probability distribution — thus linking the
lengths of people’s lives with the eternal circle! ®-mysticism seems to
be more persistent.

The doctrine that “all is number” is known as Pythagoreanism.
Neo-Pythagoreanism has both inspired and afflicted numerous inves-
tigators from cosmologist Arthur Eddington to some contemporary
students of chaos. It can move rapidly into theosophy and the occult.

For a demystification of the Fibonacci sequence, and hence the
golden number, in floral growth, Stevens [1974, p. 166] has this to
say:

It simply grows its stalks or florets in succession around the
apex of the stem so that each fits the gaps of the others. The
plant is not in love with the Fibonacci series; it does not even
count its stalks; it just puts out stalks where they will have
the most room. All the beauty and all the mathematics are a
natural by-products of a simple system of growth interacting
with its spatial environment.

12GSee [Hartmann and Mislin 1985]. This book contains twenty-
four “popular” articles ranging widely over all aspects of spirals; from
spirals as art forms and as Jungian symbols to spirals in economics
and in molecular biology.

13 Archimedes: 287 (?)-212 B.C. See [Dijksterhuis 1956, Chapter
VIII]. Other results on spirals from classical Greek mathematics in-
clude the spirals on cylinders, cones and spheres. (See [Pappus of
Alexandria 1933, Chapter VIII, 57 and Chapter IV, 53; in the trans-
lation of Ver Eecke, pp. 878 and 201].) In these lectures, I will tend
to use the word “spiral” independently of the dimension.

14 The quadrature of the spiral was approached by Archimedes in
this way: he approximates the area of a spiral sector by a finite number
of circular sectors (whose area he knows). He then allows the number
of circular sectors to grow so as to exhaust the area of the spiral
sector. His final answer depends on the fact that (in modern notation)
he can evaluate (12 + 22 + --- + n?) and hence find lim(1/n3)(1% +
224...4+n?) as n — oo. See [Dijksterhuis 1956, p. 277] and Historical
Supplement C.

The problem of finding a neat formula for the total area swept out
by the (discrete) spiral of Theodorus would have stumped Archime-
des, since it calls for an evaluation of

k=n

Sn =Y _(1/Vk).

k=1
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This requires knowledge of the Euler—-Maclaurin theorem as in (1.1).
*okokk

While in today’s mathematical scene research workers are completely
aware of the unsolved problems in their field, we tend to forget that
the ancient world must also have been replete with unsolved problems.
What were they?

One has heard, of course, of the three famous unsolved problems
of classical Greek mathematics: the ruler-and-compass quadrature of
the circle, duplication of the cube and the trisection of the angle.
(Unsolved in the sense of having to come to grips with self-imposed
limitations.) These were not discussed adequately until the nineteenth
century.

But what were some of the other unsolved problems? We can only
conjecture. The classical ideal of presentation (and much emulated
today) was that of the highly organized, highly polished, backwardly
arranged document, with all evidence expunged of the struggle to
arrive at it. And then the transmission of classical mathematics would
have tended to filter out all that was inconclusive. In the mediaeval
period, things began to relax a bit and authors occasionally would
say: “I did thus and so and it didn’t work. Then I did so and so and
I still didn’t get anywhere. So there we are.”

15 On Konon, see [Pauly-Wissowa 1894, XI, pp. 1338-1340].

A letter from Prof. Gerald Toomer, dated July 7, 1989:

“In answer to your query, the story that Konon (of Samos, not
Alexandria, although he did live in Alexandria for a while, where he
made himself endeared to the monarch by claiming to have discovered
a lock of the Queens hair — the Coma Berenices — there is a famous
poem on the subject by Callimachus, translated into Latin by Catul-
lus) was responsible for a theorem on the spiral is found in Pappus,
Collection Book IV, 30, (Hultsch, p. 234), where he (Pappus) says
that Konon propounded the theorem on the spiral, but Archimedes
proved it.”

Whether this is really true we have no means of knowing. Pappus,
writing in the fourth century A.D. did have access to many mathe-
matical works, now lost. But he is far from reliable, and in this case
it seems probable to me that he had exactly the same information
that we have, namely, Archimedes’ book on spirals, where in the in-
troduction, Archimedes, addressing Dositheus, says that he had sent
these theorems to Konon long ago, and that Konon would have found
proofs of them, but unfortunately died before he could do so.

From Archimedes, then, I conclude that he sent Konon the enun-
ciation of the propositions, without the proofs (a nasty habit of some
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later mathematicians also), that Dositheus inherited these from
Konon, and after Konon’s death, wrote to Archimedes asking for the
proofs, which Archimedes supplied in the extant book, and that Pap-
pus has once again made a muddle.”

16 These sad thoughts raise the question: To what extent does math-
ematics as we know it depend upon the individual? Or is mathematics
just sitting out there waiting for whatever talented shovel comes along
to scoop it up?

In the humanistics, I think one would assert that both the Sym-
phony in G-minor, and The Importance of Being Ernest depended
very much on Mozart and on Oscar Wilde as individuals. In mathe-
matics and in science generally, I think one is less likely to make such
assertions. The number of simultaneous discoveries is great, and there
is a tendency in any case to smooth out over the years the individual
approach towards a common point of view and understanding.

17 The soothsayers were right after all. Berenice was ultimately poi-
soned, probably with the connivance of her husband.

18 After these lectures were delivered, a well-known research mathe-
matician, Q, came up to me and asked : What is a spiral of Bernoulli?
I was mildly shocked that he did not know. For the sake of complete-
ness then, here are the polar equations for the spirals of Archimedes
and of Bernoulli:

Archimedes: r = k6, k = constant.

Bernoulli: r = exp(k@), k = constant.

Apparently Q was quite able to pursue a productive research career
without this knowledge. This experience raises the question: is there a
core of material that every educated mathematician ought to know?
Given that the amount of mathematical information is far beyond
any single person’s grasp, what balance should be reached between
the concrete and the abstract, the pure and the applied, the new and
the old, the continuous and the discrete, mathematics for the millions
as against mathematics for the mathematical élite.

Having answered this question to your satisfaction, answer the next
question: Is there a core of material that every educated person should
know? I bring this up in view of the battle, currently raging in aca-
demic circles, regarding Eurocentrist versus multiculturalist versus
particularist curricula.

19 For example, spiral vortices in the boundary layer of a rotating
disc are quite accurately Bernoullian. See, e.g., [Gregory, Stuart and
Walker 1955].
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I cannot resist appending a quote from [McMahon and Bonner
1983], a lovely book on morphology.

Each time the Nautilus outgrows part of its old living cham-
ber, it creates a new empty chamber about 6.3% larger than
its predecessor,. ... The result is that in the course of build-
ing eighteen chambers needed to bring this spiral full circle,
the size of the chambers triples.

Now think of that! And the nautilus has always been modelled
by a spiral of Bernoulli, and not by a spiral of Theodorus. (Fig. 5.)
Thus the criticality and universality of the number 17 is established,
a fact which no mathematician of imagination has doubted ever since
Gauss showed how the regular 17-gon can be constructed with ruler
and compass!

As an additional biological complication: there are non-Bernoullian
snails. See [Raup 1966).

20 Torricelli “rectified” the logarithmic spiral, i.e., found its arc
length, in what, apparently, was the first rectification of the arc of
a curve in the history of mathematics. This possibility had been de-
spaired of by numerous mathematicians including Descartes. I use
the term rectification in the strong sense, i.e., he constructed by el-
ementary geometry a straight line segment whose length equals that
of the spiral arc. He also showed that as the spiral winds around its
asymptotic point infinitely often, its arc length remains finite.

James Gregory was concerned with tangents to the spiral. See
[Turnbull 1939] for allusions in Gregory’s correspondence to this ques-
tion.

Jakob Bernoulli showed that the evolute, the pedal curve, the caus-
tic by reflection, and the caustic by refraction of a logarithmic spiral
are also logarithmic spirals. Bernoulli also considered spiral planetary
orbits arising from various gravitational laws.

The geometrical literature of the late nineteenth century often rep-
resents spirals (and curves in general) in terms of “pedal coordinates”:
r = f(p), where r = length of radius vector, p = length of perpendicu-
lar from the origin to the tangent to the curve at the point in question.
The notion of pedal coordinates goes back at least to Maclaurin in
1718. Here are some equations in pedal coordinates.

In general: p = r2/./72 + (dr/df)2.

The spiral of Bernoulli: p = ar,a = const.

The spiral of Archimedes: p = r%/v/a2 + r2

The Cotes’ spiral, i.e., the path of a particle moving under the
inverse cube law of attraction: p=2 = (ar~2) +b.
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Pedal coordinates are akin to the familiar support function in con-
vex body theory, which, in the two-dimensional case would be p(6).

Then, of course, there are the representations in terms of “natural”
or “intrinsic” coordinates of arc length s and curvature k. In these
coordinates, sk = constant is the spiral of Bernoulli, while s/k =
constant is the spiral of Cornu. (See fig. 8.)

211t has been pointed out many times that the spiral on Bernoulli’s
monument seems to be Archimedean rather than Bernoullian. This
piece of mathematical irony calls for an explanation, and there has de-
veloped a considerable literature that offers a number of explanations.
(Cf. the Theodorus controversy as another instance of a peculiar kind
of extra-mathematical controversy that mathematics can engender.)
For an introduction to the literature of this strange chapter in the
history of mathematics, see [Fellmann 1985].

The inscription on the monument reads “resurrectionem piorum
hic praestolatur”: here he awaits the resurrection of the pious.

Here are Bernoulli’s words. I give them in the original Latin in
fervent hope of a resurrection of the study of classic languages:

Cum autem ob proprietatem tam singularem tamque ad-
mirabilem mire mihi placeat spira haec mirabilis, sic ut ejus
contemplatione satiari vix queam, cogitavi illam ad varias
res symbolice repraesentandas noninconcinne adhiberi posse.
Quoniam enim semper sibi similem et eandem spiram gignit,
utcumque volvatur, radiet; hinc poterit esse vel sobolis par-
entibus per omnia similis Emblema; Simillima Filia Matri: vel
(si rem aeternae veritatis Fidei mysteriis accomodare non est
prohibitum) ipsius aeternae generationis Filii, qui Patris velut
Imago. et ab illo ut Lumen a Lumine emanans eidem opootoo
existit, qualiscumque adumbratio. Aut, si mavis, quia Curva
nostra mirabilis in ipsa mutatione semper sibi constantissime
manet similis et numero eadem, poterit esse vel fortitudinis et
constantiae in adversitatibus; vel etiam Carnis nostrae post
varias alterationes, et tandem ipsam quoque mortem ejusdem
numero resurecturae symbolum; adeo quidem, ut si Archime-
dem imitandi hodiernum consuetudo obtineret, libenter Spi-
ram hanc tumulo meo juberem incidi cum Epigraphae : Ea-
dem numero mutata resurget.

See [Loria 1902, vol. II, p. 67], or [Bernoulli (Jacobus) 1967, Opera,
vol. I, p. 502].

As he says, he is ordering this motto in imitation of Archimedes,
who had a sphere and its circumscribed right cylinder carved on his
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stone. Speaking of lapidary inscriptions, particularly of the Swiss vari-
ety, Alexander Ostrowski (1893-1986), late Professor of Mathematics
at the University of Basel, must have been impressed by Bernoulli’s
memorial, which was not too far from his office. In his house in Mon-
tagnola, near Lugano, in a wall adjacent to a central fireplace, he
caused the fundamental properties of valuation theory (for which he
was responsible) to be carved in concrete. One wonders what the
subsequent inhabitants made of these occult characters.

22 For an interesting recent discussion of particle orbits under cen-
tral force laws of arbitrary power p, placed in a historical context, see
[Arnold 1990, Appendix I].

Working in the complex plane, if the orbit is designated by 2(t),
then the equation of motion is

2" = —cz|z|P, ¢ > 0. (%)
The value p = —3 corresponds to the usual law of gravity. If 2" is
discretized by replacing it by (2n42 — 22n+1 + 2n)/h%, tny1 — tn = h,
then (*) can be translated into an iteration of Theodorus type with

2 -1 01
A= , B=—ch? ,
1 0 00

Up = (z" ), and where || vy, || is the quasi — norm || 2y, ||3.
Zn+1

See [Davis 1974, Chap. 9] for the equations of the spirals of Bernoulli
and Archimedes in conjugate coordinates, i.e., z and conj(z). In these
coordinates, the spiral of Bernoulli can be regarded as the “ith power
of a circle”: (i = 4/—1)! Further “i powerings” produce the cycle:
circle, spiral, real axis, spiral, circle. This is my only contribution
to the literature of self-renewal, and if I were given to mathematical
mysticism, I could surely cash in on it.

Self-renewal, self-reproduction, self-similarity, self-reference, the
macrocosm in the microcosm, and so forth, whether in myth (the
phoenix), in religion (the Osiris story, the Easter story), or in logic
(the Cretan liar); whether in graphics (fractals) or in analysis (eigen-
vectors); whether leading to paradox or to revelation; all have been
elevated by some authors to the status of a Grand Principle of the
Universe. It may be apropos to recall the words of Lord Melbourne
that no one ever did anything very foolish except in the name of a
strong principle.

23 See, e.g., [Loria 1902, vol. I, p. 146], or [Sylvester 1908, vol. II,
p. 639], where it will be found embedded in a general theory of the



Notes 203

evolutes of a circle. The spiral of Norwich is the evolute of the evolute
of a circle. Sylvester lists a half dozen “remarkable” properties of this
spiral. The polar equation of this spiral is

6+c=/((r— a)/a) - 2 arccos (/afr),

where a and c are constants. See also: Historical Supplement F.

24 The parametric equation of a “standard” clothoid is z(s) =
s exp(is®)ds.

With regard to the beauty of visual mathematical objects, R. L.
Devaney [1990, p. 6] reports that the Mandelbrot set “has been called
the most complicated yet the most beautiful object in mathematics.”
See also [Pickover 1990] for graphical objects generated by iteration.
Aesthetic judgements of this sort — even group judgements — are no-
toriously time-dependent. Take a look, say, at the 1920 winners of the
Miss America Contest.

On various attempts to reduce the beauty of proportion to a math-
ematical formula, see [Pedoe 1976, Chap. 4].

25 There are at least thirty special mathematical spirals listed in
[de Vargas y Aguirre 1908]. To top this list, Prof. Trevor Stuart has
kindly pointed out to me that The Spirals are a pop group. So the
auditory dimension has been heard from! For a number of pictures of
spirals in 3-d, see [Pickover 1990; von Seggern 1990].

26 If an object “winds around,” is it a spiral? In this connection,
cf. Spitzer’s law for the winding around of a random walk and its
extension by Belisle: let 2(t) be a standard two-dimensional Brow-
nian motion starting at a point z(0) # 0, and let 6(¢t) = the total
continuous angle wound around the origin by z up to time ¢. Then
as t — oo, 26(t)/log (t) converges in distribution to ¢, where c is a
Cauchy random variable. See [Belisle 1989].

27 For recent difficulties in defining a quasicrystal, see Senechal and
Taylor 1990].

28 See [Griinbaum and Shephard 1979, Chapter 9.

2Note the fundamental paradox: the more that can be asserted
about chaos, the less it merits that designation. This was already
noted by Abraham de Moivre: “[True chance] can neither be defined
nor understood: nor can any proposition concerning it be either af-
firmed or denied, excepting this one: ‘That it is a mere word.’” (A. de
Moivre, Doctrine of Chances, London, 1756. Cited by Lorraine Das-
ton in her Classical Probability in the Enlightenment. Daston remarks
further that the “classical probabilists . .. strenuously denied both the
subjective and objective existence of real chance,” p. 11.)

See Joseph Ford’s article in [Barnsley and Demko 1986]. A couple
of “Joseph Fordisms” may be quoted: “Chaos means deterministic
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randomness.” “Chaos emerges as a mystery — a Godel-type mystery
which only a god can understand.”

This appeal to the divine reminds me of Leibniz’ (1702) character-
ization of imaginary numbers: “The imaginary numbers are a subtle
and wonderful haven [Zuflucht] of the Divine Spirit; they are almost
an amphibian between Being and Not-Being.” (Leibnizens mathema-
tische Schriften, K. I. Gerhardt (ed.). Asher, Berlin, 1849-63, vol. 5,
p. 357.)

It is no longer thought necessary to invoke the deity when deal-
ing with complex numbers. As with this concept, future scientists
may axiomatize chaos to a fare-thee-well or embed it (or embalm it)
in firmer, nonchaotic conceptualizations. But will that suffice to ex-
orcise the ontological questions? As Aristotle implied, true chaos is
unknowable, because knowledge equals form. Ford’s remark is easily
justified.

30 Mathematical definitions limit the universe of discourse and in
this way create a restricted universe in which it is found possible to
pursue the subject along certain traditional lines. The two universes
must be carefully distinguished.

William James has a beautiful description of this process (formu-
lated for philosophy but equally applicable to mathematics), which I
recommend be read aloud at the beginning of every course on Math-
ematical Modelling:

A young graduate student said that

he had always taken for granted that when you entered a
philosophic classroom you had to open relations with a uni-
verse entirely distinct from the one you left behind you in the
street. The two were supposed, he said, to have so little to
do with each other, that you could not possibly occupy your
mind with them at the same time. The world of concrete
personal experiences to which the street belongs is multi-
tudinous beyond imagination, tangled, muddied, painful and
perplexed. The world to which your philosophy professor in-
troduces you is simple, clean and noble. The contradictions
of real life are absent from it. Its architecture is classic. Prin-
ciples of reason trace its outlines, logical necessities cement
its parts. Purity and dignity are what it most expresses. It is
a kind of marble temple shining on a hill.

In point of fact it is far less an account of this actual
world than a clear construction built upon it, a classic sanc-
tuary in which the rationalist fancy may take refuge from
the intolerably confused and gothic character which mere
facts present. It is no explanation of our concrete universe,
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it is another thing altogether, a substitute for it, a remedy,
a way of escape.

—William James, Pragmatism: Lecture I.

Goethe had put it in poetry:

Wer will was Lebendig’s erkennen und beschreiben,
sucht erst den Geist herauszutreiben,

dann hat er die Teile in seiner Hand,

fehlt leider nur das geistige Band.

(Faust I, lines 1936-9)

To analyze a living creature

One first drives out its spirit nature
The simple parts then lie in hand
Too bad they lack the living strand.

31 One older definition of a spiral is that it is a curve whose polar
form is

r=f(6)/(6 +9(6)),

where f and g are rational (complex) trigonometric functions of 6.
This would include the exponentials. (G. Fouret, Nouv. Ann. Math.
2e Sér. 19, 1880. See [Loria 1902, vol. II, p. 53].)

F. W. Gehring [1978] finds the following definition appropriate to
his inquiries: an open arc in the complex plane is a spiral from 2, onto
z2 if it has the representation

2zt = (21 — 22)7(t) exp(it) + 22,t € (1,00),

where r(t) is positive, continuous and with tan[% r(t) = 1, lim r(t)=0

32 For example: the pointwise product of the discrete spiral of Theo-
dorus and the marigold is (up to O(n~!)) the 8-ray spiral whose points
lie on eight rays inclined consecutively at 45°.

33 The Lie theory of spirals was already considered by Sophus Lie and
Felix Klein, and the spiral of Bernoulli placed therein. A simple spiral,
say the spiral of Archimedes, considered as an individual, is not pre-
served under any of the symmetry groups that are traditionally used to
classify designs. (See, e.g., [Washburn and Crowe 1988].) The clothoid,
of course, is preserved under rotations through 7 as is the case with
the “full” spiral of Archimedes. (See fig. 52.) Many of the spirals gen-
erated by the Theodorus iterations exhibit “almost” or “asymptotic”
symmetries.

* %k

It is probably the case that apart from applications, the principal
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Figure 52: The “full” spiral of Archimedes exhibiting rotational
symmetry.

mathematical interest today in spirals is that they are one of the
canonical figures arising in the eigenanalysis of the critical points of
solutions of ODEs. Recall the phase portrait analysis of systems of
real autonomous differential equations: y' = f(y), where f is regular
at the origin and f(0) = 0. If J is the Jacobian of f, and if (in 2-d) the
eigenvalues of J(0) are complex conjugate and have negative real part,
then 0 is a stable focus or a spiral point, (in German, a Strudelpunkt).
In the neighborhood of the origin the orbits are approximately affine
maps of spirals of Bernoulli. See [Arnold 1973, Chap. 3; see also p. 139,
where the spiral orbits in 3-d are divided into three types, depending
on the eigenvalue location in the complex plane].

For f nonlinear, there may be a closed curve towards which the
orbits spiral. This is a limit cycle. There are analogous results for
systems of difference equations.

k% %k

J. Serra sets up four principles to be satisfied by the morpholog-
ical transformations useful for the purpose of the quantification of
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a geometric structure. They are (1) compatibility under translation;
(2) compatability under change of scale; (3) principle of local struc-
ture; (4) semi-continuity. Serra’s book stresses convex body theory
and Minkowski set operations.

34 Under a wide subclass of digital (i.e., discrete) linear filters, the
marigold will be preserved morphologically. For the definition of the
Kronecker product of two matrices, see any good book on matrix
theory.

35 In the context of discrete graphics, differentiating = differencing,
and integrating = cumulative summing.

36 The spiral of Cornu was discovered by Euler. Cesaro dubbed
it the clothoid from klothein, to spin. Clotho was one of the three
Fates. She spun the Thread of Human Destiny. See [Cesaro 1886; also
Fellman 1985].

Cesaro’s Thread of Destiny is built into highway design (at least in
Europe) and constitutes an interesting chapter in the applied theory
of spline functions. Highways tend to be straight lines and circular
arcs connected up so as to provide C! continuity. At constant speeds,
this gives rise to a discontinuity in the acceleration vector, and at high
speeds, drivers will tend to overcome this by increasing their radius,
which means driving along the chord of the arc. What is advocated
is a linear variation in the magnitude of the acceleration, and this
can be achieved by blending with a clothoidal arc. (Cf. the instrinsic
equation that serves to characterize the clothoid: arc length/curvature
= constant.)

This aspect of highway design has given rise to a considerable lit-
erature of clothoidic splines. (See fig. 53.) See [Baass 1989; Meek and
Walton 1989; Talbot 1927; Walton and Meek 1989)]; and further ref-
erences therein.

37 Isaac Barrow (1630-1677), Lucasian Professor of Mathematics at
the University of Cambridge. Vol. I, p. 66 of [Barrow 1860].

38 As an instance of Peirce’s ugly but presumably precise words, I
cite ‘agapasticism’, which, apparently, is a synthesis of the concepts
of ‘tychism’and ‘synechism’. My fifteen-hundred-page dictionary lists
none of these three words.

39 A novelist of my acquaintance once told me: “I've always felt
that spirals have about them something slightly erotic, mischievous
and not quite proper.”

40 Consider also the apercu of L. Wittgenstein:

If humans were not in general agreed about the colour of
things, if undetermined cases were not exceptional, then our
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Figure 53: Clothoid spline: blending two straight lines by means
of two clothoid spirals. After Meek and Walton.

concepts of colour could not exist. No — our concept would
not exist.

—L. Wittgenstein, Zettel, Anscome, G. E. M. and
G. H. Von Wright, eds., Basil Blackwell, Oxford, 1967.

Or as the cliché of the French high schools puts it: “Ce qui se congoit
bien s’énonce clairement. Les mots pour le dire viennent aisément.”

Now, replace the word “colour” in the Wittgenstein quote with the
word “spirality.” Can we conclude from this that the “spirality” of
curves is generally agreed on, but that no satisfactory formalization
of this agreement is possible?

41 David Berlinski has written me “. .. mathematical concepts them-
selves have something like an intrinsic topology. But what topology
and why are certain mathematical concepts stable and others not?”

42 For a bestiary of strange spirals, see Pickover [1990, particularly
Section 12.3]. There are some wonderful color plates of spiral surfaces
reproduced in this book.

A definition of a spiral tiling is attempted on p. 515 of Griinbaum
and Shephard {1979]. According to a letter from B. Griinbaum to
the author dated April 30, 1990, “Even that definition is not really
satisfactory. It may well be that the psychological aspect is more
important than any mathematical criteria.”

This puts us back to the question posed by Socrates in the Theaete-
tus: ‘What is clay?’ So now it can be told about spirals as a general
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concept: A ‘spiral’ is a name for a certain kind of experience and
judgement, and is not uniquely or completely reducible to mathemat-
ical symbols or to algorithmization. For a discussion of the passage in
Plato, see John McDowell, Plato: Theaetetus, Clarendon Press, Ox-
ford, 1973, pp. 114-116.

Also relevant to this discussion is the following observation of
G.-C. Rota:

Mathematicians take mischievous pleasure in faking the ar-
bitrariness of definition. In actual fact, no mathematical def-
inition is arbitrary. The theorems of mathematics motivate
the definitions as much as the definitions metivate the theo-
rems. A good definition is ‘justified’ by the theorems one can
prove with it, just like the proof of a theorem is ‘justified’ by
appealing to a previously given definition.

There is thus a hidden circularity in formal mathematical definition.
The theorems are proved starting with definitions, but the definitions
themselves are motivated by the theorems that we have previously
decided ought to be in the canon.

But one should not get hung up about introducing definitions. His-
tory shows that overconcern with definitions and categories as was
evinced, e.g., by the Aristotelians, often leads to a dead end. What
interests me is why certain concepts have been made precise and seem
to remain stable, while others have not.

I should allow my favorite philosopher to sum it up:

There is no complete generalization, no total point of view, no
all-pervasive unity, but everywhere some residual resistance
to verbalization, formulation, and discursification, some ge-
nius of reality that escapes from the pressure of the logical
finger, that says hands off and claims its privacy, and means
to be left to its own life.

—William James, A Pluralistic Universe.

For some recent discussions of mathematical ontology, see Rota,
Sharp and Sokolowski (phenomenologist) [1988]; Spalt (platonist/for-
malist) [1981].

430On the other hand, spirals may be “seen” where they “should
not” be seen. In Frazer’s Illusion, a sequence of concentric circular
arcs is organized by the eye into a spiral that “ism’t really there.”
See [Frazer 1908], and many books on optical illusions. Frazer’s il-
lusory spiral has even been drawn into a discussion of phenome-
nalist (Husserlian) philosophy of mathematics. See [Tragesser 1984],
Chap. 3.
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44 By considering various standard methods of numerical solution,
Runge-Kutta, etc., we are led to an entirely different sort of general-
ization of the (discrete) spiral of Theodorus. See Iserles [1988] for a
discussion of the dynamics of this type of situation and its relation to
questions of numerical stability. In connection with the numerical in-
tegration of differential equations of the harmonic oscillator type, see
[Stiefel and Bettis 1969] for the concepts of orbital and phase stability
and for algorithms that stabilize Cowell’s method.

In accepting computer output as the solution of a differential sys-
tem, two questions must be faced: (a) truncation error and (b) round-
off error. Question (a) asks: How close do the exact solutions of the
difference scheme come to the exact solutions of the differential sys-
tem? Question (b) asks: In view of computer roundoff, how close does
the computed values of the diffence scheme come to the exact solution
of the difference scheme?

Toward an answer to (b), we may cite the so-called shadow lemma
of Anosov-Bowen, which is for the iteration z,,+1 = f(z,). Roughly, it
says this: For a restricted class of maps f known as hyperbolic, a true
orbit can be found near the computer-produced orbit for arbitrarily
long times. See [Hammelm et al. 1987].

While it is of great interest and importance to produce theoretical
results such as this, the problem as seen from the “bottom line” of
application is somewhat different. The modelling process starts with
a real world situation and ends with computer output that, hopefully,
leads to usable predictions or insight into that situation. Instead of
splitting the modelling process into the mathematical model, the al-
gorithmic surrogate, and the computer output to that algorithm on a
specific computer using specific software, one can keep it all together
conceptually and ask whether the whole process can be validated as
yielding something useful.

In these lectures, of course, we are concerned exclusively with differ-
ence equations, so only question (b) is relevant. The reader must keep
in mind that the orbits displayed in figures are the computed orbits
and must be distinguished from the “true” orbits. Our understanding
of the relationship between what is “true” and what is “computable”
is currently in an unsettled state.

45 See also the work of Ripley and Sutherland [1990], who have been
setting up a descriminator for galaxies, nebulae, etc., in astrophysics.

This work is conceptually allied to the fundamental work of Ulf
Grenander on pattern recognition. Grenander et al. [1990] deal with
the question: “Is it possible to mechanize human intuitive understand-
ing of biological pictures that typically exhibit a lot of variability but
also possess characteristic structure?”
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461 was reacting here to an increasing amount of discussion as to
what is and what isn’t mathematics.

For examples, Paul Halmos [1990, p. 577] calls into question com-
puter proofs: “Appel and Haken do not completely share my religion.”
The word “religion” may have been used by Halmos in the spirit of
irony, but I think it goes beyond that. The Aristotelian spirit set pro-
hibitions against what it called metabasis, i.e., the mixture of modes
of thought and operation from one discipline to another. So, in math-
ematics, there was a tabu against mixing the modes of mathematics
and mechanics (motion). These prohibitions were themselves occa-
sioned by a feeling that the universe is so diverse it cannot be unified
by one method, and that the integrity and purity of its parts are
violated by attempts to do so.

The elevation of the “mind” over the “eye” that occurred in nine-
teenth- and twentieth-century mathematics, or, as we have seen, the
“mind” over the “computer,” is, I think, a modern manifestation of
the horror of metabasis [Davis 1974; 1991].

Edmund Gibbon remarked that “for the people in the Roman Em-
pire all religions are equally true; for the philosophers all were equally
false, and for the magistrates, all equally useful.” Mathematics is, in
part, a religion in that it is based ultimately on our faith in the mean-
ingfulness, the coherence and the stability of certain kinds of thought
processes. Which mathematical “church” you adhere to at a given mo-
ment of time depends on whether you feel yourself one of the people,
one of the philosophers, or one of the magistrates.

So what is mathematics? This question is hardly discussed in any
course in mathematics taken by undergraduates, and there are prob-
ably as many answers as there are people who attempt an answer.

For starters: mathematics is the science of quantity and space. This
answer might have been satisfactory three or four hundred years ago.
Today we might want to amplify it by saying that mathematics is
the science and art of deductive and algorithmic structures that con-
cern themselves with quantity, space, pattern and arrangement and
of the symbolisms by which this is accomplished. That is a bit more
comprehensive, but there may still be special interest groups (semi-
oticians, physicists, non-Cantorian set theorists) who might feel that
something has still been left out.

One thing is certain: mathematics is far too important a subject
to be left to the mathematicians either for definition, extension or
promulgation.

47 See, e.g, the article on Theodorus by Ivor Bulmer-Thomas in the
Dictionary of Scientific Biography. Also [Pauly-Wissowa 1894, 2nd.
ser. X. pp. 1811-1825].
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Figure 54: Spirographic art.

48 The successive iterates are easily created on a piece of paper with
a pencil and a right angled triangle. This is equally true of the “pin-
wheel spiral.” This reminds me of a children’s toy called “spirograph,”
which consists of a number of geared or ratcheted plastic wheels, rings
and racks and ovals. By rotating one piece meshed with another and
allowing the pencil point inserted in punched holes to trace continuous
orbits, “spirographic” designs are created. (They are really families
of epi- and hypocycloids.)

Another mechanical toy, perhaps a bit more sophisticated, was the
“Magic Designer” or “Hoot-Nanny.” Though computer graphics can
create things a million times more sophisticated, there is still virtue
in working in a minimalist manner and returning to the visual sim-
plicities. In defense of the primitive, it should be pointed out that
a landscape, whether natural or mathematical, differs if one walks
through it or one drives through it at 70 mph.

Spirography, interpreted in a fairly wide sense, was the basis, a
quarter of a century ago, of a certain school of computer art. See,
e.g., [Sumner 1968]. (See fig. 54.)

In recent years, phenomenal advances both in hardware and soft-
ware, resulting in stunning productions, have altered this. Judging
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from the SIGGRAPH 1990 Show of computer art (See: Computer
Graphics, Vol. 24, No. 6), trompe-1’ceil three-dimensional modeling
and the creation of surface texture via fractals and other means domi-
nated the exhibition. The older computer simplicities have been driven
off the computer art market. See, e.g., [Pickover 1990, Chapter 13].

Today, the largest outlet for computer art is in commercial graphics.
It seems to have “lost the thrill of the ultra-modern that it had twenty
years ago, and it doesn’t seem to be at the center of the concerns of
practising artists.” — C. S. Strauss.

49 See [Davis 1959].

50 Some of the early developers of the theory and practice of spline
functions were I. J. Schoenberg, and J. H. Ahlberg, E. Nielsen, and
J. L. Walsh. Spline theory has grown mightily in many directions and
has become an absolute staple in many areas of numerical analysis
and computer-aided geometrical design. Any graphical design package
worth its salt will have a variety of spline programs conveniently on
tap.

51 A possibility: the spiral is of the form r = f(6), where feC?, and
f,f', and f” are all > 0. Or why not simply say that the curve has
positive curvature? (See fig. 55.) This would lead to the second order
differential inequality

k(f)=(f3) - ff+2(f)* = 0.

These two conditions are independent: take, e.g., r = f(6) = exp(6?).
Then over 0 < 0 < 1, f, f, and f” > 0, while the curvature changes
s;§n<' gn the other hand, with f = /2 k(f) > 0, but £, f' > 0 while

Or consider these geometric definitions: a curve will be called spi-
rally (or polar) convex if any sufficiently small open arc is separated
from the origin by its chord; or, a curve will be called midpoint spi-
rally convex if for sufficiently small arcs, the “midpoint” of the arc
(anglewise, not arclengthwise) is separated from the origin by the
chord.

It is interesting to note that both Archimedes and Torricelli, in
pre-calculus days, had inserted into their monographs convexity state-
ments for their respective spirals [Torricelli 1955, Par. 5.

521 think this function is original with me; but it is so much in
the spirit of seventeenth and eighteenth century mathematics that
I should not be surprised to learn it was already discussed in those
years.

This suggests an interesting question: To what extent can one math-
ematical age create new mathematics in the spirit of a previous age?
What purpose could such a piece of work serve?
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Figure 55: Spirally convex (second definition).

I once wrote that L. J. Schoenberg’s fundamental work in the theory
of spline functions looked superficially as though it might have been
created in the days of Euler, but that this would be a mistaken view.
It would be better, I added, to compare it with Prokofieff’s Classical
Symphony. Schoenberg was a fine musician, and this comment pleased
him very much.

The painter Auguste Renoir had this to say:

It is impossible to repeat in one period what was done in
another. The point of view is not the same, any more than
are the tools, the ideas, the needs, or the painters’ techniques.

In writing mathematical history, one should certainly discuss the
point of view, the tools, the ideas, the needs, the techniques of a
particular age. However, the desire to explicate a particular piece of
work: in terms of its ultimate position in today’s mathematical corpus
is very strong. (As a simple and almost omnipresent aspect of this:
mathematics of an older period is often rewritten in contemporary
notation so as to be “more comprehensible.” Such a translation is not
really possible; it asserts that the semiotic content of a mathematical
text is time invariant.)
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To present the past seen as a justification of the present, or the
present seen as the logical and inevitable completion of the past is
known as “Whig” history. It is hard to avoid, valuable in its way, but
it does not allow one to get “under the skin” of the original creation.

53 Other possible roads to interpolation: use the asymptotic expan-
sion (1.1), or, perhaps, assuming we know the values at the integers,
expand in a series of “cardinal” functions. See, e.g., [Stenger 1981]. As
the Cheshire Cat in Alice in Wonderland inferred, the right direction
to take depends on where you want to be when you get there: a two
point boundary problem. Initially, it didn’t matter too much with me.
Anywhere was O.K.

54 Norlund’s theory may be conveniently read in [Milne-Thomson
1933, Chapter 8].

It should be observed that the problem of analytic interpolation
may be rephrased as the problem of finding the fractional or continu-
ous iterates to a map, in this case, the Theodorus map z — z+1iz/|z|-
See (2.1).

If one designates a fractional iterate f()(z) of the map f(x) by
F(t,x), then F satisfies, formally, the functional equation

F(s, F(t,:l!)) = F(s +t,z),

for all appropriate s,t, s. This is known in the literature of functional
equations as the translation equation. Designate by A “any” function
with an inverse h=! : h(h~!(z)) = z. Then it is easy to check that
formally

F(t,z) = h1(t + h(x))

will satisfy the translation equation. If the variables in question are
real, then under certain continuity conditions of F, one can prove
that there must be a continuous, strictly monotonic A(z) that does
the trick. One must now connect h with f:

f(z) = fi(z) = A~} (1 + h(z)).
This leads immediately to
h(f(z)) = h(z) +1,

which is the so-called Abel’s equation. See, e.g., [Aczel and Dhombres
1989, p. 297].

55 This leads us to a new chapter of interpolation theory known as
constrained interpolation. In addition to data matching, we require
that the interpolant satisfy certain inequality contraints. This is of
great importance in, e.g., computer-aided geometrical design, and a
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Figure 56: Cubic spline interpolating to Akima data.

considerable literature both theoretical and algorithmic has grown up
in the last generation.

A subproblem to constrained interpolation/approximation is that
of “shape-preserving interpolation/approximation.” The question is
this. Given in, say, R?, a finite amount of data (zx,yx),k =0,1,...,
N,z9 < 1 < .... We wish to interpolate or approximate this data
from among a family S of explicitly given functions in such a way that
the “shape” of the data (interpreted initially in a subjective sense)
is preserved. Important additional requirements might be that the
interpolant satisfy a certain functional equation, that the resulting
numerical algorithms be stable and robust, and of reasonably low
computer complexity.

One way to objectify the subjective notion of shape preservation
is to require that the interpolant, s(z), extracted from the family S,
mimic the monotonicity and/or the convexity character of the data.
Thus, setting hy = k41— Tk, Ak = (Yk+1—Yk)/ bk, one would require
that

sgn(s'(z)) = sgn(Ak) for z € [z, Tk41],

sgn(s”(z)) = sgn[Ag41 — Ag] for z € [Tk, Tie41),

k=0,1,...,N — 1, or both simultaneously.



Notes 217

90

801

70}

60 E
504+

40

30t

201 J

10

ot
-10

-2 (] 2 4 6 8 10 12 14 16

Figure 57: Cubic spline shape-preserving interpolant. From:
Fontanella.

There are some existential surprises in these requirements. Suppose
that S, designates the class of splines that are piecewise polynomi-
als of degree less than equal n over the mesh zg,z;,...,zn5 and of
continuity class C* there. It has been proved by Passow and Roulier
that for every n > 1, there is convex data (second difference positive)
for which there can be no convex interpolating spline s(z) € Sp;. See
[Fontanella 1989]. (See figs. 56, 57.)

Historically, one of the first shape-preserving transformations is to
replace discrete, equispaced data by its Bernstein polynomial. This
will preserve monotonicity and convexity over the given interval. See
[Davis 1963, pp. 114-115].

For a recent introduction into the literature of shape-preserving in-
terpolation, Fontanella’s article is highly recommended. Further ma-
terial can be found in [Foley et al. 1989]. For convexity preservation
of data via least square methods, see [Demetriou and Powell 1990].

As far as I am aware, the question of shape preservation for data
that is to be organized “spirally” is quite open.

56 See, e.g., [Artin 1931]). The condition of logarithmic convexity
cannot be replaced by simple convexity. A theorem of H. H. Kaires
tells us that if the constant ¢ is positive and sufficiently small, (¢ <
min )’ (a)/4n?,4(2)/4n),% = I'/T, then, on the positive real axis, the
function g(z) = I'(z) exp(t sin 2rz) will be analytic, convex, logarith-
mically convex on (0, a], satisfy the difference equation for the gamma
function, satisfy the functional equation g(z)g(l — ) = «/sin(nz)
for the gamma function, and g(1) = 1. Yet, obviously, g # I, so that
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mere convexity gives the first difference equation plenty of leeway.
For a concrete example, take a = 2. Then (2) = .42278 and ¢'(2) =
.64493, so that £ = .01 will work.

For this and other characterizations of the gamma function see
{Kairies 1978]; also: [Kuczma et al. 1989, Chap. 10, Sect. 4.], and
[Laugwitz and Rodewald 1987].

As regards possible functional equations for the Theodorus function
(2.7), apart from (2.3) and what may be implied by the development
in (2.14)—(2.18), none have yet come forward.

57 thought that an identification of T'(a) would prove difficult. I
had just received a copy of Borwein and Borwein’s book A Dictionary
of Real Numbers [Borwein and Borwein 1990], which lists 100,000
“Interesting” real numbers. From the Preface to the dictionary:

How do we recognize that the number .93371663 ... is actu-
ally 2logio(e + 7)/2? Gauss observed that the number
1.85407467 ... is (essentially) a rational value of an elliptic
integral — an observation that was critical in the development
of nineteenth century analysis.

If I were lucky, my world constant T would be in the Borwein
dictionary and that might give me a clue. It wasn’t, so it didn’t. Her-
bert Wilf reports the same experience with regard to some universal
constants that have come up in the recent theory of the Josephus
problem.

There is a story, possibly apocryphal, that Charles Darwin once
recommended that all scientists at some point in their career should
put some money on a long shot. When asked what had he done along
these lines, Darwin answered that he had played the trombone to
a bed of tulips. The Dictionary of Real Numbers may be in that

category.
* K %

The theory of computer complexity has opened up new questions
(or restimulated some old ideas) with regard to real numbers: given a
real number z defined in some way, how long, asymptotically speak-
ing, does it take to compute the first k digits of 7 For example, if z is
an integer, the nth digit of \/z can be computed in O(nlognloglogn)
time. Can you find an answer that is best possible?

It would be interesting to compare the asymptotic complexity of
Gautschi’s method against that of Phillips.

See [Borodin and Munro 1975]; [Ko 1986]; [Aho et al. 1974].

* % %k
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On the designation of the constant of “Theororus” by the letter
T: in conformity with the Greek background of the man, I should
have designated it with a (capital theta). On the fun and agony of
transliterations of foreign alphabets into English, see [Davis 1989, The
Thread)], where it is described how the transliteration of ‘T'scheby-
schefl’ lead me to a few adventures. This book continues to elicit
correspondence. Richard Valentin sent me the following clip from
“Mathematical Anecdotes” by Stephen G. Krantz, Mathematical In-
telligencer, Vol. 12, No. 4, Fall 1990, p. 35.

(Abram S.) Besicovitch (of almost periodic function fame)
was a smart man, so he quickly became proficient at English.
But it was never perfect. He adhered to the Russian paradigm
of never using articles before nouns. One day, during his lec-
ture, the class chuckled at his fractured English. Besicovitch
turned to the audience and said ‘Gentlemen, there are fifty
million Englishmen speak English you speak; there are two
hundred million Russians speak English I speak.’

In another lecture series, on approximation theory, he an-
nounced ‘Zere is no t in ze name Chebyshév.” Two weeks later
he said ‘Ve now introduce ze class of T-polynomials because
T is ze first letter of ze name Chebyshév.’

58 A difficult question. There used to be a debate as to how mathe-
matics might have developed if, say, Archimedes had been in possession
of a modern electronic digital computer. The discussion persists today
in the form of speculations on possible future developments of mathe-
matics in view of the existence of the computer. See, e.g., [Ormell 1990]
and also the volume in which Ormell’s article is embedded.

59 However, it is by no means the case that the simple precedes the
complex, chronologically speaking. It may take generations to simplify
statements, objects, proofs or whatever.

The spiral of Theodorus, fantasized to be prior to the spiral of
Archimedes, and though visually indistinguishable from it, is a much
more complicated object, and its continuous version would have been
beyond the ability of second-century B.C. Greek mathematics to deal
with. This fact could bolster the fantasy that it was discovered early
and then dropped.

60 A very appropriate tack for a St. Andrews mathematician. See a
previous note on the Euler-Maclaurin formula.

Judith Grabiner [1990] has written a nice article showing the great
importance of Maclaurin’s work to continental mathematicians; a fact
that has been forgotten (or never realized) by most contemporary
mathematicians.
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61 For lovers of long numbers (arithmosophiles, to coin an expres-
sion that gentrifies the slightly pejorative “number freaks”),

T = 1.8600250792211903072. ...

62 Of course, Gautschi {occasionally together with Milovanovic) had
been working for some years on the theoretical and the numerical anal-
ysis infrastructure of a related problem. Without this infrastructure
and the associated software in place, T' could not have been computed
so accurately and so expeditiously by these means.

What enthralled me particularly was the role that the Gaussian
formula for approximate integration played in his method. It took me
back to my work at the National Bureau of Standards, in the days of
the first generation of digital computers, when Philip Rabinowitz and
I were the first to compute Gaussian integration weights and abscissas
electronically.

* %k

That Gautschi should have visited Brown was “pure coincidence.”
A theory that coincidences are by no means coincidences has been
put forward by Persi Diaconis. It is still an open question whether
God does or does not shoot craps with the Universe.

The real problem, of course, is how to know all that is “known”
in mathematics that is relevant to a specific problem at hand. Hand-
books, compendia, the Silver Disc, Mathematica, Sketchpad-type
packages, as necessary as they are, do not come close to answer-
ing this question. Compilations or computerizations of results may
themselves be thought to be part of the algorithmization of mathe-
matics. See [Davis 1985]. For recent opinions on the limitations of the
algorithmic mode, see [Penrose 1989, Chap. 10].

63 For an introduction to the features of Dawson’s integral, see
[Spanier and Oldham 1987, Chap. 42].

On the device employed by Gautschi see Ostrowski’s remark in note
64. This device is an interesting example of what Z. A. Melzak has
called the “bypass” or “conjugacy” principle. The second expression
is taken from algebra where STS~! is the conjugate of T under S.
Speaking generally and vaguely, the bypass device uses S to map
a problem into a domain where the transformed problem is easier.
Designating the operation of solving by T', one then uses S~! to map
the solution back into the original environment.

Melzak [1983] has assembled a wide and interesting collection of
problems from all areas of pure and applied mathematics where this
principle has been put to good use. The use of logarithms to reduce
multiplication to addition is probably the first place where the student
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of mathematics is introduced to the methodology, and the reader of
Melzak’s book will be able to augment his examples with many others.

Melzak makes wide claims for the “ST'S~! principle.” But whether
this is merely a part of the grammar of mathematical methodology
or something deeper is not clear.

64 Another reminiscence. Gautschi was a Ph.D. student of Alexan-
der Ostrowski at the University of Basel. Ostrowski was not par-
ticularly inclined toward philosophy. Science fiction and sensational
literature of that sort were more his cup of tea.

I recall a conversation with Ostrowski as we were riding together in
a bus at a conference held at the General Motors Research laboratory.

Philosophy. Ah, yes, philosophy. You know that Boris Paster-
nak (Soviet Nobelist in Literature, 1890-1960) and I were
students together at the University of Marburg. I was in the
faculty of science. He was in the faculty of philosophy. Philos-
ophy of mathematics? Well, I’ll tell you. In the seventeenth
and eighteenth centuries, mathematicians tried to express in-
tegrals as sums. In the nineteenth century they began to
express sums as integrals. So mathematics goes in spirals.
That’s all there is to it.

65 Dawson appears to have been a British school teacher in the
1890s.

66 A transcendentally transcendental function (or a TT function
for short) is one that cannot satisfy an ordinary differential equation
with algebraic coefficients. The Holder—Ostrowski theorem assures us
that the gamma function is TT. See the very nice article by Lee Rubel
[1989], and further references there; also [Loxton and van der Poorten
1977]. As Rubel wrote me in a letter dated 19 December, 1989, “No
one, as far as I can tell, has any general methods for such problems.
It’s all hunt and peck and the kitchen sink.”

Incidentally, the first modern classification of numbers and func-
tions into algebraic, transcendental numbers or functions, etc., is due
to James Gregory in his Vera Quadratura (Padua, 1667). This book
also contains the first modern treatment of convergence and of sys-
tems of difference equations. See [Turnbull 1939}; also [Bailey 1989].

67 For more on the Schroeder function (particularly in the context of
the reflection principle for analytic functions), see, e.g., [Davis 1974a,
The Schwarz Function]. To read about the Schroeder function in the
context of chaos and fractals and Julia sets, see [Devaney 1989, Sec-
tion 3.4, and the article by L. Keen in [Devaney and Keen 1989)]. See
also [Beardon 1991]. The most extensive treatment of the Schroeder
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function and its generalizations can be found in Chaps. 8, 9 and 11
of [Kuczma et al. 1989].

The set of all a on the unit circle for which a™ # 1 and for which
there is a Schroeder function is known as the Siegel set. For a number
of sufficient conditions for membership in the Siegel set, see [Kuczma
et al. 1989, p. 156].

68 Theodora Goes Wild: a light-hearted comedy starring Irene
Dunne, 1936.

69 See [Caswell 1989], particularly Chaps. 8 and 9. Chapter 9 has
some analysis of density-dependent population models. The term v,/
||vn || in our general Theodorus iteration may be interpreted as a
population density vector. When the model is of the form v,4; =
h(vg)Av,, where h is a scalar function and A is constant, irreducible,
nonnegative and primitive, an ergodic theorem is given.

For the linear Leslie population model in the context of backward
population projection and the so-called Drazin inverse, see [Campbell
and Meyer 1979, pp. 184-7].

70 In this case, one should require G to be singular. For the general
solution of the linear homogeneous equation Gv, 1 = Hv,, expressed
in terms of the Drazin inverses of G and H, see [Campell and Meyer
1979, pp. 182-3].

"1 See, e.g., [Barnsley 1988, p. 91], for the random iteration algo-
rithm and accompanying fractal art. The computer implementation
of randomness is not random but deterministic (pseudorandom), so
one is pretending to be operating here at the boundary between two
major mathematical concepts neither of which, in view of recent de-
velopments in computational dynamical systems, is any longer clear.
As Fred Astaire said in The Gay Divorcée, “‘chance’ is what the fool
calls ‘fate’,” and not too many people have noticed that this sentence
can be read either that fate is foolishly called chance or vice versa.

2 Notice: we may write the last as v, 41 = An¥,, and therefore al-
most any sequence of vectors may be produced as the result of a linear
time-varying process. All we need is to take A, = v, pinv (v,), as-
suming that no vy = 0. We have written pinv for the Moore—Penrose
generalized inverse.

The necessity of reining in one’s generalizations contradicts the old
saw about how the essence of mathematics lies in its freedom. I would
say that the essence of mathematics lies in the tension between what
you will let it do, what you won'’t let it do, and what you can’t let it
do.

If one can do “everything” with a certain type of algorithm, then
the game changes. The question becomes: With what algorithm of a
certain meta-type can one create, for example the Mona Lisa, with
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the fewest parameters or the fewest bits of information, or the fewest
lines of programming? Data compactification of this sort is a form of
Ockham’s Razor.

For example, the solutions of linear, homogeneous, constant coeffi-
cient systems of differential or difference equations are polyexponen-
tial functions. (See, e.g., [Arnold 1973, p. 103, 176]. Arnold calls them
quasi-polynomials.) The question then becomes what can you do if
you limit yourself to the space of such functions. See also [Kostelich
and Yorke 1990}, who, within the context of noise reduction, ask for
the simplest iteration consistent with given data.

This reminds me of one of the late Marc Kac’s favorite gags: “With
six parameters I can draw an elephant. With seven I can make its tail
wag.” The whole of mathematics can be regarded as a data compact-
ification language.

73 Plotting every ninth iterate of the marigold is particularly inter-
esting. For a discussion relevant to morphology of how unorganized
discrete spirals can be organized into sub-spirals, see [Gould and Katz
1975).

74 For example: there appear to be 9,17,25 and 33 “petals” in the
first, second, third and fourth rings of the marigold. “Prove” it. How
many petals will there be in the fifth ring, not shown in the illustra-
tion? If r is the number of the ring, would you conjecture that the
number of petals will be 8r + 1, so that for r = 5 the number is 417
Indeed, will there be a fifth ring of petals? Recall also that the figure
has been produced by a digital computer whose arithmetic is only an
approximation to standard arithmetic.

The reader who is inclined to jump to conclusions on the basis of the
first few cases should look at the two articles by Richard Guy [1988;
1990], who has put together an amusing collection of examples. Guy’s
moral is: “You can’t tell by looking.” And yet, we are always jumping
to conclusions on the basis of what seems to be a finite amount of
information.

* %k %k

The metaphysics of the standard approach to the calculus of limits
strikes me as deficient. Within this theory, the limit of a convergent
sequence of numbers is not affected one whit if the first N numbers of
the sequence are altered. Therefore, in principle at least, one cannot
tell the limit of a sequence by examining any finite number of indi-
vidual terms. In practice, this is done every day of the year and with
considerable success.

751t seems hardly necessary to give references in an age when
chaos/fractals have exploded like a nova and become buzz words;
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when they have been apotheosized and given rise to a minor industry
of applied and pseudoapplied mathematics; when they have even pen-
etrated secondary schools, the computer amusement, and the T-shirt
markets. But here are a few: [Barnsley 1988; Barnsley and Demko
1989; Beardon 1991; Bergé and Pomeau; Cvitanovic 1984; Devaney
1989; Devaney and Keen 1989; Fischer and Smith 1985; Hale and
Kogak 1991; Hao 1984; Holden 1986; Mandelbrot 1977; Pickover 1990;
Ruelle 1989; Schuster 1988].

A few words might be in order describing how numerical analysts
view chaos/fractals. Iterative methods lie at the very heart of numer-
ical analysis and the development of algorithms for scientific com-
putation. The numerical analyst looks for methods that are stable
(convergent), robust (remaining stable over a wide variety of inputs)
and economical. A method that is nonconvergent is discarded with-
out further ado. (Too bad; back to the drawing board! On second
thought, what was proposed was so reasonable, perhaps we can find
a way of modifying, adapting, relaxing the iterations so as to force
convergence or to accelerate it.) Convergent methods lead to uninter-
esting graphics: a set of dots moving towards a limit point. The visual
equation is

robust = boring.

The iterations leading to fractals/chaos derive from unstable pro-
cesses; hence nonconvergent iterations. Bounded orbits, in particular,
lead to interesting graphics. It would be a serious mistake to say that
the current research interest in fractals/chaos derives from its visual
aspect, but it is surely the case that this aspect has enabled the sub-
ject to “go public” in a big way.

At first, chaos theoreticians had to relearn or rediscover many
things that numerical analysts knew from experience. Then this
turned around, and the wide interest in fractals has encouraged nu-
merical analysts to reexamine what happens at the fringes of stability.
I am thinking of such investigators as Morris, Gouley, and Mitchell
at the University of Dundee. For example, the “leap frog” scheme for
u; = u; that replaces the derivatives by central differences has been
examined outside the stability region described by (At)/(Az) < 1.

The deeper philosophical issue of the application of fractals is really
not whether such and such processes are stable/robust, but what
physical realities can fractal algorithms mimic? Insofar as fractals
exhibit a self-referencing property, this is really the ancient problem
of the macrocosm residing in the microcosm.

76 But see [Mandelbrot 1977], Chapter 10. Texture is also reminis-
cent of patterns in weaving of fabrics, and this, in turn, reminds us
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that one of the first automated digital “computers” was the Jacquard
(1752-1834) loom. So we have spiralled again. See also [Pickover
1990].

Some aspects of texture in equidistribution mod 1 of the sequence
z, = (nf) have been analyzed by Richert in terms of sequence discrep-
ancy. (See Historical Supplement H for this concept.) If € is rational,
then (n#) is periodic. If 6 is “close” to a rational number in the sense
that its continued fraction expansion has small partial quotients, then
there is a high discrepancy and the points of the sequence have small
tendency to clump together. On the other hand, if 6 is “far” from a
rational, clumping will be observed. If § is selected as (3)(1 + v/5) =
the golden number, or § = v/2, it is in the former category. On the
other hand, for 6 = %, the clumping is strong.

By plotting the points z,, = exp(270ni) forn =0, ..., 200, and con-
necting them by straight lines — as is common in graphical software
— clumping (or lack of it) is made vivid. As the number of points in-
creases to about 500, and as equidistribution takes over, the clumping
disappears visually. The dynamic progression from initial clumping to
equidistribution as more and more points are plotted is striking. (See
fig. 58.)

The concern with issues of stability /instability in differential and
difference equations in the past hundred years — I should say the
overconcern with these issues — goes beyond matters of theoretical
or practical interest. I think it is related to the rapid advancement
of science and technology and to the great social, psychological and
political instabilities and upheavals in the wake of this advance. This
has given rise to a literature of scientific apocalypticism that has been
rife since the publication of H. G. Wells’s War of the Worlds almost
a century ago. Popular descriptions of chaos/fractal phenomena are
often couched in apocalyptic language: e.g., “A Siegel disc crumbles,”
“An explosion into chaos”, etc. (From R. L. Devaney, Chaos, Frac-
tals and Dynamics.) I find it quite understandable that the Soviet
Union, whose stability was maintained for more than a half century
by draconic social measures, should have produced some of the most
brilliant students of mathematical stability.

Stability is theoreticians’ substitute for salvation; but

salvation = boring,

for the human heart seems to crave a great measure of excitement.
The lesson that only in limited measure can salvation be found in
theorems is one that is yet to be learned.

T One can argue for the recognition of a class of computer-generated
“visual theorems” that might be incorporated into our mathematical
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Figure 58: Exhibiting clumping.
z(n) = exp(2mind), 0 = & (vV3+ V17 + V/63).

experience in a way that is rather different from the traditional modal-
ity of definition—theorem—proof. It is not even necessary to verbalize,
let alone formalize, what one sees as the algorithmic output. See, e.g.,
[Davis 1974b]. Does this contradict the idea that mathematics is a
process of verbal or symbolic communication at both the input and
output ends?

When you look at the marigold, what do you see? (See figs. 28, 29.)
What I see is a round shape with petallike convolutions distributed
radially in a certain manner. But I see much more than this verbal
description. I see a totally integrated complicated texture some of
whose features I might be able to reduce to words. I call this kind of
thing a visual theorem and by this term I mean the passage from the
mathematical iteration to the perceived figure grasped and intuited
in all its stateable and unstateable visual complexities.

In a letter dated 29 November, 1990, the morphologist Prof. Michael
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Katz, of the Bio-architectonics Center, School of Medicine, Case West-
ern Reserve, says that the marigold of Theodorus

has the flavor of many biological structures. Generally, I would
say that these are architectures built from a number of es-
sentially similar units—either many similar molecules or many
similar cells or many similar organisms. I once had dealings
with a reminiscent set of fossil, Receptaculitids, built of cir-
cular and spiral patterns. I would also mention some of the
multicellular or colonial protozoans, such as Volvox. Standing
back from the pattern, I see that it has a bit of the repetitive,
circular patterns that I associate with flower petals, with sun-
flower seeds, and with the white fluffy stages of dandelions.

Speaking in his persona as an “anecdotalist,” Prof. Katz adds that
the marigold of Theodorus

reminds him of an Edward Koren New Yorker cartoon. It
looks fluffy and active and busy. It feels like it is complex,
but not overwhelmingly so. It is a figure that can involve the
human eye — which means that it is one of the endless configu-
rations that can engage naturally and must therefore resonate
with the innate structure of the human nervous system.

This visual theorem has permanence (or stability) in that when I
run the iteration on my computer, I always get the marigold. With
high probability, it is the case that you will get it on your computer.
The marigold is distinguishable or classifiable in the sense that if you
change the coefficients in the iteration sufficiently, you will get another
figure that is recognizably different. The totality of figures that result
from all iterations of the type that gave rise to the marigold can be
given various taxonomies, one of which is visual, and another would
be located within the theory of discrete dynamical systems.

The passage from the iteration to the visual image embodies the
elements of definition (the iteration), proof (the actual running of
the program on a specific computer), and theorem (the pair: [iter-
ation/computer, visual image]). Now here is surely a nonstandard
concept of a theorem that ought to raise a few eyebrows.

Many questions of a traditional mathematical type can be raised
about the marigold and its generalizations. Some of these have been
raised and some answered in these lectures and in the supplements.

One may also ask in a totally different vein:

(a) In view of the superficial visual connection to the biological
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world between the marigold and other figures such as spirals, spiders,
etc., generated by closely related iterations, can you apply this type
of iteration to morphology (or indeed, to any purpose at all)?

(b) Do you think that you can see something in the figure that
cannot be described in words? How would that fit in with the old
principle of linguistics that “if you can’t say it, you can’t think it”?

(c) Can this visual theorem contribute to one’s emotional life?
[When I first hit upon this visual theorem, quite by accident, I experi-
enced a definite sense of elation and delight equal to that experienced
when I first encountered certain traditional theorems (e.g., the theo-
rem of Pythagoras or Schur’s theorem that any square matrix may be
unitarily upper triangularized).] For more on these topics, see [Davis,
1991].

And if visual theorems, why not auditory theorems? One might
listen to a spiral, for example, via its discrete Fourier transform. A
standard demo of the Mathematica package provides us with the Rie-
mann zeta function as an auditory experience.

78 When the vectors are complex, I have occasionally found the
following simple strategy to be useful visually: display each higher-
dimensional vector [21, 22, ..., 2,] as a closed polygon P : (21, 22,.. .,
zn) in 2-d. If the vectors are real, complexify them by pairing com-
ponents.

7 The complex variable spirals of Theodorus have the following
neat invariance with respect to rotations: let p be an arbitrary com-
plex number and let ¢ = Qp, Q = exp(i6),0 < 6 < 27. Let sp be the
(discrete) spiral that is generated by starting at z = p, while sq starts
at z = ¢. Then sq = Qsp.

In the higher-dimensional cases, we should require that the unitary
transformation 2 commute with A and with B. If Q is taken as the
discrete Fourier matrix, F,,, of order n, then F,, is nonderogatory only
for n = 1,2, 3. In these cases, one would then have to select A and B
as polynomials in F;,. See [Davis 1979, pp. 33 and 232].

80 The condition det(A) # 0 is necessary and sufficent for the ex-
istence of log (A). See, e.g., [F. R. Gantmacher 1960, Theory of Ma-
trices, Chap. 8, Sec. 8]. If the eigenvalues of A are all positive, then
log (A) can be taken real. With ¢t pure imaginary, M = exp(tlog (A4))
is then an instance of a “circular” matrix for which conj (M) = M 1.
See [de Bruijn and Szekeres 1955).

If A is nonsingular but is nondiagonalizable, considerable numerical
difficulties may be experienced in computing log (A).

If A is singular and the zero eigenvalue is of index 1 (i.e., all its zero
eigenvalues are associated with Jordan blocks of dimension 1), then
it may be Jordanized as A = Q diag (O, B)Q~!, where O and B are
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square and B is nonsingular. In this case, one may define a fractional
power of A by means of

A' = Qdiag (0, B)Q 7,

where B! is defined as before. In this case, A will satisfy the law
of exponents and A! = A, but A° = Qdiag(0,I)Q~!. Moreover,
we will have A=t = (A!)™, where <+ designates the Moore-Penrose
generalized matrix inverse.

If a zero eigenvalue of A is associated with a Jordan block of di-
mension higher than 1, then a fractional power satisfying the law
of exponents may not be definable. (For example, the 2 x 2 matrix
A = [01;00] has no square root.) See [Gantmacher 1960, Chap. 8,
Secs. 6 and 7).

For a discussion of the matrix-Schroeder equation, see [Kuczma et
al. 1968, Chap. 6, Sec. 4]. One might examine Theodorus from this
point of view.

81 If U is unitary and ¢ > 1, take A = oU and B = —A. Then
the (spectral) norm (A) = o > 1. It is easy to show that if norm
(vo) > o/(o — 1), the orbit is unbounded. If norm (vy) < o/(c — 1),
the orbit is bounded.

82 Gee, e.g., [Davis 1979, p. 32).

831t is hard to avoid the observation that we are dealing here with
a very rudimentary form of the mathematical problem of exterior
ballistics or of missile guidance.

84 My particular interest in this kind of theorem lies in its rela-
tionship to the Monte Carlo method of numerical analysis and to
the philosophy and methodology of random and pseudorandom se-
quences.

Working in one dimension for simplicity of notation, it can be shown
that a sequence z,, is equidistributed modulo 1 if and only if

k=N

i ! = 1 z)dz
yim () X 1w = [ sy

for all bounded, Riemann integrable functions f(z). Thus, once in
posession of an equidistributed sequence, the value of an integral may
be computed by sampling on that sequence. It is not necessary to
sample “at random” — whatever that means; it suffices to sample on
a deterministic equidistributed sequence of which many are known
explicitly, and of which the sequence z, = (nf) = nf — [nf],0 =
irrational, is undoubtedly the simplest. By way of underlining this
simplicity, such sequences are even constructible by ruler and compass
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methods of elementary geometry, as is the case with the Theodorus
angles.

The numerical computation of integrals of dimension d presents se-
vere problems when d > 10, say, and the Monte Carlo computational
strategy is often selected. As an adjunct to this, a considerable litera-
ture has developed that provides explicit equidistributed sequences in
higher-dimensional intervals or manifolds, and which obtains via the
ideas of “discrepancy” specific equidistributed sequences for which
the rate of convergence is particularly rapid. See, e.g, [Davis and Ra-
binowitz 1984, Chapt. 5.9].

Now if one is not aware of the notion of equidistribution and sim-
ply proceeds via probabilistic sampling, one needs to develop ran-
dom sequences on the computer. Since traditionally defined notions
of randomness are noncomputable, one settles for so-called pseudo-
random or quasirandom sequences. Such sequences are deterministic
and easily computable (they are theoretically periodic, but have an
enormously long period) and have been “certified” as having passed
a certain number of well-known statistical tests T'(1),...,T(2), but
may fail a number of tests T(N +1), T(N +2), . ... The first test T'(1)
is usually that of equidistribution.

Scientific computation packages deliver pseudorandom sequences
on call. These are generally linear congruential sequences z,4+1 =
azy +b(modm), for which “good” values of a, b, m are claimed, some-
times by theorem, and sometimes by experience. Other methods are
also employed in systems-supplied random number generators.

Let us designate by J the numerical job (interpreted as a fairly
extensive class of related jobs) to be accomplished by probabalistic
methods. It should be clear from the case of approximate integration
that, if you want to do the job J properly, all you need to require
of the pseudorandom sequence is that it pass tests T'(r1),...,T(rs),
where the s-tuple (ry,72,...,7s) depends upon J.

Strangely, I think that there has been relatively little theorematic
or experiential discussion of (a) the independence or interrelation be-
tween the standard statistical tests T'(¢) (for example: prove that T'(6)
does or does not imply 7'(7)); (b) what tests T does a sequence need
to pass in order to lead to a theoretically sound Monte Carlo method
for job J.

It is clear from the theory of equidistribution that a sequence need
only pass T'(1) to integrate properly. If it passes other tests as well,
it is not clear a priori that this makes it a better sequence to use. It
may actually have the reverse effect and slow down the converence
from O(N—(1~€)) to O(N~'/2). This slowing down may be viewed
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as a price or a tradeoff that has to be paid for the “higher quality”
randomness and hence the greater versatility of such a sequence.

Let me now take a big existential jump and postulate that for every
numerical job J for which probabilistic methods are currently used,
there is a set of tests T'(j1), ..., T(jk(s)) that a deterministic sequence
must pass in order to do J successfully. Furthermore, deterministic,
computable sequences can be defined that pass these tests and that,
consequently, can be used successfully as a basis for a Monte Carlo
algorithm for J.

Call this hypothesis HJ. As stated, it is admittedly vague. (What
is a test? What does it mean to “pass” such a test? What kind of com-
putability are we talking about? Turing computability? Computabil-
ity on a real machine within a human lifetime?) Perhaps the logical
status of HJ might be analogous to Church’s hypothesis that says
that all effective computation can be formalized with the lambda cal-
culus, or to the continuum hypothesis for which it is now known that
you can believe it or not believe it, as you will.

What is the evidence in favor of HJ? The existence of equidistribu-
tion theory plus the fact that the random number generators delivered
by computer systems seem, with some care, to do useful jobs.

But let me explore one consequence: if H.J were the case, then as far
as computation is concerned, there is no need to introduce the notions
of probability, randomness, etc. These notions might be a linguistic
convenience, possibly even inspiration for algorithmic strategies, but
not a necessity. Some of the metaphysical angst that now accompanies
definitions of random sequences would be eliminated.

Passing from the world of formalized mathematics and computa-
tions to the world of physical and social events, we can say that to
the extent that a theory of physics must have a computation as its
real or potential endpoint, the language of probability is unnecessary.
But of course, to say that probability is unnecessary in computation
is not the same as asserting that the exterior world is determinis-
tic. A major (unsolvable) problem is to delineate those parts of the
extramathematical world that can be modelled by constructive, com-
putable mathematics.

In summary, I think that the existence of the theory of equidis-
tribution (which few mathematicians seem to be acquainted with)
is one reason why the traditional expression of probability through
the Kolmogoroff axiomatization is an inadequate expression of the
mathematical realities.
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