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Preface

As I was close to completing this book, I found myself watching the sun go down from an empty beach 
in west Wales. The sky was livid with salmon-coloured bands of clouds. The shore was being washed 
with the steady pulse of the sea, and a stream threaded its braided course across the wrinkled brow of 
the sandy beach to the water's edge, where a white foam frothed on top of the turbulent eddies. Behind 
me rose rugged cliffs, each cradling countless miniature replicas of itself in a craggy hierarchy. Along 
the cliff path I had noticed earlier in the day the spiral arrangement of spikes on the gorse bushes, the 
five-petalled wild flowers. And I don't think it was until that moment that I truly appreciated how the 
patterns that I had spent the last several months describing were far from the arcane curiosities of 
laboratories or the virtual creations of a computer cyberspace, but indeed the blue-prints for nature.

I had just read Brian Appleyard's response, in Understanding the Present, to the famous remark of 
physicist Richard Feynman on how understanding a flower scientifically can only increase our 
appreciation of it. Appleyard is unmoved: 'We are supposed to be grateful,' he scoffs. Reactions to 
scientific inquiry will ever be diverse, I suppose; but I know that at that moment I was grateful that the 
patterns of west Wales's wild coast can be understood and appreciated, not just experienced. It made me 
feel at home there.

I hope that you too will acquire from this book the kind of excitement that I now feel when I observe 
the lace-work of the sky or the outrageous designs of a butterfly's wing. When a little mystery is 
dispelled, the wonder and beauty need not go with it.

As ever, my accuracy (not to say clarity) has been improved immeasurably by the generous advice of 
those who really know about this stuff. For comments on the text, I am deeply indebted to Robert 
Anderson, John Barrow, Michael Batty, Eshel Ben-Jacob, Elena Budrene, Scott Camazine, Pierre 
Hohenberg, Jim Kirchner, Rolf Landauer, Michael Marder, Hans Meinhardt, Jim Murray, Geoffrey 
Ozin, Pejman Rohani, Katepali Srinivasan, Tom Mullin, Udo Seifert, Gene Stanley, Tamás Vicsek, Art 
Winfree and George Zaslavsky. For providing reference material, I should like to thank Michele 
Emmer, Michael Gorman, Alan Mackay, Alan Newell, Peter Ortoleva, Juan Manuel Garcia-Ruiz, 
Robert Phelan, Luciano Pietronero, Lee Smolin, Harry Swinney, Steven VanHook and Dennis Weaire. 
And I am most grateful to all the others who generously loaned me photographs and illustrations. I 
would like to express particular thanks to Graeme Hogarth, Andrea Sella and the chemistry department 
of University College, London, for assistance with the chemical experiments in the appendices.
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I have been greatly encouraged in this project by the enthusiasm of Cathy Kennedy at Oxford 
University Press, and also by that of many friends who I have regaled with the just-so stories of natural 
patterns. My partner Julia has listened patiently and helped me to see where my enthusiasm outruns my 
lucidity.

P. B. 
LONDON 
OCTOBER 1997
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1 
Patterns

The waves of the sea, the little ripples on the shore, the sweeping curve of the sandy bay between the 
headlands, the outline of the hills, the shape of the clouds, all these are so many riddles of form, so many 
problems of morphology, and all of them the physicist can more or less easily read and adequately solve. 
D'Arcy Wentworth Thompson 
On Growth and Form

There was always something a little different about meteorite ALH84001, found in 1984 on the icy 
Allan Hills of Antarctica. For one thing, it came from Marslike only 11 other meteorites found around 
the world. But unlike these others, ALH84001 was oldand I mean four-and-a-half billion years old. The 
rock was formed when the Red Planet was newly born. But the most extraordinary aspect of this little 
lump of Mars did not emerge until August 1996, when scientists from NASA announced that it might 
contain signs of fossil life from our cosmic neighbour.

Maybe my years at Nature magazine have exposed me to too many amazing 'discoveries' that vanish 
like morning mist under close scrutiny; but I felt in my bones that this claim would not stand the test of 
time. If I'm wrong (and I rather hope I am), this is one of the most significant discoveries of the 
twentieth century. But although the jury is still out while scientists clamour for more pieces of the 
meteorite to carry out exacting tests, already there are signs that this evidence for ancient life on Mars is 
on shaky ground.

     



One of the lines of argument particularly caught my attention. Within the Martian rock the NASA team 
found microscopic wormlike features about a tenth of a micrometre in width, which they suggested 
might be the fossilized remains of bacteria (Fig. 1.1). What leapt to my mind was a book called Earth's 
Earliest Biosphere, in which Californian geologist William Schopf lists and depicts countless examples 
of curious, bacteria-like structures in ancient rocks from Earth's early history. Schopf explains that, 
while some of these are indeed microfossils of primitive bacteria dating back to around a billion years 
after the Earth was formed, many others are not fossils at all, but most probably structures formed in the 
rocks by purely geological processes.

Prospectors for early life on Earth are in constant danger of being fooled by these mineral structures, 
which in some cases look barely distinguishable from well-established microfossils (Fig. 1.2). There is 
a recognized class of objects called 'dubiofossils', which are microscopic rock structures whose origin 
one cannot unambiguously ascribe either to organic or inorganic causes. I should say that the NASA 
scientists were familiar with these pitfalls, and were also uncomfortably aware that their putative 
Martian fossils were much smaller than any known from Earth. But they felt that the several other 
suggestive chemical characteristics of meteorite ALH84001 added weight to the idea that the worm-like 
structures were indeed the mineralized casts of primitive organisms from Mars.

You might think that it should be an easy matter to distinguish a fossilized remnant of a living organism 
from some rock feature formed by physical forces alone. Surely we can, at even a brief glance, tell a 
crystal from a living creature, an insect from a rock?

Yet what is it that encourages us to make these distinctions, based on superficial features alone? I 
suspect that most of us at some level identify a kind of characteristic form that we associate with living 
things; but it is hard to put that into words. Living organisms come in all shapes and sizesa tree, a 
rabbit, a spiderbut there is something purposeful about these forms. They are complex (and I shall 
shortly have to be a little more
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Fig. 1.1 
These microscopic structures found in a Martian meteorite have been presented as 
evidence for ancient bacterial life on Mars. Are they the fossilized remnants of tiny 

worm-like organisms? (Photo: NASA.)

precise in using this word), but not random. They have a kind of regularityevident, for instance, in the 
bilateral symmetry of our bodies or in the branching pattern of a treebut it is not the geometric 
regularity of crystals. Somehow it seems natural, when we see forms like those in Fig. 1.1, to associate 
them with the subtle and delicate forces of life, not with the coldly geometrical exigencies of physics.

     



Fig. 1.2 
How do you tell a fossil from a rock? The formations 
shown here have all been identified in ancient rocks; 

but whereas those in (a) are probably genuine fossilized 
bacteria, several billions of years old, it is possible that 

those in (b) were formed by purely geological 
processes. (Photos: from W. Schopf (ed.) (1991). Earth's 

Earliest Biosphere. Reprinted with permission of 
Princeton University Press.)

If there is one thing I hope to do in this book, it is to shake up these assumptions. I wish to show in 
particular that pattern and organized complexity of form need not arise from something as complicated 
as life, but can be created by simple physical laws. This idea of complexity from simplicity has become 
almost a new scientific paradigm in recent years, and most probably a cliche too. Yet I hope here to tie 
it down, to show that it is not a recondite solution to all of life's mysteries, nor a result of a newly 
acquired facility for tricky computer-modelling, nor even a particularly new discoverybut a theme that 
has featured in scientific enquiry for centuries. Some of the complex patterns that I shall consider in this 
book pose questions that are truly ancient: from where come the stripes of a tiger, the procession of 
'mare's tail' clouds, the undulations of sand dunes, the vortex of a whirlpool, the shapes and decorative 
adornments of sea shells?

Imposters

Let me delve further into our preconceptions about form and pattern. If you saw through the microscope 
mineral formations like those in Fig. 1.3a, would you suspect that these are the shells or skeletons of 
some tiny creatures? That would be an understandable assump-
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tion, yet they are the products of a purely chemical process involving the precipitation of silica from a 
soluble salt. Much the same chemical brew can produce the surface patterns in Fig. 1.3b, strikingly 
reminiscent in both shape and scale of the putative Martian fossils in Fig. 1.1! What on earth sculpts 
these mineral bodies into such odd and apparently 'organic' forms?

Fig. 1.3 
(a) Are these complex, patterned mineral structures the 
shells or skeletons of tiny organisms? On the contrary, 

they are the product of a purely synthetic chemical 
process carried out in the laboratory, [b) A similar 
chemical process generates these surface patterns, 

which bear some (coincidental) resemblance to those 
in Fig. 1.1. (Photos: Geoffrey Ozin, University of Toronto.)

     



Fig. 1.4 (a) Modern-day stromatolites in Shark Bay, Western 
Australia. (b) The complex, laminated structure of a 

2.7-billion-year-old stromatolite from Western Australia. 
The image shows an area of 3 × 4 cm. 

(Photos: Malcolm Walter, Macquarie University, Sydney)

     



A particularly striking cautionary tale of this association between life and complex formand one that 
reverberates through the story of the Martian meteoriteconcerns the rock formations known as 
stromatolites that are found in ancient reef environments around the world. Ever since these curious, 
spongy structures were discovered in the nineteenth century, their origin has been disputed. The 
prevailing interpretation is that they represent the fossil remains of mat-like structures created by 
marine microorganisms such as cyanobacteria, which are amongst the oldest known forms of life on 
Earth. Fossil microbes have been found in some stromatolites, but the argument for their biological 
origin finds its most crucial evidence in the similarity in form between ancient stromatolites and modern 
analogues that are demonstrably still being
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constructed from cyanobacterial and algal mats (Fig. 1.4a). If this association holds, stromatolites 
provide some of the oldest evidence for life on Earth, since they have been dated back to three-and-a-
half billion years ago. Researchers have even proposed that searches for life on Mars itself should 
include the option of looking for stromatolite-like features around the dried-up lakes and springs of the 
Red Planet.

But in 1996 John Grotzinger and Daniel Rothman from the Massachusetts Institute of Technology 
showed that a comparison based on form alone cannot provide unambiguous evidence for the 
handiwork of biology. They demonstrated that the characteristic features of the irregular layers of a 
typical stromatolite (Fig. l.4b), whose bumps and protrusions look for all the world like the product of 
biological growth, can be generated by simple physical processes of sedimentation and precipitation of 
minerals from the overlying water. This does not prove that stromatolites are purely geological 
structures (and it is virtually certain that at least some are not), but it shows that arguments based on 
form alone are not sufficient to rule out that possibility.

We can play this game the other way around. What are the objects shown in Fig. 1.5living organisms or 
crystals? Their geometric regularity suggests the latter, but these are viruses, and all too dangerously 
alive. Complex form may not require an organic origin, but similarly geometric form does not exclude 
it. There are, in other words, forces guiding appearances that run deeper than those that govern life.

Lookno hands

Our prejudice says otherwise. The most striking examples of complex pattern and form that we 
encounter tend to be the products of human hands and mindsshaped with intelligence and purpose, 
constructed by design. The convolutions of a traditional patchwork fabric, the intertwining knots of a 
Celtic symbol, the horizon-spanning stepped terraces of Asian rice fields, the delicate traceries of 
microelectronic circuitry (Fig. 1.6)all bear the mark of their human makers. The subconscious message 
that we take away from all this artifice is that patterning the worldshaping it into the forms of our needs 
and our dreamsis hard work. It requires a dedication of effort and a skill at manipulation. Each piece of 
the picture must be painstakingly put into place, whether by us or by nature. This, we have come to 
believe, is the way to create any complex form.

So when they found complexity in nature, it is scarcely surprising that many theologians throughout 
time have refused to see anything other than the signature of divine guidance. From the action of 
nature's most basic physical laws, on the other hand, such as Newton's inverse-square law of gravity, we 
have learnt to expect nothing but the geometric sterility of a planet's elliptical orbit around the Sun.

Would it not be extraordinary, however, if these laws could by themselves contrive to generate rich and 
beautiful patterns? If we could decorate a table cloth by using dyes that spontaneously segregate into a 
multicoloured design? Or to scatter a hillside with topsoil and watch it arrange itself into terraces ready 
to receive water and seed? But experience teaches us that this is not the way things go. On the contrary, 
dyes mix, don't they? Soil gets distributed randomly by the wind and rain, right?

     



Fig. 1.5 
These geometric, ordered forms are in fact living organismsviruses, (a) 

The cowpea chlorotic mottle virus; (b) the herpesvirus. 
(Images: (a) Jean-Yves Sgro, University of Wisconsin; (b) Hong Zhou, 

University of Texas at Houston.)

The astonishing thing is that sometimes apparent reversals do happen. Fluids unmix of their own 
accord; landscapes become sculpted by the elements into regular patterns. Through such processes, 
nature's tapestry embroiders its own pattern. And by studying these strange and counter-intuitive 
processes, we discover that some of nature's patterns recur again and again in
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Fig. 1.6 
Most of the complex patterns that we create are the products of painstaking labour: (a) a Kuna mola tapestry 
from Panama; (b) paddy fields in China; (c) Celtic design on a stone cross; (d) circuitry on a microprocessor 

chip. (Photos: (b) Getty Images; (d) Michael W. Davidson and the Florida State University.)

situations that appear to have nothing in common with one another. You can't avoid concluding, once 
you begin to examine this tapestry, that much of it is woven from a blueprint of archetypes, that there 
are themes to be discerned within the colourful fabric. Nature's artistry maybe spontaneous, but it is not 
arbitrary.

Form and life

     



Biologists are used to the idea that form follows function. By this I mean that the shape and structure of 
a biological entitya protein molecule, a limb, an organism, perhaps even a colonyis that which best 
equips the organism for survival. (In today's gene-centred view of biology, we should instead strictly 
say that it is the survival of the gene that is paramount, the organism being merely a convenient vehicle 
for this.) This is the Darwinian paradigm: form is selected from a palette of possibilities, and by 
selected I mean favoured by natural selection. A form that gives the organism an evolutionary 
advantage tends to stick.

This is a simple idea, but phenomenally powerful. The objection that it would take an unreasonably 
long time to find the best form from the range of alternativesa favourite argument for evolutionary 
scepticscrumbles beneath the extraordinary and demonstrable efficiency of natural selection. We can 
watch the process take place in a matter of days for generations of bacteria bred in culture. In 1994, 
Swedish researchers performed computer experiments showing that even a biological device as 
sophisticated as an eye will evolve from a flat sandwich of photosensitive cells
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in a matter of around 400 000 generationsperhaps half-a-million years, a blink in geological termsif one 
makes conservative assumptions about such factors as the rate of mutation between each generation. 
Even getting life started in the first place, from a brew of simple organic chemicals on the young Earth, 
seems to have been astonishingly easy: it may have taken less than 200 million years from the time that 
the planet first had a solid surface, and would presumably have involved competition and consequent 
selection amongst generations of replicating molecules and small molecular assemblies.

Fig. 1.7 
The Cambrian period was a time of tremendous 
experimentation in nature's body plans. Here are 
just a few of the bizarre creatures reconstructed 

from remains found in the Burgess shale. 
Clockwise from top left: Anomalocaris, Aysheaia, 

Hallucigenia and Dinomischus. 
(Drawn by the author, after Marianne Collins.)

     



But as an explanation for natural form, natural selection is not entirely satisfying. Not because it is 
wrong, but because it says nothing about mechanism. In science, there are several different kinds of 
answer to many questions. It is like asking how a car gets from London to Edinburgh. One answer 
might be 'Because I got in, switched on the engine, and drove'. That is not so much an explanation as a 
narrative, and natural selection is a bit like thata narrative of evolution. An engineer might offer a 
different scenario: the car got to Edinburgh because the chemical energy of the petrol was converted to 
kinetic energy of the vehicle (not to mention a fair amount of heat and acoustic energy). This too is a 
correct answer, but it will be a bit abstract and vague for some tastes. Why did the car's wheels go 
round? Because they were driven by a crankshaft from the engine . . . and before long you are into a 
mechanical account of the internal combustion engine.

Some biologists want to know about the internal combustion engine of biological form. They will 
accept that the form is one that conveys evolutionary success, that a fish shaped like a giraffe wouldn't 
exactly have the edge on its competitors. But this form has nonetheless to be put together from a single 
cell. What are the mechanical ins and outs of that process?

From a naive evolutionary perspective, anything seems possible. You assume that nature has at its 
disposal an infinite palette, and that it dabbles at random with the choices, occasionally hitting on a 
winning formula and then building mostly minor variations on that theme: for fish, the torpedo-body-
and-fins theme, for land predators the four-legs-and-muscle idea. To judge from the astonishing 
diversity of form apparent in fossils from the Cambrian period (Fig. 1.7; see also Stephen Jay Gould's 
book Wonderful Life)a diversity far exceeding anything we find in today's organismsyou might imagine 
that this is precisely what happens. But is the palette truly infinite? Once you start to ask the 'how?' of 
mechanism, you are up against the rules of chemistry, physics and mechanics, and the question 
becomes not just 'is the form successful?' but 'is it physically possible?'

Questions of this sort were what prompted the Scottish zoologist D'Arcy Wentworth Thompson in 1917 
to write a beautiful book whose influence is still felt today. In On Growth and Form, Thompson gave 
an engineer's answer to the Darwinism that was rushing like a deluge through the biology of his time. 
Still in its first flush, Darwin's theory was propounded as the answer to every question that someone in 
Thompson's community might want to ask. The shape of a goat's horn, of a jellyfish's protoplasmic 
body, of a sea shellall have the form they do because natural selection has sculpted them that way.

D'Arcy Thompson saw such ideas as an affront to one of science's guiding principles: economy of 
hypotheses, exemplified by the approach to problem solving expounded by the fourteenth-century 
philosopher William of Ockham and now known as Ockham's (or Occam's) razor. Put simply, this 
approach demands that we set aside complicated explanations for things when a simpler one will do. 
The principle is not much funthere would be no UFOs, no paranormal phenomena, if
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we had all learnt to observe itbut it prevents the proliferation of unnecessary ideas.

What, suggested Thompson, could be more unnecessary than invoking millions of years of selective 
fine tuning to explain the shape of a horn or a shell when one could propose a very simple growth law, 
based on proximate physical causes, to account for it? The sabre-like sweep of an ibex horn does not 
have to be selected from a gallery of bizarre and ornate alternative horn shapes: we can merely assume 
that the horn grows at a progressively slower rate from one side of the circumference to the other, and 
hey prestoyou have an arc.

There is no inconsistency here with the Darwinian scheme of things, within which it is quite possible 
for such a growth law to arise. But Thompson's point was that it need not have been selectedit was 
inevitable. Either the horn grew at the same rate all around the circumference, in which case it was 
straight, or there was this imbalance from one side to the other, giving a smooth curve. It just did not 
make sense to invoke other shapes: nature's palette contains just these two. Even the more elaborate 
spiral form of a ram's horn need be only the manifestation of a stronger degree of imbalance, causing 
the horn's tip to curve through several complete revolutions.

In D'Arcy Thompson's view, some biological forms, the shapes of amoeba say, can no more be 
regarded as 'selected for' than can the spherical form of a water droplet; rather, they are dictated by 
physical and chemical forces. To support this assertion he evinced many organisms whose shapes could 
be explained as a more or less inevitable corollary of the forces at work. What was the point, he asked, 
in accounting for the shape of a bone in evolutionary terms (which 'explained' nothing) when it could be 
rationalized through the same engineering principles that engineers use to design bridges? Skeletons are 
then seen not as arbitrary structures moulded this way and that by natural selection, but as constructions 
that must satisfy engineering requirements. The same is true of trees, and of all living forms whose 
stability is dominated by gravity. When small size reduces the influence of gravity, surface tension 
takes over and a new set of forms can result.

Despite, or perhaps because of, Thompson's erudition and facility with other disciplines (he was also a 
professor of Ancient Greek), On Growth and Form has a quixotic air. It sometimes veers in spirit 
towards the ideas of the Frenchman Jean Baptiste Lamarck, who argued before Darwin that evolution 
was a response to the environment, in which adaptation is not the result of random mutations but is 
guided along a preordained path by the environmental forces to which organisms are subject. Today this 
idea is biological heresy.

On Growth and Form came close to heresy too, and Thompson was conscious of it. 'Where it 
undoubtedly runs counter to conventional Darwinism', he said when submitting the manuscript, 'I do not 
rub this in, but leave the reader to draw the obvious morals for himself.' And so they did: the English 
biologist Sir Peter Medawar called the book 'Beyond comparison the finest work of literature in all the 
annals of science that have been recorded in the English tongue'. Without a doubt, it is beautifully 
written and deeply scholarly. But to what extent was Thompson right?

     



The black box of genetics

In its most basic form, D'Arcy Thompson's thesis was that biology cannot afford to neglect physics, in 
particular that branch of it that deals with the mechanics of matter. (He was far less concerned with 
chemistry, the other cornerstone of the physical sciences, but that seems to have been because he did 
not consider it sufficiently mathematical. Today there is much in the field of chemistry that would have 
served Thompson well.) His complaint was against the dogma of selective forces as the all-pervasive 
answer to questions in biology. For him this did not answer questions about causes; it merely relocated 
the question. A physicist, on the other hand, 'finds ''causes" in what he has learned to recognize as 
fundamental properties . . . or unchanging laws, of matter and of energy'.

Today, Thompson would surely have to take up arms against the modern manifestation of the same 
Darwinian idea: genetics. It is not hard to become persuaded that in modern biology, all questions end 
with the gene. The pages of Nature and Science are filled with papers reporting the identification of a 
gene (or the protein derived from a gene) that is responsible for this or that biological phenomenonfor 
the development of a forearm, the predisposition to breast cancer, even for intelligence. The climate of 
the culture in molecular biology (although not, I think, the expressed belief of its individuals) is that, by 
understanding the roles of genes and the mutual interactions of the proteins derived from them, we will 
understand life.

This attitude finds expression, for instance, in the Human Genome Project, the international effort to 
map out every one of the 100 000 or so genes in the 23 chromosome pairs of the human cell. This 
project might be completed by the turn of the century, and to

  

     



Page 8

hear some speak about it, you would think that it will provide us with a complete instruction manual for 
the human body. But biologists know that it will not provide this at all. We can certainly expect to learn 
an awful lot about the way our cells work, and perhaps more importantly, we will obtain a tool that will 
greatly aid researchers studying genetically related diseases. That kind of information will be 
tremendously valuable for biomedical science.

Yet biological questions do not really end in the gene at all: they start there. It is easy to get the 
impression that once a gene for a particular congenital disease has been located, the problem is solved. 
But most genes are just blueprints for proteins, and the physiological pathology associated with the 
gene often results from some biochemical transformation that the protein does or does not facilitate. It 
might even result from some malfunction that shows up only several steps down the line from the 
behaviour of the gene product itself. Very often, if we are to make effective use of the information that 
genetics provides, we must figure out how the gene's protein product works, not just where the gene is. 
Biologists know this, of course, but I am constantly struck at how much of molecular biology advances 
at a 'black box' level, with little concern for the physical or chemical details of a biochemical process 
and an interest only in the identity of the genes and protein gene products that control it. The rest is, of 
course, truly the 'hard part' of biology (cynics might suggest that, now that chunks of human 
chromosomes can be patented and sold off, it is also the less profitable part). The crucial point, though, 
is that a gene itself might provide precious few clues about what this hard part entails.

Furthermore, organisms are not just genes and proteins made from them. There is goodness knows what 
else in the cell: sugars, soap-like molecules called lipids, non-protein hormones, oxygen, small 
inorganic molecules like nitric oxide used for cell communication, and minerals like the calcium 
hydroxyapatite of bone and tooth. None of these substances are encoded in DNA, and you would never 
guess, by looking at DNA alone, what role they play in the body. There are, furthermore, physical 
properties that biological structures possess, such as surface tension, electrical charge and viscosity. 
These are all relevant to the way that cells work, but gene-hunting cannot tell us much at all about what 
their role is.

In short, questions in biology of a 'How?' nature need more than geneticsand frequently more than a 
reductionist approach. If nature is at all economical (and we have good reason to believe that this is 
usually so), we can expect that she will choose to create at least some complex forms not by laborious 
piece-by-piece construction but by utilizing some of the organizational and pattern-forming phenomena 
we see in the non-living world. If that is so, we can expect to see similarities in the forms and patterns 
of living and purely inorganic or physical systems, and we can expect too that the same ideas can be 
used to account for them both. It is in the undoubted truth of this idea that the spirit of On Growth and 
Form lies, and this is where the true prescience of D'Arcy Thompson's achievement resides. Although I 
shall focus only occasionally on pattern and form in biology, I feel that this spirit pervades all of what I 
shall say in this book.

Is biology just physics?

     



It is not often that biologists develop simple models based on physical laws in attempting to explain 
what they see. And with good reason: it is very hard to take account of all of the multifarious factors 
that are important in living organisms. Biological systems are usually too delicate to rely on crude, 
general physical principles, and so biologists are wary of trusting to broad physical phenomena for 
explanatory purposes. To them, it feels uncomfortably like driving a car with no hands on the wheel, 
hoping that friction and air resistance will somehow conspire to guide the vehicle down a tortuous road.

It can be tempting, once one starts to appreciate the stunning variety of complex pattern and form in the 
natural sciences, to let the pendulum swing too far to the other extreme. A popular accusation against 
modern genetics is that it is too reductionistic, that one cannot understand all of the rich complexity of 
biology by breaking it down to genetic influences. One hears this again and again from proponents of 
'holistic' science, who have no shortage of arguments to support their point of viewfor certainly, one can 
find emerging from large populations of interacting 'units' (be they living organisms or non-living 
entities) a kind of largescale organization and structure that one would never be able to deduce from a 
close inspection of the individual units or their mode of interaction. Such ideas, which have now 
become fashionable under the banner of 'complexity,' are often lauded as an injection of richness and 
mystery into the sterility of a reductionist world view.

I applaud a perspective that broadens the horizons of 'black-box' biology, but there is no getting away 
from the fact that most of biology, particularly as a molecular
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science, is hideously complicated, which, in distinction to complex, means that the particulars matter: 
leave out one part of the chain, and the whole thing falls apart. In such a case, one gains rather than 
loses understanding as the magnification is increased. Until we get reductionistic about the immune 
response, let's say, we won't know much about it, and neither will we have much idea how to tackle 
pathological conditions such as AIDS. Reductionism can certainly be aesthetically unappealing, but it 
can also be fantastically useful. In addition, reductionism is not always the dogma it is cracked up to be. 
Richard Dawkins, whose books The Selfish Gene and The Blind Watchmaker are often invoked as the 
epitome of genetic reductionism, has stressed that his ideas by no means imply a kind of genetic 
determinism of biological form, characteristics and behaviour. Dawkins says only that it is the gene on 
which evolutionary forces ultimately act: that is, selection acts on the genotype (the organism's genetic 
composition), not the phenotype (the physical expression of that composition). There is nothing in what 
I shall say about biological form that is inconsistent with these notions.

But a few biologists, riding against the mainstream of current thought, hold a more extreme opposition 
to the genetic orthodoxy. Brian Goodwin from Britain's Open University has argued that a gene's eye 
view of modern biology cannot be complete, and that there are some fundamental aspects of an 
organism's form that persist in spite of natural selection, not because of it. Goodwin suggests that the 
pattern-forming principles seen in some non-living systems operate as strongly in living organisms, 
giving them features that evolution is powerless to erode away. I have to say that not many people 
believe Goodwin, although it seems to me that his arguments become weakened only when extended 
from specific instances to the status of a new developmental principle in biological growth. Insofar as I 
shall talk about biological form at all, the position I take is rather different. I don't think we know very 
much yet about whether natural selection has the power to modify or suppress certain pattern-forming 
principles that occur in nature. But I would suggest that, in the here and now, such principles 
undoubtedly existand do so in sharp distinction from the idea that genes are like a deus ex machina that 
holds all biological processes in thrall, building organisms in a laborious, brick-by-brick manner. To 
that extent, I don't believe I am saying anything that will disturb molecular biologists (although I think 
it a pity that they do not always regard these pattern-forming processes with a greater sense of wonder).

What is form?

This book is about the development of pattern and form, and so it is as well to have an indication of 
what I mean when I use these words. I cannot give either term a definition of mathematical rigour, 
however, nor can I always maintain a clear distinction between the two. There is always an element of 
subjectivity in perceiving patterns. On the whole I shall be concerned with patterns and forms in space, 
ones that we can see and perhaps touch. But of course there are all sorts of patternsin a time sequence of 
events, in human behaviour and interactions, in stories and myths. The word is a very plastic one.

     



There are surely certain spatial images that most people would categorize as patternsthe repeating 
designs of wallpaper or carpets, for example. This prompts the idea that a pattern might be regarded as a 
regularly repeating array of identical units. I want to broaden that concept slightly, and include in my 
definition arrays of units that are similar but not necessarily identical, and which repeat but not 
necessarily regularly or with a well-defined symmetry. An example is the ripples of sand at the seaward 
edge of a beach or in a desert (Fig. 1.8). No two ripples are identical, and they are not positioned at 
exactly repeating intervals (which is to say, periodically in space)but nonetheless, I don't think it is too 
hard to persuade ourselves that this might be reasonably called a pattern, as we can recognize within it 
elementary units (the ripples) that recur again throughout space. The ripples are usually all of more or 
less the same width; but I don't feel that even this need be essential to qualify as a pattern. A mountain 
range has features of all sizes, from little crevasses to huge sweeping valleys, but there is still something 
about the way it looks to us, from out of an aeroplane window, that allows us to see a pattern there.

Form is a more individual affair. I would define it loosely as the characteristic shape of a class of 
objects. Like the elements of a pattern as described above, objects with the same form do not have to be 
identical, or even similar in size; they simply have to share certain features that we can recognize as 
typical. Shells of sea creatures are like this. The shells of organisms of the same species all tend to have 
a certain form that can be recognized and identified even by a relatively untrained eye, despite the fact 
that no two shells are identical. The same is true of flowers, and of the shapes of mineral crystals. The 
true form of these objects is that which remains after we have averaged away all the slight and 
inevitable variations between individuals.
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Fig. 1.8 
Ripples in sand are self-organized patterns formed by wind-blown sand transport. 

(Photo: Nick Lancaster, Desert Research Institute, Nevada.)

Patterns, then are typically extended in space, while forms are bounded and finite. (But take this as a 
guideline, not a rule.)

Symmetry and order are related but not synonymous. Complex natural forms commonly have the 
appearance of a kind of order even when, mathematically speaking, they have very little symmetry. An 
oak tree, for instance, has as little symmetry as it is possible for an object to possess, but is it 
disorganized? It is often said of symmetry that our intuition is at odds with a mathematical description. 
Which is more symmetricala kaleidoscopic image like that in Fig. 1.9a or a six-pointed Star of David 
(Fig. 1.9b)? We might say that the kaleidoscope pattern has more organization, more repeating features;

but mathematically the symmetries of both images are the same. And are either of these more 
symmetrical than a circle? No, they're notthe circle has the highest possible degree of symmetry for a 
two-dimensional (flat) object. It's just that we don't perceive the symmetry so readily when it becomes 
as great as it is in a circleto us that just looks bland and featureless. I don't propose to say much more 
about symmetry per se, because there are many splendid books that deal with this endlessly fascinating 
topic, of which Hermann Weyl's Symmetry is a classic and Fearful Symmetry by Ian Stewart and Martin 
Golubitsky is one of the most up-to-date and lucid.

     



Fig. 1.9 
The formal symmetry of these two patterns is the 

same, even though (a) looks much more complex than (b).

The natural language of pattern and form is mathematics. This may dismay those of you who never 
quite made friends with this universal tool of science, and it may seem a little disappointing toofor 
patterns and forms can be things of tremendous beauty, whereas mathematics can often appear to be a 
cold, unromantic and, well, calculated practice. But mathematics has its own very profound beauty too, 
and this is something that you do not any longer have to take on trust. The now familiar images of 
fractal forms and patterns
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demonstrate that mathematics is perfectly able to produce and describe structures of immense 
complexity and subtlety.

The main point is that mathematics enables us to get to grips with the essence of pattern and formto 
describe it at its most fundamental level, and thereby to see most clearly what features need to be 
reproduced by an explanation or a model. In short, the mathematical description of a form can be 
considered to pertain to that which is left after the particular irregularities or anomalies of any 
individual example of that form (for example, the small imperfections or bumps on a shell) are averaged 
out. To explain how the form of the shell arises, there is no point in trying to explain all the hide bumps, 
since these will be different for each shell; we need instead to focus on the 'ideal' mathematical form. 
This concept of an ideal, perfect form behind the messy particulars of reality is one that is generally 
attributed to Plato.

Why does maths help us in this endeavour? For a start, it provides a very concise and precise 
description of a form. Try to describe a circle in words, without using any of the pre-existing 
associations of circular objects (such as 'the shape of a full moon'). It is 'round all over', but isn't that 
also true of an egg or a seasmoothed pebble? And if you had to construct a circle without exploiting its 
mathematical features (which I am just coming too), you'd have an even harder time. The French 
mathematician Pierre Laplace was famously able to draw a perfect circle freehand, but this ability is not 
granted to most of us.

The mathematical description of a circle, meanwhile, can be expressed in words as 'a line in a flat plane 
that is everywhere an equal distance from a single point'. If that doesn't strike you as particularly 
concise, let me quickly indicate the symbolic depiction of this definition in mathematics:

x2 + y2 = R2                                        (1.1)

Not only does this help us to express exactly what a circle is; it also suggests immediately how we 
might construct one. You need only to keep your pen a constant distance from a point on the paper, for 
example by attaching its end to a piece of string anchored at the other end by a pin. The way to 'grow' a 
form often becomes obvious once the form is described mathematically.

This is a point that comes out with great force and clarity from D'Arcy Thompson's work. If you look at 
a mollusc shell (Fig. l.l0a) and try to imagine how the cluttered frenzy of the cell could put together 
such a gracefully spiralling object, or conversely how it might have arisen by chance through evolution 
and natural selection, you may be forced to conclude that the problem is profound. But once you 
recognize that the shell has a precise mathematical formthat of a so-called logarithmic spiralthen you 
begin to see that nothing more than a simple and plausible growth law is required.

     



Fig. 1.10 
The shells of snails and other molluscs 

(a) trace out logarithmic spirals (b). 
(Photo: Scott Camazine, 

Pennsylvania State University.)

The logarithmic spiral (Fig. 1.10b) was first characterized mathematically by René Descartes in 1638. It 
is
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defined as the curve traced out by a point rotating around a point of origin with constant angular 
velocity (that is, it always takes the same time to rotate through the same angle), while its linear speed 
at any instant increases in direct proportion to its distance from the point of origin. That probably does 
not sound particularly elegant or concise, but the symbolic expression can be made extremely neat:

r = aq.                                                                         (1.2)

This three-symbol formula might leave you none the wiser, but you can't deny its concision. And to a 
mathematician, it conveys precisely the same information as the curve in Fig. 1.10b.

The logarithmic spiral has the unique property that the curve is everywhere 'similar', differing in size 
but not in shape. In other words, as the curve rotates through a fixed angle, it grows uniformly in scale. 
This, and the description above, help us to see what are the fundamental generating mechanisms of such 
a form. Some things remain constant, for example the angular speed of the curve's tip, and the shape of 
the curve, while other things, for example the linear (tangential) speed of the tip, change in a well-
defined way. We can then generate a form like this by proposing that the deposition of new fabric at the 
shell's rim follows a growth mechanism that produces these characteristics. A mechanism of this sort 
that generates a three-dimensional mollusc shell with the cross-section of a logarithmic spiral is as 
follows: the existing shell rim provides a template on which new shell material is laid down, so it stays 
the same shape, but the rim is expanded in scale at a constant rate. If, in addition, the growth happens 
initially to be slightly faster on one side of the embryonic rim than the other, this imbalance is 
maintained proportionately as the shell gets bigger, and it curves into a spiral. It does not take too much 
imagination to see that a mechanism like this is a rather 'natural' one to be expected from a creature 
making a shell that needs to keep pace with its own growth, and doesn't require any mysterious 
geometrical knowledge or an ability to figure out what on earth equation 1.2 means. The imbalance that 
leads to spiral growth could come from any sourceany imbalance will produce a logarithmic spiral. If 
there is no imbalance, the shell instead has a cone shape, just as one can find in some species of mollusc.

You might be able to appreciate too that a growth mechanism this simple need not be restricted to 
shells, but could apply to any hard tissue whose shape is determined purely by the deposition rate at the 
growing edge. Horns too are commonly logarithmic spirals, albeit often more gently curving (Fig. 
1.11). So we can anticipate these forms too as the expected result of an obvious growth mechanism, 
rather than as a form selected at random from a huge range of others by natural selection.

     



Fig. 1.11 
Many animal horns, like those of this male Dall's 

sheep, are logarithmic spirals.

Let's look at another way that the logarithmic spiral, the ideal form of sea shells, illustrates how 
mathematics helps us to get to the essence of form and to make its explanation a much simpler process. 
D'Arcy Thompson realized that even very complex shells have a form that can be generated by the 
logarithmic spiralling of a certain fixed two-dimensional shape (later called the generating curve). He 
said,

The surface of any shell may be generated by the revolution about a fixed axis of a closed curve, 
which, remaining always geometrically similar to itself, increases its dimensions continually . . . The 
scale of the figure increases in geometric progression [exponentially in time] while the angle of rotation 
increases in arithmetical [at a constant rate].

This is illustrated in Fig. 1.12. Thompson noted that the form of the generating curve 'is seldom open to 
easy mathematical expressions'but the way in which the shell shape is created by sweeping this curve in 
a spiral through space is mathematically well-defined, and can be imagined to be a consequence of a 
simple growth law. With this concept in mind, an explanation for the form of any particular kind of 
shell reduces to an explanation of the shape of the generating curvethe whole myriad of shell forms can 
be produced by the same kind of spiral evolution of these two-dimensional boundaries. Deborah Fowler 
and Przemyslaw Prusinkiewicz at the University of Regina in Canada have used computer-modelling to 
depict some of the shapes that result by taking a given
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generating curve through the mathematical paces outlined by Thompson (Fig. 1.13).

Fig. 1.12 
A shell surface can be constructed by sweeping 
a two-dimensional 'generating curve' through 

a logarithmic spiral pulled out into a helix.

The real advantage of using mathematics to describe form is that it makes the problem algorithmic. An 
algorithm is a sequence of logical steps that a computer program, say, must execute to carry out a 
certain task. Complex shapes like those seen here are often most easily described not in terms of 'what 
goes where' but by an algorithm that generates them. Once we know the mathematical algorithm, we 
can start to ask what kind of physical processes might provide a form-generating rule to which the 
algorithm is a good approximation. In this way, the mystery of complex form and pattern becomes 
much more clearly defined.

Model making

     



Fig. 1.13 
Shells created on a computer by applying the 'algorithm' depicted in Fig. 1.12 to a 

variety of generating curves. 
(Images: Deborah Fowler and Przemyslaw Prusinkiewicz, University of Calgary, 

Canada; from Meinhardt(1995).)

I'll say much in this book about models. In everyday terms the word commonly implies 'a small-scale 
replica of the real thing' (although fashion models might take exception to this). To scientists, a model 
is something rather different. When science seeks explanations, it doesn't usually expect them to be 
exhaustive. On occasion that's simply because we don't know everything that is going on in the system 
we're looking at. In other cases it may be because we know that some influences are of little 
significance, so that their inclusion would just make the equations harder to solve without altering the 
solutions very much. Or again, it may be that certain influences are known to be important but we don't 
know how to include them, or how to solve the equations if we do. So then we look for good 
approximations that we can solve, knowing that the answers might not correspond quite so well with 
observations. Biology operates quite a lot of the time within the first of these scenarioswe don't know 
enough about the details. A lot of engineering is conducted in the spirit of the second situationone might 
ignore the effect of air resistance or of friction in figuring out the way an object moves. (Galileo did the 
same in his famousand apocryphalexperiment from the Tower of Pisa.) But engineers who worry about 
problems of
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Box 1.1: Exponents 

Although mathematics provides the natural language for talking about patterns, I will not need to use in this book any 
more mathematics than can be expressed in words rather than in abstruse equations. You will need to know little more 
than the definition of squares and cubes of numbers. The square of 2, written 22, is 2 × 2, and the cube (23) is 2 × 2 × 2. 
The superscripted number is often called the power or exponent: 23, for instance, might be called 'two to the power 
three'. We will at a later stage be confronted with rather more curious mathematical entities in which the powers are not 
whole numbers, such as 22.26. It is not clear how to write that in multiplicative longhand, but you need know only that 
this quantity has a well-defined numerical value, that there are rather simple mathematical ways (involving logarithms) 
to calculate it, and that its value is greater than 22 (= 4) and less than 23 (= 8).

 

fluid flow (a topic discussed in Chapter 7) commonly find themselves in the third situationmaking big approximations 
and accepting the consequences.

The point is that scientific descriptions of phenomena in all of these cases do not fully capture realitythey are models. 
This is not a shortcoming but a strength of sciencemuch of the scientist's art lies in figuring out what to include and what 
to exclude in a model, and this ability allows science to make useful predictions without getting bogged down by 
intractable details.

Now, the thing that is not often stressed or appreciated about scientific model-building is that there are very many 
natural phenomena (one could make a strong case for this being true of them all, in fact) for which there is not a single, 
unique model that is 'right'. This is more than a matter of models differing by the choice of what to put in and leave out, 
as though all are assembled in a modular fashion. Rather, some phenomena can be tackled successfully from more than 
one entirely different perspective. This is true of several of the phenomena that I shall discuss in this book.

A particularly common distinction is that between numerical and analytical models. Computers are so sophisticated 
nowadays that complex physical processes, such as the freezing of a liquid, can be simulated computationally by 
simultaneously solving the equations of motion for thousands or even millions of simulated molecules. This is a 
numerical model, in which the behaviour of the entire system emerges from the piecemeal enumeration of the behaviour 
of each of its component parts. An analytical model of the same process, in contrast, might make no attempt to describe 
the motion of individual particles, but will involve mathematical expressions for the relationships between different bulk 
properties of the medium, such as temperature, density and energy. It may even be possible to solve such a model with 
pen and paper (which was all theorists had at their disposal up to half-a-century ago).

Although these two approaches are very different, they might both include (and exclude) in their recipes exactly the same 
physical forces and parameters. But other models might differ in their essential ingredientswe'll encounter later, for 
instance, two models for the growth of bacterial colonies, one that assumes that the bacteria repel each other and another 
that assumes only attractive interactions between cells. The problem is that is it not uncommon to find that two models 
differing like this will generate more or less the same apparent behaviour! The trick is then to find under what conditions 
the models do generate different results, and to try to conduct experiments under those conditions in order to decide 
which model to favour. This is a familiar challenge in the sciences of pattern formation.

     



Perhaps the strongest point that I want to make about models in the present context is that they can often generate the 
complex patterns seen in nature from remarkably few ingredients, which are themselves of striking simplicity. OK, you 
might say, it's not obvious that this should be sobut what does it mean? Well, on one level it means that growth and form 
need not be mysteriouswe do not have to resign ourselves to thinking that the shape of a flower will be forever beyond 
our abilities to explain, or even that an explanation (at some level) will require years of dedicated research on plant 
genetics. On the other hand, it carries at least an implication that there exist universal patterns and forms which remain 
robust to the fine details of a particular system. For the simple rules of these models are typically of a general nature: 
'Assume that the particles move about at random', for instance, not 'Assume that the ETS domain protein encoded by the 
P2 transcript of the pointed gene is a nuclear target of a signalling cascade involving Rasi and Raf which acts 
downstream of R1/MAP kinase'.*

*That's a direct quote, by the way, more or less. I don't mean to imply that this kind of research is absurd, but just that 
nature can be, as far as we are concerned, absurdly complicated.
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Thus a single model, and its adherent patterns and forms, may turn out to be applicable to a number of 
different real phenomena.

Breaking the monotony

It's not unusual to associate pattern with order: creating a recognizable pattern rather than a mess 
requires an orderly process of putting the pieces in place. It is, then, possibly a little alarming to 
discover that in nature the most highly symmetrical systems are also the most random.

As I mentioned earlier, we often don't perceive any pattern in the most symmetrical systems: they are 
uniform and, to our minds, featureless. In nature, however, nothing is truly featureless if you look close 
enough. All matter is made up of atoms, and at the scale of less than a millionth of a millimetre this 
graininess becomes apparent and the illusion of a uniform medium is lost. Physicists generally regard 
gases and (to a lesser degree) liquids as uniform, fully symmetrical systems. Yet on the atomic scale all 
one sees is random disorder, atoms and molecules whizzing about with no apparent symmetry at all. 
The uniformity and high symmetry become apparent only by considering the average features of these 
systems, which we can do either by focusing our attention on one region and averaging the molecular 
motions over time or by comparing a large number of different regions at any instant. In both cases, a 
gas then appears to have a completely uniform density of molecules, on average, at all points in space 
(it is homogeneous); and they travel in all directions with equal probability (the gas is isotropic).

When this randomness is absolute, the highest symmetries are observed. (By 'higher symmetry' I mean 
that the system has a greater number of transformations, such as rotations around an axis or reflections 
in a mirror plane, that leave it looking the same.) That is why a soap bubble is spherical: its perfect 
symmetry is a consequence of the fact that the pressure of gas inside the bubble is equal in all 
directions, because on average an identical number of gas molecules collide with the bubble walls at all 
points.

The problem of creating patterns and forms that we tend to recognize as such is therefore not one of 
how to generate the symmetry that they often possess, but of how to reduce the perfect symmetry that 
total randomness engenders, to give rise to the lower symmetry of the pattern. How do the water 
molecules moving at random in the atmosphere coalesce into a six-petalled snowflake? Patterns like 
this are the result of symmetry breaking.

     



The symmetry of a uniform gas can be broken by applying a force. Gravity will suffice: in a 
gravitational field the gas is denser where the field is stronger (closer to the ground). Thus the 
atmosphere has a density that increases steadily towards ground level. The gas is then no longer 
homogeneous or isotropic. In this example, the symmetry of the force dictates the symmetry of the 
distribution of matter that it produces: gravity acts downwards, and it is only in the downwards 
direction that symmetry is broken. Within horizontal planes (more properly, concentric spherical shells 
around the Earth) a constant distance from the ground, the atmosphere has a constant density (well, it 
would have if the Earth were a perfect sphere and there were no winds). We might intuitively expect 
that this will always be so: that the final symmetry of a system will be dictated by that of the symmetry-
breaking force that destroys an initially uniform state. In other words, we might expect that matter will 
rearrange itself only in the direction in which it is pushed or pulled. Within this picture, if you want to 
pile up sand into mounds arranged in a square, checkerboard array, you will have to apply a force with 
this 'square' symmetry.

But it is the central surprise of the science of pattern formation that this is not necessarily so. The 
symmetry of a pattern formed by a symmetry-breaking force does not always reflect the symmetry of 
that force. Of the many examples that I shall describe throughout this book, one will serve here to 
illustrate what I mean, and why this seems at first sight to be astonishing. If you heat (very carefullyit is 
not an easy experiment in practice) a shallow pan of oil, it will develop roughly hexagonal circulation 
cells once the rate of heating exceeds a certain threshold (Plate 1; see also Appendix 1). The system (the 
fluid) was initially uniform in the plane of the pan, and the symmetry-breaking force (the temperature 
difference between the top and bottom of the fluid layer) was also applied uniformly in this planeyet 
suddenly this uniformity is lost, being replaced by a pattern with hexagonal symmetry. Where has this 
sixfold pattern come from?

In such cases, one is apparently getting 'order for free'getting order out without putting order inalthough 
as I say, it is more correct to say that symmetry is being lost rather than gained. The central questions 
behind many pattern-forming phenomena are: how is it that symmetry can be spontaneously broken? 
How can the symmetry of the effect differ from that of the cause? And why is symmetry so often 
broken in similar ways in apparently very different systems? That is to say, why are some patterns 
universal? These are questions profound enough to last us throughout the rest of the book.
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2 
Bubbles

When I arrived here yesterday Uncle William and Aunt Fanny met me at the door, Uncle William armed with 
a vessel of soap and glycerine prepared for blowing soap bubbles, and a tray with a number of mathematical 
figures made of wire. These he dips into the soap mixture and a film forms or adheres to the wires very 
beautifully and perfectly regularly. With some scientific end in view he is studying these films. 
Agnes G. King, 
niece of Lord Kelvin 1887

I am quite sure that a fascination with patterns in nature is as old as civilization. When the Egyptians 
began to keep bees in clay pipes 5000 years ago, they cannot have failed to notice the astonishing 
hexagonal pattern of the honeybee's dwelling (Fig. 2.1). Charles Darwin declared it 'absolutely perfect 
in economising labour and wax', and marvelled at the bees' instincts for producing such a masterpiece 
of engineering.

If you want to fill up a plane space with identical, equal-sided and equal-angled cells, there are only 
three choices: triangles, squares or hexagons. Only these regular polygons can be packed together to fill 
space without leaving gaps. Pentagons, for example, will not work, and neither will octagons (Fig. 2.2). 
Bees making a pentagonal honeycomb would be constantly leaving gaps, and it is not hard to see why 
these aberrant bees would not be very successful in the Darwinian struggle for survival. The same is 
true for circular cells.

     



Fig. 2.1 
The hexagonal honeycomb of the honey bee 

was surely one of the first recognized examples 
of geometrical pattern in the natural world. 

(Photo: Scott Camazine, Pennsylvania State University.)

Fig. 2.2 
There are just three types of regular polygon (with 

equal sides and angles) that will tile a plane without 
leaving gaps: equilateral triangles, squares and 

hexagons. Pentagons will not fit. But, as we will see, 
nature nevertheless has plenty of uses for fivefold symmetry!

But why do bees not make square or triangular cells instead of hexagonal? The ancient Greeks 
suspected that the bees possessed 'a certain geometrical forethought' by which they deduced that 
hexagonal cells could hold more honey; but the Frenchman R.A.F. de Réaumur
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proposed in the eighteenth century that it is the area of the walls, not the volume of the cavities, that 
matters. The total length of the cell walls for hexagonal cells filling a given area is less than that of 
square or triangular cells enclosing the same area. In other words, it takes less material to make 
hexagonal walls. It is this drive towards economy that leads bees to make hexagonal honeycombs. Why 
bees should be economy-conscious was not obvious at that time, however, and Réaumur's 
contemporaries decided that the bees were guided by mathematical principles according to 'divine 
guidance and command'. Darwin, of course, removed any residual need for the hand of God in nature's 
minutiae: he showed that competition and natural selection are the principles that favour organisms who 
minimize their metabolic costs.

End of story? Hardly. For this was just the kind of Darwinian fable that made D'Arcy Thompson reach 
for his hammer.

Water's skin

It sounds very neat, but when you start to think about what this explanation requires, it gets 
uncomfortably elaborate. We must assume that bees and their ancestors have tried out just about every 
honeycomb pattern a tiler could imagine, before gradually conceding that, yes, hexagons really did 
leave you less tired and more able to go out foraging. And then they would have had to acquire some 
kind of sophisticated instinct that allowed them to construct perfect hexagons without the assistance of 
set-squares, protractors, compasses or any trigonometric know-how.

Fig. 2.3 
A bubble raft of equal-sized bubbles adopts the 

hexagonal pattern of a honeycomb. Coincidence? 
(Photo: B.R. Miller.)

     



Why accept this concoction of untested suppositions, asked Thompson, when one could see quite 
clearly that the hexagonal honeycomb was an inevitable result of purely physical forces? For everyone 
knows that a layer of bubbles packs together in just this hexagonal arrangement (Fig. 2.3). If the wax of 
the comb is made soft enough by the body heat of the bees, suggested Thompson, then it is reasonable 
to think of the compartments as bubbles surrounded by a sluggish fluid, and so they will be pulled into a 
perfectly hexagonal array by the same forces of surface tension that organize bubbles into hexagonally 
packed rafts. In other words, the pattern would form spontaneously, without any great skill on the part 
of the bees and without the guiding hand of natural selection.

That all sounds plausible enough, perhaps, but it doesn't really explain the hexagonal pattern in any 
fundamental wayit simply says that the honeycomb is like a bubble-raft, and bubble-rafts make 
hexagonal arrays. Why hexagons, though? If cellular packings like bubble-rafts and honeycombs really 
are the product of blind physical forces, why should there be any requirement of equal sides, or of 
identical shapes, at all? Why not a crazy-paving mosaic of random polygons? At this point we are going 
to need to know a little more about what a bubble really is, and what controls its shape.

Bubbles are structures made from liquids. We don't often think of liquids as having characteristic 
shapesa liquid is fluid, it takes on the shape of the vessel that contains it. But liquids most certainly can 
have shapes of their own, though these are acutely sensitive to forces such as gravity. In a mist, tiny 
droplets of water small enough to be buoyed against gravity's tug by the buffeting of air molecules take 
on the form of near-perfect spheres. Raindrops too take this shape, slightly modified by the frictional 
forces of their passage through the air and by the urgent pull of gravity.

A spherical droplet provides an illustration of that counter-intuitive aspect of symmetry mentioned in 
the first chapter: it is generally greatest in the presence of extreme randomness. Unlike crystals, in 
which the atoms are stacked into regular arrays like eggs in an eggbox, liquids have no ordering of their 
constituent particles over long distances. The position of one molecule of water bears no relation to the 
position of another a few millionths of a millimetre awayeverything is a jumble. This means that the 
liquid looks the same in all directionsit is isotropic, and that is reflected in the 'perfect' spherical 
symmetry of a droplet. But there is something more to the spherical shape, because it is robust: a 
droplet returns to this shape if momentarily deformed. In other words, there
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is some factor that selects a spherical form. That factor is surface tension.

Liquids and solids are held together by forces of attraction between the constituent molecules, which 
prevent them from flying apart into vapour. These forces can take many forms. In solids like diamond, 
strong chemical bonds bind the atoms into structures that can be disrupted only by very energetic 
processes. In a molecular liquid like water, these same strong bonds hold together two atoms of 
hydrogen with one of oxygen in each water molecule; but the molecules themselves are bound only by 
much weaker forces, which give the liquid some cohesion even though the individual molecules are free 
to move around. These forces of attraction are electrical in origin: regions of the water molecules that 
bear a slight positive charge (the hydrogen atoms) are electrically attracted to regions on other 
molecules with a slight negative charge (the oxygen atoms).

Deep within the bulk of the water, a molecule feels attractive forces from all directions. But molecules 
at the surface are attracted only by the molecules below it, since above is only air (and very diffuse 
water vapour). There is, therefore, a net inward force on the surface molecules, which we call surface 
tension. Since the attractive forces have the effect of lowering a molecule's energy (stabilizing the 
molecule), the surface molecules are more energetic than those deep in the bulk. So there is an excess 
energy at the surface. Surface tension and surface excess energy are two equivalent manifestations of 
the fact that surfaces are less stable than the interior of a substance. This means that surfaces cost 
energy.

As all physical systems like to reach their most energetically stable state (that is, their equilibrium 
statesee Box 2.1), they tend to minimize the area of their surfaces. For a mass of a substance with a 
certain volume, the shape that has the smallest surface area is a sphere. So a droplet of water forms a 
sphere to minimize its surface excess energy. It is a statement of the same thing to say that surface 
tension pulls at the surface of the droplet equally from all directions, so that it acquires spherical 
symmetry.

I might point out here that surface tension can play a crucial role in determining the forms of solid 
objects too, in particular those of crystals. Crystals grow by adding atoms to those already packed into 
regular arrays; but there are several alternatives for where the newly added atoms might sit, and the 
positioning of these determines the shape of the facetted object. Is it better to add atoms onto the face of 
an existing layer, or to add them on at the edges of the layer? In other words, which face of a facetted 
crystal will grow fastest? Whereas in a liquid droplet the surface tension is the same in all directions, 
the different faces of a crystal have different surface tensions (because the arrangement of atoms is 
different on each). The face that grows the fastest will often be that with the greatest surface tension. 
These considerations determine whether, for example, a crystal like rock salt (sodium chloride) will 
grow as cubes or as octahedra. Either can be generated from the stacking arrangement of sodium and 
chlorine atoms, but the cubic shape is selected because of the way that certain facets grow faster than 
others.

     



Surface tension controls the shapes that droplets adopt when they sit on surfaces. If a droplet spreads, it 
increases its surface area and thus its surface excess energy; but on the other hand, it covers the surface 
below, which also has a surface excess energy. If the total surface excess energy is lower for a fully 
liquid-covered surface, the droplet will spread into a liquid film; if not, it remains a glistening bead 
(Fig. 2.4).

Fig. 2.4 
Water droplets will not spread on the waxy 

surface of a leaf, but instead form an array of beads. 
(Photo: Christoph Burki, Tony Stone Images.)

Thus, it is not hard to see how surface tension produces the spherical form of liquid droplets. Perhaps 
more surprisingly, it can also be responsible for regular patterns. In Fig. 2.5a I show a string of pear-
like beads of fly-catching glue attached to the thread of a spider's web. The spider has not painstakingly 
placed all of these beads at regular intervals along the thread; they have formed spontaneously in a 
regular pattern through the action of surface tension. A thin, cylindrical column of liquid like the 
coating of glue on a spider's thread is unstable in the face of tiny disturbances: if the column develops a 
slight wavy unevenness (Fig. 2.5b), surface tension acts to accentuate the convex curving faces, pulling 
each undulation into a roughly spherical droplet. This 'pearling'
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phenomenon is called the Rayleigh instability, after Lord Rayleigh who studied it at the end of the nineteenth century. 
Although the instability acts for perturbations of all sizes, there is a certain wavelength of undulation that is the most 
unstable, and this determines the size and separation of the resulting string of pearl-like droplets. The Rayleigh 
instability also acts on a thin columnar jet of water, breaking it up into droplets (Fig. 2.5c).

Fig. 2.5 
A coating of glue on the threads of a spider's web breaks 

up spontaneously into a string of pearl-like beads (a). This 
beading process, called the Rayleigh instability, is a 

fundamental property of a narrow cylindrical column 
of liquid, and it selects a certain wavelength (b). It can be 

seen also in the break-up of a narrow jet of water (c) 
(From: Tritton 1988).

We will find throughout this book that pattern-forming processes are often initiated by abrupt instabilities. Generally an 
instability sets in suddenly when some critical parameter is surpassed. For instance, a person on a bicycle is potentially 
unstable to falling over (with an equal probability of tipping to the left or the right), but this instability sets in only when 
the speed falls below a certain threshold. Two common aspects of pattern-forming instabilities are that they involve 
symmetry-breaking (in the present case, the liquid film is initially uniform (symmetric) along the thread's axis, but the 
instability breaks this symmetry) and that they have a characteristic wavelength, so that the features of the pattern have a 
specific size.

Balloon games

A bubble seems to defy the exigencies of surface tension. It is spherical, sure enoughbut what a surface area! The liquid 
is stretched into a thin film with a surface area far, far greater that that of a spherical droplet with the same volume of 
liquid. What has happened?

Everyone knows that, while it is well-nigh impossible to blow bubbles from pure water, they can be made in abundance 
from water to which a little soap or detergent has been added. Soaps contain molecules called surfactants, which have a 
tendency to migrate from the bulk of the liquid to the surface, where their presence greatly reduces the surface tension. 
This means that surfaces cost less, and a larger surface area can be sustained. Notice that, although our intuition tells us 
that bubbles have a 'stronger skin' than pure water, they can exist at all only because their surface tension is lower.

     



Box 2.1: Energy and equilibrium 

Energy is a term that is put to many uses, but in science its meaning is precise: a system's energy is its capacity for 
doing mechanical work, for moving objects against forces. Every processevery movement, every changein the real 
world involves a conversion of energy from one form to another. My muscle movements change chemical energy to 
kinetic energy (the energy of matter in motion), and also to heat. A light bulb changes electrical energy into heat and 
light energy.

Just about every energy conversion process that we encounter in everyday life produces some quantity of heat, which 
for our purposes is often 'wasted' energy (I don't need the heat from my ceiling light). With this in mind, there is a 
maximum amount of useful work that can be extracted from any system or process, which is less than the total amount 
of energy convertedsome is always squandered. This maximum amount of extractable work is called the free energy. 
The direction of spontaneous change is always that which results in a decrease in free energy. At equilibrium, the free 
energy is minimized and no further change takes place.

I shall say more about these concepts, which underpin the discipline of thermodynamics, in the next chapter. For now, 
you might like simply to imagine processes of change as being like a ball rolling down a hillthis entails the lowering of 
the ball/hill system's free energy. At equilibrium, the ball comes to rest in a valley at the foot of the hilla static, 
unchanging state.
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Surfactants are molecules that have a double nature: part of them is soluble in water, and part is not. In 
soaps the surfactants are salts of fatty acids, which have a compact, negatively charged 'head group' 
attached to a long, fatty tail (Fig. 2.6). The head group can interact strongly with the electrical charges 
on water molecules, and so is water-soluble. The tails do not interact strongly with water at all, although 
they do have an affinity for oily hydrocarbon liquids and greases, whose chemical structure resembles 
theirs. Molecules with this dual nature are called amphiphiles ('liking both'); the term surfactant (a 
condensation of 'surface-active agent') originated in the detergent industry and is often now 
synonymous with amphiphile, although in fact it has the rather more general meaning of a molecule that 
mediates surface interactions.

Fig. 2.6 
The surface tension of the liquid in a soap 
bubble's skin is lowered by the presence 

of the soap molecules at the surface. These 
molecules, members of a class called 
surfactants, have a water-soluble head 
and a water-insoluble tail, which pokes 

out from the water surface.

     



Although soap surfactants will dissolve in water, they prefer to position themselves at the water surface, 
where the water-insoluble tails can poke above the surface while the water-soluble heads remain in 
solution (Fig. 2.6). Surfactants will therefore form a film, just one molecule thick, at the surface of 
water. Because the surface layer of 'unsatisfied' water molecules becomes replaced with a layer of fatty 
tails that didn't want to be in the water anyway, this film lowers the surface tension.

When you blow a bubble from a soap film, the hollow sphere is filled with air. The pressure inside the 
bubble is greater than that outside, by an amount that is proportional to the inverse of the bubble's 
radius: the smaller the bubble, the greater the pressure inside. Thomas Young and Pierre Laplace 
independently established this relationship in 1805. A bubble's size is determined by a balance between 
the force of surface tension, which acts to shrink the bubble and decrease its surface area, and the 
internal pressure, which opposes shrinkage by increasing as the bubble gets smaller. The spherical form, 
meanwhile, is a consequence of the fact that, of all shapes that can enclose a given volume of space, the 
sphere has the smallest surface area (and thus the smallest surface excess energy). Mathematically, it is 
called a minimal surface, about whose properties I shall have more to say later.

This minimization principle determines the shapes of all soap films: when confined between 
boundaries, the film adopts the shape that has the smallest surface area. Soap films stretched between 
wire frames take on elegant, smoothly curved shapes that have inspired architects such as the German 
Frei Otto. From the 1950s, Otto designed lightweight membrane structures in which sheets of 
translucent material form tent-like shapes whose curvature is calculated to minimize surface area (Fig. 
2.7a). These structures experience almost exclusively tensile, rather than compressive, stressesjust as a 
soap film is moulded by surface tension. Otto made use of soap films draped across wire frames (Fig. 
2.7b) to plan the curves of his buildings: these models provide an instant experimental solution to the 
mathematical problem of how to connect specified boundaries with the minimum of material.

A good head

When bubbles are packed together, the result is a foam. Foams are amongst nature's most complicated 
architectural structures, and it is safe to say that, while they have been studied for centuries, they are 
still not fully understood. Nature has learned to make use of foamsthe spittle bug, for instance, blows a 
foamy froth to obscure its larvae on leaves, hiding them from predators. They are of great technological 
value too: foams are used to fight fires, by smothering them with a light but semi-rigid blanket. They 
will also damp the power of an explosion, absorbing most of its energy as the bubbles are converted to 
droplets, which then evaporate. Foam blown in plastics are used as insulation and packaging
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while watery foams are used in mineral extraction and metal foams promise strong, lightweight 
engineering materials. And considerable effort goes into the creation of a good head of beer, although 
the value is purely aesthetic. So there are plenty of practical as well as academic reasons for wishing to 
understand the factors that govern foam structure.

     



Fig. 2.7 
The elegant area-minimizing shapes of soap films have inspired architects such as 

Frei Otto, whose design for the Olympic Swimming Arena in Munich is shown 
here (a). Otto used soap films stretched across wire frames to plan the curves 

of his membrane structures (b). (Photo (b): Michele Emmer, University of Rome 'La Sapienza'.)

But one difficulty is that we're shooting at a moving target. The structure of a foam depends on when 
you look. A freshly formed foam in water (an aqueous foam), such as that on a newly poured glass of 
beer, is heavy with water (it is called a wet foam), and the bubbles are mostly spherical (Fig. 2.8a). 
Later the walls become thinner and the bubbles take on a polyhedral shape with more or less flat faces 
(Fig. 2.8b). This is called a dry foam, as much of the liquid has drained from the walls between bubbles. 
Typically, a foam then begins a process of coarsening, whereby bubbles merge so that their average size 
increases with time. Eventually, coarsening and evaporation of the liquid leads to collapse.

A wet foam is rather like a box of marbles of different sizesthe spherical bubbles are jumbled together 
haphazardly, with smaller ones filling the spaces between
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larger ones. But as gravity sucks out the liquid from the walls and the cells become more like flat-sided 
polyhedra, the foam starts to take on some very particular geometric features. At first sight, it might 
seem to be a random mass of polyhedra of all shapes and sizes. At the end of the nineteenth century, 
however, a Belgian physicist named Joseph Antoine Ferdinand Plateau discerned some rules amongst 
the chaos.

Fig. 2.8 
A wet foam (a) consists of roughly spherical bubbles 

with water-laden walls. As the water drains 
away under gravity, the bubbles become more 

polyhedral and the result is a dry foam (b). 
(Photos: Burkhard Prause, University of Notre Dame, Indiana.)

     



First, the walls between cells are smooth, but not generally flatthey curve gently one way or another. 
This curvature indicates that the pressure of the gas inside the two adjacent cells is not equal: it is higher 
on the concave side of the wall. Smaller cells in a dry foam are the remnants of small bubbles, which 
(as Young and Laplace showed) have a higher internal pressure than large bubbles; so where the two 
meet, the walls of the small cells bulge outwards (you can see this in Fig. 2.8b).

Where three walls meet, there is a junction in which the liquid film is slightly thicker than in the walls 
themselves (Fig. 2.9). Because the walls are necessarily curved at these junctions, the Young-Laplace 
relationship means that the pressure inside them must be lower than that in the flat walls; as a result, 
water is squeezed from the walls into the junction region. The consequence is that the junctions, called 
Plateau borders, contain most of the liquid in the foam.

Where three films meet in a Plateau border, the surface tensions in the films achieve a mechanical 
balance only if the walls meet at an angle of 120° (Fig. 2.9a). Equally, when four films meet, the angles 
at the junction would have to be 90° to achieve this balance of forces. But Plateau noticed a curious 
thing: he could find no fourfold junctions in his foams, nor any junctions of still greater numbers of 
walls. Three was the limit, and always with angles close-to 120°.

Fig. 2.9 
Bubble walls meet at Plateau borders, where the walls 
are slightly thickened. Three walls will always meet 
at an angle of 120° at equilibrium (a). If, as a foam 

coarsens, four walls happen to come together at a junction, 
they will rapidly rearrange into two threefold junctions (b).

     



The explanation for this requires a careful mathematical analysis of the various forces acting on the 
films, which I won't delve into. Suffice it to say that if four bubble walls do meet at a Plateau border, 
this turns out to be unstable and will rapidly rearrange to two three-fold junctions (Fig. 2.9b). So here 
we have an explanation for why a two-dimensional packing of bubbles
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forms a foam of roughly hexagonal cellsonly these satisfy the criterion that the walls always meet in 
threes with a 120° angle between them. Whether or not D'Arcy Thompson was right to ascribe the 
origin of the honey-comb's design to this effect, he was right about the way that bubbles pack.

Fig. 2.10 
Plateau borders converge at fourfold vertices, 

where they meet at the tetrahedral angle of 
about 109.5°. This is beautifully illustrated by soap 

films formed within a tetrahedral wire frame (see Appendix 1). 
(Photo: Michele Emmer, University of Rome 'La Sapienza'.)

     



Fig. 2.11 
The structures taken up by soap films and bubbles held within fixed boundaries are dictated by Plateau's rules. 

(Photos: Michele Emmer.)

But most foams are three-dimensional, and this means that Plateau borders along the edges of the 
polyhedral cells converge at their vertices. Here Plateau made another discovery: the number of Plateau 
borders that meet at a vertex seems always to be fourno more, no less. And they meet at an angle of 
about 109.5°, the 'tetrahedral angle': the four borders pointed to the vertices of a tetrahedron (Fig. 2.10). 
Again, this arrangement emerges from the requirements for mechanical stability of the cell walls. These 
geometrical rules govern the structures that all soap films will form when they meet (Fig. 2.11). They 
attest to an underlying regularity in the architecture of foams.
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Looked at more closely, however, Plateau's rules run into a problem. While we can understand how 
each arises in isolated packings of a few bubbles, we then have to ask whether it is in fact possible to 
fill up space with polyhedra that always conform to the rules. The simplest approach to the problem is 
to consider every cell to be identical in volume (as they are in a mono-disperse foam), and to try to find 
a single polyhedral shape that can be packed together to give a network that obeys the rules governing 
borders and vertices. As well as satisfying these geometric criteria, the cells in this ideal three-
dimensional foam should also minimize their total surface area. Is there a single, well-defined way to 
partition space so as to both satisfy Plateau's rules and provide the greatest economy in surface area? So 
far, no unique cellular packing of this sort has been identified.

Fig. 2.12 
Candidate cell shapes for a 'perfect' foam: (a) the rhombic 

dodecahedron; (b) the truncated octahedron promoted 
by Lord Kelvin; (c) the pentagonal dodecahedron; (d) the 

beta-tetrakaidecahedron.

     



This problem of cellular packing has a long history. In the eighteenth century, the English clergyman 
Stephen Hales took an inventive experimental approach, by compressing peas to see what shapes the 
spheres would take when flattened together. He claimed that the peas were pressed into 'pretty regular 
Dodecahedra', by which he apparently meant rhombic dodecahedra (Fig. 2.12a). These experiments 
were made widely known (though without attribution to Hales) by the French zoologist G.L.L. Buffon 
in 1753, and for a long time the rhombic dodecahedron was taken to be the best solution to the problem 
of economy. A rigorous mathematical proof was lacking, however, and in 1887 Lord Kelvin identified a 
cell shape that did better in terms of minimizing surface area: a 14-sided polyhedron (called a 
tetrakaidekahedron) with six square and eight hexagonal faces (Fig. 2.12b). This object, also known as a 
truncated octahedron, will pack together to fill space while coming close to satisfying Plateau's rules: at 
each vertex there are two 120° angles and one 90° angle, but Kelvin showed that only a slight curvature 
of the hexagonal faces is sufficient to adapt the vertices to the tetrahedral angle of 109.5°. Kelvin was 
not able to prove, however, that this was the most economical solution of all possible cellular packings, 
and no such proof has followed subsequently. Nevertheless, some mathematicians (including Hermann 
Weyl in his famous book Symmetry) have long suspected that Kelvin's solution cannot be bettered.

D'Arcy Thompson claimed that if a mass of clay pellets is compressed like Hale's peas, they will form 
shapes close to rhombic dodecahedra; but if they are first made wet, so that they can slide over one 
another, they show instead square and hexagonal facets like those of Kelvin's tetrakaidekahedron. So he 
was happy to conclude that soap bubbles of equal size, which can slide over one another, will form a 
froth with Kelvin's configuration. All the same, he cautioned that the solution to the packing problem 
depended in subtle ways on the conditions of packing: he described experiments by J.W. Marvin on 
compression of lead balls which apparently formed rhombic dodecahedra if first stacked like a 
greengrocer's oranges in regular hexagonal layers, but irregular polyhedra with an average of 14 sides if 
poured into the vessel at random.

Moreover, the regular polyhedron (that is, one with identical faces) that comes closest to satisfying 
Plateau's rules is not the rhombic dodecahedron but the pentagonal dodecahedron, which has 12 
pentagonal faces (Fig. 2.12c). This object doesn't stack to fill space exactly, and in addition the angles 
are slightly wrong116° between faces, 108° between verticesbut it will do the job with a little distortion. 
Another candidate for the cell shape in a monodisperse foam is an irregular 14-sided polyhedron called 
a beta-tetrakaidecahedron (Fig. 2.12d); but even this needs to be distorted to meet the rules.

So much for the models; what do the cells of real foams look like? The botanist Edwin Matzke 
conducted a detailed study of the shapes of monodisperse foams in 1946, and found that none of the 
ideal models provides by itself, an accurate description of the cellular structure. For one thing, Matzke's 
foams were far from
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regularthey contained cells of many different shapes, so that the structure could be described only in 
statistical terms. He observed that about 8% of the cells had roughly the shape of a pentagonal 
dodecahedron, although over half of the faces had five sides. Cells approximating Kelvin's truncated 
octahedra were even rareronly 10% of the faces were four-sided, and Matzke found no cells resembling 
Kelvin's overall. Most of the cells tended instead to be rather like Marvin's squashed lead pellets, 
averaging about 14 sides each but with irregular shapes that might be best approximated by the beta-
tetrakaidecahedron (Fig. 2.12d). Matzke's experiments suggested that the packing problem was purely 
academic, since perfectly regular foams are a Platonic ideal with no relevance to the real world.

Fig. 2.13 
A better foam? This cellular structure, proposed 

by Weaire and Phelan, has a slightly smaller surface 
area than that made of Kelvin's cells, for the same 
enclosed volume. The repeat unit consists of eight 

slightly irregular cells. (Image: Dennis Weaire and Robert 
Phelan, Trinity College, Dublin.)

     



But recently, physicists Dennis Weaire and Robert Phelan at Trinity College, Dublin, have questioned 
this conclusion. In 1993 they discovered a new type of cell shape for regular foams that finally deposed 
Kelvin's solutionafter over a hundred years of supremacyas the most economical solution to the packing 
problem. Their solution is less elegant than Kelvin's. Rather than a single cell type with faces that are 
regular polygons, the foam described by Weaire and Phelan has a repeat unit built up from eight cells, 
six of which have 14 faces and two of which have 12 (Fig. 2.13). The latter are pentagonal 
dodecahedra, while the former have two hexagonal faces and 12 pentagons. But only the hexagonal 
faces are regular (with equal sides and angles); the pentagons in these cells have sides of differing 
lengths and corners of differing angles. All the same, this unit can be stacked together to give a 
regularly repeating foam structure whose surface area is about 0.3% less than that of a Kelvin-type 
structure of the same volume, while still maintaining Plateau's rules if the faces are almost 
imperceptibly curved.

Having identified this improved solution to the packing problem, Weaire and Phelan wanted to see if 
they could see it in real foams. So they decided to conduct a survey like Matzke's. But whereas Matzke 
had specified a highly complicated procedure for making monodisperse foams by adding bubbles one at 
a time, Weaire and Phelan found that they could produce these foams simply by using the 'drinking 
straw' technique of blowing bubbles underwater in a cylinder of liquid. They found first of all that the 
foams produced this way were not necessarily totally irregular and disordered, like Matzke's, but could 
contain regions in which regular cells were packed together. In parts of the foam close to the cylinder 
walls they often observed cells with square and hexagonal faces like those proposed by Kelvin (Fig. 
2.14a); but these cell shapes seldom persisted beyond the first three or four layers. Within the bulk of 
the foam, meanwhile, they spotted regions where the cells had pentagonal and hexagonal faces, fitting 
together into structures very much like the one they had put forward as an improvement on Kelvin's 
(Fig. 2.14b,c). So it seems that after all, foams can be more geometrically preciseand more adept at the 
economical filling of spacethan has long been believed.

Face to face

The problem of how to fill space with identical polyhedral cells, subject to a minimization principle for 
surface areas, is one that bees face too. The major part of the honeycomb problem is two-dimensional, 
because the cells are just prisms that are uniform along their length. What matters in this case is the 
cross-sectional shape of the cells, and the optimal solution in this regard is clear: hexagonal cells 
minimize the cross-sectional perimeter of the cell walls and so cost the bees less wax. But in the 
honeycomb, two such layers of cells are placed back to back, and the bees must then find the best way 
of marrying the two layers. The problem becomes three-dimensional, and so more complex, at the 
interface of the layers of cells.
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Fig. 2.14 
What does a real dry 'ideal' foam look like? At its boundaries are regions containing cells like Kelvin's (a), but deeper 

inside (b) are regions with cells like those of the 'minimal foam' of Weaire and 
Phelan (c). (Images: Dennis Weaire and Robert Phelan.)

This packing problem is entirely equivalent to that of filling space with polyhedral cells, except that it is 
confined to a single layer. In a real honeycomb each cell ends in three rhombic (four-sided) faces (Fig. 
2.15a), which together constitute one fragment of the rhombic dodecahedron (Fig. 2.12a)this relationship 
to the polyhedron seems to have been first identified by the sixteenth-century German astronomer Johannes 
Kepler. Back-to-back cells with these end caps marry perfectly, and in cross-section the interface has a 
zigzag structure (Fig. 2.15b). Is this the most economic solution to the problem?

     



Réaumur concluded in the eighteenth century that it was. He considered the case of two arrays of 
hexagonal cells meeting such that their end caps consist of three identical and equal-edged rhombuses, and 
asked the Swiss mathematician Samuel Koenig to find the shape of the rhombuses that minimized the 
surface area. Koenig showed that the angles of each rhombic face should be about 109.5° and 70.5°, which 
are those in the regular rhombic dodecahedronand also those observed in real honeycombs. It was this 
finding that led the secretary of the French Academy, Fontenelle, to issue the pronouncement on the divine 
guidance of bees quoted on page 17. To reach his solution, Koenig had had to employ the methods of 
differential calculus introduced less than half-a-century previously by Isaac Newton and Gottfried Wilhelm 
Leibniz, and it was too much for Fontenelle to suppose that the bees could possess this knowledge that 
surpassed 'the forces of common geometry'for that would surely mean that 'in the end these Bees would 
know too much, and their
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exceeding glory would be their own ruin'. Evidently the geometric excellence was that of God, not of 
mere creatures.

Fig. 2.15 
The ends of a honeycomb's cells are fragments of 
rhombic dodecahedra, made up of three rhombic 

faces (a). The two layers of cells with these end caps 
marry up with a zigzag cross-section (b). Is this the 

minimal solution? A smaller surface area is obtained for 
end caps that are fragments of Kelvin's truncated octahedra (c).

But in posing the problem, Réaumur had imposed constraints (the requirement of three identical 
rhombuses) that left doubt as to whether the bees have truly found the optimal answer. In 1964 the 
Hungarian mathematician L. Fejes Tóth pondered on the economy of the honeycomb in a lecture 
entitled 'What the bees know and what they do not know'. He showed that a better solution exists in 
which the cells' end caps are more elaboratea combination of squares and hexagons (Fig. 2.15c). This 
structure represents a total saving of a tiny fraction of a percent of each cell's surface area. Just as the 
rhombic cap is related to the rhombic dodecahedron, so Tóth's cell is closely related to the truncated 
octahedron (Fig. 2.12b) that Kelvin showed to be more economical in three dimensions. Tóth 
emphasized that, while his was mathematically a superior solution, there was no guarantee that it was 
biologically betterfor the bees might have to expend more effort in making the more elaborate end-caps.

     



Weaire and Phelan have used their foam-blowing technique to put Tóth's idea to an experimental test. 
They looked at the cell structures in a thin foamtwo layers of bubblesconstrained between glass plates. 
The bubbles adopt hexagonal faces at the interface with the glass, so that the foam is a precise analogue 
of the honeycomb. They found that the interface between the two layers of bubbles does adopt Tóth's 
structure (Fig. 2.16a), which can be identified by the distinctive pattern made by the junctions of 
bubbles in projection. But if Weaire and Phelan thickened the bubble walls by adding more liquid 
(creating a wet foam), they found something unexpected: as the bubbles become more rounded, there is 
a point at which the interface suddenly switches to the three-rhombus configuration found in the real 
honeycomb (Fig. 2.16b). The thickening of the walls and curving of the bubble sides apparently 
changes the balance in surface energies so that this structure becomes more stable instead. So in thicker-
walled honeycombs, may be the bees do have the best solution. Do they know more than we thought? I 
return to this question at the end of the chapter.

Fig. 2.16 
Tóth's structures can be seen at the interface of a 

double layer of hexagonal bubbles 
(a). But if the bubbles contain more liquid 

in their walls, the faces at the interface change to 
rhombuses (b), giving a junction like that in real 

honeycombs (Fig. 2.15a, b). (Photos: Dennis Weaire and 
Robert Phelan.)

Curved spaces

Cells, starfish and doughnuts

     



Soap bubbles and foams do not last for ever, and I suppose that is part of their appeal: fragile beauty, 
gone in a moment. The collapse of foams is brought about partly by the drainage of the films, under the 
influence of gravity and capillary forces, until they become too thin to resist the slightest disturbancea 
vibration or a breath of air. But in their passing, soap films can treat us to a wonderful display. Held 
vertically on a wire frame, a thinning soap film becomes striated with bands of rainbow colours that 
pass from top to bottom (Plate 2). Finally the top becomes silvery and then black; and the blackness, 
like a premonition of the film's demise,
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moves over the entire surface. Once it is black, the film is doomed to burst at the merest perturbation.

Fig. 2.17 
Cell membranes are made from double layers of surfactants called 
phospholipids. These bilayers are studded with other membrane 

components, such as protein molecules, and are sometimes strengthened with 
a protein web called the cytoskeleton.

These colours are the result of interference between light reflected from the front and the back of the 
film. Interference takes place when the distance between the front and back becomes comparable to the 
wavelength of light (a few hundred millionths of a millimetre), and as this distance changes, so too does 
the wavelength (that is, the colour) of the light affected by interference. When the film is black, all 
reflected visible light cancels itself out by interference. The film is by that stage only about four-and-a-
half millionths of a millimetre thickabout the same thickness as a double layer of soap molecules. The 
two films at the surfaces have almost met back to back.

This back-to-back arrangement of surfactant molecules has some similarities to the wall of a living cell. 
Cell membranes (Fig. 2.17) are composed of amphiphilic moleculesbiological surfactants, if you 
likecalled phospholipids, or just lipids. A double layer of lipids, called a bilayer, is one of the 
fundamental architectural features of living organisms, providing the housing in which nature's 
chemistry takes place. Lipid bilayers also divide up cells of multicelled organisms (like ourselves) into 
several compartments, each of which acts as the location for specific biological processes. One critical 
difference between a black soap film and a lipid bilayer, however, is that in the former the surfactants 
meet head to head and in the latter they meet tail to tail. Thus lipid bilayers present a horde of water-
soluble head groups at their surface, and the water-insoluble tails are buried within, where they are 
shielded from water. In a loose sense, cell membranes can be considered to be microscopic, inside-out 
bubbles, afloat in a watery sea. Of course, real cells are anything but 'hollow'their insides are filled with 
biological hardware, including the DNA that allows the cells to generate copies of themselves. But in 
the 1960s, researchers at Cambridge University found that phospholipids would come together 
spontaneously in solution to form empty cell-like structures called vesicles, when the solution was 

     



jiggled by sound waves. This self-assembly of vesicles is driven by the tendency of lipids to form 
bilayers_in order to bury their insoluble tails.

A lot of work has been devoted to studying the shapes that lipid bilayer vesicles can adopt, because 
these can provide clues about the factors that control the shapes of real cells. The range of shapes is far 
more varied and interesting than those of soap bubbles: vesicles can be spherical, but they can also take 
on other stable shapes too. In the broadest sense, these shapes are determined by the same driving force 
that dictates the shapes of soap films: the tendency to minimize the total (free) energy. The principal 
contribution to the energy of a soap film comes from the surface tension, so the film adopts a shape that 
minimizes this by finding the smallest surface area. But for a vesicle, the surface area is essentially 
fixed: once a vesicle is formed, the number of surfactant molecules in its wall stays pretty much the 
same, and each molecule occupies a fixed area on the bilayer surface. This means that another factor is 
able to exercise a dominant influence on the energy: the surface curvature. The way that shape affects 
the curvature energy is rather subtle, and it may turn out that the lowest-energy shape is not that with 
constant mean curvaturea spherebut some other, more complex shape. This balance can be shifted by 
changing the nature of the vesicle's environmentfor example, by warming it upand so the vesicle may 
undergo changes in shape as the temperature is changed.

The German biophysicist Erich Sackmann and co-workers have shown that under certain conditions, 
the most stable shape of a vesicle is that of a disk with dim-
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ples in the top and bottom (Fig. 2.18a), which is precisely the shape that a red blood cell adopts. They 
saw these vesicles change shape to become bowl-like entities as the temperature was increased (Fig. 
2.18a), and were able to show theoretically that these shape changes are to be expected because of the 
changing balance in energies. The bowl-like shape, called a stomatocyte, may eventually curl up on 
itself to generate a small, spherical vesicle inside a larger one, connected via a narrow neck which 
eventually became pinched off. Under different conditions, a vesicle can become elongated from an 
egglike shape into a pear shape, ultimately pinching off a little bud at the thin end (Fig. 2.18b). Both of 
these processesthe budding and expulsion of a small vesicle from the outside of a cell membrane and 
the engulfing and budding off of a small interior vesiclehappen in real cells, where they are called 
exocytosis and endocytosis. The former process allows cells or interior sub-compartments of cells 
called organelles to send out little chemical messagesa package of protein molecules, perhapsin soft 
wrappers, while the latter enables a cell to ingest material. In cells these processes are controlled by 
protein molecules embedded in the cell membranes, but we can see that they can also come about 
through nothing more than the 'blind' physical forces that determine a membrane's geometry.

     



Fig. 2.18 
Vesicles are closed, cell-like bilayer membranes. 

They adopt a range of different shapes at different temperatures, 
which are determined by the subtle influences of elastic and 
curvature energy. In (a) a flattened vesicle with a shape like 

a red blood cell develops a concavity which becomes a 
separate internal vesicle. In (b) an elongated vesicle 

develops a bud, which eventually separates from the main 
body. Both of these sequences, seen experimentally under 

a microscope (top frames), can be reproduced by calculations 
of the equilibrium shape that minimizes the total 

energy (lower frames). (Images: Reinhard Lipowsky, Max 
Planck Institute for Colloid Science, Teltow-Seehof, Germany.)

Fig. 2.19 
Starfish vesicles (a), and the corresponding shapes 
calculated with an energy-minimization model (b). 

(Images: Udo Seifert, Max Planck Institute for Colloid Science, 
Teltow-Seehof, Germany.)

     



Udo Seifert and co-workers at the Max-Planck Institute for Colloid Science in Teltow-Seehof, 
Germany, have found that under some conditions the driving force to minimize curvature energy can 
push vesicles through extremely bizarre contortions. Under the microscope they saw multi-armed 
vesicles that looked like starfish or ink blots (Fig. 2.19a). If these were living amoeba dragging 
themselves around by extending pseudopodia, we might not consider the shapes surprising; but they are 
merely empty sacs whose shapes are the product of a mathematically well-defined minimization 
principle! Seifert and colleagues showed that they could reproduce the shapes theoretically by 
minimizing the curvature energy of the bilayers subject to the constraints of fixed surface area and 
enclosed volume (Fig. 2.19b). This 'mathematics of blobs' appears to hold some symmetry principles: 
the researchers could
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not, for example, find starfish vesicles with four symmetrical arms either experimentally or theoretically.

A part of the curvature energy of a vesicle arises not from the size or shape of the surface but from its 
topologythe overall 'connectedness' between different parts of the membrane. Two shapes are 
topologically equivalent if one can be converted into the other without any tearing or puncturing. For 
example, a spherical vesicle is topologically equivalent to all of the disk- and bowl-like vesicles in Fig. 
2.18a, because they can be made just by flattening and bending the sphere. However, the shape on the 
far right of Fig. 2.18b is topologically non-equivalent to a sphere: when the small vesicle is pinched off 
at the neck, so that it can float free from the larger one, the topology is altered because the membrane 
has to be ruptured to create this arrangement.

Another shape that is topologically different from the spherical vesicle is the doughnut, technically 
called a torus. Vesicles with this shape have been seen by David Bensimon and co-workers at the Ecole 
Normale Supérieure in Paris (Fig. 2.20a). Bensimon's team showed that these shapes can become the 
most energetically favourable under some circumstances. You might notice that they can be generated 
from an extreme version of the disk-like shapes on the left of Fig. 2.18a, when the two dimples touch 
each other in the middle. At that stage the upper and lower membranes may merge and a hole open up 
in the middlethe topology is then abruptly transformed. Bensimon's group have reported even more 
topologically complex vesicle shapes, such as double toruses (Fig. 2.20b), which are topologically 
distinct from the single toruses. The point to bear in mind here is that even these apparently complicated 
shapes are selected according to relatively simple physical principles that minimize the vesicle's energy.

Bubbles in flatland

     



Fig. 2.20 
Vesicles with holes: a doughnut or torus (a, showing top and side views 

and a double torus (b). Even these topologically complex shapes correspond 
to equilibrium structures that represent energetic minima. The scale 

bar indicates 10 micrometres in all frames. (Photos: Xavier Michalet and 
David Bensimon, Ecole Normale Supérieure, Paris.)

Vesicles are rarely formed in solutions of surfactants or lipids unless given some encouragement, in the 
form of sonic vibration for instance. Left to their own devices, surfactants display a gallery of other 
aggregate structures with their own propensity for pattern formation. Imagine gradually adding soap 
molecules to water. The first thing they'll do is gather at the water surface, where the insoluble, 
hydrophobic tails can poke out into the air. The water surface becomes gradually covered with a 
molecular film just one molecule thick. Benjamin Franklin was captivated by these thin films in the
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eighteenth century, which he observed by gently pouring an oil onto the surface of a pond. He took to 
carrying oil in a little vial in his walking stick, and would merrily create a miniature oil slick on every pond 
he encountered, particularly that on London's Clapham Common. What amused him was that just the tiny 
volume of oil that he carried would spread across the entire pond, and as it did so it would lower the surface 
tension of the water surface and leave it smooth as a mirror. I don't recommend trying this, however, unless 
you fancy you can explain to a park attendant that you are reproducing a historical experiment by Ben 
Franklin.

Fig. 2.21 
Surfactants at the water surface will form a variety of different states when the surface layer is compressed. (a) A 

dense, disordered liquid-like state (called the LC state, dark patches) grows within a less-dense state (LE) 
that contains a fluorescent dye (light regions). (b) As the LC domains grow, they become ordered in a hexagonal 

pattern. (c) Eventually the LC domains become squeezed into worm-like shapes by their mutual repulsion. (d) The 
stripe phase of surfactant films is analogous to the striped arrangement of magnetic domains in thin films of garnet. 

Here too the stripes arise from mutual repulsion of the domains. (Photos: (a) S. Akamatsu and E. To, University 
of Paris IV; (b) Helmut Möhwald, Max Planck Institute for Colloid and Interface Science, Berlin; (c) Charles Knobler, 

University of California at Los Angeles; (d) Michael Seul, BioArray Solutions, Fanwood, New Jersey.)

     



The study of surfactant films (particularly those of the soap-like molecules called fatty acids) on the surface 
of water was pioneered by Lord Rayleigh at the end of the nineteenth century and by the American chemist 
Irving Langmuir and his students at the beginning of the twentieth century. These films now bear the name 
Langmuir films, and they exhibit an astonishing range of pattern-forming behaviour. Langmuir created them 
in a shallow trough in which a movable barrier skimming the water surface allowed him to marshal the 
surfactant molecules into an ever smaller area of water surface and so control their densitywhich is to say, 
the average surface area commanded by each. As this density increases, a Langmuir film can undergo abrupt 
changes that are two-dimensional 'flatland' versions of the transformations from gas to liquid to solid that a 
material in three dimensions will undergo as it is compressed. But these films have an extra state: there are 
two kinds of 'flat' liquid, in both of which the molecules are mobile and disordered but which have distinctly 
differ-
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ent densities. By adding to the film a fluorescent dye that dissolves more readily in the less dense liquid 
(the liquid-expanded (LE) phase) than in the more dense liquid (the liquid-condensed (LC) phase), we 
can 'light up' the LE phase and watch darker 'droplets' of the LC phase coalesce and grow within it (Fig. 
2.21a).

     



Fig. 2.22 
A gallery of patterns in surfactant films, formed by the growth of one state in another. (Photos: Helmut Möhwald, 

Max Planck Institute for Colloid and Interface Science, Berlin, except for (e) from: Prost and Rondelez 1991.)

Aside from the extra phase, all of this is not so different to the condensing and freezing of a normal, three-
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dimensional liquid. But there is one other important difference: all of the molecules in these denser 
phases of Langmuir films point in the same direction, with their tails more or less perpendicular to the 
water surface. Because they also have an imbalance of electrical charge owing to the charged head 
group at one end, an electric field is set up around each molecule that repels those around neighbouring 
molecules, in much the same way as the magnetic fields of bar magnets will repel one another when 
they point in the same direction.

This means that each of the bubble-like domains of an LC phase condensing within an LE phase acts 
like an electrically charged bubble that repels the other domains. The result is that the domains tend to 
organize themselves so as to keep roughly the same distance between each, and the film becomes 
organized into a peculiar kind of 'crystal' in which the domains are packed together in a regular manner 
(Fig. 2.21b). Unlike a normal molecular crystal, however, in which the size of the characteristic 
repeating unit is of the same order as the size of the constituent molecules, here the scale of the pattern 
bears no direct relationship to the scale of the component parts from which it is made.

As these domains are squeezed ever more closely together, something even more dramatic can happen: 
the strength of the electrostatic repulsion between domains makes them deform into elongated shapes, 
which can eventually fuse together to form worm-like structures (Fig. 2.21c). This pattern is called a 
stripe phase, and it is also found in other two-dimensional systems containing domains of different 
structures that repel one another. For example, within a thin film of a magnetic material, domains may 
appear in which the direction of the magnetic field points in different directions; these too can adopt a 
stripe phase (Fig. 2.21d).

A subtle interplay between packing effects of the surfactant molecules, electrostatic repulsion of 
domains and dynamic (time-dependent) effects arising from the diffusion of impurities from one phase 
to another can give rise to all manner of strange patterns in Langmuir films, and I don't have space here 
to do much more than show a selective gallery (Fig. 2.22). Let me just point out, however, the similarity 
between one of these shapes (Fig. 2.22d) and those discussed in Chapter 5 (see p. 123)this is a generic 
pattern called a dendrite, most familiar to us from the ornate branched arms of a snowflake. Notice too 
how a Langmuir film will form a two-dimensional foam (Fig. 2.22e) in which Plateau's rules, 
particularly that regarding 120° junctions between walls, can be seen to be obeyed.

The plumber's nightmare

What happens if we go on adding surfactant molecules to a solution? Only so many can accumulate at 
the surface; after the surface is full, they are forced to remain in solution. There is then the unfortunate 
fact that most of the molecule is a fatty, water-insoluble tail, and the surfactants have to do something 
about it. What they do is to aggregate together into a bewildering number of different structures, which 
can impose a regular pattern on the whole system.

     



The simplest aggregates are just blobs of surfactants, containing typically a few hundred molecules. 
These blobs, called micelles, have an internal logic: all the surfactants are arranged with their head 
groups pointing outwards onto the micelle surface, while the tails are buried in the interior (Fig. 2.23a). 
In this way, the molecules hide their tails from the water, and show only their water-soluble heads. G.S. 
Hartley proposed in the 1930s thatmicelles are roughly spherical, and experiments in the 1950s showed 
this to be the case. They are formed when the concentration of surfactant in solution is increased above 
a certain critical level, called the critical micelle concentration.

Fig. 2.23 
(a) A micelle. (b) Cylindrical micelles packed together in the hexagonal phase.
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In the early 1950s, before the shape of micelles was finally established, the physicist Paul Debye 
proposed that they might be rod-shaped instead. In Debye's model, the tails are still buried in the 
interior of the aggregates, but the blobs are extended along one direction into cylinders. Although 
experiments and theoretical studies later seemed to favour Hartley's spherical model, it gradually 
became clear that sausage-shaped micelles like Debye's can be formed too. As the concentration of 
surfactant is increased, it becomes more favourable for the new molecules to attach themselves to 
existing micelles, extending them into worm-like structures, than to form new micelles. If their 
concentration is not too great, the cylindrical micelles are entangled like spaghetti; but at higher 
concentrations they are compelled to pack together into a regular array, like a stack of logs. Each 
micelle is surrounded by six others in a so-called hexagonal phase, reminiscent of the arrangement in a 
layer of bubbles (Fig. 2.23b).

Fig. 2.24 
A mixture of surfactants and silicate ions will 

cooperate to form a patterned solid, in 
which the silica walls are cast around an 

ordered surfactant template. The resulting 
material acquires a honeycomb pattern 

of pores. (Photo: Charles Kresge, Mobil 
Research Laboratories, Princeton.)

     



In 1992 researchers from the Mobil Corporation's laboratories in Princeton showed that the hexagonal 
phase of surfactants can be used to make patterned solid materials, by precipitating a hard mineral 
around the soft organic material. The regularly packed columns of surfactants act as a mould, 
imprinting the solid with an array of regular channels. The Mobil team allowed silicathe stuff of sand, 
window glass and quartzto solidify from a solution of silicate ions, and then expelled the surfactants by 
heating the material. This left behind a porous form of silica with a honeycomb of channels about 10 to 
100 millionths of a millimetre wide (Fig. 2.24). (I should say that the process may not be quite as 
simple as taking a silica cast of the preformed surfactant pattern, because it appears that the structure of 
the surfactant aggregates might change over time as the silica precipitates.) The Mobil discovery 
created tremendous excitement amongst materials scientists, because there are many possible 
technological uses of solids patterned on these scalesas ultrafine sieves, for example, or as chemical 
catalysts. Notice that the characteristic length scale of the pattern in these materials is much larger than 
the characteristic size of the component partsthe silicate ions or surfactant molecules. So you would 
never guess that the system has the potential for forming such a pattern by looking at these components 
individually. The hexagonal pattern is the result of a self-organizing process.

Another structure that surfactants may form spontaneously in a sufficiently concentrated solution is 
made up of flat bilayer sheets, like the walls of vesicles, stacked on top of each other. This is called the 
lamellar phase (Fig. 2.25). These assemblies too can be 'fossilized' by precipitating silica around them; 
shortly after the Mobil discovery, researchers at the University of California in Santa Barbara made a 
layered silica material this way.

Fig. 2.25 
The lamellar phase contains stacks of bilayer sheets.

     



For a separation between lamellar bilayers greater than a certain threshold, it can become energetically 
favourable for two adjacent layers to fuse together at one point around a hole or pore (Fig. 2.26). You 
can see that this introduces bent regions in the bilayers, and we saw earlier that curvature in bilayers 
costs energy. But this energetic deficit can be more than compensated by the favourable increase in 
entropyin disorderthat arises from these disturbances to the regular stacking of sheets.
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Under these conditions, pores can proliferate between sheets, and the stacked layers break up into a web 
of tunnels that divides the system into two distinct subspaces. A molecular-scale fish could swim 
throughout all parts of one subspace or the other, depending on where it began, but it could not pass 
from one subspace to the other without punching through a bilayer (Fig. 2.27). A structure like this is 
said to be bicontinuous, because it consists of two continuously connected but independent networks of 
channels, each intimately woven through the other.

Fig. 2.26 
Pores can form spontaneously 

between adjacent sheets in a lamellar 
phase, thereby providing channels of 
communication between previously 

separated regions of space.

     



Fig. 2.27 
In a bicontinuous phase, the surfactant bilayers 

divide three-dimensional space into two 
distinct networks that interpenetrate without 

being interconnected. Here I show a slice through 
a simple bicontinuous phase made up from pores 
connecting adjacent bilayers. The two subspaces 

are denoted by the different shades of grey.

The channels of a bicontinuous phase of surfactant bilayers may be arranged in a haphazard way, in 
which case the system has the random, perforated structure characteristic of a sponge (and is indeed 
called the sponge phaseor more figuratively, the plumber's nightmare). But more interesting from the 
perspective of pattern formation is the alternative in which the pores are positioned in a regular, orderly 
manner. Why should the pores be ordered? Because they have a tendency to repel one another: if two 
pores get too close together, they create very pronounced curvature of the bilayers in their vicinity, and 
this costs energy. So when there are many pores, they tend to sit at an optimal distance from each other 
on a regular lattice. The surfactant structure then becomes a kind of 'tubular crystal'. The sponge phase 
is really a 'melted', disordered version of this curious crystal.

The most common of the ordered bicontinuous surfactant phases are the cubic phases (Fig. 2.28), so-
called because the symmetry properties of the labyrinth are the same as those of a cube. They are 
examples of what mathematicians call a periodic minimal surface: one that encloses two distinct 
volumes of space such that the area of their interface is as small as possible (minimizing surface 
tension), while maintaining an equal pressure on both sides. This latter constraint means that the surface 
must have zero mean curvature everywhere on the surface, since, as I mentioned earlier, curvature 
arises from an imbalance in pressure. It may seem odd to suggest that a surface like that in Fig. 2.28 can 
have zero mean curvatureit is obviously highly curved. But curvature is defined mathematically to be 
positive or negative depending on which way it bendsa concave surface (like the inside of a bowl) has 
negative curvature, while a convex surface (like the outer surface of a balloon) is positively curved. If 
the surface bends one way in one direction and the other way in the perpendicular direction, like the 
middle of a saddle, then the positive and negative curvatures can cancel out at that point. On surfaces of 
zero mean curvature, they cancel out everywhere.

     



Fig. 2.28 
The cubic P-phase, one of the ordered bicontinuous 
phases that may be adopted by surfactant bilayers 
in water. It is made up of identical units with the 
symmetry of a cube (left), and is an example of a 

periodic minimal surface.
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We saw earlier that although the spherical shape of a bubble gives it minimal surface area, the curvature 
of the surface means that the pressure inside is greater than that outside. The soap bubble has a surface 
of constant (but non-zero) mean curvature. It is possible to construct periodic bicontinuous surfaces that 
also maintain a constant pressure difference across the interfacethey are then periodic surfaces of 
constant mean curvature, of which those with strictly zero mean curvature (periodic minimal surfaces) 
are a special case.

Making the least of things

Fig. 2.29 
The catenoid, a minimal surface bounded by two 

coaxial circles.

Periodic minimal surfaces have a distinguished history that starts with Joseph Louis Lagrange in 1762. 
Lagrange took advantage of the newly invented technique of variational calculus to explore the shapes 
of surfaces that have a minimal surface area for a given perimeter shape. In 1744 the Swiss 
mathematician Leonhard Euler discovered the catenoid, the minimal surface bounded by two coaxial 
circles (Fig. 2.29). You can easily make a catenoid from a soap film (I explain how in Appendix 1). In 
1776 J. Meusnier identified the crucial property of a true minimal surface: more fundamental than the 
minimal surface area is the fact that the mean curvature is zero everywhere on the surface. Nearly sixty 
years later, the first periodic minimal surfaceone made from building blocks that repeat regularly 
through spacewas discovered by H.F. Scherk. Arguably our understanding of these curious structures 
owes most, however, to the German mathematician Hermann Schwarz, who explored their properties in 
the late nineteenth century. He was interested in deducing the shape that a soap film will take when 
stretched between the edges of a geometric figure like a tetrahedron, a problem posed by Joseph 
Plateau. How could the film touch all four vertices while maintaining a minimal surface area? Schwarz 
found that the solution takes the form of a saddle-like surface (Fig. 2.30). He realized that these 
tetrahedron-spanning films can be stacked together to form bicontinuous, periodic labyrinths whose 
mean curvature is zero. One of these is the so-called P-surface shown in Fig. 2.28; another is the D-

     



surface shown in Plate 3a. A third simple periodic minimal surface, the gyroid or G-surface (Plate 3b), 
was discovered by Alan Schoen in the 1960s. All of these surfaces can be constructed by stacking a 
different kind of 'unit cell' containing a minimal surface. Examples of the P-, D- and G-surfaces have all 
been identified in the cubic phases of surfactants in water.

Fig. 2.30 
The minimal surface spanning the 

four corners of a tetrahedron. This surface, 
first discovered by Schwarz in the nineteenth 

century, can be used as the building block 
of several periodic minimal surfaces.

Cells get cubic

When the Italian chemist Vittorio Luzzati first discovered surfactant cubic phases in the 1960s, he 
wondered whether they might be more than a laboratory curiositywhether they might, in fact, be found 
in living cells. After all, cell membranes are made up of bilayers too. Might these membranes curl up 
under the right conditions to make such labyrinthine tunnels? Perhaps the bicontinuous networks might 
even serve a useful purpose as cellular plumbing systems? Certainly it was known already that cell 
membranes do form neck-like poresthese are found in profusion, for example, in the bilayers that 
constitute the nuclear envelope around the DNA-containing nucleus of our own cells. And a complex 
tangle of bilayer channels called the smooth endoplasmic reticulum, which forms part of the cell's 
transport system and is where lipids and some proteins are manufactured, is nature's version of the 
disordered sponge phase (Fig. 2.31). Are there ordered networks in cells too?
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Fig. 2.31 
The cell's smooth endoplasmic reticulum is a disordered 'sponge' 

of natural membranes. (Photo: Don Fawcett.)

There most certainly are! Membranes with regular channel structures akin to periodic minimal surfaces 
have now been identified in the cells of countless organisms ranging from bacteria to plants to rats. 
Kåre Larssen, Tomas Landh and colleagues at Lund University in Sweden have shown that the 
biological literature is replete with images of ordered membrane networks (Fig. 2.32), many of them 
apparently corresponding to periodic minimal surfaces or surfaces of constant mean curvature. They 
had not previously been recognized as such, says Landh, because cell biologists, unfamiliar with these 
mathematical abstractions, had been unable to interpret what they saw.

The first pictures of such structures were presented in 1965 by B.E. Gunning, who observed them in 
electron microscope images of plant cells. These are much like the pictures that one can see through a 
light microscopelighter where there is less dense matter and darker where the density is greaterbut 
because the images are formed by the scattering of electrons rather than light, they have a higher 
resolution: smaller features can be seen. (The limit on the size of the objects a microscope can resolve is 
set by the wavelength of the imaging beam, and a beam of electrons typically has a shorter wavelength 
than visible light.) The complication, however, is that these electron micrographs show projectionstwo-
dimensional 'shadows' of the three-dimensional structure. This can make it very hard to decide exactly 
what kind of three-dimensional pattern is being imaged, and in general researchers have to rely on 
comparisons between the real images and simulated images calculated by assuming a particular 3D 
structure (Fig. 2.33).

     



Gunning saw a hexagonal pattern in micrographs of leaf cells, and he proposed that it was the projected 
image of a regular network formed from the biological membranes. But it was not until 1980 that Kåre 
Larssen and his co-workers at Lund made the connection between these pictures and minimal surfaces. 
They suggested that Gunning's model might correspond to the D-surface (Plate 3a). Soon other 
structures began to come to light in the organellesthe functional compartmentsof many other cells. They 
are particularly common in the endoplasmic reticulum, but are also

Fig. 2.32 
Periodic membrane structures are common in living cells. Many of these appear to be related 

to periodic minimal surfaces: (a) the D-surface in leaf membranes; (b) the P-surface in 
algae; (c) the G-surface in lamprey epithelial cells. (Photos: Tomas Landh, Lund University.)
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found in the membranes of the mitochondria (the cell's metabolic powerhouses) and the lysosomes 
(compartments that break down proteins and lipids), and in the cell's outer membranes. Whether or not 
cells contain these ordered networks seems to depend on their agethey are more common in older, 
mature cells.

Fig. 2.33 
The three-dimensional structures of cubic membranes 

can be deduced by comparing the two-dimensional 
projections in electron micrographs with those calculated 

on the assumption that the structures are periodic 
minimal surfaces. Here I show calculated images 
superimposed on the corresponding micrographs. 

(a) The D-surface (diamond) in leaf membranes (simulations 
on top left and lower right). (b) The G-surface (gyroid) 
(simulation lower centre). (Photos: Tomas Landh, Lund 

University.)

     



Are these biological structures equivalent to the cubic phases of surfactants in water (Fig. 2.28)? That's 
still an open question. Both are made from bilayer membranes, but the cellular membranes also contain 
embedded protein molecules, which might affect their propensity to curve. And the repeat units in the 
cell structures are commonly larger than those in surfactant cubic phases by a factor of five or more. 
Perhaps most significantly of all, the cell structures are formed under non-equilibrium conditions, 
whereas the cubic phases represent equilibrium structures. So the relationship between the two is not 
clear, and although the ordered cell structures are called cubic membranes, this does not mean that they 
are strictly equivalent to the cubic phasesrather, it simply denotes that they too have regular cubic 
structures similar to those of periodic minimal surfaces.

But what is clear is that nature has found a use for these spontaneously formed patterns. Their ubiquity 
implies that these are no freaksin biology we expect patterns to serve a purpose. No one yet knows, 
however, what this purpose might be. It could well be connected with organization: cubic membranes 
divide up regions of the cell into neatly organized compartments, like the rooms of a house, in which 
tasks can be apportioned. The fact that they are common in organelles such as the endoplasmic 
reticulum, where repetitive operations like protein synthesis take place, suggests that a regularly 
organized space might optimize the efficiency of this sort of assembly line. Making cubic membranes is 
also a good way of creating a lot of surface in a small volume, which might be useful when the task 
being performed requires a surface to work onthe synthetic processes that take place within the 
endoplasmic reticulum are like this. And the intricate interweaving of two distinct subspaces might 
enhance the communication and transport between them.

Well, the idea that the organization of the cell might be guided in part by geometry and physics is 
unpalatable to some biologists, and not everyone has been ready to accept these interpretations of the 
electron micrographs, let alone speculations on their implications. 'Biologists tend to believe everything 
is controlled by proteins', says George Oster, a biophysicist from the University of California at 
Berkeley. Sure, cubic membranes could form through physics alone, but 'cells tend to be dirtier and 
messier than that'. This is true enoughbut might not biology sometimes choose to do things the easy 
way?

Fossil foams

Whether or not complex, regular membrane patterns play a role in the biology of the cell, one thing is 
for sure: many organisms use membranes as scaffolds for erecting stronger, more rigid superstructures 
with fantastic architectures. Bone, for example, is a mixture of a mineral (hydroxyapatite) and proteins 
(largely collagen) that is wrought into an intricate, porous network by
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cells called osteoblasts, which deposit the hard stuff amongst the membranous web of organic tissues. 
Far more dramatically, the shells of marine organisms such as radiolarians and diatoms are the casts of 
patterns formed by ephemeral membranes and vesicles packed into foams (Fig. 2.34).

     



Fig. 2.34 
The skeletons of radiolarians (a) and diatoms 

(b) are thought to be the mineralized casts 
of a froth of vesicles. Coccolithophores 

(c) also have delicately patterned plates shaped 
by organic tissues. (Photos: (a) The Museum 
of Science, Boston; (b) Dee Breger, Lamont 

Doherty Earth Observatory; (c) Jeremy Young, 
Natural History Museum, London.)

To scientists interested in pattern formation, these microscopic follies have surely been the most 
inspirational of life's constructions. And no wonderfor in both their beauty and their diversity, they are 
the biological equivalent of snowflakes. But as the biologist Karl von Frisch points out, nature is 
indifferent to aesthetics. 'I do not want to wax philosophical about so much ''useless" beauty scattered 
over the oceans', he says, 'Nature is prodigal.'

The structures are not, strictly speaking, shells at all, but rather exoskeletonsexternal skeletons that 
enclose the soft, organic tissues of their architects. Several classes of marine organisms construct 
exoskeletons. Radio-larians are tiny, single-celled animals (protozoans) whose exoskeletons are made 
of silica. Diatoms, dinoflagellates and coccolithophores, on the other hand, are members of the class of 
microscopic plants called phytoplankton. Diatoms and dinoflagellates live mainly in coastal and polar 
waters, and their exoskeletons are also made of silica; coccolithophores are more abundant in warmer, 
tropical seas, and they make their elaborate cages from calcium carbonate, the fabric of chalk and 
marble.

When Christian Gottfried Ehrenberg made the first recorded observation of coccolithophores in 1836 
while inspecting chalk from an island in the Baltic Sea, he thought that they must be inorganic mineral 
formations of some kind. All Ehrenberg saw were the 'bones'oval-shaped platelets of the hard 
exoskeletons of these creatures preserved in the rock, their organic tissues having long since decayed. 
Ironically, while today those searching for ancient forms of fossilized microorganisms run the risk of 
being misled by complex mineral formations of organic appearance formed without the aid of living 
creatures (Chapter 1), Ehrenberg was initially deceived in the other direction: he could not imagine that 
the elaborate carbonate structures he found could have anything to do with life, and decided instead that 
they must be related to previously known spherical crystals called spherulites. Ehrenberg spent 14 years 
recording thousands of different forms of coccolith skeletons in meticulous drawings, all the time under 
the impression that he was drawing curious crystals.

In 1857 the biologist Thomas Huxley observed similar 'rounded bodies' in the muddy sediment pulled
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up from the deep North Atlantic Ocean. Although he noted that they looked 'Somewhat like single cells 
of the plant Protococcus', he too decided that they must be inorganic in origin, and he called them 
coccoliths (from the Greek lithos, stone) (Fig. 2.35). But in 1861, G.C. Wallich found these same oval-
shaped platelets in seafloor sediments, and noticed that sometimes they were stuck together in spherical 
aggregates like those that Huxley sketched. These 'coccospheres' were often associated with plankton 
called foraminifers, and so Wallich decided that they were probably of biological origin. At the same 
time, the Englishman Henry Clifton Sorby came to the same conclusion after studying coccoliths in 
chalk. When Wallich and Sorby published their findings, most biologists, including Huxley, came to 
accept the biological origin of coccoliths. But not Ehrenberg, who resolutely maintained that they were 
inorganic until his death in 1876.

Fig. 2.35 
Thomas Huxley sketched many coccoliths in 1868, 

but believed them to be inorganic formations. 
(Image: Jeremy Young, Natural History Museum, London.)

Huxley took a close look at his coccolith samples under a microscope, and observed that many were 
embedded in a transparent jelly-like slime, a 'protoplasm' of the sort identified a few years earlier by the 
German biologist Ernst Haeckel. He decided that the coccospheres were skeletal structures that helped 
to support this slime. Although it later became clear that the jelly was simply a product of chemical 
reactions between the sea water and alcohol used to preserve the specimens, in 1898 George Murray 
and V.H. Blackman proposed that the coccospheres are the protective armour of protoplasmic 
organismscoccolithophoresthat dwell within.

     



Fig. 2.36 
The Atlas prepared by Ernst Haeckel depicts a vast 

selection of beautiful radiolarian skeletons. (Image: Scott 
Camazine, Pennsylvania State University.)

Much of what was known at this time about coccoliths and radiolarians came from the sediment 
samples collected by the British research vessel HMS Challenger, which from 1872 to 1876 embarked 
on a cruise to probe the secrets of the abyssal ooze. Ernst Haeckel was captivated by the geometric 
wonders of Challenger's bounty, and he catalogued hundreds of radiolarian exoskeletons in a vast Atlas 
(Fig. 2.36). Whereas coccolithophore shells are generally composed of overlapping, disk-shaped 
platelets, radiolarian exoskeletons are typically an ornate latticework of geometric polygons, with 
hexagons being particularly prominent. Haeckel's drawing of the organism Aulonia hexagona (Fig. 
2.37a) showed a perfect sphere traced out in a web of hexagonal cells. But when, around the beginning 
of this century, D'Arcy Thompson came to exercise his awesome interpretive faculties on Haeckel's 
atlas, he noted something important: 'No system of hexagons
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Fig. 2.37 
The radiolarian Aulonia hexagona as drawn by Haeckel 
(a) and as it appears in the electron microscope (b). The 

shell is a closed sphere of primarily hexagons, but 
pentagons are also needed for closure. A few of these can 
be discerned in both images. (Images: (a) from Thompson 
1961; (b) Tibor Tarnai, Technical University of Budapest.)

     



can enclose space . . . the array of hexagons may be extended as far as you please, . . . but it never 
closes in'. This, Thompson pointed out, was a consequence of a relationship deduced by mathematician 
Leonhard Euler between the number of faces, vertices and edges of a polyhedron. Euler's formula tells 
us that such a polyhedron cannot be made of hexagons alone. Instead, Thompson realized, there must be 
pentagonal or square facets in such a polyhedron to allow it to form a closed shell. Precisely 12 
pentagons will suffice to close a polyhedral shell whose other faces are all hexagons, no matter how big 
the shell is. And indeed, said Thompson, Haeckel did allude to the presence of some pentagonal and 
square cells in the framework of the Aulonia

Fig. 2.38 
Richard Buckminster Fuller used hexagonal and pentagonal 

elements to construct his geodesic domes, most notably 
that used in the US exhibit for Expo '67 in Montreal. 

(Photo: Copyright 1967 Allegra Fuller Snyder, courtesy 
of the Buckminster Fuller Institute, Santa Barbara.)
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exoskeletons. This need for pentagons was understood by the American architect Richard Buckminster 
Fuller when he designed his distinctive geodesic domes (Fig. 2.38), and it became gradually evident to 
the discoverers of the carbon-60 molecule, a new form of carbon dubbed 'buckminsterfullerene', in 1985 
as they struggled to understand how hexagonal sheets of carbon atoms like those in graphite could be 
induced to curl up into a closed spherical cage.

How on earth does a lump of protoplasmic jelly put together an edifice as fantastic as these? For 
Haeckel's radiolarians, D'Arcy Thompson felt that nothing could be simpler. The organism blows 
bubbles, and then sets them in stone. That is to say, the organism surrounds itself with a foam of vesicle-
like bubbles (called vacuoles) and allows the mineral to precipitate from the solution held in the Plateau 
borders where the bubble walls meet. The foam is a two-dimensional hexagonal layer of bubbles curved 
into a spherical shell around the organism itself, and so the Plateau borders meet at angles of 120°. Take 
away the soft, organic material of the vesicles and you are left with a lattice of hexagons: a foam 
preserved in mineral form.

Is nature really this simple? We now know that D'Arcy Thompson's notion was extraordinarily 
prescient. The silica lattices of diatoms and radiolarians are formed around close-packed arrays of large 
'areolar vesicles' secreted from and attached to the organism's membrane wall (called the 
plasmalemma). Between the areolar vesicles is assembled a system of thin, tubular vesicles, and silica is 
deposited within them. The result is a hexagonal mesh of silica (Fig. 2.39). So while there is a 
considerable degree of orchestration in this process, particularly to transport and confine the inorganic 
material and prevent it from precipitating willy-nilly around the 'bubble-raft' template, the basic 
elements of shell formation are indeed those suggested by Thompson.

Clearly, however, many marine microorganisms produce exoskeletons that look considerably more 
complex than the mineral replica of a foam. Diatoms, for instance, commonly sport delicate patterns 
within patterns, such as fine perforations of a larger-scale mesh. Here there seems to be a hierarchy of 
patterning processes: the large areolar vesicles may become detached from the plasmalemma once the 
basic silica mesh is in place, and the intervening space becomes infiltrated with smaller vesicles, some 
that deposit silica and others that do not. By again packing into regular arrays, these can impose a finer 
mesh on the larger one. In sponges, meanwhile, clusters of just a few vesicles can provide the template 
for star-like mineral structures called spicules formed at the vertices of converging Plateau borders (Fig. 
2.40a), while for so-called silico-flagellates, similar clusters generate a small fragment of a foam 
framework in which Plateau's rules and the curving of Plateau borders owing to pressure differences 
(page 22) are clearly visible (Fig. 2.40b).

Coccoliths pose another kind of puzzle: their platelets, with shapes that are typically bowl- or mush-
room-like, are not obviously akin to the shapes made by packing bubbles. All the same, we know that 
these structures are moulded by organic membranes within the single-celled organisms, although the 
forces that shape them are surely more complex than surface tension alone. These platelets are usually 
cast in vesicular compartments within the cells before being transported to the cell surface. Nonetheless, 
the coccolith-forming

     



Fig. 2.39 
The formation of exoskeletons of diatoms and radiolarians is a highly orchestrated 

process. A froth of areolar vesicles is attached to the outer membrane wall (the 
plasmalemma), and a scaffolding of tubular vesicles is constructed in the gaps between 

areolar vesicles. The tubular vesicles secrete silica, which forms a geometric mesh 
around the froth. (After: Mann and Ozin 1996).
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Fig. 2.40 
(a) The spicules of sponges appear to represent the casts of Plateau borders between a few vesicles. 

(b) Plateau junctions are clearly evident in the exoskeleton of this silicoflagellate (compare Fig. 2.9). 
(Photos: (a) Michelle Kelly-Borges, Natural History Museum, London; (b) Stephen Mann, University of Bath.)

vesicles sometimes themselves become patterned with fine ornamentation that is transferred to the 
mineral platelet: a mesh of pores, presumably from the packing of smaller vesicles, is quite common on 
coccoliths.

     



Fig. 2.41 
The calcite skeleton of the sea urchin Cidaris rugosa appears 

to be a mineralized cast of a periodic minimal surface, the P-surface. 
(Photo: Hans-Udde Nissen, kindly supplied by Michele Emmer.)

We can see a particularly striking example of bio-mineral patterning in the skeletons of the sea-urchin 
Cidaris rugosa. The skeleton is a regular mesh of calcite (Fig. 2.41), which bears a remarkable 
resemblance to the cubic P-surface (see Fig. 2.28). It seems most likely that the organic tissues within 
which the mineral is originally deposited have conspired to adopt a structure very much like this 
periodic minimal surface, which acts as a template for skeleton formation. The smooth, continuous 
curvature of the mineral means that it can distribute loads evenly and is not liable to split along the 
atomic planes of the crystal. As a consequence, skeletons like these can attain strengths greater than that 
of reinforced concrete. So there are clearly practical benefits to these complex patterns.

Test-tube skeletons

As I indicated earlier, there can be practical value, as well as aesthetic pleasure, in patterned materials. 
There is now a whole battery of sophisticated techniques that materials scientists have at their disposal 
for imposing a pattern on a substance, and armed with electron and ion beams they can carve the most 
intricate circuitry into a silicon chip or etch semiconductor films into a microscopic mesh (Fig. 2.42). 
But these are extremely costly and labour-intensive methods, so the products do not come cheap. 
Nature, meanwhile, forms her patterns in very impure, messy chemical mixtures under the mildest of 
conditions and with profligate abundance. How much cheaper and easier it would be if we could learn a 
few tricks from her so as to effect the kind of patterning shown in Fig. 2.42 by throwing together a few 
chemical reagents in a bucket.

But if the delicate filigree of radiolarians and diatoms were the product of some complicated biological
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process requiring (as most biological construction does) a detailed DNA blueprint and protein work 
force to put the pieces into place, there would not be much chance that one could reproduce patterns 
like this synthetically. D'Arcy Thompson's speculations give materials scientists the hope, however, that 
nothing more than simple physical and chemical forces are needed to make a radiolarian skeleton. If 
that is truly so, might one adapt nature's strategies to make artificial radiolarians in a test tube?

Fig. 2.42 
A film of the semiconductor gallium arsenide into which 

a honeycomb array of holes, just a micrometre or so wide, 
has been etched with an ion beam. Patterned materials 

like this might have important technological applications 
as filters or as optical 'waveguides'. But they are expensive 
to produce this way. (Photo: J.R. Wendt and G.A. Vanter, 

Sandia National Laboratories, New Mexico.)

A question like this was very much in the mind of the Dutch zoologist and microscopist Pieter Harting 
when in the 1870sfour decades before the publication of On Growth and Form!he conducted 
experiments to discover whether by chemical means alone he could produce 'calcareous formations' like 
the patterned shells that Huxley, Haeckel and others had found in the sediments of the deep sea. In 1872 
Harting published a paper in which he summarized the fruits of his efforts to mimic nature with 
chemistry. His concoctions were Shakespearean: he attempted to crystallize calcium carbonate and 
phosphate in liquid mixtures that included 'Blood, bile, mucus . . . and the liquor obtained by triturating 
chopped-up oysters in a mortar'. Out of this witches' brew came forth 'A considerable number of 
forms . . . which are, for the most part, found in nature'.

In particular, Harting found many patterned spherical deposits of calcium carbonate, like the spherulites 
familiar to Ehrenberg, which he called calcospherites. In his drawings (Fig. 2.43a) these look 
remarkably similar to coccoliths both in size and form, as Harting himself remarked. Sometimes they 
aggregated into columns or fused into polyhedral plates (Fig. 2.43b), resembling the

     



Fig. 2.43 
The drawings of Pieter Harting bear witness to the extraordinary outcome of his 
experiments on 'artificial biomineralization'. He saw patterns plates like those of 

coccolithophores (a), polyhedral plates (b), fibrous bands (c) and 'warty 
 growths reminiscent of spicules (d). (After: Harting 1872.)
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shells of marine gastropods. Harting observed that the calcospherites were not simply mineral, but 
contained organic matter toojust like the shells of organisms. From mixtures of calcium phosphate and 
carbonate Harting obtained 'plates, which sometimes attain a considerable size, and are more or less 
curved' and laced with 'fine fibres' (Fig. 2.43c). In other experiments he saw 'warty' and branched forms 
(Fig. 2.43d) that reminded him of spicules.

It is hard now to know what processes might have been going on in Harting's reaction vessels, or to tell 
whether these bore any resemblance to the ways in which patterned biological minerals are formed. But 
his use of gel-like substances like albumin and gelatin is interesting, because it meant that the mixtures 
could not have been well-mixedthe dissolved chemical components would have been able to diffuse 
only rather slowly through the jelly-like medium. Thus Harting may have created what is now known as 
a reaction-diffusion system, in which the rate at which the chemical components can react (or in this 
case, precipitate) is limited by the rate at which they diffuse. I will show in later chapters how such 
systems can give rise to a wide range of complex patterns.

Harting's work had none of the impact of D'Arcy Thompson's, and although Thompson mentioned it in 
his magnum opus, it later fell into neglect. But in 1995 Geoffrey Ozin of the University of Toronto 
realized that it was a precursor to his own efforts at making patterned materials. While tinkering with 
synthetic techniques similar to those developed by the Mobil researchers in 1992, Ozin found that he 
could make patterns at much larger scales than those of the Mobil team. Moreover, these patterns were 
considerably more varied and complex: whereas the Mobil group created hexagonal honeycombs in 
silica (Fig. 2.24), Ozin's patterns, fashioned instead from an aluminophosphate mineral, showed 
features over a wide range of length scales, from a few millionths of a millimetre to little less than a 
millimetre (Fig. 2.44). In other words, he had extended the scale of patterning to that comparable with 
diatom and radiolarian shells.

How did he do it? Ozin and his co-workers believe that these patterns are the imprints of vesicles, 
which act as templates for the patterned mineral just as the areolar vesicles do for the shells of diatoms. 
They mixed together alumina (aluminium oxide) and phosphate ions (which together precipitate to form 
the mineral), along with surfactants like those used by the Mobil group, in a solvent of the organic 
compound tetraethylene glycol (TEG). Ozin showed that the surfactants and phosphate ions together 
form a layered material akin to the lamellar phase of simple surfactant solutions. But he suggested that 
the TEG solvent molecules worm their way into the layers and force them to curve, eventually 
triggering the formation of closed vesicles. The solid formed by precipitation of the phosphate and 
alumina then bears the imprint of these packed vesicles.

In some parts of the resulting material the pattern is a regular honeycomb (Fig. 2.44a), in others an 
irregular two-dimensional foam (Fig. 2.44b). Both are consistent with the idea of patterning by packed 
bubble-like vesicles. Elsewhere the structures are more complex (Fig. 2.44c-e), exhibiting patterns 
within patternslike those seen in some diatoms and coccoliths. Ozin suggests that here a hierarchy of 
templating structures is formed from the organic components of the systemthe surfactants and TEG 
molecules.

     



Given the sheer diversity in type and size of patterns found in even this relatively simple chemical 
system, we cannot any longer be too surprised that living organisms, which undoubtedly contain still 
richer mixtures of chemical components, provide us with a seemingly limitless gallery. But behind all 
of this artistry we can now begin to see that there are probably some rather simple governing processes, 
chief amongst which is the formation of templates from a foam of organic bubbles whose architecture is 
dictated by D'Arcy Thompson's 'physical forces'.

A poor mix

The ordered patterns formed by surfactants in water are rather fluid affairs. Individual surfactant 
molecules can shuffle around within the aggregates or sheets, or can defect into solution. The sheets of 
the lamellar phase are distinctly floppy, and the cylindrical micelles of the hexagonal phase are wobbly 
columns. But many of these same structures can be found congealed into a more robust state in 
materials known as block co-polymers, which give rise to microscopically patterned plastics.

Polymers are molecules in which many small molecular units, called monomers, are linked together 
into large 'macromolecules' that can contain thousands of atoms. Proteins are natural polymers, made up 
of amino-acid units, while synthetic polymers like polyethylene and polystyrene give us the ubiquitous 
plastics of modern culture. Most polymers are simple straight chains of interlinked monomers. 
Commodity plastics like polystyrene contain chains made up of just one
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Fig. 2.44 
An array of complex patterns formed 'in a beaker' from a mixture of organic surfactants and inorganic ions. (Photos: Scott 

Oliver and Geoffrey Ozin, University of Toronto.)
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kind of monomer (styrene in this case). Co-polymers, meanwhile, contain more than one sort of 
monomeric unit. In block co-polymers these different units alternate in blocks along the chainthere will 
be a block of perhaps a few dozen or a few hundred monomers of one type followed by so many of 
another.

What gives block co-polymers their propensity to form patterns is the fact that one type of polymer does 
not mix well with another. Like oil and water, two liquid polymers will separate out into distinct layers 
(the more dense on the bottom). But block co-polymers are essentially different polymers linked 
together by chemical bonds, so the different blocks cannot simply separate out into two distinct layers. 
Like Siamese twins, they are inextricably joined together.

What this means is that block co-polymers have to reach some sort of compromise between mixing and 
separating. Blocks of the same constitution gather together in domains whose width is determined by 
the block length. This can lead to the formation of roughly spherical domains of one polymer type 
immersed in a sea of the other (Fig. 2.45). A co-polymer containing a block of polybutadiene 
sandwiched between two blocks of polystyrene, which has this kind of structure, forms a rubbery 
material that, unlike real rubber, can be melted and reset. This 'thermosetting elastomer' is used in the 
soles of training shoes.

Fig. 2.45 
Block co-polymers contain molecular chains 
with unlike segments, which separate out into 

distinct domains.

     



You might notice that the domains in Fig. 2.45 are somewhat akin to micelles, in that they are roughly 
spherical and that the molecules hide a part of themselves from an incompatible medium all around. But 
there is still an interface between the two immiscible substances at the surface of the spheres, and the 
surface tension of this interface imposes an energetic penalty. Spherical domains are formed from a co-
polymer containing two blocks (a diblock co-polymer) in which one block (that which forms the 
spheres) is much shorter than the other. These domains can be distributed at random in some co-
polymers, but it can become favourable under some conditions for the domains to be ordered (Fig. 
2.46a).

If the domain-forming blocks are a little longer, they may form long cylindrical domains instead of 
spheres (Fig. 2.46b)just as surfactants form cylindrical micelles at higher concentrations. When the 
blocks are of roughly equal length, the co-polymer separates into flat lamellae, analogous to the bilayer 
sheets of surfactants. But in between the lamellar and the cylindrical phases, some co-polymers adopt 
the bicontinuous gyroid phase (Plate 3b). Electron micrographs of the gyroid structure show a 
projection with a characteristic six-armed star shape (Fig. 2.46c). Triblock co-polymers meanwhile 
(which have three different blocks in each chain) can form even more complex patterns (Fig. 2.46d).

Edwin Thomas and co-workers at the University of Massachusetts at Amherst observed bicontinuous 
structures in diblock copolymers in 1988, and suggested that they represent an attempt to minimize the 
total area of the interface between blocks subject to the constraints imposed by the block lengths. 
Because the two blocks of a gyroid-forming co-polymer are not equivalent (they are of unequal length, 
for one thing), the two sides of the bicontinuous surfaces are not equivalent eitherthe networks are 
formed from the shorter blocks, surrounded by the 'medium' of the longer blocks. So the structures do 
not correspond exactly to Schwarz's periodic minimal surfaces; but Thomas and colleagues suggested 
that they do represent area-minimizing surfaces of constant mean curvature.

But Sol Gruner of Princeton University and co-workers have pointed out that other factors are also at 
play in the patterns adopted by these complex materials. In particular, if the polymer chains have to 
pack in such a way as to form a surface of perfectly constant mean curvature, this imposes severe 
restrictions on their freedom to crumple up into random tanglesin effect, it means that some of the 
chains get stretched. This stretching has its own energetic cost, which may act to deform the 
bicontinuous structure somewhat. The equilibrium structure therefore represents a balance between 
these opposing tendencies (minimization of surface area and minimization of chain stretching), and in 
general it deviates from a mathematically ideal surface of constant mean curvature.
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Fig. 2.46 
The domains in block co-

polymers can form ordered patterns: (a) a hexagonal array of spheres; (b, here seen partly 
edge-on and partly face-

on) a hexagonal array of cylinders; (c) the gyroid phase; and (d) a complex morphology seen 
in a three-block co-polymer. (Photos: Edwin Thomas, Massachusetts Institute of Technology.)

     



As we will see, complex patterns are very often born of such compromises. They emerge spontaneously 
from a delicate interplay of forces, and can often be altered in scale or in structure by a small shift in the 
balance of this interplay. They cannot be predicted by simply considering how the building blocks might 
be stacked together, but are emergent properties of the system as a whole. This is a theme that will recur 
throughout the book.

What do the bees know?

Was D'Arcy Thompson right, then, to see in the astonishing symmetry of a honeycomb nothing more
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remarkable than the inexorable pull of surface tension and the natural hexagonal symmetry of packed 
bubbles? Was he justified in asserting that 'The bee makes no economies; and whatever economies lie 
in the theoretical construction, the bee's handiwork is not fine nor accurate enough to take advantage of 
them'? On the contrary, I'm afraid that he was deeply underestimating the honeybee, and this example 
provides us with a cautionary lesson about making too much of physics and too little of evolutionary 
biology. For the bee is a master craftswoman, and does the job the hard way.

I do mean craftswoman, for in the hive I fear it is the females who do all the work. They are the ones 
who collect the pollen that is used to make honey, and it is they who build the house. The male bees, 
meanwhile (the drones), do nothing of note except mate with the queen at the appropriate time. But lest 
you should consider this an indecent inequality on nature's behalf, bear in mind that the males are often 
driven away from the hive by the females once their use as a source of sperm is expended.

The workers build the hexagonal cells of the hive from wax secreted from wax glands, during a 
particular stage in their development when these glands mature to a functional form. They set about the 
job much as we might build an intricate wooden trellis: putting it in place piece by piece, making 
constant measurements with accurate tools. The activity within the hive during cell building maintains a 
constant temperature of 35°C to keep the wax malleable, and the workers push each fleck of wax into 
place in the walls, which they arrange at the correct 120° angle with respect to one another.

Exactly how these angles are measured remains uncertain, but we know at least that the bee has a 
reference direction defined by the downward pull of gravity. The combs are generally oriented such that 
two parallel sides of each cell are vertical. The direction of gravity is determined by an organ on the 
bee's neck, which allows its head to serve as a kind of plumb line for the vertical direction. This organ 
can sense whether the head is being held up against gravity (in which case it tilts towards the body) or 
hanging like a plummet below the body.

As well as setting the correct angle between the cell walls, the bees are able to measure the tilt of the 
cell along its axis. The cells are tilted at an angle of about 13° with respect to the horizontal, which is 
just enough to prevent the honey from running out.

The thickness of the cell walls, meanwhile, is machined to the incredibly fine tolerance of two-
thousandths of a millimetre. To achieve this, the bee has a set of tools for measuring the wall's 
resilience. She pushes on the wall with her mandibles, creating an indentation, and then uses tactile 
organs on the tips of her antennae to monitor the flexure of the wax sheet. This flexure depends 
sensitively on the wall's thickness, and the bee shaves off surplus wax or adds it where necessary to 
obtain the required elastic behaviour.

Finally, I might add that the bees are able to standardize the alignment of a comb as a whole by 
orienting it with respect to the Earth's magnetic field. In this way the full, many-layered comb, 
produced by thousands of bees working simultaneously and in succession, sometimes in total darkness, 
ends up as a well ordered affair rather than a chaotic assembly of uncorrelated contributions.

     



So, then, we should not too readily assume that any regularity in nature is the result of symmetric 
physical forces acting in complete isolation from any genetic programming. For honeybees are very 
clearly given a set of genetic instructions, and a set of genetically constructed tools, for making their 
elaborate store rooms. But even if in this instance D'Arcy Thompson was guilty of an overenthusiastic 
application of physical arguments, there is nevertheless a sense in which geometric imperatives have 
directed the outcome of nature's processes. For, armed with this impressive array of devices, there is no 
reason why bees could not produce cells of other equally regular geometries. Yet, as we saw at the 
beginning of this chapter, the hexagonal honeycomb is the most economic in wax and thus in labour.

Of course, the bees do not know the geometric principle that makes this so, and neither does each 
generation have to learn it by harsh trial and error. Rather, it is genetically hardwired into their instincts. 
(I suppose it is here that Fontenelle would have to search for the handiwork of his God; but evolution 
will suffice.) But the point that is relevant for the present argument is that there is no way we could 
detect the 'presence' of this geometric principle by decoding the genetic information in the bee's DNA. 
Rather, we could see that they make use of it only by watching the organism as a whole go about her 
job. Sometimes, to see more you need not to peer more closely but to take a step back. I feel sure 
D'Arcy Thompson would have no argument with that.
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3 
Waves

A wave is but a single thing, we're told; but from its hue you'd think it was a mixtureflowers and snow! 
Ki no Tsurayuki 
The Toas Diary

Amongst the sprawling modern myth of Thomas Pynchon's Gravity's Rainbow is a fleeting reference to 
a man who tried to make patterned paint. The reference is clearly meant to document a quixotic, absurd 
ambition, for we all know that paint does not unmix into the separate pigments that went into its making.

But life is always stranger than we think. Take a look at Plate 4. Pynchon's ill-fated entrepreneur would 
have done well to follow the recipe that produced these blue and yellow stripes; for this is indeed a 
stable pattern that emerges spontaneously from a mixture of chemical compounds.

This brew of chemicals is just one of many that have been found to generate spatial patterns. Some of 
these, like that in Plate 4, are stationary; others are dynamic, releasing waves of colour to a pulse as 
regular as a clock's tick. Their crucial characteristic, however, is that the elements of the patternits 
symmetry, its length scale, its rhythmsare set not by any external agency but by the internal dynamics of 
the chemical system, by the rates at which the molecules react with one another and travel through the 
medium in which they are dissolved.

     



If you are surprised that a mixture of chemical compounds can form stripes or beat out a pulse, you are 
not being naive. Indeed, when rhythmic behaviour was observed in a chemical system in the 1920s, 
most chemists dismissed the observations out of hand as impossible. The idea seemed to contravene a 
physical law that scientists believed to be unassailable. I will relate in this chapter the tale of how 
chemical pattern formation has made the difficult journey from a contemptuously dismissed oddity to 
an exciting new field of research. It is a shame that the Russian biochemist Boris Pavlovitch Belousov 
did not live to see this story unravel. For initiating the field of dynamical pattern formation in 
chemistry, all Belousov got for his troubles during his lifetime was the derision of his peers.

Travelling waves

Off balance

Belousov had not intended to create such peculiar and controversial effects in his chemical reaction; 
rather, he had devised the mixture with the intention of mimicking some of the aspects of the metabolic 
biochemical process called glycolysis, in which the energy in glucose is liberated as enzymes break it 
down. He found, however, that this mix of compounds did not seem to settle down into a steady, 
equilibrium state. Instead, it kept changing colour with uncanny regularity, from clear to yellow and 
back again. I don't know if that will sound terribly surprising to anyone who has not studied chemistry, 
but you might get some indication of how this would once have seemed to a chemist if you imagine 
pouring cream into your coffee and finding it repeatedly dispersing to a uniform brown and then 
separating out again into a white swirl in the black liquid. Not just once (which would be odd enough), 
but again and again, at regular intervals.
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There is a scientific way to express our intuition about such seemingly one-way processes, and it was 
the apparent violation of this principle that upset Belousov's contemporaries so much. All physical 
processes have a preferred direction, be they the way an apple falls from a tree to the ground, the way 
iron goes rusty or, indeed, the way cream disperses in coffee. The arrow of time is directed by the 
condition that the total entropy of the Universecrudely speaking, its total amount of disordermust 
increase. This is the second law of thermodynamics, which is the science of change.*

You can probably see that a uniform dispersion of particles of cream throughout a cup of coffee 
corresponds to a more disordered state than one in which some well-defined pattern of cream and coffee 
persists in the cupthe positions of the cream and the coffee are more randomized when the two are fully 
mixed. For the rusting of iron, or for any other chemical reaction, the direction of entropy increase is 
not so obvious, but it can be deduced readily enough by making measurements of the heat flow and 
pressure or volume changes during the reaction. The main point is that there is a preferred direction, a 
preferred equilibrium state. Reactions cannot go first towards one end-point and then back again, 
because in only one of these directions can entropy increase.

Or so the scientific establishment thought in 1951, when Belousov tried to publish his finding. After 
being snubbed by the journals to which he sent his papers, the Russian biochemist was forced 
eventually to publish the work in an obscure conference proceedings devoted to another topic entirely. 
Outside the Soviet Union, it remained virtually unknown.

Had Belousov only known about it, he could have taken some solace from the fact that others before 
him had anticipated, and even seen, oscillating chemical reactionsand been met with similar 
indifference or disbelief. In 1910 the mathematician Alfred Lotka published a paper describing a 
theoretical chemical reaction that underwent damped oscillationsthe direction changed back and forth in 
a periodic manner, but these changes gradually died out and the system settled into a steady state. In 
1920 he showed that a related hypothetical reaction could sustain oscillations indefinitely. The Italian 
biologist Vito Volterra showed in the 1930s that Lotka's scheme could be used to model fluctuations in 
fish populations, since it turns out that the same equations that describe reacting chemicals can provide 
a crude description of interactions between a predator population and its multiplying prey population. I 
will return to this in Chapter 9.

Lotka's work made little impact on the chemistry community at the time. One of the few to appreciate 
its significance was William Bray of the University of California at Berkeley, who found in 1921 that a 
chemical reaction between hydrogen peroxide and iodate ions, which generates oxygen and molecular 
iodine, exhibits oscillations in the amount of these products generated over time. Even though Bray 
referred to Lotka's work in his own report, he was told the same as Belousov would be 30 years 
lateryour claims violate the second law of thermodynamics, so they must be the result of poor 
experimental technique.

     



But during the 1960s, biochemist Anatoly Zhabotinsky, then still a graduate student of Moscow State 
University, began to take Belousov's results seriously. His careful experiments finally persuaded others 
that the effect was real. Zhabotinsky found a combination of compounds that generated a more 
pronounced colour change, from red to blue, by adding an indicator whose colour depends on the 
relative concentrations of metal ions involved in the reaction. In Appendix 2 I have given recipes both 
for this version of the reaction, which has become known as the Belousov-Zhabotinsky (BZ) reaction, 
and for a related oscillating reaction in which a colour change from yellow to blue is induced by the 
presence of starch, which turns blue when iodine is produced in the reaction. These are now called 
clock reactions, for obvious reasons (but don't set your watch by them).

By the end of the 1970s, the BZ reaction was an accepted and at least partly understood part of textbook 
chemistry, and in 1980 Belousov and Zhabotinsky (together with colleagues Albert Zaikin, Valentin 
Krinsky and Genrik Ivanitsky) were awarded the Lenin Prize for their discovery. But Belousov had died 
10 years earlier, and so never saw his work reach wide acceptance and recognition.

How, though, can we reconcile the oscillatory behaviour with the second law of thermodynamics? 
Broadly

*In the previous chapter I suggested that the direction of change is determined by free energy, which 
must always decrease. This is entirely equivalent to the condition that entropy must increase, but is 
simply more convenient: free energy (the amount of mechanical work that can be extracted from a 
system) can be readily measured, whereas the total entropy of the Universe can't. The definition of free 
energy is in fact chosen precisely so as to make thermodynamics an experimentally accessible 
enterprise.
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speaking, we just need a little patiencefor the oscillations do not last for ever. If we leave it for long 
enough, a colour-changing beaker of the BZ mixture will at last settle down into a uniform and 
unchanging steady state. There is after all a stable equilibrium for the reaction, and it is one in which the 
overall entropy of the beaker's contents and their environment has increased, just as the second law 
requires. It is just that the mixture takes a strange and circuitous route in getting there.

The fact is that the second law, like all of the thermodynamics developed during the late nineteenth and 
early twentieth centuries, pertains only to equilibrium states. It speaks only of end-points. And those 
were, for a long time, all chemists were really interested in. From a certain perspective, this is 
understandable. If you are interested in making a particular chemical compound, the first thing to ask is 
whether it is thermodynamically possiblewhether entropy will increase in transforming the starting 
materials to the end product. If the answer is no, you can forget about it.

But equilibrium is a dull place to be. Nothing happens there. If the Universe were itself at 
thermodynamic equilibrium, it would be a lifeless place pervaded by a uniform, dim glow of just a few 
degrees above absolute zero. Just about every phenomenon that interests us is an out-of-equilibrium 
processlife, to mention one. All human activity, from thinking to shopping to sleeping, takes place in a 
state that is far from thermodynamic equilibrium. However we may think we hanker after equilibrium 
in our lives, we tend to do all we can to avoid it in the truest sense, since genuine equilibrium is death.

Our planet is itself far from equilibrium. Why else would the weather be so unpredictable? The seas, the 
skies and the ground beneath us are all in constant motion, in a manner discussed further in Chapter 7. 
The atmosphere is a complex chemical brew whose relative constancy of composition is not at all an 
indication of a true equilibrium state. Rather, this composition is maintained actively, by cycling of 
carbon, oxygen and nitrogen and other elements between the air, living organisms and the geological 
environment. It is only because of the presence of life on Earth that our planet has the composition that 
it does: the non-equilibrium rhythms of life maintain an oxygen content that would be extremely 
peculiar on a dead planet. If aliens were ever inclined to monitor the Earth for signs of life, they'd have 
no need to look for cities, roads or radio transmissionsone glance at the composition of the atmosphere 
(something that can in principle be done light years away) would give the game away.

The theme of rich behaviour in systems out of equilibrium is one that will recur many times throughout 
this bookit is one of the unifying themes of pattern formation, and has been developed into a formal and 
exact science. For now, I wish to make a crucial point about such systems: they do not come for free, 
but need a supply of energy. Without this, they will decaybe it slowly or quicklyto a bland equilibrium.

All the same, there is a kind of magic in this transaction. You put in featureless, indiscriminate energy, 
and the out-of-equilibrium system uses it to organize itself into patterns that can astonish. This is not 
quite form for free, but it is nevertheless form from formlessness.

     



To maintain the out-of-equilibrium processes of life and of our planet's shifting meteorology and 
climate, the energy comes almost entirely from the Sun, in the form of heat and light. A little comes 
from the planet's hot interior, energy from radioactive decay or left over from the fiery process of planet 
formation four-and-a-half billion years ago. To sustain indefinitely the oscillations of the BZ reaction, 
we also need a source of energy. In practice this supply can take the form of a constant throughflow of 
reactants and products: the reaction can be conducted in a stirred vessel in which fresh reactants are 
constantly supplied and end products withdrawn. Such vessels are called continuous stirred-tank 
reactors (CSTRs). Living organisms can be considered as approximations to CSTRs insofar as they 
(we) continually (though perhaps not continuously) ingest food (fresh material for metabolism) and 
excrete waste products. In this way we sustain our out-of-equilibrium (and sometimes oscillatory) 
biochemistry.

There is, then, no reason to fear for thermodynamics in the BZ reaction. But how is it that the reaction 
keeps changing its mind while it remains far from equilibrium? To answer that, we need to look at a bit 
of real chemistry.

The chemical seesaw

The key to the BZ reaction is the chemical process known as catalysis, in which some chemical 
compound speeds up the rate of a chemical reaction without itself being changed by the process. The 
majority of industrial chemical processes use some kind of catalyst to accelerate product 
formationotherwise, the reactions would be too slow to be economically viable. And almost all 
biochemical reactions in the body are mediated by natural protein catalysts called enzymes.

A catalyst interacts with the reacting molecules so as to help them become transformed. When special 
tech-
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niques are used to see the intermediate steps in a catalytic reaction, we find that the catalyst is not at all 
aloof from the actionwhile the reaction remains out of equilibrium, it might take on a new, ephemeral 
structure, but once the reaction has gone to completion, the catalyst is reformed as if untouched.

What makes the BZ reaction different from most catalytic reactions is that it makes its own catalyst. 
That is to say, one of the product molecules acts as a catalyst to speed up the formation of more 
product. This is an example of a positive feedback process, and left to its own devices it will simply 
makes things go faster and faster. A nuclear explosion is also an example of positive feedback, as 
indeed are most chemical combustion and explosion processes, and all demonstrate that this kind of self-
catalysis, or autocatalysis, literally blows up out of control.

Clearly the BZ reaction does not blow up out of control, and the reason for that is that there is a 
competing process that kicks in to stop the autocatalytic reaction from going to completion (that is, 
reaching equilibrium). Because of the positive feedback, an auto-catalytic process tends to use up its 
supplies very quicklyeven in a CSTR, it consumes the reactants faster than they can be provided. So the 
concentration of reactants in the vessel plummets, and the concentration of products surges. Since one 
of these products is coloured, the mixture of chemicals takes on that colour.

Once the concentration of reactants gets low enough, the autocatalytic process runs out of steam, and 
this allows the competing reaction (which is not auto-catalytic) to take over, and the mixture starts to 
generate a different product, with a different colour. In time, this process too consumes nearly all of its 
starting materials, and the autocatalytic process kicks back in. Crucially, each of these two processes 
regenerates some of the compounds needed to get the other started. So while one reaction holds sway, it 
is paving the way for the other to take over.

Deducing the various steps of the BZ reaction proved to be a complicated and difficult task, since they 
involve at least 30 different chemical species. Most Western scientists first learned about the BZ 
reaction in 1968 at an international symposium in Prague, and by 1972 Richard Field, Endre Körös and 
Richard Noyes at the University of Oregon had put together a somewhat simplified model for the 
reaction mechanism, which still retains its essential characteristics. Two years later, Field and Noyes 
pared down this model to an even simpler one, dubbed the Oregonator, in which there are just five 
distinct steps and six different chemical species. I outline this scheme in Box 3.1; I don't think you'll 
find that any great knowledge of chemistry is required to follow it, but because I know how readily 
some people's eyes glaze over at the sight of chemical formulae of any sort, I shan't inflict it on the 
main text. For what comes later, you'll simply need to know the following.

     



The reaction has two branches, A and B: on each branch, a chemical reaction converts certain 
electrically charged chemical species (ions) to others. The change in colour between blue and red 
signifies a switch from one branch to the othera change-over in predominance of the chemical processes 
taking place. The 'input' to the reaction (the raw material, as it were) is bromate ions, denoted BrO3

-. 
The 'output' (the end product) is BrO- ions. So to sustain the oscillations indefinitely, we need to keep 
feeding the system with BrO3

- and removing BrO-.

We can see the oscillations visibly because of the colour change; but it is often more useful to depict 
them in terms of the changes in concentration of the various intermediate ions in the reactionthe ones 
that come and go as BrO3

- gets consumed and BrO- produced. One such is the bromide ion, denoted Br-. 
Initially, the concentration of bromide in the mixture is high. As Branch A proceeds, the concentration 
falls, and it is this decline that eventually allows Branch B to take over. But subsequently, another 
reaction (eqn 3.5) boosts the concentration of Br- back up again. Plotted as a graph, we see these 
variations as a series of regular oscillations (Fig. 3.1). Because of this periodicity in time, Arthur 
Winfree of the University of Arizona calls the BZ reaction a 'time crystal'. (Note, however, that there is 
an initial 'induction period' before the mixture settles down to regular oscillations.)

Fig. 3.1 
The oscillations of the Belousov-Zhabotinsky reaction can 

be revealed by monitoring the concentration of bromide ions in 
the mixture, which rises and falls periodically through time.

Meanwhile, the concentration of another intermediate ion, BrO2
-, also rises and falls, with the same 

periodicity as the concentration of Br- but with the
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peaks out of step. This is because the production of BrO2
- is greatest while Branch B holds sway, 

whereas the concentration of Br- is greatest just before the switch back to Branch A. One way of 
depicting both of these rising and falling concentrations at the same time is to plot one against the other 
(Fig. 3.2). What we see is a closed loop: as time progresses, the concentrations trace out a repetitive 
circuit of the loop. The reaction will typically be initiated from a point on the graph that lies off the 
loop, but is quickly drawn onto itthis transient pathway onto the closed loop corresponds to the 
induction period in Fig. 3.1.

Fig. 3.2 
Another way to portray the chemical oscillations 

is to plot changes in the concentration of one 
substance (say bromide Br-) against another (BrO2-). 

This plot traces out a closed loop, called a limit cycle.

The loop is called a limit cycle, and is a robust characteristic of the reaction. That is to say, for a given 
set of conditions (temperature and flow rate in the CSTR), any initial point in the plot of the two 
concentrations will be drawn onto the limit cycle, and the subsequent evolution of the system will be 
restricted to an endless circulation of the loop, so long as the conditions remain unaltered. You could, if 
you like, regard the limit cycle as a kind of robust 'form' that the BZ reaction takes in this abstract 
mathematical space. These stable forms are called attractors.

Going places

The oscillating BZ reaction thus has a characteristic pattern of sorts, as depicted by the oscillations in 
Fig. 3.1 or the limit cycle of Fig. 3.2. But these are patterns in time, whereas on the whole I shall be 
talking in this book about patterns in spacethe kind of pattern that you can see at a glance. The BZ 
reaction can generate these too. The intricate spatial patterning of the BZ reaction was the second shock 
it held in store for theorists; says Arthur Winfree, 'Its antics turn out to resemble nothing foreseen in the 
thirty years devoted to the subject by theoretical chemists and biologists'.

     



Above I have considered only the case of a well-mixed reaction, in which an automatic stirring device 
ensures that the concentrations of the component species, while varying in time, remain uniform at any 
instant throughout the reaction vessel. But if the reaction is carried out without stirring, there will 
inevitably be small variations in concentrations from place to place. This is true for any unstirred 
chemical reaction, but in general it doesn't lead to anything remarkablethe rate of the reaction (which 
usually depends on the concentrations of some or all of the reactants) then simply varies slightly from 
place to place too.

For the BZ reaction, however, small variations can make a big difference. This is because the reaction 
has an autocatalytic component: the positive feedback inherent in this process has the effect of blowing 
up minor differences into major ones. It means, in particular, that some regions of the mixture can be 
flipped onto one branch while others remain on the other branch. We then find a mixture in which the 
colour varies from place to place.

These colour variations do not take the form of a random patchwork of red and blue. Rather, we see 
complex patterns of astonishing beauty: in a shallow dish of the BZ mixture, concentric rings or 
twisting spirals of red and blue are produced, which radiate outwards like ripples. The chemical 
oscillations take the form of travelling chemical waves (Fig. 3.3 and Plate 5).

Fig. 3.3 
Spiral waves in the unmixed BZ reaction. 

The waves continuously expand and collide. 
(Photo: Art Winfree, University of Arizona.)

These patterns were first described by the German scientist H.G. Busse in 1969, although their true 
nature as chemical waves was perceived the following year by Zhabotinsky and his colleague Albert 
Zaikin. The pat-
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Box 3.1: The Oregonator

If the BZ reaction is allowed to go to completion (to reach thermodynamic equilibrium), the overall process is one in 
which an organic compound, malonic acid, is converted to a bromine-containing variant, bromomalonic acid, by 
reaction with bromate ions, BrO3

–. (Here the chemical formula connotes that the iona negatively charged 
moleculecontains one bromine atom and three oxygen atoms.) This process is catalysed by certain metal ions, either 
doubly charged iron (Fe2+) or triply charged cerium (Ce3+).

But curiously, the Oregonator model does not trouble itself at all with the conversion of malonic acidthis compound 
does not feature amongst the six involved in the reaction scheme. This is because the Oregonator is a description of the 
non-equilibrium states of the reaction, those states that flash alternately red and blue, whereas the malonic acid enters 
into the scheme only once all the interesting autocatalysis has gone through its paces, and is spat out of the end (in 
brominated form) as a dull product of the overall equilibrium.

This transformation is the end product of the non-autocatalytic branch of the scheme. The Oregonator includes this 
branch only up to an earlier stage in the full sequence of transformations. The initial reactants on this branch are BrO3

– 
ions and bromide (Br–) ions, both present in the general recipe (Appendix 2). These ions react to generate the ions 
BrO2

– and BrO–:

BrO3
– + Br– → BrO2

– + BrO–.                                (3.1)

If the chemical formulae look daunting here, just bear in mind that all equation 3.1 is showing is the transfer of an 
oxygen atom from BrO3

– to Br–. The next step on this branch involves a reaction between the BrO2
– produced in 

equation 3.1 and more Br–:

BrO2
– + Br– → 2BrO–.                                            (3.2)

Again, just think of this as the transfer of an oxygen atom from BrO2
– to Br–. It's the BrO– produced in these steps 

that ultimately goes on to convert malonic acid to bromomalonic acid, but we don't need to worry about that.

Now, the rate at which these two transformations occur depends on the concentration of the reactants (the compounds 
on the left-hand side of the arrow). Simply speaking, the more there are of these around, the better are their chances of 
encountering one another and reacting. So initially, when there is a lot of Br– in the mixture, the rate is fast. But as the 
Br– gets consumed, the rate starts to decline.

That is when the second, autocatalytic branch of the Oregonator comes into play. For it happens that BrO2
– ions, 

produced in equation 3.1, can react with BrO3
– (one of the initial reactants, remember) to generate two molecules of 

BrO2
–. This reaction can take place only in the presence of the metal ions (Fe2+ or Ce3+)the function of these ions is to 

donate an electron (a negatively charged particle) to the reaction, which leaves them with an extra positive charge. So 
the metal ions get converted to Fe3+ or Ce4+, respectively:

BrO2
– + BrO3

– + Fe2+ → 2BrO2
– + Fe3+.              (3.3)

     



You might notice that this reaction doesn't quite add upthere are five oxygen atoms on the left-hand side but just four 
on the right. It is bad practice to write down 'unbalanced' equations like this, but I hope you'll excuse itI've done so to 
keep things simple. In practice the extra oxygen is taken up by hydrogen ions (H+) to make water (H2O). The important 
thing to notice is that two BrO2

– ions are produced from one. This is what gives rise to the autocatalysis, because the 
rate of the reaction depends on the concentration of BrO2

– (it appears as a reactant on the left-hand side). As the 
reaction progresses, more and more BrO2

– is produced, so the reaction goes faster and faster.

The BrO2
– produced in equation 3.3 goes on, however, to react furthertwo of these ions exchange an oxygen atom:

2BrO2
– → BrO3

– + BrO–.                                       (3.4)

Now we can see how, out of equations 3.1 to 3.4, oscillations in the concentration of chemical species in the mixture 
arise. Equations 3.1 and 3.2 comprise the first branch of the Oregonator schemecall it Branch A. Initially, this reaction 
proceeds through to the completion of equation 3.2, which ultimately results in the formation of bromomalonic acid. 
The cocktail of BZ reagents includes an indicator that turns red in the presence of Fe2+ ions, and because these are 
added to the initial mixture (although they do not partake in Branch A), the mixture starts off red.

You can see that equation 3.1 produces BrO2
–, which could in principle react with the BrO3

– as in equation 3.3. But it 
turns out that BrO3

– reacts faster with Br– (eqn 3.1) than with BrO2
– (eqn 3.2), so the former dominates. Eventually, 

however, the concentration of Br– falls so farbecause it is consumed in equations 3.1 and 3.2that the rate of equation 
3.1 slows down significantly. Then equation 3.3 has a chance to take over. Once it does so, Branch B (eqns 3.3 and 
3.4) rapidly come to dominate, because equation 3.3 is autocatalytic. Moreover, it converts Fe2+ to Fe3+, and the 
indicator turns blue in the presence of the latter.

If this were all there is to the Oregonator, we'd get just one oscillationa switch from blue to red. But there is a final 
step, which switches the conditions back to those that favour the dominance of Branch A. In this step, a rather complex 
set of reactions between Fe3+ and other bromine-containing compounds results in the formation of both Fe2+ (turning 
the indicator red again) and plenty of Br– (allowing equation 3.1 to reassert itself):

Fe3+ + bromine compounds → Fe2+ + Br–.           (3.5)

(I've left this equation so vague that you can't tell if it's balanced or not, again for the sake of simplicity.)

Equation 3.5 completes the Oregonator, and allows the reaction to flip back from Branch B to Branch A. Then the 
whole cycle repeats itself. To sustain the oscillations in a CSTR, we need to keep supplying BrO3

– and removing 
BrO–you'll notice that the latter appears only as a product on the right-hand side of the reactions, whereas all the other 
species appear as both reactants and products.
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terns are, as we shall see, not unique to the BZ reaction but are generic to a whole class of non-
equilibrium systems in chemistry and beyond. They can be captured most easily in a BZ mixture by 
infusing it into a gel, which slows down the rate at which the chemical species can diffuse through the 
medium and so stabilizes the chemical waves. The patterns are clearly an example of symmetry 
breaking: the uniform reaction medium breaks up into complex structures that manifest a degree of 
organization in space and time. I explain how to create them in Appendix 3.

We can imagine readily enough that a fluctuation in the relative concentrations of the reacting species 
might shift the reaction from Branch A (red) to Branch B (blue). But why then does this disturbance 
radiate outwards as a wave with a specific period?

As the autocatalytic cycle of Branch B takes hold, its influence spreads into the surrounding medium 
and the blue region expands from its origin. But as the wave-front advances, the cycle is played out 
behind it: the Fe3+ produced by equation 3.3 partakes in equation 3.5, regenerating the Fe2+ and Br- 
needed for Branch A. In effect, the red regions to either side of the wavefront are then no longer 
equivalent: beyond the wavefront, the medium is ripe for 'colonization' by Branch B, whereas behind 
the wavefront this branch has run itself to exhaustion and Branch A has begun a new cycle, which is 
completed when the next wavefront arrives.

This non-uniform BZ mixture is what physicists call an excitable medium. Such a medium can change 
its state locallyswitching from the red Branch A to the blue Branch B, for instancewhen some stimulus 
(here the concentrations of chemical species conducive to sparking off Branch B) reaches a certain 
threshold. But, crucially for formation of these complex patterns, the medium goes through a 'refractory' 
period once it has been excited. During this time, it cannot be excited again. It is this refractory period 
that enables steady, periodic oscillations to be set up, giving rise to intricate spatio-temporal patterns.

This mechanism accounts for the target patterns; but what is happening with the spirals? These are 
basically a mutation of the targets, generated by a perturbation to the expanding circular waves. Such 
perturbations can happen by accident if, for example, the wavefront encounters some obstacle in the 
reaction medium; or they can be introduced on purpose, for instance by blowing air onto the wavefront 
through a pipette. Disturbances like this might break apart the circular wavefront, and the fragmented 
ends become 'rotors'rotating centres of excitation from which the arm of the spiral wave emanates (Fig. 
3.4a). Because a broken wavefront must have two ends, spiral waves are commonly formed in pairs that 
rotate in opposite directions. German chemists Stefan Müller and O. Steinbock have shown that a laser 
beam can be used to marshal several rotors together to create multi-armed spirals in a modified BZ 
reaction mixture that is sensitive to light (Fig. 3.4b).

     



Fig. 3.4 
(a) Spiral waves develop in the BZ reaction from a 

disturbance that breaks up a circular wavefront of the 
target pattern. The two broken ends curl into 

counter-rotating spirals. (b) Multi-armed spirals can be 
created by bringing several rotors together. 

(Photo: Stefan Mülle University of Magdeburg.)

I explained in the first chapter that one of the goals of studies in pattern formation is to reduce a pattern-
forming system to its barest essentials, so that we can start to see which patterns are 
universalcharacteristic of certain classes of systems rather than dependent on the fine details. For the 
BZ reaction, even the simplified
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Oregonator scheme is quite a complicated one to deal with mathematically, although Richard Field and 
co-workers have subsequently managed to concoct a theoretical scheme that includes just three 
independent variables rather than the six concentrations of chemical species in the original Oregonator, 
while still capturing most of the essential behaviour. But to model a non-uniform BZ medium using one 
of these chemical schemes, with their menagerie of mutually interacting compounds, is a highly 
computer-intensive task that would not tell us much about the universality of the patterns formed.

Fig. 3.5 
The wave patterns of the BZ reaction can be mimicked by 
a model that takes no account of the chemical specifics, 

but simply presents the reaction medium as a lattice of cells 
that can be excited by receiving stimuli from their neighbours. 
(Images: Mario Markus and Benno Hess, Max Planck Institute 

for Molecular Physiology, Dortmund.)

It is possible to reproduce these patterns, however, in a model that includes no chemistry whatsoever. In 
this model the flat reaction medium is represented by a two-dimensional checkerboard lattice of little 
compartments or cells, each of which interacts with those around it. To model the properties of an 
excitable medium, each cell can exist in three states: receptive (meaning that it is liable to become 
excited), excited and refractory (which means that it is recovering from a period of excitation). When in 
the excited state, the cells deliver a stimulus to those around it. If any receptive cell receives a 
sufficiently large stimulus from its neighbours (equivalent, in the BZ reaction, to receiving a certain 
influx of diffusing chemical species of a certain type), it too becomes excited. But once excited, a cell 
eventually enters the refractory state, during which time it remains unresponsive to stimuli regardless of 
what its neighbours are up to.

     



This kind of model is called a cellular automaton, reflecting the fact that the cells are mindless and 
respond to stimuli in a kind of automatic, kneejerk way. Cellular automata were devised in the 1960s by 
mathematicians John von Neumann and Stanislaw Ulam, who were interested in modelling self-
reproducing entities; I will say more about them in Chapter 9. For now it is enough to say that they 
represent a very general, computationally tractable way to model complex interacting systems. The 
behaviour of the system as a whole depends on the rules that govern the interactions between 
neighbouring cells. In the case of the cellular excitable medium, travelling spiral and target patterns 
arise when excitations are initiated at a few points (Fig. 3.5). Moreover, the wavefronts annihilate each 
other in just the same way as they do in the BZ reaction. Because these patterns are formed without 
including any ingredients of the specific chemical reactions taking place, we should expect them to be 
characteristic of any medium that is excitable. Notice too that the cellular automaton model does not 
include any description of the oscillatory nature of the BZ reaction; rather, it is the excitable nature of 
the reaction medium that creates the spatial patterns.

I've talked so far about BZ mixtures in thin layers, which are essentially two-dimensional. In three 
dimensions the patterns become more complex. The simplest is a scroll wave, in which a two-
dimensional spiral wave is drawn out into a kind of curled-up scroll (Fig. 3.6a). The question naturally 
arises of what happens at the ends of a scroll, and the answer is that commonly they join up to form a 
scroll ring. Cross-sections of a scroll ring in the plane of the ring look like concentric circlestarget 
patternswhile those perpendicular to the ring appear as spiral waves curling in opposite directions. 
Scroll rings have been seen in the laboratory in BZ media since the 1970s. Arthur Winfree and co-
workers have made theoretical investigations of more complicated scroll rings in which the scroll 
acquires a twist around the ring: this leads to complex patterns of wavefront collision and annihilation 
(Fig. 3.6b).

Frontal assault

There's an important refinement to be made in the relation between a chemical travelling wave and the 
pulsating target and spiral patterns of the BZ reaction.
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Periodic pulsations can arise only in a medium that is excitable, but a propagating wavefront is a rather 
more common beast, something that could arise for instance from a single, one-off disturbance.

Fig. 3.6 
The patterns in a three-dimensional BZ mixture are more 

complex. One of the simplest, the analogue of a 
two-dimensional spiral, is the scroll wave (a), which can 
curl up on itself to form a scroll ring. Twisted scroll rings 

have more complicated structures (b). (Images: Arthur Winfree, 
University of Arizona.)

     



The idea that chemical reactions can develop travelling waves goes back a long waybefore, even, the 
theory of oscillating reactions (which, as we saw, started with Lotka in 1910). At a meeting of German 
chemists in Dresden in 1906, Robert Luther, director of the Physical Chemistry Laboratory in Leipzig, 
presented a paper on the discovery and analysis of propagating chemical wavefronts in autocatalytic 
reactions. Sceptics were apparently quelled by Luther's demonstration of the phenomenon before their 
very eyeshe showed chemical waves in a reaction between oxalic acid and permanganate ions, projected 
onto a screen in front of the audience.

Luther suggested that the waves arose from a competition between an autocatalytic reaction and the 
process of diffusion that transports the chemical reagents through the reaction medium. Diffusion is a 
random processmolecules of the reacting molecules are buffeted from all directions by collisions with 
molecules of the surrounding solvent (generally water), and as a result they execute a convoluted, 
meandering path often likened to a drunkard's walk. Despite this randomness, the molecules do actually 
get somewhere rather than just meandering a little around their initial positionsbut the direction they 
take is random, and the distance travelled from some initial location increases only rather slowly as time 
progresses. (Whereas the distance covered by walking along a straight path at constant speed increases 
in direct proportion to the time elapsed, the distance travelled by a random walker is proportional to the 
square root of the elapsed time.) Random walks owing to diffusion were much studied at the beginning 
of the century, notably by Albert Einstein.

When a chemical reaction is conducted under conditions where the concentrations are not maintained 
uniformly throughout the medium by vigorous mixing, diffusion becomes important, since it limits the 
rate at which a reagent that has become used up in one region can be replenished from elsewhere to 
sustain further reaction. This is particularly important for autocatalytic reactions, since they can use up a 
reagent locally at an extremely rapid rate. If diffusion cannot keep pace with this, the reaction runs into 
problems. This is precisely the situation that I described earlieralthough not quite in these termsin the 
vicinity of a wavefront in the BZ reaction. The inadequacies of diffusional transport create the 
refractory period in the medium just behind an advancing wavefront, where the reaction has exhausted 
itself but has not yet been replenished with fresh reagents. The poorly mixed BZ reaction is thus an 
example of a so-called reaction-diffusion system, which is now clearly recognized as one of the most 
fertile generic pattern-forming systems that we know of.

After Luther's pioneering studies, the theory of reaction-diffusion systems was placed on a firm 
mathematical footing by the eminent population biologist Ronald Fisher and by the Russian 
mathematician Andrei Kolmogoroff and co-workers, both of whom published seminal works in 1937. 
Fisher was interested
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in reaction-diffusion processes for modelling the spread of an advantageous gene in a population, not 
with their manifestation in chemistrya curious repetition of Volterra's assimilation of Lotka's ideas on 
oscillating chemical reactions into mathematical biology earlier in the century. It is almost as if 
chemists were for decades unwilling to face up to the existence of these complex and surprising 
phenomena in their own field!

All the same, studies of waves in chemical media were conducted in parallel with, but independently 
from, work on oscillatory reactions since the beginning of the century. In 1900 the German physical 
chemist Wilhelm Ostwald described travelling pulses in an electro-chemical system. When he used a 
zinc needle to prick the dark coating of oxidized iron on the surface of an iron wire immersed in acid, 
Ostwald saw a colour change that propagated away from the point of contact at high speeds. From the 
1920s onwards, many researchers studied this simple system as an analogue of nerve impulses (which 
are also propagating electro-chemical waves), and in the early 1960s Jin-Ichi Nagumo and co-workers 
in Tokyo observed spiral waves on the surface of a two-dimensional grid of iron wire subjected to this 
treatment. But this work, published in Japanese, met the fate so common for studies that are not 
reported in the English languageit was ignored in the West, until Zhabotinsky's efforts had established 
the significance of this sort of wave activity.

The ripples spread

The BZ reaction is by no means unique: several other chemical mixtures share the same general 
features of autocatalysis, feedback and competing reactions that lead to excitable and oscillatory 
behaviour. It has been seen too in many biochemical processes, including, rather pleasingly, the 
glycolytic cycle of metabolism that Belousov had first set out to emulate. Similar effects crop up in 
some corrosion and combustion reactions. When these processes take place in poorly mixed conditions, 
spatio-temporal patterns can arise whose forms are attractively diverse.

Fig. 3.7 
Oscillations in the reaction of carbon 

monoxide and oxygen on a platinum surface. 
The reaction produces carbon dioxide.

     



Fig. 3.8 
Target (a) and spiral (b) waves in the reaction of carbon monoxide and oxygen 

on platinum. The images are all several tenths of a millimetre across. 
(Photos: Gerhard Ertl, Fritz Haber Institute, Berlin.)

One of the functions of a catalytic converter in automobiles is to reduce emissions of carbon monoxide 
(CO), a poisonous gas, in the exhaust fumes. This is done by combining CO with oxygen gas in the 
converter to create carbon dioxide (CO2), a reaction that is
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speeded up by the use of a metal catalyst consisting of a mixture of rhodium and platinum. The reaction 
takes place on the metal surface, where the chemical bonds in the reactant molecules are broken or 
loosened up. So the reaction between CO and oxygen on a platinum surface is of considerable 
technological interest. There is no obvious mechanism for autocatalysis here, howeverthe product is 
simply CO2, which is not then involved in subsequent reactions.

So it was a surprise to Gerhard Ertl and colleagues at the Fritz Haber Institute in Berlin when they 
found oscillatory behaviour in the rate of this reaction in 1985 (Fig. 3.7). And when in the early 1990s 
the Berlin group developed a new kind of microscope to look at the way that the CO and oxygen were 
distributed on the surface, they saw spiral and target patterns just like those of the BZ reaction, albeit 
just a fraction of a millimetre across (Fig. 3.8). The bright regions in this figure correspond to parts of 
the metal surface covered with CO molecules, and the dark regions are richer in oxygen atoms. Ertl's 
team deduced that the molecules of CO that became stuck to the metal surface were altering its 
structure, and thereby its catalytic behaviour, in a way that introduces feedback into this apparently 
simple reaction.

Fig. 3.9 
(a) The atomic structure of the 1 × 1 surface phase of platinum. 
(b) In a vacuum, this surface will rearrange itself to the 1 × 2 

reconstruction.

Platinum metal is a crystal: its atoms are packed together in a regular array like oranges on a fruit stall. 
On a clean platinum surface exposed by cutting through the metal, the arrangement of atoms depends 
on the angle at which the cut is made; for one particular cleavage plane, the surface looks like that in 
Fig. 3.9a. This is called the {110} surface, and the arrangement of surface atoms is termed the (1 × 1) 
phase. In a vacuum, the top-most atoms of a freshly exposed platinum (1 × 1) surface will 
spontaneously shift their positions to create a different surface structure with a lower surface energy. 
This is called the (1 × 2) phase, and has a 'missing' row of surface atoms (Fig. 3.9b). The rearrangement 
process is called a surface reconstruction.

     



If CO molecules become attached to the reconstructed (1 × 2) surface of platinum, the balance of 
energies gets shifted around, and the original (1 × 1) phase becomes more favourable. This means that, 
as the reaction between CO and oxygen atoms on the platinum {110} surface proceeds, the surface does 
not remain passive but shifts its structure between the (1 × 2) and (1 × 1) phases, depending on the 
amount of CO on the surface.

Now the point is that these two surface phases have different catalytic abilities: the (1 × 1) phase is 
considerably better at speeding up the reaction with oxygen than is the (1 × 2) phase. We can now see 
the possibility of some subtle and complex interactions, which can give rise to feedback. The more the 
bare (1 × 2) surface becomes covered in CO, the greater the extent of reconstruction to the (1 × 1) phase 
and the more the catalytic potential of the metal is enhanced. But as the reaction proceeds, the CO gets 
converted to CO2, which departs from the surface and leaves behind a bare (1 × 1) surface. On its own, 
this prefers to revert to the reconstructed (1 × 2) phase.

Gerhard Ertl, David King at Cambridge University, and their co-workers have devised a six-step 
reaction scheme that is akin to the Oregonator of the BZ reaction, which incorporates these various 
processes for reactions on platinum surfaces. It includes an autocatalytic process in which the reaction 
between CO and oxygen on the (1 × 1) surface creates new 'bare' catalytic sites. They have found that 
this scheme produces oscillatory behaviour of the various reaction parameters, such as the rate of CO2 
formation or the surface coverage of CO (Fig. 3.10). Like the Oregonator, the process jumps between 
two branchesessentially a low-reactivity branch involving the (1 × 2) surface and a high-reactivity 
branch involving the (1 × 1) surfacewith the autocatalytic steps providing a mechanism for rapid 
switching between the branches. It is easy to see that sites of non-uniformity in these surface reactions 
can act as the centres for the formation of travelling waves like those shown in Fig. 3.8.

Several other metal-catalysed surface reactions are now known to show oscillatory behaviour. One 
difference between these essentially two-dimensional processes and those in flat dishes of the BZ 
mixture is that for the latter the medium is isotropic: it looks the same in all directions. For surface 
reactions taking place on metal crystals, on the other hand, all directions are not the same, because the 
metal atoms are lined up in a regular checkerboard-like array. This means that the
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Fig. 3.10 
The oscillations in the surface reaction 

of CO and oxygen can be reproduced by 
a theoretical model that includes the autocatalytic 

processes. Oscillations are seen in both 
the rate of reaction (a) and the amount of 

carbon monoxide on the surface (b).

ability of the reacting molecules to move about can be similarly anisotropic (direction-dependent). It is 
for this reason that the target and spiral patterns in Fig. 3.8 are elliptical rather than circularthe speed of 
the chemical wave fronts differs in different directions. In extreme cases, this anisotropy means that the 
symmetry of the underlying metal crystal surface can leave itself imprinted on the spatial patterns that 
arise. For example, Ertl's colleague Ronald Imbihl has seen square travelling waves in the reaction of 
nitric oxide and hydrogen on a rhodium surface, an echo of the square symmetry of the metal crystal 
surface (Fig. 3.11).

     



Fig. 3.11 
The spiral waves of the oscillatory reaction of nitric oxide and 

hydrogen on a rhodium surface have a square appearance 
 which derives from the square symmetry of the underlying atomic 

lattice. (Photo: Ronald Imbihl, Fritz Haber Institute, Berlin.)

Rock art

If you are a rock collector, the target patterns in Plate 5 may look familiar. They are reminiscent of the 
stunning concentric bands displayed by agates (Plate 6). Agates are formed when water from rain or 
snow permeates through fissures in cooling basaltic lava, dissolving metal ions as it goes. Once the 
body of lava has cooled sufficiently, the ions precipitate out of the mineral-rich solution as agates. This 
is a process of crystallization occurring far from equilibrium, and so we should perhaps not be too 
surprised that it can lead to pattern formation.

Periodic patterns due to non-equilibrium crystallization and precipitation have a history that predates 
the discovery of oscillating chemical reactions. In 1896, the German chemist Raphael Eduard Liesegang 
performed experiments in which he reacted silver nitrate with potassium chromate in a gelatin gel. This 
reaction generates insoluble silver chromate, which precipitates as a dark deposit. In solution, this 
precipitate would all be flushed out at once, as the two salts would mix very quickly. But in a gel, the 
mixing is much slower, limited by the slow diffusion of the ions. Liesegang saturated the gel with 
potassium chromate, and then allowed a drop of silver nitrate solution to diffuse through it. He found 
that the dark precipitate appears in a series of rings behind a reaction front that advances through the 
reaction vessel. Many other chemical reactions that generate an insoluble compound show the same 
behaviour when limited by diffusion through a gel (Fig. 3.12), and you can try it for yourself using the 
recipe in Appendix 4.

     



Liesegang's experiments are not nearly so obtuse as they might sound. The precipitation of silver metal 
and salts in gelatin gels became a subject of intense interest in the late nineteenth century owing to its 
relevance to photography: black-and-white photographic emulsion is essentially a gel containing a 
silver salt, which is converted to a dark, fine precipitate of silver metal on exposure to light. Indeed, 
Liesegang's father and grandfather were both early pioneers of photography. Raphael Liesegang himself 
was by all accounts a remarkable, not to say eccentric, character, with interests every bit as catholic as 
D'Arcy Thompson's. He
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wrote about the possibility of television in 1891 and, as well as his work on photography, he pursued 
research on bacteriology, chromosomes, plant physiology, neurology, anaesthesia and the disease of 
silicosis.

Fig. 3.12 
Liesegang bands, a signature of oscillatory 

precipitation at an advancing diffusion front. 
Here the bands are produced by cobalt hydroxide 

as hydroxide ions diffuse down a column of 
cobalt-laden gelatin. (Photo: R. Sultan, American 

University of Beirut.)

Liesegang's rings (only later was the reaction performed in cylindrical test tubes, so that the 
precipitation fronts appeared instead as a series of band-like disks) captured the imagination of many of 
the leading scientists of the time, including Lord Rayleigh, J.J.Thompson and Wilhelm Ostwald. Some 
early enthusiasts around the turn of the century suggested that in the bands and rings one might be 
seeing a simplified version of the stripes of tigers and zebras or the patterns on butterfly wings. In this, 
remarked one critic in 1931, 'enthusiasm has been carried beyond the bounds of prudence'. But as we 
will see in the next chapter, on one level at least such scepticism is misplaced (although given what was 
known at the time about chemical pattern formationnext to nothingwe can't really regard these 
speculations as anything more than a lucky guess).

     



As the gel medium of the Liesegang process evidently makes diffusion a critical aspect, it's not hard to 
guess

from the preceding discussion that a reaction-diffusion process lies behind the pattern formation. But 
while this is no doubt the case, the phenomenon is not fully understood even today. One idea, which 
was first proposed by Ostwald a year after Liesegang published his findings, is based on the proposition 
that the reaction product does not precipitate until the solution becomes supersaturated above some 
critical threshold concentration. Precipitation can potentially occur as soon as the concentration of the 
reaction product becomes too high for the solution to bearas soon as it becomes supersaturated. But in 
practice, particles of the insoluble product will grow large enough to precipitate only after they have 
first attained a certain critical size. This is one of the basic tenets of the theory of crystal growth, which 
Ostwald helped to establish. If the product molecules cannot cluster into these 'critical nuclei', the 
solution can become highly supersaturated.

Ostwald suggested that in Liesegang's experiments, formation of the critical nuclei was slowed down by 
the fact that the reaction product diffuses only slowly through the gel. The reaction is all the while 
increasing the degree of supersaturation, however, and once this exceeds a threshold, the concentration 
of the product is at last great enough everywhere for nucleation to occur. Then the nuclei grow rapidly, 
accreting the reaction product from the solution around it and precipitating as a dark band. Precipitation 
leaves the reaction front depleted in the product, and so precipitation stopsand it takes some time for it 
to build up again to the critical threshold, by which time the front has moved forward. This cycle of 
nucleation-precipitation-depletion dumps a train of bands in the wake of the front.

Ostwald's theory was refined in 1923 by K. Jablczynski, who showed that it could be used to predict the 
spacing between successive bands. Jablczynski's spacing law states that the ratio of the positions of two 
consecutive bands (defined relative to, say, the first band) approaches a constant value as the number of 
bands gets larger. The theory was further refined by S. Prager in 1956, who turned it into a well-defined 
mathematical model; but unfortunately Prager's model predicted that the bands will be infinitely 
narrow, which is certainly not what is observed. Peter Ortoleva at the University of Indiana and co-
workers made further improvements to the theory in the 1980s to overcome this shortcoming. More 
recently, Bastien Chopard from the University of Geneva and colleagues have devised a cellular-
automaton model which takes into account some of
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Fig. 3.13 
Liesegang bands generated in a cellular automaton model of a precipitation-diffusion process. (Image: Bastien 

Chopard, University of Geneva.)

the microscopic processes that control the diffusion, nucleation and precipitation of the reacting species 
in Liesegang systems. Their model is able to produce precipitation bands (Fig. 3.13) which obey 
Jablczynski's spacing law.

But the trouble is that the band spacings in real experiments don't by any means always observe this law:
several different relationships have been reported, and there seems to be no general law that applies to 
all Liesegang-type experiments. Other explanations for the banding have been put forward, many of 
which generally involve processes that take place after nucleation has occurred. But with such a 
diversity of observations, it isn't hard to find results that will fit most models, while preventing 
unambiguous discrimination between them.

     



Fig. 3.14 
Liesegang banding at very small length scales in iris quartz 

gives it an iridescent appearance. (a) The bands here are 
about seven micrometres apart, and are caused by periodic 

differences in the concentration of defects in the crystal structure. 
(b) At a larger scale, thin bands of quartz alternate with 

thicker bands of chalcedony. The bands run from top to bottom; 
the horizontal striations have a different origin, caused by the fibrous 

structure of the mineral. The image here is about 2.5 mm across. 
Banding is also evident on scales of about a centimetre or so 

(Plate 6). (Photos: Peter Heaney, Princeton University.)

     



Liesegang realized that the banded patterns he saw were similar to those found in certain rocks. There is 
now good reason to suppose that many banded rock formations do indeed arise from cyclic precipitation 
as mineral-rich water infiltrates a porous rock and reacts to form an insoluble product. Amongst the 
mineral patterns that have been attributed to Liesegang-type processes are the bands seen in some iron 
oxide minerals, the wood-grain texture of cherts, the striations of a mineral called zebrastone, and 
perhaps most familiarly of all, the bands of agates. And Ostwald's idea is just one of a whole class of 
models involving particle transport, nucleation and precipitation that have been put forward to explain 
such formations. To take just one example:geologists Peter Heaney from Princeton University and 
Andrew Davis from the University of Chicago showed in 1995 that Liesegang precipitation-diffusion 
cycles can account for the iridescence of iris agates. Whereas the colour banding shown in Plate 6 is 
perhaps the most spectacular feature of these and other agates, the iridescence comes from a periodic 
banded structure on a scale too small to see by eye. The bands vary in width from about a tenth of a 
micrometre to several micrometres
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(Fig. 3.14a), and this banded 'grating' scatters visible light (because the light has wavelengths of 
comparable dimensions), creating the iridescent effect. Heaney and Davis showed that these bands 
correspond to differences in the crystal structure of the mineral: regions of highly crystalline quartz 
alternate with regions in which a high concentration of defects disrupt the regularity of the crystalline 
lattice. They postulated that the defective regions formed by the initial linking together of soluble 
silicate ions into long chains, which precipitate to give a poorly crystalline form of the mineral 
chalcedony. The highly crystalline regions, meanwhile, are formed by precipitation of individual 
silicate ions as quartz. This latter is possible when the concentration of silicate ions at the crystallization 
front is low. But because quartz precipitates slowly, silicate ions diffuse towards the front more rapidly 
than they are removed by precipitation, and eventually the concentration builds up to a degree that 
allows their linking into chains. Then the more rapid precipitation of chalcedony takes precedence, until 
this depletes the silicate solution once again.

Heaney and Davis pointed out that, while this mechanism could account for the iris banding, the agates 
are in fact patterned on several length scales. There are also oscillations between defect-rich chalcedony 
and defect-poor quartz with wavelengths of several hundred micrometres (Fig. 3.14b) and of a 
centimetre or so (Plate 6), suggesting that there are several hierarchical mechanisms for oscillatory 
patterning at play here. This kind of hierarchical repetition of pattern over several length scales is a 
feature of some of the patterns that we will encounter in later chapters.

Burn up

I have already mentioned that combustion processes are autocatalytic; but normally this doesn't produce 
anything more interesting than a big bang, because there is nothing to keep the process in check. When, 
however, an explosive combustion process such as the burning of hydrogen in air is conducted under 
experimentally well controlled conditions, oscillations in the reaction rate can arise. The overall 
reaction looks simple enough: two molecules of hydrogen combine with one of oxygen to form two 
molecules of water:

2H2 + O2 → 2H2O.                                           (3.6)

     



But the detailed evolution of this reaction is rather complicated, involving short-lived, reactive 
intermediate species such as lone hydrogen and oxygen atoms and the hydroxyl free radical, OH. In an 
autocatalytic process, three molecules of hydrogen and one of oxygen can react with a lone hydrogen 
atom to produce two molecules of water and three hydrogen atomsthus the products of this process 
represent a multiplication of the reactants. This autocatalytic process arises because hydrogen atoms are 
less reactive, and so hang around for longer, than oxygen or hydroxyl radicals. When the reaction of 
hydrogen and oxygen is carried out in a stream of flowing gases in a CSTR, the result of these 
autocatalytic processes is an oscillatory variation in the burning rate, which shows up as a rise and fall 
of the temperature generated in the combustion flame (Fig. 3.15). In effect, the mixture of gases 
repeatedly ignites and then subsides into an unreactive state. The reaction between carbon monoxide 
and oxygenthe same reaction as that studied by Ertl's group, but this time carried out by burning the free 
gases rather than bringing them together on a catalytic metal surfacealso shows oscillatory behaviour in 
a CSTR.

Fig. 3.15 
Oscillations in the combustion of hydrogen in 
a flow reactor, revealed by variations in the 

temperature. (After: Scott 1992.)

Can these combustion processes also generate spatial patterns if they are not well mixed? Well, it has 
been known for a long time that when a hydrocarbon fuel such as butane is burnt in a flame under 
carefully controlled conditions, the flame can become very nonuniform, separating into a number of 
distinct cells. The cells are bright regions, separated by darker boundaries where the temperature is 
lower and there is less emission of light by the excited gas molecules. These cellular flames were first 
reported by A. Smithells and H. Ingel in 1892, who described a flame that separated into petal-like 
segments that rotated around the flame's axis. George Markstein made a careful study of such flames in 
the 1950s, and in 1977 G.I. Sivashinsky showed theoretically that the cell patterns could be the result of
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a reaction-diffusion process. A burning flame requires both fuel (generally a hydrocarbon like butane) 
and oxygenthe former cannot burn without the latter. But molecules of these two compounds travel 
(diffuse) through the gas mixture at different ratesthe oxygen molecules are lighter and so diffuse more 
rapidly. The combustion reaction can be sustained only as long as the rates of diffusion of both species 
are sufficient to

     



Fig. 3.16 
Cellular patterns in a shallow cylindrical flame seen from above. The temperature of the 

flame is lower in the dark regions. (These dark regions are not truly dark to the eye; they are 
simply a result of the limited dynamic range of the video tape on which the images were 

recorded.) The cellular flames adopt ordered states. Here I show a sequence of ordered states 
of increasing complexity as the rate of gas flow in the flame is increased. (Photos: Michael 

Gorman, University of Houston, Texas.)
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feed it. Spatial irregularities can arise when the oxygen in one region burns up the fuel more rapidly 
than it is replenished by diffusion, and combustion cannot then continue until more fuel diffuses there. 
Another theory was developed around much the same time, however, which held that flow effects in the 
gas streams, not molecular diffusion, were responsible for cellular flames.

Sivashinsky showed that the diffusive mechanism could in principle produce ordered hexagonal 
arrangements of cells. But the cells that Markstein and others had reported were irregularly shaped and 
were in constant, disordered motion, breaking up and coalescing. It was not until 1994 that Michael 
Gorman and Mohamed El-Hamdi of the University of Houston in Texas and Kay Robbins of the 
University of Texas at San Antonio found the first clear examples of regular patterns in cellular flames.

They studied flames of a butane-oxygen mixture passing through a stainless steel plug in a cylindrical 
chamber. The flame appeared as a luminous disk just half a millimetre thick. As the researchers 
increased the rate of gas flow through the disk, they saw an initially uniform disk-shaped flame break 
up into a ring of cells (Fig. 3.16). When the cells first appeared, there were four of them; but as the flow 
rate was increased, a fifth and then a sixth cell appeared. Increasing the rate still further created a new 
inner ring of cells, which multiplied from one to six and then spawned a third ring (Fig. 3.16j). An 
hexagonal array of cells appeared as the last ordered structure; for higher flow rates the cells began to 
exhibit rapid, chaotic motion in which no recognizable pattern was apparent.

The overall number of cells in each concentric ring stays steady for a given flow rate, but their positions 
keep altering. In some experiments, each ring of cells seemed to rotate independently in a kind of 
hopping motion: the cells would stay put for a while, then the whole ring would abruptly rotate like a 
gear wheel shifting position. Under other conditions the motion was more chaotic: the ordered states 
might disappear intermittently into randomly shaped cells, and then reappear (Fig. 3.17). Sometimes the 
innermost cells took on a spiral shape, which circulated like a rotating yin-yang symbol.

     



Fig. 3.17 
Under some conditions, ordering in 
the cellular flames is intermittent, 

being interrupted sporadically by the 
appearance of more-random cell 

arrangements. Time advances here from 
(a) to (e) (Photos: Michael Gorman.)

     



The Texas researchers concluded that Sivashinksy's diffusion mechanism, not gas-flow effects, lies 
behind the ordered patterns that they sawmainly because the latter mechanism was expected to produce 
bigger cells than those observed. These ordered cellular flames represent an unusual kind of dynamic 
reaction-diffusion pattern, however, because they are all unstable, undergoing intermittent 
rearrangements via more chaotic states. On the other hand, Howard Pearlman of NASA's Lewis 
Research Center and Paul Ronney of the University of Southern California have observed flame 
patterns that look very much like the spiral waves of the BZ reaction, reinforcing the idea that they are 
the products of a reaction-diffusion process.
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Fig. 3.18 
As the flow rate of a BZ mixture in a continuous stirred-tank reactor is increased, the oscillations 

double up, a phenomenon called periodic doubling (a). The limit cycle of the period-doubled oscillations 
develops two loops (b).

Going wild

Another thing that this combustion process and the BZ reaction share in common is that gradual 
changes in the flow rate of the reacting molecules do not induce correspondingly gradual changes in 
behaviour; rather, there are abrupt jumps to a new mode of behaviour when a certain threshold is 
reached. In the well-mixed BZ reaction conducted in a CSTR, I indicated that the oscillatory behaviour 
defines a certain limit cycle that remained robust in the face of changes in, say, flow rate or initial 
concentrations of the reagents. But this is true only up to a point. If the flow rate is increased far 
enough, the colour-changing mixture suddenly starts to exhibit a new temporal pattern. It alternates 
between blue and red, sure enough, but if we were to time the colour changesor better still, to measure 
the rise and fall in concentration of one of the intermediates such as the bromide ionwe would find that 
something new has happened. The switching now appears to have a double pulse (Fig. 3.18a). Plotted 
as a limit cycle, this behaviour manifests itself as a double loop (Fig. 3.18b). The system has to traverse 
both lobes before it repeats itself.

This is called a period-doubling bifurcation, and it was observed in the BZ reaction in the 1980s by J.C. 
Roux and co-workers. 'Period-doubling' is obvious enoughthe system now has two stable pulses or 
periods. 'Bifurcation' simply means that the stable, oscillating state of the system has forked into two, 
with each state corresponding to a loop of the limit cycle.

     



I should point out that the initial oscillatory state of the BZ mixture in a CSTR is itself the product of a 
bifurcation, because the flow rate has to reach a certain threshold before the indefinitely oscillating 
colour change is stable at all; below this flow rate, the reaction will simply go through a series of 
transient colour changes before settling down into an unchanging, uniform state. (Admittedly, this may 
take some time, which is why 'clock' reactions like this still look temporarily like regular oscillators 
even in a closed vessel.) This kind of abrupt transition from a stable, steady state to an oscillatory one 
was first identified mathematically by the German Eberhard Hopf, long before anyone knew about 
chemical oscillators. It is therefore called a Hopf bifurcation. Hopf bifurcations are a common source of 
periodic motion from initially steady motionthe mathematicians Ian Stewart and Martin Golubitsky 
describe them appealingly as the onset of a wobble.

It does not yet seem to be clear whether the transitions seen in cellular flames are indeed Hopf 
bifurcations or some other kind of bifurcation. All the same, both these and the period-doubling jumps 
seen in the BZ mixture in a CSTR share the characteristic that they just keep on coming as the flow rate 
is increased, giving patterns of ever more complexity. In the latter case, a further increase in flow rate 
induces another bifurcation into a limit cycle with four lobes, and then eight, and so forth. In cellular 
flames, each jump adds more cells or even a new ring of cells. With each jump, the amount that the 
flow rate has to be further increased to induce another bifurcation decreases: the jumps get closer and 
closer together and the patterns become more and more
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complex (which is to say, of lower and lower symmetry). There eventually comes a point at which all 
pretence of pattern is thrown to the winds and the system descends into chaos. For the BZ reactor, this 
means that the oscillations in concentrations no longer show any sign of periodicity at allthey appear to 
be random (Fig. 3.19). The cellular flames, on the other hand, dissolve into a random pattern of 
irregular cells that is forever shifting.

Fig. 3.19 
At high flow rates, the oscillations of the BZ 

reaction become apparently randomthe system 
becomes chaotic.

The route to chaotic behaviour through a series of period-doubling bifurcations is a common one, seen 
in many diverse systems that exhibit chaos, including lasers and populations of predators and their prey 
(Chapter 9). Very clear period-doubling bifurcations leading to chaotic oscillations have been seen in 
the combustion of carbon monoxide and oxygen gases in a CSTR (Fig. 3.20). There are other ways for a 
chemical system to become chaotic too, and Jack Hudson and colleagues at the University of Virginia 
identified one such in the late 1970s. In studies of the BZ reaction in a CSTR at high flow rates, they 
saw 'mixed-mode' oscillations in which a single cycle involves both small- and large-amplitude 
oscillations (Fig. 3.21a). Typically, each large-amplitude oscillation (in the concentration of, say, 
bromide) is accompanied by a little train of small oscillationsperhaps just one, perhaps more. Under 
some conditions these mixed sequences keep repeating regularly, but in other cases different mixed 
modes may alternate with no apparent periodicity (Fig. 3.21b). Although these non-periodic states 
satisfy all of the mathematical criteria for chaos (which distinguish them from purely random 
processes), there was much debate initially about whether they were genuine examples of 'chemical 
chaos' rather than effects induced by poor mixing in the experiments. But it is now clear that theoretical 
models of oscillatory reactions (which don't have to suffer any experimental deficiencies) can gener-

     



Fig. 3.20 
Period doubling and the transition to chaos in the reaction of carbon monoxide 

and oxygen in a flow reactor. (After: Scott 1992.)

Fig. 3.21 
Mixed-mode oscillations in the BZ reaction consist of a mixture of large-and 

small-amplitude oscillations (a). Mixed modes may alternate apparently at random 
(chaotically) when the flow rate is high (b).
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ate chaotic mixed modes, so this seems to be a bona fide example of a new route to chaos.

Rhythms of life

Chemical waves are not merely a curiosity conjured up in laboratories under highly specialized conditions. 
For many living organisms, ourselves included, they are a matter of life and death.

Heart attacks are the leading cause of death in industrialized nations. The majority of these result from a 
pathological condition of the heart called ventricular fibrillationa medical term which, roughly translated, 
means that the heart forgets how to beat. Instead of acting in a coordinated manner to generate a regular 
pumping motion, the tissues of a heart that has entered into ventricular fibrillation lose their ability to 
execute large-scale coordinated contractions, and the heart appears to flutter feebly to no great effect, like 
a frightened bird. During the onset of ventricular fibrillation, the heart enters a kind of behaviour called 
cardiac arrhythmia, which, despite the name, actually denotes a new rhythmic activity in which the regular 
beats of about one per second give way to rapid pulsations about five times faster. These eventually 
dissolve into uncoordinated fibrillation, leading to sudden cardiac death. That eventual heart stoppage in 
such cases is preceded by this frenzied activity was recognized as early as 1888, when J.A. MacWilliam 
described the fateful events in colourful terms: 'The cardiac pump is thrown out of gear, and the last of its 
vital energy is dissipated in a violent and prolonged turmoil of fruitless activity in the ventricular wall'. 
These changes in heart activity can be seen in electrocardiograms, which record the change in electrical 
voltage in a region of the heart tissue (Fig. 3.22).

How do cells in a healthy heart act in synchrony in the first place? Each heartbeat corresponds to a 
travelling wave of electrical activity, which begins at a pacemaker region of the heart called the sinoatrial 
node and travels throughout the heart tissue. At the front of this travelling wave, the electrical voltage 
across the cell walls alters as electrically charged ions move from one side to the other. The wave of 
electrical activity (which is akin to a nerve impulse) induces muscle contraction, causing the heart to pump 
blood. Once the wavefront has passed, the cells become refractory (immune to a further pulse of electrical 
activity), while they 'reset' their across-membrane voltages by redistributing the ions. Thus, heart tissue is 
an excitable medium, and the heartbeat is induced by a spatio-temporal patterna travelling wavevery much 
akin to that of the BZ reaction. This is one of the major reasons why the BZ reaction has attracted such 
interest: scientists are interested in the patterns not only for their own sake (pretty as they are) but because 
they might provide us with a model to help understand some aspects of heart behaviour.

It now seems clear that the fatal condition of ventricular fibrillation is associated with the initiation of 
spiral waves in the heart. You can see from Plate 5 that spiral travelling waves in an excitable medium 
tend to have a shorter periodicity than target waves (adjacent wavefronts are closer together). The 
consequence of this is that, once they are created, spiral waves come to dominate over target waves, 
because they 'jump in' to excite the medium more quickly. A clue to the role of spiral waves in ventricular 
fibrillation (VF) is given by the fact that, when cardiac arrhythmia is initiated, the frequency of the heart's 
oscillations increases.

It is now possible to see these lethal spiral waves directly in beating hearts. Early experiments involved

     



Fig. 3.22 
The onset of ventricular fibrillation is evident in electrocardiograms as a transition from regular heartbeats a few 

seconds apart (a), to rapid oscillations that flutter several times a second (b), a condition called cardiac arrhythmia. 
Finally this regular behaviour dissolves into the feeble, uncoordinated behaviour of ventricular fibrillation (c), which 

is quickly fatal if not arrested.
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studies of fragments of heart tissue, kept 'active' by mimicking physiological conditions: suspending the 
tissue in a salt solution and supplying nutrients (glucose) and oxygen. In such an experiment, 
researchers from the University of Amsterdam were able in 1972 to see evidence of a wave of electrical 
activity spinning like a turbine blade, at ten revolutions per second, in a piece of rabbit heart tissue. 
Subsequent studies showed these pirouettes ever more clearly, but it was not until 1995 that they were 
revealed in whole hearts. Richard Gray and co-workers at the Health Science Center of the State 
University of New York showed that a single rotating spiral wave could give rise to VF in whole rabbit 
and sheep hearts sustained in a culture medium. They followed the patterns of electrical activity 
propagating through the hearts by adding to the artificial 'blood' supply a dye that emitted fluorescent 
light whose brightness was a measure of the local voltage. The researchers saw spiral waves of 
electrical activity whose centres meandered over the surface of the heart (Fig. 3.23a). The 
electrocardiograms associated with this behaviour showed the uncoordinated oscillations characteristic 
of VF (Fig. 3.23b).

Fig. 3.23 
A spiral wave developing in a rabbit heart, traced out by 

monitoring voltage-dependent dyes (a), and the associated 
electrocardiogram trace (b). (Image: Richard Gray, State 

University of New York Health Science Centre.)

     



Fig. 3.24 
A spiral wave in a numerical model of the heart (a), and the 

associated electrocardiogram trace (b). (Image: Richard Gray.)

The rotating spiral waves in these experiments are not easy to see in the spatial maps of electrical 
activity, at least without a trained eye. But Gray and his colleague José Jalife carried out simulations of 
the heart behaviour on a computer, using equations that were known to describe the basic properties of 
heart activity. In their simulations, the spirals were very clear (Fig. 3.24a and Plate 7), and when the 
model was adjusted to allow the tips of these waves to meander, the simulated electro-cardiograms were 
very similar to those seen in the real sheep hearts (Fig. 3.24b).

How might spiral waves arise out of the regular travelling waves found in healthy hearts? It seems 
likely that obstacles of 'inert' tissue, such as damaged tissue caused by blood clots, can act as the 
initiating points for such waves. Travelling wavefronts have to pass around such obstacles, which are 
immune to excitation themselves, and this can make a steadily propagating wave begin to rotate. Just 
this kind of behaviour has been seen in the BZ reaction when some obstacle like a physical barrier is 
placed in the way of a target wave (Fig. 3.25). In the heart, small areas of damaged tissue don't 
obviously present much of a threat in terms of impeding the flow of blood or the regular contraction of 
the rest of the heart. But this research on travelling waves shows that if they trip up the heart's spatio-
temporal patterns, the result can be a switch from health to a life-threatening condition.
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Fig. 3.25 
The initiation of a spiral wave when a travelling wave 
in the BZ reaction encounters a barrier. (Photo: James 

Keener, University of Utah; from Agladze et al. (1994). Science 
264, 1746.)

Microbial crosstalk

The cells in any organ need to stay in touch and act in a coherent way, and in both the heart and the 
brain these interactions can result in regular oscillations and spatio-temporal patterns that are an 
important characteristic of the organ's healthy functioning. But of course some cells get by just fine on 
their ownbacteria, which are single-celled, are beyond doubt the most successful organisms on the 
planet. If we pride ourselves in surviving under conditions ranging from the burning Gobi desert to the 
frozen Arctic tundra, we should recapture some humility by observing that bacteria are to be found also 
in hot oil hundreds of feet below the ground, in superheated water around miniature submarine 
volcanoes, and amidst toxic radioactive waste.

But even for organisms as adaptable and resilient as bacteria, it sometimes pays to cooperate. For even 
bacteria need the basicsfood, water, warmth. When these things become scarce, some bacteria adopt a 
remarkable survival strategy, in which we can see nature's own version of the BZ pattern-forming 
system. If times are toughif food becomes scarce, sayevolution has taught the bacteria that they are then 
better off foraging in groups. So it becomes necessary for each bacterium to tell the otherswho are 
blind, deaf and dumbwhere it is.

Bacteria have evolved a clever way of doing this: they perfume themselves. The cells emit a chemical 
compound, called a chemoattractant, into the medium around them, much as animals emit pheromones 
to attract mates. Other bacteria can sense how much of this chemical signal is coming their way from 
different directions, and they start to move in the direction where the concentration of the chemical rises 
most rapidlyin other words, they wriggle along the steepest gradient in chemoattractant concentration. 
This chemically stimulated movement is called chemotaxis.

     



Fig. 3.26 
Target and spiral patterns in colonies of the slime mold 
Dictyostelium discoideum. These patterns are generated 

when some cells emit periodic pulses of a chemical 
attractant, towards which other cells travel. 

(Photo: Cornelis Weijer, University of Dundee.)

Chemotaxis is not unique to bacteria, but is employed by other single-called organisms too, and is also 
utilized by our own body cells to form complex structures such as neural dendritic cells in the brain. It 
is a versatile mechanism for pattern formation, and nowhere is
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this better illustrated than in colonies of the slime mold Dictyostelium discoideum. These single-celled 
organisms start up their chemical cross-talk when deprived of heat or moisture, and this communication 
allows them to aggregate into multicellular bodies that are more fit to survive hardship. Certain cells, 
called pioneer cells, release pulses of the compound cyclic adenosine monophosphate (cAMP), and 
nearby cells then follow this chemical trail to its source. Once a cell has emitted a burst of the 
chemoattractant, it falls silent for several minutes, as if recuperating from the exertion. This refractory 
period means that, when a slime mold colony starts to undergo chemotaxis, it behaves as an excitable 
medium. We saw earlier that the target and spiral waves of the BZ reaction turn out to be the generic 
patterns of excitable media, and so it may come as no surprise that the slime mold shows these patterns 
too (Fig. 3.26).

Fig. 3.27 
Symmetrical patterns formed by the bacteria Escherichia coli in response to chemical signals. 

(Photos: Elena Budrene, Harvard University.)

     



But the patterns are just a passing phase. Ultimately they fragment into distinct, branched islands of 
cells. The spirals and targets are simply a way of getting the self-organization and aggregation 
underway. Eventually the cells converge into isolated clumps, which thenceforth act cooperatively. Yet 
that is by no means the end of the story: the clumps pile up into mounds which can be regarded as 
individual multicellular organisms. Cells in different parts of the mound 'differentiate', which means 
that they are no longer equivalent but act out different roles. Each mound develops a bulbous bodythe 
'fruiting body'perched on a long stalk. The fruiting body contains many spores, which can survive 
without food or water until such time as these become available again.

The initial stages of this aggregation process, involving travelling waves, can be modelled on the basis 
of precisely the same principles as the BZ reaction. The 'pacemaker' of the chemical waves is a 
biochemical reaction through which the signalling molecule cAMP is manufactured by the pioneer 
cells. cAMP is made from a molecule called adenosine triphosphate (ATP) in a reaction catalysed by an 
enzyme called adenylate cyclase, which is attached to the inside of the cell mem-
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brane. The cAMP diffuses out of the cell through the membrane. There it can continue to diffuse into 
the surrounding medium and excite nearby cells; but alternatively it can become involved in a feedback 
loop that regulates the formation of more cAMP. In the latter case, cAMP outside the cell interacts with 
another protein molecule in the cell membrane in such a way that the protein is stimulated into 
influencing the catalytic activity of the adenylate cyclase enzyme. In this way, cAMP produced by the 
enzyme can enhance the rate at which further cAMP is formed. This autocatalytic behaviour can give 
rise to bursts of cAMP production followed by quiescent periods.

Bacterial black holes

Fig. 3.28 
Concentric spots (a) and radial patterns (b) of clustering bacteria can be reproduced in a cellular automation 

model in which groups of cells migrate, reproduce, and respond to attractive and repulsive chemical signals from 
one another. (Images: Eshel Ben-Jacob, Tel Aviv University.)

     



In 1991 Elena Budrene and Howard Berg of Harvard University expanded the repertoire of patterns that 
chemotaxis was known to generate. They reported astonishing patterns that developed in colonies of 
Escherichia coli, bacteria that live in the human gut, when the colonies grew in a semi-solid agar gel 
under life-threatening conditionslack of food, too great an oxygen concentration, the presence of 
molecules that disrupt protein manufacture in the cells, or even just coldness (Fig. 3.27). Unlike the 
travelling waves of Dictyostelium, these patterns remain stable for long periods. Budrene and Berg 
realized at once that the patterns were the result of chemotactic signalling between the bacteria, which 
emit a chemoattractant called aspartate under stress. But their sheer complexity and varietymuch richer 
than the familiar targets and spirals of Dictyosteliumbaffled everyone.

Nonetheless, it seemed likely that the patterns were again the result of a competition between a handful 
of basic processes: cell multiplication by division, cell migration (diffusion) in search of food, and cell 
clustering by chemotaxis once the local density of cells (and thus the local rate of chemoattractant 
formation) exceeds a certain threshold. Eshel Ben-Jacob and colleagues from Tel Aviv University in 
Israel attempted to reproduce the spot patterns in a cellular automaton model that captures these basic 
features of the bacteria's behaviour. I will describe this model in more detail in Chapter 5, where I show 
that it can mimic many of the branching patterns formed by growing bacterial colonies. In essence, the 
model postulates groups of bacterial cells that move en masse, consuming food, reproducing and 
emitting a chemoattractant if food becomes scarce. The model generates an expanding ring of cells, 
which cluster into spots behind the advancing front when they attract one another through chemotactic 
signalling (Fig. 3.28a). The spot patterns become
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Fig. 3.29 
The patterns in E. coli are formed as cells migrate outwards in a 'swarm ring'. The ring breaks up into a series of 

spots, some of which remain immobile while other cells advance and reform the swarm ring. (Photos: Elena 
Budrene, Harvard University.)

aligned along radial lines, as in the experiments, if a further component is added to the model: a 
repulsive interaction between the bacterial clusters, resulting from their emission of a chemical signal 
that warns other clusters to stay away. Radial spots then emerge from a delicate balance between 
attractive and repulsive interactions (Fig. 3.28b). Whether real E. coli bacteria exude a chemorepellent 
of this sort is, however, an open question. At the same time, Herbert Levine and Lev Tsimring at the 
University of California at San Diego proposed an alternative model that included the same kinds of 
interactions but described the bacteria's motions using reaction-diffusion equations akin to those first 
studied by Ronald Fisher in the 1930s, instead of invoking discrete cellular automata. This model also 
generates rings that break up into clusters behind the advancing front of the colony.

Budrene and Berg were meanwhile taking a closer look at what each clump of cells gets up to. In 1995 
they reported that the symmetric patterns are the result of a very complex process in which the cells 
alternate between forging out into new territory and stopping to cluster into groups. The whole process, 
watched in time-lapse video, resembles a peculiar cycle of boldness and indecision.

     



First the bacteria disport themselves in a ring, which moves outwards from the central source (Fig. 
3.29). Budrene and Berg call this a swarm ring, and it takes about a day to expand to the edges of a Petri 
dish. In order to produce the chemoattractant (aspartate), the cells need to be provided with the 
compound succinate in the culture mediumthey carry out enzymatic chemical transformations which 
turn succinate into aspartate. If the amount of succinate is very low, there is little chemotaxis and the 
ring simply expands uniformly. But at higher concentrations of succinate, the swarm ring collapses 
suddenly (within a few minutes) into a series of more or less equally spaced clusters of cells around its 
perimeter, as if the advancing party of bacteria has paused and formed into little groups to discuss their 
next move. This instability of the swarm ring happens when the cells, which are excreting aspartate as 
they advance, have finally made enough of this attractant to trigger its spontaneous break-up into 
clusters, a process that breaks the circular symmetry.

Once one cluster forms, the parts of the ring to either side become unstable and clustering propagates in 
a kind of 'domino effect' all around the ring. But some cells are not drawn into these clusters, and they 
head out again in the swarm ring, multiplying as they go. As this
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cycle repeats, a trail of clusters in radial lines is created behind the advancing ring (Fig. 3.29e).

Although this sequence of events is not unlike that seen in the models of Ben-Jacob, Levine and their 
colleagues, Elena Budrene was not convinced that either represents a 'minimal model' whose 
ingredients are nothing more than the known biological properties of the bacteria. With colleagues 
Michael Brenner and Leonid Levitov from the Massachusetts Institute of Technology, she has 
developed a different model which suggests that patterning can result from the interplay of the 
following processes:

1. Diffusion and multiplication of the bacteria.

2. Production of the aspartate chemoattractant.

3. Diffusion of aspartate.

4. Consumption of succinate to make aspartate.

5. Chemotactic drift of cells towards regions of high aspartate concentration.

The researchers used Fisher-type reaction-diffusion equations to describe each of these processes. They 
showed that the expansion of the swarm ring is driven by the consumption of succinate: the cells move 
progressively outwards as they deplete all the succinate in the medium behind the ring. This drive to 
find fresh succinate even outweighs the lure of the chemoattractant, which serves simply to ensure that 
the ring remains a well defined circular band instead of getting smeared out by diffusion of the cells.

The instability leading to break-up of the ring into clusters, meanwhile, emerges from the model as a 
consequence of 'singular' solutions of the equations. These arise from a positive feedback process: 
above a certain threshold density of cells, they collectively produce so much attractant that any slight 
irregularity in density is rapidly amplified until the cell population becomes focused into a sharply 
defined, very dense point. That this instability might occur in chemotactic populations was first 
suggested in 1973, and it was later dubbed 'chemotactic collapse'. It can be loosely compared to the 
formation of an astrophysical black hole: as the density increases, so it encourages the accretion of even 
more mass, until the density at the central point blows up and, in the equations, becomes infinite. Of 
course, the cell density in these bacterial black holes cannot really become infinite; ultimately it is 
halted by the depletion of some essential substance such as oxygen in the 'singularity'.

     



So Budrene, Brenner and Levitov proposed that chemotactic collapse leads to the break-up of the 
swarm rings into a series of spots. They suggested several reasons why their model might provide a 
more realistic description of the process than the earlier ones. For one thing, it accounts for the marked 
difference in observed timescales for swarm-ring expansion and break-up. And it doesn't require any 
biochemical processes other than those already known. Furthermore, the formation of the patterns does 
not require fine-tuning of the model parametersthe clustering instability is a general and robust property 
of the equations, because the singular solutions are catastrophic and so pretty insensitive to the fine 
details.

One of the difficulties of modelling these bacterial tapestries is that they are so diverse. The bacterium 
Salmonella typhimurium has its own palette of patterns, including spots, concentric rings and spotty 
rings, while E. coli also displays amazing chevron structures (Plate 8). We will see still more, very 
different, patterns in Chapter 5. James Murray and Rebecca Tyson of the University of Washington, 
along with S.R. Lubkin of North Carolina State University, have proposed a model that purports to 
capture all of the pattern-forming mechanisms, and many of the patterns, seen in E. coli and S. 
typhimurium, while remaining faithful to the known biology. Their model is again based on 
reactiondiffusion, incorporates equations describing the diffusion and uptake of the nutrient (succinate) 
and chemoattractant (aspartate) and the migration and proliferation of cells. The researchers suggest 
that their model does more than just generate patterns similar to those observed in the experiments (you 
can make a reaction-diffusion model do just about anything, as we'll see in the next chapter)it 
reproduces some of the features of the way the patterns appear, a hopeful indication that the visual 
coincidences are down to more than fortuity. But while the details will continue to be debated, it seems 
highly likely that a reaction-diffusion mechanism of some kind is capable of accounting for these 
bacterial kaleidoscopes.

In the beginning

Chemical waves may be with us from birth. Certainly that is the case if one is a frog: following 
fertilization, pulses of calcium ions are released over the surface of the egg. The reason for these 
calcium waves isn't entirely clear, but they are probably a kind of chemical signal that, like a radio 
wave, carries information through space encoded in its amplitude and frequency. In 1991 David 
Clapham from the Mayo Foundation in Rochester, New York, and colleagues observed spiral
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Fig. 3.30 
Spiral waves of calcium travel across the surface of frog 

eggs when they are fertilized. The purpose of these waves 
in embryo development is as yet unclear. (Photo: David 

Clapham, Mayo Foundation, Rochester.)

waves propagating and annihilating on the surface of fertilized frog eggs (Fig. 3.30). These eggs behave 
as an excitable medium, like the heart, or like the plain old Belousov-Zhabotinsky brew.

     



Fig. 3.31 
The spiral galaxy NGC 5236 in the southern sky. The structure 

of some spiral galaxies may result from a star-formation 
process with the characteristics of a reaction-diffusion 

system. (Photo: European Southern Observatory.)

At the other end of the scale, astronomer Lee Smolin at Pennsylvania State University has suggested 
that the formation of some spiral galaxies (Fig. 3.31) can be regarded as a kind of reaction-diffusion 
process. These cosmic spirals are so familiar to us now that it is worth remembering that not all galaxies 
are spirals: some are smooth elliptical blobs, some are lens-like disks (lenticular) and others have 
irregular shapes that defy easy categorization. But it is clear that galaxies have a strong tendency to 
form rotating spirals (our own Milky Way galaxy is of this type), and Edwin Hubble proposed in the 
1920s that this is the pattern towards which more featureless elliptical galaxies evolve, via lenticular 
forms.

Galaxy structure has been studied for a long time, but there is still much to debate. In the late 1920s 
Bertil Lindblad suggested that the spiral structure was a natural consequence of the interplay between 
rotation and the gravitational interactions of the stars, but it wasn't until the 1960s that C.C. Lin and 
Frank Shu showed how a spiral galaxy formed in this way could avoid being pulled apart by centrifugal 
forces as it rotates. They proposed that the spiral arms are not rigid (stars are not either in them or out of 
them) but are waves of enhanced stellar density that sweep through the rotating disk.

Smolin points out that there are some spiral galaxies in which this idea of a density wave doesn't hold 
up: the spirals are instead tracing out regions of enhanced star formation. Why should stars form in one 
place in the galactic disk but not in another? Smolin proposes that the rate of star formation is 
influenced by positive and negative feedbacks. The positive feedback (autocatalysis) comes from dust 
produced in the atmospheres of stars that have formed already, which helps the clouds of interstellar 
particles to condense into new stars. Negative feedback comes largely from the ultra-violet light emitted 
by existing stars, which heats up the interstellar medium and makes it less likely to condense. In 
addition, Smolin argues that certain aspects of the star-formation process give it characteristics akin to a 
diffusion process. The galaxy then becomes a reaction-diffusion system, with all the pattern-forming 
potential that entailsmaking it permissible to view these cosmic pinwheels as gargantuan relatives of the 
whorls on a frog's egg.

Yes, say hello to life's universal patterns. We'll be seeing more of them.
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4 
Bodies

 . . . and after another long time, what with standing half in the shade and half out of it, and what with the 
slippery-slidy shadows of the trees falling on them, the Giraffe grew blotchy, and the Zebra grew stripy, and 
the Eland and the Koodoo grew darker, with little wavy grey lines on their backs like bark on a tree trunk; 
and so, though you could hear them and smell them, you could very seldom see them, and then only when 
you knew precisely where to look. 
Rudyard Kipling 
The Just So Stories

When Rudyard Kipling explained how the animals of Africa acquired their markings, he was tapping 
into a universal mythology. The Native Americans, for instance, have their own tales of how the skunk 
became endowed with its two-tone tail. When people see patterns in nature as striking as these, they 
want some means of explaining them.

Darwin's theory of evolution gave us an answer for the modern age, and it was not so different in 
essence from Kipling's: the patterns enhance the animal's chances of survival. In the tree-dappled light 
of a tropical forest, a spotted leopard can merge with the surroundings, giving it a better chance of 
sneaking up on its prey. A striped zebra is better hidden amongst the vertical striations of the long grass 
and bushes on the veldt (Fig. 4.1), and an insect patterned to resemble a flower is at less risk from 
predators. In addition, patterns help animals to recognize other members of their species, an obvious 
requirement if the species is to propagate.

     



Fig. 4.1 
Zebras in Kenya. (Photo: Michael and Sandra Ball.)

But as I explained in the introduction, this kind of explanation, while correct, is incomplete and 
ultimately rather unsatisfying. I shouldn't be surprised if some of you prefer the 'just so' explanation, 
which at least has something to say about how the stripes and spots got there. (The leopard's spots, you 
may recall, are the fingerprints of a solicitous Ethiopian.) A Darwinian explanation says nothing about 
thisit merely suggests that, once there, these patterns will stay because the animal is better off with 
them. Can it be that evolution
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found its tortuous way to the striped zebra via a slow, gradual and random accumulation of mutations 
towards stripe-giving genes? What, then, were the intermediate stages? Were there proto-zebras that 
exhibited some other kinds of pattern? Darwinism in itself provides little guidance for answering such 
questionit does not allow us to deduce which patterns are possible and which are not, but simply 
provides a mechanism that explains why some persist in certain species but not others (differences in 
habitat, for example). Natural selection does not tell us what is on the palette; it is a tool for 
retrospective rationalization, and rarely if ever for prediction. Does nature really have an infinite choice 
of skin patterns, or must it select from just a few? And how do each of those arise?

These are some of the questions that I will look at in this chapter. We shall see that the puzzle of surface 
markings on organisms is ultimately bound up with the much broader matter of how bodies themselves 
are shaped, and why they take on the forms that they do. In a sense, similar mechanisms may be at play 
in both cases.

Yet while surface markings, like those on pelts and shells, are immediately recognizable as patterns, we 
might imagine that the shapes of bodies are functional rather than representational. Specific features 
would seem to be dictated by specific functions, they are tools rather than flags or camouflage. Surely 
we have eyes and hands not because these are elements of a body's 'pattern' as such but because we 
need them to see and to manipulate our environment? To put this another way: a particular stripe of a 
zebra's skin marking is merely a consistent part of the pattern, whereas (setting aside the bilateral 
symmetry of the body) a particular limb, like our left arm, doesn't obviously 'follow' from the form of 
the rest of our bodiesit seems to be a specialized element, not a generic one. We will see, however, that 
it can make a kind of sense to regard our body plans as biological patterns, albeit very complex and 
refined ones that derive from the sequential and hierarchical subpatterning of simpler patterns. That this 
is so perhaps becomes more apparent by considering the forms of plants, which tend to have a higher 
degree of symmetry than mammals. A plant too has limbs, but these are much more obviously arranged 
in a regular, somewhat symmetrical manner. And it isn't so hard to identify animals to which the same 
appliesa starfish, for instance. There is a fertile tension inherent in the question of whether the form of 
living organisms should be regarded either as a haphazard assembly of components that together make 
up an evolutionarily viable being, or instead as a highly complex, spontaneously patterned form.

Frozen waves

If I am to be chronological, we must begin this exploration of biological pattern formation with just 
about the hardest question one could ask of it: how a body plan emerges in a fertilized egg. But the 
British mathematician Alan Turing, who considered this problem in the early 1950s, was one of the 
brightest scientific minds this century has seen, and didn't have much fear of hard questions.

     



Turing's work takes a decidedly tangential angle to much of the mainstream research on biological 
development, although in recent years the two points of view have shown signs of converging. We 
know that different tissues and organs in a multicellular body are characterized by differences in the 
genes that are 'active' in their constituent cellsbasically, the cells of (say) the liver make use of some 
different genes (to manufacture different proteins) from the cells of bone marrow, even though the 
genetic content of both is the same. The cell types in these organs are said to be differentiated, and to 
show different regimes of gene expression (gene-to-protein conversion). Geneticists interested in 
development commonly seek to identify these differences in gene expression, and to investigate the 
protein products to see what role the proteins play in the function of the tissues.

This is a reductionist approach that helps us to understand the consequences of cell differentiation. It 
also shows us where to look for explanations of the origin of that differentiation: in the switching on or 
off of certain genes. But it is an approach that runs out of steam when we pare the problem of 
development back to its starting point. For in the beginning, an embryo is just a ball of identical cells, 
each with the same genetic constitution. How do the initial differences in gene expression arise from 
this uniform ball?

What we are faced with here is a question of symmetry breaking: somehow the (roughly) spherical 
symmetry of the multicellular embryo gets broken such that different parts of it follow different 
developmental pathways to become a head, a heart, a toe. What breaks the symmetry of the embryo? 
This is the fundamental question of morphogenesis, the study of the development of biological form.

At the beginning of the 1950s, symmetry breaking was not a new idea in physics, but no one had given 
much thought to how it might be relevant in chemistry
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or biology. At that time, Alan Turing was working on mathematical problems associated with computer 
theory at the University of Manchester. His work in this field was to become seminal, and underpins 
much of the present-day research into artificial intelligence. During the Second World War Turing was 
set to work as a code-breaker, and some of the techniques that he developed for unravelling German 
naval messages are still classified today. For his contributions in this area Turing was held in high 
esteem by the British intelligence organization, but his knowledge was also regarded as a national secret.

Turing's ultimate dream was to make a thinking machine, an artificial brain. His interest in brain 
structure and development led him to ponder on broader questions of biological development, and 
ultimately to the issue of morphogenesis. In 1952 he published a paper describing a hypothetical 
chemical reaction that could generate spontaneous symmetry breaking, leading to stable spatial patterns, 
in an initially uniform mixture of chemical compounds. This, he suggested, might provide a model for 
how patterning takes place in an initially spherical fertilized egg. Entitled 'The chemical basis of 
morphogenesis', this paper is undoubtedly one of the most influential in the whole of theoretical biology.

One of the remarkable things about Turing's idea was that he proposed that diffusion of the chemical 
species (called morphogens) through the medium in which they were dispersed could be the driving 
force for symmetry breaking. This goes against intuition: normally diffusion is seen as a mechanism for 
producing uniformity, for smoothing out inhomogeneities in a system. It was almost as if he was 
suggesting that diffusion could cause thoroughly dispersed ink in water to condense into concentrated 
ink droplets, rather than the reverse.

But in Turing's chemical system, diffusion is acting in competition with another process, namely an 
autocatalytic chemical reaction. It is, in other words, an example of a reaction-diffusion system. We saw 
in the last chapter how these systems can generate nonstationary patterns, such as the travelling target 
and spiral waves of the Belousov-Zhabotinsky (BZ) reaction, when the system possesses the property of 
excitability. Turing showed that under certain conditions, stationary patterns can also arise in excitable 
reaction-diffusion systems. These generally take the form of spots or stripes of differing chemical 
concentrations.

Turing considered a process in which some chemical compound, say A, undergoes an autocatalytic 
reaction to generate more of itself: the rate at which A is generated depends on the amount of A already 
present. But within his scheme, A also activates in some way the formation of a compound B that 
inhibits the formation of more A. The key element for obtaining spatial patterns is that A and B diffuse 
through the reaction medium at different rates, so the effective ranges of their respective influences are 
different. This means that the A's and B's can dominate in distinct regions.

     



When Turing formulated this scheme, he had to rely on mathematics that could be performed with a 
pencil and paper, and so he chose to represent the chemical processes using the simplest mathematical 
equations possible. This forced upon him some compromises to get around the rather artificial results 
that these simple equations could sometimes generate. In particular, Turing had to make his equations 
linear, which implies that effects are proportional to their causes. Linear equations are easier to solve 
than non-linear ones, but in Turing's case it meant that the solutionsthe distributions of his hypothetical 
chemical specieswere unstable against perturbations. Although he was able to show that the scheme was 
capable of generating spatial patterns, Turing clearly felt hindered by the intractability of a more 
sophisticated analysis. He suggested that, while the difficulties were probably too great to allow for any 
all-embracing theory of pattern formation in these schemes, perhaps a 'digital computer' would enable 
one to investigate a few particular cases more accurately.

But it was only after his landmark paper was published that Turing seems to have begun to perceive the 
real key to his patterning mechanism, which is that it represents a competition between activation by 
compound A and inhibition by compound B. Moreover, the inhibitor B must diffuse more rapidly than 
A for patterning to occur. Thus, while activation and autocatalytic production of A is a localized 
process, inhibition of A by B is long-ranged, because once formed in the vicinity of A, B can rapidly 
diffuse away to inhibit the formation of A elsewhere. At the same time, this rapid diffusion of B ensures 
that it does not inhibit the local formation of Ait is removed from the vicinity too quickly (Fig. 4.2). The 
whole scheme represents a subset of reaction-diffusion processes called activator- inhibitor systems.

What happens, then, is that once random fluctuations in the initial concentration of A trigger spots of 
enhanced A production through autocatalysis, the inhibitor B is produced and rapidly diffuses away to
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suppress formation of the activator in the immediate surroundings. So an array of isolated spots of A is 
created, surrounded by regions rich in B in which formation of A is suppressed (Fig. 4.3a). If there are 
processes that remove the end products of the reaction at a steady rate and supply fresh sources of the 
reactants needed to make A and B, this pattern of spots can remain stable indefinitely. Alternatively, the 
regions of A production can merge into stripes that trace out a maze-like network (Fig. 4.3b).

Fig. 4.2 
How an activator-inhibitor scheme 

works. The activator generates more of 
itself by autocatalysis, and also activates 
the inhibitor. The inhibitor disrupts the 
autocatalytic formation of the activator. 
Meanwhile, the two substances diffuse 
through the system at different rates, 
with the inhibitor migrating faster.

Turing himself never used the terms 'activator' and 'inhibitor' however; instead, he regarded compound 
B as a rapidly diffusing 'poison'. It was not until 1972 that Hans Meinhardt, then at the Max Planck 
Institute for Virus Research in Tübingen, Germany, and his colleague Alfred Gierer had the insight that 
short-ranged activation and long-ranged inhibition are the principal elements of Turing's patterns. With 
the benefit of computers to do the number-crunching, Meinhardt and Gierer were able to formulate 
Turing's mechanism using more complicatedand more physically motivated non-linear equations, and to 
show how they could be plausibly related to the kinds of processes known to take place during real 
biological patterning and development.

     



Fig. 4.3 
The activator-inhibitor scheme can generate disordered patterns of spots and stripes. The composition of the 

system is different in the light and dark regions. (Images: J. Boissonade, University of Bordeaux.)

Because of their stationary nature, it is tempting to regard Turing patterns as a kind of end product of 
the reaction, as if they were spatial differences in composition that have become 'frozen in' to the 
reaction mixture just as bubbles become frozen into ice. This is not so, however. The patterns are non-
equilibrium patterns, and are dynamic in the sense that they are sustained by constant motion and 
reaction of the chemical compounds in the mixture. Similarly, the oscillation inside an organ pipe 
excites a fixed pattern of varying air density even though the molecules in the air continue to move 
around. The point is that Turing's patterns are maintainedthe symmetry is brokenonly so long as the 
system is driven away form equilibrium. They arise
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spontaneously from a homogeneous medium in a symmetry-breaking instability as the driving force 
away from equilibrium is increased.

By curious coincidence, Turing formulated his ideas on pattern formation in chemical systems at just 
the same time that Boris Belousov in the Soviet Union was discovering the peculiar oscillatory 
behaviour that some chemical reactions can exhibit. It was in 1951 that Belousov first observed the 
colour-changing properties of a chemical cocktail that was later to be refined into the BZ mixture. As 
we saw in the previous chapter, Belousov received scant reward for this discovery during his lifetime; 
but for his own contribution to chemical pattern formation, Turing was to see even less recompense. In 
the same year that he published his paper on pattern formation, he was arrested for sexual offences 
when an investigation into a burglary at his home led to the disclosure that he was homosexual. This 
supposed crime was enough for Turing to be compelled to take 'corrective' hormone treatment, and to 
be regarded as a security risk, placing restrictions on his freedom to travel. In 1954 the disgrace and 
constraints deriving from these charges led the 42-year-old Turing to commit suicide by ingesting 
cyanide.

Making striped paint

For almost twenty years after Turing published his paper, nothing happened. No new field of chemical 
pattern formation was born. Biologists studying morphogenesis took no heed. Yet today Turing's ideas 
are hailed as seminal. Why the delay?

For one thing, Alan Turing was years ahead of his time. The buzzwords that encapsulate the behaviour 
in his theoretical reaction-diffusion systemcomplexity, pattern formation, symmetry breaking, non-
equilibrium systems, non-linearitywere either unheard of or regarded as rather specialized and obscure 
branches of science in the 1950s. It is only when the climate is right, when a sea change has taken place, 
that a genuinely new scientific idea can find wide acceptance. In the 1950s, almost all of chemistry was 
concerned with equilibrium processes, and most of mathematical science looked at non-linear problems 
with horror.

But there was also the matter of whether Turing's theoretical ideas had any relevance to the real world. 
He had to make a number of approximations to make his equations manageable, leaving open the 
question of whether real chemical systems would indeed show this kind of behaviour. Creating Turing 
patterns in a real reaction proved to be a tremendous challenge, and for a time it began to look as if they 
might be merely mathematical phantoms. As for the relevance to morphogenesisthat is still an open 
question, although as we shall see, there are compelling reasons to believe that some of the exquisite 
surface markings of animals are Turing patterns or something very much like them.

     



When in the late 1960s and early 1970s chemists began to learn about the BZ reaction, the connection 
between this and Turing's reaction-diffusion scheme began to emerge. The connection was made more 
concrete in 1971 when Zhabotinsky (in Puschino, USSR) and Arthur Winfree (then at the University of 
Chicago) independently observed spiral waves in the BZ reaction. Winfree subsequently showed that 
the spiral is the result of an activator-inhibitor pattern-formation process in the poorly mixed BZ 
mixture. But although the BZ patterns are comparable to Turing structures insofar as they are both the 
result of non-linearities, autocatalysis and feedbacks in the chemical reactions that produce them, the 
mechanism that gives rise to BZ chemical waves is not the same as the instability that leads to Turing 
structures. For one thing, the BZ patterns are travelling waves, whereas Turing's patterns are stationary. 
In other words, the combination of localized activation and long-ranged inhibition is not by itself 
sufficient to guarantee stationary Turing patterns. They will be produced only if the response of the 
inhibitor to changes in the activator concentration is rapid (which means, in effect, that the processes 
that remove the inhibitor must be fast relative to those that remove the activator). If, on the other hand, 
the inhibitor sticks around for a long time, the system has a tendency to undergo BZ-like oscillationsand 
such oscillations can occur even if there is no difference between the rates of diffusion of the various 
chemical species, whereas such a difference is essential to Turing's mechanism. Travelling waves are 
generated, meanwhile, if the inhibitor diffuses less rapidly than the activator. And these waves need to 
be initiated by some local disturbance to the medium, rather than arising from a spontaneous, 'global' 
symmetry-breaking instability. From the perspective of morphogenesis these differences are critical, 
because Turing was looking to explain how stable, fixed structures can arise spontaneously in embryos.

In 1968 Ilya Prigogine and René Lefever from the University of Brussels, stimulated by the Prague 
conference at which the BZ reaction was given its first public airing to Western scientists, proposed a 
hypothetical scheme for an oscillatory reaction. This model, later
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Box 4.1: The Brusselator 

There are four steps in the Brusselator, which involve interconversions of molecules A, B, C, D, X and Y. A and B are 
the reactants, C and D the products, and X and Y are intermediates in this transformation:

A → X                                               (4.1)

B + X → C + Y                                 (4.2)

2X + Y → 3X                                    (4.3)

X → D.                                              (4.4)

Notice that equation 4.3 is autocatalytic, since two molecules of X give rise to three. Less obviously, it is also 
susceptible to inhibition, since the compound Y is needed for the reaction to occur but is consumed in the process. In 
other words, the fact that the reaction generates more X does not necessarily result in exponential growth because this 
X cannot itself undergo equation 4.3 if there is no Y left in the vicinity. Thus the rate at which Y diffuses to 'feed' 
equation 4.3 is crucial to the whole process, and this has the same significance as the diffusion of the inhibitor species 
in Turing's scheme.

 

called the Brusselator (see Box 4.1), possesses strong similarities to the Oregonator developed in 1974 by chemists at 
Oregon State University to account for the BZ reaction (page 55). Because it includes autocatalytic feedback, the 
Brusselator shows oscillations and bifurcations like those of the BZ reaction. But when it proceeds in an incompletely 
mixed system in which the various chemical species diffuse through the medium at markedly different rates, instabilities 
can occur that give rise to spatial patternsvariations in composition from place to placewhich take the form of stationary 
Turing-type stripes and spots.

The hypothetical Brusselator scheme made Turing's ideas a little more concrete, and showed that oscillatory reactions 
similar to the BZ reaction (though not the BZ reaction itself!) might be able to produce Turing patterns under the right 
conditions. But it was not until 1990 that this was demonstrated experimentally. Patrick De Kepper and co-workers at the 
University of Bordeaux carried out an oscillatory chemical reaction involving chlorite and iodide ions and malonic acid 
in a thin layer of gel that was continuously fed from opposite directions with fresh reagents. This reaction, called the 
CIMA reaction, was developed by De Kepper and colleagues in the early 1980s as an alternative to the BZ reaction. Its 
oscillatory and pattern-forming behaviour can be made apparent by adding a colour-change indicator, starchthis changes 
from yellow to blue when it captures and binds the tri-iodide ions (I3

–) involved in the reaction. Although in many ways 
similar to the BZ reaction, the CIMA reaction is closer to Turing's scheme because it has an explicit activator and 
inhibitorthe iodide and chlorite ions, respectively.

To turn an activator-inhibitor system into one capable of forming Turing structures, the two species must be made to 
diffuse through the reaction medium at very different rates. This is hard to arrange, and explains why it took so long to 
find a suitable experimental system: in water, just about all small molecules and ions diffuse at more or less the same 
rate. But the Bordeaux researchers were able to introduce very different rates of diffusion in the CIMA reaction by 
conducting it in a polymer gel. The molecules of the starch indicator are themselves large polymers, and so they get 
entangled in the network of the gel with their captive tri-iodide ions. The chlorite ions (the inhibitor species) pass through 
the gel network unheeded; but the iodide ions (the activator species) are slowed down considerably, because they can 
keep getting stuck to the immobile starch/tri-iodide groups.

     



Fig. 4.4 
Turing patterns in the CIMA reaction. The dot pattern is restricted 

to a strip where diffusing reagents meet. (Photo: J. Boissonade, 
University of Bordeaux.)

The researchers saw a colour change from blue to yellow along a strip where the various reagents meet and react. Under 
the right conditions this band broke up into rows of dots (Fig. 4.4). That these dots represented
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a genuine Turing pattern was confirmed by Irving Epstein of Brandeis University and coworkers in 
1991, who performed theoretical calculations, based on the known mechanism of the CIMA reaction 
and the measured differences in diffusion rates of the activator and inhibitor. They showed that they 
could reproduce the patterns seen experimentally by invoking the Turing mechanism.

The next challenge was to grow Turing patterns over large areas. This was achieved in 1991 by Qi 
Ouyang and Harry Swinney from the University of Texas at Austintheir two-dimensional lattices of 
Turing structures contained thousands of the yellow dots (Fig. 4.5). The researchers showed that the 
pattern disappeared if the gel was warmed above 18°C, and that it reappeared when the gel was cooled. 
This abrupt and spontaneous patterning in response to a gradual change in conditions is what is 
expected of a Turing structure. Ouyang and Swinney were also able to demonstrate another of the 
enticing predictions of the Turing instability: the possibility of forming new stable patterns by changing 
the reaction conditions. By increasing the iodide concentration or lowering the malonic acid 
concentration, they broke the symmetry in a new way, forming stripes instead of spots (Plate 4). Their 
chemical leopard was transformed into a chemical tiger.

Fig. 4.5 
Extended Turing patterns in the CIMA reaction. (Photo: Harry 

Swinney, University of Texas at Austin.)

     



You will no doubt have noticed that the patterns in Fig. 4.4 and Plate 4 are ordered, whereas the spots 
and stripes in the theoretical calculations of a Turing system depicted earlier (Fig. 4.3) are less regular. 
Both periodic and disordered patterns are possible, depending on the precise parameters of the chemical 
reactants (such as their diffusion rates) and the nature of the way in which the patterns grow. I shall 
return to this point later. Notice, however, that in both cases a more or less uniform separation is 
maintained, on average, between the features (spots or stripes) of the pattern. This separation is set 
largely by the rate at which the inhibitor diffuses away from the centres of activation.

Coming alive

Fig. 4.6 
Growth and division of replicating chemical spots. (After: Pearson 

et al. 1993.)

Swinney and colleagues, working with John Pearson from the Los Alamos National Laboratory, have 
found a curious kind of chemical pattern that might be considered a hybrid of the travelling waves of 
the BZ reaction and the stationary spots of Turing structures. In another type of oscillatory reaction-
diffusion system called the ferrocyanide-iodate-sulphite reaction they have observed spots that grow 
and divide like replicating cells. Pearson first saw these life-like spots in numerical simulations of a 
reaction-diffusion system on the computer, in which they blossomed when the diffusion rates of the 
various chemical components were ascribed certain values. Swinney's group then discovered conditions 
under which the replicating spots would manifest themselves experimentally (Plate 9). The spots do not 
appear spontaneously; their formation has to be triggered by perturbing the mixture locally, for 
example, by shining ultraviolet light onto a part of it. The spots grow from a roughly circular shape, 
elongating into a dumb-bell shape as they get bigger until finally they split into two circular spots, 
which then repeat the sequence (Fig. 4.6). But just as in life, these systems cannot support too abundant 
a birth rate. If the spots get too overcrowded, they annihilate each otherthey 'die'.
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Skin deep

There is now no doubt that Turing's ideas about chemical pattern formation were visionary ones. But do 
they have anything at all to do with morphogenesis, which was what motivated him to propose his 
reaction-diffusion model in the first place? At present, this question remains open. Although some 
biologists are convinced that spontaneous patterning processes akin to, if not identical to, the Turing 
instability lie at the heart of the most fundamental aspects of embryo development, many regard the 
whole idea as an as-yet untested hypothesis that at best amounts to a curious sideshow. But one area of 
developmental biology in which Turing's ideas have made an undeniable impression is in the formation 
of the surface patterns of the living world: the leopard's spots (Plate 10), the zebra's stripes, the giraffe's 
blotches. Turing has become biology's answer to Kipling.

The beauty of all this is that the diverse range of pelt patterns and markings can be explained with the 
same basic mechanism. To my mind, this alone is a very good reason to believe that Turing was on the 
right track. William of Ockham would have reminded us that if we can account not only for the 
leopard's spots but also for the zebra's stripes and the giraffe's dapples with the same theoretical model, 
that is surely more satisfactory than having to construct a different model for each. The idea arguably 
makes sound evolutionary sense too: it economizes on the amount of (genetic) information needed to 
produce the pattern. The location and size of each of a zebra's stripes does not have to be specified by a 
personalized, paint-by-numbers genetic plan; all that the genes have to record is the blueprint for 
making the activator and inhibitor substances at the right stage in development.

The pelt patterns of mammals are mosaics of just a few coloursthey are defined by hair colours that are 
either white, black, brown, or yellow/orange. The origin of these individual colours is well understood. 
The colour of the hairs that grow from a particular region of the skin is determined by pigment-
producing cells called melanocytes that sit in the innermost layer of the skin's epidermis. The pigment, 
called melanin, is a light-absorbing protein that passes from the melanocyte into the hair. It comes in 
two forms: eumelanin, which turns hair black or brown, and phaeomelanin, which turns it yellow to 
orange.

Whether or not melanocytes produce melanin seems to be determined by the presence or absence of 
certain chemicals in or just below the epidermis. It is not yet known, however, what these chemicals 
are. During the late 1970s James Murray, a mathematician then working at the University of Oxford, 
proposed that the distribution of these chemical 'triggers' takes on a characteristic pattern owing to a 
Turing-like interaction of activator and inhibitor species during the first few weeks of embryogenesis. 
Thus at a very early stage the embryo acquires a 'pre-pattern' of chemical morphogens, which is later 
read out by the melanocytes when they respond to the presence or absence of these morphogens by 
making or failing to make pigments. It is rather like the trick in which a pattern of invisible ink, like 
lemon juice, is made visible by the heat of a candle flame.

     



To verify this model, one would at least have to identify the morphogens and their distribution in a pre-
pattern in the growing embryo. This has not yet been achieved. But Murray took a different approach: 
he asked whether, if the basic mechanism were correct, it could produce the kinds of pattern features 
seen in nature.

The precise spatial pattern produced by a reaction-diffusion system that undergoes a Turing instability 
depends on a number of factors, such as the relative diffusion rates of the activator and inhibitor 
species. We saw above that different patterns can be produced by changing the reaction conditions 
(such as the temperature). Another strong influence on pattern selection is the size and the shape of the 
region in which the chemical process is occurring. This may seem a little oddthe outcome of most 
chemical reactions does not depend on whether the reaction is conducted in a narrow test tube or a 
round-bottomed flask. But the point about Turing patterns is that they are expressions of a wave-like 
modulation of the concentration of reacting species throughout the system, and like sound waves in an 
organ pipe, the kinds of wave (the modes) that can be supported are dependent on the dimensions of the 
container in which they are set up.

There is, in fact, a minimum size for which a reaction-diffusion system can generate a spatial pattern at 
all. The characteristic size of a feature of the patternthe diameter of a spot, for instanceis determined by 
the diffusion rate (the 'range', if you like) of the activator. So if the system as a whole is about the same 
size as this, no pattern is evidentthe concentrations are uniform throughout. As the system grows, 
increasingly complex patterns can be formed as the number of modes that can be supported increases 
(Fig. 4.7). (Although this analogy with acoustic standing waves is visually appealing, it should not be 
taken
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Fig. 4.7 
 The patterns formed by activator-inhibitor schemes depend on the size of the system: larger systems can 
support  more 'modes', and so exhibit more complex patterns. This is analogous to the complexity of the 
vibrations excited  by sound waves in surfaces of differentsizes. Shown here are the acoustic vibrations 

excited in plates shaped to  represent the body surfaces of mammals. The excitationincreases in frequency 
from (a) to (d), which is equivalent  to increasing the size of the plate. (Photos: James Murray, University 

of Washington, Seattle.)
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too literally. Standing waves such as those shown in Fig. 4.7 do not arise in the same way as Turing 
patternsthere is no local activation and long-ranged inhibition involved.)

Fig. 4.8 
The patterns on animal tails may be either spots or bands, but bands always appear as the tail tapers towards 

the endas seen here for a Geoffroy's cat (left) and an ocelot (right).

Murray investigated whether this dependence on size and shape might plausibly account for the 
differences in pattern seen amongst animal tails. The tail is a good feature to study, since it can be 
modelled mathematically to a good approximation as a tapering cylinder, a fairly simple shape. Tail 
patterns come in just two basic varieties: bands running around the circumference, or spots. But just 
about all patterned tails end in a series of bands (Fig. 4.8).

When Murray performed calculations to see what patterns a reaction-diffusion system would generate 
on tapered cylinders, he found that both bands and spots could be produced. If the model tail is small, 
only bands are formedthese are essentially a one-dimensional pattern, since the variation in colour (that 
is, in pigment-stimulating activator chemicals) occurs only in one direction, along the tail's axis. If the 
tail is larger, however, more complex modes can be supported, and the patterns become two-
dimensional (spots), varying around the circumference of the cylinder as well as along the axis (Fig. 
4.9). So a transition from bands to spots may take place along the tail as it widens from the tip, just as is 
seen in the cheetah and leopard.

Murray found that inter-species differences between tail patterns can also be rationalized in terms of the 
known embryonic forms of the animals. The tail of the genet, for instance, is always banded along its 
entire length, whereas that of the leopard is mainly spotted, with bands just at its tip. To judge from the 
similar shape of the adult tails, there is no obvious reason why this should be so; but in the respective 
embryos, the tail of the genet is thin and almost uniform in diameter and so supports only bands, 
whereas the embryonic leopard tail is fairly short and sharply tapered, and so will allow spots.

     



Fig. 4.9 
The patterns produced on tapering 

cylindrical 'model tails' by an 
activator-inhibitor scheme depend on 
their size and shape. Small cylinders 

support only bands (stripes) (a), whereas 
spots appear on larger cylinders (b) as 
they widen. On a more slowly tapering 

tail (c), the transition from bands to 
spots is more clear. (After: Murray 1990.)

If indeed the markings of the adult animal are laid down by a chemical pre-pattern in the very young 
embryo, the timing of this pre-patterning stage can be crucial, since the size and shape of the embryo 
changes fast. This fact may be reflected in the differing stripe markings of the zebras Equus burchelli 
and Equus grevyi:
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the stripes of the former are broader and less numerous than those of the latter (Fig. 4.10). There is 
evidence to suggest that Equus burchelli acquires its pattern several weeks earlier in the gestation 
period than the latter. The same chemical mechanism, producing stripes of the same width, would then 
give the smaller Equus burchelli embryo (Fig. 4.10c) fewer stripes than the larger Equus grevyi (Fig. 
4.10e). So when both have grown to a comparable size, the former has broader stripes than the latter.

Fig. 4.10 
The adult zebra Equus grevyi (b) has more and narrower stripes than the adult Equus burchelli (a). 

This is thought to be because the striped 'pre-pattern' is laid down on the embryo of the latter 
at an earlier stage: after 21 days for Equus burchelli (c), but after 5 weeks for Equus grevyi (e). The 

smaller embryo supports fewer stripes, and so by the time it is of comparable size (d), its stripes 
are wider. (Drawings by the author, after Murray 1989.)

     



Fig. 4.11 
The scapular stripes of a zebra, where the leg meets the body, 
form a kind of chevron pattern (a), which is reproduced in an 

activator-inhibitor model with this idealized geometry (b).

I should add a cautionary note here: stripes are in fact not all that easy to make in Turing-type models, 
since they have a tendency to break up into spots. Murray assumed that stripes could survive in his 
model, but in
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practice extra ingredients are commonly needed to ensure this. For example, stripes may be stabilized if 
there is an upper limit to the rate of autocatalytic production of the activator, so that this reaction can 
become 'saturated'.

Murray ventured to look at the patterns that would be generated by reaction-diffusion systems in more 
complicated geometries, such as the junction of the leg and body of a zebra. Here the same kind of 
modification of the stripe pattern is seen in all zebrasa kind of chevron pattern in which the bands of the 
leg blend with the stripes of the body. These markings are called scapular stripes (Fig. 4.11a). Murray 
considered a simplified two-dimensional approximation to the shape of the leg-body junction, and 
found that a system that generated stripes in the body and bands in the leg would also produce the 
chevron pattern at their junction (Fig. 4.11b).

So within Murray's model, if the chemical parameters in the reaction-diffusion system are much the 
same for all species (an assumption that is not unreasonable but not firmly supported either), then the 
size and shape of the embryo at the time of pre-patterning exert a dominant influence on the eventual 
pattern. One implication of this is that small animals with short gestation periods should have less 
complex pelt patterns than larger animals, because their smaller embryos support fewer modes. On the 
whole this seems to be borne out, perhaps most dramatically by the honey badger and the Valais goat, 
which exemplify the simplest kind of non-uniform colouration of all: an abrupt division into a white 
and a black half.

But it turns out that the apparent complexity of a pattern diminishes at the other end of the size range 
too, when the animal becomes very large. This is because, as more and more modes become possible on 
the patterned embryo, the features start to merge as the dividing lines between them become squeezed 
out. Thus, for instance, giraffes have very closely spaced spots with narrow light boundaries (Fig. 4.12); 
and elephants and hippopotami have no markings at all. More, in terms of skin markings, is less.

     



Fig. 4.12 
On large animals like the giraffe, the pelt pattern consists of 

very large features that almost merge, with narrow boundaries 
between them. (Photo: Michael and Sandra Ball.)

     



Fig. 4.13 
A simple activator-inhibitor model for the giraffe's 

patterns produces large blotchy features that are 
only a crude approximation to the real pattern (a). 

A more sophisticated model in which travelling waves 
of activator and inhibitor throw a biochemical 'switch' 
to trigger pigment production generates more realistic 

polygonal shapes (b). (Images: (a) after Murray 
1990; (b) after Koch and Meinhardt 1994.)

The giraffe patterns that Murray's model generates are blobs with rounded edges (Fig. 4.13a)simply 
bloated versions of the leopard spots. But this is arguably not an accurate depiction of the spots on real 
giraffes, whichas you can see from Fig. 4.12are more like irregular polygons separated by roughly 
straight lines of unpigmented hair. Hans Meinhardt, now at the Max Planck Institute for Developmental 
Biology in Tübingen, Germany, and colleague André Koch have developed a more sophisticated 
reaction- diffusion model that eliminates this deficiency. Their model incorporates an activator-inhibitor 
system in which the diffusion constants of the activator and inhibitor do not differ too greatly. Then, as 
I mentioned
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on page 81, the system does not generate stationary Turing patterns but travelling waves, rather like 
those of the BZ reaction. These waves become translated into a fixed spatial pattern by the interaction 
of the reaction-diffusion system with a biochemical switch: when the concentration of activator exceeds 
a certain threshold at any point in space, a chemical is generated there that stimulates melanocytes into 
producing melanin. Once this switch is thrown, it stays that way melanin is produced even if the 
production of the activator subsequently ceases.

The production of activator is assumed to be initiated at several random points throughout the system. 
Chemical waves of activator then spread outward from these initial points, triggering melanin 
production as they go. But where the wavefronts meet, they annihilate each other, just as we see in the 
BZ reaction (Fig. 3.3). These annihilation fronts define linear boundaries between each domain of 
activator production, and so the system breaks up into melanin-producing polygonal domains separated 
by unpigmented boundaries (Fig. 4.13b)a much closer approximation to the pattern seen on real giraffe 
pelts.

Meinhardt and Koch found that with a little fine tuning of model parameters they could also obtain a 
better approximation to the leopard's pattern toothese are commonly not mere blobs of pigmented hairs 
but rings or crescents (Plate 10); their model could generate structures like this (Fig. 4.14). Models of 
this sort, which involve two interacting chemical systems instead of the single reaction-diffusion system 
considered by Murray, are clearly able to produce much more complex patterns.

Hard stuff

Anyone who is happy to accept with complacency the view that animal markings are simply determined 
by Darwinian selective pressures has a surprise in store when they come to consider mollusc shells. The 
patterns to be seen on these calcified dwellings are of exquisite diversity and beauty, and yet frequently 
they serve no apparent purpose whatsoever. Many molluscs live buried in mud, where their elaborate 
exterior decoration will be totally obscured. Others cover their shell markings with an opaque coat, as if 
embarrassed by their virtuosity. And individual members of a single species can be found exhibiting 
such personalized interpretations of a common theme that you would think they would hardly recognize 
each other (Fig. 4.15).

     



Fig. 4.14 
The leopard's spots are in fact mainly 

crescent-shaped features. An 
activator-inhibitor scheme that involves 

two interacting chemical patterning 
mechanisms can reproduce these shapes. 

(After: Koch and Meinhardt 1994.)

Ultimately these patterns are still surely under some degree of genetic control, but they must represent 
one of the most striking examples of biological pattern for which there are often next to no selective 
pressures.* While this means that their function remains a mystery, it also means that nature is given 
free reign: she is, in Hans Meinhardt's words, 'allowed to play'.

Fig. 4.15 
Shell patterns in molluscs can exhibit wide variations even amongst members of the same 
species. The shells of the garden snails shown here bear stripes of many different widths. 
(Photo: Hans Meinhardt, Max Planck Institute for Developmental Biology, Tübingen.)

It is tempting to regard shell patterns as analogous to the spots and stripes of mammal pelts, and some 
are indeed apparently laid down similarly in a global, two-

* There is nothing anti-Darwinian in this, however, since Darwin's theory does not insist that all 
features be adaptive.
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dimensional surface-patterning process. But most are intriguingly different, in that they represent a 
historical record of a process that takes place continually as the shell grows. For the shell gets bigger by 
continual accretion of calcified material onto the outer edge, and so the pattern that we see across the 
surface of the shell is a trace of the pigment distribution along a one-dimensional line at the shell's edge. 
Thus stripes that run along or around the growth axis (Fig. 4.16), while superficially similar, are in fact 
frozen time-histories of qualitatively different patterning processes: one in which a spatially periodic 
pattern along the growing edge remains in place as the shell grows, the other in which bursts of 
pigmentation occur uniformly along the entire growth edge followed by periods of growth without 
pigmentation. Stripes that run at an oblique angle to the growth direction, meanwhile, are 
manifestations of a travelling wave of pigmentation that progresses along the edge as the shell grows 
(Fig. 4.17).

Fig. 4.16 
Stripes that run parallel to and perpendicular to the axis of the 

shell reflect profoundly different patterning mechanisms: 
in the former case (top), the stripes reflect a patterning 
process that is uniform in space but periodic in time; 

while the latter case (bottom) represents the converse. 
(Photo: Hans Meinhardt.)

     



Fig. 4.17 
Oblique stripes are the result of travelling waves at the 

growth edge, periodic in both space and time. 
(Photo: Hans Meinhardt.)

Thus we can see that shell patterns can be the product both of stationary patterns, analogous to Turing 
patterns, and of travelling waves, analogous to those in the BZ reactionarising in an essentially one-
dimensional system.

Fig. 4.18 
Stripes perpendicular to the growth edge of the shell are the result of one-dimensional spatial patterning at 
the edge. The pattern gets 'pulled' into stripes as the shell edge advances (a). If the activator diffuses more 

rapidly, the stripes broaden (b). When the concentration of the activator rises until it 'saturates' (becomes limited 
by factors other than long-ranged inhibition), the spacing of the stripes becomes irregular (c). (Images: Hans 

Meinhardt.)

Hans Meinhardt has shown that both types of pattern can be reproduced by a model in which an 
activator- inhibitor process controls the deposition of pigment in the calcifying cells at the shell's 
growing edge. The stripe patterns in the lower shell of Fig. 4.16, for instance, are a manifestation of a 
simple, periodic stationary pattern in one dimension (Fig. 4.18a), an analogue of the two-
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dimensional spot pattern of Fig. 4.2. The width of the stripes and the gaps between them can be acutely 
sensitive to the model parameters, particularly the relative diffusion rates of activator and inhibitor (Fig. 
4.18b, c). So differences between members of the same species, like those seen in Fig. 4.15, might be 
the result of differing growth conditions, such as temperature, which alter the diffusion rates. 
Alternatively, Meinhardt has shown that such intra-species irregularities can arise if the pattern at the 
shell's growing edge becomes frozen in at an early stage of growth, for example if the communication 
between cells via diffusing chemical substances ceases.

As the pattern on a shell is a time-trace of the pattern on a growing edge, the full two-dimensional 
pattern depends on how the edge evolves. For example, the bands in Fig. 4.16 and the spoke-shaped 
patterns in Fig. 4.19 may be the result of just the same kind of periodic spatial pattern on the growing 
edge, except that in one case the edge curls around in a spiral and in the other it expands into a cone. 
When, however, the perimeter length of the edge increases as in Fig. 4.19, the change in dimension may 
introduce new features into the pattern, just as we saw earlier for the change in scale of patterned 
mammals. That is to say, as the expansion of the edge separates two adjacent pigmented regions, a new 
domain may be supportable between them (recall that the average distance between pattern features in 
an activator-inhibitor system tends to remain the same as the system grows). That would account for the 
later appearance of new stripes in the conical shell shown on the right in Fig. 4.19.

When Meinhardt's activator-inhibitor systems give rise to travelling waves, the resulting trace on the 
shell is a series of oblique stripes, as an activation wave for pigmentation moves across the growing 
edge. We saw how such waves can be initiated in the two-dimensional BZ reaction from spots that act 
as pacemakers, sending out circular wavefronts. In one dimension these pacemaker regions emanate 
wavefronts in opposite directions along a line. So the resulting time-traces are inverted V shapes whose 
apexes point away from the growth edge. When two wavefronts meet on an edge, they annihilate one 
another just like the target patterns of the BZ reaction, and we then see two oblique stripes converge in 
a V with its apex towards the growth edge (Fig. 4.20a). Both features can be seen on real shells (Fig. 
4.20b). This shows that even highly complex shell patterns can be produced by well-understood 
properties of reaction- diffusion systemsthe complexity comes from the fact that we are seeing the time-
history of the process traced out across the surface of the shell.

     



Fig. 4.19 
When the shell's growth edge traces out a cone instead of a spiral, a one-dimensional 

periodic pattern at the edge becomes a radial 'spoke' pattern. As the edge grows in length, 
new pattern features may appear in the spaces between existing spokes (right). (Photo: Hans 

Meinhardt.)

Occasionally one finds shells that seemed to have had a change of heartthat is to say, they display a 
beautiful pattern that suddenly changes to something else entirely (Fig. 4.21). An activator-inhibitor 
model can account for the patterns before and after the change, but to
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account for the change itself we need to invoke some external agency. It seems likely that shells like 
this have experienced some severe environmental disturbanceperhaps the region became dry or food 
became scarceand as a result the biochemical reactions at the shell's growing edge were knocked off 
balance by the tribulations of the soft creature within (remember that it is this creature, not the shell 
itself, that is ultimately supplying the materials and energy for shell construction!). This sort of 
perturbation can 'restart the clock' in shell-building, and the pattern that is set up in the new 
environment may bear little relation to the old one. Like all good artists, molluscs need to be left alone 
in comfort to do the job well.

Fig. 4.20 
Annihilation between travelling waves in an activatorinhibitor 
model leads to V-shaped patterns(a), as seen on the shell of  

Lioconcha lorenziana (b). (Photo: Hans Meinhardt.)

     



Fig. 4.21 
Sudden changes in environmental conditions can restart 

the patterning process on shells, creating abrupt discontinuities  
in the pattern. (Photo: John Campbell, University of  

California at Los Angeles.)

But is it real?

Biologists are hard to please. However striking might be the similarity between the patterns produced 
by these reaction-diffusion models and the real thing, they may say that it could be just coincidence. 
How can we be sure that the Turing mechanism is really at work in these creatures?

Ultimately the proof will require identification of the morphogens responsible, and that still has not 
been done. But in 1995, Japanese biologists Shigeru Kondo and Rihito Asai from Kyoto University 
staked a claim for a Turing mechanism in animal markings that was hard to deny. They looked at the 
stripe markings of the marine angelfish, a beautiful creature whose scaly skin bears bright yellow 
horizontal bands on a blue background. It is common knowledge that a reaction-diffusion system can 
produce parallel stripes; but what is different about the angelfish is that its stripes do not seem to be 
fixed into the skin at an early stage of developmentthey continue to evolve as the fish grows. More 
precisely, the pattern stays more or less the same as the fish gets biggersmaller fish simply have fewer 
stripes. For example, when the young angelfish of the species Pomacanthus semicirculatus are less than 
2 cm long, they each have three stripes. As they grow, the stripes get wider, but when the body reaches 
4 cm there is an abrupt change: a new stripe emerges in the middle of the original ones, and the spac-
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ing between stripes then reverts to that seen in the younger (2-cm) fish (Fig. 4.22). This process repeats 
again when the body grows to about 8 or 9 cm. In contrast, the pattern features on, say, a giraffe just get 
bigger, like a design on an inflating balloon.

Fig. 4.22 
As the angelfish grows, its stripes maintain 

the same width so the body acquires more of 
them. This contrasts with the patterns on 

mammals such as the zebra or cheetah, where 
the patterns are laid down once for all and then 

expand like markings on a balloon. (Photo: Shigeru 
Kondo, Kyoto University.)

This must mean that the angelfish's stripes are being actively sustained during the growth processthe 
reaction-diffusion process is still going on. One would expect that, if the fish were able to grow large 
enough (to the size of a football, say), the effect of scale evident in Jim Murray's work would kick in 
and the pattern would change qualitatively. But the fish stop growing much short of this point.

     



Kondo and Asai were able to reproduce this behaviour in a theoretical model of an activator-inhibitor 
process taking place in a growing array of cells. This is more compelling evidence for the Turing 
mechanism than simply showing that a process of the same sort can reproduce a stationary pattern on an 
animal peltthe mechanism is able to reproduce the growth-induced expansion of the pattern too.

But the researchers went further still. They looked also at the angelfish Pomacanthus imperator, which 
has rather different body markings. The young fish have concentric stripes that increase in number as 
the fish grows, in much the same way as the stripes of P. semicirculatus. But when the fish become 
adult, the stripes reorganize themselves so that they run parallel to the head-to-tail axis of the fish. 
These stripes then multiply steadily in number as the fish continues to grow, so that their number is 
always proportional to body size, and the spacing between them is uniform. New stripes grow from 
branching points which are present in some of the stripesthe stripe 'unzips' along these branching points, 
splitting into two (Fig. 4.23a). The calculations of Kondo and Asai, using the same reaction-diffusion 
model as for P. semicirculatus, generated this behaviour exactly (Fig. 4.23b). Their model also 
mimicked the more complex behaviour of branching points located at the dorsal or ventral regions (near 
the top and bottom

Fig. 4.23 
The 'unzipping' of new stripes in Pomacanthus imperator (a; region I on the left) can be mimicked in a 

Turing-type model (b). (Photos: Shigeru Kondo.)
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Fig. 4.24 
Complex pattern reorganization in the dorsal and ventral regions of Pomacanthus 

imperator (a), is also captured by the model (b). (Photos: Shigeru Kondo.)

of the body) (Fig. 4.24). What is more, there was a rough correspondence between the relative times 
taken for these different transformations in the real fish and in the calculations (where 'time' means 
number of steps in the computer simulation).

It is hard to imagine that, given this ability of the reaction-diffusion model to generate the very complex 
rearrangements of the fish stripes, the model is anything but a true description of the natural process. 
Kondo and Asai pointed out that since the reaction-diffusion process is apparently still going on in the 
adult fish (whereas it is assumed to take place only during the embryonic pre-patterning stage in 
patterned mammals), it might be a lot easier to identify the chemical speciesthe activator and inhibitor 
moleculesresponsible in this case. That would provide incontrovertible proof that Alan Turing truly 
guessed how nature makes her patterns.

     



Fig. 4.25 
The nymphalid ground plans of (a) Schwanwitsch and (b) Süffert represent the Platonic ideal of all butterfly 
and moth wing patterns. They both contain features from which almost all observed patterns can be derived. 
An updated version of the ground plan (c) takes more explicit account of the effect of wing veins. (Images: 

H. Frederik Nijhout, Duke University.)
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On the wing

The animal-marking patterns considered so far are two-tone affairs: they involve the production of a 
single pigment by differentiated cells. But the natural world is replete with far more fanciful displays 
that are enough to make a theorist despair. Consider, for instance, the butterfly (Plate 11), whose wings 
are a kaleidoscope of colour. Not only is the range of hues fantastically rich, but the patterns seem to 
have a precision that goes beyond the zebra's stripes: they are highly symmetrical between the two 
wings, as though each spot and stripe has been carefully placed with a paint brush. Can we hope to 
understand how these designs have been painted?

That question was squarely faced in the 1920s by B.N. Schwanwitsch and F. Süffert, who synthesized a 
tremendous variety of wing patterns in butterflies and moths into a unified scheme known as the 
nymphalid ground plan. This depicts the most common basic elements observed in wing patterns in a 
single universal blueprint, from which a huge number of real patterns can be derived by selecting, 
omitting or distorting the individual elements. Although Schwanwitsch and Süffert developed their 
schemes independently, they show a remarkable degree of consistency (Fig. 4.25). The basic pattern 
elements are series of spots, arcs and bands that cross the wings from the top (anterior) to the bottom 
(posterior) edges. These top-to-bottom features are called symmetry systems, because they can be 
regarded as bands or sequences of discrete elements that are approximate mirror images around a 
symmetry axis that runs through their centre (Fig. 4.26). Even the most complicated of wing patterns 
can generally be broken down into some combination of these three or four symmetry systems lying 
side by sidealthough sometimes they are so elaborated by finer details that the relation to the ground 
plan is by no means obvious.

Fig. 4.26 
The central symmetry system, a series 

of bands that runs from the top to the bottom 
of the wing. The mirror-symmetry axis is denoted 

by a dashed line.

No butterfly is known that exhibits all of these elements, however; rather, the nymphalid ground plan 
represents the maximum possible degree of wing patterning that nature seems able to offer. The full 
range of wing patterns can be obtained by juggling with the size, shape and colour of selected elements 
of the plan.

     



The building blocks that make up these patterns are tiny scales on the wing surface that overlap like 
roofing tiles. Each scale has a single colour, so that looked at close up, every pattern has the 'pixellated' 
character of a television image (Fig. 4.27). Some of the colours are produced by chemical pigmentsthe 
melanins that feature in animal pelt markings, and other pigment molecules that give rise to whites, 
reds, yellows and occasionally blues (the latter are derived from plant pigments). But some scales 
acquire their colours by means of physics, not chemistry. They have a microscopic ribbed texture which 
scatters light so as to favour some wavelengths over others, depending on the match between the 
wavelength of the light and the spacing of the ribs. Most green and blue scales generate their colours 
this way, and it can result in the iridescent or silky appearance of some wing surfaces.

The wing pattern is laid down during pupation, when the surface cells of the developing wing become 
programmed to produce wing scales of a certain colour (whether it be by the production of pigments or 
of a particular surface texture). The challenge is to understand how this programming is carried out so 
as to express the characteristic distributions of spots and bands that each species selects from the 
nymphalid ground plan.

Fig. 4.27 
The wing patterns of butterflies and moths are made 

up from overlapping pigmented scales, each of a single 
colour. (Photo: H. Frederik Nijhout, Duke University.)

One important consideration is that the overall pattern appears to be strongly modified by the system of 
veins that laces the wing. Süffert's initial scheme did not
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take this into account, but Schwanwitsch appreciated the importance of the veins. In some species, in 
fact, the wing pattern simply outlines the vein pattern with a coloured border. In general the stripes that 
cross the wing from top to bottom (particularly the broad band down the centre, called the central 
symmetry system: Fig. 4.26) are offset where they cross a vein. Schwanwitsch called these offsets 
dislocations, by analogy with the dislocations of sedimentary strata where they are cut by a geological 
fault. H. Frederik Nijhout of Duke University has proposed an updated version of the nymphalid ground 
plan which features these dislocations at veins much more prominently (Fig. 4.25c).

Fig. 4.28 
(a) The moth Ephestia kuhniella has a central symmetry system defined by two light bands. 

(b) Kühn and von Engelhardt investigated the formation mechanism of these bands by 
cauterizing holes in pupal wings and observing the effect on the pattern. (c) They hypothesized 
that the disruptions of the pattern can be explained by invoking 'determination streams' of some 

chemical morphogen issuing from centres located on the anterior (A) and posterior (P) edges 
of the wing. (d) There is some correspondence between the pattern boundaries in these 

experiments and those generated in an idealized model in which a reaction-diffusion system 
switches on genes that fix the pattern. (After: Murray 1990.)

This classification of pattern elements helps immeasurably when we come to attack the question of how 
the patterns arise, because it means that we can focus on the handful of basic symmetry systems, and 
only afterwards need we worry about how these have become elaborated into the distorted forms that 
they might take in particular species. Take the central symmetry system, for example. In 1933 A. Kühn 
and A. von Engelhardt performed experiments to try to understand how this pattern element on the 
wings of the moth Ephestia kuhniella (Fig. 4.28a) came into being. The organization of this patternthe 
fact that the bands run unbroken (albeit dislocated by the vein structure) from the anterior to the 
posterior wing edgeimplies that the signal triggering it must be non-local: it must pass from cell to cell. 
So what happens if cell-to-cell communication is disrupted? To find out, Kühn and von Engelhardt 
cauterized small holes in the wings of the moths during the first day after pupation to present an 
obstacle to between-cell signalling. They found that the coloured bands became deformed around the 
holes (Fig. 4.28b). After studying the effect of many such cauteries on different parts of the wing, they 
proposed that the bands of the central symmetry system represent the front of a propagating patterning 

     



signala 'determination stream'which issues from two points, one on the anterior and one on the posterior 
edge (Fig. 4.28c).

This was a remarkably prescient idea, anticipating the idea of a diffusing chemical morphogen that 
triggers pattern formation. But Kühn and von Engelhardt didn't get it all right. For a start, a closer look 
at their cautery studies suggests that there are three sources of morphogen, not two, all of which lie on 
the mirror-symmetry axis of the central symmetry system. But more importantly, whereas they saw the 
bands as wave-fronts, recent experiments suggest instead that the patterning is triggered when a 
smoothly varying concentration of the diffusing morphogen (not a sharp wavefront) exceeds a certain 
threshold and throws some kind of biochemical switch that induces a particular colouration.

Jim Murray has devised a reaction-diffusion system to model these experiments in which a morphogen, 
which switches on a particular gene in the wing cells, is released from two sources on the anterior and 
posterior wing edges. He found that the boundary of the gene-activated region of the wing mimicked 
the shapes of the deformed stripes quite well (Fig. 4.28d). Frederik Nijhout proposes that the cauterized 
holes don't just
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present obstacles to morphogen diffusionthey actually soak it up (that is, they are a morphogen sink). A 
model based on this assumption can explain all of the experimental results.

The idea that patterning is orchestrated by morphogen sources and sinks underpins all work on butterfly 
wing patterns today. Moreover, it appears that these sources and sinks are restricted to just a few 
locations: at the wing veins, along the edges of the wing, and at points or lines along the midpoint of the 
'wing cells', the compartments defined by the vein network. Moreover, whereas Kühn and von 
Engelhardt assumed that their 'determination streams' issued across the whole wing, it is now clear that 
each wing cell has its own autonomous set of morphogen sources and sinks. So explaining the wing 
pattern as a whole can be reduced to the rather simpler problem of explaining the pattern in each wing 
cell, which is copied more or less faithfully from wing cell to wing cell.

Fig. 4.29 
A set of sources and sinks of morphogen (a) in an idealized wing cell (here shown as a 

rectangular unit with veins at the edges and the wing edge along the bottom) can be combined 
to generate many of the pattern features observed in nature (b). (After: Nijhout 1991.)

     



The ingredients of a model for wing patterns can therefore be specified by a kind of hierarchical 
dismemberment of the full pattern. First, the nymphalid ground plan provides a kind of template onto 
which all actual patterns can be mapped, so that the underlying nature of pattern elements can be 
discerned. Then this pattern is regarded as an assembly of autonomous wing cells, each of which is 
itself a collection of pattern elements such as stripes and eyespots (ocelli) which are induced by 
'organizing centres', sources and sinks of morphogens. The morphogens are assumed to diffuse through 
the wing cell, throwing biochemical switches where they surpass some critical threshold. And these 
organizing centres can lie only at the wing cell midpoints or at their edges (at veins or wing tips).

A general model for patterning that takes these principles as its starting point has been developed by 
Nijhout. It attempts to solve two mysteries: how do various combinations of sources and sinks create 
the vast array of pattern elements that we see, and how do these sources and sinks arise in the first place 
from a uniform sheet of cells?

The first question is the easier one, because Nijhout found that simply by selecting various 
combinations of sources and sinks located at the specified places he could obtain an endless variety of 
pattern features. He developed a 'toolbox' of sources and sinks that determine the concentration 
contours of a diffusing morphogen throughout the wing cell (Fig. 4.29a). As any of
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these contours can in principle represent the threshold above which the patterning switch is thrown, a 
single combination of 'tools' can generate a wide range of pattern features (Fig. 4.29b). Amongst these 
are most of those that appear in natureand some that do not! What are we to deduce from the latterthat 
the model is flawed, or that butterflies don't make use of the full 'morphospace' of patterns available to 
them? The second possibility is quite feasible, because there may be certain types of pattern that simply 
don't help the evolutionary success of the creature.

Fig. 4.30 
The elements of the toolbox in Fig. 4.29a can be produced from an activator-inhibitor 
model in which an activator is released from the wing veins. The pattern of activator 

production (shown as contours) changes over time to a central line that retracts to leave 
isolated spots. (Images: H. Fredrick Nijhout.)

So how are the sources and sinks put in place? This is a question that involves spontaneous symmetry 
breaking in the wing cell, and to answer it Nijhout invokes the activator-inhibitor scheme. To begin 
with, the only 'special' places in the wing cell are the edges, at the veins and at the wing tips. But of the 
tools in Fig. 4.29a, only one (the line source along the wing edge) tracks one of these special locations 
fully. Nijhout has shown that all of the other tools can be produced by an activator-inhibitor scheme in 
which an activator diffuses from the vein edges into an initially uniform mixture of activator and 
inhibitor. At first, this leads to inhibition of activator production adjacent to the veins (Fig. 4.30). Then 
a region of enhanced activator production appears down the wing cell midpoint. This retracts towards 
the wing cell edge, leaving one or more point sources of activator as it goes. The number and location 
of sources depends on the model parametersthe rates of diffusion and reaction. This model suggests that 
the location and shape of morphogen sources is therefore determined by the time during development 
when the pattern of the activating substance gets 'fixed' into a source region.

     



Fig. 4.31 
The eyespot pattern is found on many butterfly 

and moth wings. It probably serves to alarm potential 
predators. (Photo: H. Frederik Nijhout.)

To really verify this model, we'd need to identify and to track the development and behaviour of 
putative morphogens. Ultimately this is a question of geneticsboth the production of the morphogen and 
its influence on wing scale colour are under genetic control. Many genes have been identified that 
control certain pattern features in particular species, for example, by changing colours, adding or 
removing elements or changing their size. But how the genes exert this effect via diffusing morphogens 
is in general still poorly understood. One of the best studied pattern features is the eyespot or ocellus, a 
roughly circular target pattern (Fig. 4.31). These markings appear to serve as a defence mechanism, 
startling would-be predators with their resemblance to the eyes of some larger and possibly dangerous 
creature. The centre of the eyespot is an organizing centre that releases a morphogen, which diffuses 
outwards and programmes surrounding cells. Experiments by Sean Carroll of the Howard Hughes 
Medical Institute in Wisconsin and colleagues have elucidated the genetic basis of the patterning 
process. They found in 1996 that
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a gene called Distal-less determines the location of the eyespots. The gene is turned on (in other words, 
the Distal-less protein encoded by the Distal-less gene* begins to appear) in the late stages of larval 
growth, while the butterfly is still in its cocoon. That the Distal-less gene is involved in this process is 
something of a surprise, since in arthropods like beetles it is known to have a completely different role, 
determining where the legs grow.

Fig. 4.32 
The formation and positioning of eyespot patterns 

is initiated by a gene product called Distal-less. 
This protein is at first produced over a broad region 
around the edge of the developing wing (a). It then 

becomes focused into narrow bands down the 
midpoint of one or more wing subdivisions (defined 

by the pattern of veins), ending in a spot which 
will form the centre of the eyespot (b). From this central 

locus issues a signal comprised of one or more other 
morphogens, which diffuse outwards (c) and eventually 

induce differentiation of the wing's scale cells into 
differently pigmented rings (d).

Expression of the Distal-less protein occurs initially in a broad region around the tip of the wing, and 
the protein spreads by diffusion. Gradually, the production of the Distal-less protein becomes focused 
into spots, which define the centres of the future eyespots. This focusing is similar to that seen in 
Nijhout's model for the formation of morphogen sources (Fig. 4.30). Once the focal points have been 
defined, they serve as organizing centres for the formation of the concentric ringsand it seems that the 
Distal-less protein now does the organizing. It becomes expressed in an expanding circular field centred 
on the focal point, and this signal somehow controls the developmental pathways of surrounding cells, 
fixing within them a tendency to produce scales of a different colour to the background (Fig. 4.32). This 
process of differentiation of scale-producing cells around the eyespot focus is still imperfectly 
understood. But it seems clear that the diffusing morphogenetic signal (whether this be the Distal-less 
protein itself or some other gene product activated by it) controls the pattern but not the colour of the 
marking, since eyespot foci transplanted to different parts of the wing produce eyespots of different 
colours.

     



To me, one of the most astonishing things about the whole wing-patterning scheme is the way that 
evolution employs it as a paint-box to create highly specialized pictures. Some butterfly species have 
evolved patterns that mimic those of other species, because the latter are unpalatable to the former's 
predators. This kind of so-called Batesian mimicry is good for the mimic but bad for the species it 
imitates, once predators begin to wise up to the possibility of deception. So the two patterns become 
involved in a kind of evolutionary race as the mimic attempts to keep pace with its model's tendency to 
evolve a new set of colours. And the dead-leaf butterfly displays a particularly inventive use of the 
nymphalid ground plan, which it has gradually distorted and dislocated until the wing pattern and 
colouration acquire the appearance of a dead leafan example of a universal pattern corrupted into 
camouflage.

Written on the body

What, at last, of the patterns of body plans, which stimulated Turing in the first place? Can the 
complicated blueprint for our human shape really be imprinted on an embryo by chemicals that are 
blindly diffusing and reacting, activating and inhibiting?

This topic shows how a little knowledge can simply make life harder. In the eighteenth century no one 
was troubled by the question of how babies grow from embryos, because it was assumed that, naturally 
enough, all creatures start life as miniature but fully formed versions of their adult selves, and just grow 
bigger. People, it was thought, grow from microscopic homunculi in the womb, which possess arms, 
legs, eyes and fingers perfect in every detail. The problem with this idea, which was rather swept under 
the carpet, is that it entails an infinite regression: unless you are prepared to accept the formation of 
pattern from a shapeless egg at some stage, you have to assume that the female homunculi contain even 
smaller homunculi in their tiny ovaries, and so on for all future generations.

During the eighteenth century this idea was gradually dispensed with, but only in favour of an 
alternative that was really no more attractive. It assumed that egg cells need not be fully formed 
homunculi but were instead imbued with an invisible pattern that would find gradual expression as a 
mature organism. This was not

* The names of genes are conventionally spelt in italics, while the protein products derived from them 
have the same name but in normal typeface.
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much of an advance because it still begs the question of where that patterning might come from.

To go from a spherical fertilized egg to a newborn baby, you have to break a lot of symmetry. Turing's 
mechanism provides a way to do that, but there is no reason to suppose that it is unique. Today's 
understanding of morphogenesis suggests that here, at least, nature may use tricks that are at the same 
time less complex and elegant but more complicated than Turing's reactiondiffusion instability. It seems 
that eggs are patterned and compartmentalized not by a single, global mechanism but by a sequence of 
rather cruder processes that achieve their goal only by virtue of their multiplicity.

The reference grid of a fertilized egg, which tells cells whether they lie in the region that will become 
the head, a leg, a vertebra or whatever, is apparently painted by diffusing chemicals. But there is no 
global emergence of a Turing-style pattern to differentiate one region form another; rather, the 
chemicals merely trace out monotonous gradients: high near their source and decreasing with increasing 
distance. A gradient of this sort differentiates space, providing a directional arrow that points down the 
slope of the gradient. Each of the chemical morphogens has a limited potential by itself to structure the 
egg, but several of them, launched from different sources, are enough to get the growth process 
underway by providing a criss-crossing of diffusional gradients that establish top from bottom, right 
from left. In other words, they suffice to break the symmetry of the egg and to sketch out the 
fundamentals of the body plan.

The idea of gradient fields as organizers of initial morphogenesis can be traced back to the beginning of 
this century: in 1901 Theodor Boveri advanced the idea that changes in concentration of some chemical 
species from one end of the egg to the other might control development. Experiments involving the 
transplantation of cells in early embryos led the eminent biologist Julian Huxley to propose in 1934 that 
small groups of cells, called organizing centres or organizers, set up 'developmental fields' in the 
fertilized egg that are responsible for the early stages of patterning over much larger regions. 
Transplanting these organizers to different parts of the fertilized egg was found to lead to new patterns 
of subsequent development, suggesting that the organizers exercise an influence on the cells around it 
while growth is occurringthe egg need not be pre-patterned before fertilization.

In 1969 the British biologist Lewis Wolpert moulded these ideas into a form that underpins most 
research on morphogenesis today. Wolpert asserted that the diffusional gradients of morphogens 
emanating from organizing centres provide positional information, letting cells know where they are 
situated in the body plan. Above a concentration threshold the morphogens switch on genes that set in 
train a series of biochemical interactions, leading to ever more patterning of the local environment and 
differentiation of cells into different tissue types.

One problem with the idea of a simple diffusional gradient as the patterning mechanism, however, is 
that once the single-celled egg has begun to divide into a multicelled body, the diffusing morphogens 
face the barrier of cell membranes. How can a gradient progress smoothly from cell to cell?

     



In the most extensively studied of developmental systems, the fruit fly Drosophila melanogaster, this 
problem does not arise. The fruit fly egg is unusual in that it does not become compartmentalized into 
many cells separated by membranes until a relatively late stage in the growth process, by which time 
much of the essential body plan is laid down. Like all developing eggs, the fruit fly egg makes copies of 
its central nucleus, where the genetic storehouse of DNA resides; but whereas in most organisms these 
replicated nuclei then become segregated into separate cells, the fruit fly egg just accumulates them 
around its periphery. Only when there are about 6000 nuclei in the egg do they start to acquire their 
own membranes.

Fig. 4.33 
The embryos of the fruit fly develop stripes soon 

after fertilization which eventually define the different 
body compartments. (Photo: Peter Lawrence, Laboratory 

for Molecular Biology, Cambridge; from Lawrence 1992.)

For this reason, morphogens in the fruit fly embryo are free to diffuse throughout the egg in the first 
few hours after it is laid. After a short time, the egg develops
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stripes (Fig. 4.33). These evolve into finer stripes, and as the egg begins to become divided into separate 
cells, these stripes mark out regions that will subsequently become different body segments: the head, 
the thorax, the abdomen and so forth.

As this striped pattern suggests, the first breaking of symmetry takes place along the long axis of the 
ellipsoidal egg. This is called the anterior-posterior axis, the anterior being the head region and the 
posterior the tail. The initial segmentation process seems to be controlled by three genetically encoded 
signals: one defines the head and thorax area, another the abdomen, and a third controls the 
development of structures at the tips of the head and tail. When the respective genes are activated, they 
generate a morphogen that then diffuses from the signalling site throughout the rest of the egg.

The head/thorax morphogen is a protein called bicoid, which is produced when the gene that encodes 
this protein is switched on. Production of the bicoid protein takes place at the extreme anterior end of 
the egg, and the protein diffuses through the cell to establish a smoothly declining concentration 
gradient (Fig. 4.34a). To transform this smooth gradient into a sharp compartmental boundary (which 
will subsequently define the extent of the head and thorax regions), nature exploits the kind of threshold 
switch that I have described earlier. Below a certain threshold concentration, bicoid has no effect on the 
egg, but above this threshold the protein binds to DNA and triggers the translation of another gene into 
its protein product, called hunchback. (More accurately, the bicoid protein promotes the formation of 
the intermediary hunchback RNA molecule from the hunchback gene on the chromosomeit is the RNA 
that is ultimately translated into a corresponding protein.) In this way, a smooth gradient in one 
molecule (bicoid) is converted into an abruptly stepped variation in another (the hunchback RNA) (Fig. 
4.34b, c).

You may have noticed that this patterning mechanism seems to have cheated on the question posed at 
the outset: how does an initially uniform cell break its symmetry? OK, so the cell in this case is not 
quite so uniformit already has a long axis and a short axis. But why should bicoid suddenly be produced 
at one end and not the other, or indeed in any one region of the cell and not others? The answer seems 
to be that the egg is acted on from outside in an asymmetric manner. Although the egg itself is initially 
a single cell, it begins its development as a part of a multicellular body. The single 'germ cell' that will 
grow into the egg becomes attached to follicle cells before fertilization, and within this assembly the 
follicle cells and other specialized entities called nurse cells provide nutrients for the egg cell's growth. 
The nurse cells deposit RNA encoding the bicoid protein at the anterior tip of the egg while they are 
still attached to one another, and the bicoid RNA starts to generate bicoid protein as soon as the cell is 
fertilized. So you see, I'm afraid that there is no wondrous spontaneous symmetry-breaking here as 
there is in Turing's mechanisminstead, a broken symmetry is passed from generation to generation.

     



Fig. 4.34 
The initial patterning of the fruit fly embryo 

is controlled by a protein called bicoid, which 
diffuses along the cell from the anterior end to 
set up a concentration gradient (a). Where the 

concentration surpasses a certain threshold, the 
bicoid protein triggers the formation of the so-called 
hunchback protein (b, c). Thus the smooth gradient 

in bicoid gives rise to an abrupt boundary of 
hunchback expression.

The patterning of the posterior region of the fruit fly egg is controlled by a morphogen called the nanos 
protein. (Nanos is Greek for dwarf, and what with hunchbacks too, you can imagine that there are 
unfortunate deformities associated with the malfunctioning of these genes.) At some stage after 
longitudinal segmentation has taken place by the action of these morphogens, the egg has to break 
another symmetry, between top (where the wings will go) and bottom (where the legs and belly are). 
This is called the dorsoventral axis, and its direction is defined by a protein called dorsal. The 
mechanism by which dorsal does its job is rather more complicated than bicoid or nanos, however. The
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top-bottom gradient is not one in concentration of the dorsal proteinwhich is actually more or less 
uniform throughout the eggbut in the protein's location. Towards the bottom, it segregates more 
strongly into nuclei than into the cell's watery cytoplasm, while the reverse is true towards the top. 
There appears to be an underlying signal of still uncertain nature that determines whether or not the 
dorsal protein can find its way into the many nuclei in the egg; this signal is activated from the bottom 
(ventral) edge of the embryo. Again, the initial impulse for this symmetry-breaking signal seems to 
come from outside the cellfrom a concentration gradient in some protein diffusing through the 
extracellular medium, which transmits its presence to the egg's interior by interactions at the cell 
membrane. The way the dorsal morphogen does its job is more complicated too. It is a double switch: 
above a certain threshold it inhibits the formation of RNA from a pair of developmental genes, whereas 
above a still higher threshold it promotes RNA formation from a second pair of genes. These gene 
products are themselves then involved in switching on other developmental processes. Moreover, other 
molecules called cofactors appear to be able to modify a gene's response to a morphogen, and the 
cofactors can establish their own concentration gradients. Already we are starting to see why molecular 
biology seldom lends itself to simple conceptual models: before too long, just about any biological 
process reveals itself as a sequence of many highly specific steps, in which proteins interact through 
convoluted pathways to regulate each other's formation.

Do these same initial processes of morphogenetic patterning by chemical gradients apply to other 
organisms, including us? It seems highly probable that they do, although as I say, most other organisms 
face the obstacle of cell-to-cell communication in early embryonic development. While there are 
probably chemical signalling molecules that act as morphogens by switching genes on or off according 
to their local concentration, they are presumably transmitted from their source region in a stepwise 
mannerone cell parcelling them out to anotherrather than by smooth diffusion. Lewis Wolpert has 
proposed that morphogens make their way from clusters of cells called zones of polarizing activity 
(ZPAs) to convey positional information to surrounding cells. It was thought for some time that the 
small molecule retinoic acid might be a morphogen for limb development in vertebrates, as it appeared 
to be released from a ZPA at the posterior edge of the developing wing bud of chicks to define the front 
and back ends (anteroposterior axis) of the wing. But whether retinoic acid indeed has this role is still 
an open question.

Leg pulling

     



Not everyone, however, believes that development has to bow entirely to this kind of rigid genetic 
control. Jim Murray, working with George Oster from the University of California at Berkeley, has 
postulated a model for structuring and patterning of the body plan at much later stages of an organism's 
development that involves spontaneous instabilities much like those that give rise to chemical Turing 
patterns. Murray proposes that structures such as the characteristic hierarchical branching of limb bones 
or the regular positioning of feathers and scales are a consequence of the interplay of chemical 
signalling between cells and the mechanical forces that arise in response to these. There are two types 
of tissue cell: epithelial cells, which aggregate into sheets that constitute the fabric of skin and tissue, 
and mesenchymal cells, which can pull themselves around using finger-like protrusions called 
filopodia. Mesenchymal cells will move in response to a variety of stimuli, including gradients in 
chemical concentrations, in electric fields and in adhesive interactions with a substrate.

Murray and Oster's 'mechanochemical' model of morphogenesis proposes that these signalling 
mechanisms, particularly those involving chemical gradients set up by diffusion, cause mesenchymal 
cells to clump together. The traction forces caused by this aggregation, as the cells pull on the 
surrounding medium, can then establish instabilities that lead to further patterning. For instance, Murray 
and Oster propose that during limb development a spontaneous instability creates an aggregation of 
cells along the central axis of an initially uniform cylindrical limb (Fig. 4.35a), which will thicken into 
cartilage and eventually be mineralized into bone. This process is akin to the formation of a single 
Turing stripe. But the slightest ellipticity in the cross-section of the central cylindrical aggregate makes 
it unstable: the traction forces act to accentuate this ellipticity, making the limb flatten out (Fig. 4.35b). 
At a certain point, the flattening induces a symmetry-breaking bifurcation of the central condensation, 
causing it to branch (Fig. 4.35c). A subsequent cascade of bifurcations creates the segmentation of the 
aggregate into the characteristic bone patterns seen in limbs (Fig. 4.35d, e). Moreover, as a central 
aggregate gets longer and thinner, mechanical instabilities arise in the longitudinal
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direction (along the axis) which create segmentation of the digits.

Fig. 4.35 
A spontaneous instability in a developing limb bud, due to mechanical forces exerted 

by cells on their neighbours, creates an increase in cell density along the central axis of the 
cylindrical bud (a). Any deviation from a perfectly circular cross-section (ellipticity) is 

accentuated by the mechanical forces, causing the limb bud to flatten (b). When this 
flattening exceeds some threshold, a bifurcation takes place to produce two axes of 

densification (c). Subsequent bifurcations and segmentations (d) produce the structures 
that become cartilage and then bone, as seen in the limb of a 10-day-old chick (e).

     



Fig. 4.36 
The same sequence of bifurcations and segmentations 

as in Fig. 4.35e is seen in the bone structure of the limbs of many 
animals, including the salamander (a) and humans (b).

Within this picture, the characteristic pattern of limb bones seen in many diverse large animals (Fig. 
4.36)the division of a single radius into a bifurcated ulna and then into a series of segmented digitsis 
posited as an inevitable outcome of the physical forces that are acting, not a structure determined 
arbitrarily by genetics. The model of Murray and Osterwhich, incidentally, has been advanced on a far 
more rigorous mathematical basis than the qualitative description given herecan also account for the 
polygonal patterning of feathers in birds and scales in fish and reptiles. Feathers are initiated from 
'primordia', areas of thickening of the embryonic bird's epidermis caused by an aggregation of 
underlying dermal cells in the skin. The primordia are arrayed in roughly hexagonal patterns (familiar 
from the skin of the Christmas turkey), and in Murray and Oster's model these patterns are the 
mechanochemical equivalent of hexagonal Turing patterns (Fig. 4.3a), arising through spontaneous 
symmetry breaking.

If Murray and Oster are even partly right, these processes suggest that there are certain 'fundamental' 
structures of organisms that are not at all determined by the arbitrary experimentation and weeding out 
that evolution is thought to involve. Instead, these structures have an inevitability about them, being 
driven by the basic physics and chemistry of growth. If life were started from scratch a thousand times 
over, it would every time alight on these fundamental structures eventually. Within the parlance of 
modern physics, they are
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attractorsstable forms or patterns to which a system is drawn regardless of where it starts from. Within 
this picture are echoes of the ideas of the eighteenth-century zoologist Etienne Geoffroy de St Hilaire, 
who believed that there might be certain ideal, Platonic forms in living organisms, from which all other 
forms are derived by modifications of greater or lesser extent.

This is an extremely contentious idea, since at face value it challenges one of the central tenets of 
Darwin's theory: that evolution advances by selection from a pool of random mutants. The concept of 
morphogenetic attractors introduces an element of determinism to this randomness. But even if the 
protagonists of this concept turn out to be validated, that would not by any means bring Darwin 
tumbling from his pedestal. There is absolutely no question that natural selection operates in the real 
world and that it has produced the tremendous variety of organisms with which we share the planet. The 
idea that this process of mutation and selection might be modulated by other factors is not by any means 
new in itself, and is hard to doubt. Geological forces have undoubtedly shaped the evolution of the 
living world: continental drift has isolated sub-populations of species and caused them to diverge, for 
example, and ice ages and at least one huge meteorite impact have profoundly altered survival prospects 
in the prehistoric world. No one argues, meanwhile, that nature's palette is not constrained by the rules 
of physics and chemistry. If the formation of patterns by symmetry-breaking proves to pose limitations 
on evolutionary choices, that will add just one more nuance to Darwin's towering achievement.

     



Fig. 4.37 
Three distinct patterns can be identified in the arrangement of leaves around 

plant stems (phyllotaxis): (a) spiral, (b) distichous and (c) whorled. Below each drawing 
I have shown a schematic representation of the leaf pattern seen from above, with 

successive leaves depicted as smaller the farther they are down the stem.

Patterns in bloom

Probably the best candidate system for the identification of Platonic forms in development is the 
arrangement of leaves on a plant stem. It isn't hard to imagine all sorts of ways in which leaves could be 
placed up the stem; but if you go out into the garden or park you will soon discover that there are just 
three basic patterns. Something seems to be placing rather severe constraints on the options.

Most commonly (in 80% of plant species), leaves execute a spiral up the stem, with each leaf displaced 
above the one below by a more or less constant angle
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(Fig. 4.37a). The potato plant, for instance, has this arrangement. The angle of offset is close to 137.5° 
in many different species, an observation that begs for an explanation. There is, we shall see, something 
a little spooky about this angle. A second arrangement, called distichous, places successive leaves on 
opposite sides of the stem, usually with the leaf wrapped almost fully around the stem (Fig. 4.37b). We 
could regard this as a form of spiral in which the offset angle is 180°. The third pattern, called whorled, 
has little clusters (whorls) of leavestwo or moreat regular intervals up the stem, with each whorl offset 
so that it sits over the gaps of the whorl below. A common whorled pattern juxtaposes two leaves 180° 
apart offset at an angle of 90° from the two below (Fig. 4.37c). Mint has this arrangement, and so does 
the stinging nettle. The formation of these leaf patterns is called phyllotaxis ('leaf ordering'), and it turns 
out to have some remarkable mathematical properties.

When I first observed these arrangements for myself, I assumed that they were clever adaptations 
selected because they give the leaves maximum exposure to sunlight. You can be sure that 
arrangements that failed to do this would be selected against, but a closer investigation of phyllotactic 
patterns reveals that there must be more here than Darwinian selection from a random pool of 
possibilities. They have a mathematical structure in which we can surely see the fingerprint of some 
physical mechanism at work.

     



Fig. 4.38 
The pattern of phyllotaxis is determined at the tip of the growing 
stem (the meristem), where the leaf buds (primordia) are initiated. 

(After: Koch and Meinhardt 1994.)

The arrangement of leaves along a stem provides us with a somewhat distorted version of the true 
growth pattern, which becomes extended along the stem axis. Plants grow from the tip of the stem, 
where one finds a bud of multicellular tissue called the meristem. Here cells are multiplying rapidly, 
and just behind the advancing tip (the apex), side buds called primordia begin to protrude one by one. 
These will subsequently develop into leaves (Fig. 4.38). There is a roughly constant time interval, called 
the plastochrone, between the formation of successive primordia, with a typical duration of one day. 
The leaf pattern is determined by where around the boundary of the apex the primordia appear. As the 
stem grows upwards, the positions of successive primordia trace out a spiral when seen from above. 
One can see this more clearly by projecting the leaf positions onto a plane perpendicular to the stem 
(Fig. 4.39). Here some of the leaves are numbered according to the sequence in which they developed, 
and lines are drawn through leaves that are in contact with one another. These trace out two systems of 
spirals, which twist in opposite directions. The double-spiral pattern is more immediately evident when 
the primordia develop not into leaves but into florets in a flower head (Fig. 4.40), since in that case they 
remain all in the same plane.

Fig. 4.39 
The pattern of spiral phyllotaxis 

in the monkey puzzle tree. Here I 
show the projection of the pattern 

onto a two-dimensional plane, looking 
down the axis of the branch. Leaves 
are numbered consecutively from 

the youngest, and the two systems of 
spirals (solid and dashed lines) indicate leaves 

that are in contact with one another. 
(After: Goodwin 1994.)
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Fig. 4.40 
The double spiral pattern of phyllotaxis is particularly 

clear in the arrangement of florets in a flower head 
(a) and of leaflets in a pine cone (b). (Photos: Scott 

Camazine, Pennsylvania State University.)

Golden wonder

     



The regularity of these spiral patterns has long been seen as the expression of mechanical laws that 
govern phyllotaxis. W. Hofmeister proposed in 1868 that each new primordium appears periodically on 
the apex boundary at an interval equal to the plastochrone, and in a position corresponding to the largest 
gap left by the preceding primordia. In other words, the primordia are simply trying to pack efficiently, 
just like atoms in a crystal. In 1904, A.H. Church took this idea further in a book called On the Relation 
of Phyllotaxis to Mechanical Laws, from which Fig. 4.39 is derived. And in 1979 H. Vogel performed 
computer calculations which showed that the preferred angle of 137.5° allows for the optimal packing 
of primordia placed sequentially along a spiral. Yet there is a richness to the spiral patterns for which 
these simple packing considerations cannot fully account.

Travelling out along any one of the lines in Fig. 4.39, you will find that the leaf numbers differ from 
one another by eight along the dashed lines and by 13 along the solid lines. This construction permits a 
classification of the phyllotaxis patternit is denoted (8, 13). Examples from other monkey puzzle 
branches show other phyllotactic relationships(5, 8), for instance, and (3, 5). To a mathematician, these 
pairs of numbers have a familiar ring. They are all adjacent pairs in a well-known mathematical 
sequence called the Fibonacci sequence, first defined in 1202 by the Italian mathematician Leonardo of 
Pisa, nicknamed Filius Bonacci or Fibonacci. Each term in the sequence is constructed by adding 
together the previous two, starting with 0 and 1. Thus, 0 + 1 = 1, and the first three terms are 0, 1, 1. 
The next is 1 + 1 = 2, then 1 + 2 = 3, then 2 + 3 = 5 and so on. The series runs 0, 1, 1, 2, 3, 5, 8, 13, 21, 
34. . . .

Straight away we can see the adjacent pairs (3, 5), (5, 8) and (8, 13). But it turns out that the phyllotaxis 
classifications of leaves, petals or floret patterns in any plant species correspond to pairs in this series. A 
corollary of this is that the number of petals on most flowers corresponds to a Fibonacci number: 
buttercups have five, marigolds have 13, asters 21.

More mathematical spookiness follows. The ratio of successive terms in the Fibonacci series gets closer 
and closer to a constant value the further along the series one progresses: 8/13 = 0.615, for example, and 
13/21 = 0.619. This ratio approaches a value of 0.618034 to the first six decimal places. This number 
was well known to the ancient Greeks, who knew it as the Golden Section. It can also be expressed as 
(√5-1)/2, where √5 is the square root of 5. To the Greeks, this was a harmonious, almost mystical 
constant of nature. If you want to draw a rectangle that can be subdivided into a square and a smaller 
rectangle with the same proportions as the original one (but reduced in scale), the ratio of the two sides 
must be equal to the Golden Section (Fig. 4.41a). These proportions were considered by the Greeks to 
be pleasing to the eye, and they based the dimensions of many temples, vases and other artefacts on this 
ratio. There is a long-standing idea that for a perfectly proportioned human body the ratio of the height 
of the navel to the total height (and also some other bodily proportions) is equal to the Golden Section. 
It is also related to the log-
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Fig. 4.41 
There is a rectangle of unique proportions 

that can be divided up into a square 
and a smaller rectangle that has the same 

proportions as the larger one (a). The ratio 
of equivalent sides of the larger and smaller 
rectangles is equal to the Golden Section. 

If we continue to divide the smaller rectangles 
in the same way, their equivalent corners 

trace out a logarithmic spiral (b). The Golden 
Angle is the angle at the apex of a segment 

of a circle of circumference C that sweeps out an arc 
of length B such that B/A = A/C (c). This angle 

     



(θ) is about 137.5°.

arithmic spiral (Chapter 1), which is traced out by the extremities of a series of rectangles growing in 
the successive proportions of the Fibonacci sequence (Fig. 4.41b). The Golden Section is commonly 
held to be one of nature's 'special' numbers, like π or ebut one particularly intimate to the geometry of 
life.

Now, the Golden Section has a 'Golden Angle' associated with it. This is most easily visualized by 
dividing a circle into a segment whose perimeter stands in the same ratio to the rest of the circle as the 
latter's perimeter does to the circumference of the whole circle (Fig. 4.41c). The Golden Angle is that at 
the apex of the segment. And it is equal to 137.5°the angle at which successive leaves are commonly 
offset along a plant stem in spiral phyllotaxis! This correspondence between the most common 
phyllotactic divergence angle and the Golden Angle was first identified, to their surprise, by the 
mathematicians L. and A. Bravais in 1837.

If this all seems like number-juggling akin to the numerology of end-of-the-world prophets, rest assured 
that it is mostly an expression of the same basic fact. Once we have established that leaves spiral up a 
stem with offsets of the Golden Angle, then all the restthe relationship to the Fibonacci series and to the 
Golden Sectionfollows. Ian Stewart explains why in his book Nature's Numbers.

Phyllotaxis, therefore, contains a hidden mathematical pattern for which we are unlikely to find an 
explanation by rooting around in the genetics of plant developmental biology. It seems likely that there 
is some more universal basis to these observations.

     



Fig. 4.42 
Magnetic droplets moving from the centre 
to the edge of a round dish while repelling 

one another trace out spirals of the same kind 
as those observed in phyllotaxis. Yet here there 
are clearly only physical forces at play. (After: 

Douady and Couder 1992.)

That this is so was impressively demonstrated by the French physicists Stéphane Douady and Yves 
Couder in 1992. They performed an experiment in which they dropped tiny droplets of a magnetic fluid 
onto a disk covered with a film of oil, on which the droplets floated. The apparatus sat in a vertical 
magnetic field, which polarized the magnetic particles and caused them to repel one another. The 
researchers also applied a horizontal magnetic field, which was stronger at the periphery of the disk 
than at its centrethis pulled the
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droplets outwards towards the edge. Thus, as the droplets fell one by one, they were pushed out to the 
edges of the disk while repelling one another. When the droplets were added at a fast enough rate, they 
travelled outwards to form a spiral pattern just like those seen in phyllotaxis (Fig. 4.42), with successive 
droplets diverging at an angle of about 137.5°. Interestingly, when the rate of droplet addition was low 
enough, successive droplets diverged at 180° instead (since in this case each droplet was simply 
repelled by the previous one, the others being too far away)the pattern then corresponds to distichous 
phyllotaxis (Fig. 4.37b). Under some conditions other divergence angles were seen, which correspond 
to other, more rare divergence angles seen between leaves that exhibit spiral phyllotaxis.

All very wellexcept that growing plants are not magnetic droplets! But what Douady and Couder were 
setting out to test was the idea that phyllotaxis at the Golden Angle is preferred because it allows the 
optimal packing together of primordia arranged around a spiral on the meristem. They suggested that 
their experiment, in which the droplets repel one another along spiral trajectories, reproduces these 
same packing effects. Their findings imply that a plant need not somehow 'know' from the outset that 
137.5° spiral phyllotaxy is the best choiceon the contrary, the dynamics of the growth process 
automatically select this angle. If you like, each plant 'finds out' this solution as it grows.

This brings us back to attempts to capture the dynamics of patterned biological growth using 
reactiondiffusion models. Can such models reproduce the spiral phyllotaxis patterns?

There are at least two separate positioning mechanisms at work in this process. One must tell the 
primordia how far apart they should be along the stem's axis. This mechanism in effect specifies the 
interval between inception of primordiathe plastochrone. The other mechanism specifies where around 
the stem's circumference the primordia should developsay, at a 137.5° angle from the primordium 
below for the case of a typical spiral phyllotaxis pattern. This is called the azimuthal position.

     



Fig. 4.43 
Spiral phyllotaxis can be generated in a 

reaction-diffusion model of patterning on a cylindrical 
plant stem, here shown rolled out into a flat sheet. 
The spiral sequence of primordia is indicated by 
dashed lines. New primordia develop below the 

meristem at the top of the cylinder. (After: 
Koch and Meinhardt 1994.)

Experiments on plant growth dating back to the 1940s have shown that the axial position of a 
primordium is controlled by a chemical mechanismspecifically by plant hormones that are produced at 
the apex and transported towards the roots. Hans Meinhardt and André Koch have used this observation 
as the basis of a reaction-diffusion model in which the hormones act as inhibitors that repress primordia 
formation in a given region of the stem until the tip has grown far enough beyond this region for the 
hormone concentration to fall below a certain threshold value. Once this long-ranged inhibition 
becomes sufficiently weak, some local activator molecules switch on cell proliferation to induce the 
budding of a primordium.

In this model, a second activatorinhibitor mechanism controls the azimuthal position of the primordia. 
As this position is influenced by long-range inhibition, primordia cannot pack too closely together, just 
as spots in a Turing pattern cannot come too close. In a sense, this is an expression of the packing 
effects first suggested by Hofmeister. Meinhardt and Koch carried out calculations to find the primordia 
patterns that their model would produce on an idealized plant stem modelled as a narrow, hollow 
cylinder. They found that the primordia (and thus ultimately the leaves) became positioned along a 
spiral winding up the stem in a (2, 3) phyllotaxis patternone of the Fibonacci pairs observed in nature 
(Fig. 4.43). By making some simple and reasonable assumptions about how cells differentiated around 
the primordia, Meinhardt and Koch were even able to account for the formation of the little 'secondary' 
buds called axillary buds seen just above the developing leaf where it joins the stem in real plants. (I'm 
told to remove these from my tomato plants to ensure a good yield of tomatoes, and
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have often wondered why they were there in the first place.)

There is no direct evidence for this pattern-forming mechanism in phyllotaxis, although the role of plant 
hormones suggests that it is not unreasonable. But it shows that even quite complicated body shapes in 
living organisms can be plausibly explained by the chemical processes of self-organization and 
spontaneous pattern formation that Alan Turing dreamed up over four decades ago.
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5 
Branches

The ruddy clouds float in the four quarters of the caerulean sky 
And the white snowflakes show forth their six-petalled flowers. 
Hsiao T'ung 
Sixth century AD

In Mike Leigh's film Nuts in May, a pair of gauche campers named Keith and Candice Marie discover 
how a kind of modern-day vitalism colours our preconceptions about complex growth and form. They 
take a trip to a local quarry to search for fossils in the ancient Purbeck limestone of Dorset. At the 
prompting of a quarryman, the unsuspecting couple find a delicate, plant-like pattern traced out in the 
stone. 'Look at thatseaweed!' exclaims Keith. 'Yar, well, 'tis not seaweed, see', drawls the quarryman, 
adding that it is manganese oxidea mineralthey are looking at. Keith is not convinced. 'It looks like a 
living organism to me.' 'Yar,' the quarryman rejoins, 'most people think that.'

     



Fig. 5.1 
A mineral dendrite of manganese oxide, found on the 

surface of limestone from Bavaria. (Photo: Tamás 
Vicsek, Eötvös University, Budapest.)

You can see why Keith and Candice Marie jumped to the wrong conclusion. The structures they saw 
are called mineral dendrites, and they look for all the world like the kind of forms we associate with 
ferny plants (Fig. 5.1). Even the name derives from this source: dendros is Greek for tree. But the 
filigree structures contain no fossil materialthey are made up of manganese or iron oxides, chemical 
deposits precipitated when a solution containing manganese or iron ions was squeezed through cracks 
in the rocks in the geological past.

It is scarcely surprising that we might think these deposits had a biological origin. The branched pattern 
finds countless echoes in the living world, from corals to leaf veins to the bronchial structure of the lung 
(Fig. 5.2). This ubiquity of branched formations in both the living and inorganic worlds begs the 
question of whether their formation can be ascribed some unifying features, in line with the idea of 
universality in pattern formation that I laid out at the start of this book. To turn that idea on its head, 
perhaps complex forms like these do not require the kind of complicated causes that only the living 
world can engender.

Ah, but not all branching forms are alike. Tree lovers know that muchthey can identify a tree in winter 
simply from its silhouette on a hilltop, in which the pattern of branches has a characteristic form more 
or less
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unique to each species (Fig. 5.3). The human mind is intriguingly adept at this sort of pattern 
recognition. I doubt if too many tree experts could give a precise explanation for how they distinguish 
one system of branches from anotherthey might be able to identify a few pronounced features such as 
the sharpness of the angle between diverging branches, but it wouldn't by any means amount to the kind 
of mathematical criterion that could be programmed into a computer to give it the same facility for 
telling apart an elm from a sycamore. We just seem able to 'sense' the pattern.

Fig. 5.2 
The bronchial/arterial structure of the lungs has a highly 

branched, tree-like form. (Photo: Martin Dohrn/Royal College 
of Surgeons/Science Photo Library.)

Yet in recent years, scientists have developed tools for assessing in a mathematically precise way the 
generic features of different branching patterns, and by doing so, have been able to provide clear and 
unambiguous criteria for distinguishing one such form from another. These tools have played a crucial 
role in allowing us to understand how branched forms grow, because only through them do we have a 
definite, quantifiable means of determining how close a given physical or biological model comes to 
reproducing the form observed in reality. As a result, the study of branching patterns has evolved into 
an exact science.

     



Fig. 5.3 
The branching patterns of trees are often characteristic of their 

species.

At the same time, a better appreciation has developed of the relationships between different types of 
branching pattern. Consider, for instance, the patterns shown in Fig. 5.4. All are generated in precisely 
the same apparatus, simply by varying the experimental conditions. All of the forms are clearly 
branched, but it is equally apparent that they are qualitatively different from one anotheras distinct as a 
naked oak from a poplar. So it appears that different branched forms can be the product of very similar 
formation processes.

And most intriguingly of all, we can recognize qualitatively similar branching patterns in a huge variety 
of different physical and organic systems. In Fig. 5.4 you might see echoes of mineral dendrites, of 
snowflakes, of ink blots. This leads us to the compelling conclusion that there is indeed something 
genericsomething universalabout these forms, and by extension, about the rules for their formation. 
What are the rules?

     



Organic crystals

The mineral dendrites in Fig. 5.1 are crystals. But let's face itthis is not exactly what we are taught to 
believe
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Fig. 5.4 
Branching patterns in the Hele-Shaw cell, in which a bubble of a fluid such as air is injected under pressure 

into a more viscous fluid (see p. 118). The same apparatus can produce several different types of pattern, including 
symmetrical snowflake-like figures (b). (Photo: Eshel BenJacob, Tel Aviv University.)

crystals look like. Think of mineral crystals and I wager that you will envisage the facetted, blocky 
shapes of gemstones (Fig. 5.5), in which the flat, bevelled faces simply reflect the regular 'greengrocer 
stall' stacking of the constituent atoms. Yet this regular stacking of atoms is present too in mineral 
dendrites, as one can verify by looking at the geometrical patterns produced by bouncing X-rays off 
them. The mineral dendrites have apparently chosen to ignore this underlying geometric symmetry at the 
atomic scale and to grow instead into a ramified, 'organic' form.

     



Fig. 5.5 
We normally think of crystals as possessing facetted, 

geometric shapes derived from the regular packing of their 
constituent atoms. How, then, can crystals acquire the 

'organic' form of Fig. 5.1? (Photo: Steve Smale, City University 
of Hong Kong.)

One can grow crystals like this in the laboratory. One way is to use a process called electrodeposition, in 
which a crystalline deposit of a metal is grown at an electrode from a solution of metal ions by applying 
a voltage between this and a second electrode. The metal ions are positively chargedeach of the metal 
atoms has lost one or more electrons, which are negatively charged particles. So these metal ions will be 
electrically attracted to a negatively charged electrode. If we allow a current to flow through the circuit, 
electrons can pass to metal ions drawn onto the electrode surface, and these are thereby converted back 
into neutral metal atoms. The atoms stack together in a crystal that grows outwards from the negative 
electrode.

This process is used to cover metals with a smooth veneer of fresh metal in the technique called 
electroplating. A steel component can be copper-plated by having it act as the negative electrode in an 
electrochemical cell in which it is immersed in a solution of copper ions. The voltage for electroplating is 
chosen so that the copper atoms are deposited at the negative electrode in a flat, slowly growing film that 
covers the entire surface evenly. But if a higher voltage is applied, the electrodeposit grows more 
quicklythat is to say, out of equilibrium. Then the smoothness is lost and instead we obtain a very 
irregular, branched deposit at the negative electrode (Fig. 5.6a). A closer, microscopic view of these 
branches reveals that they are after all
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composed of tiny facetted crystallites fused together in jumbled disarray (Fig. 5.6b).

Fig. 5.6 
(a) A branching metal formation produced by electrochemical 

deposition onto a central electrode. (b) Seen close up, the branches 
consist of conglomerates of tiny crystallites oriented at random. 

The image here is at a magnification of ×7580. (Photos: 
(a) Mitsugu Matsushita, Chuo University; (b) Vincent Fleury, 

Laboratory for Condensed Matter Physics, Palaiseau.)

     



In 1984 Robert Brady and Robin Ball from the University of Cambridge showed that a theoretical 
model developed three years earlier by American physicists Tom Witten and Len Sander could account 
for the shape of these branched electrodeposits. Witten and Sander had in fact set out to model the way 
particles of dust form aggregates in air. This they described as a growth process in which small particles 
form clusters by sticking together as soon as they come into contact. The clusters grow one particle at a 
time, and the particles simply diffuse through the air until they encounter a part of the cluster. In 
Chapter 4, I explained that particles undergoing diffusion execute a random walk as they stagger from 
collision to collision with the molecules of the medium in which they move. So there is no preferred 
direction from which new particles impinge on the cluster. Because the rate of growth is governed by 
the rate of diffusion of the particles, Witten and Sander called their model diffusion-limited aggregation 
(DLA).

It differs from the way in which regular, facetted crystals grow, in that there is no opportunity for the 
impinging particles to rearrange themselves so that they pack together most efficiently. This kind of 
rearrangement takes place at the surface of a crystal that is growing slowly, since the atoms at the 
surface can generally pass back into solution again, or move across the surface, until the most 
'comfortable' arrangement is achieved (that is, the one with the lowest energy). In this way the crystal 
finds its way to a regular stacked arrangement of atoms. Because in DLA there is no chance of such 
reshuffling (particle attachment is irreversible), the surface of the growing cluster soon becomes very 
jagged and disorderly. The requirement that new particles stay where they first touch the cluster is a 
realistic one for clusters that grow very quickly, and it means that mistakes in packing get frozen in. 
This is why branched electrodeposits form when electrodeposition is conducted quickly (that is, at high 
voltages) while slower deposition gives smooth films.

Fig. 5.7 
A cluster grown by the diffusion-limited aggregation model. (Image: 

T. Rage and P. Meakin, University of Oslo.)

     



  

     



Page 114

The branched clusters are another example of nonequilibrium structures.

The DLA process can be simulated on a computer by introducing particles one by one into a box from 
random points around its edges and allowing them to diffuse until they encounter and stick to a particle 
at the box's centre. This generates a cluster that grows steadily outwards from the central point, 
developing tenuous branches as it goes. Figure 5.7 shows the result when this process is conducted in 
two dimensions (in a flat plane). The cluster looks very similar to the structures created by non-
equilibrium electrodeposition in a flat cell (Fig. 5.6a), something that was first recognized by Mitsugu 
Matsushita of Chuo University in Japan and co-workers in 1984. What Brady and Ball showed at much 
the same time was that this similarity persisted for three-dimensional growth too. They proposed that 
the mechanism of non-equilibrium electrochemical growth shares the same broad features as the DLA 
modelrandom diffusion of ions and irreversible attachment to the electrode deposit.

While there is no doubting the broad validity of this connection, the reality is much more complex. For 
one thing, in real electrodeposition the ions have to pick up electrons before they become part of the 
cluster, and the DLA model contains no such step. More fundamentally, unlike electrodeposition there 
is no electric field in the DLA modelas we'll see, the strength of the field can profoundly influence the 
shape of the branched electrodeposit. And while the diffusing particles in electrodeposition are ions, the 
particles that actually make up the deposit are, as we've seen, tiny crystallites containing many 
thousands of ions (Fig. 5.6b). A proper description of the process would therefore have to account for 
the formation of these crystallites (which seem to have the blocky appearance of normal crystals) 
followed by their irregular assembly into branched structures. Vincent Fleury of the Laboratory for 
Condensed Matter Physics in Palaiseau, France, has suggested that the formation of the crystallites 
takes place in an oscillatory manner: a crystallite is nucleated and sticks to the deposit, then a short 
interval later another does so, and so on. The branching pattern then arises from the interplay between 
this oscillatory crystallite growth and the randomizing thermal noise in the environment in which they 
appear.

From bumps to branches

These are complicated issues, so it is simplest to stay for now with the DLA model. It isn't hard to see 
why this model produces very imperfect, irregular clusters, since aggregation takes place following 
random diffusion. But why are the clusters branched? We could perhaps imagine instead the formation 
of a dense mass with a highly irregular edge, like a spreading ink blot. Why is this not what happens?

The answer is that the model possesses an instability that amplifies any small bumps or irregularities, 
causing them to extend into fingers rather than becoming smoothed out again. Look at the cluster in Fig. 
5.7: it's not hard to imagine that a particle taking a tortuous, meandering path through the surrounding 
medium is likely to encounter one of the branch tips before being able to penetrate very far down the 
channels between them. So once they are formed, the branches tend to grow from their tips while the 
gaps in between them get ever less accessible to new particles.

     



Preferential growth at a tip ensures that any tiny bumps formed by chance at the cluster surface will 
have a tendency to grow faster than flat parts of the surface, because there is a better chance that a 
randomly diffusing particle will hit it (Fig. 5.8). And crucially, this growth advantage is self-
enhancingthe more the bump develops, the greater the chance of new particles striking and sticking to 
it. The probability of this is always greatest at the very tip of the bump, since this is the most exposed 
part. So the slightest small bump soon grows into a sharp finger. Because irregularities are springing up 
by chance all over the surface all the time, the deposit becomes increasingly branched, with each new 
tip constantly sprouting extra appendages. Notice how essential to all of this is the random, diffusive 
motion of the particles: if they were instead all propelled towards the cluster along straight trajectories, 
the edge of the cluster would just grow uniformly along the direction of particle motion.

Fractal form

The DLA cluster in Fig. 5.7 certainly looks like the electrodeposit in Fig. 5.6a, but that doesn't 
constitute very good proof that the two are related in any fundamental way. Scientists don't consider it 
very good form to judge a model against reality by comparing qualitative aspects like appearancesthey 
want to look for correspondences in hard, quantifiable terms. This is a requirement that dogs much of 
the work on pattern formation because patterns are often, by their very nature, not very susceptible to 
precise numerical characterization.

Yet it turns out that even forms as apparently irregular as these branched aggregates have a measurable
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Fig. 5.8 
In the DLA model, small protrusions on the surface of the growing cluster accumulate 
new particles faster than the surrounding flat surface, and so they become increasingly 

accentuated as growth progresses. Such protrusions will themselves acquire surface 
irregularities that will blossom into new fingers, and so the cluster quickly becomes 
highly branched. Here the dashed lines show contours of constant average density of 

incoming particles, and the solid lines show the average flow of the particles. Each individual 
particle takes a highly tortuous path, howevera random walk. One such is depicted in (c).

property that is almost as precise, reproducible and characteristic as the number of legs on an insect. It 
is called the fractal dimension, and is a measure of how densely packed the branches are. A cluster 
growing in two dimensions so densely that there are no gaps at all between the particles presents a solid 
black mass whose outer edge simply expands as the cluster gets larger. In that case, the number of 
particles in the cluster (N) increases in proportion to the area of the cluster, or equivalently, to the 
square of the cluster's size (its radius r, say):

N ∝ r2                                                                 (5.1)

(where the ∝ symbol means 'is proportional to'). If, on the other hand, the branches are instead simply 
linear chains of particles, so that they form a many-pointed star like an asterisk, N increases in direct 
proportion to the size r:

N ∝ r                                                                   (5.2)

For a DLA cluster, the rate at which N increases with size lies somewhere between these two extremesN 
is proportional to r raised to some power df in between 1 and 2:

N ∝ rd
f                                                                 (5.3)

     



The value of dfcalled the fractal dimensionis 1.71 for two-dimensional DLA. This means that the cluster 
fills up the two-dimensional plane rather more completely than a star-like cluster but less fully than a 
dense, approximately circular cluster.

The fractal dimension is a robust property of the DLA growth processit stays the same as the cluster 
grows bigger, and two different DLA clusters, while differing in the precise positions and convolutions 
of their branches, will have exactly the same value of df. If, meanwhile, we change the rules that govern 
the growth of the clusters, for example by allowing new particles to make a few short hops around the 
surface before finally sticking irreversibly, we will obtain a branched cluster with a different value of df. 
Sometimes changes like this will produce very marked changes in the appearance of the clustersthey 
might develop very stout or very wispy branches, for instancebut the effect of other changes might be 
rather subtle, so that by visual inspection we will be unable to say whether the clusters are 'the same' or 
not. The fractal dimension provides a well-defined measure by which we can distinguish such 
differences.

In Fig. 5.9 I show another mineral dendrite, formed from manganese oxide in the plane of a crack that 
passes through a quartz crystal. Is this the same kind of cluster as that in Fig. 5.1? By eye, I wouldn't 
place bets. But by calculating its fractal dimension, we can pronounce confidently that the two are 
differentthe earlier dendrite has a fractal dimension of 1.78, whereas for the latter it is about 1.51. You 
can perhaps see that the smaller the fractal dimension, the wispier the cluster.

Branched electrodeposits like that in Fig. 5.6a commonly have a fractal dimension of about 1.7, and this 
can give us confidence that their mechanism of formation shares something in common with the DLA 
process. (In three-dimensional growth, a DLA cluster has a fractal dimension of about 2.5, while Brady 
and Ball showed that electrodeposits grown in three dimensions have a fractal dimension of around 
2.43.) What
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about the mineral dendrites? You might have guessed from their shapes alone that DLA would be a 
good model for their formation process too, but we now discover that two mineral dendrites can have 
fractal dimensions not only different from that of a DLA cluster but from one another.

Fig. 5.9 
Another mineral dendrite, this time formed 

inside a quartz crystal. (Photo: Tamas Vicsek.)

Swiss physicist Bastien Chopard and colleagues have shown that these observations can be rationalized 
in terms of a more sophisticated adaptation of the DLA model, in which the ions that form the mineral 
dendrite diffuse through cracks in the surrounding medium of the rock and then undergo a chemical 
reaction. In this model the process by which dissolved manganese ions permeate through the rock and 
react with oxide ions to form the dark deposit is emulated by two soluble chemical species A and B that 
diffuse through the medium and react to form a dissolved compound C when they encounter one 
another. If enough C accumulates in a particular region, the solution becomes over-saturated and C 
precipitates in the form of a dark deposit D, which then stays put. If, on the other hand, a single C 
particle encounters a cluster of D, it too will precipitate as D. Although couched in different terms, this 
is actually a reaction-diffusion model like those encountered in Chapters 3 and 4; but whereas those 
were constructed in terms of smoothly varying fields of chemical reagents, here the model contains 
discrete particles that diffuse and react.

     



Fig. 5.10 
Mineral dendrite patterns generated by a reaction-diffusion 

model in which particles diffuse by random walks, as in 
DLA, before encountering each other and reacting to 

form the dark deposit. The model is able to generate dendrite 
forms with fractal dimensions of 1.78 (a), similar to that in 

Fig. 5.1, and 1.58 (b), close to that in Fig. 5.9. (The 
square boxes denote regions selected for determining 
the fractal dimension.) (From: Chopard et al. 1991.)

Chopard and colleagues found that the model generates fractal clusters much like real mineral dendrites 
(Fig. 5.10). Although they look similar to DLA clusters, the fractal dimension of the model clusters 
varies depending on the concentration of species B: the researchers were able to generate simulated 
mineral dendrites with fractal dimensions of 1.75 and 1.58 (close to the values for the two natural 
samples shown here) by changing this concentration.

Fractals everywhere

Fractal objects have become quite the fashion. Probably the most famous are the mathematical fractals 
discovered in the 1970s by Benoit Mandelbrot at IBM's research centre in Yorktown Heights, New 
York. They are exemplified by the bulbous black kidney shape of the so-called Mandelbrot set (Fig. 
5.11). This object, with its familiar accoutrements of wispy tendrils and furiously (and spuriously) 
coloured spirals, erupts out of an abstract mathematical plane when one plots on the plane points 
corresponding to the solutions of a mathematical equation (the images are typically decorated with 
colours that denote the number of iterative computational steps needed to converge on a particular 
solution to the equation for each point on the plane). These baroque patterns have been depicted and 
described at length in several popular books, and I shall make just two observations here. First, nothing 
much like them is seen in natureif, as Mandelbrot has suggested, they are 'monsters', then they are of a 
par-
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ticularly Platonic variety. The fractals that we see in the natural world do not generally have the 
'symmetry' evident in the Mandelbrot set (which is the product of a rather esoteric and exact 
mathematical procedure); they are irregular, like a branching DLA deposit, because they are formed in a 
noisy, random environment. This noisy aspect of natural fractals is one of the central messages of 
Mandelbrot's seminal book The Fractal Geometry of Nature.

Fig. 5.11 
The Mandelbrot set, a mathematical fractal that 

defines the boundary between the 'basins of attraction' 
for solutions to an 'iterated mapping' equation. That is, 

you start at a point in the plane and move to a new 
point calculated from the mapping equation. By 

applying this mapping again and again, you move 
towards one of two basins of attraction whose boundary 

forms the fractal perimeter of the kidney shape.

     



Second, I should explain why the Mandelbrot set and its ilk are fractals at all, since they don't look 
much like DLA clusters. What both the Mandelbrot set and DLA clusters have in commonalong with all 
other breeds of fractal structureis the property of scale invariance. That is to say, they look more or less 
the same on all size scales. Take a region of a DLA cluster and magnify one corner 10 times, and you'll 
see a convoluted, branched cluster that looks much the same as the original region. Do the same again 
to a corner of the magnified region, and you get the same result. What this means is that you can't judge 
the scale of a fractal structure from appearances, because there's no natural yardstick. In contrast, you 
can quite easily assess the scale of an aerial photo of a town because there will be features, like cars, 
houses and roads, that provide a known measure of length. (Because many geological structures are 
fractalsas we shall seegeologists often leave a hammer evident in photographs of rock faces to provide a 
reference scale.) Like a DLA cluster, the Mandelbrot set exhibits the type of scale invariance known as 
self-similarity, which implies that as you magnify one region of it again and again, that ominous black 
bulb keeps reappearing like a malformed Russian doll.

Once you get the hang of what a fractal structure looks like, you see them everywhere. In trees, 
certainly, and in their roots too. In rivers, mountain ranges, clouds, coastlines. Small wonder that 
Mandelbrot was moved to proclaim that fractals are 'the geometry of nature'. And without a doubt the 
branched fractals typified by DLA clusters do represent one of nature's universal forms, and are 
splendid examples of how complex, 'life-like' forms can be the product of relatively simple and entirely 
nonbiogenic processes. In the face of all of this, however, it is worth making two cautionary points:

1. Not all branched patterns are fractal (later we shall see some that are not).

2. Just saying that a structure is fractal doesn't bring you any closer to understanding how it forms. 
There is not a unique fractal-forming process, nor a uniquely fractal kind of pattern. The fractal 
dimension can be a useful measure for classifying self-similar structures, but does not necessarily 
represent a magic key to deeper understanding.

Squeeze patterns

Spanish physicist Juan Manuel Garcia-Ruiz recounts how he was assailed by fractal branches even as 
he sat down for a quiet cup of coffee in the Hotel Los Lebreros in Seville. Across the broad plate-glass 
windows of the coffee shop were creeping three of Mandelbrot's monsters, like virtual plants growing in 
the glass (Fig. 5.12). The window panes each consisted of three laminated glass sheets, separated from 
one another by thin films of a polyvinyl plastic. The laminates were imperfectly sealed at their edges, so 
that air could find its way between the sheets. In the heat of Seville, the plastic films had become soft 
and viscous, and the air had pushed its way through the film in a bubble whose advancing front had 
broken up into a delicate tracery of fingered branches, for all the world like the tendrils of DLA 
clusters. Recognizing the characteristic fractal
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pattern, Garcia-Ruiz took photos and analysed them to deduce that the fractal dimension was about 1.65.
*

Fig. 5.12 
Viscous fingering patterns in the layered window 
pane of the Hotel Los Lobreros in Seville. These 

patterns are formed as air penetrates into the 
plastic film between the glass panes. (Photo: Juan 

Manuel Garcia-Ruiz, University of Granada.)

This process in which an air bubble sprouts branching fingers as it forces its way under pressure into a 
surrounding, viscous medium is called viscous fingering. It is a much studied phenomenon, because it is 
relevant to some very practical problems in engineering. For instance, oil is often extracted from oil 
fields by injecting water into the oil-containing porous rock through a borehole. The idea is that the 
water, which does not mix with oil, advances in a front that pushes the oil to the wells at the edge of the 
field. But if viscous fingering occurs, the water front breaks up into narrow fingers and the efficiency 
with which oil is displaced and recovered is very low (Fig. 5.13).

     



Fig. 5.13 
Viscous fingering occurs as a fluid such as water or 

air advances into a more viscous fluid, such as oil, held 
within a porous rock. The advancing front is unstable 

and breaks up into fingers, which hampers oil extraction. 
Here I show the pattern produced when air displaces 

oil in a model porous medium. (Image: Roland Lenormand, 
Institut Français du Pétrole, Rueil-Malmaison.)

Clearly, viscous fingering can produce branching patterns similar to those seen in DLA. At face value 
this coincidence might appear specious, because the way in which these patterns form seems to bear 
little resemblance to the DLA process. There is no gradual addition of solid particles to advancing tips; 
rather, the tips are comprised of a fluid, and they advance into a surrounding, more viscous medium by 
the pressure exerted at the interface of the two fluids. But a closer inspection of the problem reveals that 
the two processes share mathematical features in common, and so can give rise to similar patterns.

The branching mechanism of viscous fingering involves an instability that renders any bulges at the 
interface unstable against elongation. We saw above that the same is true for DLA. The origin of the 
fingering instability was identified in 1958 by P.G. Saffman and Geoffrey Taylor, who studied viscous 
fingering using an apparatus devised by a nineteenth-century British naval engineer named Henry Hele-
Shaw. The aim of its inventor was to study how water flows around a ship's hull, but the device, now 
called a Hele-Shaw cell, has provided some of the most important insights into branching patterns. It 
consists of two horizontal, parallel plates with a fixed narrow gap between them. The top plate is made 
of some transparent material and has a hole in the centre, through which a less viscous fluid such as air 
or water can be injected into a more viscous fluid such as glycerine or oil held between the plates. 
Anyone can make a Hele-Shaw cell, and you can do it yourself if you want a first-hand look at the 
patterns that viscous fingering can generatedetails are given in Appendix 5.

     



The rate at which the edge of the air bubble (say) moves into the oil depends on the rate at which the 
pressure drops from its value at the interface (where it is

* After reporting these findings, Garcia-Ruiz received several messages from others who had observed 
similar patterns elsewhere. One of them asked why they are always observed in five-star hotels, to 
which Garcia-Ruiz's answer was: 'They are the ones with enough money to buy anti-crack windows'.
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highest) to the value in the bulk of the oil. If we think of a model analogy in which the pressure is 
equivalent to the height of a hill and the motion of the air bubble is equivalent to the motion of a ball, 
the ball accelerates more rapidly down the hill the steeper it isin other words, it is the gradient that 
determines the rate of advance. Saffman and Taylor pointed out that the gradient in pressure around a 
bulge at the air/oil interface gets steeper as the bulge gets sharper. This sets up a self-amplifying process 
in which a small initial bulge begins to move faster than the interface to either side. The sharper and 
longer the finger gets, the steeper the pressure gradient at its tip and so the more rapidly it grows (Fig. 
5.14).

Fig. 5.14 
The Saffman-Taylor instability. As 
a bulge develops at the advancing 
fluid front, the pressure gradient 

at the bulge tip is enhanced and so the 
tip advances more rapidly. (Contours of 
constant pressureisobars, like those in 

weather mapsare shown as dashed lines.) 
This amplifies small bulges into sharp fingers. 
Compare this to the growth instability in DLA 

(Fig. 5.8).

This instability is called the SaffmanTaylor instability. In 1984, Australian physicist Lincoln Paterson 
pointed out that the equations that describe it are analogous to those that underlie the DLA instability 
described by Witten and Sander. So it is entirely to be expected that viscous fingering and DLA 
produce the same kind of fractal branching networks. Both are examples of so-called Laplacian growth, 
which can be described by a set of equations derived from the work of the eighteenth-century French 
scientist Pierre Laplace. Within these deceptively simple equations are the ingredients for growth 
instabilities that lead to branching.

     



But tenuous fractal patterns directly comparable to those of DLA occur in viscous fingering only under 
rather unusual conditions. More commonly one sees a subtlely altered kind of branching structure: the 
basic pattern or 'backbone' of the network has a comparable, disorderly form, but the branches 
themselves are fat fingers, not wispy tendrils (Fig. 5.15; compare 5.12). And under some conditions the 
bubbles cease to have the ragged DLA-like form at all, and instead advance in broad fingers that split at 
their tips (Fig. 5.4a). This sort of branching pattern is called the dense-branching morphology, and is 
more or less space-filling (twodimensional) rather than fractal. Why then, if the same tip-growth 
instability operates in both viscous fingering and DLA, do different patterns result?

All viscous fingering patterns differ from that of DLA in at least one important respectthey have a 
characteristic length scale, defined by the average width of the fingers. This length scale is most clearly 
apparent at relatively low injection pressures, when the air bubble's boundary advances quite slowly. 
Then one sees just a few fat fingers that split as they grow (Fig. 5.16). There is a kind of regularity in 
this so-called tip-splitting patternthe fingers seem to define a more or less periodic undulation around 
the perimeter of the bubble with a characteristic wavelength. But a length scale is apparent in the widths 
of the fingers even for more irregular patterns formed at higher growth rates (for example, Fig. 5.15). 
For the self-similar DLA cluster (Fig. 5.7), on the other hand, there is no characteristic sizeit looks the 
same on all scales.

Fig. 5.15 
Viscous fingering has a characteristic length 

scale, which determines the minimum width of the 
branches. So the fingers are fatter than the fine filaments 
of DLA clusters. (Image: Yves Couder, Ecole Normale 

Supérieure, Paris.)

Eshel Ben-Jacob of Tel Aviv University explained the reason for these differences in the mid-1980s: 
between the air bubble and the surrounding viscous fluid there is
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an interface with a surface tension. As I explained in Chapter 2, the presence of a surface tension means 
that an interface has an energetic cost. Surface tension encourages surfaces to minimize their area. 
Clearly, a DLA cluster is highly profligate with surface areathe cluster is about as indiscriminate with 
the extent of its perimeter as you can imagine. This is because there is effectively no surface tension 
built into the theoretical DLA modelthere is no penalty incurred if new surface is introduced by 
sprouting a thin branch. In viscous fingering, on the other hand, there will always be a surface tension 
(provided that the two fluids do not mix), and so there would be a crippling cost in energy in forming 
the kind of highly crenelated interface found in DLA. The fat fingers represent a compromise between 
the Saffman-Taylor instability, which favours the growth of branches on all length scales, and the 
smoothing effect of surface tension, which washes out bulges smaller than a certain limit. To a first 
approximation, you could say that the characteristic wave-length of viscous fingering is set by the point 
at which the advantage in growth rate of ever narrower branches is counterbalanced by their cost in 
surface energy.

Fig. 5.16 
At low injection pressures, the length scale 

of viscous fingering is quite large, and 
the advancing bubble front then has a kind of 

undulating shape with a well-defined 
wavelength.

The relation between DLA and viscous fingering is made very apparent when DLA growth is conducted 
in a system where a surface tension is built in. The surface tension has the effect of expanding the 
cluster's branches into fat fingers (Fig. 5.17). Ben-Jacob showed that the generic branching pattern in 
such cases is the dense-branching morphology. Conversely, a wispy DLA-like 'bubble' can be produced 
experimentally in the HeleShaw cell by using fluids whose interface has a very low surface tension.

     



Fig. 5.17 
When surface tension is included in the DLA model, it 

generates fat, tip-splitting branches like those in viscous 
fingering. Here the bands depict the cluster at different 

stages of its growth. (Image: Paul Meakin and Tamás Vicsek.)

Physicists Johann Nittmann and Gene Stanley have shown that, somewhat surprisingly, the fat branches 
of viscous fingering can be generated instead of the tenuous DLA morphology even in a system with no 
surface tension. They formulated a DLA-type model in which they could vary the amount of 
'noise' (that is, of randomizing influences) in the system. In their model the perimeter of the cluster can 
grow only after a particle has impinged on it a certain number of times (in pure DLA just one collision 
is enough). This reduces the tendency for new branches to sprout at the slightest fluctuation. Nittmann 
and Stanley found that, when the noise is very low, the model generates fat branching patterns (Fig. 
5.18a), which mutate smoothly to the DLA-type structure as the noise is increased (Fig. 5.18b,c). This 
suggests that one way to impose a DLA-like pattern on viscous fingering in a Hele-Shaw cell is to 
introduce a randomizing influence (that is, to make the system more 'noisy'). A simple way of doing this 
is to score grooves at random into one of the cell plates until it is criss-crossed by a dense network of 
disorderly linesthis was how the pattern shown earlier in Fig. 5.4c was obtained. The lesson here is that 
noise or randomness can influence a growth pattern in pronounced ways.
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Fig. 5.18 
Dense-branching patterns appear in DLA growth even in the absence of surface tension, when the 

effect of noise in the system is reduced by reducing the sticking probability of the impinging particles (a). 
As the noise is increased (from a to c), the branches contract into the fine tendrils of the DLA-type pattern. 
Again, contours denote different stages of the growth process. Note that, despite their differing appearance, 
all of the patterns here have a fractal dimension of about 1.7. (Images: Gene Stanley, Boston University.)

The six-petalled flowers

     



Just as random noise can jumble up branching growth, so can an underlying symmetry have the 
opposite effect of introducing order. Take another look at Fig. 5.4b, which is a viscous-fingering pattern 
formed in a HeleShaw cell in which one plate has been scored with a regular hexagonal lattice of 
grooves. The sixfold symmetry of the underlying medium shows up clearly in the pattern, whose 
branching form is reminiscent of a snowflake.

The beautiful, symmetric complexity of snowflakes (which share such hexagonal symmetry) has 
captivated scientists for centuries. Their hexagonal character was apparently known to the Chinese 
almost two millennia before Western natural philosophers became aware of it. Around 135 BC Han 
Ying wrote with astonishing perception that 'Flowers of plants and trees are generally five-pointed, but 
those of snow, which are called ying, are always six-pointed'. (About five-pointed flowers we have 
heard already in the previous chapter.) Yet as late as 1555, the Scandinavian bishop Olaus Magnus 
could be found claiming that snowflakes display a variety of shapes, including those of crescents, 
arrows, nails and bells. The Englishman Thomas Hariot seems to have been the first in the West to note 
the six-pointed shape, in 1591; but it was not until 1611 that this fact became common knowledge, 
when Johannes Kepler wrote a treatise entitled De niva sexangula ('On the Six-cornered Snowflake'). 
Herein Kepler pondered over the mysterious origin of this shape. Although lacking the theoretical
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Fig. 5.19 
Snowflakes are symmetrical branching patterns 

of infinite variety. (Photos: from Bentley and Humphreys 
1962, kindly provided by Gene Stanley.)

tools and concepts needed to make much impact on the problem, Kepler did have the remarkable insight 
that the hexagonal symmetry must result from the packing together of constituent particles on a regular 
lattice. The symmetry, he said, was a consequence of their 'Patterns of contact: for instance, square in a 
plane, cubic in a solid'. At a time when atoms and molecules were barely conceived of, this was truly a 
leap of inspired imagination.

Modern techniques for analysing crystal structures have now shown us that water molecules do indeed 
pack together on a regular lattice that, looked at from certain directions, has sixfold symmetry (which is 
to say that it looks the same when rotated through a sixth of a full revolution). Astonishingly, we can 
see in this an echo of ancient Chinese wisdom about the cosmic schemes of nature: the number six was 
associated with water (then seen as one of the fundamental elements), and the scholar T'ang Chin wrote 
'Since Six is the true number of Water, when water congeals into flowers they must be six-pointed'.

Everyone now believes that the hexagonal symmetry of snowflakes is a manifestation of this deep-
seated symmetry in the crystal structure, just as the cubic shape of table-salt crystals reflects the cubic 
packing of its constituent ions. But that is only a small part of the problemby analogy with other 
crystals, we might then expect ice crystals to be dense polyhedra with hexagonal facets, whereas instead 
we find these flat, highly branched and infinitely varied natural sculptures (Fig. 5.19).

Just how varied they are becomes evident from a glance through Snow Crystals by amateur 
photographer William Bentley and his colleague W.J. Humphreys. This astonishing book documents 
thousands of snapshots of snow crystals captured and photographed by the authors shortly after the turn 
of the century. A book of the same title published in 1954 by Japanese physicist Ukichiro Nakaya adds 
about 800 more snapshots to the family album, each one an individual. Nowhere in these two books will 
you find two identical snowflakes. From where does nature obtain this ability to turn out endless 
variations on a theme?

There is still no complete, universally accepted answer to that question. Indeed, in 1987 Johann 
Nittmann and Gene Stanley began a paper on snowflake patterns by confessing that 'There is no answer 
to even the simplest of questions that one can pose about snowflake growth, such as why the six arms 
are roughly identical in length and why the overall pattern of each
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arm resembles the five others'. Nor, they added, are we quite sure why snowflakes are (mostly) flat.

But although ice seems to be unique in forming these highly symmetrical flakes, regularly branched 
crystals analogous to a single snowflake arm may be seen in many other solidifying materials, including 
metals crystallizing from a melt (Fig. 5.20a), salts precipitating from supersaturated solution, and 
electrodeposits (Fig. 5.20b). These structures, known as dendrites, are generally formed when 
solidification is rapidthat is, far from equilibrium. For metals freezing from their melt, for instance, 
rapid solidification can be induced by cooling the molten metal suddenly to far below its freezing point. 
Slow growth of crystals close to equilibrium gives instead compact, facetted shapes. (I should point out 
that these dendrites are not the same as the mineral dendrites mentioned at the start of the chapter, 
which instead have a more random DLA-like structureunfortunately researchers in different fields have 
been rather inconsistent with the 'tree' metaphor.)

     



Fig. 5.20 
Regularly branched dendrites are formed in crystals grown 

from the melt (a) and in electrodeposition of metals (b). 
(Photos: (a) Lynn Boatner, Oak Ridge National Laboratory, 

Tennessee; (b) Eshel Ben-Jacob.)

Dendrites clearly represent another of nature's universal growth patterns. They typically have a rounded 
tip, like the prow of a boat, behind which side-arms sprout and grow in a Christmas-tree pattern. The 
Soviet mathematician G.P. Ivantsov developed in 1947 an explanation for the form of the tip, whose 
gently curved sides have a shape that mathematicians describe as parabolic (it's the same shape as the 
trajectory of a stone thrown through the air and falling under gravity). Ivantsov analysed the case of 
rapid solidification of a molten metal, an important problem in metallurgy. He showed that the interface 
between the solid and the melt can advance in a whole family of parabolic shapes: all possible parabolas 
are allowed, on the condition that the thinner they become, the more rapidly they advance (Fig. 5.21). 
So thin, needle-like tips should shoot rapidly through the melt, while fatter bulges make their way 
forward at a more ponderous pace.

Fig. 5.21 
A simple analysis of the solidification of a metal from 
its melt suggests that parabolic tips, like the end of a 

dendritic arm, should be stable. They will advance with 
a velocity that increases as the tips get narrower.

But in the mid-1970s, Marshall Glicksman and co-workers at the Rensselaer Polytechnic Institute in 
New York performed careful experiments which showed
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that, even if one ignores the problem of the side branches and focuses just on the shape of a dendrite tip, 
there must be something missing from Ivantsov's solution. They found that instead of a family of 
parabolic tips, only one single tip shape was seen during rapid solidification: for the same degree of 
undercooling (that is, cooling below the molten metal's freezing point), the same tip would be seen each 
time. For some reason, one of Ivantsov's family was 'special' for a given set of experimental conditions.

The problem was even worse than this, however, because in 1963 two Americans, W.W. Mullins and R.
F. Sekerka from Carnegie Mellon University, presented theoretical arguments for why none of 
Ivantsov's parabolas should be formed. They showed that the slightest disturbance to a parabolic tip 
should cause it to break up into a mass of random branches. This so-called Mullins-Sekerka instability 
allows small bulges at the edge of the advancing solid to grow rapidly into thin fingersit is yet another 
example of a Laplacian branching instability.

It works like this. When a liquid freezes, it gives out heat. This is called latent heat, and it is the key to 
the difference between a liquid and its frozen, solid form at the same temperature. Ice and water can 
both exist at 0°C, but the water can become ice only after it has becomes less 'excited' by giving up its 
latent heat.

So in order to freeze, an undercooled liquid has to throw away its latent heat. The rate of freezing 
depends on how quickly heat can be conducted away from the advancing edge of the solid. This in turn 
depends on how steeply the temperature drops from that of the liquid close to the solidification front to 
that of the liquid further awaythe steeper the gradient in temperature, the faster heat flows down it. (It 
may seem odd that the liquid close to the freezing front is actually warmer than that further away, but 
this is simply because the front is where the latent heat is released. Remember that in these experiments 
all of the liquid has been rapidly cooled below its freezing point but has not yet had a chance to freeze.)

     



Fig. 5.22 
The Mullins-Sekerka instability 

makes protrusions at a solidification 
front unstable. Because the temperature 

gradient (revealed here by dashed 
contours of equal temperature) at the tip 

of the protrusion is steeper, heat is conducted 
away faster and so solidification proceeds 

more rapidly. This self-enhancing instability 
is entirely analogous to those in Figs 5.8 and 5.14.

If a bulge develops by chance (that is, because of the random fluctuationsnoisein the system) on an 
otherwise flat solidification front, the temperature gradient becomes steeper around the bulge than 
elsewhere, because the contours of constant temperature get pressed closer together (Fig. 5.22). So the 
bulge grows more rapidly than the rest of the frontand the sharper it gets, the steeper the gradient and so 
the more rapidly it grows. The situation is mathematically equivalent to the Saffman-Taylor instability 
in viscous fingering, with the pressure gradient in the latter case playing the same role as the 
temperature gradient here. If the Mullins-Sekerka instability alone acted on a rapidly advancing 
solidification front, an initially circular crystal might be expected to develop into a tenuous shape like a 
DLA cluster. But at the interface between a real solid and its melt there is again a surface tension, and 
this moderates the effect of the instability, just as it does for viscous fingering, by imposing a minimum 
size limit on the fingers.

A singular problem

In 1977 James Langer at the University of California and Hans Müller-Krumbhaar at Jülich in Germany 
threw all of these ideas together in an attempt to understand Glicksman's observation that a single 
dendrite tip is selected from all of Ivantsov's solutions. (They still ignored the question of how the 
symmetrical side branches form.) Perhaps, they suggested, while the MullinsSekerka instability renders 
the fattest parabolic tips unstable against splitting, and surface tension makes very thin tips too 
energetically costly, there is an optimal tip width at which the two effects balance to allow a 'marginally 
stable' Ivantsov-like parabolic tip to grow.

At first it looked as though this might be the answer. But problems soon became apparent. For one 
thing, their solution didn't take any account of the atomic structure of the solidifying substance, which 
was modelled just as a featureless solid. This meant that all solids
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were predicted to produce the same dendrites, whereas in practice the shape of a dendrite varies from 
one material to another. But even more disturbingly, it became clear that the researchers had 
underestimated the effect of surface tension, which was incorporated into their theory as merely a minor 
perturbing influence. In fact, a closer look at the problem by Eshel Ben-Jacob, Jim Langer and co-
workers in the early 1980s showed that surface tension causes a 'singular' perturbation of the Ivantsov 
parabolas, which means that a small effect amplifies itself until it changes the whole game. What 
happens is that surface tension makes the tip of the dendrite cooler than the regions to either sideso the 
tip starts to slow down. Eventually, the tip forks into two new fingers, which then themselves split 
subsequently. This repeated tip-splitting doesn't give a dendritic growth shape at all, but instead the 
dense-branching morphology.

Back to square one. Researchers knew that dendrites do have roughly parabolic tips, decorated 
symmetrically with side branches, but the theories kept throwing up instabilities that led to randomly 
branched fingering patterns. The solution to this dilemma, it turned out, had been staring them in the 
face all along.

The whole reason why dendrites are so captivating is that they are so symmetrical. The arms of a 
snowflake do not shoot out any old how, but in a regular, sixfold pattern. The side branches do not 
sprout in any directionall point the same way, at 60° to the main branch. (Dendrites of solidified metals 
often sprout side arms at right angles instead.) It had been long assumed that this regularity was an echo 
of the symmetry of the crystal structureeven Kepler felt that some underlying symmetry in the 
arrangement of constituent particles was responsible. But no one had guessed that it was to this 
symmetry that the dendrites owed their very existence.

Because of the symmetrical packing of atoms in the crystal structure, not all directions are the same for 
a growing crystal. That is why facetted crystals have the characteristic shapes that they do: some faces 
of the crystal grow faster than others. This non-equivalence of directions is called anisotropy (recall that 
an isotropic substance is one that looks the same, and behaves in the same way, in all directions).

The anisotropy of crystals means that properties like surface tension differ in different directions. In 
1984, Ben-Jacob, Langer and their co-workers showed that, for Ivantsov parabolas growing in certain 
'favoured' directions picked out by the anisotropy of the material's crystal structure, the effect of surface 
tension no longer renders the tip colder than the adjacent regions, and so tip splitting does not occurthe 
parabolic tip remains stable as it grows. Thus dendritic branches will grow outwards from an initial 
crystal 'seed' only in these preferred directions, which are determined by the underlying symmetry of 
the crystal's atomic structure. The snowflake grows six arms. This special role of anisotropy in 
stabilizing the growth of a particular needle crystal was identified independently at the same time by 
David Kessler at Rutgers University together with Joel Koplik and Herbert Levine at the Schlumberger 
Doll Research Center in Ridgefield Connecticut. The idea gained support in 1985 when Ben-Jacob and 
colleagues showed that viscous fingering in the Hele-Shaw cell, which typically produces the dense-
branching morphology (Fig. 5.4a), generates dendritic 'snowflake' patterns (Fig. 5.4b) when anisotropy 
is introduced by scoring a regular lattice of grooves into one plate.

     



Anisotropy also explains why a dendrite develops side branches. The roughly parabolic main branch is 
continually at risk of developing small bulges on its flanks through random fluctuations, and these then 
have the potential to grow through the Mullins-Sekerka instability. But again, only bulges that grow in 
certain directions will be stable. And there is only one kind of dendrite tip, for a given set of growth 
conditions, that grows fast enough to avoid being overwhelmed by these side branches. So a particular 
dendrite, with side branches sprouting in particular directions, is uniquely selected from amongst the 
possible growth shapes. Of course, because the side branches are initiated by random events, no two 
dendrites are identical; but all have recognizably the same general shape and features.

Arms control

While these ideas account for the features of most dendrites, the shapes of snowflakes remain the 
subject of some controversy. Snowflakes are just so symmetrical that some researchers believe we need 
something more to explain them. In particular, all six arms in any one snowflake appear to be almost 
identical, both in length and in the pattern of side branches (see Fig. 5.19a, for instance). How is this 
possible, if each arm is to be regarded as a dendrite whose side branches are determined by random 
events?

Early attempts in the mid-1980s to describe snowflake formation using the concepts developed for 
dendritic growth side-stepped this tricky question by simply building the sixfold symmetry into the 
models, which were set up so that they could only produce identical arms. No justification was given for 
why the arms should
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be identical. But in reality there appears to be something almost magical at play herethe tip of each arm seems somehow 
to 'know' what all the others are doing!

Implausible as that might sound, there is a way in which remote parts of crystals can communicate with one another. Every 
crystal has a characteristic set of vibrations that involve synchronized oscillations of all the atoms about their equilibrium 
positions in the lattice. You know how two people walking down a street will tend to fall in step with each other? An array of 
atoms can act rather like that, oscillating coherently like a whole battalion of soldiers walking in step. These coherent 
motions of the entire lattice are called phonons. They put distant parts of the lattice in touch with one another: a disturbance 
in one place may spread coherently by modifying a phonon vibration, just as a soldier who alters his pace in a marching 
battalion might gradually change the pace of all the other marchers. In 1957, Dan McLachlan suggested that phonon 
vibrations induced by the appearance of a side branch on one arm of a snowflake might bounce around the crystal and 
ultimately create disturbances at symmetrically equivalent positions on the other branches. The phonon is rather like a 
'standing wave' of the sort established in organ pipes, which impress a periodic variation on the density of the air inside. 
McLachlan's idea is a promising one, but still lacks firm experimental support.

But Johann Nittmann and Gene Stanley propose that we should not get too caught up in trying to account for the 
apparent symmetry of snowflakes. They have pointed out that in fact no two branches of a snowflake are exactly alike, 
and suggest that almost perfectly regular snowflakes are the exception rather than the rule. Our eyes can be fooled into 
thinking that snowflakes are 'perfect' simply because each arm has side branches

     



Fig. 5.23 
How symmetrical are snowflakes? A DLA-type growth model that includes nothing more than sixfold 
anisotropy to produce the correct branching angles of 60° is able to generate snowflake-like clusters. 

There is nothing in this model to ensure that all branches are the same, 
and indeed they are not the same; but our eyes are fooled into seeing more symmetry than there really is by the uniformity of the branching 

angles. As the model is modified to make the depths of the 'fjords' more accessible, the snowflakes become 
denser (b, ccompare Fig. 5.19). (Images: Gene Stanley, Boston University.)
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diverging at the same (60°) angle and because the envelopes traced out by the tips of each arm have the 
same shape. Nittmann and Stanley showed that a purely random DLA-type model of particle 
aggregation can give rise to snowflake-like shapes when sixfold anisotropy is included by requiring 
each particle to sit at a lattice point on a hexagonal (honeycomb) lattice. Even on this regular lattice a 
pure DLA process produces randomly branched patterns like that in Fig. 5.7, because the noise inherent 
in the DLA process overwhelms the effect of the underlying symmetry. But by reducing the noise in the 
same way as described on page 120, Nittmann and Stanley grew a snowflake-like cluster (Fig. 5.23a). 
What's more, they were able to generate denser clusters (Fig. 5.23b, c) analogous to some real 
snowflakes (Fig. 5.19b, c) by adding to the model a way of enhancing the probability of particles 
attaching within deep 'fjords' in the cluster (remember that this is usually unlikely in normal DLA 
because the particles tend to stick near a branch tip before they can get so far inside). This change to the 
model was admittedly a bit of a fix for which there was no clear justificationbut it showed that even a 
random model can give growth patterns with a range comparable to that of real snow-flakes, provided 
that the randomness is not so great that it overwhelms an underlying symmetry. You'll see in Fig. 5.23 
that none of the branches is identical, even though at a glance they do look similar. But the general 
Christmas-tree shape is preserved in all of them, and their lengths are more or less the same, simply 
because both the main branches and their respective side branches grow at roughly the same ratesthe 
randomness actually ensures this, because it gives no one branch any reason to grow faster than the 
others.

I hope you can now see that a wide variety of branching structures can arise in non-equilibrium growth 
processes from the subtle interplay between relatively few physical phenomena: fingering instabilities, 
anisotropy, noise, surface tension. Changes in one of these factors can lead to qualitatively different 
growth patterns, either by a gradual transformation from one to the other (as in, for instance, Fig. 5.18) 
or by an abrupt transition (Fig. 5.24). What's more, we can identify similar processes operating in 
apparently different systems, like electrodeposition and viscous fingering, and so can explain why 
similar growth patterns are seen. In the next chapter I show that these same ideas carry over when 
growth is turned on its head: there I shall consider how things break apart rather than how they grow. 
But to conclude here, I want to return to a question that will recur throughout this book: to what extent 
can these ideas help us to understand biological form?

     



Fig. 5.24 
Branching patterns, like that shown here in electrodeposition, 
can undergo abrupt changes in shape as the growth conditions 

are varied. Here the change took place as the electric-field strength 
(given by the voltage drop between the 

edge of the cluster and the edge of the triangular cell, divided by the distance between them) 
exceeded a certain threshold during growth. (Photo: Eshel 

Ben-Jacob.)

Tree and leaf

If physicists are going to draw so heavily on the tree (dendros) metaphor in their descriptions of 
branching patterns in non-living systems, you might think that they should be able to tell us something 
about the shapes of real trees. But therein lies a problem of another order altogether. A tree is a form 
with a purpose. There are many problems that a tree must solve if it is to survive. How can it pump 
water from the roots to the leaves? How can it support its own tremendous weight? How to maximize 
its light-gathering efficiency? How to grow tall enough to compete for light with its neighbours, without 
becoming too massive for the roots to bear? In the face of these dilemmas, there is little chance that a 
simple physical model will tell all about the shape of a tree.

Besides, there are many ways to describe a tree. You could work from the cellular level, explaining how 
the cellulose fabric is synthesized from carbon dioxide and water and how it is woven into the 
composite matrix of the multi-layered cell walls, like glass fibres set in resin. You could choose an 
engineering perspective, explaining how the material properties of wood enable a branch to support its 
own weight or to flex in the wind. Or a hydrodynamic description, in which vertical and
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horizontal cellular channels carry water and sugar-rich fluids to and from the extremities, pumped by 
evaporation from the leaves. Or an ecological viewpoint, explaining how the tree harmonizes with the 
chemical and biological rhythms of its environment . . .

So even though the forms of trees have been a rich source of inspiration to physical scientists who think 
about fractal growth, I feel one must admit that the contribution of ideas about branching growth in 
physics to our understanding of trees, to dendrology itself, is not profound. In particular, rather little 
connection has been made between tree development and concepts such as growth instabilities, noise 
and so forth. The one respect in which the concepts developed in this chapter do have some value, 
however, is in the description of tree forms. Even if the various factors influencing tree growth are too 
numerous and too complicated to account for, we can attempt to develop mathematical models that, 
while ignoring the biology and mechanics, nevertheless aim to reproduce the essential shapes of trees. 
As I indicated in the first chapter, this approach sometimes allows one to make an informed guess at the 
primary factors determining form, for which one would hope to identify corresponding parameters in 
the mathematical model.

For branching patterns in particular, attempts to provide mathematical descriptions of shape and form 
unfold along rather different lines than we are used to in classical geometry. Such models are in fact 
more properly regarded as prescriptions rather than descriptionsthey do not provide geometrical labels 
of shape like 'circle' or 'octahedron', but instead sets of rules, called algorithms, for generating 
characteristic but non-unique forms.

What does that mean? Well, you can describe the shape of a planet (spherical) or a salt crystal (cubic) 
easily enough, but you'd be hard pushed to assign a similar label to a cypress tree. 'Branched' is not 
specific enough, and 'tall and branched' does little better. To give an accurate geometrical description, 
you'd need to specify all of the branches and all of their angles and lengthsto paint in words a picture of 
the complete tree (and then only of that cypress tree!). You end up, in other words, like Sartre's Antoine 
Roquentin in La Nausée, horribly fixated on the particulars of the structure. But an algorithmic 
prescription provides an alternativeit tells how to generate a whole set of branched figures, all looking 
recognizably like a cypress. The word 'algorithm' comes from the name of the ninth-century Moorish 
mathematician Muhammad ibn Musa alKhwarizmi, who incidentally also bequeathed to mathematics 
the word 'algebra' and the concept of zero. An algorithmic approach to generic form is what underpins 
much work on mathematical fractals.

Leonardo da Vinci suspected (although without formulating it in quite these terms) that there are 
algorithmic rules governing tree growth. For example, he suggested that at branching points the rule is 
that the central trunk is deflected by some angle when a side branch occurs on its own, but is not 
deflected if two side branches are positioned opposite one another. Is that true? To a degree, but it 
depends on the size of the side branchsingle small ones cause next to no deflection. Wilhelm Roux 
attempted to specify these rules more precisely around the end of the nineteenth century, by identifying 
the following principles:

     



1. When the central stem forks into two branches with equal width, they both make the same angle with 
the original stem.

2. If one branch of the fork is of lesser width than the other (so that it can be regarded as a side branch, 
the wider one being a continuation of the main stem), then the thinner branch diverges at a larger angle 
than the thicker.

3. Side branches small enough that they do not deflect the main stem appreciably diverge at angles 
between 70° and 90°.

Roux in fact developed these rules while studying arterial networks, but in the 1920s Cecil Murray 
made them more quantitative and extended them to trees too. Murray proposed that, for arteries, they 
could be understood according to the principle of least work (which we'll encounter in the next chapter): 
the energy required to drive blood to the point reached by a side-branching artery is minimized if 
narrow branches diverge at large angles and wide ones diverge at shallow angles. And as trees are 
themselves a kind of vascular system too, through which water and sap are pumpedwell, why shouldn't 
the same parsimonious principle of least work apply here too?

Murray's algorithmic rules generate somewhat realistic-looking 'trees' when used to create a randomly 
branched network. Another algorithm for making tree like branching structures was proposed by H. 
Honda in 1971, and runs as follows (Fig. 5.25):

1. Every branch forks into two 'daughter' branches at single branching point.

2. The two daughter branches are shorter than the 'mother' branch by constant ratios r1 and r2.
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3. The two daughter branches lie in the same plane as the mother branch (the branch plane), and diverge 
from it at constant angles a1 and a2.

4. The branch plane is always such that a line lying in this plane perpendicular to the mother branch is 
horizontal. (This is the trickiest of the rules to envisage, but is explained in the figure.)

5. An exception to (4) is made for branches diverging from the main trunk, which observe the length 
ratios specified in (2) but branch off individually at a constant angle a2, with a divergence angle of α 
between consecutive branches.

Fig. 5.25 
Rules for creating tree shapes algorithmically, 

proposed by H. Honda. Branches are specified by the 
length ratios and angles shown on the left, except for 

those that diverge from the main trunk. In the latter case, 
the rules on the right apply. Notice that the latter specify 

a kind of spiral phyllotaxis with angle α. (After: Prusinkiewicz 
and Lindenmayer, 1990.)

With a few minor modifications this algorithm produces a whole range of branching patterns closely 
mimicking those of real trees (Fig. 5.26). Further modifications to account for the influences to which

     



Fig. 5.26 
Trees generated from the rules in Fig. 5.25. (Images: from Prusinkiewicz and Lindenmayer 

1990.)
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Fig. 5.27 
Plants and ferns generated by deterministic branching algorithms. The same motifs recur again and again 

at different scales in these structures, but the regularity is evident to greater or lesser degrees. (Images: 
from Prusinkiewicz and Lindenmayer 1990).

real trees are subjectedwind, gravity, the need to arrange leaves for optimal light harvestinggive 
increased realism. Honda's algorithm is deterministicit prescribes the branching pattern fully once the 
ratios and angles are fixed. Other algorithms used to generate life-like trees in computer art employ 
random elements to create more irregular forms. In nature, a certain randomness enters into the 
branching patterns as a consequence of such things as breakages, collisions between branches, growth 
stunting due to the shade of an overlying canopy, and the mechanical influences of the elements. 
Another class of deterministic algorithms, called L-systems by Przemyslaw Prusinkiewicz of the 
University of Regina, will generate plant- and fern-like structures (Fig. 5.27). These algorithms have 
spawned some stunning computer art; but they have not yet clearly extended the ideas of Roux and 
Murray in terms of explaining how it is that these branched patterns appear in such profusion in our 
hedgerows. Ultimately one might hope that appropriate rules for tree-growing algorithms will be 
derived from models of phyllotaxis mentioned in the previous chapter, augmented by other 
deterministic or random elements to account for the external, environmental influences to which a 
growing tree or shrub is subjected.

Networking

Branching structures in living organismsin lungs, blood vessels, neurons and the vein systems of 
leavesare so tantalizingly similar in many respects to those observed in the inorganic world that for 
many researchers it is hard to resist drawing some analogy, or even suggesting that there must be 
fundamental similarities between the growth mechanisms. Consider, for example, the system of blood 
vessels in the human retina (Fig. 5.28). Fereydoon Family and co-workers at Emory University in 
Georgia have shown that this branching structure has a fractal dimension of around 1.7very similar to 
that of DLA clusters.

     



Fig. 5.28 
The blood vessels around the retina form a fractal 

branching network with a fractal dimension of about 1.7. 
(Photo: Fereydoon Family, Emory University.)

But this does not imply that blood-vessel formation (called angiogenesis) is at root entirely (or even 
slightly!) analogous to the DLA process. The biology of angiogenesis is complicated, and doesn't 
always generate a diverging, randomly branched structureoften
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the vessels are interconnected in more complex ways. Blood vessels and the veins in leaves (so-called 
vascular networks) commonly form closed loops (Fig. 5.29), which means that there is more than one 
possible route for getting from one point to another. The reconnection between two branches in a 
vascular system is called anastomosis. In DLA-type branching, in contrast, loops are almost entirely 
absent and there is just one path that will take you from the 'root' to any particular branch tip. So a 
vascular system is more like the London underground system than like a tree: if you want to go from A 
to B, you often have a choice of several possible routes.

     



Fig. 5.29 
The branches in vascular systems are often interconnected, as 

seen here in the veins of a leaf (a) and of a Caribbean sea fan (b).

But even before we begin to worry about the finer points of shape and form, it would be folly to assume 
that one can simply map a mathematical procedure like the DLA algorithm onto biological growth. 
Life's structures have a purpose, and if they don't evolve to fulfil it with at least some modicum of 
efficiency, there will be a strong selective pressure towards modification. So in general complicated 
biochemical mechanisms have evolved to make sure that the architecture is up to the task.

Vascular systems, for instance, have to deliver fluids (such as blood) to their host tissues while those 
tissues are themselves growing in size. This means that the growing tissue and the existing vessels have 
to communicate with one another so that, once a region of new tissue develops too far from an existing 
vessel, it can broadcast its need for new vessels to supply it. This happens by a mechanism very much 
akin to the process of chemotaxis that bacteria use to 'talk' to one another (Chapter 3). In angiogenesis 
the remote tissue cells begin to produce proteins called angiogenic factors (AFs), which diffuse out into 
the surrounding tissue. Such cells are said to be ischemic. When these chemical messengers reach a 
nearby vessel, they trigger it into sprouting a new limb, which grows in the direction of increasing AF 
concentrationthat is, towards the source. When two blood vessels, growing from different directions 
towards a region of AF production, meet at its source, they undergo anastomosis, fusing end to end to 
form a single vessel.

The similarity in fractal dimension of retinal vessels and DLA clusters led Fereydoon Family and 
colleagues to conclude tentatively that at the very least this might reflect the central importance of 
diffusion in both growth processes. Mark Gottlieb of Arizona State University has attempted to go 
further by concocting a simple model that takes into account some of the specific biological processes 
known to control vascular growth. He modelled the host tissue as a checkerboard lattice of cells, 
interlaced with a system of blood vessels. To mimic the growth of the host tissue, he allowed the size of 
the whole checkerboard array to increase. After each growth step, the distance of each cell from a blood 
vessel is determined, and if this distance is too great then the cell becomes ischemic and a new vessel is 
added, reaching from the nearest existing vessel to the centre of the ischemic cell. If two vessels are 
equally distant from an ischemic cell, they both sprout new vessels, which meet end to end in the 
ischemic cell. Finally, existing vessels grow wider as the host tissue expands, so that older vessels 
become broader than new vessels. This
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model (in which much of the biology is rather crudely added 'by hand') produces fractal networks (Fig. 
5.30) that resemble those seen in real vascular systems of both animals and plants.

Fig. 5.30 
A simple model of angiogenesis called the vascular tree 

model can generate vascular networks like those seen in living 
systems. (After: Gottlieb 1993.)

Hans Meinhardt, on the other hand, sees in the development of biological vascular networks a 
patterning process under the control of diffusing chemical signals that should be explicable by a 
reaction-diffusion model. He has developed an activator-inhibitor scheme in which short-ranged 
activation allows branches to grow and divide, while long-ranged inhibition makes the advancing tips of 
branches avoid each other. But in this model a growing tip is less strongly repelled by a filament that 
already exists, and so this repulsion can sometimes be overwhelmed by that between growing tips, 
allowing a tip to reconnect with an existing branch in an anastomatic event. Meinhardt's model 
represents a rather rare example of a convergence between work on reaction-diffusion systems, which 
are commonly invoked to explain periodic or pseudo-periodic patterning, and work on branched growth 
patterns, which are more typically approached using DLA and related clustering models strongly 
influenced by noise.

Scaling up

Regardless of exactly how vascular systems are formed, there may be a deep connection between their 
fractal structure and their biological function. Ecologists James Brown and Brian Enquist from the 
University of New Mexico, in collaboration with physicist Geoffrey West of the Los Alamos National 
Laboratory, have proposed that the way in which metabolic rates of living organisms vary with their 
body size is a consequence of the fractal nature of their fluid distribution systems: the cardiovascular 
and respiratory systems of animals, for example, and the vascular systems of plants.

     



The relationship between metabolic rate and size is a long-standing puzzle. It is common knowledge 
that the rate of a creature's heartbeat decreases as its body size increases: babies' hearts beat faster than 
those of adults (they also breath faster), and the heartbeats of small creatures like birds are more rapid 
still. For a wide variety of organisms, the heartbeat rate turns out to be proportional to the inverse of the 
body mass raised to the power 1/4 . The metabolic rate of individual cells in an organismthe rate at 
which they consume energyfollows the same mathematical law. In other words, big organisms have a 
slower metabolism.

What's more, the total metabolic ratethe net rate of energy consumption of the whole organismvaries as 
the 1/3 power of body mass. And the cross-sectional area of aortal arteries in mammals and of tree 
trunks varies in the same way with body mass. These relationships are examples of so-called allometric 
scaling laws, and they are obeyed by organisms ranging from microbes to whales. Now, you'd expect 
large creatures to use up more energy than small ones, but it isn't obvious that the same scaling law 
should be followed over such a huge range of sizes. Still more puzzling are the actual values of the 
powers in the scaling laws: they all seem to be multiples of 1/4. If the biological parametersheartbeat 
and so forthwere related to how quickly fluids could be distributed in the body, you'd expect the 
relationship to depend on the body's dimensions, which vary as the 1/3 power of body mass. (This 
might be easier to see from the inverse relationship: the body mass is directly proportional to the body 
volume, which varies as the cubethe 3rd powerof the body's linear dimensions.) In the same way, the 
time taken to travel at constant speed across a cube-shaped box depends on the 1/3 power of the box's 
volume. You'd therefore think that all these scaling laws should come with powers that are multiples of 
1/3, not 1/4.

Enquist, Brown and West sought for an answer to this puzzle in the fractal networks of the distribution 
systems. They modelled these as systems of tubes which become progressively thinner at each 
branching point. The model networks are constrained by two requirements. First, all of them (regardless 
of size) have to end in tubes of the same size. These terminal branches can be considered to be the 
analogues of the smallest capillaries in cardiovascular systems, whose size is geared to that of the 
organism's individual cellswhich varies little regardless of the total body size. Second, the network is 
structured so that the amount of energy required to transport fluids through it is minimized. This echoes
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the rationale of Cecil Murray for his algorithms for tree structure.

For plant vascular systems, the passages of the network are in fact bundles of vessels of the same cross-
section. At each branching point, the bundles split into thinner bundles with fewer vessels in each. For 
this situation, the researchers showed that the 3/4 scaling law of metabolic rate with body mass (that is, 
with volume supplied by the vascular network) falls out quite naturally from an analysis of the 
geometric properties of the energy-minimizing network. For mammalian distribution networks, on the 
other hand, the situation is rather more complex, and a 3/4 scaling law is obtained only when the model 
includes the facts that the fluid flow is pulsed (due to the pumping of the heart) and the tubes are elastic. 
Most importantly, these relationships apply only for fractal distribution networksnon-fractal systems 
show 1/3 scaling with size, not 1/4.

This can't be the whole answer to allometric scaling lawsfor one thing, they are obeyed by organisms 
that don't have branched distribution systemsbut it posits an intriguing significance for fractal networks 
in the living world. James Brown suggests that it is in fact the ability of fractal networks to provide an 
optimal supply system to bodies of different sizes that enables living organisms to show such a huge 
range in body shapes and sizes. This range extends over 21 orders of magnitude21 levels of 
magnification by 10. Perhaps we would not have this diversity, from bacteria to whales, without the 
special characteristics of fractal branching patterns.

Life in the colonies

There is at least one area of biology that has genuinely proved in recent years to be a rich playground 
into which ideas from non-living branching systems can be freely exported: the growth of bacterial 
colonies. Watching a bacterial colony grow is like watching a city expand into an urban sprawl, except 
that it happens in days rather than decades. The inhabitants of the colony multiply (although bacteria 
can achieve this simply by cell division rather than by the more complicated strategies we humans must 
employ), and what drives this multiplication and growth is a supply of food. As well as eating and 
generating offspring, bacteria share other tendencies with us. They can move around, thanks to long, 
wavy tentacles called flagella that propel them through a fluid; and they can communicate with one 
another, in particular by sending out chemical signals as described in Chapter 3. All of this means that a 
growing bacterial colony must be regarded as a rather complex social structure, and it's not at all 
obvious that we should expect any similarities with growth behaviour in non-living systems.

     



Fig. 5.31 
(a) Fractal, DLA-like growth of a colony of the bacteria Bacillus 

subtilis. (b) Two adjacent colonies suppress each other's 
growth in the region between them, just as would be expected 

for DLA growth. (Photos: Mitsugu Matsushita, Chuo University.)

And yet, when they set out to study bacterial growth in the late 1980s, Mitsugu Matsushita and H. 
Fujikawa of Chuo University in Japan found that colonies of the bacterium Bacillus subtilis evolved 
into patterns that looked very much like DLA clusters (Fig. 5.31a). Is life
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for once simpler than expected, or is the apparent resemblance coincidental?

The Japanese researchers showed that the similarities were more than skin deep. For one thing, the 
branching colonies had the same fractal dimension as DLA clusters, about 1.7. And they showed some 
of the features that would be expected of a DLA-type processfor instance, two adjacent colonies seemed 
to repel one another, with suppression of growth in the region between them (Fig. 5.31b). But why 
should bacterial growth be like diffusion-limited aggregation?

Matsushita and Fujikawa grew these colonies in flat, circular Petri dishes containing a water-saturated 
gel made of a substance called agar. They injected a few bacteria into the centre of the dish, added some 
of the nutrients needed for growth, and let nature take its course. By varying the conditions under which 
growth occurred, they found that they could obtain colonies with very different shapes. They looked at 
the effect of changing just one of two variablesthe concentration of nutrient and the hardness of the 
gelwhile keeping everything else constant. Because the bacteria could not penetrate through the gel, the 
colony could grow only by pushing back the gel at its boundary. The more agar they added to the 
growth medium, the harder the gel wasit could vary in consistency from jelly-like to rubbery. And the 
harder the gel, the harder it became for the colony to expand.

The researchers observed fractal, DLA-like colonies under conditions where the gel was hard and 
nutrients were scarcethe most challenging situation that their bacteria faced. If the amount of nutrient is 
increased in these hard gels, the colonies become much denser, but still with an irregular perimeter (Fig. 
5.32a). This is called an Eden-like growth mode, after the mathematician M. Eden who observed it in 
1960 in one of the first ever computer models of biological growth. If the gel is made softer at low 
nutrient levels, the pattern changes from DLA-like to one that more closely resembles the dense-
branching morphology (DBM) (Fig. 5.32b). But if conditions are rendered highly favorableplenty of 
nutrient and a soft gelthe colony expands in a single dense mass, with no branching (Fig. 5.32c).

So here is another growth process in which distinct patterns are selected under different conditions. The 
DLA-like pattern can be accounted for in an arm-waving way by noting that, under conditions of low 
nutrient levels, the rate at which the bacteria multiply is limited by the rate at which nutrients can 
diffuse through the gel medium to reach them. This diffusion-limited process might then be susceptible 
to the same kind of branching instability that we encountered for simple aggregation. The Japanese 
researchers were also able to give an explanation for why the growth patterns changed rather abruptly 
as the gel became harder: there

     



Fig. 5.32 
The morphology of the bacterial colony depends on the conditions under which it grows: the amount of 

nutrient, and the hardness of the gel medium. (a) 'Eden'-like growth. (b) The dense-branching growth mode. 
(c) Compact, non-branching growth. (Photos: Mitsugu Matsushita.)
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is a certain degree of hardness beyond which the bacteria simply cannot move. Under a microscope, 
they could see that bacteria in the DBM-like and dense colonies were swarming about, while those in 
the DLA-like and Eden-like colonies just sat there. In the latter case, the colony expands as the sheer 
mass of multiplying cells forces the gel back, whereas in the former case the growth is very much faster 
because of a constant battering of individual cells against the gel. Matsushita and Fujikawa confirmed 
the importance of cell movement in pattern selection by growing colonies of Bacillus mutants that 
lacked flagella and so could not swim aroundin that case they observed just the DLA and Eden patterns 
no matter how soft the gel was.

Invasion of the mutants

Physicists who have worked on branching patterns in physical phenomena, such as viscous fingering 
and dendritic growth, have been attracted to the growth patterns seen by Matsushita and Fujikawa 
because they seem to offer a model system through which one might try to expand the concepts learned 
in the physical sciences to embrace the living world. Bacteria are undoubtedly more complex than, say, 
solidifying metalsthere is more than enough going on in a single bacterium to keep microbiologists busy 
for years to comebut nonetheless it has proved possible to perform experiments on pattern formation in 
these systems under well-controlled conditions and obtain reproducible results. This means that, even 
without a detailed knowledge of microbiology, physicists can hope to make some headway in 
understanding the growth processes.

Eshel Ben-Jacob and co-workers in Tel Aviv have looked at the patterns formed by Bacillus subtilis. 
Although they saw the same kind of growth patterns as the Japanese researchers, they also noticed 
something new: occasionally, a colony that was happily advancing in one pattern would suddenly 
sprout new branches from one or more points on its perimeter that would show a different kind of 
growth (Fig. 5.33). If cells from the new growth pattern were extracted and used as the seeds of a new 
colony, that colony too would exhibit the new patterneven though, under the same conditions, the initial 
colony had begun growing with a different pattern. It was as though the initial colony had suddenly 
mutated, and the offspring of the mutants had inherited the tendency to form a different pattern.

And that, suggested Ben-Jacob and colleagues, was probably just what was happening. Unlike 
aggregating metal atoms or smoke particles, bacteria can mutate. When a cell divides, the daughter cells 
can have a different genetic constitution to the parent cell, owing to mistakes made in duplicating the 
parental DNA for the progeny. These genetic mutations happen all the timesome may be fatal to the 
progeny, some may have no observable effect, but just occasionally a mutation will give the new cell a 
better chance of surviving than the parent cell. When this happens, the mutant has a reproductive 
advantage: it is better able to survive under adverse circumstances, and so reproduces more prolifically. 
This is exactly how Darwinian natural selection works.

     



Fig. 5.33 
A transition to a new growth mode at one point on the 

perimeter of a growing colony of Bacillus subtilis. 
The transition permits an episode of explosive expansion. 

(Photo: Eshel Ben-Jacob.)

Ben-Jacob's group suggested that what one was seeing in these bursts of new patterns growing from old 
was natural selection in a Petri dish. Some chance mutation of the bacteria in the new pattern gives 
them superior fitness, and a consequence of this is a change in the mode of branching growth. The new 
pattern might be an incidental outcome of some other fitness-enhancing characteristic; or it might be 
that the pattern itself gives the bacteria a competitive advantage.

Suddenly the possibilities for pattern-forming processes blossomed. Whenever a mutation of this sort 
took place, cells could be extracted from the mutant pattern to constitute an entirely new strain of 
Bacillus with new pattern-forming potential. Some of the mutant patterns were familiara dense-
branching sub-colony might burst forth from a compact Eden-like colony, for example (Fig. 5.33). 
Mutants of this type
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were quite common, and Ben-Jacob and colleagues called them the tip-splitting or T morphotype (Fig. 
5.34). But other mutant patterns were unlike anything seen in non-living systems: one consisted of 
elegant hook-like twists that all curved in the same direction, creating a colony reminiscent of a Chinese 
dragon (Plate 12a). This was denoted the chiral or C morphotype ('chiral' derives from the Greek word 
for hand, as these hooks can twist either in a left- or right-handed sense). And yet another mode of 
growth was shown by the vortex or V morphotype: here tendrils develop in the wake of small, roughly 
circular droplets of cells (Plate 12b). Under the microscope, the researchers could see that the cells in 
the droplets were all rotating in a spiral vortex.

Fig. 5.34 
The tip-splitting (T) morphotype of Bacillus. (Photo: Eshel 

Ben-Jacob.)

Faced with this richness, the challenge of developing a model to account for the growth patterns looked 
immense. But Ben-Jacob and colleagues started by focusing on the DLA-like and tip-splitting patterns, 
since in non-living systems these are relatively well understood. As Matsushita and Fujikawa had 
found, these patterns become sparser and increasingly DLA-like when the colonies are grown in harder 
gel or with less nutrient. Can a simple model capture this behaviour?

The Israeli scientists, in collaboration with Tamás Vicsek and Andras Czirok in Budapest, assumed that 
the most significant facts to include in a model were that the bacteria move, feed and reproduce. So they 
adopted the following rules:

1. The bacteria move at random.

2. While food is available, the bacteria feed at a steady rate.

3. If they eat enough, they reproduce (one cell splits into two); if the food runs out, they stop moving.

     



4. The dispersal of food (nutrient) throughout the system takes place by diffusion, and so is governed by 
well-known mathematical equations.

We encountered this kind of modelling in Chapter 3; but there I talked largely about continuous models, 
where the bacterial colony is described as if it were some kind of fluid of varying density obeying the 
equations of diffusion and 'reaction'. In such a description, branching instabilities may emerge in much 
the same way as those of viscous fingering in a fluid. In contrast, Ben-Jacob and colleagues adopted a 
particle-like model, akin to the DLA model of Witten and Sander, in which each particle is governed by 
the rules above. But a single colony might contain as many as ten billion individual 'particles' (cells)far 
too many for a computer to cope with. So they grouped cells together into 'walkers', each containing 
many thousands of cells, and assumed that these walkers moved around according to the same rules. 
Thus the walkers, not individual cells, were the fundamental particles of the model. They moved about 
on a regular underlying lattice. To model the advance of the colony into the gel, the researchers allowed 
the boundary of the colony to advance onto a new lattice point only when that point had been struck a 
certain number of times by the moving walkers. By varying this number, they could simulate the effect 
of making the gel harder.

With nothing more than these elements, Ben-Jacob, Vicsek and colleagues found that their computer 
model of the growing colony produced the branched patterns seen in the experiments. The lower the 
concentration of food, the more tenuous the branches become (Fig. 5.35). So this part of the gallery of 
growth shapes, at least, seems to be open to explanation by a model that takes no account of the detailed 
biology of the bacteria.

But there was one complication. In the experiments a curious thing happens: when the amount of 
nutrient is very low, the colony suddenly becomes denser again. This does not happen in the modelthe 
branches just go on getting thinner as food became scarcer. The researchers figured that it is at this 
point, when things look really desperate for the starved bacteria, that they start to do something only 
living 'particles' can do: 'talk' to each other. As we saw in Chapter 3, the language of bacteria is a 
chemical one: they communicate by emitting chemicals, which then guide the cells' direction of motion 
in the process known as chemotaxis. Like the
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Fig. 5.35 
The 'walkers' model of bacterial growth makes a few simple assumptions about 

the rules that determine the movement and multiplication of the bacteria. It generates DLA-like 
branching patterns that become increasingly sparse as the gel medium becomes harder 
(bottom to top) or as nutrients become scarcer (right to left). (Image: Eshel Ben-Jacob.)

slime mold Dictyostelium discoideum, the cooperative aggregation induced by chemotaxis of B. subtilis 
leads to the formation of differentiated cell types and to spores which are then released when conditions 
are more favourable.

Fig. 5.36 
When communication between bacteriachemotaxisis included 

in the walkers model, it generates a change of growth morphology 
from DLA-type (a) to a denser branching mode (b) at low nutrient 

levels. (Images: Eshel Ben-Jacob.)

     



So the researchers added to their model a simple description of chemotaxis. Any walkers that become 
immobile due to lack of nutrients emit a chemical signal at a fixed rate, which diffuses into the 
surrounding medium. Mobile walkers consume this substance at a fixed rate, and their random walks 
develop a bias so that they are more likely to move in the direction of decreasing levels of the 
chemicalaway from the signalling walker. (Notice that this is a repulsive interaction, in contrast to the 
attractive chemotaxis employed by Dictyostelium discoideum). These ingredients do indeed produce a 
switch to denser branching patterns at very low nutrient levels, as seen experimentally (Fig. 5.36).

In dendritic growth, anisotropy in the underlying growth process due to the symmetry of the crystal's 
atomic structure becomes manifest as symmetric branches in the growth pattern. Can anything like this 
be seen in bacterial growth? There is no obvious way to introduce anisotropy at the microscopic level, 
because while they are mobile the cells simply dash around at random. But Ben-Jacob's team found that 
they could make the gel medium itself anisotropic by stamping it with a symmetric pattern that leaves 
an imprint on the gel surface. A colony grown in a gel stamped with a sixfold lattice of grooves 
develops a dendritic patterna kind of bacterial snowflake (Fig. 5.37a). This can be mimicked in the 
'walkers' model by allowing the colony perimeter to advance after fewer 'hits' against the gel in some 
directions than in others. This modification produces sixfold patterns at relatively high nutrient levels, 
but the sixfold symmetry fades away to give more random branches at low levels (Fig. 5.37b). In the 
experiments, on the other hand, the effect of the anisotropy still shines through even with very little 
nutrient around. The researchers concluded that again some kind of chemical signalling must be 
operating at very low nutrient levels, and they found that they could recapture the sixfold symmetry 
under these conditions by introducing the repulsive chemotactic interaction into the model. There is no 
evidence that real Bacillus subtilis employ a mechanism anything like this,
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Fig. 5.37 
Bacterial snowflakes. (a) Growth in a gel 

that has been stamped with a set of 
grooves with sixfold symmetry. This anisotropy 

of the growth medium guides growth in 
certain preferred directions. (b) The model is 
able to capture this behaviour; but the sixfold 

pattern starts to disappear at low nutrient concentrations 
(decreasing to right). (Images: Eshel Ben-Jacob.)

however, so one can't yet be sure that this apparent success of the model is not just a happy coincidence.

     



What about the more complex patternsthe chiral and vortex growth modes? One can reproduce these by 
adding to the walkers model the assumption that the C morphotype cells do not tumble around at 
random but rotate preferentially in one direction. Bacterial flagella are coiled filaments which are 
known to coil with a certain handedness, like the left- or right-handed thread of a screw. Under certain 
conditions this coiling might confer a preference to the direction of the cell's rotation, and this 
microscopic effect could provide a singular perturbation, like surface tension or crystal anisotropy, that 
becomes amplified until it is manifest in the large-scale growth pattern.

The merry-go-round motions of the V morphotype are a particularly striking phenomenon, bringing to 
mind the collective swooping of a flock of birds. But this sort of behaviour in bacteria is by no means 
unprecedented: in 1916 W.W. Ford reported vortex motion in colonies of Bacillus circulans, from 
which their name obviously derives. Apparently the mutations of the V strain of Bacillus give them a 
similar tendency to execute pirouettes. Tamás Vicsek proposed that this behaviour might be modelled 
by treating the colony as a collection of 'gliders' rather than walkers: instead of meandering along a 
random path, each of the collective bacterial 'particles' is assumed to propel itself over a surface with a 
well-defined velocity at any instant. But this velocity can change, either because the glider gets 
entrained in the motion of its neighbours or because it alters its motion in response to a chemotactic 
signal. The model is quite complicated, but it does reproduce the vortex motions. How these vortices 
create the fingering patterns seen in Plate 10 is another matter, and remains just one of the many 
challenges to this sort of modelling.

Does all of this mean that a process as complex as the growth of a living colony can be understood in 
much the same way as the formation of a dendrite or the advance of an air bubble? At present, that is 
partly a matter of taste. Eshel Ben-Jacob notes with chagrin the
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comments of biologist Jim Cowan, who had this to say about those who attempt to develop simple 
models of complex systems:

They say 'Look, isn't this reminiscent of a biological or physical phenomenon!' They jump in right 
away as if it's a decent model for the phenomenon, and usually of course it's just got some accidental 
features that make it look like something.

Whether the models that have been developed so far for bacterial growth share anything more than 
accidental features with the patterns seen experimentally is still an open question. To my mind the 
correspondences are impressive, but the difficulty is in knowing whether one is adding by hand the 
most relevant elements of the process, while not overlooking others that are equally important. There is 
a lot going on in biological systems, for sure! Yet what we have seen so far is just a beginning. 
However crude the present models, they promise that a marriage of physics with biology will surely 
have much to tell us about the ramifications of growth and form.
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6 
Breakdowns

But evil are 
The paths, for crookedly 
Like horses go the imprisoned 
Elements and ancient laws 
Of the earth. 
Friedrich Holderlin 
Mnemosyne III

Children are very good at making patterns. One at which they are particularly adept is shown in Fig. 
6.1. It is the result of probably the easiest of the experiments that I propose in this book, and requires 
only readily available apparatus: a football and a window, a stone and a car windscreen, a dart and a 
mirror. You might be happier, though, just to take the results for granted.

     



Fig. 6.1 
Fracture patterns in a brittle material are highly complex. 

Shown here is a pattern formed in shattered windscreen glass. 
(Photo: Mehau Kulyk/Science Photo Library.)

When things break down, they tend to do so spectacularly. I don't just mean that bridges fall down, that 
ships sink, that cities are levelled by earthquakes. I mean that we may be left with stunningly rich 
patterns, sometimes on an awesome scale (Fig. 6.2). Cracks are amongst the most familiar of branching 
patterns. They are also amongst the least well understood.

     



It is only very recently, in fact, that scientists have begun to understand why it is that cracks form at all. 
For a long time, the science of fracture and failure of materials limped along with just a handful of basic 
concepts, most of which failed to provide any predictive power for what was seen in the real world. 
This was much more than an academic embarrassment: society wanted strong, tough materials, but 
scientists still had no clear concept of what it was that made a material tough. They would earnestly 
apply what seemed to be sensible criteria, only to end up with substances 'about as strong as stale hard 
cheese'. On the other hand, their experience with materials that were genuinely strong sometimes flew 
so much in the face of what seemed like common sense that they had some persuading to do. The 
materials scientist James Gordon, to whom I owe the acerbic quote above, recalls the response of a 
British Air Marshall in 1943 to the idea that Lancaster bombers were to have glass-fibre domes: 
'Glass!Glass! I won't have you putting glass on any of my bloody aeroplanes, blast you!'.
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Fig. 6.2 
A section of the San Andreas fault, a fracture in the 

Earth's crust. The ridges that branch from the main fault 
line (diagonal) are the result of many fault movements. 

(Photo: François Gohier/Science Photo Library.)

From a modern perspective, we can now see why fracture is so hard to understand. It is a non-linear 
phenomenon: the effect does not follow in proportion to the cause. All the attendant difficulties follow 
from this. A tiny crack can prove catastrophic. The smallest of perturbations can grow into a major 
instability. Events occur over a very wide range of length scales. The precise behaviour in any one case 
depends on details that might be too small or too numerous to track.

     



I don't, however, want to paint too bleak a picture. We are certainly no longer scrabbling around in the 
dark as we were during Gordon's wartime exploits. There is still no complete theory of fracture that 
explains crack growth based on elementary physics, and there may never be one; but we have a pretty 
good idea of what it takes to make a material strong, and bridges do not collapse nor aircraft fall apart 
with anything like the regularity that they once did. But I am concerned here primarily with patterns, 
not engineering. Fracture provides plenty of thosesome that will be familiar from the last chapter, others 
that are new. And I think that they will show us that intuition about what cracks do is not always our 
best guide.

Breaking glass

We can understand the Air Marshall's feeling about glass aeroplanes, because we know how readily 
glass shatters. But with a little more knowledge, we can understand why a physicist might think that, on 
the contrary, few materials could be better for making aircraft than glass. It consists of disordered 
silicon dioxide, the same stuff as sand and quartz but melted to break up the regular crystal structure 
and then cooled quickly so that the atoms become all but immobile before they can pack together in an 
orderly manner. The chemical bonds between silicon and oxygen atoms are extremely strong, not far off 
the strength of those between carbon atoms in diamond. You need to expend a lot of energy to pull 
them apart. So glass should be nearly as strong a diamond, shouldn't it?

The Air Marshall was wrong about glass fibresthey are very tough. But the physicist is wrong too about 
glassit breaks rather easily. What is going on?

A stiff, brittle material like glass is tough so long as cracks cannot be initiated. But they can start from 
the tiniest of beginnings, and from such little seeds grow flaws that shoot through the whole material. 
Window glass inevitably contains innumerable tiny scratches on its surface, any one of which can act as 
the initiation point of a crack that spreads with non-linear vigour. Gordon helped to show in the 1950s 
that only very minor scraping or scratching contact between glass and another surface is sufficient to 
create elaborate surface cracks. The reason glass fibres are so strong is simply that they have a much 
smaller surface area than a plate of window glass, and so have far fewer of these microscopic flaws. 
The thinner they get, the fewer flaws there are.

But why, even if there are tiny scratches to initiate a crack, does it then grow with such awesome speed, 
if the bonds are really so strong? A.A. Griffith had a critical insight into this problem in the 1920s, 
while he was laying the foundations of glass-fibre technology by drawing heated glass rods into thin 
threads. Knowing the energy contained in a single chemical bond in glass, it was a simple matter to 
calculate what the theoretical strength of glass ought to be, assuming that breaking the glass means 
breaking all those bonds. The puzzle was
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that the observed strength was typically about a hundred times smaller than that calculated from the 
amount of energy needed to break all the chemical bonds through a fracture. But Griffith found that the 
strength of very thin glass fibres starts to approach this theoretical limit. So the question was not so 
much why glass fibres are strong but why normal glass in bottles and windows is so weak. How can a 
minor scratch confined to the surface be responsible for such catastrophic failure?

Griffith built on the work of G.E. Inglis, who in 1913 helped to explain why British ships were falling 
apart by showing mathematically that the stresses around a hole in a material can be much greater than 
those through the rest of the material: there is 'stress concentration' at the flaw. Griffith realized that the 
same would apply on scales too fine to seeat microscopic scratches on the surface of a brittle material. 
Inglis had shown that the enhancement in stress at the narrow end of an elliptical hole, relative to the 
stress far from the hole, was related to the square root of the ratio of the length of the hole to its radius. 
For our purposes, all this means is that sharper, longer holes give more stress concentration than short, 
broad ones. Griffith showed that, if one considers a microscopic crack in a material one-thousandth of a 
millimetre long, whose tip cleaves through just one chemical bond at a time, the stress at the crack tip is 
about two hundred times that elsewhere. So a stress that is two hundred times smaller than that required 
to break the chemical bonds in a perfect material will be enough to set the bonds snapping at the tip of a 
crack of this sort. Notice too that if the crack were to grow without changing its width, the stress 
concentration at the tip gets even greater as the length increases.

This is why brittle materials crack so readily even if the bonds holding them together are strong. Mostly 
what I shall now be concerned with are the patterns that these cracks make as they grow. But I should 
just mention briefly that not all materials are consigned to catastrophic failure from their inevitably 
imperfect surfaces. Metals like copper and iron generally do not undergo brittle failure, but are 
ductilethey stretch and bend in response to stress. Crack tips in these materials still suffer the same 
stress concentration, but ductile materials

     



Fig. 6.3 
Dislocationsmismatches in the regular stacking of atoms in a crystalare emitted in 

complex patterns from a propagating crack in a ductile material. Here I show a computer 
simulation of a slot-like crack advancing horizontally through a thin sheet of copper. 

The sheet fills the plane, but only atoms at the surface of the crack, or those involved in 
dislocations, are shown. The dislocations veer off in unpredictable directions. (Image: Brad 

Holian, Los Alamos National Laboratory.)
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are able to relieve this extra stress by releasing imperfections called dislocations from the crack tip. 
Dislocations are flaws in the otherwise regular stacking of atoms in the material, where rows of atoms 
are imperfectly aligned but remain nevertheless bonded to one another. They are rather like the zip 
heads of a double zipperthe flaw can travel along rows of atoms, but the rows are stuck together again 
behind them. Because dislocations carry off the energy of a crack without causing the material to fail, 
they slow down a crack's progress and cause it to become blunt. The pattern of dislocations at a crack 
tip in a ductile material can be complex and unexpectedthe dislocations begin by heading off from the 
tip at a sharp angle but can then veer off into arcs that form halos around the tip (Fig. 6.3).

Jagged edge

Griffith's work suggests that a long, narrow crack initiated at a notch in a brittle material will cut like a 
knife straight through the material when it is stressed. This, however, is the exception rather than the 
rule. A glass cutter can make a clean, straight break through a sheet of glass by first scoring a shallow 
scratch along the path of the intended fracture, but without this guidance the result is more likely to be 
that shown in Fig. 6.1. At some stage the crack veers from the straight and narrow, and may begin to 
throw out a network of branches.

Fig. 6.4 
Cracks in a brittle material accelerate rapidly at first ('birth'), 

and then level off to a steady velocity ('childhood'). If the 
velocity exceeds some critical threshold, however, this steady 
motion gives way to wildly fluctuating growth speeds ('crisis'), 

at which point the crack throws out side branches as it proceeds.

     



Careful experiments on brittle materials have revealed that there are typically three stages in the way 
that a crack grows. At 'birth' it accelerates from the initiating notch to reach, in less than a millionth of a 
second, a speed of around 200 metres per seconda substantial fraction of the speed of sound in such a 
material. During 'childhood' the crack continues to pick up speed smoothly while staying straight, and 
the fractured surfaces that it leaves in its wake are smooth and mirror-like. But once the crack speed 
exceeds a certain threshold, the mid-life 'crisis' stage sets inthe velocity suddenly starts to fluctuate 
wildly and unpredictably and the crack tip veers to either side of its previous path. The fracture surfaces 
therefore become rough and sprout a forest of small side branches (Fig. 6.4).

Does this behaviour sound familiar? I showed in the previous chapter how the tip of a growing crystal 
finger can develop an instability that induces it to sprout the side branches characteristic of a dendrite. 
What we now see here is a side-branching instability that has a velocity thresholdit sets in only when 
the advancing tip gets faster than some critical speed. In 1951 Elizabeth Yoffe at Cambridge University 
performed a mathematical analysis of the way in which the stresses around a crack tip depend on its 
speed, and found that as the tip approaches the speed of sound, the stress field ahead of the tip starts to 
contract in the direction of motion and develops bulges pointing in different directions. These new 
stress concentrations might then force the tip to deviate from its straight path. John Willis at Cambridge 
showed in the 1960s that in fact the largest stresses at the tip of a fast crack point at right angles to its 
direction of motion, suggesting that it should be constantly veering off in a perpendicular direction. 
Computer simulations of fracture, in which a crystal lattice of atoms is pulled apart, support these ideas, 
revealing that a crack tip begins to develop tributaries when it moves fast enough (Fig. 6.5). Once the 
branching instability has set in, pulling harder doesn't actually increase the speed of the crack, because 
most of the energy in the crack is dissipated through the creation of the side branches rather than 
helping to speed up the tip. In fact, pulling harder can turn out to be counter-productive: so greatly does 
it increase branching that the tip itself starts to slow down.

Slow motion

Yoffe's analysis helps to explain why a rapidly growing crack should become unstable to steady growth 
above a certain velocity, close to the speed of sound. It implies that windows would not shatter into 
innumerable jagged shards, but would simply split cleanly, if only the cracks did not travel so fast. But 
the Japanese researchers A. Yuse and M. Sano of Tohoku University
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showed in 1993 that even cracks that grow very slowly may evolve into complex patterns. They 
developed a method for growing cracks at just a few centimetres per secondmuch slower than those 
passing through a brittle material as it shatters. What they found was an astonishing sequence of crack 
patterns.

Fig. 6.5 
Computer simulations of a crack advancing through a two dimensional atomic lattice 

show that the crack front remains smooth below a critical velocity (a) but becomes irregular 
and branched above this threshold (b). (Images: Michael Marder, University of Texas 

at Austin.)

     



Yuse and Sano sent cracks through flat strips of glass by using heat to induce the stress. They lowered 
the strips slowly through a heater into a bath of cold water, plunging the temperature by tens or 
hundreds of degrees centigrade. As anyone knows who has mistakenly put a hot glass dish from the 
oven into cold washing-up water, this abrupt cooling can shatter glass. When hot, the material expands 
so that the atoms are on average further apart; when cooled, it shrinks. This disparity between the 
separation of atoms in hot and cool parts of the glass sets up large stresses, which can then propagate as 
cracks from the cool to the hot regions. The stresses are created only in the region of the material across 
which the temperature changes rapidly, and so the cracks propagate only in this region. In Yuse and 
Sano's experiments, the interface of the hot and cool regions moved along the glass strip at a speed 
controlled by the rate at which the strip was lowered through the heater and into the water bath. So by 
varying this lowering rate the researchers were able to control precisely the speed of a crack initiated 
from a notch in the lower end. And the stress in the plate could be varied by altering the temperature 
difference between the hot plate and the water bath.

They found that for very slow speeds (about a millimetre per second) the cracks were generally
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Fig. 6.6 
Even cracks that propagate slowly may develop growth instabilities. A straight crack (initiated at a notch) 

passes through a hot glass plate lowered slowly into a water bath (a). At higher speeds (and for a temperature 
drop of between about 60 and 150°C), the crack becomes oscillatory, with a constant wavelength (b). At still 
higher growth speeds the amplitude of the wiggles 'saturates', so that they become distorted from a sine-wave 

shape (c, d). And for larger temperature drops, the cracks split into branches, which may have wiggles of their own 
(e). When a glass cylinder is used instead of a flat plate, cracks in the 'oscillatory' regime are not wavy, but instead 

thread around the cylinder in a helix (f). (Photos: M. Sano and A. Yuse, Tohoku University.)

perfectly straight (Fig. 6.6a). But above certain thresholds in speed and temperature drop, the linear 
crack became unstable and began to wigglenot at random, but in a steady oscillation with a well-defined 
wavelength (Fig. 6.6b). Who would have thought that you could cut such a perfect wavy path through a 
glass sheet just by cracking it? There is clearly a pattern selection process going on here that makes one 
wavelength of the wavy instability preferred over the others, just as there is for viscous fingering (p. 
119), dendritic growth (p. 123) and some of the fluid patterns seen in the next chapter (see Fig. 7.28, for 
example). The Japanese researchers found that the wavelength increased in direct proportion to the side-
to-side width of the glass strip, suggesting that the disturbance of the stress field by the edges of the strip 
was important in selecting the pattern. For a hypothetical infinitely wide strip the wavelength would be 
infinite too, which would mean that, once the wavy instability set in, the crack would show the bizarre 
tendency to head off from the vertical direction at a fixed angle, never to return. The researchers couldn't 
lay their hands on an infinitely wide glass strip, but they could nevertheless find one without edges: a 
glass tube. And here they found this very behaviour: the crack set off at an angle from the axis of the 
tube and kept travelling around it at this angle, thereby cutting out a perfect helix (Fig. 6.6f). Again, it 
seems amazing to me that you can cut a glass tube into a coil just by cracking it. Helical cracks are 

     



rumoured to be found in frozen natural-gas pipelines in Alaska, sometimes winding their way around the 
pipes for miles.

As wavy cracks in the descending glass plates get faster, the oscillations become more pronounced, until 
finally they start to distort from pure 'sine waves' and develop kinks (Fig. 6.6c, d). What happened at 
even faster speeds depends on the temperature difference between the heater and the bath (which 
controls the crack-inducing stress). For a small temperature drop (between about 60 and 100°C), straight 
cracks actually reappear at fast speeds. But for temperature drops above about 180°C, wavy cracks at 
low speeds rapidly give way to branching cracks, whose patterns can be very complex. A single initial 
crack first forks into two, and these might then each fork into a further two branches and so on. 
Sometimes the branches develop wavy instabilities before forking (Fig. 6.6e). Yuse and Sano were able 
to map out the boundaries of the straight, wavy and branching regimes as the temperature drop and crack 
speed (that is, the descent speed of the strip) were altered (Fig. 6.7).
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Fig. 6.7 
The boundaries between different crack patterns depend on the 

speed of crack propagation (horizontal axis) and the temperature 
drop (vertical axis).

Although they weren't able to understand fully the reasons why waves and branches develop in a 
straight crack, they were able to show that these instabilities have some of the characteristics of the 
Hopf bifurcation described in Chapter 3 (p. 67). James Rice and B. Cotterell of Harvard University 
deduced in 1980 the conditions under which a straight crack becomes unstable, and Michael Marder of 
the University of Texas at Austin has shown how these conditions are met in the experiments of Yuse 
and Sano when the temperature difference between the hot and cool parts of the glass strip (which sets 
up the stresses that allow the crack to propagate) gets large enough.

A matter of chance

The crack pattern that forms as a material fractures is a complex product of many factors, including the 
microscopic structure of the material (whether it is crystalline, glassy, granular, porous, fibrous and so 
forth), the distribution of the stresses applied, and the speed with which crack tips propagate. One of the 
most common features of a great many crack patterns, however, is that they are fractal: the network of 
cracks defines a structure whose dimensionality is not a whole number. Take the two-dimensional crack 
pattern in Fig. 6.8a, for example: here the network of fractures has spread from a single central focus. 
The highly branched nature of this network might put you somewhat in mind of the fractal DLA cluster 
in Fig. 5.7, and indeed the crack network has the same property of self-similarity, so that it looks the 
same at different scales of magnification.

     



     



Fig. 6.8 
(a) A crack spreading through a brittle material in two dimensions. 
(b) The network of fault lines that surrounds the San Andreas fault. 

This too has fractal characteristics.

But other fracture patterns can be less obviously fractal too. Take, for example, the network of fau-
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lines that surrounds the San Andreas fault in California (Fig. 6.8b). This fault system is not a radically 
divergent network of cracks; indeed it is not even fully connectedmany faults stand alone, isolated from 
the others. These isolated faults can arise when stresses are transferred through the Earth's crust until 
they reach a point of relative weakness. For all that this fault system looks different from the branching 
network of Fig. 6.8a, nevertheless a mathematical analysis of the pattern shows that it too is fractal.

Although the fractal nature of cracks is widespread, there is no unique theory that accounts for it. Yet 
there have now been so many models proposed for fractal crack networks that theorists are almost spoilt 
for choice. The essential feature of most of these models, however, is that the fracture process involves 
a strong dash of randomness. It is not hard to justify this: most real materials have microscopic 
structures that embrace a considerable degree of randomness. Rocks are typically haphazard 
compactions of grains of many different sizes and shapes, welded together at their boundaries. Metals 
too, while possessing crystalline orderliness at the atomic scale, are at larger scales agglomerates of 
many domains, each with their crystal planes pointing in different directions. Cement and porous rocks 
like sandstone are shot through with random networks of pores. Hard, brittle plastics contain a tangle of 
polymer chains that are partly aligned but partly entangled and disordered.

     



Fig. 6.9 
Electrical discharges are branched formations that resemble 

crack patterns. (a) A discharge pattern due to dielectric breakdown 
on the surface of a glass plate. (b) A lightning discharge. (Images: 

(a) after Niemeyer et al. 1986; (b) UCAR, Boulder, Colorado.)

     



Models of fracture in disordered materials seldom try to capture any of these specific kinds of 
randomness, but instead typically seek to introduce disorder into the way that the bonds break between 
particles joined together in a regular, orderly lattice. One of the most popular of these models was 
introduced by Lutz Niemeyer, Hans Jurg Wiesmann and Luciano Pietronero at the Brown Boveri 
Research Centre in Baden, Switzerland in 1984 to describe the phenomenon of dielectric breakdown. In 
electrical devices such as capacitors, an electrical voltage is applied across a layer of insulating material 
called a dielectric. If this voltage exceeds a certain threshold, the dielectric can no longer hold back the 
flow of charge between the two charged terminals, and a spark discharge crackles through the material. 
This is dielectric breakdown, and it usually spells doom for an electronic device in which it occurs. The 
discharge has a branched, lightning-like appearance (Fig. 6.9a), and indeed atmospheric lightning (Fig. 
6.9b) is itself closely related to dielectric breakdownair acts as an electrical insulator between a charged 
cloud and the ground. Dielectric breakdown can be regarded as a kind of 'electrical fracture' of a 
material. In some cases, it is accompanied by real fracture, as the material is shattered by the flow of 
charge. The break-
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down pattern is then left frozen into the material (Fig. 6.10). Discharge fracture patterns like these were 
studied in the eighteenth century by the German scientist Georg Christoph Lichtenberg, and are 
commonly called Lichtenberg figures. Lichtenberg, incidentally, invented electrostatic printing and was 
the first person to show conclusively that lightning is an electrical phenomenon, by carrying out a 
hazardous version of the kite-flying experiment popularly (and probably apocryphally) attributed to 
Benjamin Franklin.

Fig. 6.10 
Lichtenberg figures are produced by the passage of an electric 

discharge through a solid medium such as Plexiglass. 
The current cracks and vaporizes the medium, leaving behind a replica 

of its route. (Photo: Kenneth Brecher, Boston University.)

Niemeyer and colleagues chose to model the dielectric breakdown process by considering a regular 
checkerboard lattice on which charge could flow from point to point in straight lines. In their model the 
discharge advances in a series of discrete time steps: at each step, it progresses one lattice site further 
from each of the lattice points through which it has already passed. From most of these points there are 
several possible new points to which the discharge can flow in the next step (Fig. 6.11). Which way 
does the discharge flow? Niemeyer and colleagues assumed that the discharge passes at random to any 
of the next accessible points at each time step, but with a bias that depends on the size of the electric 
field at that point. This is a reasonable thing to assume, since the larger the electric field between the 
discharge's boundaries and any next accessible point, the larger is the chance that the spark will flow 
that way.

     



Fig. 6.11 
In the dielectric 

breakdown model, the electrical discharge advances between adjacent points 
on a regular lattice. At each step there are several 
directions in which the discharge can flow from 
each point already reachedthe former are shown 

here as white circles, and the latter as black, connected 
by a solid line showing the path of the discharge. 

The discharge was started at the centre of the circle, 
and is moving towards the lower electrical potential 

at the edge. The white points that experience 
the highest electric field have the greatest probability 

of being selected. (After: Niemeyer et al. 1984.)

So there is an element of chance in all of this. The next advance of the discharge at any point along its 
length will not necessarily be towards the lattice point that has the highest electric fieldit is just more 
likely to go that way. Now, it turns out that the electric field around the tips of the branching discharge 
is higher than that in the valleys and clefts of the branches. So advance from the tips is more likely than 
advance from the interior of the 'spark'. Does this sound familiar? Remember that growth was also more 
likely at the tips of clusters formed by diffusion-limited aggregation than in their recesses, and for an 
entirely analogous reasonthe probability of a new particle striking the tips was higher. It is no surprise, 
then, that the dielectric breakdown model can give ramified, tenuous discharge patterns that look very 
much like DLA clusters (Fig. 6.12). The simplest relationship between the probability of the discharge 
flowing to a white point and the electric field at that point assumes that these two quantities are directly 
proportional. Discharge patterns generated by this model have a fractal dimension of 1.75, which is 
almost the same as that of DLA clusters.
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Fig. 6.12 
The dielectric breakdown model generates branching 

fractal patterns very similar to those seen in 
diffusion-limited aggregation. They have a fractal 

dimension of about 1.75. (Image: Luciano Pietronero, University 
of Rome 'La Sapienza'.)

The dielectric breakdown model can be imported wholesale into a theory of fracture in disordered 
materials. All you have to do is to regard the discharge as a crack, and the lattice as a network of 
interconnected atoms or particles joined by bonds of equal strength. At each time step, a new bond 
breaks from each point along the existing crack, with a probability related to the magnitude of the stress 
field at each of the accessible points. So in this model, the electric field that promotes the discharge is 
replaced by the stress field that causes bond breaking. It turns out that the two behave in the same way: 
the stress field is greatest at the tips of a crack, and is smaller in its crevasses.

     



This is a very simplistic picture of fracture: for one thing, it insists that one bond must always break at 
each point along the crack with each time stepbut in reality there is no reason why this has to be so if 
the stress isn't large enough. But all the same, the model provides some indication of why cracks might 
have a fractal branching structure. A better model would make allowance for the fact that bonds can 
stretch a little without breaking: they are not like rigid rods, but more like springs. This means that, each 
time a bond breaks, it will release stress in the immediate vicinity and the surrounding bonds can relax 
somewhat. Fracture models that modify the dielectric breakdown picture to allow for bond stretching 
and relaxation have been developed by Paul Meakin, Len Sander and others, and they can generate a 
range of different fracture patterns depending on the assumptions made about bond elasticity and so 
forth; an example is shown in Fig. 6.13. This crack has a much less dense network of branches than 
those generated by the 'pure' dielectric-breakdown model, and to my eye it looks much more like the 
kind of pattern you might finds creeping ominously across the ceiling. The fractal dimension is 1.16, 
showing that the crack is less like a two-dimensional cluster and more like a two-dimensional cluster 
and more like a wiggly line.

Fig. 6.13 
Crack formation can be modelled by a modified 

form of the dielectric breakdown model that allows bonds 
to stretch and relax. This can generate more tenuous, 

almost one-dimensional branching patterns. (Image: Paul 
Meakin, University of Oslo.)

Patterns in the dry season

In all of these examples the crack starts at a single point and spreads from there as the material is 
stressed. But not all cracks are like that. Think of the fragmented hard mud of a dried-up pond during a 
drought (Fig. 6.14). What has happened here is that, as the wet mud at the pond bottom has become 
exposed and dried, the tiny particles have all drawn closer together and aggregated into a compact layer. 
In effect, the wet mud has been exposed to an internal stress that acts at all points as the material 
contracts. This means that cracks have been initiated at random throughout the system and have 
propagated to carve up the mud into islands.

     



This kind of cracking due to uniform shrinkage (or expansion) of a thin layer of material is a common 
problem in engineering. It might happen to a layer of paint as the material on which it sits expands or 
contracts because of temperature changes. Surface coatings
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are commonly deposited in a 'wet' form onto an engineering component to protect it or to modify its 
surface properties (to make it more wear-resistant or less reflective, for instance), and these coatings 
then shrink as they dry, while the underlying surface retains the same area. Integrated microelectronic 
devices often incorporate a thin film of one material (an insulator perhaps) laid down on top of another 
(a semiconductor, say) in which the spacing between atoms is slightly differentso to maintain atom-to-
atom bonding at the interface, the overlayer has to be slightly expanded or compressed, and the film is 
uniformly stressed and liable to crack. Thus there are many very practical reasons for wanting to 
understand the fracture patterns produced in thin layers of material that are uniformly stressed by 
expansion or shrinkage.

Fig. 6.14 
When a thin layer of material is stressed as it shrinks, 

it can fragment into a series of islands of many different 
size scales. Here this process has occurred in drying mud. 

(Photo: Stephen Morris, University of Toronto.)

Arne Skjeltorp from the Institute for Energy Technology in Norway has explored a model experimental 
system for this type of fracture, consisting of a single layer of microscopic, equal-sized spheres of 
polystyrene, just a few thousandths of a millimetre in diameter, confined between two sheets of glass. 
This is an excellent model for the shrinkage of dried mud in a pond bed, because the interactions 
between the particles are directly analogous to those between silt particles, and because the layer of 
microspheres, deposited from a suspension in water, likewise contracts and cracks as the water 
evaporates.

     



Skjeltorp found that these layers of spheres fracture into complex 'crazy paving' patterns, highly 
reminiscent of dried-up river or lake beds, as drying progresses. Figure 6.15a shows the early stages of 
the process, and Fig. 6.15b and c show the final pattern at two different scales of magnification. The 
first thing to notice is that the cracks have preferred directions, at angles of 120° to one another (this is 
particularly evident in Fig. 6.15a). This reflects the symmetry of the underlying lattice of particles, in 
which they are packed in a hexagonal array. The cracks tend to propagate along the lines between rows 
of particles, as can be seen clearly in c. The particles in mud are likely to be packed together in a much 
more disorderly fashion, and so the shapes of the final islands are less regular (Fig. 6.14).

The second thing to note is that the pattern looks similar at different scales of magnification (this can be 
seen to some degree by comparing Fig. 6.15b and c, except that in the latter we lose the smallest scales 
because we are reaching scales comparable to the size of the particles themselves). This property is, as 
we now know, a characteristic of fractal patterns. And indeed these fracture patterns are fractal over the 
appropriate range of scalesSkjeltorp found that they have a fractal dimension of about 1.68, slightly 
lower than that of DLA clusters.

Can we reproduce these patterns using the sort of simple probabilistic models of fracture described 
above? We can indeed. Paul Meakin has adapted the 'elastic' dielectric breakdown model so that it is an 
appropriate description of Skjeltorp's thin layers of polymer microspheres uniformly stressed by 
shrinkage. It was important in this model to include the fact that the microspheres are attracted weakly 
to the confining glass platesthis, Skjeltorp points out, means that the cracks propagate further than they 
would do otherwise because a crack shifts the spheres away from their initial point of binding to the 
glass and so sets up additional stresses that drive the crack onward. Allowing for this effect, Meakin 
found that the model produces crack patterns similar to those observed in the experiments (Fig. 6.16).

What should we conclude from all of this about the web-like branches of cracks? The detailed 
investigations of the stresses around a rapidly propagating crack tip performed in recent years have 
enabled us to understand why it is that these fast cracks tend to split into branches: there is a dynamical 
instability which makes simple forward movement of the tip untenable. Beyond this threshold there is 
an underlying unpredictability in the motion of the crack tip, so that the crack carves out a jagged path 
that splits the material into rugged (and
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Fig. 6.15 
The cracks in a layer of microscopic polymer particles as the layer dries. Because the particles are packed in 
a hexagonal array, the cracks tend to follow the lines between rows of particles and so diverge at angles close 

to 120°. This is particularly evident in the early stages of cracking (a). The final crack pattern (b, c) looks similar at 
different scales, until we reach a scale at which the discrete nature of the particles makes itself evident (c). The 

region in frame b is about one millimetre across; that in c is ten times smaller. (Images: Arne Skjeltorp, Institute for 
Energy Technology, Kjeller.)

     



generally fractal) fracture surfaces. Randomness and disorder in a material's structure provide a 
background 'noise' that can accentuate the pattern. While in some ways fracture remains a unique and 
immensely challenging (not to mention practically important) problem, it is nonetheless possible to 
develop models that seem capable of describing at least some kinds of breakdown process while 
establishing a connection to other types of branching pattern formation.

A river runs through it

When biologist Richard Dawkins, in his book River Out of Eden, compared evolution to a river, his 
metaphor was based on pattern. Like a river, evolution has its luxuriant branches (Fig. 6.17), a host of 
tributaries arrayed through time and converging to the broad primary channels of life in the distant past. 
(Don't look at the analogy too closely, however. It has its strong
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points, but a river branches upstream, whereas if time is evolution's directional arrow then its 
bifurcations are distinctly downstream. And some biologists, like Stephen Jay Gould, have spent their 
lives arguing vigorously that evolution has no 'direction' at all.)

Fig. 6.16 
A modified form of the dielectric breakdown model is able to 
reproduce the fracture patterns seen in contracting thin films. 

(Image:Paul Meakin.)

     



Fig. 6.17 
The phylogenetic trees that trace out evolutionary relationships 

have something of the branching structure of a river delta. 
Older phylogenies, such as that shown here due to Ernst 

Haeckel, tended to over-emphasize this pattern, however; 
Stephen Jay Gould cautions against regarding evolution as a 

force of increasing diversification.

     



The curious thing about a river network is that it generally grows in the opposite direction to the way 
the water flowsfrom the tips of the tributaries into the surrounding rock. There is a very real sense in 
which we can regard it as a crack, propagating slowly (quasistatically) through the rock of a hill or 
mountain range. Yet the physics of this growth process are at face value very different from those of a 
crack spreading through stone. Streams grow back from their tips as water from the surrounding slopes 
flows down into the channel, wearing the rock away little by little. All the same, the result (Fig. 6.18) is 
a pattern that looks strikingly like a crack, or for that matter like a fractal aggregate or an electrical 
dischargebut on scales perhaps a million times greater. Already we can smell universality afoot. To 
what extent is it really so?

Fig. 6.18 
River networksgeomorphological cracks on a grand scale? 

(Photo: Jim Kirchner, University of California at Berkeley.)

For geomorphologiststhose who study the shapes of landscapesmany decades ago, there was none of the 
modern language for describing or conceptualizing branched patterns like this, and they struggled to 
invent one. The first attempt to do so was made by the
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American engineer Robert E. Horton in the 1930s. He formulated a series of 'laws of drainage network 
composition' which were held to be universal for stream networks. Horton's scheme was modified by A.
N. Strahler in 1952, who classified the elements of a network by assigning them an 'order' that signifies 
their position in the hierarchy of branches. The outermost streams, which themselves have no 
tributaries, are first-order. Where two first-order streams join, the resulting stream is second-order; and 
in general, the meeting of two streams of a given order signals the beginning of a stream of next-highest 
order (Fig. 6.19). If a lower-order stream flows into a higher-order stream, the former terminates but the 
latter's order is unchanged.

Fig. 6.19 
The hierarchy of river network elements in 

Strahler's modification of Horton's classification 
scheme. Each branch is assigned an order that increases 

downstream.

This sensible but somewhat arbitrary classification scheme enabled Horton to identify some general 
rules governing stream networks. His 'law of stream numbers' states that the number of streams of a 
particular order decreases with orderthere are fewer higher-order streams than lower-order. You could 
probably guess this rule from Fig. 6.19, but Horton was able to express it with mathematical precision: 
the number of streams of order n is roughly proportional to the inverse of a constant raised to the power 
n. In other words, this law of Horton's is a scaling law. Another way of expressing this relationship is to 
say that the number of streams in each order is a constant times the number in the next-highest order. 
The number of first-order streams in a particular network might, for example, be four times the number 
of second-order streams, which is itself four times the number of third-order, and so on.

     



Horton also proposed a law for stream lengths, and this too is a scaling law: the average length of a 
stream of order n is proportional to a (different) constant raised to the power n. (Or again: the average 
length for each order is a constant times the average length of the next-lowest order.) Thus, streams of 
higher order are longeragain what you'd anticipate intuitively from Fig. 6.19. A third scaling law relates 
the downstream slope of a stream to its order. In 1956 Stanley Schumm proposed a fourth law, in the 
same spirit as Horton's: the area of the drainage basin feeding a stream with water increases with stream 
order in the same way as stream lengththat is, proportional to a constant raised to the power n. And in 
1957, American geologist John Hack proposed a further scaling relationship for river networks: he 
pointed out that the area of the full drainage basin for a network increases proportionately with the 
length of the principal river (that is, the highest-order element of the network) raised to the power of 
about 0.6. Hack's relationship seems to hold some validity for drainage networks ranging in size from 
those produced in small laboratory experiments to those almost as big as the Amazon. But there is some 
debate about the precise value of Hack's exponent; other estimates place it closer to 0.5 than to 0.6, and 
it may be that it does not really have a universal value at all, but varies slightly from place to place.

These scaling laws are really expressions of self-similaritythe networks look the same over a wide range 
of magnification scales. Benoit Mandelbrot suggested in 1982 that indeed river networks are true 
fractals, and observations subsequently bore this out. The question is: why? And why, then, do the 
networks follow these particular scaling laws?

When Horton first reported his laws, they were regarded almost with awe, as though a profound secret 
of nature's order had been uncovered. But in 1962 Luna Leopold and Walter Langbein showed that 
randomness alone is enough to ensure that these relationships hold for any branching network. Horton 
himself suggested that networks emerge as rain falls on a more or less even surface and begins to carve 
out little gullies or 'rills' wherever the rate of water delivery by the rain exceeds its rate of removal as it 
filters down through the rock bed. As they grow larger, the rills begin to merge. Leopold and Langbein 
proposed a model in which rills form at random over a surface and larger channels arise from the 
merging of smaller ones. The perimeters of rills grow through random walks, constrained only to ensure 
that the 'walkers' do not recross their own tracksa property called self-avoidance. This model generates 
networks that obey Horton's laws as if by magic, even though its ingredients reflect only the barest 
details of the real geological processes.

  

     



Page 154

In 1966 Ronald Shreve put this picture on stronger foundations by showing that Horton's laws are 
extremely likely to result from any process that connects at random a given number of stream sources 
within a drainage basin into a network. And geomorphologist James Kirchner demonstrated in 1993 that 
even randomness is not essential: almost every kind of branched network conceivable obeys Horton's 
laws, not just those arising from random processes. In other words, Horton's laws don't really tell us 
anything at all about the fundamental patterns of stream networksthey are probably instead an inevitable 
consequence of the scheme that Horton (and subsequently Strahler) used to break down the networks 
into fundamental units of different order. So consistency of a particular model of river development 
with Horton's laws is no good measure at all of whether the model is a good one.

But in any case, it is now clear that drainage networks do not usually form by random initiation of rills 
followed by their merging. Instead, a network grows from the heads (tips) of the channels, where 
erosional processes cut back into the rock. If we want to understand why networks have the form they 
do, we would be best advised to focus on what is happening here at the stream heads. And by doing so, 
we can start to see why drainage patterns have much the same kind of fractal structure as cracks and 
DLA clusters.

Invasion of the highlands

Recall that in both the latter cases, growth of the pattern from the branch tips is more probable than 
from deeper within the 'tree'. For cracks this is because the stress is greatest at the tips, just as, within 
the dielectric breakdown model, the electric field around the discharge tips is largest. The energetic 
driving force for stream network growth, analogous to the stress imposed on a fracturing material or the 
electrical power fed into a spark discharge, is the kinetic energy of the rainwater flowing down the 
contours of the landscape. This energy input to the system is greatest where the water flows fastest and 
most abundantlythat is, where steep slopes converge. They do so at the head of the stream channels, 
where water flowing across the rock surface becomes funnelled into the channel. It is this focusing 
effect at the steep stream heads that creates a greater rate of rock erosion there than elsewhere, leading 
to predominant growth at the branch tips.

Only predominant, mind you, and not exclusivebecause all landscapes are 'noisy'. That is, they all have 
an element of randomnessvariations in surface contours, in soil type and drainage behaviour, in rock 
type, in vegetation cover and so forth. This noise is the equivalent of the random walks of particles in 
DLA or of variations in bond strengths in models of fracture in disordered materials. It ensures that 
networks send out new branches, and that there is still a finite chance of tributaries sprouting from 
higher-order streams rather than growth taking place only at the stream heads. And like the other 
branching processes that I have discussed, the growth of drainage networks contains an instability that 
amplifies small perturbations caused by this landscape 'noise': once a new channel begins to form, its 
focusing effect on surrounding surface-water flow enhances its growth further.

     



There is one other aspect of stream networks that bears explanation: stream heads hardly ever cut back 
across other streams to create islands or loops. This is because, as a stream head advances towards an 
existing channel, the area feeding it with water diminishes because the existing channel starts to cut off 
the supply from surrounding ground. Stream heads therefore generally run out of steam (or more 
properly, of water!) before they intersect other streams. Analogously, the tips of a DLA cluster very 
rarely merge with other branches because new particles can't reach them once the approach becomes too 
close.

The connection between these processes and those in crack formation can be made explicit by means of 
a theoretical model called invasion percolation, which is commonly used for modelling cracks. 
Percolation is the process by which a fluid passes through a porous medium. D. Wilkinson and J.F. 
Willemsen devised the invasion percolation model in 1983 to describe the process in which one fluid 
displaces another in such a medium. We saw in Chapter 5 that the displacement of one fluid by another 
can create branching instabilities that lead to viscous fingering patterns, whose broad branches have a 
thickness determined by the surface tension at the interface of the fluids. In invasion percolation, 
however, the pore network of the surrounding medium imposes its own pattern, and the invading fluid 
advances through this network in a densely interweaving pattern (Fig. 6.20). The probability of the 
invading fluid displacing the other is dependent on the size of the pore through which the fluid passes, 
since this modifies the pressure at the displacement front. If the pore network is highly disordered, this 
probability varies more or less randomly through the system.

In the model of Wilkinson and Willemsen, this randomness in the advance of the invasion front was
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captured in the following way. The medium being 'invaded' was modelled as a lattice of points linked 
together by bonds whose strength varies randomly from place to place. Growth of the invasion 'cluster' 
was initiated at a single point and was assumed to occur in a stepwise manner, with one bond breaking 
at each step. The next bond to break was always chosen to be the weakest one along the perimeter of the 
cluster. You can now see that this model describes essentially the same process as the dielectric 
breakdown model, except that the next bond to break is always, rather than most probably, the weakest. 
It is simply another slight variant on the model of fracture in a disordered solid.

Fig. 6.20 
Invasion percolation: the displacement of one fluid 

by another within a porous medium. The 'invading' fluid 
is injected here at a single point, and moves forward 

in a dense, convoluted network. (Image: Roland Lenormand, 
Institut Français du Petrole, Rueil-Malmaison.)

The advance of an invasion percolation cluster occurs mostly at the tips, because as it grows, the cluster 
'seeks out' the weakest bonds in its path and leaves behind along its perimeter those bonds that happen 
to be stronger. The chance of finding at the tips a bond weaker than those still unbroken further inside 
the cluster is usually pretty good; only rarely will the tips happen all to alight on strong bonds, forcing 
the breakage of one further back down the cluster's branches. The cluster therefore soon reaches a state 
in which only bonds with strengths lying in a certain range tend to be broken, and it develops a fractal 
form.

     



Colin Stark, working at the University of Leeds, proposed in 1991 that invasion percolation is also 
much like drainage network evolution. The breaking of bonds mimics the erosion of bedrock by a 
steady supply of surface water from rainfall; and the randomness in bond strengths reflects the non-
uniformity in the landscape. He added only one extra element: the constraint that a stream head could 
not intersect an existing channel (self-avoidance), included for the reason mentioned earlier.

Fig. 6.21 
The invasion percolation model, with 

a slight modification to ensure 
self-avoidance, produces networks resembling 

those carved out by rivers as they cut back 
into the bedrock. (After: Stark 1991.)

Stark showed that this model produced stream networks that looked rather realistic at first glance (Fig. 
6.21). A trained eye will spot some shortcomings (for example, sometimes three or more tributaries 
converge at a point, which is not typically seen in real river networks); but Stark went beyond eyeball 
tests, showing that his model networks obey Hack's scaling law with an exponent of 0.565. Although, as 
I've said, the 'real' value of this exponent is uncertain, it does seem to lie between 0.5 to 0.6. A related 
test focuses on the nature of the principal streamthe channel that traces the shortest path through the 
network (which is what we would normally identify with the 'river' of a particular river network). 
Observations indicate that this wiggly path has a fractal dimension of around 1.12it is slightly more 
wiggly than a simple line. The self-avoiding percolation invasion model predicts a value of 1.13 for this 
parameter. The 'principal stream' for a branched network formed by DLA, incidentally, has a fractal 
dimension of 1.0, which isn't really fractal at all but just the same as that of a line. This goes to show 
why scaling laws are important for distinguishing between network mod-
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elsto the eye, a DLA network doesn't look much different to those of real rivers.

Like all simple models that have been proposed for explaining the form of river networks, the invasion 
percolation model has its strengths and weaknesses. (For one thing, the physical basis of invasion 
percolation into a random medium scarcely mimics the processes of dynamic erosion and sediment 
transport in real rivers.) Most of these physical models include a strong element of randomness, as well 
as growth instabilities that cause branching and amplify the development of new channels, and they all 
produce fractal patterns, along with more or less equable agreement with some of the scaling laws seen 
in the natural networks. The Venezualan scientist Ignacio Rodriguez-Iturbe and co-workers have taken 
a somewhat broader perspective, by asking whether there is some universal physical principle that 
underlies the fractal nature of river systems. They have in mind a principle akin to those that physical 
scientists seek to identify as guiding rules for predicting the course that a system takes when it 
undergoes a change. For example, we know that objects in the Earth's gravitational field fall downwards 
because that decreases their gravitational potential energy. But what path does their fall take? The Irish 
mathematician William Hamilton showed in the nineteenth century that the trajectory of a falling object 
is that which minimizes a quantity called the action, roughly speaking the multiplicative product of the 
energy change and the time taken for it to happen.

Hamilton's law of least action specifies the parabolic trajectory of a cricket ball as it is thrown and falls 
in the Earth's gravitational field. Rodriguez-Iturbe and colleagues have made the controversial claim 
that there is an analogous principle that guides a natural river drainage network into a branched, fractal 
structure. This principle is that the network evolves in such a way as to minimize the total rate at which 
the mechanical potential energy of the water flowing through the network is expended. Let me unpack 
that a little.

As water flows downhill through a river network, it loses potential energy just as does a falling cricket 
ball. This energy is largely converted into kinetic energy: the water moves. And it is this kinetic energy 
that ultimately drives the process of erosion that leads the network to expand and rearrange its course. 
Now, suppose we had a godlike ability to measure everywhere at once the amount of potential energy 
that all the water was losing each second. (We can't hope to do this in real river systems, but the total 
can be easily totted up in computer models.) Rodriguez-Iturbe's principle of energy minimization says 
that the network's shape will change until it finds that for which the total rate of potential-energy 
dissipation is as small as possible, given the constraint that a certain amount of water must flow through 
the network each second. This principle says nothing about whether a tributary will or will not appear at 
a specific location, and it's likely that there will be a large (perhaps huge) number of alternative 
networks, with broadly similar characteristics, that all come close to satisfying the energy-minimization 
principle. Rodriguez-Iturbe calls these 'optimal channel networks', and has shown that they have scaling 
properties that obey Horton's laws. Hack's law and several other empirical laws of river patterns too. In 
other words, natural drainage networks may be optimal channel networks that have 'sought out' a form 
that minimizes the rate of energy expenditure. One can show that this optimal form in fact minimizes 
the average altitude of the drainage basin.

     



The researchers demonstrated this optimization tendency by conducting computer simulations in which 
a model network was allowed to alter its channel pattern at random, with the sole constraint that each 
alteration was more likely to be adopted if it turned out to decrease the rate of energy expenditure. This 
constraint alone was enough to allow an initial network that looked nothing like a natural drainage 
pattern to evolve into one that showed all the right scaling laws. Because their model did not include 
any elements that directly mimicked the geological processes of river drainage (unlike, say the invasion 
percolation model, which has growth instabilities at the branch tips), the researchers suggested that 
many other natural, fractal branching patterns might also be optimal channel networks guided by an 
energy-minimization principle.

But why should river networks seek to minimize energy expenditure? Rodriguez-Iturbe merely assumed 
that they did, and showed that this assumption gave realistic branching patterns. They did not attempt to 
justify this assumption. Kevin Sinclair and Robin Ball of Cambridge University have tried to explain 
how the energy-minimization principle arises from the fundamental physics of the hydrodynamic 
processes that govern network evolution. They started with some well-known relationships between 
quantities, such as the volume and velocity of water discharging through a channel, its width and slope, 
and used computer simulations to relate these to the rate of erosion of the landscape. They then showed 
that the resulting relationship between discharge rate and erosion looked mathemati-
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cally like the expression for Hamilton's law of least actionanother minimization principle. In other 
words, within the very physics of water flow and erosion lies a prescription for the pattern of the 
drainage networks that these processes will generate. But you'd never guess this pattern by staking out a 
single channel with any number of flow meters, depth gauges and so forththe branching pattern is an 
emergent global property.

The eternal braid

Self-avoidance is the rule for river networks: they do not form closed loops. But all rules are made to be 
broken. When rivers flow across very flat, broad beds, they often break up into a series of channels that 
split and rejoin into a series of loops which isolate island after island (Fig. 6.22). These are called 
braided rivers. They may look familiaryou can see the same kind of braided pattern on a smaller scale 
when streams run into the sea across a flat, sandy beach. The dried-up imprint of surface flows like this 
have been seen on Mars too. The pattern appears whenever a broad sheet of water runs over a gently 
sloping, grainy sediment.

Fig. 6.22 
Braided rivers have channels that loop and converge, 

creating isolated islands that come and go as the 
river channels change their course. The same pattern can 

be seen in streams running over flat sand to the sea. 
(Photo: Chris Paola, University of Minnesota.)

     



Brad Murray and Chris Paola of the University of Minnesota have proposed that the transport of 
entrained sediment (something that is ignored in the models described earlier) is crucial to the formation 
of these braided patterns. Water can scour sediment out of some regions and redeposit it elsewhere to 
create new bars and islands. In particular, if the scouring rate increases rapidly with increasing flow 
rate, then an isolated depression in the river bed becomes unstable against deepening. In other words, it 
captures more of the flow than the surrounding regions, and so more sediment is washed away from the 
depression than from its surroundings. The reverse is true for an isolated protrusion: the flow passes 
around it rather than over it, and so it suffers less erosion and gets higher than its surroundings. As a 
result, random small protrusions become islands that divert the flow to either side.

It sounds simple enoughbut to capture the real dynamics of flow and sediment transport in a theoretical 
model, Murray and Paola had to include some rather precise rules that related stream flow to sediment 
flux. In their model the water flows across a checker-board lattice of square cells, whose heights 
decrease on average in one direction to define the direction of flow; but superimposed on this smooth 
slope are small, random variations in height from cell to cell. The amount of water flowing through 
each cell depends on its height relative to its uphill neighbours: the lower the cell, the greater its share 
of water from the uphill cells. The height of each cell changes at each computational step, depending on 
the balance of sediment transport to and from the cell. Because the 'behaviour' (the change in height) of 
each cell depends on that of its neighbours, this model is a cellular automaton (p. 57).

Murray and Paola found that their model simulations (Fig. 6.23) captured many of the features of real 
braided rivers. Channels continually form and reform, migrate, split and rejoin: the shape of the river is 
never steady. Although on average the flow of water and sediment down the river remains constant, it is 
subject to rather strong fluctuationsmore so than in non-braided riversbecause of this constant 
reorganization of the flow paths. The researchers concluded that it is the processes of sediment 
scouring, transport and deposition that distinguish braided rivers from branched ones: if the river simply 
cuts its way by eroding a cohesive, rocky bed to form steep-banked channels, it creates meandering 
branches rather than braids.

The striking thing about all these river systems, however, is that they are self-organizing, in the sense 
that the flow becomes organized into a stable pattern with properties that remain statistically stable even 
though the details are constantly changing. This is a hallmark of self-similar growth, which allows an 
object to preserve its form while it grows indefinitely.

What's left

When we think of river patterns, what usually comes to mind is the plan view: the convergent, branched
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network as seen from above. I suppose that this is the perspective we have inherited from map makers, 
and more recently from aerial photographs and satellite images. But it doesn't much reflect our 
experience of riversfor what we see instead from our nose-high view of the world is the effect that a 
river has on the landscape. In other words, we see the topographic profile that the river carves into the 
landscape. Flowing water doesn't just trace sinuous channels through the land; it imposes height 
variationshills and valleys, gorges, ravines and lone peaks (Plate 13). There is as much characteristic 
shape and form in what the river leaves behindin its profileas there is in the course it takes.

Fig. 6.23 
A cellular automaton model of fluid flow and sediment 

transport captures the essential features of braided rivers: 
both the instantaneous flow patterns and the way in which 
these are constantly shifting. Here I show three snapshots 

of the topography (left) and discharge (right) produced by the 
model. (Image: Chris Paola.)

     



The river network is, to a first approximation, traced out as a pattern of lines. The topographic profile of 
the network, meanwhile, is defined in terms of a surfacethe contoured landscape of the river's 
hinterland. In just the same way, I discussed cracks earlier from the point of view of a branched 
network; but what a fracture commonly leaves behind is a rough surface (Fig. 6.24) with a rugged 
topography. Usually we think of surfaces as two-dimensional objects; but when they become very 
rough, with peaks and valleys over many size scales, surfaces start to fill up three-dimensional space, 
and so can be fractals with a dimension greater than two (just as the river network is itself not quite a 
one-dimensional object but a fractal with a dimension between 1 and 2). You soon find out when a 
landscape becomes fractal, because it then takes a lot more time and effort to get between two points 
separated by a given distance as the crow flies, relative to the same journey on a flat plain. Journeys in 
fractal-land are arduous.

Fig. 6.24 
Fracture surfaces in brittle materials are commonly highly 
irregular at high magnification. Shown here is the surface 

of a fractured hard plastic. (Photo: John Mendenhall, 
Barbara Goettgens, Jens Hanch and Michael Marder, 

University of Texas at Austin.)

Why the coastal path takes longer

The surface textures that fractures generate are rich and varied. Wood cracks into a spiky array of 
splinters, reflecting its fibrous texture. Sheets of soft plastics like polyethylene rupture under tension 
into webs of aligned fibres (Fig. 6.25), a consequence of the fact that the material is made up of 
entangled chain-like polymer molecules. No single theory can account for all of these textures, since 
they are generally a consequence of the differing microstructures and atomic-scale structures of the 
materials. But the idea that many hard materials break to give rough, pitted fracture surfaces like that in 
Fig. 6.24 is one that seems intuitiveand since, as we've seen, crack networks are typically fractal, we 
should not be too surprised that the surfaces they leave behind have this character too.

But what does it mean for a surface to be fractal? Simply put, it means that the bumps have no 
characteristic size scale: they come in all sizes. Put another way, it
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means that the apparent area of the surface depends on the size of the ruler that one uses to measure it. 
Take a look at a typical cross-section through such a surface (Fig. 6.26). What is the length of this cross-
section? That depends on how we measure it. If we use smaller and smaller yardsticks, we capture more 
and more of the detailed ups and downs and so the overall measured length gets longer. Of course, the 
real length does not get any longer just by our act of measurementwe just 'see' more of it. But a 
genuinely fractal boundary has no 'real' length at all: it has ups and downs on all length scales down to 
the infinitely small, so the apparent length goes right on increasing as we measure it at ever smaller 
scales. True fractals like this are just mathematical abstractions, however, since the crenelations of any 
real boundary cannot get any smaller than the sizes of atoms.

     



Fig. 6.25 
Complex breakdown patterns are found in polyethylene, 
owing to its fibrous texture. (Image: Paul Meakin, Oslo 

University.)

Fig. 6.26 
A fractal boundary (like a cross-section through 

a fractal surface) has a length that depends on the 
yardstick used to measure it. As the measuring stick 

becomes smaller, the apparent length seems to increase 
as we capture more and more of the details. Here the 

measured length increases slightly each time we reduce 
the measuring stick by half.

It was this apparent dependence of perimeter length on the size of the yardstick that led Benoit 
Mandelbrot to uncover fractal geometry. In 1961 he came across the attempts of the English physicist 
Lewis Fry Richardson to specify the length of coastlines and borders, including the west coast of Britain 
and the border of Spain and Portugal. (Of course, many coastlines can be regarded as fractures on a 
geological scale, where the Earth's surface has been pulled apart by tectonic forces.) Richardson found 
that the apparent length of these boundaries depended on the scale of the map that one used to make the 
measurement: small-scale maps show more detail than large-scale ones, and so capture more of the 
nooks and crannies, making the total length seem longer. If the logarithm of the length of the boundary 
is plotted against the logarithm of the length of the yardstick, the points fall on a straight line (Fig. 
6.27). Mandelbrot came to appreciate that, for objects like this, length is not a very meaningful 
parameter since it depends on how it is measured. The form of the object can be uniquely specified, 
however, by the slope of this so-called log-log plot, which is related to the fractal dimension.

When I introduced the concept of fractal dimension in the previous chapter, I did so in a rather different 
way: by suggesting that it is a measure of how the mass of a fractal object like a DLA cluster (Fig. 5.7) 
depends on its size. But it is probably not too hard to see from that figure that the DLA cluster has a 
highly convoluted
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perimeter which will also have a yardstick-dependent length. The fractal dimension of the perimeter has 
the same value as that which characterizes the size-mass relationship: about 1.7. There is often more 
than one way of getting at the fractal dimension of an object, which is an invariant geometrical property 
of the way it occupies space.

Fig. 6.27 
Lewis Fry Richardson found that the lengths of many 

coastlines and borders depend on the size of the measuring 
stick, increasing as the stick gets smaller. When the logarithm 

of the apparent length is plotted against the logarithm of 
the stick length, the measurements fall onto straight lines that 

have a characteristic slope for each boundary.

But we must be careful here. Yes, a jagged fracture surface may be a fractal, but it is a fractal of 
subtlely different complexion to the branched structures of DLA clusters or dielectric breakdown 
patterns. I explained in Chapter 5 that a DLA cluster is self-similar, in the sense that if you turn up the 
magnification at any part of it, you just keep seeing the same sort of delicate web of branches repeated 
again and again (so long as you don't get to such small scales that the constituent particles themselves 
start to become evident). More precisely, self-similar objects are composed of copies of themselves 
scaled down by a constant ratio; and they are isotropic: they have the same fractal dimension in all 
directions.

Self-similar fractals are the easiest sort to understand. But fractal surfaces are, I'm afraid, not like that. 
Although they have a fractal dimension of between 2 and 3, indicating that they have a tendency to fill 
up three-dimensional space in a way that a flat or smooth surface does not, this space-filling tendency is 
not isotropic. Imagine taking cross-sectional slices through a rugged mountainous landscape. A vertical 
cut reveals one thinga single rising and plunging (but continuous) transect across valleys and peaks 
(Fig. 6.28a)but a horizontal cut reveals something else entirelythe isolated 'islands' of sections through 
peaks, separated by

     



space (Fig. 6.28b). In other words, this fractal landscape is not isotropically self-similar. It is instead 
said to be self-affine, which crudely means that the ratio by which the component features are scaled at 
successive levels of magnification is different in different directions. Notice, however, that the 
perimeter of a vertical cut through a self-affine surface (Fig. 6.28a) is self-similarit is a line with a 
fractal dimension of between 1 and 2 (generally closer to 1, since the line does not tend to bend back on 
itself so as to more completely fill two-dimensional space).

Fig. 6.28 
A vertical cut through a rugged landscape reveals an 

irregular profile of peaks and valleys (a). A horizontal cut, 
meanwhile, isolates islandscross-sections of the peaks 

separated by gaps (b).

So it's not quite so straightforward to measure the fractal dimension of a self-affine surface. One way is 
to look at many cross-sections like Fig. 6.28a, by taking cuts through the surface, and to see how their 
length depends on the length of the ruler (see Fig. 6.26). The fractal dimension of the wiggly cross-
sections can then be related to that of the surface as a whole. But in 1984, in one of the first 
demonstrations that fracture surfaces could be fractal, Benoit Mandelbrot and co-workers took the 
alternative approach of looking at horizontal cuts through the surface (like that in Fig. 6.28b). They 
examined the nature of fractured steel by shaving down the rough surface in a series of flat cuts, and 
looking at the rough-edged, flat-topped islands that this left behind. If these islands had had smooth, 
circular edges, their area would have increased in proportion to the square of their perimeter, and a 
graph of the logarithm of the area against the logarithm of the perimeter would be a straight line with a 
slope of 2. Because they (like the surface itself) were rough, fractal objects, however, their areas 
increased more rapidly with increasing perimeter, and the log-log plot had a slope of 2.28which is the 
fractal dimension of the surface.

Mandelbrot realized in the 1970s that the natural topography of the Earth is typically a self-affine 
fractal. He notes how this aspect of mountain landscapes can be

  

     



Page 161

discerned in Edward Whymper's comments from Scrambles Amongst the Alps in 1860–1869: 'It is worthy 
of remark that . . . fragments of . . . rock . . . often present the characteristic forms of the cliffs from which 
they have been broken'. Fractal geometry has since been used to produce stunning simulated images of 
imaginary mountainous terrain (Plate 14), and to manufacture computer-generated but realistic-seeming 
landscapes in Hollywood movies. The crucial point here is that these landscapes are not simply random; if 
you let the computer generate an image in which the ups and downs are merely determined by a random 
process, the result is a relief pattern that is certainly uneven but that just looks wrong. Fractal landscapes 
are 'noisy' and unpredictable, but are not simply random.

Fig. 6.29 
In this model of landscape evolution, water falls on a random landscape and causes erosion as it flows. The 

streams organize themselves into an 'optimal river network' (a), while the topography of the landscape changes from 
random to fractal, with hills and valleys on all scales (b). (Images: from Bak and Paczuski 1993.)

Carried away

     



Geomorphologists who study landscape formation have embraced the concept of fractals more or less 
eagerly, but for them this means more than just using some abstract mathematical procedure to churn out 
endless images of virtual rugged terrain. They want to know how one can understand the evolution of 
these forms from the fundamental geological processes of nature. This is an old and distinguished field of 
study, and I'd be doing it a disservice if I do not make clear that the ideas of fractal form and of self-
organization that have become in vogue with physical scientists in recent years provide but a gloss (albeit 
a very attractive one) on the substantial foundations of geomorphology that were laid down in the 
nineteenth century, when physical modelling was first attempted. What's more, although much of the work 
on the spontaneous appearance of geomorphological form focuses on the processes that operate on a daily 
basis in a geological system to shape iterosion and other forms of weathering, sediment transport, ground 
freezing, vegetation growth and so onthese aren't by any means the only or even always the most 
important influences at work. Sometimes geological forces that operate from outside the system itselfso-
called eksystemic influencescome into play in a critical way. Global shifts in climate during ice-age 
cycles, glacier advances or retreats, and large-scale plate-tectonic events like the collision of tectonic 
plates, are examples of these. In general, the smaller, shorter-lived features of a landscaperills, gullies, 
hillslopesare self-organized by interactions between them and the other intrinsic elements of the system, 
whereas larger, long-lived features like mountain ranges come about through external, eksystemic 
influences.
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Erosion by flowing water is without a doubt one of the major influences on the Earth's topography, and a 
great many traditional geomorphological models represent attempts to capture the interactions between 
rock and sediment removal, transport and deposition. Often these incorporate complicated mathematical 
expressions for how the water flow properties affect the rate of erosion, the sediment load it bears and so 
forth. But recently some researchers have suggested that the kind of self-affine relief seen in nature is a 
robust form that emerges automatically as an erosive river network develops across an initially flat or 
randomly corrugated (non-fractal) landscape, regardless of the finer points of a particular flow model. 
Ignacio Rodriguez-Iturbe, Andrea Rinaldo and their co-workers have, for example, studied a model of 
river evolution that includes the effects of erosion on the profile of the landscape in a simple way. They 
began with a plain whose roughness was totally random. A surface of this sort is more like sandpaper than 
a mountain rangeit is uneven, but without scale-invariant self-affinity. In the model, rain falls onto this 
plain at a uniform rate everywhere, and the resulting flow of water generates an erosion force that depends, 
at each point, both on the rate of flow (volume of water per second, say) and the steepness of the gradient 
down which the water flows. This erosive force is assumed to remove and carry away material only when 
it exceeds some critical threshold value. When this happens, the height of the landscape at that point is 
reduced.

     



Fig. 6.30 
An experimental scale model of erosion on a bed of sand and clay produces a rugged skyline (a) that resembles those 

seen in nature at scales thousands of times larger: (b) a mountainscape in the Dolomites. (Photos: Tamás Vicsek.)

Notice that there's nothing in this model to ensure that the flow gets channelled into a single, connected
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river network. Yet as the simulation of landscape erosion proceeds, such a network emerges (Fig. 
6.29a), in which tributaries feed into higher-order streams (in Horton's sense) that eventually all 
converge into a single channel. And at the same time, the topography of the plain deepens into a rugged 
range of hills and valleys with a fractal character (Fig. 6.29b). The river network has the properties of an 
optimal channel network described earlier. This topography looks to the untrained eye much like that of 
a real landscape, although a geomorphologist might point out that the streams run unusually straight and 
parallel, and sometimes converge too abundantly at a single junction.

Tamás Vicsek and co-workers in Budapest have been interested in this same process, but with a 
willingness to get their hands dirty. Their model of landscape erosion is no digital cyberworld but a 
thing made of real mud and water. They mixed sand and soil (purchased at a Budapest florist's shop) to 
simulate the grainy but somewhat sticky substance of hillslopes. From this they modelled a flat-topped 
ridge just over half a metre long, and they sprayed it evenly with water to see what kind of surface 
would be carved out by erosion.

Fig. 6.31 
(a) The profile of a ridge produced in a laboratory model. A section of the the Dolomites (b) has the same degree 

of roughness when the profile in (a) is 'scaled' by expanding the vertical scale (c). (Photos: Tamás Vicsek.)

The running water carries off material through a combination of two processes. The granular substance 
is worn down quite gradually as it becomes suspended in the flow; but from time to time more profound 
changes to the model landscape take place through landslides. Both of these processes, of course, can 
occur in real hill and mountain ranges. The result is a rough, bumpy ridge that one could easily mistake 
for a rocky hillslope on a scale thousands of times bigger (Fig. 6.30a). In fact, Vicsek and colleagues 
pointed out the similarity to a mountain ridge in the Dolomites (Fig. 6.30b), which stretches over 
kilometres rather than centimetres: a striking example indeed of the scale-invariance of these erosion 
surfaces.

     



In some cases, a careful look at the cross-sectional profiles of the model ridges reveals a deeper 
similarity with mountain ridges than is immediately apparent. The rather flat ridge shown in Fig. 6.31 a 
doesn't obviously resemble the jagged section of the Dolomites in Fig. 6.31 buntil you exaggerate the 
vertical scale of the ridge's profile, whereupon the two look remarkably alike (Fig. 6.31 c). You might 
ask whether it's really a fair comparison to blow up the experimental data in this
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way; but the fact is that all this is doing is making more visually apparent the underlying statistical 
similarities of the two profiles. In other words, the two surfaces follow much the same scaling relation 
for self-affinity (between, say, the degree of height variation and the distance over which it is 
measured); it's just the amplitude of the roughness that differs.

But, you might object, the Dolomites are made of rock, not a soft mixture of soil and sand! This might 
not, however, be as great a distinction as it appears. Both of these substances are worn away by flowing 
waterit's just that it happens much faster in the softer medium. And both have an erosion resistance that 
varies from place to placethe sand and soil were only crudely mixed, and even the rock is highly non-
uniform. Finally, both materials suffer from erosion due to the same two processes: gradual removal of 
suspended small particles, and abrupt landslides. In mountain ranges, the latter can take place over 
distance scales of up to a mile or so, and become possible when the rock is fragmented by freezing.

So you might, when next walking in the mountains, like to scan the slopes all around for miniature 
replicas of the giant peaks in the distance: demonstrations of the Earth's scale invariance carved by the 
elemental forces of nature.
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7 
Fluids

The general surface grew somewhat more smooth, and the whirlpools, one by one, disappeared, while 
prodigious streaks of foam became apparent where none had been seen before. These streaks, at length, 
spreading out to a great distance, and entering into combination, took unto themselves the gyratory motion 
of the subsided vortices, and seemed to form the germ of another more vast. 
Edgar Allan Poe 
A Descent into the Maelstrom

If you want to see one of the key differences between Eastern and Western thought, look at the classical 
art of the two cultures. The West is deeply concerned with static form, with the angle of hand and arm, 
the tilt of a head, the naturalistic reproduction of shape. The Eastern tradition works differently: not 
with light and shade, not with a limitless blend of mimetic color, but with quick, broad strokes, alive 
with the energy of the artist. It is like the apotheosis of a sketcher's technique, capturing the instant 
while exclaiming the transience of forms in motion. It is, in short, an art that embraces changean 
embodiment of the essential difference between a Platonic an da Taoist tradition.

Traditional Western artists have seldom faced up squarely to the challenge of change. It's not easy to 
paint something that is never still. Yet to the traditional Chinese artist, that can be the whole point of the 
exerciseto capture the fundamental forms of motion. This is nowhere more clear than in the ways in 
which these two traditions have attempted to depict the most challenging of all movements: that of 
flowing water. The West has relied on the play of light to suggest the froth of wave caps (take a look at 
George Morland's The Wreckers (1791)) or the swirl of mist and sea (take a look at almost any painting 
by Joseph Turner). Chinese and Japanese artists, meanwhile, have sought to capture the structures of 
fluid trajectories in a series of lines (Fig. 7.1), which are remarkably close to the streamlines that 
scientists use to depict fluid flows (as well shall see).*

     



This is not a naturalistic representation, but an artistic response to the same problem that now occupies 
a great many physical scientists: what are the fundamental forms of turbulent flow?

We like to think that the calculus of Newton and Leibniz gave us a tool to handle the science of change; 
but for a problem like turbulence, calculus is merely as the brush is to the picture. It provides a 
formalism with which to frame the problem mathematically, to write an equation for turbulent flow. 
Then we can stare at this equation and realize that we can't solve it, and in the end we are forced to go 
back, like the French mathematician Jean Leray in the early twentieth century, and gaze instead at the 
real thing: the eddies of the Seine as it flows beneath the Pont Neuf in Paris. There are patterns in there, 
to be surewe observe the swirling vortices being born and swallowed upbut how can one formulate an 
exact description of them?

Many of the greatest scientists have bloodied their kunckles against the implacable walls that surround 
the problem of turbulent fluid flow. David Ruelle, a physicist who has contributed more than many to 
our understanding of it, points out that 'turbulence is the graveyard of theories'. He notes with glee how 
the classic text Fluid Mechanics by the Russian physicists Lev Landau and Evgeny Lifshitz suddenly 
dissolves from its charac-

*I do not know why Leonardo da Vinci's astonishing sketches of flow patterns along similar lines have 
not had more influence on Western art. This theme seems to have resurfaced only in the late nineteenth 
century, notably with van Gogh, Munch, graphic artists like Arthur Rackham, and the art nouveau 
movement.

  

     



Page 166

Fig. 7.1 
In Chinese painting, the flow of water is commonly represented as a series of lines that more 
or less approximate the paths of suspended particles. This is not a realistic, but a schematic, 

depiction of flow. These images are taken from a painting instruction manual compiled in the late 
seventeenth century. (From: M.M. Sze (ed.) (1977), The Mustard Seed Garden of Painting. Reprinted 

with permission of Princeton University Press.)

teristically complicated mathematical formulae into pure narrative description when they come to talk 
about turbulence. These formidable scientists were forced into the equivalent of the Chinese artists' 
effortsto paint pictures in words.

     



But turbulence is the hard part of fluid mechanics (a discipline also known as hydrodynamics, since 
through most of its history the fluid of interest has been water). Before a fluid flow is driven so hard 
that it gives way to turbulence, many things can happen and all manner of interesting and unexpected 
patterns lurk. In coming to understand these pattern-forming processes in fluid flow, scientists have 
gradually fashioned tools sharp enough to start to chip away the carapace of turbulence.

On the boil

There can be few more contradictory places on Earth than Iceland. Though not quite the icy wasteland 
that the name suggests (and which, legend has it, was invented by jealous Viking settlers belong to deter 
others from coming to contest their lands), it is nonetheless tucked up against the Arctic Circle, at the 
same latitude as Fairbanks, Alaska and the barren Siberian tundra. Permanent glaciers nestle in the 
island's centre. And yet heat and fire are as much a part of the island's culture as ice. Vast solidified lava 
flows, up to thousands of metres deep, stretch as far as the eye can see. Hot volcanic springs attract 
bathing tourists. Mounts Hekla and Heimaey frequently spit fire and ash.
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Iceland owes its fiery character to fluid movements in the Earth's mantle. The island has the dubious 
distinction of sitting right on top o fa part of the deep Earth where hot rock wells up to the crust and 
bursts forth through fissures at the surface. The rock is imponderably sluggishabout as viscous as 
window glassbut the Earth has plenty of time to conduct its internal gyrations. These fluids motion are 
an example of convection, the movement that arises in a fluid when it varies in temperature from one 
region to another.

Like so many other pattern-forming processes, convection is a non-equilibrium phenomenon. A fluid at 
equilibrium must have a uniform temperature throughout; imbalances in temperature will induce a flow 
of heat from hot to cold. But this heat flow need not in itself involve motion of the bulk fluid: if the 
temperature differences are only slight or gradual, heat can be redistributed by conduction, in which the 
excess energy of the hotter region is passed out to cooler parts from molecule to molecule, like a bucket 
brigade.

Convection is a fluid flow brought about by the fact that a warmer fluid is generally less dense than a 
cooler one. If a layer of fluid is heated from below, the lower parts of the fluid become warmer and less 
dense than the upper parts. This then gives the warmer fluid more buoyancy: like a bubble, it will have 
a tendency to rise. By the same token, the cooler, denser fluid on top will tend to sink. If you hold a thin 
metal dish of water above a candle, you will see how this imbalance creates convection currents. The 
hot water in the centre of the dish, directly above the candle, will rise up in a plume, while the cooler 
water at the top will sink back down at the edges. (The flow may be visible owing to the differences in 
refractive index of hot and cold water, but it can be made more evident by dispersing small particles, 
like powdered metal, in the water.) One can watch convection currents carry dust aloft above radiators 
in a heated roomthe dust traces out the otherwise invisible motions of the air.

But if a fluid in a shallow pan is heated uniformly from below, then there is a conundrum. All of the 
lower layer has the same temperature and so the same tendency to rise up through buoyancy. And all of 
the fluid at the top has the same sinking tendency. But clearly the two parcels of fluid cannot merely 
pass through one another. The sheer symmetry of the system poses an obstacle to convection. This was 
the situation studied by the Frenchman Henri Bénard at the start of the century. The outcome that he 
observed should not by now surprise us. Driven away from equilibrium by the heating from below, the 
system is forced to break its symmetry. And as we know, that is when patterns start to appear.

     



Fig. 7.2 
When heated uniformly from below, a layer of fluid will 

develop convection cells, within which warm, 
less dense fluid rises and cool, denser fluid 
sinks. (Photo: Manuel Velarde, Universidad 

Complutense, Madrid.)

Fig. 7.3 
Convection roll cells, which appear in a fluid confined 

between a hot bottom plate and a cooler 
top plate. The cells are roughly square in cross-section, 

and adjacent cells rotate in opposite directions.

     



What Bénard saw was that the uniform fluid breaks up into cells in which the liquid circulates from top 
to bottom (Fig. 7.2; see also Plate 1). These are now called Bénard cells, and in Appendix 6 I say more 
about how to manufacture them. For a heating rate just sufficient to start convection the cells are 
generally sausage-like rolls, which, when seen from above, give the fluid a striped appearance (Figs 7.3 
and 7.4a). Neighbouring roll cells circulate in opposite directions, so that the fluid at their boundaries in 
alternately sinking and rising. Clearly, the symmetry of the fluid is broken when these cells appear. 
Before, every point in the fluid was the same as any
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Fig. 7.4 
The complexity of convection patterns increases as the driving forcethe temperature gradient from the bottom to 

the top of the vessel, measured as a quantity called the Rayleigh numberis increased. The convection cells that first 
appear are roll cells (a); at higher Rayleigh numbers, rolls develop in the perpendicular direction too, and the pattern 

consists of roughly square cells (b). This is called bimodal flow. At still higher Rayleigh numbers, the pattern 
becomes irregular and changes with time (c). This 'spoke pattern' is turbulent. (From: Tritton 1988.)

     



other, whereas after, a microscopic swimmer and find himself in a different predicament in different 
locationseither buoyed up by the liquid rising from below, carried along by the flow at the top of a cell, or 
dragged down by the sinking liquid at its edge. But most strikingly, this roll pattern has a characteristic 
scale that seems to have come out of nowhere. The cells are about as wide as the fluid is deep (typically a 
few millimetres in experiments like Bénard's), whereas the scale of the interactions between water 
molecules is about a million times shorther. As in the case of Turing patterns (Chapter 4) or viscous 
fingering (Chapter 5), a particular pattern with a particular size has been selected; yet, a moment before its 
appearance, there was nothing in the system to give any clue of its imminent arrival or its scale.

In 1916 Lord Rayleigh tried to understand what trigered the sudden appearance of this convection pattern. 
It does not arise as soon as there is a gradient in the fluid's temperature from warm at the bottom to cool at 
the top, even though the lower layer becomes buoyant as soon as this imbalance is set up. Rather, a certain 
threshold in temperature difference has to be reached before convection starts, and this threshold depends 
on the composition and the depth of the fluid. At first sight, this dependence on the experimental set-up 
seems to spell doom for any attempts to establish a general criterion for the onset of convection. But 
Rayleigh showed that the various controlling factors can be combined to define a single parameter, called 
the Rayleigh number, whose value provides a universal criterion for whether or not convection occurs. 
The Rayleigh number is basically a measure of the balance between the forces that promote convection 
(the buoyancy of the fluid, which is determined in part by the temperature
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difference) and those that oppose it (the frictional forces that arise from the fluid's viscosity, and the 
thermal diffusivity, which tends to even out the temperature imbalance by allowing heat to diffuse from 
hot to cool regions). Convection does not arise as soon as the bottom becomes warmer than the top 
because the fluid motion is opposed by friction. Only when the driving force (the temperature gradient) 
becomes big enough to overcome this resistance do the convection cells appear. The Rayleigh number 
Ra is dimensionlessit is just a 'bare' number, without units, like a percentage or a probability. This is 
because all of the units in the two opposing forces cancel out when one takes their ratio.

The beauty of treating the problem this way is that all that matters (well, nearly all, as we'll see) is the 
Rayleigh numbertwo different fluids in vessels of different dimensions will behave in the same way 
when their Rayleigh number is the same. This means that one can map out the generic behaviour of 
convecting fluids as a function of Rayleigh number, without having to worry about whether the fluid is 
water, oil or glycerine. For what it is worth, the critical Rayleigh number for the onset of convection is 
1708. Rayleigh showed that there is also a characteristic width for the Bénard rolls that appear at the 
onset of convection: it turns out that this 'critical width' is very nearly equal to the depth of the fluid, so 
that the rolls are approximately square (Fig. 7.3). The critical width can be expressed most conveniently 
in the form of a 'wave vector', a dimensionless measure of the ratio of the roll-cell width to the fluid 
depth. In other words, while the critical width differs for fluids of different depth, the critical wave 
vector is the same for all fluids at the onset of convection: its value is 3.12.

If the Rayleigh number is increased beyond its critical value of 1708 to a value of several tens of 
thousands, the convection pattern can abruptly switch to a so-called bimodal form, in which there are 
essentially two sets of perpendicular rolls (Fig. 7.4b). At still higher values of Ra, the roll pattern breaks 
down altogether and the cells take on a random polygonal appearance called a spoke pattern (Fig. 7.4c). 
Unlike the rolls, this pattern is not steady: the cells continually change shape over time. It is, in fact, a 
turbulent form of convection.

The master equation

Rayleigh's analysis began with the standard theory of fluid dynamics, enshrined in a single equation that 
describes how the flow pattern changes over time as a result of the forces that the fluid experiences. In 
principle this theory is straightforward, since it invokes nothing but the basic laws of motion formulated 
by Isaac Newton in the seventeenth century. What one wants to know is how, when acted on by all the 
various forces they experience, each infinitesimally small parcel of fluid moves. Newton's second law 
tells us how a force causes a change in motion: a constant force on a particle of a certain mass brings 
about a constant rate of change in velocity (a constant acceleration): the rate of change is equal to the 
force divided by the mass. Simple.

     



In the middle of the nineteenth century, George Gabriel Stokes wrote down an equation for fluid motion 
based on Newton's second law. Stokes's equation was really just a more rigorous restatement of a 
formula derived by the French engineer Claude Navier in 1821, and so it bears the name of the 
NavierStokes equation. It says that the rate of change of velocity at all points in a fluid is proportional 
to the sum of the 'inertial' forcesthose promoting movement, such as pressure and gravity, plus the 
retarding force of viscous drag. OK, so that still sounds simple.

The catch is that the Navier-Stokes equation is often exceedingly difficult to solve without making 
several simplifications and assumptions about the nature of the fluid. One prime reason for this is that 
every 'parcel' of fluid exerts a viscous drag on all the particles around it as soon as their velocities 
differso in general, the behaviour of the fluid at any one point in time and space depends on the 
behaviour all around it. These complications meant that Stokes's equation was not put to any rigorous 
test until over a century after Navier derived its initial form.

Much of the work on fluid mechanics even today revolves around the issue of how to introduce 
appropriate simplifications into the Navier-Stokes equation for particular types of flow so that it can be 
solved without, in the process, losing the essential features of that flow. Rayleigh's analysis of 
convection made several assumptions of this sort. He considered a fluid trapped between two parallel 
plates such that it filled the gap entirelythe fluid had no free surface (as depicted in Fig. 7.3). 
Convection that takes place under this circumstance is called Rayleigh-Bénard convection. Rayleigh 
assumed that the fluid was incompressiblethe weight of the overlying fluid did not itself alter the 
density of the lower layer. This is a reasonable assumption for convection in thin fluid layers. Less easy 
to justify was the assumption that only the density of the fluid changes with temperature, other 
properties (such as the viscosity) staying the same. We know that for most fluids
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this is not truethey get less viscous and more runny when they are heated. And most importantly of all, 
Reyleigh assumed that the temperature gradient–the rate at which temperature changes from bottom to 
top of the fluid layer–stays constant and uniform. This might seem reasonable enough until you realize 
that a rising parcel of hot fluid carries heat up with it, and in the same way, a cooler sinking parcel can 
cool down the lower regions. In other words, the motions of the fluid alter thier very driving force (the 
temperature gradient). Rayleigh could not take this into account, and so strictly speaking his theory 
applied only to infinitesimally small displacements of the fluid, which did not alter the temperature 
distribution.

Rayleigh's calculations predicted, as I've said, that the fluid in this model system becomes unstable to 
convection at the critical Rayleigh number, and that the convection rolls have characteristic proportions. 
But he also found that, as the Rayleigh number is increased beyond the critical value, there is no longer 
a uniquely allowed wave vector for the convection pattern; rolls both wider and thinner than the critical 
wave vector of 3.12 (which have, respectively, smaller and larger wave vectors) may also be created. 
Physicists call these different wave vectors 'modes'they are rather like the different acoustic oscillations 
(sound frequencies) that can be excited in an organ pipe or a saxophone's horn. Typically, the harder 
you blow into a saxophone, the more acoustic modes become excited and the more harmonically rich 
the note becomes. Rayleigh's treatment of convection shows how to calculate the modes that may be 
excited for a particular value of Ra. If a given mode (with a characteristic wave vector and 
corresponding length scale) is permitted, this means that applying the slightest of perturbations to the 
initially uniform fluid on that length scale (by, say, hypothetically moving small parcels of hot fluid 
infinitesimally upwards at regular intervals of that length) will trigger the appearance of convective roll 
cells. This kind of mathematical analysis yields a stability boundary for convection which borders an 
ever widening region beyond the critical Rayleigh number of 1708 (Fig. 7.5). Notice that precisely at 
the critical Rayleigh number, only the roll pattern with the critical wave vector of 3.12 is stable.

     



Fig. 7.5 
A fluid becomes unstable to the appearance of convection 

cells at a critical Rayleigh number of 1780, at which 
point the wave vector (which determines the ratio 

of height to width) of the convection rolls takes the 
unique value of 3.12. At the critical Rayleigh number, 

the roll pattern will grow from the slightest perturbation 
to the fluids's uniformity Above this point, other wave 
vectors become stable too. Here the solid line shows 
the boundary of stability of the roll cells: only wave 

vectors inside (above) the boundary are stable.

Given the simplifying assumptions on which it is based, it's perhaps surprising that Rayleigh's theory 
does so well. It is able to predict not only under what conditions convection starts, but also what the 
proportions of the convection cells are (or at least, what is their maximum and minimum wave vector). 
But it cannot tell us anything about the shape of the cellsonly a more sophisticated analysis will show 
that they are roll-like under the conditions that Rayleigh assumed. Moreover, to know whether a 
particular convection mode is truly stable, it is not enough to deduce whether it will be sustained if 
stimulated by an infinitesimal perturbation to the fluid; one also needs to know if all other imaginable 
disturbances, such a a snake-like 'shudder' of the sausage-like rolls, will die out or grow into something 
catastrophic. Figuring out the stability of the various allowed modes in the face of all such disturbances 
is no mean task, involving mathematical analysis considerably more complicated than that employed by 
Rayleigh. During the 3T3 and 1970s the German physicilst F.H. Busse and co-workers embarked on 
these difficult calculations. They discovered all manner of instabilities in the parallel sets of rolls that 
would become manifest under different conditions, and found that the one set of these instabilities 
depended on the Rayleigh number and the wave vector of the rolls. Busse gave the instabilities graphic 
names, such as zigzag, skewed varicose and knot. The boundaries of the instabilities cross each other in 
such a way as to create an enclosed area on a graph of Ra against wave vector, called the Busse balloon 
(fig. 7.6). At all points within this enclosed field, parallel rolls are stableat least in theory.

But straight rolls are actually the exception rather than the rule in experimentsgenerally they are seen 
only in long, narrow vessels. Even here the rolls can become mildly deformed, and strange things 
happen at
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Fig. 7.6 
Parallel convection rolls are susceptible 
to instabilities that distort the pattern. 

At some wave vectors, for example, roll 
cells may spontaneously develop 

a zigzag deformation. The boundaries 
which various instabilities set in restrict 
the region in which parallel roll cells can 

persist to the so-called Busse balloon 
(shaded region). Rayleigh's original 

stability boundary is shown as a dashed line.

the ends (Fig. 7.7). The fact is that all the theories that predict stable rolls begin with Rayleigh's model 
of a fluid between two parallel plates of infinite extent. But no apparatus is of infinite extent; the vessel 
holding the fluid must obviously have edges. You might not imagine that this would matter very much, 
expect perhaps close to the edges, but in fact edge effects can have a profound influence on the patterns 
generated by convection. This makes life all the harder for theorists trying to predict how a convecting 
fluid will behave, but it has the attraction of adding a whole palette of new patterns.

     



Fig. 7.7 
Convection rolls in a rectangular vessel. Ideal, 

parallel rolls are frequently distorted by the 
effect of the vessel's edges. Here the rolls 

acquire a wavy undulation, and at the ends of 
the vessel the pattern breaks up into square 

cells. (From: Cross and Hohenberg 
1993, after LeGal 1986.)

     



Fig. 7.8  
In a circular dish, roll cells take a 

variety of shapes. They may 
remain parallel (a), or become curved 

into a pattern resembling the 
Pan-Am logo (b) to lessen the angle at 
which peripheral rolls meet the vessel 
walls. There are no intersections with 
the walls at all if the cells take on the 
from of concentric circles (c). In (a) 
the fluid is carbon dioxide gas, in (b) 

it is argon gas, and in (c) water. (images: (a) 
and (c), David Cannell, University of 
California at Santa Barbara; (b) from 

Cross and Hohenberg 1993, after 
Croquette 1989.)

     



Rayleigh-Bénard convection is commonly studied in a circular cell containing a shallow layer of fluid 
confined between plates. Parallel roll patterns can occasionally be seen in this geometry (Fig. 7.4a), but 
often these become distorted into a pattern that resembles the
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old Pan-Am logo (Fig. 7.8b). This is because rolls are generally more stable when they meet a boundary 
at right angles; so the rolls bend at their ends to try to satisfy this condition. Another option is for the 
rolls to adapt themselves to the shape of their environment: by curling up into concentric circles, they 
can avoid having to meet any boundaries at all (Fig. 7.8c).

Near the onset of convection, rolls can sometimes break up into polygonal cells, which can be regarded 
as a combination of two or more roll arrays crossing one another at an angle. Square, triangular and 
hexagonal patterns (Fig. 7.9) have all been observed, the latter being particularly common. These 
patterns are all predicted by Busse's complicated calculations.

Because of this rich diversity of patterns that are accessible to the convecting fluid, it is not easy to 
predict which will be observed in any given experiment. When several alternative patterns are possible 
in principle for a particular geometry of Rayleigh number, which is selected may depend on the way in 
which the system is preparedthat is, one the initial conditions and the way in which these are changed to 
reach a specific set of experimental parameters. Pattern formation is then dependent on the past history 
of the system.

Fig. 7.9 
Roll cells can break up into hexagonal or square 

patterns. A highly ordered hexagonal pattern 
is seen here in carbon dioxide gas (But notice 
that the fluid keeps a couple of circular rolls 

right at the edge.) (Image:David Cannel, 
University of California at Santa Barbara.)

     



Moreover, not all convection patterns are unchanging over time. In cylindrical dishes, the regular 
patterns described above are unusual; more often the convection cells form an irregular network of 
worm-like stripes which constantly shift position (Fig. 7.10). Although these patterns are disordered, 
and might even be considered turbulent after a fashion, nonetheless they clearly retain some vestiges of 
a pattern with identifiable features. For one thing, all of the wavy rolls tend to intersect the boundaries 
more of less at right angles. The pattern is reminiscent of the stripe phase of surfactant films (Fig. 
2.21c ) and of Turing structures (Fig.4.3). It is in fact simply a roll pattern containing a high density of 
'defects' characteristic misalignments of the linear cells. These defects can be classified into several 
types (Fig. 7.11 a; you should be able to spot most of these in Fig. 7.10), all of which have direct 
analogies in crystal physics. That is to say, similar misalignments can be seen between rows of atoms in 
crystalline materials. Defects such as dislocations (Fig. 7.11b) in metals are responsible for their 
ductilitywithout these defects, metals would be harder but also more brittle. Analogous defects can can 
also be found in the peculiar materials called liquid crystals, where they arise from misalignments 
between layers of oriented, rod-like molecule (Fig. 7.12).

Fig. 7.10 
Convection rolls can become twisted and fragmented 

into disordered patterns that are constantly 
changing in time. (Image: David Cannell.)

While investigating the transitions between concentric roll and hexagonal patterns in 1991, Eberhard 
Bodenschatz and co-workers at the University of
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Fig. 7.11 
(a) Several types of defect can be identified 

in the disordered patterns 
like those in Fig. 7.10 (b) Dislocations 

between rollswhere two run into one, for 
exampleare analogous to those that 

appear in the atomic lattices of crystalline 
materials such as   metals, where 

the regular rows of atoms are disrupted.

     



California is Santa Barbara saw a new pattern emerge:a spiral, in which one or more roll-like arms twist 
their way to the circular edge of the cell (Fig. 7.13). The researchers saw spirals with up to 13 arms;that 
shown here has only two (you can see this by looking at its centre). Israeli physicists Michel 
Assenheimer and Victor Steinberg showed in 1994 that both concentric (target like) and spiral 
convection patterns could exist at the same time in a fluid undergoing Rayleigh-Benard convection (Fig. 
7.14). They were able to induce switches from one pattern to another by changing the balance between 
the viscous and heat diffusion effects that oppose fluid flow. This balance is characterized by another 
dimensionless number, called the Prandtl number,  which is simply the ratio of the viscosity to the heat 
diffusivity. In Rayleigh's theory this number stays

Fig. 7.12 
Dislocations in the domain structure of liquid crystals 

that form spiral domains. The orientation of the rod-like 
molecules differs in adjacent domains. As the 

orientation changes, so to does the way in which 
the material scatters polarized light. So the pattern 
shows up under illumination with polarized light. 

The domains are a few micrometres in width. 
(Photo:Michel Mitov,CEMES,Toulouse.)

conastant for a given fluid; but Assenheimer and Steinberg were able to vary the Prandtl number of 
their fluid (sulphur hexafluoride) with great sensitivity. This was possible because they conducted the 
experiments at a temperature close to the so-called critical temperature

     



Fig. 7.13 
Spiral convection rolls look a lot like concentric 

rolls (Fig. 7.8c), except for a 'defect' at the 
pattern's centre where the cells meet. Notice that 
the spirals contain other defects one is evident 
towards the bottom left, and another towards 

the bottom right. (Compare these with the 
defects in the spirals of Fig. 7.12.) The spiral 

is not a stationary structure, but rotates 
slowly. (Image:David Cannell, University 

of California at Santa Barbara.)
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Fig. 7.14 
Coexisting spiral and concentric convection patterns 
in sulphur hexafluoride. (Photo:Michel Assenheimer, 

Weizann Institute of Science, Rehovot.)

of the fluid, where the distinction between a liquid and a gas vanishes (see p. 213). Near the critical 
point, properties like the viscosity and heat diffusivity vary sharply with temperature. The researchers 
found that for Prandtl numbers of around 3, spiral patterns were stable, whereas for values close to 6, 
target patterns were preferred. In between these two values, the two could coexist. There is an analogy 
to be drawn here with the spiral and target patterns of the BZ reaction (Chapter3), which can also 
coexist.

Surface matters

In his convection experiments in 1900, Bénard himself saw polygonal patterns (Plate 1 and Fig. 7.2). 
The cells here are roughly hexagonal, with an average of six sides each; they become more uniformly 
hexagonal, resembling those in Fig. 7.9, as the pattern 'matures' after the onset of convection. As we 
have seen, Rayleigh developed his theory to try to account for Bénard's observations, and on the whole 
it was very successful: in particular, hexagonal patterns in Rayleigh-Bénard convection can be regarded 
as superpositions of roll-like patterns. But we now know that Bénard's hexagonal cells did not have the 
same origin as those seen in Rayleigh-Bénard convection, because Bénard's experiments did not 
correspond to the situation considered by Rayleigh. The crucial difference is that, while Rayleigh dealt 
with a fluid filling the space between two plates (Fig. 7.3), Bénard's fluid was a shallow layer with a 
free surface exposed to air. This free surface has a surface tension (Chapter 2), and this can come to 
exert a dominant influence on the pattern-forming convection process. Yet Rayleigh's theory takes no 
account of surface tension.

     



The surface tension of a liquid changes with temperature, generally becoming larger as the liquid gets 
cooler. This means that if the temperature of a liquid surface varies from place to place, a surface flow 
may be set up because the higher surface tension in the cooler regions pulls warmer liquid towards 
itremember that surface tension can be considered to be a force acting on the surface. Now, up welling 
of hot fluid due to buoyancy-driven convection can set up precisely such a non-uniform temperature 
distribution at the free surface of a fluid: the temperature is higher over the centre of a rising plume of 
warm fluid than to all sides. If the imbalance in surface tension is the same in all directions around the 
plume, no surface-tension-driven flow is created because the forces pull equally in all directions. But 
just as a tiny non-uniformity can give rise to the symmetry-breaking transition of buoyancy-driven 
convection, so can a tiny heterogeneity in the horizontal balance of surface tensions trigger a symmetry-
breaking transition to a pattern of surface flow. When such a flow is established, fluid is pulled up from 
below to replace that which is pulled laterally across the surface to regions of higher surface tensionand 
an overturing circulation is induced, just like that of buoyancy-driven convection.

Fluid flows induced by surface-tension gradients were studied in the nineteenth century by the Italian C.
G.M. Marangoni, and bear the name of Marangoni effects. Whether or not a flow will be set up by such 
a gradient depends on the balance between the pull of the surface-tension gradient and the resisting 
influences of viscous drag and of heat diffusion, which serve to even out the imbalance in temperature 
that gives rise to the gradient. So just as a similar balance of forces determines when Rayleigh-Bénard 
convection will begin, so too does a Marangoni flow commence only when a critical threshold of 
surface-tension difference is exceeded. This threshold is defined by another dimensionless number 
called the Marangoni number: the ratio of the transverse surface-tension gradient (owing to its 
temperature dependence) to viscous drag and heat diffusion.

So convection in a Bénard-type experiment is dominated by the Marangoni effect, which sustains the 
flow and determines the pattern of the convective cells. This means that the onset of convection cannot 
be predicted in this case by Rayleigh's theory; an alternative theory that takes into account surface-
tension effects is required. In addition, the stable pattern is not that of convective rolls but of hexagons 
in which warm fluid
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Fig. 7.15 
Marangoni convection takes place in liquids that 
have a free top surface. Although it gives rise to 

hexagonal cells like those that can be seen in Rayleigh 
-Bénard convection (where the fluid is confined 
between two plates), the origin of the pattern is 
different. It results from imbalances in surface 

tension, owing to variations in temperature at the 
liquid surface. This causes the surface to pucker 

up into hexagonal cells, in which the liquid is pulled 
from the centre to the edges at the surface.

rises in the centre, is pulled outwards over the surface by the Marangoni effect, and sinks again at the 
hexagon's edges (Fig. 7.15). What is more, the surface of the fluid becomes deformed and puckered by 
the imbalance of surface tension, being pulled upwards where this is greatest (at the edges of the cells). 
This has the counter-intuitive consequence that the hexagonal cells are depressed in the middle (where 
the fluid is rising) and raised at their edges (where the fluid sinks).

In the depths, something stirs . . .

     



The Earth is one vast convecting vessel, because it is filled with a fluid that is hotter at the bottom than 
at the top. The planet's core of mostly molten iron creates temperature of something like 4000°C at the 
base of the Earth's mantle, nearly 3000 km beneath our feet. The top of the mantle varies in depth from 
100 to just over 10 km, and the temperatures there are just several hundred degrees. In addition, the 
mantle contains many radioactive substances that are gradually decaying and releasing their nuclear 
energy, thereby heating the fluid mantle from within. As the mantle cools only from the top, this 
internal heating also contrtibutes appreciably to a bottom-to-top temperature gradient. Even though the 
mantle is extremely sluggish and viscous, it has a Rayleigh number of several tens of millions, and so is 
well into the region of turbulent convection. We can expect no well-ordered roll-like convection cells 
here.

There are surely convection cells in the mantle, but they have no regular pattern to themthey most 
probably shift around over geological time. This is what makes geophysics so interesting, and so hard to 
unravelthe patterns of mantle circulation are hard to predict. And there are other factors that complicate 
the matter. First of all, the Earth's continental platespartly the Earth's crust, partly a cooler, rigid section 
of the mantle called the lithosphereride like a cracked and stony scum on the top of the fluid mantle. It 
is the slowly overturing convection in the mantle that pulls

Fig. 7.16 
Convection in the Earth's mantle may occur either in one layer or in two. In the former case, 

convection cells rotate throughout the whole mantle (a); in the latter, there are two layers 
of independent cells separated at a depth of about 660 km (b).
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these plates around, causing continental drift and plate tectonics. When upwelling convection starts up 
in the middle of a plate (as it is doing in modern East Africa), the plate is pulled apart and great rift 
valleys form in the divide. Elsewhere plates collide and mountain ranges like the Himalayas are pushed 
up; and in other places (such as North America's western seaboard) one plate plunges down beneath 
another at so-called subduction zones, and the groans of the sinking plate are felt at the surface as 
earthquakes. All of this movement on top of the convection cells is likely to influence their shape and 
disposition.

Second, the Earth is not a set of parallel plates or a cylindrical dish, but a sphere. The patterns of 
convecting fluids on the surface of a sphere are not well studied for low Rayleigh numbers, let alone in 
turbulent regime. Finally, and most compromising of all, the structure of the mantle is itself the subject 
of hot debate amongst geologists. Some seismic waves from earthquakes come bouncing right back 
towards the surface from a boundary at a depth of 660–671 km, which appears to split the mantle into 
two layers, like an onion. Most geologists believe that this boundary defines a change in the crystal 
structure of the mantle material, brought about by the intense pressures and temperatures at these 
depths. The question is then: does mantle convection punch its way straight through this boundary? Or 
does it occur in both layers simultaneously but indpendently? Does the mantle convect as a whole or in 
layers (Fig.7.16)?

You might imagine that all of this would leave geophysicists throwing up their hands in despair. But 
they now have a new experimental tool to enable them to tackle these difficult questions: the computer. 
Over the past few decades, the computer has advanced to a stage where one can perform billions of 
calculations per second, and simulate complex phenomena like fluid flow, which could never be solved 
mathematically by hand. These complex flows are modelled on a computer by dividing up the system 
into a grid of lots of tiny compartments and then getting the computer to calculate numerically the way 
in which the fluid in each of the compartments evolves in time. Generally what this means is that the 
computer deduces how the system will evolve in distinct time steps. For each step it sweeps through the 
grid, calculating (using the known equations of fluid mechanics) how the fluid within each 
compartment will move instantaneously in response to the forces acting from all sides. Then it advances 
one time step so that the initial conditions for the next calculation are the results of the last 
calculationand does the whole thing again.

In this way, researchers can investigate what mantle convection would look like under a variety of 
assumptionswhole-mantle convection, layered convection, convection in which the layers can exchange 
material weakly, convection with rigid tectonic plates on top, and so on. The calculations are hugely 
expensive in computer time, and still require that we make some simplifications. But they are now 
starting to help us make sense of the planet's turbulent insides.

     



One thing that has become more and more clear to geologists is that the rising and sinking components 
of mantel convection cells are not equivalent. The latter are sheet-like structures called mantle slabs, 
which plunge back into the Earth's depths at subduction zones. But the oceanic fissures where hot 
magma wells up to form new ocean crustlike the Mid-Atlantic Ridge that cleaves the Atlantic almost 
from pole to pole, or the East Pacific Rise off the west coast of South Americaare not the corresponding 
parts of convection cells in which the mantel fluid is driven up by buoyancy. Rather, these linear flaws 
in the Earth's surface are merely regions of passive upwelling, where hot rock is drawn up from rather 
shallow depths to sustain the vast tectonic conveyor belts as they head towards subduction zones. The 
fundamental upwelling structures of mantle convection are instead plumes, cylindrical columns of 
rising magma. (Iceland has the curious distinction of sitting over a mantle plume as well as over a 
passive mid-ocean ridge.)

The nature of mantle plumes has been investigated experimentally by simulating mantle convection in 
tanks of shallow viscous fluids such as silicone oil and glycerine. These experiments show that 
convection plumes have a mushroom shape (Fig. 7.17), with a broad head whose edges twists into a 
scroll-like spiral that captures ('entrains') fluid within it. This shape was known to D'Arcy Thompson, 
who saw reflected in it the form of jellyfish and other soft marine invertebrates (Fig. 7.18). Thompson 
wondered whether the forms of these creatures might be dictated by some process akin to the rising of a 
buoyant fluid from the depths.

The diameter of a mantle plume's mushroom head should depend on how far it has travelled from the 
depths: if the plumes begin close to the base of the lower mantle, as proponents of whole-mantle 
convection believe, the head can be around 2000 km across by the time it reaches the top of the mantel. 
There it might then burst forth in a huge outpouring of molten rock,
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Fig. 7.17 
Convection in viscous 
fluids at high Rayleigh 

number creates mushroom- 
shaped rising plumes. Such features are  

thought to exist in the Earth's mantle 
Where a plume breaks 

the crust, there is 
volcanism and an 
outflow of molten 
rock. (Photo: Ross 

Griffiths, Australian 
National University, 

Canberra.)

     



Fig. 7.18 
The jellyfish 

Syncoryme has 
a shape much like 

a convection 
plume head. (After: 
Thompson 1961.)

laying down vast 'flood plains' of basaltic rock. The 'flood basalt' provinces found in some parts of the 
world, such as the Deccan Traps in western India, have a comparable width, and might bear testament 
to the surfacing of a deep mantle plume. Plumes that rise from shallower depths have much smaller 
heads. Where they break the surface, mantle plumes give rise to so-called hot spots, localized regions of 
intense volcanic activity. As the tectonic plates are dragged across oceanic hot spots by the pull of 
subduction, episodic outbursts of magma through the ocean crust create liner chains of islands like 
those of the Hawaiian chain (Fig. 7.19).

Why are the rising and sinking features of mantle convection so different? Australian geophysicist Greg 
Houseman provided a clue when in 1988 he conducted computer simulations of convection in a flat 
layer of fluid for a Rayleigh number of about 590 000less than that of the mantle, but well into the 
regime of turbulent convection. He showed that when the fluid was heated half by internal generation 
throughout the fluid (like the radioactive heating of the mantle) and half from the base (like the heating 
from the Earth's core), hot rising plumes and cold sinking sheets appearedthis seems to be the natural 
structure of convective circulation under such conditions.

Fig. 7.19 
As the Earth's tectonic plates pass over the 
top of the mantle plume (hot spot), episodic 
releases of magma from the plume create a 

chain of volcanic islands. The Hawaiian chain is 
one such.

     



The question of whether the mantle convects in one layer or two is still unresolved, but most 
geophysicists now think that the answer is probably: both. French geophysicists Philip Machetel and 
Patrice Weber have carried out simulations of mantle convection in a spherical shell with the 
proportions of the mantle, in which they allowed for the effects of the change in crystal structure of the 
mantle rock thought to occur at 660 km depth. (If you are worried about the idea of a convecting fluid 
with a crystalline structure, remember that the rock is very sluggish, moving over geological time 
scales, and is to all intents and purposes a crystalline material at any instant). The French researchers 
found that they could obtain both layered and whole-mantle convection in their model, depending on 
the character of the structural transition (specifically, on how steeply the transition pressure changed 
with
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temperature). Assuming parameters close to those found experimentally for this transition, they found 
that convection was a mixture of these two processes. Sinking currents in the upper mantle generally 
did not penetrate the boundary at 660 km, but if two such currents were pushed together by one of the 
broad upwelling flows, together they might achieve a threshold size that would enable them to punch 
through the boundary and flush into the lower mantle. A similar picture of both layered and whole-
mantle convection was painted by Paul Tackley of the California Institute of Technology and 
colleagues when they conducted the same kind of computer simulation, but with a somewhat more 
realistic model, in 1993. They found that again the flow pattern organized itself into hot rising plumes 
and cold sinking sheets. The plumes were able to punch their way from the base of the mantle straight 
through the 660-km boundary to the top; but the cold sinking sheets, the analogue of mantle slabs, 
generally stopped at this boundary, where the cold, dense fluid accumulated in spreading puddles. 
When these cold pools became large enough, they would suddenly flush through to the lower mantle in 
an avalanche, creating a broad sinking column that than spread in a vast pool at the core-mantle 
boundary (Plate 15).

What limited direct evidence we have of the nature of mantle convection seems to support this picture: 
sometimes slabs of cool material borne downwards at subduction zones seem to be stopped or deflected 
at the 660-km boundary, but others appear to pass right through. Little by little, we are starting to piece 
together the mysteries of the Earth's bowels.

Air, water, earth and fire

There are ample examples of natural convection patterns to keep us diverted at the Earth's surface too. 
The canvas of the sky is streaked with their imprint. The towering piles of cumulus clouds are erected 
by convective updrafts as warm air, locally heated by the Sun, rises and bears water vapour with it (Fig. 
7.20). As the air cools, the water vapour condenses out into tiny droplets that, by reflecting light, 
provide the cloud's white billows.

     



Fig. 7.20 
Clouds trace out the convection patterns of the 

atmosphere. towering cumulus stacks form around 
updrafts, where warm air rises. (Photo: Jackie Cohen.)

The atmosphere loses its heat primarily by radiation from the uppermost layers, while it it warmed not 
only by direct sunlight but by heat radiated from the ground. So there is a perpetual imbalance set up 
between warmer, lower air masses and cooler air higher upwith the consequence that air is always on 
the move somewhere, bringing winds, storms and sometimes the violence of hurricanes. When this 
imbalance is suppressedwhen, for example, cold dense air gets trapped in a valleythe result is a 
temperature inversion, a stagnation of the atmosphere that can allow smog to accumulate.

Convection in the atmosphere cannot be accurately described by Rayleigh's model, because many of the 
assumptions he madethat the fluid is incompressible, that the viscosity does not very significantly with 
temperaturejust aren't good ones for air. All the same, many of the general features of convection 
patterns still apply, and in particular convective motion can become organized into roll-like cells of 
more or less equal width. These can give rise to banded cloud formations called cloud streets or mare's 
tails (Fig. 7.21), which mark out the boundaries of the roll cells. These rolls are typically wider than 
they are deep, unlike the roughly square profile of Rayleigh-Bénard rolls. Approximately hexagonal 
cells can also be seen in satellite images of cloud convective patterns.

On much larger scales, vast atmospheric convection cells are set up by the differences in temperature 
between the tropics and the polar regions. These cells don't have a simple, constant structure, and 
moreover they are distorted by the Earth's rotation; but nevertheless they do create characteristic 
circulation features, such as the tropical trade winds and the prevailing westerly winds of temperature 
latitudes. Edmund Halley first proposed in the seventeenth century that convection owing to tropical 
heating drives atmospheric circulation, and for some time after it was believed that a single convection 
cell in each hemisphere

  

     



Page 179

Fig. 7.21 
Convective roll cells in the atmosphere can create 
regular cloud streets, as water vapour condenses 

at the tops of the cells. (Photo: Wen-Chau Lee, NCAR, 
Boulder, Colorado.)

carried warm air aloft in the tropics and bore it to the poles where it cooled and sank. We now know 
that this picture is too simplified, and that there are in fact three identifiable cells in the mean 
hemispheric circulation of the lower atmosphere: one (called the Hadley cell) that circulates between 
the equator and a latitude of about 30°, one (called the Ferrel cell) that rotates in the opposite direction 
at mid-latitudes, and one (called the polar cell) that rotates in the same sense at the pole (Fig. 7.22). The 
polar and Ferrel cells are both weaker than the Hadley cell and are not clearly defined throughout all the 
seasons. Where the northern Hadley and Ferrel cells meet, the effect of the Earth's rotation drives the 
strong westerly jet stream.

     



Fig. 7.22 
Large-scale convection in the Earth's atmosphere 
traces out three hemispheric convection cells: the 

Hadley cell between the equator and about 30° 
latitude, the Ferrel cell at mid-latitudes and the polar 

cell over the pole.

The oceans too exhibit convection patterns over several size scales. Like the atmosphere, the oceans are 
warmed in the tropics and cooled in the polar regions, and so cool, dense water sinks around the poles. 
This helps to establish a vast conveyor-belt circulation from the tropics to high latitudes, and the warm 
water carried polewards at the top of the North Atlantic convection cell brings with it heat that keeps 
Northern Europe and the eastern North American seaboard temperate. This circulation pattern is 
modulated, however, by the fact that the density of sea water is also determined by the amount of 
dissolved salt it containsthe more saline the water, the denser it is. The salinity can be altered by 
evaporation, which removes water vapour and leaves behind saltier water. Freezing also affects salinity, 
since ice tends to leave salt behind and so the unfrozen water gets increasingly saline as ice develops. 
Thus the large scale pattern of ocean convection is influenced by evaporation in the tropics and freezing 
at the poles: together, these processes give rise to the so-called ocean thermo haline ('heat-salt') 
circulation. On smaller spatial scales, the interplay between salinity and thermal convection can create 
diverse circulation effects in the upper few metres of the oceans, such as oscillatory rising and falling of 
water parcels or finger-like protrusions of salty water into fresher water below, called salt fingers (Fig. 
7.23).

Fig. 7.23 
Convection in the surface layer of the oceans due 
to differences in salinity (and therefore in density) 

produces forests of sinking 'salt fingers'. Here 
a laboratory model makes them visible. 

(From: Tritton 1988.)

Once you start to spot convection patterns in the world around you, they crop up in the most unlikely 
places. You can find their polygonal imprint petrified
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Fig. 7.24 
The freezing and thawing of 
water in the solis of northern 

tundra sets up convective circulation 
owing to the unique density changes 

that water undergoes close to its 
freezing point. The imprint of this 

circulation can be seen as polygonal 
cells of stones at the ground surface. 

Shown here are stone polygons on the 
Broggerhalvoya peninsula in western 

Spitsbergen, Norway. (Photo: Bill 
Krantz, University of Colorado.)

into stone and rock in some of the frozen wates of the world in Alaska and Norway (Fig. 7.24). Now 
here's a real puzzleit's natural enough to find these patterns in the fluid media of air and sea, and even in 
hot, sluggishly molten rock, but how do they find their way into frozen stony ground?

     



Fig. 7.25 
As water circulates in convection cells through the soil, the pattern is 

transferred to the 'thaw front', below which the ground remains frozen. 
Stones gather in the troughs of the thaw front, and are brought to the surface 

by frost heaving in the soil.

The answer, according to William Krantz and colleagues at the University of Colorado at Boulder, is 
that convection takes place in the water-laden soild beneath these formations as the water undergoes 
seasonal cycle of freezing and thawing. The idea that these cases of 'patterned ground' are caused by 
convection in fact dates back to the Swedish geologist Otto Nordenskjold in 1907, but Krantz and his 
co-workers were the first to place this idea on a firm theoretical basis. In these cold northern regions, 
water in the soil spends much of its time frozen. But when the ground warms and the ice thaws, it does 
so from the surface downwards, so the liquid water gets cooler the deeper it is.

For most liquids this would correspond to a situation in which the density increases with depth in 
similar fashion. This is a stable arrangement, for which no convection would take place. But water is 
not like other liquids; perversely, it is densest at 4°C above freezing. So when it is warmed by about this 
amount at the surface, the water closest to the surface is denser than the colder water below it, and 
convection will begin through the porous soil (Fig. 7.25). Where warmer water sinks, the ice at the top 
of the frozen zone (the so-called thaw front) will melt, while the rising of cold water in the ascending 
part of the convection cells will raise the thaw front. In this way, the pattern of convection becomes 
imprinted into the underground thaw front.

But how does this find its surface expression in mounds of stones?? Krantz and colleagues proposed 
that sub-surface stones are concentrated in the troughs of the corrugated thaw front and then brought to 
the surface by subsoil processes that are known to shift stones around when soil freezes. This raising up 
of stones to the surface is known to farmers as 'frost heaving', and results in the littering of a field with 
stones when it freezes during a frost and then thaws. Polygonal patterns formed in this way can also be 
found on the beds of northern lakes when the water is shallow enough to freeze down into the lake bed 
(Plate 16). Krantz and
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colleagues have developed a theoretical model of the convection patterns that can arise as water 
circulates through porous soils. They found that polygonal (particularly hexagonal) patterns are 
favoured on flat ground, but that the convection cells are roll-like on sloping ground, giving rise to 
striped formations at the surface (Fig. 7.26).

Fig. 7.26 
On sloping ground, the convection cells 

in freezing porous soils can become roll-like. 
The pattern traced out by stones at the 

surface is then a series of parallel stripes, 
seen here in the Rocky Mountains in 

Colorado. (Photo: Bill Krantz, University 
of Colorado.)

     



Fig. 7.27 
Solar granules are highly turbulent convection cells 

in the Sun's photosphere. (Photo: The Swedish 
Vacuum Telescope, La Palma Observatory, Canary Islands.)

If you want to see convection on a grand scale, look to the Sun (though not literally, I hasten to add). 
The Sun's visible brightness comes from a 500-km thick layer of hydrogen gas close to its surface, 
called the photosphere, which is heated to a temperature of about 5500°C. This gas is heated from 
below and within, and radiates its heat outwards from the surface into spaceso that, although it is about 
a thousand times less dense than the air around us, it is a convecting fluid. The Rayleigh number of this 
fluid is so high that is should be utterly chaotic and unstructured. But photographs of the Sun's surface 
show that, on the contrary, the photosphere is pock-marked with bright regions called solar granules, 
surrounded by darker regions (Fig. 7.27). These granules are convection cells, whose bright centres are 
regions of upwelling and whose dark edges are regions of cooler, sinking fluid. Each granule is between 
500 and 5000 km across, making the largest about half the diameter of the Earth. The pattern is 
constantly changing, each cell lasting only a few minutes. The very existence of these cells in such a 
turbulent fluid shows that we still have a lot to learn about convecting fluids and their patterns.

Riverrun

Let's now return to Jean Leray gazing into the Seine at the Pont Neuf. As the water flows around the 
columns of the bridge, swirling eddies disturb the surface in the wake downstream. Can we make sense 
of this flow pattern?

     



My description of studies of convection will, I hope, have provided an indication of how a scientist 
might approach this question. First, make an idealized experimental model that captures the essential 
features of the problem in their simplest form. Then, look at what happens as a single parameter of the 
experiment is gradually altered while all others are kept constant. The Seine can be a body of water 
flowing smoothly through a channel. Let's forget about the air/water or water/wall interfacesas we saw 
above, they can just complicate thingsand just focus on what happens within the body of the water away 
from any boundary surfaces or edges. We can model a column of the Pont Neuf by a cylinder placed 
with its axis perpendicular to the direction of flow (Fig. 7.28a). Of course, the column in not really a 
cylinder, but that seems like a nice simple shape to begin with. If we ignore what happens at the ends of 
the cylinder, this experiment has translational symmetry along the cylinder's axisthat is to say, the initial 
flow and the obstacle it encounters are identical for all two-dimensional slices parallel to the flow. This 
means that we can consider the problem to be a two-dimensional one: we need consider only what 
happens in a single layer of fluid, and assume that the same thing
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Fig. 7.28 
Fluid flow around an obstacle, here a cylinder placed perpendicular to the direction of flow. 

At low flow speeds, the flow can be regarded as two-dimensional, with the flow pattern being 
identical in all layers perpendicular to the cylinder (a). The flow can be represented by streamlines, 

which are essentially the paths taken by tracer particles borne along by the fluid. Far upstream of the 
obstacle, the streamlines are parallel lines (a and its plan view in b). The flow pattern depends on 

the Reynolds number (Re), which is a measure of the speed of the flow and the width of the cylinder. 
At low Reynolds number, the streamlines simply bend around the obstacle (b). At higher Re, circulating 

vortices appear behind the cylinder (c). These grow with increasing Re, until they become highly elongated (d).

happens to all the other parallel layers too. This assumption is not perfect, and indeed we will find that 
the flow of the fluid quite readily ceases to be invariant along the entire vertical direction (parallel to the 
cylinder)but it will serve adequately for much of what I shall say.

     



So long as the edges of the channel remain sufficiently distant, the fluid flow towards the cylinder is 
said to be laminar. This means that if we divide the fluid up into many tiny parcels (which are 
nonetheless sufficiently large relative to the fluid's constituent molecules that we can regard it as a 
continuous medium), each parcel travels smoothly on a well-defined path which remains more or less 
parallel to the direction of overall flow. In the flow upstream of the cylinder, all of these paths are 
steady, smooth lines. We can depict the flow pattern using the concept of streamlines. Roughly 
speaking, a streamline shows the path that a given fluid parcel takes in the flow. The streamlines can 
effectively be made visible by adding tiny solid particles (commonly aluminium flakes, which reflect 
light) to the fluid, which are suspended and carried along by the flow. (More properly, a streamline is 
defined by the condition that a tangent to it at any point shows the direction of velocity of the fluid at 
that point.)

The cylinder will deflect the flow, which must pass to either side around it. Intuitively, we would expect 
the disturbance of the flow to be increasingly pronounced as the flow gets faster, or as the cylinder gets 
bigger. As with convection, it would be useful to have some way of characterizing this effect in a way 
that does not require us to specify the size of the cylinder, the velocity and viscosity of the fluid and so 
forth. We would like to identify a dimensionless number, like the Rayleigh number, that allows us to 
say simply 'For a flow with dimensionless number x , the flow around the cylinder has such and such a 
form.'

Needless to say, there exists such a parameter, and it is called the Reynolds number after the nineteenth-
century British scientist Osborne Reynolds, who made an extensive study of fluid flows. The Reynolds 
number
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(Re) is essentially the ratio of the forces driving the flow to the forces retarding it (the viscous drag). In 
its most general form it is given by the product of the velocity of the flow and the characteristic size of 
the system confining or deflecting the flow, divided by the viscosity. For flow down a narrow channel, 
the 'size' is the width of the channel; for the experiment described above, where we ignore edge effects 
by assuming that the channel is indefinitely wide, it is the size (width) of the cylinder that features in 
the Reynolds number. In a given experiment this stays constant, and so the Reynolds number increases 
in direct proportion to the increase in the velocity of the flow.

Fig. 7.29 
At a Reynolds number of about 40, the wake of the flow past a cylinder develops a wavy 

instability, revealed here by the injection of a dye into the flow from the rear of the 
cylinder. This wavy disturbance becomes a train of vortices at higher flow speeds (d), called 

a Kármán vortex street. (From: Tritton 1988.)

     



With these necessary preliminaries, we are now ready to see what happens in our model of the Seine 
passing beneath the Pont Neuf. For Reynolds numbers below four, nothing much happens at all. The 
streamlines simply bend around the cylinder and then become parallel again on the far side (Fig. 7.28a, 
b). As Re is increased above four, however, a new flow pattern appears. Immediately behind the 
cylinder we can now find two little vortices of circulating fluid, called eddies (Fig. 7.28c). The eddies 
circulate in opposite directions, and they represent little pockets of trapped fluid which have become 
detached from the main flow and remain in place behind the cylinder. As the Reynolds number is 
increased, these eddies get bigger; by the time Re is about 40, they are highly elongated (Fig. 7.28d). 
But the wake downstream of the cylinder remains laminar: the deflected streamlines outside the eddies 
converge again until they resume their parallel paths.

Beyond a Reynolds number of about 40, something dramatic starts to happen to the wake. It acquires a 
wavy disturbance, which becomes more and more pronounced as Re increases (Fig. 7.29). This 
patterning of the wake can be made evident either by suspending tracer particles in the flow or by 
injecting a coloured dye into the flow from the rear of the cylinder, as shown here; the dye is carried 
along in a narrow jet, since the rate at which it diffuses and disperses is slow compared with the speed 
of the flow. Around Re = 50, the waves break, their pinnacles curling over into little vortices that leave 
the wake looking like a swirling art nouveau design (Fig. 7.29d). This pattern is called a Kármán vortex 
street, after the Hungarian physicist Theodore von Kármán. The vortices are carried along with the
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flow, but more slowly than the average speed of the flow. They slowly dissipate their energy through 
viscous drag and vanish further downstream.

Like the onset of convection or the appearance of Turing structures in chemical reaction-diffusion 
systems (Chapter 4), the development of a wavy structure in the wake of the cylinder is an example of 
pattern formation triggered by a spontaneous instability of a non-equilibrium system (remember that the 
system has to be out of equilibrium for flow to occur at all). Where does the instability come from in 
this case?

If we measure the velocity of the fluid through a cross-section of the wake for Re bellow 40, it has a 
profile like that in Fig. 7.30a. There is a dip in velocity along the path through the cylinder, so that more 
or less parallel layers of fluid move past each other at different velocities. Flows with this character are 
called shear flows, and they are susceptible to pattern-forming processes called shear instabilities.

To be sustained indefinitely, any sort of flow structure has to be mechanically stable in the face of small 
perturbations. That is to say, if we imagine applying a small disturbance to the flow pattern, it is stable 
if there are restoring forces that return the flow to its initial state. An instability sets in, on the other 
hand, when a perturbation creates forces that serve to enhance the perturbation still further. This is the 
case at the threshold of convection, where an infinitesimal upwards displacement of a warm parcel of 
fluid brings it amongst cooler, denser fluid and so enhances its buoyancy. Shear instabilities involve a 
similar kind of self-amplification of a perturbation.

One of the best studied is the Kelvin-Helmholtz instability, after the two great nineteenth-century 
physicists who identified it. It arises in shear flows in which there is an abrupt change in the velocity 
between adjacent layers of fluid (Fig. 7.30b). An extreme case of such a flow is one in which the two 
layers of fluid flow in opposite directions (Fig. 7.30c). Imagine imposing a wavy disturbance on this 
flow (Fig. 7.30d). This pushes together streamlines on the convex side of the disturbanceover the 
'peaks' and pulls them apart on the concave side, in the dips. What this means is that the fluid flows 
slightly faster (in opposite directions on each side) over the peaks and slower in the dips. (Think of a 
similar squeezing-together of streamlines when a river flows through a narrow gorgethe flow gets 
faster.)

Now, the key to the instability is this: along any particular streamline in a flow, the pressure of the fluid 
decreases as its velocity increases. This fact was demonstrated in 1738 by the Swiss mathematician 
Daniel Bernoulli, and it is known as Bernoulli's law. It means that the pressure of the fluid against the 
dips of the wavy interface increases (because the velocity decreases there), and vice versa for the peaks. 
In other words, the undulations of the wave are pushed outwardsthe wave becomes more pronounced 
(Fig. 7.30e). The same principle provides the lift under the wings of an aircraft, since the aerofoils are 
curved in the same mannerconvex on the upper side, concave below.

The undulations are eventually deformed into a train of vortices (Fig. 7.31), whose graceful regularity is 
fleeting: they subsequently collide and degenerate into

     



Fig. 7.30 
In the wake of the flow around an obstacle, the velocity profile 
has a dip in the middle (a). This is an example of a shear flow, 

in which layers of fluid move past one another at different 
speeds. A more extreme shear flow is one in which there is 

an abrupt discontinuity in the velocity profile (b), which corresponds 
in the extreme case to two layers of fluid moving past one another 

in opposite directions (c). This kind of flow is susceptible to a shear instability 
called the Kelvin-Helmholtz instability. Any deviation from linearity of the boundary in (c) 

such as an undulating displacement (d)gets amplified. 
The sideways pressure on the boundary becomes unequal on either 
side at the peaks and troughs, because the fluid in the troughs slows 

down and that at the peaks spees up (d); because of Bernoulli's principle, 
this sets up a pressure imbalance (e, grey arrows) at these points, 

which pushes the peaks outwards. These peaks develop into vortices.
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Fig. 7.31 
The Kelvin-Helmholtz instability in a shear 

flow between two streams moving in opposite directions. 
The sheared region is made visible by entraining 
a fluorescent dye. The images show the flow at 

regular time intervals, beginning with the top left. The wavy instability  
rolls up  into vortex structures, which then interact and lose their identity  

as the flow becomes turbulent. Structures like those in the 
second and third frames have been seen in 

cloud formations, owing to the Kelvin-Helmholtz 
instability in atmospheric flows. (Photo: Katepalli 

Sreenivasan, Yale University.)

turbulence. You can see that the Kelvin-Helmholtz instability should apply to any flow of the type 
shown in Fig. 7.30c, no matter how slowly it is going. But just like the instability that gives rise to 
Rayleigh-Bénard convection, it is counteracted by the damping effect of viscosity, which resists fluid 
motion; and so it is only at some critical shear (or equivalently, Reynolds number) that the instability 
becomes manifest.

The wavy disturbance in Fig. 7.29b is a shear-flow instability akin to the Kelvin-Helmholtz instability, 
and so it is tempting to identify the vortex street that develops subsequently with the vortices that 
appear as a result of the latter (Fig. 7.31). But this is not so; the Kármán vortices have a different origin. 
They are provided 'ready-made' from the flow field immediately behind the cylinder, where the sheared 
fluid layers acquire 'vorticity'a rotating tendencyas a consequence of the disturbance that the cylinder 
imposes on the flow. The instability in the flow behind the cylinder sets up a process of 'vortex 
shedding', in which vortices break away from the disturbed region on alternating sides of the 'street' and 
are entrained in the wake. So vortex creation takes place immediately behind the cylinder, not all along 
the shear flow as in the Kelvin-Helmholtz instability. The vortex-shedding process is highly organized: 
at the same time as the vortex on one side is being shed, that on the other is in the process of reforming 
(Fig. 7.32). Such periodic vortex shedding occurring from alternate sides of a bubble rising through 
water accounts for why bubbles often dance along a zigzag path as they rise.

     



Fig. 7.32 
The Kármán vortex street arises from eddy shedding, 

wherein the circulating eddies behind the obstacle 
are shed from alternate sides and borne along in the 
wake. Here one eddy is in the process of forming 
just after that on the opposite side has been shed. 

(From: Tritton 1988.)

Above a Reynolds number of 200, vortex streets are still formed in the wake, but instead of remaining 
coherent structures until they slowly dissipate downstream the vortices now break up downstream into a 
turbulent wake with an apparently chaotic structure (Fig. 7.33). This break-up of the regular structure is 
brought about by an instability that breaks the symmetry in the third dimension, parallel to the 
cylinder's axisthe flow then becomes fully three-dimensional. It is a curious kind of instability, 
appearing intermittently downstream as the Reynolds number of 200 is approached. That is to say, an 
observer stationed a certain
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Fig. 7.33 
At a Reynolds number above about 200, the Kármán vortices break up into 

a turbulent, three-dimensional flow in the downstream wake. (From: Tritton 1988.)

distance downstream would see a regular passage of vortices passing by, interrupted now and then by a 
more disorganized flow pattern. The disorganization gets more frequent the farther downstream you go, 
so that an observer farther down the line would see more turbulent bursts and fewer regular vortex 
sequences. Above Re = 200, these regular sequences disappear altogether for an observer far enough 
downstream.

Then at Re greater than 400, a second instability sets in which causes turbulent break-up of the vortex 
street much closer to the cylinder itself, so that no real 'street' remains at alljust a wild, swirling wake. 
Closer inspection reveals that this too is a shear instability, which occurs in the fluid just after it moves 
away from the cylinder's surface to form the eddies that are then shed into the wakewith the 
consequence that the eddies are themselves turbulent instead of coherent circulating cells. This 
turbulent wake remains much the same up to a Re of around 300 000, at which point even the flow right 
next to the cylinder's surface (in the so-called boundary layer) becomes turbulent and the wake narrows 
into something like a turbulent jet.

Somewhere in these high-Reflows we can see the kind of chaotic billows that Leray must have seen in 
the Seine (rivers typically have Reynolds numbers of well over a million). But they seem now perhaps 
less daunting, because we can recognize in them not simply a disorganized mess but a flow pattern that, 
although undoubtedly messy, results from a series of well-defined instabilities occurring under well-
defined conditions in an otherwise regularly structured flow. The precise Reynolds numbers at which 
these instabilities manifest themselves will depend on the exact shape of the bridge's columns, but their 
basic character remains the same.

That the structures created by these instabilities are generic is demonstrated by their appearance in real-
world systems that are far removed from the idealized case of shear flow past a cylinder. Vortex streets, 
for instance, may be seen in satellite images of atmospheric flows, such as that in Fig. 7.34. Here the 
vortex street is superimposed on a cloud street, a series of stripes caused by convection.

     



Fig. 7.34 
A vortex street in clouds, photographed by satellite off 
the edge of Jan Mayen island on the southeastern edge 

of the Arctic ice cap. The regular bands are cloud streets 
caused by convection roll cells. The wind is passing over 
the island from the top left to the bottom right, so that the 
convection rolls are aligned parallel to it. Deflection of air 

around a temperature inversion over the edge of the 
island has established a shear flow which deforms the convenient markers of the 

convection rolls into a 
regular series of vortices. (Photo: Satellite Observing 

Centre, University of Dundee.)

Canned rolls

Flow through a narrow channel is a kind of shear flow: the fluid near the edges is slowed down by 
frictional forces against the sides of the channel, and so, while the flow remains laminar, the velocity 
increases gradually towards the centre of the channelin effect, the fluid can be thought of as a series of 
thin layers parallel to the flow, each sliding past its neighbours. This kind of flow is extremely 
important in nautical and aerodynamic engineering, and can be conveniently studied by confining a 
fluid between two concentric cylinders that are rotating at different rates of revolution (Fig. 7.35a). This 
might seem rather different from the case of a fluid flowing down a channel, but you can soon see that it 
is really a similar kind of shear flow if you imagine looking
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Fig. 7.35 
In the Taylor-Couette apparatus, a fluid is sheared between 

two concentric cylinders rotating at different speeds (a). 
As the velocity of the fluid at the walls is determined by 

the rotation speed of the cylinders, the velocity profile of the 
flow in the radial direction has the character of a shear flow (b).

at the velocity profile of the fluid from a point located on the edge of the outer cylinder (Fig. 7.35b).

Let's first keep the outer cylinder fixed, and just rotate the inner one. This is what the Frenchman 
Maurice Couette did when he pioneered studies of this kind in 1888. At low rotation speeds of the inner 
cylinder, the fluid simply tracks the rotationall the motion is in circles around the axis of rotation. This 
is called Couette flow. But what happens when you turn up the speed? Well, one crucial thing that does 
distinguish this kind of shear flow from that down a straight channel is that a rotating object experiences 
a centrifugal forcethe force that pulls tight the string on which a threaded conker is spun in a circle. Not 
only is the fluid carried around in circles, but it is simultaneously forced outwards. As ever, viscous 
drag resists this outwards force, so that for low rotation speeds the centrifugal force does not appear to 
affect the flow.

But the British mathematician Geoffrey Taylor (one of the central figures in the development of fluid 
mechanics and, incidentally, the Taylor of the SaffmanTaylor instability of Chapter 5) found in 1923 
that once the centrifugal force can no longer be resisted, patterns start to appear. First, the column of 
fluid develops stripes (Fig. 7.36a). These are in fact roll-like vortices in which the fluid circulates in 
alternate directions, as if around the surfaces of a stack of doughnuts. The symmetry of the Couette flow 
is broken, and in a manner that selects a particular pattern of a well-defined size.

     



Fig. 7.36 
As the Reynolds number of the shear flow in the 

Taylor-Couette apparatus increases, the fluid becomes 
structured into increasingly complex patterns. First, 

doughnut-like roll cells appear, partitioning the fluid into a 
stack of bands (a). These then develop wavy undulations 

(b). At higher Reynolds number the roll cells reappear with 
turbulence amidst their folds (c); and ultimately, unstructured 

turbulence fills the cell. Even a well-developed turbulent 
state may preserve some structure, however: in d, 

a region of laminar (smooth) flow spirals through the 
turbulence. (From: Tritton 1988.)

     



It isn't too hard to see that this situation is directly analogous to convection, which is why just the same 
kind of symmetry-breaking structureroll cellsis created. All of the fluid in the inner part of the Couette 
flow wants to move outwards, due to the centrifugal force, at the same time. But it cannot all move 
through the outer layers at once. So at the critical rotation speed at which viscous drag is overcome, the 
system becomes unstable to small perturbations, and roll vortices transport part of the inner fluid to the 
outer edge, while a return flow replenishes the inner layer. Not only is the instability of the same basic 
nature as that in convection,
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but the shape of the rolls is the same: the critical wave vector of the roll pattern is again 3.12, so the 
rolls are again roughly square, as wide as the gap between the inner and outer cylinders.

But what is the equivalent of the critical Rayleigh number for convection? As with all shear flows, the 
important dimensionless parameter is again the Reynolds number, this time defined such that the 
relevant velocity is that at the surface of the inner (rotating) cylinder and the characteristic dimension of 
the system is the width of the gap between the two cylinders. One can again calculate a stability 
boundary on a graph of roll wave vector against Reynolds number (Fig. 7.37), just like that for 
convection (Fig. 7.5). Although other wave vectors (rolls of different widths) can be stable within the 
limits of the boundary for Re greater than the critical value, the 'square' rolls remain if the rotation speed 
is increased only slowly. While it is dimensionless, the critical value of Re for the formation of Taylor 
vortices does in this case depend on the geometric details of the apparatus, specifically on the ratio of 
the radius of the inner cylinder to the width of the gap.

Having observed this much, we can be fairly confident that there are riches to be had by increasing the 
Reynolds number further. And sure enough, this brings about a series of instabilities to the Taylor 
vortices: first they go wavy, undulating up and down around the cylinders (Fig. 7.36b), then the waves 
get more complex

Fig. 7.37 
The onset of roll patterns in the Taylor 

Couette cell occurs at a critical threshold 
of Reynolds number, just as convection roll 

cells appear for a critical Rayleigh number. Above 
this point, an increasing range of wave vectors of 

the rolls can be supported.

     



before becoming more or less turbulent, then the stacked stripes reappear with turbulence inside them 
(Fig. 7.36c) and finally (when Re is about a thousand times the critical value) the whole column of fluid 
goes turbulent (Fig. 7.36d). Here, then, is another well-defined sequence of instabilities leading from 
smooth, featureless flow, through patterns, to turbulence.

But there is more. Taylor realized that the game changes if, instead of keeping the outer cylinder fixed, 
we let that rotate too. Then the fluid can experience significant centrifugal forces even when the relative 
rotation speed of the inner layer with respect to the outer is small, and so a different balance of forces 
can be established. Experiments on a system like this have revealed a menagerie of patterns, too 
numerous to show here but summarized (as far as they are yet known) in Fig. 7.38, which shows the 
stability boundaries as a function of the Reynolds numbers at the surfaces of the inner and outer 
cylinders.

Into the whirlpool

It is evident from these examples that if you drive a fluid flow hard enough, you will always end up 
with turbulencewith chaos. But we can also see that the patterns that appear on the route to turbulence 
get richer the closer we approach it. The Russian mathematical physicist George Zaslavsky and his co-
workers have provided some of the most extreme demonstrations of this. They have found fluid flows 
poised on the brink of turbulence in which chaos is delicately interwoven with symmetrical patterns of 
the most extraordinary complexity.

In the flows that I have considered so far, the driving force of patterning has been constant through 
time. For convection it was the buoyancy force created by a temperature gradient; for shear flows, it 
was a shear created either by the frictional drag experienced by a constant-velocity flow as it passed 
over a solid body or by the movement of one confining surface relative to another. Zaslavsky has 
looked at flows driven by a force that varies periodically in both time and spacethat is to say, at each 
point in the flow field, the inertial force on the fluid includes a component that waxes and wanes 
regularly as time progresses. You might wonder where such strange flows could possibly be found, but 
they are not quite so contrived as they may at first seem: they crop up, for instance, in the behaviour of 
charged fluids called plasmas.

Setting up experiments to study the characteristics of these flows is not easy, but Zaslavsky chose 
instead
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Fig. 7.38 
There is a whole zoo of patterns that the Taylor-Couette cell will support. 

Which pattern is selected depends on the relative rotation speeds of the two 
cylinders. On the left of the vertical zero axis, the cylinders rotate in opposite 
directions. Along this axis, only the inner cylinder rotatesthis corresponds to 

the situation depicted in Fig. 7.36, and you can see that we cross the boundaries 
from steady flow to Taylor vortices (rolls) to wavy vortices to turbulent Taylor 

vortices as we ascend along this axis. (After: Andereck et al. 1986).

to calculate the patterns that the flows adopt. The Navier-Stokes equation for this situation can be 
written down, but to calculate the streamlines of the resulting flow the Russians needed a computer to 
solve the equation numerically, even when the flow takes place just in a two-dimensional flat plane. In 
this case, the flow commonly breaks up into a series of circulating cells arranged in a kaleidoscopic 
pattern (Fig. 7.39 and Plate

     



Fig. 7.39 
A two-dimensional flow driven by a force that has 
eightfold symmetry throughout the plane breaks up 

into a complex pattern of circulating cells with 
eightfold symmetry. (Image: George Zaslavsky, 

New York University.)

17). Notice, however, that a few streamlines sometimes trace a tortuous path throughout the whole of 
the system. The fluid mass does not actually 'get anywhere' like a convecting fluid, it merely simmers 
with its own internal rhythms.

     



Fig. 7.40 
Oppositely directed flows 

(top and bottom) splay 
into two diverging 

streams. The streamlines 
of each flow follow hyperbolic 

trajectories. A unique set 
of converging and diverging 

streamlines defines a 
separatrix (dashed line), meeting 
at a saddle point (dot). Here the 

direction of flow becomes indeterminate.

In many of these flows there exist important types of streamline called separatrices. Think of two 
simple flow streams that are heading straight for one another (Fig. 7.40). Where they meet, something 
clearly has to give. One possibility is that one flow bends to the right and one to the left; then the 
streams slip past one another in a shear flow. But it turns out that another option is for both flows to 
splay in two, with the two streams diverging to left and right. The streamlines in
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each flow then follow trajectories in the shape of curves mathematically defined as hyperbolas. You might think that every 
streamline in the original flows has to bend either one way or the other, and this is largely true. But as we look closer and 
closer to the centre of each flow, we find opposed hyperbolic streamlines that approach one another ever more nearly until 
they almost 'kiss' before diverging. And right down the middle, dividing the streamlines that splay one way and the other, 
is a unique pair of streamlines that don't defect in this game of 'chicken': they meet each other head on. These define a 
separatrix (dashed line in Fig. 7.40), along which two streamlines converge at a single point, called a hyperbolic point or 
saddle point, in the centre of the converging and diverging trajectories. You can see in the figure that there is another 
separatrix in this flow along the centrelines of the diverging flows, where oppositely directed streamlines emerge from the 
saddle point. Separatrices typically separate different circulating cells in these complex flows.

The question is: what does a particle of the fluid do when it is carried along a separatrix to the saddle point? The answer is 
that the behaviour at this point is completely undeterminedwe can't tell which way the fluid goes. The Navier-Stokes 
equation blows up at this pointit becomes 'singular', in physicists' language.

Fig. 7.41 
(a) A complex flow forced with fivefold symmetry. Notice how elements with fivefold (pentagonal) symmetry recur throughout the patternbut the overall pattern has  

no translational symmetry, as it cannot be superimposed on itself by simply translating the whole thing through space. (Image: George Zaslavsky.) (b) Fivefold symmetry 
was much used by Islamic decorative artists, as in this pattern found in the Alhambra palace in Granada, Spain. 

(c) Fivefold symmetry (and lack of true translational symmetry) is also evident in the atomic structure of quasicrystals, 
seen here under the electron microscope. (Photo: Kenji Hiraga, Tohoku University.)

The flow in Plate 17 is particularly interesting, because it contains a central motif that has approximate tenfold 
symmetry, meaning that the pattern can be

     



superimposed on itself by rotating it through a tenth of a circle (36°). You can see this simply by counting the number of 
obviously repeating elements (like the yellow triangles) around the circumference. This symmetry arises because the 
oscillating driving force has fivefold symmetry: at any point in the plane, the force drives the flow in five equivalent 
directions in space. (This fivefold symmetry in the force just happens to get doubled into tenfold symmetry in the flow, but 
that needn't necessarily be the case.) Zaslavsky has found flow patterns where this fivefold symmetry repeats again and 
again throughout a plane (Fig. 7.41a). Patterns like this have long fascinated scientists, because they know that a regularly 
repeating ('crystalline') two-dimensional pattern with true fivefold symmetry is impossiblejust as it is impossible to fill a 
plane with a regular packing of pentagons (Fig. 2.2). You might be able to see that you can't simply superimpose the 
pattern in Fig. 7.41a on itself by shifting it in any direction in spacesome points may match up, but not all. The pattern in 
fact has a kind of 'centre' (in the middle of the section shown here), and can't be superimposed by shifting this centre.

All the same, elements with fivefold symmetry repeat again and again in this patternyou should be able to make out 
pentagonal arrangements of the circular features that recur throughout the plane. So although the pattern does not have 
genuine fivefold translational symmetry, it does have clear echoes of this symmetry in the details of the pattern. 
Although scientists have
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become familiar with extended patterns containing fivefold symmetric elements only in the past few 
decades, they have decorated the architecture of the Islamic world for centuries (Fig. 7.41b). The 
geometric inventiveness of these structures became fully appreciated by scientists when in 1984 a new 
class of materials was discovered that also had a kind of fivefold 'quasisymmetry'. These materials, 
called quasicrystals, look like crystals with 'forbidden' fivefold symmetries. (Some have eightfold or 
twelvefold symmetries instead, which are also 'forbidden' in true crystals.) They are in fact not perfect, 
periodic crystals but have complex stacking arrangements of atoms in which structural elements with 
these forbidden symmetries recur without perfect regularity (Fig. 7.41c). Zaslavsky has shown that the 
structures of some quasicrystals can be described by exactly the same mathematics that gives rise to his 
complex, quasisymmetric flow patterns.

Fig. 7.42 
In three dimensions, streamlines 
can cross and become entangled. 

The flows can then become unstable 
and chaotic.

All this complexity applies just to two-dimensional steady-state flows. When Zaslavsky and colleagues 
looked at the same class of problem in three dimensions, they found something else altogether. 
Streamlines in three dimensions turn out to have a particular property that gives the flow pattern the 
potential to be much more complicated: they can intersect and cross (Fig. 7.42). When this happens, the 
streamlines can get very entangled, and the resulting flow becomes chaoticthat is to say, turbulent. But 
what surprised the researchers is that in three dimensions the chaotic parts of the flow may be arranged 
regularly in space. The flows break up into cells in which the streamlines are well behaved, like the 
Bénard cells of convection patterns, arranged in a periodic pattern and separated from one another by a 
web of chaotic streamlines (Fig. 7.43), which Zaslavsky has called a 'stochastic web' (stochastic means 
governed by randomness). The web is bordered by separatrices, and within it particles follow wild 
trajectories that change direction at random. In other words, the flow in the stochastic web is turbulent. 
So these flows consist of

     



Fig. 7.43 
The stochastic web. The flow is partly steady (within 

circulating cells shown as dark, roughly circular features 
here) and partly turbulent (inside the web). Where the flow 
is chaotic, the streamlines break up into an irregular 'dust' 
(dark specks on lighter background). The web is bounded 

by separatrices, and the regular cells are arranged periodically 
in the web. (Image: George Zaslavsky.)

a bizarre mixture of patterned regularitythe cellsthreaded through with turbulence. The stochastic web 
provides a seed of turbulence that will grow to overwhelm the whole flow if the driving force (that is, 
the Reynolds number) becomes a little larger. Zaslavsky and colleagues found that the stochastic webs 
can have forbidden (for example, fivefold) quasisymmetries as well as the regular (fourfold) symmetry 
shown here.

Hidden order

These flows exhibit one of the most dramatic manifestations of the descent into the maelstrom of 
turbulence. But there are several other ways in which flows change from regular or structured to 
turbulent. In the case of convection, the transition may be abrupt, the flow patterned but laminar one 
moment and then suddenly chaotic when the driving force is cranked up a notch further. In the wakes of 
shear flows, on the other hand, turbulence comes and goes intermittently before taking hold fully. In 
Taylor-Couette flow, meanwhile, we saw that turbulence and regular patterns can coexist for a while in 
the form of turbulent Taylor vortices.

     



When turbulence finally sets in fully, however, we might be tempted to give up looking for any pattern 
in it
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Fig. 7.44 
In turbulent flow, the motion of the fluid is chaotic. But even here we can recognize 

complex, coherent structures. (Image: Katepalli Sreenivasan, Yale University.)

at all. The trajectories of the fluid particles become extremely convoluted and constantly changing in 
time (Fig. 7.44), and the Navier-Stokes equations can be solved only numerically by laborious computer 
calculations, not by mathematical ingenuity. This chaotic picture is why, as indicated at the beginning 
of this chapter, turbulence has proved so resistant to theoretical descriptions. A turbulent fluid is in a 
state of continuous instability. Since our ability to predict the details of a flow decreases each time the 
flow changes as a result of an instability, this means that we generally lose all predictive capability for 
the details of a turbulent flow. (It does not mean, however, that the Navier-Stokes equations break 
down, but instead that these equations don't any longer have steady, time-invariant solutions.)

What this means is that, rather than trying to look at the detailed pattern of flow in terms of streamlines, 
we are forced to seek instead some average features of the flow. In other words, we can forget about 
individual trajectories of fluid particles and consider instead their statistical properties. What has 
emerged from this sort of approach is that even apparently random, structureless systems like turbulent 
fluids may have characteristic forms if looked at statistically. We might find ourselves able to 
distinguish one kind of apparently chaotic process from another by deducing what their statistical forms 
are. This is an extremely important concept in theories of complex systems, and it will underlie some of 
the phenomena discussed in the remainder of this book: when a visually evident pattern vanishes into 
chaos, we can nevertheless often still identify a kind of form that remains if we know how to look for it.

     



The idea of statistical form probably seems a little abstract at this point, but it might help if I point out 
that we have encountered at least one example of it already. In Chapter 5, I showed two branching 
patterns for mineral dendrites, which looked kind of similar but which, by eye, we'd be hard pressed to 
identify as the same or different. We saw that the concept of fractal dimension enables us to 
characterize these patterns with a precise numerical parameter, and thus to distinguish different classes 
of branching pattern. The fractal dimension is a measure of a pattern that is independent of the details. 
No two branched clusters grown by diffusion-limited aggregation will ever be identical, because their 
growth process involves a strong element of randomness, but nonetheless the generic form, as 
characterized by the fractal dimension, is identical for all.

Do turbulent flows have a generic form, which can be assigned some precise numerical parameters? 
This has been a subject of intense debate throughout the twentieth century, and it would be fair to say 
that the jury is still out. But the Englishman Lewis Fry Richardson took a critical step in addressing this 
question in the 1920s when he proposed that the universal properties of turbulence would become 
apparent only if we make a distinction between the mean and the fluctuating parts of the fluid velocity 
field. Most turbulent flows have mean velocities that are determined by the specifics of
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the situationthe turbulent wake of a shear flow, for example, or a turbulent jet of smoke have an overall 
average direction of travel. Richardson suggested that any generic behaviour would be superimposed on 
this case-specific behaviour, so that the latter must first be subtracted.

Richardson proposed that any structure contained in the fluctuating, chaotic part of the velocity field 
could be revealed by considering how the differences in velocity at two points within the flow vary as 
the points get farther apart. The flow as a whole may have a certain mean velocity in one direction, but 
it is in these point-to-point differences that the fabric of turbulence is to be discerned. If the flow is 
totally random over all distance scales, the velocity at one point will bear no relation to that at all other 
pointsall differences in velocity will occur with equal probability as the points get further apart. If the 
flow has a structure, however, like a convection cell, the velocities at different points will tend to be 
correlatedknowing one allows us at least to guess at the other. For example, the velocities in adjacent 
edges of two convection roll cells are not independent: if the fluid at a point on one edge is going 
upwards, we can be sure that the fluid at a corresponding point on the edge of the other cell is also 
moving upwards at about the same speed, because adjacent rolls are always counter-rotating. The role 
of correlations in pattern formation is an important one that I shall come back to at the end of the book.

So if turbulence has inherent structures that distinguish it from utter randomness, there will be some 
correlation between velocities at different points. This is true on average even if such structures are 
short-lived, provided that they continually reform. Intuitively we should expect such correlations (if 
they exist) to decline with increasing distance, since it is reasonable to suppose that the behaviour of the 
fluid at one point in a turbulent flow takes ever less heed of the behaviour at another point the more 
distant it is. In a perfectly ordered array of Rayleigh-Bénard convection cells this is not the casethe 
correlations are very long-ranged. But perhaps surprisingly, experiments have shown not only that there 
are correlations in turbulence, but that these have a remarkably long reach, generally extending over 
almost the entire width of the flow. It is as though individuals in a jabbering crowd were able to 
converse with one another from opposite sides of a room.

These correlations make a description of turbulence much more subtle than a description of mere ran-
domness, and they provide it with its elegant, baroque beauty. A fully random flow would show no 
features at all, whereas we can see in Fig. 7.44 that there are many swirling, vortex-like structures of 
many different sizes. It doesn't take a scientific training to appreciate that one of the fundamental 
structures of turbulence is the whirlpool-like vortexOriental artists had picked up on this long ago. 
These features are eddies, like those we saw earlier in non-turbulent shear flow. The difference is now 
that the eddies are formed over a very wide range of length scales (whereas in laminar shear flows only 
a certain size tends to be selected), they are transient, and they might appear anywhere in the flow.

     



Eddies carry much of the energy that is injected into a turbulent flow. Whereas in a laminar flow the 
energy is borne along in the direction of the fluid motion, in turbulent flow only a part of the motional 
(kinetic) energy of the fluid 'gets anywhere' (via the mean velocity of the flow)the rest is just caught up 
in eddies until being finally dissipated in frictional heating owing to viscous drag. But dissipation of 
kinetic energy occurs ultimately at very small length scales, as the molecules in the fluid collide and 
take up the kinetic energy by undergoing more vigorous random motions. Somehow the energy that is 
fed into the flow at large scales, creating big eddies that we can see with the naked eye, has to find its 
way down to these small scales before being dissipated. What happens is that there is an energy 
cascade: energy big eddies transfer their energy to smaller eddies, which do likewise at ever smaller 
scales. Richardson appreciated this, and in 1922 coined a rhyme, inspired by Jonathon Swift's doggerel 
about fleas, to describe the process:

Big whirls have little whirls 
that feed on their velocity, 
and little whirls have lesser whirls 
and so on to viscosity.

In the 1940s the Russian physicist Andrei Kolmogorov derived a law that put this energy cascade into 
precise form. He proposed that the energy contained in a turbulent fluid at a length scale d varies in 
proportion to the 5/3rd power of din other words, it increases with d at a rate proportional to slightly 
less than the square of d. This, like the definition of a fractal dimension, is an example of a scaling law: 
it shows that some property of the system (here energy, or mass in the case of a fractal cluster) is 
proportional to a variable (commonly a size scale) raised to some power (called the scaling exponent). 
Abstract and mathematical though
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they may seem, scaling laws are central to the science that underlies many natural patterns and forms.

Kolmogorov's law is in fact often found to be slightly off-target when investigated experimentally, 
since Kolmogorov made slightly too simplistic an assumption in deriving it. But more recent theories of 
turbulence have shown that things can be put right by including a few other variables in the scaling law. 
What has remained clear is that the basic idea of an energy cascade is correct. This means that eddies 
appear in turbulent fluids on all relevant length scales, so that (unlike the eddies that appear in Kármán 
vortex streets) you can't define any absolute length scale by looking at the sizes of the eddies in the 
system. In other words, the fluid has a kind of scale invariance, like the fractals that I described in 
Chapter 5. An explicit link between turbulence and fractals has been made by Benoit Mandelbrot, who 
has argued that a blob of coloured fluid develops a fractal shape as it disperses in a turbulent medium. 
Mandelbrot suggests that fractals provide the natural geometrical tool for describing the physical form 
of turbulence.

Fig. 7.45 
In this turbulent wake behind an obstacle, one can make out vortex-like features that have an approximate 

periodicity. (From: Tritton 1988.)

This idea gains support from the work of David Ruelle and Floris Takens, who showed in 1971 that the 
trajectories of fluid particles at the onset of turbulent flow can be described by mathematical objects 
called strange attractors, which, it later transpired, may have a fractal form in the 'phase space' of the 
variables that describe the flow. Whether the flow retains this cryptic form when the turbulence is fully 
fledged (the regime in which Kolmogorov-like scaling laws apply) is still not clearbut it looks unlikely. 
Fully fledged turbulence is often patchy, like a sluggish river, with regions of intense disorder 
superimposed on a more quiescent background. We have yet to discern the geometry appropriate to this 
situation.

Form from chaos

     



The statistical picture of turbulence has proved immensely valuable, but it does not always do justice to 
the reality. A statistical description works best if the system looks more or less the same, on average, at 
every point (which is not the same as saying that it is featureless). But turbulent fluids do not seem to fit 
this description very well. We can occasionally find relatively long-lived structures or even periodic 
patterns with well-defined length scales in fluids that should be fully turbulent. The turbulent Taylor 
rolls in Taylor-Couette flow are one such (Fig. 7.36c). Another example is the appearance of a coherent, 
somewhat regular eddy structure, much like a Karman vortex street, in a turbulent wake (Fig. 7.45). In 
general these latter structures do not last indefinitely and they are rather less regular than the patterns 
seen at pre-turbulent Reynolds numbers; but they are clearly quite distinct from random fluctuations. 
Where do they come from?

There may be no general answer to that, and certainly none has yet been identified. It seems likely that 
some of these so-called coherent structures in turbulent flows arise from the same kind of instabilities 
that create the regular patterns in pre-turbulent flows, but this time acting on the component of the flow 
that has an overall mean velocitythe part that Richardson subtracted to get at the underlying statistical 
nature of turbulence. Thus, for example, the instability that creates vortex streets in pre-turbulent flow 
might also generate roughly regular sequences of eddies in a turbulent jet that is, on average, travelling 
in the direction away from the nozzle through which it emanates.

Describing turbulence in terms of statistical scaling laws is therefore a little like describing a Seurat 
painting in terms of the probability of finding, say, a blue dot
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next to a yellow one. Such a description contains information about the picture, but it doesn't contain all 
the informationand sometimes not the most significant part! No concatenation of probability functions 
will allow us to anticipate that, on taking a step back, the dots combine at one place into a tree, at 
another into a parasol. Amongst all the chaos and unpredictability, we should not lose sight of the fact 
that there are strong ordering principles in turbulence.

Fig. 7.46 
A turbulent jet injected into a stratified fluid (whose 

density structure ensures that the flow remains largely 
two-dimensional) organizes itself into a coherent 

structure, the dipolar vortex. (Photos: GertJan van Heijst 
and Jan-Bert Flór, University of Utrecht.)

A particularly robust and elegant coherent structure that emerges from a turbulent jet is the dipolar 
vortex (Fig. 7.46), a mushroom-like structure much like the plumes that rise through turbulent 
convecting fluids (Fig. 7.17). The initially disordered, turbulent head of such a jet will gradually 
organize itself into a two-lobed dipolar vortex when the flow is two-dimensional. We saw earlier that 
turbulent shear flows are generally three-dimensional; but GertJan van Heijst and Jan-Bert Flor from 
the University of Utrecht have created two-dimensional turbulent jets by using a stratified fluid, whose 
salinity and thus density increases with depth. Fluid motion in the up-down direction is suppressed in 
this system by the differences in density. To show just how robust these dipoles are, van Heijst and Flór 
fired two at each other from opposite directions. Instead of clashing and dissolving in a turbulent frenzy,

     



the vortices displayed a slippery resilience that puts me in mind of egg yolks. When they collided, the 
vortices simply paired up with their counterpart in the other dipole and, without mixing, set off as pairs 
in a new direction (Plate 18).

The giant's eye

One of the most celebrated and dramatic of coherent structures in a turbulent flow was first seen three 
centuries agoand still persists today. Jupiter's Great Red Spot was observed in the seventeenth century 
by Robert Hooke in England and Giovanni Cassini in France. It is an oval feature, as tall as the Earth is 
wide and three times as long, in Jupiter's southern hemisphere (Plate 19). Jupiter's cloudy upper 
atmosphere is a mixture of hydrogen and helium with clouds of water, ammonia and other compounds 
that give rise to its spectacular colours. All this is stirred by the planet's rotation into a highly turbulent 
brew. Yet somehow amongst this planetary chaos coherent structures arise and persist for times ranging 
from months to centuries. The Great Red Spot is just the largest and oldest of these; other, smaller 
features with similar shapes come and go. Three white spots just to the south of the Great Red Spot 
appeared in 1938, and have remained ever since (one is visible in Plate 19). How do these structures 
arise, and how can they for so long defy the disruptive pull of turbulence?

Jupiter's atmosphere has a decidedly striking pattern even before we start to consider its spots. It is 
divided into a series of bands, marked out by the clouds, which recall the banded Taylor vortices of 
rotating Taylor-Couette flow. Each band is a 'zonal jet', a stream that flows around lines of latitude 
either in the same or the opposite direction to the planet's rotation. Unlike the Earth, where there are just 
two kinds of zonal jetthe eastward current of the trade winds in the tropics and the westward current of 
the jet stream at higher latitudesboth hemispheres on Jupiter have several zonal jets travelling to the east 
and west. The origin of these bands is still disputed, but they may be the product of small-scale eddies 
pulled and blended into latitudinal jets by the planet's rotation. Peter Olson and Jean-Baptiste 
Manneville of Johns Hopkins University in Baltimore have shown that a similar banded structure can 
arise from convection in a laboratory model of Jupiter's atmosphere. They used water to mimic the fluid 
atmosphere (since their densities are similar), trapped between two concentric spheres 25 and 30 cm 
across. The inner sphere was made of copper and chilled
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by filling it with cold antifreeze; the outer sphere was of clear plastic, so that the flow pattern could be seen. 
The effect of the planet's gravity was simulated by spinning the two spheres to create a centrifugal force. 
Now, in this experiment both of the forces driving the fluid flowthe temperature difference between the inner 
and outer spheres (like that between the inside and outside of the planet) and the centrifugal forcewere 
directed in the opposite direction to those on Jupiter itself: gravity pulls inwards, of course, and the planet is 
warmer inside than out. But that didn't matter to the model, so long as the two forces acted in opposite 
directions to each other, as they do on the real planet. When the researchers added a fluorescent dye to the 
water so that the flow pattern became evident under ultraviolet light, they saw zonal bands appear around 
their model planet owing to convective circulation (Plate 20). This suggests that Jupiter's stripes may indeed 
be convection rolls.

Fig. 7.47 
Jupiter's Great Red Spot circulates between 

oppositely directed zonal jets that encircle the planet.

     



Fig. 7.48 
In these experimental simulations of Jupiter's atmospheric flow in a rotating tank of fluid, the fluid is pumped so as to 

simulate the zonal jets and associated shear flows. Organized vortices arise spontaneously and persist in the flow. 
As the shear flow gets stronger, the number of vortices decreases from five to one. (Photos: Harry Swinney, University 

of Texas at Austin.)

The spot features in Jupiter's atmosphere are formed at the boundary of two zonal jets, where the flow of 
gases in opposite directions creates an intense shear flow. The Great Red Spot and the lesser white spots 
circulate like ball bearings between the flows above and below (Fig. 7.47). While the little ones come and 
go, the Great Red Spot remains. Is this just chance, or is a single
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big vortex a fundamental coherent feature of this kind of turbulent flow?

Both computer calculations and laboratory experiments suggest the latter. Philip Marcus from the 
University of California at Berkeley has carried out numerical calculations of the flow in a thin annulus 
of fluida washer-shaped disk with a hole in the middle, a kind of two-dimensional projection of one of 
Jupiter's hemispheres. The rotation itself sets up a shear flow: rings of fluid at successively larger radial 
distances from the centre flow past each other. Marcus found that when the shearing was high enough 
to cause full turbulence, small vortices would occasionally arise in the circulating fluid. If they rotated 
in sympathy with the shear flow, like the Great Red Spot, they would persist for some time; if they 
rotated against the shear, they would be pulled apart.

     



Fig. 7.49 
The Great Red Spot consumes smaller vortices created in Jupiter's 

shear flow. In this sequence of images, taken over a period of about 
2 weeks, a small spot can be seen to enter in the upper right corner 

and to be dragged into orbit around the Great Red Spot before 
disappearing into its vortex. (Photos: NASA.)

Then Marcus investigated what would happen in a flow containing pre-existing, large rotating vortices. 
A vortex rotating in the 'right' direction would remain, whereas one rotating the other way would be 
rapidly stretched and pulled apart. But even more strikingly, the persistent vortex would proceed to feed 
on smaller vortices with the same sense of rotation that arose subsequently in the turbulent flow, 
swallowing them up to sustain itself (Plate 21a). If, meanwhile, two large vortices with the right rotation 
were set up in the initial flow, they would rapidly merge into one, whose size and shape would then 
remain more or less steady (Plate 21b).

These calculations suggested that, once formed, a single large vortex is the most stable structure in this 
kind of flow. But how might it get there in the first place? Inspired by Marcus's calculations, Joel 
Sommeria, Steven Meyers and Harry Swinney from the University of Texas at Austin devised 
experiments to investigate this kind of flow in the flesh, as it were. They used a rotating annular tank 
into which they pumped water at various points in the tank's base equally spaced from the centre. Outlet 
ports located in the base of the tank allowed the fluid to escape again. The reason why the researchers 
used this pumping system rather than just filling a plain tank with water was that the interaction 
between the flow induced by pumping and extraction at
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different radii and the flow induced by rotation of the tank set up counter-rotating zonal jets like 
Jupiter's, creating strong shearing forces.

The researchers found that stable vortices appeared in the tank at the boundaries of the zonal jets. The 
vortices sat at the corners of regular polygons, marking out a pentagon for five vortices, a square for 
four and a triangle for three. The number of vortices decreased as the shearing (which depended on the 
pumping rate) got stronger; eventually they were left with only a single large vortex (Fig. 7.48). Arising 
spontaneously from small random fluctuations in the turbulent flow, this vortex then remained stable 
and more or less isolated from the rest of the flow. Dye injected into it would remain there (Plate 22); 
dye injected outside would remain excluded. But occasionally other small vortices, rotating in the same 
sense, would appear in the flow. These would last only for a short while before either merging with 
others or, ultimately, being swallowed up by the large vortexjust as Marcus had found. This very same 
process has been seen on Jupiter itself: as they passed the planet in the early 1980s, the Voyager 1 and 2 
spacecraft repeatedly saw small white spots, approaching the Great Red Spot from the east, become 
trapped 'in orbit' around the Spot's edge before finally merging with it (Fig. 7.49).

We have good reason, therefore, to think that Jupiter's bleary eye is a robust and fundamental features 
of its turbulent skies. Even in chaos there may be more order than we would guess.
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8 
Grains

We forgave Bagnold everything for the way the wrote about dunes. 'The grooves and the corrugated sand 
resemble the hollow of the roof of a dog's mouth.' That was the real Bagnold, a man who would put his 
inquiring hand into the jaws of a dog. 
Michael Ondaatje 
The English Patient

On the 17th of October 1989 the residents of the Marina district of San Francisco Bay discovered the 
wisdom of the advice that Jesus offered to house buildersbeware of building on sand. A shudder of the 
San Andreas fault centred in the mountains to the north-east of Santa Cruz brought many of the houses 
in this district tumbling to the ground. Miraculously there was no loss of life, but hundreds of millions 
of dollars' worth of damage was done by the magnitude-6.9 earthquake.

Unlike most other buildings in the Bay area, those in the Marina district stood on sandmore precisely, 
on sand-rich landfill sites. The ground certainly felt solid enough, and under normal circumstances it 
was. But when the earth shook, these wet, sandy soils turned to a slurry that flowed like treacle.

This property of a granular substance, naturally enough called liquefaction, is well known to 
seismologists and civil engineers. It is one of the most dramatic manifestations of the fact that a 
granular substance is a peculiar state of matter: composed of solid grains, yet able to show liquid-like 
behaviour. We all know that grainy materials like sugar and sand can flow, but at the same time they are 
clearly not true liquids, since they can resist shearing stresses and can support heavy objects.

     



The behaviour of granular media is of huge technological and industrial importance. All manner of 
substances are routinely handled in the form of granular powders, from cement to drugs to breakfast 
cereals, nails, nuts and bolts. Understanding the static and flow properties of these materials is crucial 
for their transport, storage and processing. Graininess is ubiquitous in the geological world, being 
central not only to the effects of earthquakes but to landslides, sediment transport, and the shape and 
evolution of sand dunes and beaches. Yet only in recent years have scientists begun to appreciate that, 
to explain how granular media behave, they must invent new physics. Engineers have long developed 
rules of thumb for handling these materials, but physicists want general principles that are broadly 
applicable and that account for observations at a fundamental level.

If there's one thing that has become clear, it is that granular media are seldom predictable. Shaking 
together different kinds of grains can either ensure good mixing or have the opposite effect of causing 
them to segregate according to their size. Sound waves can bend through a right angle as they travel 
through sand, while the stress below a sand pile has a minimum where the pile is highest. The pressure 
at the bottom of a tall column of sand does not depend on its height, and this is why a sand glass is a 
good timekeeperthe sand leaks away at a steady rate even though the column gets smaller. If water were 
like this, the pressure at the sea bed would be no greater than that a few metres below the surface.

One of the most striking outcomes of investigations into the fundamental nature of grainy materials is 
the realization that they represent rich ground for the appearance of patterns and form. Some of these 
patterns show many of the same features as those seen in other, completely different, systems; granular 
media can
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provide a convenient model system for studying complex phenomena as diverse as the fluctuations of stock 
markets and the formation of large-scale structure in the Universe.

Shaken, not stirred

I don't know about you, but I am not very good at using up the last of a packet of muesli. It is dreadfully 
wasteful, I know, but the fact is that by the time you get to the bottom, all the large pieces of fruit and nuts 
are gone and all that's left is a rather unappetizing residue of dry oat flakes. The big pieces always seem to 
stay on top, and the small ones settle to the bottom. This has become known to physicists as the 'Brazil nut 
effect'.

The sorting of grains of different sizes in a shaken granular medium is well known to engineers, but the 
reason for it is still disputed. You might think that shaking would simply mix up grains of different sizes, but 
clearly it is not sousually, the larger grains instead rise mysteriously to the top. Even if the packet of muesli 
left the factory well-mixed (which is unlikely), the Brazil nuts and banana flakes are likely to have reached 
the top by the time the packets have made their way by rumbling juggernaut to the supermarket. The British 
engineer J.C. Williams was one of the first to study this effect systematically, in 1963. He saw a single large 
particle rise up through a bed of finer powder as it was vibrated up and down. Williams suggested that the 
large particle is ratcheted upwards: as all the particles jump up during a shake, the large one leaves a void 
beneath it, into which smaller grains fall (Fig. 8.1). So the small grains progressively prevent the large one 
from settling back to its original height after each shake.

     



Fig. 8.1 
Grains in a bed of granular material separate out according to size when it is shaken 

vertically, with the larger grains rising to the top. This may be due to a ratchet-like motion 
in which small grains fall into the space beneath larger grains as they rise during each shake. 

Each large grain tends to accumulate an empty space (void) below it. When the box is shaken vertically, the large  
white ball rises from the walls of the void, and the smaller grains in a ring (with a wedge-shaped cross-

section) above it can slide down the walls of the void 
here I have indicated these grains in dark grey to distinguish them from the other small (light grey) grains around them. 

 When the ball settles again, it come to rests on the 
cone of dard grains, and so has risen a small distance d, roughly equal to the thickness 
of the dark layer. Note that the disparity in sizes is extreme in this picture, for clarity.

In 1992 physicists Remi Jullien, Paul Meakin and André Pavlovitch, conducted computer simulations of this 
shaking experiment to find out what makes the big grains rise. They looked at a column of spherical grains 
of different sizes, each of whose trajectories they could trace after each simulated shake; and they observed a 
ratchet process just like that proposed by Williams.

But this isn't the whole story, according to Sidney Nagel and colleagues from the University of Chicago. A 
year later they conducted experiments in which small glass beads were subjected to a series of vertical 
shakes in a glass cylinder. All of the beads were the same size except for one or a few larger ones, which 
gradually rose to the top. To follow the motion of individual beads, the Chicago team dyed some of them 
with ink.

What they found was a remarkably subtle kind of motion. They marked with ink an entire layer of small 
beads surrounding a large one placed on the central axis of the container and towards the bottom. The large 
bead rose up along the central axis, and the small dyed beads
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Fig. 8.2 
Grains in a tall column undergo convection-like circulating motions: the grains in the centre rise upwards, 

and those at the edges crawl down to the bottom in a narrow band. The images shown here are reconstructions 
of an experiment in which some glass beads were dyed to reveal their motions. An intially flat layer near the bottom 

of the column (a) separates into down-going beads at the edges and rising beads at the centre (b). The latter move 
outwards at the top and then downwards at the walls (d); the former move upwards at the centre when they 

reach the bottom (c, d). A single large bead gets trapped at the top because it is too large to fit in the narrow down-
welling 

band at the edges. So the convective motion causes size segregation. (Images: Sidney Nagel, University of Chicago.)

immediately around it also rose. But the dyed beads at the edges of the layer, in contact with the 
container's sides, began instead to make their way down to the bottom of the container (Fig. 8.2). As the 
central group of beads continued to rise, those that descended at the edges reached the bottom and then 
began to rise up again in the centre! Once the large bead and its surrounding small companions reached the 
top, the large bead stayed there but the smaller ones made their way to the sides of the container and began 
to travel downwards.

Does this pattern remind you of anything? The small, dyed beads are executing a circulatory motion just 
like that seen in a convection cell (Fig. 7.3)rising at the centre and descending at the edges. The size 
segregation is merely a by-product of this convection-like motion: larger beads are pushed up on the rising 
column of the cell but, once at the top, are unable to follow the cycle further because the descending 
portion of the cell is confined to a very thin layer (about the thickness of the small beads) at the container's 
edge.

     



Convective flow in shaken granular media is a well-established phenomenoMichael Faraday seems to have 
been the first to see it in 1831. But what drives the flow? In normal fluids, we saw earlier that convection 
is a result of buoyancy due to density differences between layers of the fluid at different temperatures. But 
all of the particles in Nagel's granular medium have the same density, and they are all (with the exception 
of the large bead, whose presence isn't essential for convective flow) the same size. Nagel and colleagues 
figured that the important factor was the frictional force between the beads and the walls of the container, 
which hindered the upward jumps of the peripheral beads during each shake. In support of this idea, they 
found that more slippery walls reduced the circulatory motions, while rougher walls made them more 
pronounced. As the simulations of Jullien and colleagues involved no walls at all (their granular columns 
were free-standing), they would not have seen these convective effects.

For engineers, it seems likely that these explanations may be of only limited practical utility. Much of the 
controversy that still exists over the origins of convection and size segregation in shaken powders stems 
from the fact that so many experiments give different answers. For example, Colin Harwood of the HT 
Research Institute in Chicago found in 1975 that layers of powder sandwiched between two layers of 
another powder can display all manner of behaviours. Coarse
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powders usually move upwards to mix with the finer grains above; but if the size difference is small, the 
upward motion is small and some of the coarser material actually moves downwards slowly. But even if 
the sandwiched layer is finer than the powder above, it usually still moves upwards. If, meanwhile, the 
upper and lower grains have some degree of cohesion (wet sand is an extreme case), then there is only 
limited upwards movement of the sandwiched layer. All of which suggests that the only way to really 
tell what your cereal packet will do is to shake it and see.

Jumping beans

Fig. 8.3 
When shaken vertically, a shallow layer of grains can develop complex wave 

patterns, including stripes, square and hexagonal patterns. (Photo: Harry Swinney, 
University of Texas at Austin.)

     



When Michael Faraday first shook the packet, he saw both circulatory (convective) motion of grains 
and the spontaneous appearance of heaps or 'bunkers' on the surface of the material. He suspected that 
the air that is present in the tiny spaces between the grains plays a part in causing these effects. When a 
layer of grains is shaken vigorously enough, the bottom of the layer jumps away from the floor, creating 
a cavity that is almost empty of air. The abrupt difference in air pressure between the gas amongst the 
grains and this almost air-free cavity pushes some grains underneath the pile as it rises, and so creates 
unevenness in the layer, leading to heaping. Recently, researchers have performed experiments in which 
the pressure of the gas permeating the granular layer is changed systematically to investigate the effect 
on heaping. These experiments suggest that Faraday's mechanism does play a role, and so it seems that 
this, as well as friction between grains and walls, has to be considered in any complete explanation for 
convective motion.

But in the mid-1900s, Harry Swinney and colleagues Paul Umbanhowar and Francisco Melo at the 
University of Texas at Austin decided to see what happens to a shaken layer of grains under conditions 
where both friction and gas pressure play little or no part. They studied a very thin layer of tiny bronze 
spheres (about the same size as sand grains) in a shallow, sealed container that was pumped free of air 
and vibrated rapidly up and down. Only a tiny fraction of the grains in this system were in contact with 
the container walls (unlike the situation shown in Fig. 8.2, for instance), and so frictional effects could 
be expected to have virtually no influence on the behaviour of most of the layer. Would this mean
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that there were no forces that could drive the grains into organized, structured motions?

Far from it! This set-up proved to be the most fertile breeding ground for grainy patterns so far known. 
The granular layer became organized into a series of dynamic ripples: stationary waves in which the 
grains are constantly rising and falling in step with each other. These wave patterns can be visualized by 
'freezing' the little bronze balls at one point in their motion using a stroboscope: the light flashes on and 
illuminates the balls in step with their oscillatory rise and fall, and so always catches the pattern at the 
same point in its cycle. Swinney and colleagues saw patterns that are now familiar to us: stripes 
interspersed with dislocations, spirals, hexagonal and square cells, and more random, non-stationary 
cell-like patterns that appear to be turbulent (Fig. 8.3). All of these have analogues in the convection 
patterns discussed in Chapter 7 and the chemical Turing patterns of Chapter 4.

Fig. 8.4 
Transitions between different wave patterns in a granular 

layer can be induced by altering the shaking frequency (f) or 
amplitude. (After: Umbanhowar et al. 1997.)

Transitions between one pattern and another can be induced by changing the shaking frequency and 
amplitude (that is, how far up and down the container is moved on each shake) (Fig. 8.4). The 
frequency of the wave patterns is a regular fraction of the frequency of shakingeither a half (so that the 
balls rise and fall once every two shakes) or, for larger amplitudes of shaking, a quarter. But sometimes 
different parts of the same basic pattern oscillate out of step with one another, so that one part is rising 
while the other is falling. Then the strobe light catches the balls out of phase, illuminating peaks in one 
region and troughs in another (Fig. 8.5). Disorder (turbulent motion) sets in when the amplitude of 
shaking exceeds a certain threshold, more or less irrespective of the shaking frequency. This is because, 
once the balls are thrown up too high, they lose the capacity to organize all their motions in step.

     



By studying the pattern-forming process using a simple theoretical model in which the balls lose a little 
energy as they collide (making them more like rubber balls than billiard balls), the researchers found 
that this process is associated with a period-doubling bifurcation (p. 67). For low-vibration amplitudes, 
the entire granular layer rises and falls in step with the shaking. Above a critical amplitude there is a 
bifurcation in this flat layer, which leaves alternate stripes rising and falling out of stepthis sets up either 
a stripe pattern at higher frequencies or a square pattern at lower frequencies. At a second critical 
amplitude a second bifurcation occursa period doubling, leading to a hexagonal pattern. At one point on 
the oscillatory cycle this pattern appears as an array of little spot-like peaks, whereas if the strobo-scope 
is set up to capture the pattern half a cycle later one sees an array of hexagonal honeycomb cells. Thus 
the pattern repeats as a doubled-up oscillation, a sequence of peak-cell-peak-cell . . . and so on. You can 
make out both of these patterns (along with two intermediate configurations in out-of-step regions) in 
Fig. 8.5.

Fig. 8.5 
When different domains of a pattern rise and fall 

out of step with one another, the stroboscope 
that captures a 'frozen' image of the patterns catches 

the domains at different points in their cycle, 
and so the patterns appear different even though 

they are in fact identical. (Photo: Harry 
Swinney, University of Texas at Austin.)

It takes remarkably few ingredients to make these patterns, as Troy Shinbrot of Northwestern 
University discovered. He chose to set aside the fact that the balls are
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rising and falling under gravity as the tray is vibrated, and focused just on the horizontal component of 
their motions: the movements parallel to the tray's surfaces. Of course, in reality the balls move both 
vertically and horizontally as they collide and scatter, but Shinbrot figured that, as the patterns appear in 
the horizontal plane, perhaps the horizontal motion alone would be enough to account for them. In his 
model the balls are given an impulse in a randomly chosen direction on each vibration cycle, reflecting 
the randomizing influence of shaking. And again, each time balls collide they lose a little of their 
energy, which is dissipated as heat. There seems to be nothing in this prescription but a recipe for 
randomness, and yet after just a hundred shakes Shinbrot found an initially random scattering of grains 
organizing themselves into stripes, hexagons, squares and several other patterns besides (Fig. 8.6). 
Which pattern is selected depends on the strength of the randomizing effect of shaking and on the 
average distance that each ball travels before colliding with another. As well as reproducing the patterns 
observed experimentally, Shinbrot found others that had not been seen before but which might, he 
suggested, become manifest if the right experimental conditions could be identified (such as Fig. 8.6d). 
This model is clearly a great simplification of the real system, but it seems to imply that almost any 
combination of randomization (which is analogous to diffusion) and energy dissipation (analogous to 
reaction) will suffice to make the patterns apparent.

Loners

     



Fig. 8.6 
Complex ordered and irregular patterns arise spontaneously in a simple model 

of a shaken thin layer of grains as a result of the interplay between randomization 
of the grain motions and collisions between grains. This model considers only 

the horizontal component of the grains' motionsit doesn't even need to 
include the effect of gravity! (Images: Troy Shinbrot, Northwestern University.)

On the whole I have so far spoken about patterns such as these in terms of 'global' instabilities of the 
whole system. In convection and Turing patterns, for instance, the implication has been that the whole 
structure emerges at once throughout the entire system. But there is another way in which we can 
describe these patterns: as ranks of individual elements that interact with each other to form ordered 
structures. Within this picture, each element maintains an optimal distance from its neighbours, and this 
ensures that the emerging pattern
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Fig. 8.7 
Individual elements of the granular wave patternsosillions 

can be lsolated and studied. Each oscillon is a single 
peak, here seen from above (a, b) and from the side (c, d) at 

different points in the cycle. (Photo: Harry Swinney.)

has a particular periodicity. You see much the same thing when people form a queue: they don't leave 
huge gaps (in case others might fill them!), nor do they stand with their noses brushing the head of the 
person in front. A more or less regular spacing is established.

You could regard this picture of a pattern-forming system as a kind of particle-based alternative to the 
wave-based picture of global instabilities with characteristic wavelengths. One of the most 
extraordinary discoveries from the shaking sand tray is that it has proved possible to capture and study 
the isolated particles of the patterns. Swinney and colleagues found that, for a certain range of layer 
depths and shaking frequencies and amplitudes, they could generate just a few lone oscillating peaks, or 
even just a single one, in the granular layer (Fig. 8.7).

     



They call these lone peaks oscillonsisolated 'packets' of oscillation. An oscillon is a peak of jumping 
balls one instant, and a crater-like depression the next. It looks rather like the splash made when 
something plops into a puddle of waterexcept that the splash doesn't die out in a series of spreading 
ripples, but keeps jumping back up as if captured in a time loop. These beasts appear when the shaking 
amplitude is just below that required for the appearance of the full pattern. But they don't form on their 
own from an initially flat layerthe researchers either had to perturb the layer in some way to trigger 
oscillon formation, or create them by reducing the amplitude from above the threshold value at which 
the full patterns were produced. In this latter case, the oscillons can be regarded as parts of the pattern 
that get left behind as it fades out globally.

     



Fig. 8.8 
Oscillons bahave like particles that attract, if their oscillations 

are out of phase, or repel if they are in phase. Out-of-phase 
oscillons can form 'oscillon molecules' (a) or chains (b). A group 
of in-phase oscillons will maintain an optimal distance apart by 

adopting a hexagonal arrangement (c). (Photos: Harry Swinney.)

Swinney and colleagues discovered that they could conduct a curious kind of 'oscillon chemistry.' 
Oscillons can move around through the granular layers, and when they encounter one another, one of 
two things can happen. Each oscillon jumps up and down at half the shaking frequency, and because of 
this 'pinning' to the
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driving frequency, two oscillons must be either in step with each other or perfectly out of step, so that 
one rises to a peak when the other makes a crater. Two out-of-step oscillons attract each other, like 
particles of opposite electrical charge, enabling them to link up into 'molecules' (Fig. 8.8a). In some 
cases, whole strings of out-of-step oscillons could be observed, analogous to chain-like polymer 
molecules (Fig. 8.8b). The range of the attractive interaction is only smallabout one and a half times the 
width of an oscillonso they have to approach quite closely before sticking together.

Oscillons that are in step, meanwhile, repel each other, like particles with the same electrical charge. A 
party of in-step oscillons will form a hexagonal pattern (Fig. 8.8c), since this allows each oscillon to 
maintain an optimal distance from all of its neighbours. This is like a fragment of the global hexagonal 
pattern in Fig. 8.3.

Striped landslides

The fact that grainy materials can be part-time solids and part-time fluids leaves us in an uneasy 
relationship with them. The transition from one to the other can be catastrophic, as I illustrated at the 
start of the chapter. Mountaineers know this well enough: those sparkling white slopes can appear to be 
a rigid feature of the landscape . . . until some disturbance turns them into an avalanche. Grainy 
volcanic outpourings called pyroclastic flows, buoyed by hot gases, are amongst the fastest and most 
lethal of volcanic hazards. When grains are set in motion, we had better watch out.

Fig. 8.9 
Two well-mixed grains of different sizes and shapes 

separate spontaneously into stripes when poured 
into a narrow rectangular cell. Notice also the 

segregation of grains, with one type at the left-hand top 
of theslope and the other at the right-hand foot. 

(Photo: Gene Stanley, Boston University.)

     



But avalanches are, to a physicist, a delight. Grainy flows are full of surprises, not the least of which is 
their ability to create astonishing patterns. One such, in which stripes of one kind of grain alternate with 
stripes of the other, is shown in Fig. 8.9. This stripy (stratified) grain-segregation effect was discovered 
by Hernán Makse and Gene Stanley from Boston University and co-workers in 1995, and it is really 
rather simple to reproduceI explain how in Appendix 7. All you need is two sheets of hard transparent 
plastic, like perspex or Plexiglas, held together on three sides to give a narrow, open-ended box. Into 
one top corner of the open end of the box you pour a mixture of two different grainy media with grains 
of different sizes and shapes, such as sugar and salt. It is best if the two types of grain are different 
colours, so that you can see the patterning easily. The grains should be initially well mixed by stirring 
(not shaking!.) As you pour, a heap builds up in one corner, in which the grains are still well mixed. But 
at a certain point, the trickle that falls onto the topmost edge of this heap begins to trigger regular 
landslides down the sloping edge, during each of which the tumbling grains separate out into stripes of 
different colours. In addition, the grains become segregated at either extremity of the stripes, with the 
larger grains gathering at the base of the slope and the smaller grains down the topmost edge.

This is another example of a pattern-forming system that seems to deny intuition. It is as if time were 
running backwards: we might expect an initially segregated body of grains to mix as it flows, like ink 
dispersing in water; and yet here is just the reverse. And what is more, the flowing media don't just 
separate outthey separate into a pattern with a characteristic size scale (the width of the stripes)! You 
can imagine this effect taking place in all sorts of industrial processes, such as when mixtures of 
different cereal grains or sands are poured out of a hopper and onto a heap. It seems that no one has 
ever reported striped size segregation in a heap of this sortbut probably because no one has looked for it.

The stratification happens in a characteristic manner: each landslide generates a pair of stripes, which 
appear first at the bottom of the slope and run back up it in a kind of kink at the sloping face. The 
topmost stripe of the pair contains the larger grains. Makse and colleagues supposed that the basis of 
this sorting process is that the larger grains tumble down the slope more freely than the smaller 
grainsthe latter are more easily trapped in small dips and irregularities of the slope on the way down. 
This same effect can be seen in rock slides, where the largest boulders crash to the bottom while the 
smaller ones get stuck further up the hillside.
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In effect, the slope looks smoother to the large grains than to the small ones.

So the large grains reach the bottom first, which is why there is segregation of these grains at the foot of 
the heap. There they pile up to form a kink. Then as the subsequent grains tumble down to reach this 
kink, the small grains get stopped first, since the large ones are less easily trapped in the hollow of the 
kink's upper edge. So the small grains are deposited first, and the large ones come to rest on top, as the 
kink moves back up the slope.

Fig. 8.10 
A pile of grains will undergo an avalanche at a 

critical angle θm, the angle of maximum stability. 
The avalanche will cause the slope to 'relax' to a 
stable angle θr, the angle of repose. These angles 

will generally differ for grains of different shapes.

     



The researchers set out to construct a simple theoretical model of this process. To do so, they had to 
establish criteria for when avalanches started and stopped. These criteria are well explored for piles of 
grains, and you can see them for yourself by tipping up bowls of granulated sugar and long-grain rice 
until they undergo avalanches. First, smooth the surfaces of the materials so that they are both 
horizontal. Then slowly tilt the bowls until a layer of grains shears off and runs out in an avalanche. 
There is a critical angle, called the angle of maximum stability (θm), at which sliding takes place. 
Moreover, when the avalanche is over, the slope of the grains in the bowl will have decreased to a value 
for which it is stable. This is called the angle of repose (θr), and the slope always relaxes to this same 
angle (Fig. 8.10). Both of these avalanche angles depend on the grain shapeyou'll find that θm for rice is 
larger than that for sugar, whereas granulated sugar, caster sugar and couscous (all with roughly 
spherical grains) all have a similar angle within the accuracy of this kitchen-table demonstration.

You can see the same thing by letting a steady trickle of sugar pass through a hole in a bag so that it 
forms a heap on the table top. The heap grows steeper and steeper until eventually there is a miniature 
landslide. Thereafter, you'll find that, however much more sugar you add, the slope of the pile stays 
more or less constant as it grows, with little landslides making sure that this is so. The angle of the 
steady slope is the angle of repose.

     



Fig. 8.11 
The stratification that takes place when mixed grains 

are poured can be mimicked in a simple theoretical model in 
which the two grains have different shapes: square and 

rectangular. The model assumes that as the are poured, the grains stack up into colums,  
with all of the rectangular 

grains upright (a). Although this is a highly artificial 
assumption, it reporduces the effect of different grain 

shapes, which is the cause of the stratification. The angle of 
maximum stability θm is such that the difference in height 

between one column and the next cannot exceed three 
times the width of the square grains; and the angle of 

repose θr is equivalent to a height difference of two (b). 
If a new grain added to the top of the slope creates a slope 
greater than m, it tumbles from column to column until it 

finds a stable position (c). But if the grain has to go all the way 
to the foot of the pile (as in c), this implies that the slope 

is equal to θm everywhere. The pile then undergoes a landslide 
to reduce the slope everywhere to θr or less (d). 

(After: Makse et al. 1997.)

It was quite by chance that Hernán Makse had decided to conduct his initial experiments with sand
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and sugar, which have slightly different shapes and therefore slightly different angles of maximum 
stability and reposedifferent sizes alone wouldn't have given the stratification. So in the model that he 
and his colleagues developed, they tried crudely to mimic this difference in shape. They considered two 
types of grain: small square ones and larger rectangular ones. These were assumed to drop onto the pile 
so as to stack in columns (Fig. 8.11). This model seems highly artificialthe experimental grains are 
clearly not squares and rectangles, nor do they stack up in regular vertical columns. But it's only a rough 
first shot, aimed at capturing the essentials of the process.

The heap was assigned characteristic angles of repose and maximum stability. When a grain drops onto 
the pile to create a local slope greater than θm, it tumbles down from column to column until it finds a 
position for which the slope is less than or equal to θm. But if a grain tumbles all the way to the bottom, 
which means that the slope everywhere is already equal to θm then a landslide is considered to occur in 
the model: all the grains tumble, starting at the bottom, until the slope everywhere is reduced to the 
angle of repose θr.

Fig. 8.12 
The model outlined above generates the same kind 

of stratification and segregation as seen experimentally. 
(Image: Hernán Makse, Schlumberger-Doll Research, 

Ridgefield, Connecticut.)

Because the large grains are 'taller' and so more readily introduce a local slope greater than θm, they 
tumble more readilyjust as in the experiments (remember that the large grains are less easily trapped on 
the slope). This accounts for the segregation of grains, with the larger ones at the bottom. The 
researchers found that all experiments showed this segregation when the grains were of different sizes.

     



Stratificationstriped layersrequires something more, however. They found that this happened 
experimentally when the two types of grain not only have different sizes but also different angles of 
repose; that of the smaller grains being less steep than that of the larger grains. Because the particles in 
the model were not just of different sizes but also of different shapes, the model captures this feature of 
the experiments too. So when played out on the computer, it is able to produce piles that are both 
segregated and stratified (Fig. 8.12). The simple model, therefore, does a fair jobbut it may neglect 
some important factors such as dynamical effects of grain collisions. These may explain, for example, 
why the pouring rate is also critical to obtaining good stratification.

Roll out the barrel

Fig. 8.13 
Avalances of grains in a rotating drum will mix different 

grains that are initially divided into two segments (a). 
As the drum turns, there is a succession of avalanches each 

time the slope exceeds the angle of maximum stability, 
transposing the dark wedges to the white wedges (b, c, d). 

If the drum is less than half-full (b), the wedges overlap, and 
the two types of grain eventually become fully mixed. If the durn is exactly half-full (c),  

the wedges do not overlap, so mixing 
takes place only within individual wedges. When it is more than 

half-full (d), there is a central core in which avalanches never 
take place, so this circular region never gets mixed.

     



As bricklayers know well, an easy but generally effective way to mix two substances is to place them 
inside a rotating drum, like a cement mixer. But when the substances are powders, don't expect the 
obvious. This became clear to Julio Ottino and co-workers at
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Northeastern University in Illinois when they tried to mix two types of salt, identical except for being 
dyed different colours, in this way (Fig. 8.13a). If the drum rotates slowly enough, the layer of granular 
material remains stationary until the drum tips it past its angle of repose, whereupon the top layer slides 
in an avalanche (Fig. 8.13b). This abruptly transports a wedge of grains from the top to the bottom of 
the slope. The drum meanwhile continues to rotate until another wedge slides.

Fig. 8.14 14 
The unmixed core is clearly visible in 

experiments. (Photo: Julio Ottino, 
Northwestern University, IIIinois.)

Each time a wedge slides, the grains within it get scrambled (because they are identical apart from 
colour). So if the grains are initially divided into two compartments separated by a vertical boundary 
(Fig. 8.13a), they become gradually intermixed by avalanches. But are grains also transported between 
wedges? They are if the drum is less than half-full, because then successive wedges intersect one 
another (Fig. 8.13b). But when it is exactly half-full the wedges no longer overlap (Fig. 8.13c), and 
mixing occurs only within individual wedges. If the drum is more than half-full, something strange 
occurs. There is a region around the outer part of the drum where avalanches and mixing take place, but 
in the central region is a core of material that never slides (Fig. 8.13d). The initially segregated grains in 
this core therefore stay segregated even after the drum has rotated many times. This, Ottino and 
colleagues observed, leaves a central pristine region of rotating, unmixed grains, while the region 
outside becomes gradually mixed (Fig. 8.14). In theory, you could spin this cement mixer for ever 
without disturbing the core.

     



Even if you start with a well-mixed concoction of different grains, it won't necessarily stay that way in a 
tumbling barrel. Engineers have known since 1939, when the effect was observed by Y. Oyama in 
Japan, that this process can cause grains to segregate out in a series of bands when the barrel is a long 
cylindrical tube (Fig. 8.15a). This happens if the grains have different angles of reposefor example, tiny 
glass balls (with θr of 30°) will separate from sand (θr of 36°). And in a rotating tube with a periodic 
change in width, so that it has a series of 'bellies' connected by a series of 'necks' grains will separate 
according to their size even if the angle of repose is the same for both (Fig. 8.15b). In the case shown 
here, small glass balls segregate into the bellies while large balls gather in the necks. Crucially, 
segregation in both uniform and bulging cylinders requires that the grains only partially fill the tube, so 
that there is a free surface across which grains can roll in a constant landslide.

Fig. 8.15 
(a)Grains of different shapes (and thus angles of repose) 

will segregate into bands when rotated inside a cylindrical 
tube. Here the dark bands are sand, and the light bands 

are glass balls. (b) In a tube with an undulating cross-section, 
a difference in size alone is enough to separate grains, which 

segregate into the necks and bellies (Photo: Joel Stavans, 
Weizmann Institute of Science, Rehovot.)

Where I grew up on the Isle of Wight in the south of England, there is a place called Alum Bay that is 
famous for its multicoloured sands. Tourists are invited to fill glass cylindersmodels of the Needles 
lighthousewith stripes of these sands by carefully adding each colour in sequence. I very much doubt 
they would believe you if you were to suggest that they might get much the same result by mixing up 
all the sands and then rolling the tube!
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Joel Stavans from the Weizmann Institute of Science in Israel and co-workers proposed, when they 
investigated this phenomenon in 1994, that it might be put to good use as a way of separating different 
kinds of grains in a mixture. It certainly beats doing the job by hand. Stavans and colleagues suggested 
that the banding results from the complex interplay between two properties of the grains: their different 
angles of repose and the differences in their frictional interactions with the edge of the tube. They built 
these differences into a model of the tumbling process, and found it predicted that the well-mixed state 
of the grains was unstable: small, chance variations in the relative amounts of the two grains would be 
amplified such that the imbalance would grow. A tiny excess of sand in one region, for instance, would 
enhance itself until that region contained only sand and no glass balls.

But you might think that this would give rise to bands of random width, whereas the experiments 
showed bands whose widths were all more or less the same within a narrow range (Fig. 8.15a). In other 
words, a certain preferred length scale appears spontaneously in the pattern. The researchers pointed out 
that this is analogous to a phenomenon called spinodal decomposition, which takes place when a 
mixture of fluids is suddenly made immiscible (for example, by cooling the mixture to a temperature at 
which the two fluids separate). Spinodal decomposition takes place in quenched mixtures of molten 
metals: the two metals separate, as they freeze, into blobs of more or less uniform sizes. This too is 
driven by random fluctuations in concentrations of the two substances, which conspire to select a 
certain length scale.

For the tube with bulges (Fig. 8.15b), the two types of glass balls have the same angle of repose, yet 
segregation still occurs. This is because the variation in width along the tube imposes a change in slope 
on the free surface of the tumbling grains, and the large balls roll down the slope more readily than the 
small ones, whichas we saw earlierare more easily trapped by bumps on the surface. Although it's not 
obvious without looking at the profile of the free surface, downhill carries the larger balls into the necks 
if the tube is more than half full but into the bellies if it is less than half full.

Thus, shaking, tumbling or even simple pouring of granular media can cause a mixture of different 
grains to mix, unmix or form striking patterns. At present there is no general theory that allows us to 
predict which of these will take place for a given system: again, you don't know until you try it.

Organized avalanches

So the slope of a granular heap, fed with fresh grains from above, remains at the angle of repose. This is 
a dynamically stable shape, because it is maintained in the face of a constant throughput of energy and 
matter (grains flow onto and off the heap). It is, in fact, a non-equilibrium 'dissipative' structure (see p. 
255). In the past decade, it has become clear that in this everyday structure, familiar to millers and 
quarrymen everywhere, there is an unguessed complexity. The mass and profile of such piles are 
subject to continual fluctuations, as landslides remove grains from their slopes. Studies of the way in 
which sand piles maintain their shape while executing these fluctuations have led to a whole new field 
of research in nonequilibrium science and pattern formation.

     



In 1987, physicists Per Bak, Chao Tang and Kurt Wiesenfeld at Brookhaven National Laboratory on 
Long Island, New York, devised a model to describe the dynamics of a heaped pile of sand. They were 
led to do so not by the kind of practical concerns that would motivate an engineer, but because this 
system provided an easy-to-visualize model for studying a rather recondite question about the electronic 
behaviour of solids. In essence, their hypothetical model described a pile of sand grains with a well-
defined angle of repose, to which new grains were gradually added. In the simplest version of the 
model, the sand pile was twodimensional and was shored up against a vertical wall at one end. (This is 
like the experimental system of Makse and colleagues described above, with the plastic plates so close 
together that the pile is only one gram thickand with the important provision that the friction between 
the walls and the grains is ignored.) Grains were added to this pile one by one at random points.

The pile builds up unevenly, so that its slope varies from place to place (Fig. 8.16a). But nowhere can 
the slope exceed the angle of maximum stability, the critical slope above which an avalanche takes 
place. If a single additional particle tips the slope locally over this critical value, a landslide is induced 
which washes down the 'hillside' and reduces the slope everywhere to a belowcritical value (Fig. 8.16b).

But here is the curious thing: in their model, Bak and colleagues found that a single grain can induce a 
land-slide of any magnitude. It might set only a few grains tumbling, or it might bring about a 
catastrophic sloughing of the entire pile. There is no way of telling which it will be.
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Fig. 8.16 
The slope of a granular heap varies locally from 
place to place (a). In this pile of mustard seeds, 

small variations in slope can be seen superimposed 
on a constant average gradient. When the slope 

approaches the angle of maximum stability, the addition 
of a single seed can trigger an avalanche (b). This 
avalanche can involve any number of grains, from 

just a few to the entire slope. Notice that only 
grains within the first few layers move (here the 

grains in motion are blurred). (Photos: Sidney Nagel, 
University of Chicago).

     



This behaviour is reminiscent of that seen in chaotic systems, where the smallest perturbation can have 
effects quite out of proportion to its sizeor it can remain just a small perturbation with a small effect. 
There is no characteristic scale to the system (in this case, no typical or favoured number of grains set 
tumbling when one more is added)it is scale-invariant. We saw earlier that this characteristic is found in 
turbulent flows, and also in fractal objects such as DLA clusters and some fracture surfaces.

Does this mean that the landslides are totally unpredictable, that their magnitudes simply vary at 
random? Not exactly. We can never be sure what effect any particular grain will have, but Just as is the 
case for turbulence (p. 193), we can identify some robust 'form' to the behaviour of the sand pile by 
looking at the statistics of the problem. While landslides of all sizes are permitted, they are not all 
equally probable. Rather, little slides are more likely than big ones, and ones that send virtually the 
whole slope tumbling are rare indeed. The number of landslides decreases as the number of grains it 
involves increases, and the relationship between the two is a power law (also called a scaling lawsee p. 
193). Specifically, it is an inverse power lawrather like Newton's gravitational law, which says that the 
force of gravity exerted by a body falls off as the inverse of the square of the distance. The power law 
relating avalanche frequency to avalanche size in the model of Bak and colleagues falls off rather less 
sharply than this: the frequency (or probability, if you like) of an avalanche falls off as the inverse of its 
size (Fig. 8.17). Conversely, the size is proportional to the inverse of the frequency of occurrence, 
denoted f. This kind of inverse relationship between the size of an event and the probability that it will 
attain that size is commonly called a 1/ f ('one over f') law.

     



Fig. 8.17 
The frequency of an avalanche of a certain size (that is, 

involving a certain number of grains) decreases in inverse 
proportion to it size, in a simple model of sand-pile 
avalanches. On a plot of the logarithm of frequency 

against the logarithm of size, this relationship defines 
an approximately straight line with a slope of around 

minus one (depicted by the dashed line). (After: Bak 1997.)

It turns out that 1/ f laws characterize the fluctuations observed in a great many diverse systems. An 
electrical current flowing through a resistor undergoes tiny
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fluctuations, for instance, and the probability (or frequency of occurrence) of a fluctuation of a given 
magnitude depends on the magnitude according to a 1f lawsmall fluctuations are more common than 
large ones. The Sun's luminosity fluctuates constantly owing to outbursts called solar flares, which are 
the result of magnetic instabilities in the hot plasma of the Sun's outer atmosphere. The magnitude of 
solar flares can be conveniently monitored by measuring the intensity of the X-ray emission that they 
generate, and this fluctuating X-ray emission obeys a 1f power law over several orders of magnitude 
(factors of 10) in intensity. The emission from distant astrophysical objects called quasars shows the 
same kind of variability.

We will encounter other examples of 1/ f behaviour later. In some of these cases, the relationship 
between the size and frequency of a fluctuation is not exactly a. 1/ f  law: instead, the size varies in 
proportion to 1/ f α, where α is a constant that is greater than zero and less than two. This sort of 
relationship is, however, commonly included within the umbrella term of '1/ f behaviour'.

     



Fig. 8.18 
The power spectraloudness plotted against sound frequencyof a wide range of human-generated 

audio signals, from classical music to rock music to spoken word, exhibit 1/ f scaling laws (a). 'White' noise is a 
featureless hiss with a flat power spectrum (loudness independent of frequency). Its time-

varying signal (b) is fully 
random and unpredictableand uninteresting. 'Brown' noise (c), with a 1/ f2 power spectrum, is perceived as boring 
and rather monotonous. 'Pink' noise (d), lying between these two extremes with a 1/ f power spectrum, has enough 

variation to be interesting, but not so much as to become indecipherable. (After: Voss & Clarke 1975.)

Now, the curious fact is that a 1/ f law is not what one would predict if the fluctuations were purely 
randomthat should instead generate a different scaling law. This is most tangibly (1 should really say 
audibly) illustrated with reference to one of the most striking examples of 1/ f behaviour, discovered by 
Richard Voss and John Clarke at the University of California at Berkeley in
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1975. They found that the power spectra of many pieces of classical musicroughly speaking, a plot of 
the loudness of the sound signal versus the sound frequencydisplay 1/ f behaviour. What is more, by 
analysing the outputs from different radio stations over several hours, they found that the same 
relationship holds for rock music and for the spoken word (Fig. 8.18a). Looked at this way, you might 
as well be listening to the daily news as to a Bach concerto!

Of course, the two are very clearly not the same; but statistically, there is little distinction between 
them. Here again is that cautionary message for those who search for 'statistical form' in scaling laws: 
sometimes you risk losing the most crucial features of a system by throwing out the detailed specifics 
and focusing only on the statistics. On the other hand, who would otherwise have guessed at this 
'hidden' kinship between the nine o'clock news and a baroque concerto?

The main point I wish to make is that both of these sound signals are clearly distinct from random 
noise. The latter is called white noise (Fig.  8.18b), and it is more or less what you get if you tune the 
radio between stations, or unplug the TV aerial: an unpleasant hiss. Audio signals that display 1/ f 
behaviour, on the other hand, are examples of so-called 'pink noise' (Fig. 8.18d)they contain an 
injection of low-frequency components in their power spectra, which white noise lacks. One can also 
create audio signals, called 'brown' noise, that have 1/ f 2 power spectra (Fig. 8.18c). These are 
perceived as rather dull by listeners. It seems that for some reason our ears find 1/ f noise more pleasant 
than either the total unpredictability of white noise or the rather plodding monotony of brown noisethe 
level of variability is just sufficient to be deemed interesting.

Self-organized criticality

So 1/ f fluctuations are unpredictable but are not due to some purely random process. Although common 
to many different physical systems, this behaviour has long been a mystery. When Per Bak and his 
colleagues saw 1/ f behaviour in their model sand pile, they were consequently hugely excited. Here 
was a relatively simple model system, for which they knew all of the ingredients (because they had 
mixed them up themselves), that might offer some clues about the origin of the puzzling 1/ f behaviour. 
This kind of scaling law is the consequence of abrupt avalanche-like events happening on all scales 
irrespective of the size of the perturbation that triggers them.

There is something very peculiar about the sand pile that displays this behaviour: it is constantly 
seeking the least stable state. We are used to the conversewater runs downhill, golf balls drop into 
holes, trees topple. The sand pile, however, is forever returning to the state in which it is on the brink of 
an avalanche. Each time an avalanche occurs, this precarious balancing act gives way; but then as 
further grains are added, the system creeps right back to the brink.

     



Fig. 8.19 
At the critical point of a liquid and a gas, the distinction 
between the two breaks down. A critical fluid contains 
variations in density on all size scales, with domains 

of liquid-like fluid coexisting with domains of vapour-like 
fluid. Here I show the results of model calculations of the 

structure of a fluid at the critical point; the dark regions represent 
liquid-like (dense) domains and the white regions are vapour-like 

(rarefied). (Image: Alastair Bruce, University of Edinburgh.)

States like this, which are susceptible to fluctuations on all scales at the slightest provocation, have been 
known to physicists for a long time. They are called critical states, and are found in systems as diverse 
as magnets, liquids and theoretical models of the Big Bang. Every liquid achieves a critical state at a 
well-defined temperature and pressure, called the critical point. If you heat a liquid, it evaporates to a 
vapour once it reaches the boiling point: the state of the fluid changes
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abruptly from a (dense) liquid to a (rarefied) gas. But above the critical temperature this abrupt change 
of state no longer happens; instead, the fluid passes smoothly and continuously from a dense liquid-like 
state to a diffuse gas-like state as its pressure is lowered. The critical point is the point at which there is 
no longer any sharp distinction between 'liquid' and 'gas', and no boiling point separating the two.

At the critical point of a fluid, its density undergoes fluctuations on all length scales: in some regions 
the fluid might have a liquid-like density, in others it is gas-like, and these regions are constantly 
changing over time and have no characteristic size or shape (Fig. 8.19). The fluid is poised right on the 
brink of separating out into liquid-like and gas-like regions, but cannot quite make up its mind to do so. 
It is extremely difficult to maintain a fluid at its critical point, howevera critical fluid is highly sensitive 
to the smallest perturbations, and will readily 'tip over' and separate into liquid-like and gas-like states. 
The susceptibility of the critical state to perturbations is, in fact, strictly infinite. It is precisely like 
trying to balance a needle by its tip: theoretically a balanced state exists, but it is unstable to even the 
slightest disturbance.

The theoretical sand piles of Per Bak and colleagues have this same critical character, being susceptible 
to fluctuations (avalanches) on all length scales through the action of the smallest perturbation (the 
addition of a single grain, say). But unlike the critical states of fluids, they seem to be robust, not 
infinitely unstable. Instead of constantly seeking to escape the critical state, the sand pile seeks 
constantly to return to it. Who would have guessed that a sand pile could be so perverse?

Bak called this phenomenon self-organized criticality (SOC), reflecting the fact that the critical state 
seems to organize itself into this most precarious of configurations. The natural assumption was that all 
the other physical systems that exhibited 1/ f behaviour were also in self-organized critical states. Bak 
began to see signs of self-organized criticality just about everywhere he looked. In a theoretical model 
of forest fires, for instance, a forest can be split up into clusters of unburnt trees of all sizes, and newly 
initiated fires can propagate on all length scales, burning just a few trees in the immediate vicinity or 
spreading catastrophically over large areas. If the trees regrow slowly, the forest is maintained in a self-
organized critical state by occasional fires.

It has been known for over four decades that earthquakes follow a power law, called the Gutenberg-
Richter law: earthquakes occur on all scales of magnitude (from a plate rattler to a city leveller) with the 
probability declining as the magnitude gets larger (Fig. 8.20). This smacks of self-organized criticality, 
and a simple mechanical model of earthquake faulting developed by Bak and co-workers shows power-
law behaviour resembling the empirical Gutenberg-Richter law.

Power-law behaviour is also seen (or at least claimed) in volcanic activity, in the length of streams in 
river networks, and in the fossil record of fluctuations in the abundance of life on Earth through the 
geological pastto name just a few examples. There is clearly no link between the physical mechanisms 
that control these phenomena, but nonetheless it seems that they may show essentially the same 
statistical behaviour. There appears to be something universal about the probabilities that does not 
depend on the details of how the components interact.

     



Fig 8.20 
The Gutenberg-Richter law for earthquakes provides an 
example of 1/ f behaviour. It states that the number N 

of earthquakes of a given size (per year in a given 
geographical area) is related to the size (S) of the quake 

through an inverse power law: N ∝ 1/Sb, with b being nearly 
equal to one for many regions throughout the world. So 

a log-log plot of number against size gives a straight 
line. Here I show the relationship for 'shallow' earthquakes, 
which occur at depths of 0–60 km in the Earth, as plotted by 
Gutenberg and Richter in 1949. (The magnitude (M) of an 

earthquake on the Richter scale is related to the logarithm of its 
size in terms of the energy released, so the linear magnitude 

scale here is a logarithmic scale of energetic 'size'.) This power 
-law relationship has been invoked as an indication that 
earthquakes are an example of a self-organized critical 

phenomenon.

When you think about it, this is not really so unusualthe same applies, for instance, to the statistical 
behaviour of purely random systems. I will obtain the same bell-shaped (so-called Gaussian) probability 
curve for a million executions of a random process with two possible outcomes, regardless of whether it 
involves
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tossing a coin, generating the numbers at random on a computer, rolling a dice with three white and 
three black faces or picking black and white balls from a bag. In each case, the physical mechanisms 
that determine whether black or white is selected are different.

Moreover, we saw something very similar in the growth of fractal forms in Chapters 5 and 6: they 
appear in physically diverse systems, because similar considerations (for example, that growth is more 
likely at tips than in valleys) apply to the statistics of the growth processes. Indeed, self-organized 
critical states have a scale invariance just like that of fractals, and the spatial distributions of their 
component elements (such as trees or streams, or the profile of a sand pile) can be truly fractal. This is 
potentially important, as there was previously no known general mechanism for generating fractal 
structures.

Per Bak believes that in self-organized criticality he has uncovered 'a comprehensive framework to 
describe the ubiquity of complexity in Nature'. There is no doubt that it is a fascinating new area of 
physics, and that many of the models developed to describe 'complex' systems in the real world do find 
their way into a self-organized critical state. It may even be that, given how we apparently perceive 
systems whose variability follows a 1/ f law as complex and interesting (as opposed to monotonous or 
impossibly unpredictable), self-organized criticality has something to tell us about our aesthetic 
response to pattern and form. But what about the real world? Are natural systems (as opposed to simple 
models of them) also in this precarious state?

One of the difficulties in answering that question is that the statistics are often ambiguous. To be sure 
you are seeing a particular kind of scaling behaviour and not just something that looks a bit like it over 
a small range of size scales, you need a lot of data. And that's not always on hand. There may not have 
been enough mass extinctions since the beginning of the world, for example, to allow us ever to be sure 
that evolution operates in a self-organized critical state (as Per Bak has claimed). Another problem is 
that, whereas in a model you can usually be sure exactly what all the important parameters are, and can 
see the effect of changing each one independently, in reality complex systems may be susceptible to all 
manner of perturbing influences, some more obvious than others. Will a model of earthquake faulting 
that includes a more realistic description of the sliding process or of the geological structure of the Earth 
still show self-organized criticality?

In fact, it has been loudly and contentiously debated whether even real sand piles, the inspiration for 
Bak's original model, have self-organized critical states. You might imagine that this, at least, ought to 
be a simple experiment to perform: you just drop sand grain by grain onto a pile and observe how big 
an avalanche follows from each addition. But experiments conducted since Bak, Tang and Wiesenfeld 
first proposed their model have produced ambiguous results, partly because there is no unique way to 
measure the size of an avalanche. Sidney Nagel and colleagues at Chicago found in 1989 that real sand 
piles seem always to yield large avalanches, in which most of the top layer of sand slides away. But 
other experiments in the early 1990s seemed to generate power-law behaviour like that expected of self-
organized criticality.

     



One of the problems is that real sand is not like model sand: the grains are not identical in size, shape or 
surface features, and these microscopic details determine how readily they slide over one another. In 
1995 Jens Feder, Kim Christensen and co-workers from the University of Oslo in Norway attempted to 
settle the debate. They added a new twist to the tale: instead of studying sand piles, they looked at piles 
of rice. This was because rice grains do not roll or slip over one another as readily as sand grains do 
(just as rugby balls do not roll as well as footballs), and so they capture more accurately the assumed 
behaviour of grains in those computer models that show SOC (a rare example of an experiment being 
adapted to fit the model rather than vice versa). The grains tumble if they exceed the angle of repose, 
but moving grains are rapidly brought to rest when this is no longer so. That was more or less the 
situation modelled by Bak and colleagues, who didn't include the inertial aspects of the problem that 
resulted from moving and colliding grains.

Feder and colleagues looked at two-dimensional piles, in which the rice grains were confined to a 
narrow layer between two parallel glass plates (Fig. 8.21). By photographing and digitizing the profiles 
of the piles they could deduce the size of the landslides that took place.

Observing enough avalanches to provide trustworthy statistics was a slow and tedious process, and took 
about a year. But at the end of it all, the researchers concluded that the behaviour of these granular piles 
depended on the kind of rice that they used: specifically, on whether it was long-grain or short-grain. To 
physicists, these varieties differ not in terms of whether they are to be used for risotto or rice pudding 
but according to their so-called aspect ratio: the ratio of length to width. Long-grain rice has the higher 
aspect ratio, and Feder
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and colleagues found that it seems to show true self-organized critical behaviour, with a power-law 
relationship between the size of the avalanche (the researchers actually measured how much energy 
each one released) and its frequency of occurrence. But short-grain rice, which is more nearly spherical 
and so more like sand, showed different behaviour: instead of a simple power-law, the relationship 
between size and frequency was more complicated, having a mathematical form called a stretched 
exponential. Feder also showed that a stretched exponential can easily be mistaken for a power-law 
(and thus for self-organized critical behaviour) if the measurements are not taken over a wide enough 
range of avalanche sizes, possibly explaining why others had previously claimed to have seen SOC in 
sand piles.

Fig. 8.21 
A section of a rice pile confined between two glass plates. Notice how uneven the 

slope is on this fine scale. (Photo: Kim Christensen, University of Oslo.)

The conclusion, then, was that piles of grains can show SOC, but that they will not necessarily do soit 
depends on (amongst other things) the shape of the grains and how rapidly their energy is dissipated 
during tumbling. This both vindicates and modifies Bak's assertions: self-organized criticality seems to 
be a real phenomenon, not just a product of computer models, but it may not be universal or even 
particularly easy to observe or achieve. For the present time, sand piles appear to be an intriguing but 
limited metaphor for nature's complexity.

Shifting sands

     



All the same, I think that the most spectacular of granular patterns must surely be those that nature 
makes: the vast desert dunes that are the backdrop to our images of Arabian legend (Plate 23). These 
features are engraved by the wind, and their widths range from a few metres to several kilometres. 
Despite their immensity, sand dunes are not robust topographic features but are constantly shifting in a 
stately, writhing dance. As on the sea's wrinkled surface, it is the pattern that remains, not its individual 
components. Seen from above, linear dune fields (Fig. 8.22) resemble the fingerprint-like stripe phases 
seen in convection, Turing patterns and Langmuir films, with much the same kinds of dislocation 
defects where ripples terminate or bifurcate in two. Hans Meinhardt suggests that, at root, dune 
formation is akin to an activator-inhibitor system, in which short-range activation competes with long-
range inhibition. Dunes are formed by deposition of wind-blown sand. As a dune gets bigger, it 
enhances its own prospects for growth, as it captures more sand from the air and provides more wind 
shelter for the grains on the leeward side. But in doing so, the dune removes the sand from the wind and 
so suppresses the formation of other dunes in the vicinity. The balance between these two processes 
establishes a constant mean distance between dunes which depends on wind speed, sand grain size (and 
thus their mobility in the wind) and so forth.

The essence of this idea is probably sound, but it's virtually certain that no single mechanism can 
explain the vast diversity of shapes and forms seen in the world's deserts. Indeed there are so many of 
these, with names that are often regionally specific due to their derivation
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from the local language, that even geomorphologists have trouble keeping track of them. For one thing, 
there seem to be several characteristic size scales of natural sand patterns. Dunes in the strict sense are 
repetitive features that recur with wavelengths typically of around ten to several hundred metres. 
Superimposed on them are much smaller sand ripples, which tend to be wavy, linear crests with 
wavelengths of between half a centimetre and many metres, and heights of about 0.5 to 25 cm. And 
dunes themselves are commonly superimposed on even larger features, often called draas after their 
name in North Africa. Draas have wavelengths of hundreds of metres to several kilometres.

Fig 8.22 
A satellite image of linear dunes in the Namib Sand Sea in southwestern 

Africa. The width of the region shown here is about 160 km. (Photo: Nick 
Lancaster, Desert Research Institute, Nevada.)

The common feature of these structures, however, is that they are (on the whole) self-organized 
patterns, whose shapes and wavelengths arise from a subtle conspiracy between sand and wind, rather 
than being imposed by any external agency.*

The challenge is to understand the rules of these pattern-forming processes.

     



Desert grooves

Sand ripples are the most common features of wind-blown sand. The process by which moving air 
sweeps sand into these regular little crests was elucidated in some detail in the 1940s by R.A. Bagnold, 
whose work on granular media has laid the foundations of much that is known today. In modern 
terminology, we'd say that Bagnold's explanation for the appearance of smallscale sand ripples on a flat 
surface bombarded with a steady flow of wind-blown grains is an example of a growth instability.

Think of a sandy plain from which a steady wind continually picks up surface grains and dumps them 
elsewhere. If the wind blows persistently in the same direction, the plain is gradually shifted en masse 
upwind. But if by chance a tiny bump appears on the surface where

*The class of dunes called coppice dunes, however, arise from the accumulation of sand by small 
patches of vegetation, while climbing dunes, echo dunes and failing dunes are initiated by large-scale 
topographic features such as hills.
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the deposition rate is momentarily increased, the wind-ward side of the bump (called the stoss side) 
encounters a higher flux of impacting grains than the flat plain elsewhere. This is illustrated in Fig. 
8.23a, where you can see that more lines (representing the trajectories of wind-borne grains) intersect 
the stoss face, per unit length, than a horizontal part of the surface. Conversely, fewer lines intersect the 
downwind (lee) side of the bump, where there is an 'impact shadow'. So once a bump is formed it 
begins to grow, making a flat sand bed unstable to fluctuations in its topography.

     



Fig. 8.23 
The formation of sand ripples involves a propagating 
instability. Wind-borne sand grains rain down on the 
desert surface at an oblique angle. Where the surface 
slopes, more grains impact the windward (stoss) side 

of the slope than the leeward side (a). Each grain scatters 
others from the surface as it strikes, and travels in the 
downwind direction for a few short hops (a process 

called saltation) before coming to rest. The accumulation 
of saltating grains at the slope crest means that the leeward 

foot of the slope receives fewer new grains than other 
regions, and so it begins to be excavated into a depression 
(b). This depression develops into a new, downwind stoss 

slope, and a new ripple is formed.

But there is more: the formation of one bump triggers the appearance of another downwind, so that a 
system of ridges propagates across the plain. This is because the story does not end when the wind-
blown grains hit the surface of the desert. They do not simply sit where they strike: the grains bounce. 
The wind carries these bouncing sand grains downwind in a series of hops, a process called saltation. 
Moreover, the initial impact of a wind-blown grain creates a little granular splash, throwing out other 
grains from the surface which can then also be carried along by saltation.

This process ofimpaction and saltation takes place all across the plain. It maintains a flat, horizontal 
surface if the rate at which sand is delivered by the wind is equal to the rate at which it is transported 
downwind by saltation. But when a ripple begins to form, these rates of grain delivery and removal are 
not everywhere balanced. Beyond the impact shadow at the foot of the lee slope, impacts followed by 
saltation lead to the down-wind transport of sand (to the right in Fig. 8.23). But because there are 
relatively fewer impacts on the lee slope itself and in its impact shadow, this transport is not balanced 
by a flux of grains coming from the left. Therefore the foot of the slope becomes excavated, creating a 
new stoss slope to its right. At the top of this new slope, grains begin to accumulate by saltation, and 
another lee slope develops (Fig. 8.23b). And so the wavy disturbance propagates downwind as a series 
of ripples. These ripples have a characteristic wavelength: Bagnold proposed that this is determined by 
the typical distance that a saltating grain travels before coming to rest (which in turn depends on the 
grain size, wind speed and wind angle); but it now seems that the wavelength reflects a balance between 
rather more complex aspects of grain transport, and in reality there is typically a range of wavelengths 
in any ripple field.

Spencer Forrest and Peter Haff from Duke University in North Carolina have shown by computer-
modelling that sand-ripple formation is a self-organized process. In their model, sand grains are fired at 
a flat sand bed at a certain angle and speed. The model is two-dimensional: the sand grains are confined 
to a single layer, like a vertical cross-section through a real desert. Each impacting grain ejects other 
grains from the surface according to a so-called splash function, which specifies the number of grains 
ejected and their velocities. The model is a cellular automaton (p. 57), since the behaviour of each 
particle is determined by well-defined rules that take into account what the particle's immediate 
neighbours are doing.

     



The researchers found that ripples quickly began to rise out of the flat surface (Fig. 8.24a). They finally
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attained a triangular shape, and at the same time they began to migrate across the surface in the 
direction of the windjust as they do in real deserts. Remember that this migration is not in any sense a 
result of the ripples being 'blown' by the wind; instead, the solemn procession is the indirect effect of 
individual grain impacts followed by saltation.

     



Fig. 8.24 
Self-organized ripples appear in a cellular-automaton 

model of wind-blown sand deposition. The ripples develop 
on a flat surface as the growth instability amplifies small 

irregularities (a). These ripples move from left to right owing 
to saltation. Because of the difference in speed between 

smaller, faster ripples and larger, slower ones, they exchange 
mass until their size, speed and spacing is more or less 

uniform (b). 'Stained' grains injected at regular intervals 
reveal the patterns of layer deposition for different 
deposition rates (b, c). (Images: Peter Haff, Duke 

University, North Carolina. Reproduced from Forrest and Haff 
(1992). Science 255, 1240.)

Forrest and Haff found that a characteristic ripple size emerged that was several hundred times the 
diameter of the individual grains. What happened was that the smaller ripples travelled faster than the 
larger ones, simply because they contained less material to be transported. But as they overtook larger 
ripples, small ones would acquire sand from the slower heaps in front until their sizes, and therefore 
their speeds, were more or less equalized. In this way, a roughly regular train of ripples was formed that 
moved in procession downwind (Fig. 8.24b).

In the simulations, more material was deposited than was removed by saltation downwind, and so the 
sand bed gradually increased in thickness. In the real world these depositional beds can be preserved for 
posterity as the gaps between the grains get filled in with a cement of minerals precipitated from 
permeating water. Such sedimentary rocks are known as aeolian (wind-borne) sandstones. By 
artificially colouring the wind-borne grains at periodic intervals in their computer model, Forrest and 
Haff were able to deposit 'stained' layers which acted as markers to show how the deposited material 
became distributed subsequently in the thickening bed. Depending on the rate of deposition, they found 
various patterns (Fig. 8.24b, c), which resembled those found in natural aeolian sandstones when some 
environmental factor allows material deposited at different times to be distinguished (for example, its 
composition and colour might change).

Stars and stripes

Many sand dunes share the same wavelike form as sand ripples, with linear, slightly wavy crests that lie 
perpendicular to the wind direction. These are called transverse dunes (Fig. 8.22). But not all dunes 
have this form. Some form crests parallel to the prevailing wind: these are longitudinal dunes. Others, 
called barchan dunes, are crescent-shaped, with their horns pointing downwind (Fig. 8.25a). Barchan 
dunes can merge into wavy crests called barchanoid ridges. And some dunes have several arms 
radiating in different directions: these are star dunes (Fig. 8.25b). How does the same basic grain-
transport process (saltation) produce these different forms?

     



Many models have been proposed to account for the shapes of particular kinds of dune, and for their 
characteristic spacings. Some of these models invoke rather complex interactions between the evolving 
dune shape and the wind flow pattern. Bagnold, for instance, suggested that longitudinal dunes might be 
the result of helical wind vortices arising from the interaction between the wind and convective airflow 
as heat from
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Fig.8.25 
Large-scale sand transport can create dunes of several characteristic shapes, including the crescent-shaped barchan 

dunes (a) and the many-armed star dunes (b). (Photos: Nick Lancaster, Desert Research Institute, Nevada.)

     



the desert surface warms the air above. Another early pioneer of dune geomorphology, V. Cornish, 
suggested at the beginning of the century that star dunes form at the centre of convection cells above the 
desert floor. It's clear that a major influence on dune type is the nature of the wind field: whether it is 
steady or varying in direction, fast or slow. The amount of sand available for dune building is also 
important: transverse dunes may be favoured if the sand supply is abundant, whereas longitudinal dunes 
form in a sparser environment. The fact that the dune itself changes the flow of air around it as it grows 
adds a further level of complication, as does the presence of vegetation.

But in spite of all this, geomorphologist Bradley Werner from the Scripps Institute of Oceanography in 
California has developed a cellular-automaton model of
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dune formation in which most of the major dune shapes arise as spontaneously self-organized forms out 
of the process of grain deposition under different wind conditions. In Werner's model, sand grains are 
scattered at random on a rough stony bed of rugged topography, and are assumed to be picked up at 
random in parcels by the prevailing wind. After it has been carried a fixed distance, each parcel has a 
chance of being redeposited. The probability of this is greater if the parcel encounters sand-covered 
ground at that point rather than stony ground, reflecting the known fact that saltating sand bounces off 
stony ground more readily than off sandy surfaces. If the parcel is not deposited, it is carried on for the 
same fixed distance before the possibility of deposition arises again. If at any point deposition brings 
the slope of the sandy ground in excess of the angle of repose, slabs of sand are allowed to slide 
downhill until the slope is again less than this angle.

Fig 8.26 
A cellular-automaton model of dune formation generates many of the major dune types, including transverse 

and longitudinal ripple dunes (a, b) and barchan dunes (c). Here I show the contours of the deposited material. 
The shapes depend on the wind direction and variability (indicated by arrows). (Images: from B.T. Werner 

(1995). Geology 23, 1107.)

With just these ingredients, Werner was able to reproduce all of the major dune types in his 
modelbarchan, star and linear dunes (Fig. 8.26). He found that these characteristic patterns seem to 
represent attractors (see p. 54), towards which the sand deposit is drawn regardless of its initial 
configuration. For instance, when the wind was predominantly in a single direction, dunes formed with 
their crests lying perpendicular to the wind (transverse dunes; Fig. 8.26a), whereas if the wind direction 
was more variable, the dunes were oriented in the average direction of the wind (longitudinal dunes;

Fig. 8.26b). Werner's model suggests that the stable attractor changes from the transverse to the 
longitudinal pattern as the wind becomes more variable.

     



While it is likely that specific, local influences affect dune sizes and shapes, Werner's idea has the 
appealing feature that the broad patterns that emerge are generic, not dependent on case-by-case details. 
Within this picture, star and barchan dunes are as inevitable a feature of nature's tapestry as the 
branches of a river or the stripes of a zebra.

Through the sieve

One intriguing feature of natural sand patterns (both small-scale ripples and large-scale dunes) is that 
the sand grains are segregated according to size into different regions of the pattern elements. For sand 
ripples, the coarsest grains appear preferentially at the crests, with a thin veneer also coating the stoss 
face. For large dunes the reverse is commonly the case: the finest grains collect at the crests, and the 
coarsest in the troughs. When there is net deposition, so that ripples are gradually laid down on top of 
each other, the result is a series of stratified layers in which a periodic sequence of coarse to fine grains 
recurs down through the sand bed. This characteristic sequence of coarse-to-fine grains distinguishes 
aeolian sandstones from fluvial sandstones, which are deposited as sandy material sediments out of 
water. In the latter case, the larger grains settle faster, so the stratigraphic sequence has fine grains on 
top and coarser grains below. For this reason, a coarse-to-fine sequence is said to be 'inverse-graded'.

How does this grain-size sorting occur in sand ripples? It recalls the stratified sorting seen in the 
landslide experiments described earlier; but the resemblance is coincidental, as the origin of the sorting 
is actually
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rather different. Robert Anderson and Kirby Bunas from the University of California at Santa Cruz have 
shown that segregation of grain sizes is a consequence of the saltation process. They used a cellular-
automaton model rather like that of Forrest and Haff, except that it incorporated grains of two different 
sizes. The effect of grain impacts was again determined by a splash function, but this differed for the 
small and large particles: the latter ejected more secondary grains, for the same impact speed, than the 
former, since the collisions in that case were more energetic. The size and speed of the impacting grain, 
as well as the composition of the bed that it struck, also determined the relative mixture of small and 
large particles in the 'splash'. So the rules governing the impacts were in this case fairly complicated; 
but their net effect was that smaller grains tended to be ejected preferentially, and with higher speeds 
(which carried them further away). The general effect of impacts was therefore to make the surface of 
the sand bed coarser.

Fig. 8.27 
Grains of different sizes are often segregated in sand 
ripples and dunes. Here a cellular-automaton model 

reproduces the tendency of sand ripples to accumulate 
coarse grains (white) on the stoss slopes and particularly at 

their crests (a). When there is net deposition, so that the deposited 
layer gradually thickens, the sand deposit becomes stratified 

(b). (Images: Robert Anderson, University of California at Santa Cruz.)

     



With that in mind, it is not hard to see why the researchers found that their model ripples had coarser 
material coating the face of the stoss slope (Fig. 8.27a),

like the ripples found in the real world: the stoss slope receives more impacts, and so gets more 
coarsened, than other regions. The crests of the ripples were particularly enriched in coarse grains (as 
seen in nature), which the researchers explained as follows. The larger grains make smaller hops, 
because they are more massive and are therefore ejected from the impact splash with lower velocities. 
By means of these little jumps the large grains gradually make their way up the stoss slope and jump 
just over the crest, into a sheltered region just at the top of the lee slope within the impact shadow. Here 
they remain, protected from impacts, while further coarse material gradually climbs on top of them. The 
smaller grains, meanwhile, make bigger leaps and so are propelled further over the edge onto the lower 
parts of the lee slope.

Notice that in Fig. 8.27a the ripples are highly asymmetric, with a gently convex stoss slope and a 
steeper, concave lee slope. This shape is much closer to that of real sand ripples than is the triangular 
shape of Forrest and Haff's model, showing that the more sophisticated treatment of saltation and 
splashes captures more of the important physics of the process. Remember, furthermore, that these 
ripples are not static but are slowly moving from left to right in the figure. This means that the coarse 
material on the ripple crests is repeatedly buried and then exhumed again at the foot of the stoss slope as 
the ripples pass over it. The grains are forever climbing mountains.

Anderson and Bunas found that when their model was executed under conditions of net deposition, so 
that the sand bed gradually thickened, stratified beds were laid down in which coarse and fine layers 
alternated (Fig. 8.27b). This mimics the inverse grading of natural aeolian sandstone.

Do it yourself

I don't think that we have by any means exhausted the capacity of granular substances to generate 
spontaneous patterns, nor have I been able here to survey all of those that are currently known. What is 
particularly exciting about these systems is that not even the scientists studying them have yet acquired 
the kind of intuition that allows them to predict what they might see in a given experiment. You have to 
shake it and see! And I feel there is an attraction too in a kind of physics that returns to the spirit of the 
nineteenth-century pioneers like Michael Faraday, performing simple bench-top experiments with 
cheap, homemade equipment and a mind that is prepared to be astonished at the artistry of nature. There 
is much we can learn from playing in the sand . . .
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9 
Communities

These are the fluid communities, some of long duration when circumstances 
favored . . .  
some fleeting and vivid, encompassing in the time of 
their duration a moment only of the member's life; and in our world at 
least they are ramified and improvised, living and dying, growing and 
falling off almost as a life form itself. 
J. Robert Oppenheimer 
The Sciences and Man's Community

Who wants to be considered predictable? No, I thought not. We might be happy enough to accept that 
patterns can emerge from wind-blown sand, running water, strange brews of chemicals and even 
bacterial colonies; but human activities are surely something else altogether. OK, we all have our 
routines, there is an element of repetition in our lives (driven in large part by biology's exigencies of 
sleeping, eating and excreting)but when it comes to interactions, to the ebb and flow of society, surely 
there is much too great a diversity in behavioural tendencies to establish patterns and forms of the sort 
with which this book is concerned? We might imagine that whatever organization in time and space our 
societies display is a consequence of careful planning and forethought, not an inevitable and 
spontaneous emergent property.

     



Well, of course I would not be setting up this straw man if I were not about to burn it, but I want to 
acknowledge at the outset that it becomes hard, within a discussion of societies and of behaviour, to 
keep a clear image of the definitions of pattern and form that I have developed so far. This is rich 
ground for confusion. On the one hand, human society is riddled with spatial patterns that are more or 
less complex, from the rice terraces of Asia (Fig. 1.5b) to the magical web-weaving of Islamic art (Fig. 
7.41b) to the regular lattice of Manhattan's street plan. But we must try to bear in mind the self-made 
tapestry. These tapestries of agriculture, adornment and architecture are anything but self-made: 
someone has drawn the blueprints, someone has purposefully shifted soil and stone, someone has pulled 
the thread this way and that. Yes, these patterns are of obvious utility, they are widespread, and they are 
even beautifulbut not inevitable. We do not deduce the traceries of the Alhambra palace from a 
consideration of the laws of interaction between a Moorish artisan's chisel and stone: those mechanics 
permit just as readily of Barbara Hepworth's sculpture garden.

Some of the spatial forms and patterns that I shall touch upon in this chapter, on the other hand, are 
perhaps challenging to our self-esteem, because they evolve in spite of ourselves, unconsciously. We 
don't realize we are making them, until suddenlythere they are. And the final irony is that, when we 
look down upon some of these human-made designs, we may find that they are remarkably similar to 
the forms we have found elsewhere in this book, the products of inanimate matter. To that extent, life is 
nothing special. And I want to show too that natural ecosystemsnetworks of interactions far more 
diverse and complicated than those in a stream of water, a flame or a growing crystalhave their own 
intrinsic patterns too. These self-organizing tendencies of nature can be crystallized into simple models 
that define a kind of mathematics of the biosphere, a mathematics that allows room for choice, for 
reciprocity, for memories of past events. By identifying these patterns, there is much that we can learn 
about our place in the world and the way that we affect it.

Ecocycles

Life never used to be this complicated. Once there was no anxiety about whether your neighbour would 
have
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another all-night party, whether your car would start, whether your credit rating was falling. All you had 
to worry about was staying alive: eating, while not being eaten. Throughout much of the animal world, 
that's pretty much how it remains. You have your prey, and you have your predators. So long as you 
find time now and again to reproduce and spread your genes, you can devote the rest of the day to 
finding the former and avoiding the latter. Yet there are patterns and rhythms that emerge even from 
this most basic of lifestyles.

What controls the size of a community? Thomas Malthus thought he had the answer in the late 
eighteenth century, when he proposed that populations grow with geometrical rapidity (which is to say, 
as a power law) until the food runs outand then things turn nasty. The historical record of China's 
population over the last 2000 years shows sawtooth cycles of gradual growth and abrupt, famine-
induced decline, followed by periods of social turmoil, which look distinctly Malthusian. But although 
Malthus's idea of a cut-throat struggle for survival exerted a profound influence on Charles Darwin, in 
general it provides much too simplistic a view of population dynamics.

For what if one population feeds on another, while both are subject to comparable growth laws? Then 
for the predators (foxes, say), 'food' is no longer a field of grass of finite extent, but a resource (rabbits) 
that has the potential to keep pace with the expansion of the fox community itself. On the other hand, if 
the foxes gorge themselves too much, they deplete the prey to such an extent that there is not enough 
food to go roundand then the expansion of the fox community is itself held in check.

What about the rabbits? Well, they do face the intrinsic limitation of the amount of grass in the 
environment, although we can imagine that there is a steady rate of grass growth that can sustain a 
rabbit population of a certain size indefinitely. The more serious threat to the rabbit community is that 
of being eaten.

So here's the deal: the foxes will eat the rabbits and will, as a consequence, multiply in number. The 
rabbits, meanwhile, will reproduce to replace those who have fallen prey to the foxes (let's assume that 
the availability of grass is never a limiting factor). If the foxes grow too numerous, the rabbit population 
is depleted until there are too few to sustain the foxes, and they starve. So we might imagine that the fox 
population will grow only to such a size that it consumes rabbits more or less at the same rate as they 
are replaced by the fecund rabbit community. Then the two populations would coexist in a more or less 
steady state, neither growing nor declining (Fig. 9.1a).

     



But when Vito Volterra put these ideas into mathematical form in the 1920s, he found that this 
steadystate solution is unlikely. Volterra was analysing the dynamics of predators and prey in the fish 
populations of the Adriatic, and as I mentioned in Chapter 3, he appropriated Alfred Lotka's model of 
oscillating chemical reactions to do it. The changes in concentration of chemical species in Lotka's 
equations then become changes in numbers (or population density) of the predator and prey 
communities. In general these equations suggest that both populations (let's stay with the foxes and 
rabbits rather than with Volterra's fish) oscillate between greater and smaller numbers over time. The 
oscillations of the foxes and rabbits are out of step with one another, and they can in principle persist 
indefinitely (Fig. 9.1b). In other words, oscillatingnot steadypopulations appear to be the norm.

Fig. 9.1 
The LotkaVolterra equations for predator 
prey interactions generate populations that 

reach a steady state (a) or, more commonly, that 
vary periodically in time (b). In the latter case the 

predator cycles lag behind those of the prey.

The idea of developing a mathematical theory for population dynamics was rather a bold one in 
Volterra's time; previously, one relied on intuitions like Malthus's. That's an understandable prejudice, 
since it's not hard to see that populations are subject to a lot of different factors which cannot easily be 
put in mathematical terms. Foxes and rabbits don't really go around hunting and hiding on a smooth 
grassy plain, independently of the rest of the ecosystemfood chains are extremely
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complex, and it can be very hard to predict the effect of a particular perturbation on a remote part of the 
chain. And there are external factors that surely have a bearing: the unpredictable fluctuations of the 
weather, the cycle of the seasons, the irregularities of terrain. But Volterra was a mathematician, not a 
biologist, and so had no qualms about making sweeping assumptions to simplify the dynamics of the 
ecosystem until they could take a precise mathematical form.

These dynamics can be expressed in three equations. Each equation contains quantities that appear in at 
least one of the other equations too, and so they are said to be coupled. Fortunately, we can put the 
equations rather easily into words. First:

(rabbits and grass) lead to (more rabbits), (9.1)

which seems entirely reasonable. Notice, however, that this is an autocatalytic process, since the 
'product' (rabbits on the right-hand side) is also 'reactant' (rabbits on the left). If left to its own devices, a 
rabbit population that obeys this rule will multiply exponentially. Of course, this kind of growth can't go 
on for ever, as Malthus understood; but we don't need to worry about the risk of overcrowding, because 
well before that possibility looms, the hungry foxes enter the picture. Then what happens is that:

(rabbits and foxes) lead to (more foxes) (9.2)

and we can't argue with that. This is an autocatalytic step for the fox population, in the course of which 
rabbits are consumed: they are there on the left, but on the right we end up only with more foxes (some 
with rabbits in their bellies). Finally:

(foxes) lead to (some dead foxes), (9.3)

which says that foxes die off at a steady rate.

Now as I say, Volterra didn't just conjure up this scheme of three 'reactions' to describe the interactions 
between predators and prey: he adapted it from Lotka, and it is called the Lotka-Volterra mechanism.

In general, the mathematical solutions for the way in which the populations change over time are 
oscillatory because the ecosystem is constantly overshooting. The foxes eat too many rabbits and find 
themselves without food. The fox population plummets as they starve, and this gives the rabbits some 
respite, allowing them to grow in number. But this works in the favour of the remaining foxes, who 
soon begin to multiply and deplete the rabbits again . . . and so the cycle repeats. There is a small range 
of growth rates that allow these oscillations to damp out and reach a steady state, but outside of this 
range the coupled equations possess a fundamental oscillatory instability with the character of a Hopf 
bifurcation (p. 67).

     



Although there have been attempts to apply the original Lotka-Volterra model to observations of real 
populations, these have revealed more of the model's shortcomings (due to the simplistic assumptions it 
makes) than its strengths. For one thing, the model assumes that predators are insatiable, and will keep 
eating no matter how much they've gorged themselves already. This isn't just unlikely, it is manifestly 
untrue. Most predators are better at capturing prey than the prey are at avoiding capture; and yet 
somehow predators typically contrive to establish an equilibrium with their prey whereby they content 
themselves with a sustainable number of catches.

Yet many populations of predators and their prey do indeed show oscillations in number with a more or 
less consistent periodicity. Cyclic fluctuations in the populations of herbivorous mammals, for instance, 
are commonsmall herbivores, like voles and lemmings, typically have roughly 4-year cycles; whereas 
larger ones, like muskrats, have 9-10-year cycles. Predators that prey on these creatures then tend to 
have population cycles of the same periodicity, and it's tempting to see these as the result of interactions 
of the Lotka-Volterra type. But reality is almost certainly not that simple. Take, for instance, the 
interactions between snowshoe hares and their predators the lynxes in eastern Canada. This is one of the 
few systems for which there are long records, because both animals have long been captured for their 
pelts by trappers for the Hudson Bay Company. Records of the number of fur catches have been kept 
since 1845, and if one assumes that the trappers always catch a fixed proportion of the population, the 
ups and downs of the catches should reflect those of the populations as a whole.

The numbers of both lynx and hare catches oscillate with something close to a 10-year cycle (Fig. 9.2), 
with the two oscillations slightly out of stepas predicted by the Lotka-Volterra scheme (Fig. 9.1). But if 
we look at the records closely, we can see that sometimes the predator cycles precede the prey's, 
implying that the hares are eating the lynxes! What is more, the life cycle of the lynx is such that its 
population grows considerably more slowly than that of the hares, and under these conditions Lotka-
Volterra cycles are not expected because the predators cannot expand fast enough to overtake and 
control the prey population.
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Fig. 9.2 
Roughly periodic fluctuations in population size are evident in the records of lynx 

and snowshoe hare catches kept by the Hudson Bay Company since the mid-nineteenth 
century. Both the predator (lynx: dashed line) and the prey (hare: solid line) populations 

oscillate with a periodicity of about 10 years. Are these Lotka-Volterra cycles? 
Probably not.

Ups and downs

The Lotka-Volterra mechanism may be too simplistic, but modified versions that include more realistic 
assumptions will also generate oscillating populations. So for many years it was assumed that the 
fundamental character of simple predator-prey interactions is indeed oscillatory. But in the mid-1970s, 
as the discovery of chaos was blooming within fields as diverse as meteorology and economics, 
ecologists began to realize that even simple models of population dynamics display an unguessed 
richness and complexity. Variants of the Lotka-Volterra scheme of coupled equations exhibit the full 
range of instabilities that we saw earlier for oscillating reactionsif the rates are changed, such that the 
predator and prey populations become ever more acutely sensitive to fluctuations in each other's 
numbers, the solutions display period-doubling bifurcations that lead to increasingly complex periodic 
oscillations and ultimately to chaosto fluctuations in population density without any apparent regularity 
at all.

     



What is more, you don't even need a predator to destabilize a population and tip it into oscillatory 
cycles: overcrowding alone will do the job. That even the simplest of population models can show 
dramatic and unpredictable ups and downs was demonstrated in the 1970s by Robert May, then at 
Princeton University, and George Oster at the University of California at Berkeley. They took a close 
look at a deceptively simple mathematical model of a population that breeds seasonally to produce 
generations that do not overlap. Many insect populations are of this sort. The mathematics of this model 
are outlined in Box 9.1, but you needn't trouble yourself with them if you are not mathematically 
inclined; it is enough to know that the size of each generation grows in proportion to that of the 
previous generation when the sizes are small, but is inhibited by overcrowding when the size 
approaches some critical threshold. A relationship of this sort can be considered to apply not only to 
insect populations but also to economic phenomena, such as the dependence of the price of an item on 
its quantity, and to some situations in the social sciences. The crucial point is that the equation is non-
linearcause (the size of the preceding generation) and effect (the size of the ensuing one) are not related 
in direct (linear) proportion to one another.

The model shows markedly different behaviour for different sensitivities of each successive population 
to the size of the previous one. This sensitivity is determined by a single parameter a (see eqn 9.4)the 
only adjustable parameter a model. For values of a less than 1, the population simply dies out, because 
the reproductive success is not high enough. For a value of a between 1 and 3, the population settles 
down to a steady valuegrowth never becomes so great that it overwhelms the resources. But when a 
exceeds 3, things get complicated. The population first oscillates in size between greater and smaller 
values in successive generations. Then it displays a series of period-doubling bifurcations as a gets 
bigger, so that the cycles repeat every two oscillations, every four, every eight and so on (Fig. 9.3). 
Finally, when a is larger than 3.57, the fluctuations appear to be irregularchaotic, in other words.

Ecologists had long known that real populations undergo irregular fluctuations in size that look random. 
But they had assumed that these were the result of the unpredictable influences of the 
environmentchanges in the weather, in crop yields and so on. Such influences undoubtedly play a role 
in introducing randomness to population dynamics, but what May and Oster showed was that there can 
also be an intrinsic chaotic unpredictability in the size of populations, irrespective of external factors.
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Fig. 9.3 
A simple model of a population that grows exponentially 

until limited by overcrowding (eqn 9.6) generates complex 
behaviour. For different values of the 'sensitivity' parameter a 

the model can produce a steady-state population (a), an oscillatory 
one (b), a period-doubled oscillation (c) or irregular, chaotic 

fluctuations (d).

One of the consequences of this behaviour is that the effects of perturbations to a population can be hard to predict. This, 
in fact, is what prompted Volterra to study the problem in the first place: he was attempting to understand why the 
relative proportions of predators and prey in fishermen's catches altered when the intensity of fishing activity altered 
(during wartime, for instance). The simplistic expectation would be that, while less fishing would deplete the fish stocks 
less rapidly and so lead to greater numbers in each catch, the effect would be the same for predators and prey. But in a 
nonlinear system that need not be so, since the effects on future populations of a sudden decrease in both predators and 
prey (due to fishing, say) depend on the relative rates with which the two populations recover from this change, and will 
not generally be identical.

Claiming your patch

Volterra's analysis assumes that the predator and prey populations are always well mixed, so that any changes take place 
equally throughout the system. But real populations are usually patchy: at any instant, there is likely to be some 
clustering of creatures separated by more sparsely populated regions. This is not only because of chance fluctuations 
around the average population density, but because of geographical features, such as vegetation differences, that will 
influence the way in which the creatures distribute themselves over the terrain. As the BZ reaction indicates, small 
variations in density can have big consequences in non-linear 'reacting' systems, and the influence of a local disturbance 
can propagate to distant regions. In particular, the combination of oscillatory behaviour and inhomogeneous spatial 
distributions can lead to pulsed travelling waves that emanate from a source region and pass through the

     



Box 9.1: Complex behaviour from a simple population model 

Let's assume that each insect in a population begets a certain average number (say, a) of offspring. Then the number in 
each generation i(Ni) determines the number in the next generation Ni+1 via direct proportionality:

Ni+1 = aNi.                                                    (9.4)

This relationship on its own gives rise to exponential growth of the population. But as Thomas Malthus appreciated, 
that kind of boom can't go on for everthere is always a limit on resources. So we can assume that there is some 
maximum size of population that the environment can support, called the carrying capacity and denoted here as K. The 
closer N gets to this maximum, the more the growth of the next generation will be curtailed. This can be represented by 
adding to equation 9.4 a factor (1-Ni/K), which is a measure of how close N is to K. The dependence of each generation 
on the previous one then becomes:

Ni+1 = aNi (1 –Ni/K)                                     (9.5)

which can be made simpler by introducing the scaling factor X = N/K, so that the equation is then:

Xi+1 = aXi (1 –Xi)                                          (9.6)

This is commonly called the logistic difference equation. How does it work? You can see that, once we scale the size 
of each generation N by the factor K, the scaled population size X must always remain below 1: if Xi =1, then Xi+1 goes 
to zero, so that the population collapses. Let's say that the population starts at a size X1 = 0.5. Then the next generation, 
X2 is of size 0.5a(1 – 0.5) = 0.25a. So if a = 2, X2 = 0.5; in other words, the next generation is the same size as the 
previous one. If a = 3, then X2 = 0.75the population grows. You might like to carry this iteration further for different 
values of a, to see what happens.
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whole system. Once we take into account the fact that it takes a finite time for a perturbation to the 
populations in one region to propagate to a distant regiondetermined by the rates at which the animals 
move from place to placeour simplified Lotka-Volterra scheme becomes a reaction-diffusion 
mechanism, and it raises the possibility of spatial patterning in the number densities of predators and 
prey. Within the framework developed in Chapters 3 and 4, we can regard the rabbits as the activator 
species that multiply locally, and the foxes as inhibitors that act over long ranges: equation 9.1 is the 
activation step (the more rabbits there are in any given region, the more rapidly they multiply); but this 
population boom is inhibited over longer ranges by the foxes stalking through the land (eqn 9.2). By 
framing these models as activator-inhibitor schemes, we raise the possibility of finding stationary 
(Turing) patterns in the distributions of predators and prey, if their relative diffusion rates are conducive.

But although the possibility of travelling waves and spatial patterning in predator-prey models has been 
appreciated ever since the work of biologist Ronald Fisher in the 1930s, it is only in recent years that 
the idea has gained much acceptance. This is partly because there are now well-established 
computational approaches, such as the use of cellular automata, for elucidating the kinds of patterns that 
reaction-diffusion systems can generate; but it is no doubt also a consequence of the mutual support and 
impetus now afforded by studies of spontaneous pattern formation in many different systems. 
Population biologists can now cite the appearance of patterns in physiological systems like the heart 
(see Chapter 3) and in bacterial colonies (see Chapters 3 and 5) in support of the proposal that such 
mathematically defined structures can indeed arise even in living systems.

What these studies of spatial dynamics in ecosystems have revealed is that patchiness becomes of 
central importance when the interactions between communities are non-linear. This discovery has 
overturned much of the accepted wisdom about how populations distribute themselves in the wild. Field 
biologists who go out and measure the densities of populations in their natural habitat have long found 
that these can vary tremendously from place to place. But such variations were assumed to be the result 
of ''noise", of randomness in the environment, and were therefore regarded as a nuisance that simply 
obscures the underlying 'true' dispersal behaviour of populations. Talking about the particular predator-
prey system of parasites and their hosts, the biologist Peter Kareiva from the University of Washington 
said in 1990 that:

As recently as a decade ago, any field ecologist who recorded widely scattered rates of parasitism 
bearing no relationship to the density of hosts would probably have shelved the data as useless . . . but 
we now know that such 'disorder' can be a source of 'order' in species interactions.

What he meant by this is that apparently random patchiness in populations can in fact be necessary to 
allow predators and prey to coexist in a stable state. This patchiness can itself be an intrinsic aspect of 
the interaction, not a result of superimposed noise.

     



In the early 1990s Michael Hassell of Imperial College in London, working with Robert May and 
others, cast much light on this role of spatial variability in interactions between parasitoids and their 
hosts. Parasitoids are a particularly nasty kind of parasite: they are insects that lay their eggs in (or close 
to) the host's body, and the parasitoid larvae devour and kill the host once they hatch. So parasitoids are 
the predators, and their hosts are the prey.

Fig. 9.4 
Periodic variations are evident in successive generations of azuki bean 

weevils (solid line) and the wasp parasitoids (dashed line) that prey on them. 
This is a special case of predator-prey interaction called a host-parasitoid 
system. Whether these are true Lotka-Volterra cycles is again not clear.

Host-parasitoid interactions in nature can display periodic oscillations much like those seen in standard 
predator-prey systems (Fig. 9.4). There are some subtle differences from true predation, but nonetheless 
the
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interaction can be described by a mathematical model similar to the Lotka-Volterra scheme. But when 
the two populations are assumed to be distributed uniformly across a landscape, such a model generates 
oscillations of ever-increasing amplitude. This is an unstable outcome, which means that eventually the 
hosts and then the parasitoids that feed on them are driven to extinction. The implication is that, 
according to this model, the host and parasitoid populations can't coexist with each other in the long 
term.

But what if the parasitoids are distributed in an uneven manner? Hassell and colleagues showed that if 
the variability in the density of parasitoids searching for hosts was great enough, the two populations 
could both manage to persist indefinitely. For a sufficiently variable parasitoid distribution, there would 
always be regions in which the hosts would escape predation. Within this picture, the spatial patterning 
(patchiness) seen in nature is not just noise scattered over the underlying population dynamics, but an 
essential stabilizing factor.

In 1991 Hassell, May and Hugh Comins took this idea a stage further by investigating the kinds of 
spatial patterning that host-parasitoid interactions could support. They modelled the ecosystem using a 
cellular automaton: the environment consisted of a square grid of cells, each of which contained a 
certain number of parasitoids and hosts. The ecosystem evolved in a series of time steps, and at each 
step two processes took place. First, the number of parasitoids and hosts in each cell changed according 
to the mathematical equations that describe the breeding of both populations and the killing of hosts by 
parasitoids. Second, both hosts and parasitoids could move to neighbouring cells: at each step, some 
fixed fraction left each cell and became distributed evenly amongst its eight neighbours. So there is both 
reaction (multiplication of both species, and killing of hosts) and diffusion (local cell-to-cell movement) 
in this model.

When started from a patchy distribution of hosts and parasitoids, the cellular model produces a variety 
of spatial patterns, which depend on the rates of diffusionthe fraction of creatures that depart from each 
cell during each time step. For a certain range of diffusion rates, dynamic spiral waves appear in the 
population densities (Fig. 9.5a)something that other predator-prey models had not previously shown. 
For other values of the diffusion rates, disordered, chaotic and constantly shifting patterns are seen (Fig. 
9.5b). And if the parasitoids disperse much more quickly than the hosts, the populations can 'freeze' into 
a crystal-like lattice of small patches spaced at roughly regular intervals and containing high densities of 
hosts, surrounded by large regions heavily populated with parasitoids (Fig. 9.5c). These are comparable 
to Turing structures generated by long-ranged inhibition. The point about all of these patterns is that 
they represent stable stateseven though the chaotic patterns change constantly, we never find the 
population collapses that take place in this same model if either the populations are uniform or if cell-to-
cell migration (diffusion) is not included. So again the spatial patterning here has the non-trivial 
ecological consequence of allowing otherwise unstable predator communities and their prey to survive 
in the same environment through a game of predatory hide-and-seek. This behaviour seems to be borne 
out by laboratory studies of predatory mites and their prey conducted by biologist Carl Huffaker of the 
University of California in 1958. He found that by imposing patchiness on the mite populations and 
maintaining it by restricting the mites' freedom to move around (something that involved a maze of 

     



Vaseline barriers placed amongst the food), the predators and prey could coexist for almost seven times 
as long as they could if the mites were unobstructed (so that the patchiness could be smoothed out).

There is at least one important lesson in these discoveries for our attempts to manage wildlife habitats: 
space matters. Some ecosystems need space to spread over, so that they can organize themselves into 
patchy communities that coexist where uniform ones cannot. The more we carve up the environment 
into isolated parcels by building roads and other barriers to the dispersal of species, the more we inhibit 
the opportunity of populations to use spatial patterning as a means of survival.

Self-organized community structures are in fact not at all uncommon in a wide range of ecosystems. 
Many animal and plant species gather together in patches, a distribution that is called contagious. Fish 
and plankton, for example, form schools, while plants such as alpine shrubs colonize a uniform ground 
in clumps of roughly the same size. On the other hand, plants that need a lot of root space, or animals 
that are strongly territorial, such as song birds, will distribute themselves so as to stay an optimal 
distance from their neighbours, a situation said to be negatively contagious. In the former case it is as if 
each individual in the community is attractive to others, and in the latter case as if they are repulsive. 
We can see these same kinds of quasi-regular distributions in non-living systems of particles or domains
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Fig. 9.5 
A cellular-automaton model of host-parasitoid interactions produces complex spatial patterns when patchy initial 

distributions are imposed. These include: (a) spiral waves, (b) chaotic patterns, and (c) stationary, almost regularly 
positioned islands of prey amongst a sea of predators. (Images: Michael Hassell, Imperial College, London.)
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that attract and repel one another, and I showed an example in Fig. 2.21. For some species, there is an 
ideal balance of attraction and repulsion: there is safety in numbers (the predator is less likely to pick 
you if you're one of a crowd) but too great a number incurs a risk of overcrowding and depletion of 
local resources. In striking a balance between these two factors, creatures may find themselves 
aggregating into small clusters that are more or less periodically spaced. This is seen, for example, in 
the pattern of nesting colonies of the bluegill sunfish, which form self-organized regular clusters of 
about 150 individuals on lake beds.

A lot of noise?

That anything so organized as a spiral wave could arise spontaneously in natural populations is too 
much for many ecologists to accept, and models like the cellular automaton of Hassell and colleagues 
have been dismissed by some as little more than a means of generating pretty patterns on a computer. 
One criticism that has been raised is that the models are purely deterministicnothing is left to chance. In 
real ecosystems there are randomizing elements, such as variations in landscape features and vegetation, 
which, say the critics, would wash out any elegant patterns like spirals. But Hassell and colleagues, as 
well as Graeme Ruxton and Pejman Rohani at Cambridge University, have shown that spiral patterns 
can persist even when a strong degree of random noise is injected into these models (Fig. 9.6).

Given, however, that population dynamics are non-linear, and that non-linear systems can be highly 
sensitive to small perturbations, it is hard to make any general predictions about the effect of the 
random environmental noise that is inevitably present in any ecosystem. Noise may inject a degree of 
fuzziness that washes out the finer points of ideal model equationsfor example, it can reduce to 
unobservability some of the later period doublings in the oscillatory regime of the logistic equation. But 
in other cases noise seems to do more than smear out the ups and downs of a populationit can radically 
alter the whole picture. For example, Kevin Higgins of the University of California at Davis and 
colleagues have shown that the large fluctuations in population size of the Dungeness crab off the North 
American west coast, which show some indication of a 10-year periodicity, can be reproduced by a 
mathematical model of the ecosystem dynamics only when small but significant random environmental 
perturbations are injected into the equations. Without the noise, the same model predicts a stable 
population size, which is quite different to what is observed.

     



Similarly, Spanish physicists Ricard Solé and José Vilar have suggested that noise is essential to 
account for the spatial patterns in some predator-prey communities. They have looked at the patchy 
distribution of plankton in the sea. Here the predators are the zooplankton, microscopic animals whose 
prey are the phytoplankton, the sea's tiny plant life. The zooplankton can swim around and so have a 
faster diffusion rate than their prey, which are simply carried passively by the ocean currents. Both 
predator and prey are distributed in a patchy fashion, but the phytoplankton patches are bigger than the 
zooplankton patches (Fig. 9.7a). Deterministic activator-inhibitor models of this ecosystem, based on 
Lotka-Volterra-type equations, give rise to blotchy Turing-type distributions of the two communitiesbut 
with precisely the opposite characteristics, the predator patches being larger. Solé and Vilar showed that 
by adding a random, noisy element to the distribution of predators in the activatorinhibitor scheme they 
could obtain just the kind of patchiness found in reality (Fig. 9.7b, c). You might think that this is no 
surprisethat noise is bound to make the predators more patchy. But the fact is that noise is normally a 
smoothing-out influence, since it disrupts spatial patterning by tending to impose an average blandness. 
Here it apparently has a very different effect.

Although they may be robust against noise, spiral waves appear only for rather specific conditions in 
the cellular model of Hassell and colleagues. If the parasitoids disperse to neighbouring cells more 
rapidly than the hosts (which is likely in practice), then disordered, chaotic patterns are favoured 
instead. So it might be very hard to find cases of spiral patterning in nature; but a search for chaotic 
patterns could be more fruitful. What does such a search reveal?

Well, these ideas of spontaneous patterning are still new enough in population biology that no one has 
yet made a serious attempt to verify them in field studies. Although we know that natural populations 
do tend to be distributed highly unevenly, it will be no mean feat to distinguish chaotic 'intrinsic' 
patterns from the variability imposed by external noise. Were the patterns seen in Carl Huffaker's 
experiments chaotic, for instance? No one has yet looked.

Strategic planning

The interaction between a predator and its preybetween the fox and the rabbitlacks much sophistication, 
at least in the model described above. If the fox
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finds the rabbit, it's lunchtime. If the rabbit is found by the fox, it's curtains. Of course, in reality the 
rabbits will not sit around passively while a fox strolls up to eat them; but the fact that they'll try to 
escape needn't influence our model in any major way. We can simply assume that on average, foxes 
encountering rabbits will catch them with a certain fixed probability. This probability merely affects the 
rate in equation 9.2 of the Lotka-Volterra scheme.

     



Fig. 9.6 
Spiral waves that appear in host-parasitoid models (a) can persist even 

when there is an appreciable element of randomness (noise) in the 
system (b). (Images: Pejman Rohani, University of Cambridge.)

What we don't expect is that the rabbit will persuade the fox of the unethical nature of carnivory. Nor 
will the rabbit suddenly access a furious boldness and eat the fox instead, or cajole its colleagues to beat 
off the fox through weight of numbers.
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Fig. 9.7 
(a) A transect through the ocean shows that both phytoplankton and their 

predators (zooplankton) are patchily distributed, with the latter more patchy 
than the former. (b) A reaction-diffusion-type predator-prey model can capture 

this kind of patchiness only when it incorporates noise, reflecting the randomizing 
influences in the environment. (c) A snapshot of the two-dimensional distribution 
of prey (white) in this model. (Image (c): Ricard Solé, Universidad Politecnica de 

Catalunya, Barcelona.)

Yet in human interactions, almost anything is possible. When we interact with our fellows, we are faced 
with choices. We don't, on the whole, eat one another, but we certainly do exploit each other for our 
personal gain. Yet we are also capable of showing much philanthropy: we might agree to cooperate to 
the benefit of us both, or we might even accept some personal loss for the good of others.

     



We may like to think that, by exercising these choices, and in particular by being prepared to make 
personal sacrifices for the greater good (or even just for the good of our neighbour), we are 
demonstrating our ability to rise above the brutish world of the wild, where the fittest survive and the 
meek are shown no mercy. But other animals show cooperative and selfless behaviour too. Vampire 
bats, unfairly caricaturized as the most demonic of beasts, will sometimes share their bounty of blood 
with their fellows. Sticklebacks will act collectively to investigate potentially dangerous intruders, some 
even putting themselves at greater risk than the others by volunteering to reconnoitre ahead of the pack. 
Chimpanzees will painstakingly groom one another.

Tempting though it is to anthropomorphize this behaviour, there is very little likelihood that ethical 
choices are involved. Animals act in the way that will serve their interests best. Many kinds of 
cooperative or apparently selfless behaviour are surely programmed into the animal's genetic make-up, 
because in the end these seemingly generous acts are beneficial to the chances of the individual's genes 
being propagated. This is not necessarily the same as benefiting the creature's chance of engendering 
offspring, because sometimes it is enough to know that your kin will benefit from your actions even if 
you don't. Your kin carry much of the same genetic make-up, and you might improve the chances of 
passing on your genes to future generations by making personal sacrifices for the good of your family. 
So genes that encourage altruism towards one's kin can be favoured by natural selection. This is part of 
the 'selfish gene' idea that Richard Dawkins has done so
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much to popularize: creatures are subject to genetically determined impulses, which act to enhance the 
genes' replicative success without regard for the whole organism.

To what extent our own actions are determined by this kind of genetic 'kin selection' is rich ground for 
controversy, but for the present purposes I want to consider a different kind of motivation for complex 
behaviour in interactive populations. Both we and (as we'll see later) some other animals often help or 
cooperate with others with whom we have no apparent kinship at all. I personally believe that humans 
generally do so for reasons that are not susceptible to rational analysis; but because this kind of 
behaviour is also seen in the animal world more widely, there is good reason to suspect that it can have 
a basis in 'rational' self-interest. Creatures that are habitually altruistic without receiving some 
recompense will not survive for long.

So why should selfish individuals be nice? One answer has been supplied by the discipline of game 
theory, which considers interactions that present the opportunity for individual choice. Game theory is 
the almost single-handed invention of the Hungarian physicist John von Neumann, who in the 1920s 
began an attempt to develop a mathematics that describes parlour games such as poker. One of von 
Neumann's earliest conclusions was alarming for those who enjoy games: chess, he proclaimed, is not a 
true game. Mathematically speaking, he said, a game must involve some element of uncertainty about 
the opponent's intentions. In poker, the 'game' element comes not from the question of who has the best 
hand, but from the business of who can persuade the other players that he or she has the best hand. The 
trouble with chess is that there is always a best next move. You'd have to have a brain many times more 
powerful than the best supercomputer to work it out, by playing through all the possible future 
sequencesbut the best choice exists, and a purely rational player would always take it. Then, two such 
players will always know what the other will do next, and the game might as well be played by 
automatons. But automatons are no good at bluffing.

Von Neumann laid the foundations of game theory in 1944 with the publication of the book Theory of 
Games and Economic Behaviour with his colleague Oskar Morgenstern. Their work has gone on to 
influence economists, politicians and sociologists, but it has also made itself felt in the realm of 
behavioural biology.

What have games got to do with animal behaviour? In short, the games that von Neumann's theory 
considers are those where the players (generally just two) compete to maximize their gain. The games 
have a pay-off for winners and a penalty for losers. It's a cut-throat affair every bit as ruthless as 
Darwin's theory can so easily appear.

But what game theory shows (which Darwinism perse does not) is that maximal ruthlessness and 
selfinterest does not always give the best return. There are some games in which it pays to cooperate, 
even if both players are determined to triumph over the other. Some of these are games that we can find 
being played out in nature.

     



The most notorious of them, called the Prisoner's Dilemma, developed from studies of perplexing 
games by Merrill Flood and Melvin Dresher at the Rand Corporation, a US governmental think-tank, in 
the early 1950s. The game is perplexing because it presents a paradox: the 'best' way for rational, selfish 
opponents to play doesn't give either of them the best result. Although Flood and Dresher initially 
conceived of it in somewhat different terms, the standard scenario for the Prisoner's Dilemma now runs 
as follows. Two people have been detained on suspicion of having committed a crime. The evidence is 
not watertight, but is sufficient to guarantee a 1-year conviction for both. However, if one of the 
prisoners were to testify to the guilt of the other, that would provide sufficient evidence to send the 
other down for 5 years. This would be a much more satisfactory outcome for the police, and so they 
offer to let each prisoner go if he testifies against the other. But if both prisoners shop the other (thus 
implying their own

Fig. 9.8 
Pays-offs in the Prisoner's Dilemma. The 

white triangles show the sentences for prisoner 1, and the grey triangles 
those for prisoner 2.What choice 

should each make?
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innocence), that would suggest that one or both are lying, and the punishment for this deceit is set at 3 
years' imprisonment for them both (Fig. 9.8).

What should they do? Well, the first prisoner is naturally tempted to shop his colleague, which offers 
the reward of freedomhe has no qualms about incriminating the other. This choice is termed defection 
within the jargon of the Prisoner's Dilemma. But he knows that this same temptation will be presented 
to his colleague. If his colleague is going to defectwell then, he'd be crazy not to, since otherwise he 
runs the risk of getting 5 years while his colleague walks away free. So he should defect, right?

This is surely the best thing to do. Whatever his colleague does, he'd be better off defecting. If his 
colleague doesn't defect (if instead he cooperates with his companion by not professing the other's 
guilt), then defection by the first prisoner will buy him his freedom, and his colleague goes down. But if 
his colleague does defect, he had better make sure he defects too, since that'll get him 3 years 
imprisonment instead of the 5 years he'd get by cooperating. So yes, he should defect.

The second prisoner, being equally rational, figures the same way too. So they both defect, and get 3 
years each. But waitif they'd both cooperated, they could both be better off, getting just a 1-year 
sentence. So why didn't they both cooperate instead?

The infuriating thing about the Prisoner's Dilemma is that rationality seems to frustrate the mutual good. 
The reason is that the game includes temptation: the players can see very plainly that there is an 
outcome that works for the mutual good (both cooperate), but they are tempted by an outcome that 
offers each individual an even better deal: freedom, instead of a 1-year sentence. They don't even have 
to succumb to this temptation themselves; just the fear that the other player will succumb is enough to 
drive each one of them to defection, since otherwise they could end up becoming an exploited sucker.

So the best way for a rational player to play is to always defect, since this way he is better off whatever 
his opponent does. That's a depressing conclusion: it implies that we're always best advised to try to 
exploit those with whom we interact. It doesn't make for the best of all possible worlds, but it would be 
a lot worse for us if we went round cooperating all the time. When in the 1950s and 60s the USA and 
the Soviet Union stood facing each other off with the threat of nuclear attack, the Prisoner's Dilemma 
was much talked about by military policy makers. It seemed to offer an unwelcome

message: it's best to stockpile nuclear arms. OK, so that consumes huge amounts of money and runs the 
risk of global destruction, but if you don't and the others do, you stand to be exploited. No wonder the 
rhetoric of 'better dead than Red' temporarily gripped the West.

But the story is not necessarily so disheartening. In real life, we don't just interact once with our fellow 
beings we are likely to do dealings with them again and again. We replay the Prisoner's Dilemma many 
times, if you will. This makes a critical difference to how we should play.

     



But surely the most rational way to play a game can't alter simply as a result of playing it repeatedly? 
Well, it can. The whole basis of the dilemma revolves around temptation and trust. If we play just once, 
our choice is cleardefect, because you'd be a sucker to trust the other person to cooperate. But if we 
keep replaying this same pattern, sooner or later you would expect rational opponents to stop, scratch 
their heads, and say 'wait a minutewouldn't we be getting more long-term advantage if we both decided 
to cooperate?'

Fig. 9.9 
The pay-offs for the Prisoner's Dilemma are 

more easily kept in account by making 
them rewards rather than punishments. 
Here the points awarded entail the same 

range of choices and outcomes as the penalties 
indicated in Fig. 9.8.

It's clearer to illustrate this by inverting the payoffs so that each player stands to gain something, rather 
than lose or at best break even, by playing. In other words, points are awarded on each round, and the 
idea is to maximize these over many iterations of the game. The payoffs in Fig. 9.9 present the same 
options as the sentences in Fig. 9.8: you do better to both cooperate than to both defect, but you do best 
of all if only you defect. Distrustful defectors might go for several rounds before
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realizing that, if only they'd cooperate, they could each be earning three points per round instead of one.

So is it always better to cooperate in the iterated Prisoner's Dilemma? That would make for a nice 
society to live in; but unfortunately, it would also be one that is utterly defenceless against exploiters. If 
you were to decide to cooperate in all interactions, no matter what the outcome, then you'd be a positive 
magnet for anyone looking to gain by defecting. They'd gleefully take away the highest payoff from 
each interaction, while you get nothing.

What, then, is the best way to behave in a society based on repeated Prisoner's Dilemma interactions? If 
there is a single answer to that question, no one has yet found it. What we do know is that some 
strategies are better than othersbut no single strategy seems to be best in all circumstances. This 
conclusion has emerged from Prisoner's Dilemma tournaments orchestrated by Robert Axelrod, a 
political scientist at the University of Michigan. In 1980 Axelrod announced a competition in which he 
invited all comers to submit strategies for playing the iterated Prisoner's Dilemma, and then he pitched 
all of the contestants against one another on a computer. Each strategy played against every other, and 
the winner was the one that emerged with the highest points.

Fig. 9.10 
The Tit-for-Tat strategy of the iterated (repeated) 

Prisoner's Dilemma begins by cooperating and 
then makes whatever choice its opponent made 

in the last round. This very simple strategy performs 
surprisingly well when faced with a variety of opponents.

     



In the first tournament, Axelrod received 14 entries. Some strategies were fairly simple; others were 
highly complex, involving the calculation of probabilities and so forth. But the simplest of all was the 
clear winner. It was submitted by Anatol Rapaport from the University of Toronto, and he called it Tit-
for-Tat. Its principle was: cooperate in the first round, and then do whatever your opponent did in the 
previous round.

The reason Tit-for-Tat is so effective is that it can be cooperative (for the mutual good) without being 
easy to exploit. If it is pitched against a completely cooperative opponent, both cooperate for the 
duration of the bout (Fig. 9.10). If pitched against a habitual defector, it loses the first round and then 
matches defection for defection thereafter. So it loses to its opponent in that bout (because of the first 
round), but it goes on to do much better than a defecting strategy when playing against nicer but not 
naive strategieslike itself. The strange thing is that Tit-for-Tat never does better than its opponent in any 
individual bout, but it does better than them all overall.

Or does it? One drawback with Tit-for-Tat is that it can get locked into cycles of recrimination. Suppose 
it plays another Tit-for-Tat strategy that is modified to try its luck just once. The two are happily 
cooperating, and then suddenly the opponent slips in a defection. So the next round, the pure Tit-for-Tat 
defects too. The opponent, which is geared to return to Tit-for-Tat after its single opportunistic 
defection, will respond with a defection in the next round, and the vicious circle repeats for the rest of 
the gameeven though both strategies would happily return to cooperation if they 'could' (Fig. 9.11).

Fig. 9.11 
The problem with Tit-for-Tat is 

that it is unforgiving. If a Tit-for-Tat-like opponent has a single 
aberration of exploitative behaviour (shown by the arrow) 
both players will become locked into a cycle of alternating 
exploitation from then oneven though both would return to 

mutual cooperation if they 'could'.

In reality, one could imagine these cycles of recrimination being initiated by accident. Sometimes, even 
with the best of intentions, we make mistakes; or we misinterpret the other person's actions. Robert 
Axelrod's tournaments were conducted with digital accuracy, but an iterated Prisoner's Dilemma would 
be a better model for real-world behaviour if it injected a small element of randomness into each 
strategy, so that occasionally they depart from their set rules and choose
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to cooperate or defect at random. When this happens, Tit-for-Tat's flaw becomes evidentit is too 
unforgiving. A single mistake between two Tit-for-Tat players dooms them both to alternating defection 
for the rest of the bout. Under these circumstances, a more forgiving strategy called Generous Tit-for-
Tat can fare better: this cooperates while the other player co-operates, but also has a certain probability 
of co-operating after the other player defectsit allows the benefit of the doubt (sometimes) that the other 
player defected only by accident, and so breaks the recriminatory cycle.

Axelrod's initial tournaments were conducted as a round-robin: each strategy was pitched against every 
other in a one-to-one showdown. But a better model for an interacting community would be one in 
which many different strategies are constantly interacting with one another. And rather than just tallying 
up the points won by each strategy, we can express their Darwinian 'fitness' in reproductive terms: after 
each match, the strategies replicate to an extent determined by how many points each has won. When 
Axelrod conducted tournaments like this, he found that Tit-for-Tat was still the 'fittest' strategy, even in 
the face of a small (1%) error rate in the responses.

But game theorists Martin Nowak from the University of Oxford and Karl Sigmund from the University 
of Vienna have shown that Tit-for-Tat's intolerance of mistakes represents a weakness that, while not 
debilitating in Axelrod's tournaments, may show up in a larger evolutionary arena. Because of this 
unforgivingness, Tit-for-Tat does not fare so well amongst its own kind: in a predominantly Tit-for-Tat 
population, mistakes are highly costly, and an unconditionally cooperative strategy may do at least as 
well, because it is not exploited by Tit-for-Tat but not penalized by mistakes. Nowak and Sigmund 
investigated strategies that base their next move on the outcome of the previous round, so that instead of 
just asking 'What did my opponent do last?', as Tit-for-Tat does, they ask 'How did I fare in that last 
encounter?'. And their strategies also differed from those in Axelrod's competition in that their 
behaviour was probabilistic rather than deterministic. This means that, rather than saying 'If the 
previous round produced result X, then I'll cooperate', they might say 'If it produced result X, I'll 
cooperate with 90% probability'. This way of introducing chance differs subtlely from that which 
allows for random errors, and reflects the possibility of a creature forgetting what happened to it in the 
previous exchange.

Nowak and Sigmund found that Tit-for-Tat was not the most successful strategy in these tournaments. 
Instead, it acted as a kind of catalyst that encouraged the population to become more cooperative but 
then faded away in favour of more forgiving strategies like Generous Tit-for-Tat. A population cannot 
afford to be overly generous while there are exploitative defecting strategies around, because these 
latter will just prey on the nicer ones. But Tit-for-Tat deals harshly with exploiters, paying them back 
measure for measure. It is kinder to cooperative ones, however, allowing them to benefit from their 
good behaviour. So Tit-for-Tat players act as a kind of police force, staying around long enough to deal 
with exploiters but disappearing when the community is cooperative enough not to need their 
protection. In the language of the business, Tit-for-Tat is not an evolutionarily stable strategy.

     



Nowak and Sigmund expected some variant of a Generous Tit-for-Tat strategy to be the fittest in these 
games. But in 1993 they discovered that another strategy, called Pavlov by mathematicians David and 
Vivian Kraines, can become dominant under these rules of play. Pavlov is not so nice: it bases its next 
move on the outcome of the last round, sticking to the last move it made if it gained a good pay-off but 
switching if the out-come was poor. To be more precise: if defection brought five points (because the 
opponent cooperated), it'll defect again; if defection brought one point (because the opponent defected 
too), it'll switch to cooperation, giving the opponent the chance to cooperate too. If cooperation brought 
it the sucker's pay-off of zero, it will defect on the next move; and if cooperation brought three points 
(because it was mutual), it'll co-operate next time around too. These option are shown in Fig. 9.12.

Fig. 9.12 
Pavlov is a strategy that could best be 

described as opportunistic. It will make 
its choices depending on how well it 

fared in the last round: if the outcome was 
'good' (white), it plays the same way in the 

next round, but if it was 'bad' (grey), it 
switches. Pavlov appears to be nice if that 

is to its benefit, but it will exploit cooperators 
ruthlessly if given the chance.
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Pavlov is not a new invention: Anatol Rapaport, Tit-for-Tat's creator, knew of it in 1965, and dismissed 
it as a 'simpleton' strategy. This is because, if pitched against strategies that always defect, Pavlov does 
rather poorly: it switches to cooperation every other round, and so gets repeatedly exploited. But in a 
mixed population, Pavlov is canny. It cooperates when it pays to do so (against the Tit-for-Tat police, 
for example), but unlike Tit-for-Tat it does not run the risk of being over-whelmed by nice strategies, 
such as Generous Tit-for-Tat, because it has no qualms about exploiting them with constant defection, if 
it is clear that this will bring no recrimination. The problem with highly cooperative populations is that, 
while they fare well amongst themselves, they are constantly at risk of being attacked and overtaken by 
defectors (which can arise by random mutations). Pavlov, however, is an exploiter that can masquerade 
as a cooperator when it pays to do so. And Nowak and Sigmund found that, if Pavlov has just a small 
element of randomness in its responses, it can even resist attack by habitual defectors.

Do real creatures show these strategies? In Axelrod's tournaments one could submit strategies that were 
as complicated as you like (and some were highly complicated); but animals (including us) do not base 
their interactions on the calculation of detailed probabilities or on the precise recollection of many past 
eventsthey tend to adopt very simple strategies. In this sense, Tit-for-Tat and Pavlov are plausible 
candidates for behavioural tendencies, since they base their choices on a simple consultation of what 
happened last time.

There is some evidence for Tit-for-Tat strategies amongst birds, bats, fish and monkeys. It is always 
important in these studies to distinguish between co-operative and sharing behaviour amongst kin, and 
that amongst creatures who are not closely related: as I indicated earlier, there are good reasons for the 
former behaviour to be genetically programmed irrespective of whether the 'altruistic' creature itself 
benefits from the exchange. Gerald Wilkinson of the University of California at San Diego showed in 
1984 that vampire bats may share the blood that they have foraged not only amongst kin but also 
amongst non-kin members of the community. Significantly, he found that individual bats that behaved 
more selfishly could be identified and excluded from sharing by the othersjust the kind of behaviour 
that Tit-for-Tat strategies reserve for defectors. Michael Lombardo of Rutgers University in New 
Brunswick saw Tit-for-Tat behaviour amongst tree swallows: he made it appear that some non-breeding 
birds that were helping parents to tend their young had killed some of the nestlings. The parents 
responded with hostility to the 'framed' birds, but returned to a more cooperative interaction when it 
appeared that the framed individuals were willing to continue cooperating at the nest. (If this 
experiment seems a trifle unjust to the framed suspects, you might be reassured to know that they were 
only stuffed models.) And in a remarkable study by Manfred Milinski of the Ruhr University in 
Germany, stickleback fish displayed Tit-for-Tat tendencies as they investigated a predator (a pike). 
Using a series of mirrors, Milinski persuaded individual sticklebacks that they were accompanied in 
their forays by companions who would either cooperate (stay with them) or defect (swim away). The 
sticklebacks tended to cooperate with a cooperative 'virtual' partner, continuing to approach the predator 
while their partner did so;but they would defectrefusing to approach closelyif the virtual partner 
appeared to do likewise.

The magic carpet

     



So far I've talked only about well-mixed populations, in which everyone encounters everyone else. But 
the world is not like that, of courseand we saw earlier that for simple Lotka-Volterra-style relationships 
between predators and prey, spatial variability can give rise to complex patterns. What about 
evolutionary Prisoner's Dilemma gamesdo they have characteristic patterns too, when played out over 
space? We can already see from the discussion above that there is the potential for regional differences 
in populations to arise and be sustained. Cooperative strategies do well together, but do terribly amongst 
defecting strategies; amongst the latter, only fellow defectors can survive. So we can see the possibility 
of segregation between cooperators and defectors. But these divisions need not be rigid or invariant: a 
single defector placed amongst a cooperative colony can undermine it, while Tit-for-Tats can convert a 
defecting population to a cooperative one.

A naive expectation, therefore, might be to see some crude segregation of cooperators and defectors in 
Prisoner's-Dilemma-Land. But Martin Nowak and Robert May got something of a shock when, in 1992, 
they set out to study how, in the simplest of scenarios, these two types of creature dispersed across a 
twodimensional checkerboard landscape. What they found were astonishing, kaleidoscopic patterns that 
put them in mind of Persian carpets (Plate 24). With only the simplest of rules, the strategic landscape 
becomes painted in complex and richly varied ways.
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Nowak and May abandoned all the strategic nuances of Tit-for-Tat, Pavlov and their cousins, and chose 
to work with just two kinds of player: those who always cooperated and those who always defected. No 
player had any memory of the previous encounter; they just acted out their cooperations or defections 
monotonously. And everything was deterministicthere were no errors, no probabilistic changes of 
strategy. The rules were simple. Each square of the checkerboard grid contains a player, and each player 
interacts with the eight all around (or fewer for sites on the edges of the board).*

The payoffs from each of these interactions are counted up according to the usual rules for the 
Prisoner's Dilemma, and for the next round, the square is inherited by whichever of the nine (the 
square's original occupant and its eight neighbours) had the highest score. This simulates the 
reproductive advantage of the fittest competitor in that group (Fig. 9.13).

Fig. 9.13 
The rules of the evolutionary game staged by Nowak 
and May. Each square is occupied by a contestant that 
competes by unconditional cooperation or defection 

against all its neighbours. The points for each if these 
interactions (either 1, 0, or a reward d for defection in the 

face of cooperation) are added up, and the square is 
colonized by a player of the same type as the one 

that scored highest amongst each player and all those 
it encountered. In the example shown here the players 
at the edges of the board have fewer neighbours and so 

fewer interactions. (Note that each square also competes 
against itself, to make the computation easier; but I haven't 

included this self-interaction here for simplicity.) White 
squares are cooperators, and grey squares are defectors.

     



We can see that defectors have an advantage over cooperators: defectors can hold their own amongst 
their own kind, but they also do well (much better, in fact) when on their own amongst cooperators. 
Lone cooperators, on the other hand, are immediately snuffed out by defectors. So one possibility is that 
defectors will just take over the entire board, presenting the depressing sight of an inexorable spread of 
selfishness. This will happen if the reward for defecting against a cooperator, designated d, is large 
enough (d = 5 in Fig. 9.9, for example). But if this reward is not too great, cooperators can gain a 
foothold, because mutual cooperation is more profitable than mutual defection. A cluster of cooperators 
can then support each other, while the defectors at the cluster's edges undermine their attempts to 
exploit the cooperators by their frustrated attempts to exploit each other too. Under these conditions, 
cooperators do better and better the more they spread, while defectors do worse and worse.

Fig. 9.14 
Patterns of cooperative and defecting communities. 
Black squares denote cooperators and grey squares 
defectors. White squares show those sites that have 

changed from cooperator to defector in the last round 
that is, sites where boundaries are shifting. This 

pattern occurs under payoff rules that favour cooperators. 
(Image: Martin Nowak, Oxford University.)

     



Nowak and May found that their communities could settle into states in which the patterns, while 
constantly shifting, would maintain a distinctive appearance. The relative proportions of cooperators 
and defectors in these 'dynamic steady states' reach an essentially constant value, which depends on the 
size of the reward parameter d, Figure 9.14 shows a pattern that results from relatively low rewards 
(values of d between 1.75 and 1.8). Here black squares are cooperators (C), grey squares are defectors 
(D), and white squares are those that have switched from C to D in the last round. We see that under 
these conditions, defectors don't do so

The players also interact with themselves, since this makes the calculations easier. But much the same 
behaviour is seen when this rather artificial self-interaction is excluded.
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wellthey can just about maintain a tenuous web through the background of cooperators. Also notice that 
the pattern is pretty staticonly a few squares change the nature of their occupants on each round.

     



Fig. 9.15 
When the payoffs for defection are slightly greater, 

the pattern becomes much more dynamic, with 
communities of both types constantly expanding 

and overwhelming one another (a). The grey scale here 
is the same as in Fig. 9.14. While the community structures 
change, the average proportion of cooperators and defectors 
remains more or less the same (b). (Image: Martin Nowak, 

Oxford University.)

But for a value of d greater than 1.8, something interesting happens. Then, the payoff is big enough for 
a two-by-two cluster of D squares to grow in a 'sea' of C, accumulating more D's around its periphery 
(particularly at the corners) on each round. This sounds like bad news for the C's, except that, so long as 
d remains

below 2, the same applies to C's: a two-by-two cluster of C can support itself well enough to grow 
within a sea of D. So we are faced with the interesting situation where a 'critical cluster' of D can invade 
a C community and vice versa. The patterns in this case become much more dynamic, with blobs of C 
and D continually expanding, colliding and breaking up (Fig. 9.15a. Under these conditions, there is 
always a lower proportion of C's than D's in the dynamic steady state: specifically, the landscape 
contains about 32% of C (Fig. 9.15b).

For values of d between 1.8 and 2, the most startling results are obtained when one starts with a sea of C 
and places a single D invader at its centre. The invader can expand because it exploits all the C's around 
it; but within this range of d, the C's retain the capacity to fight back. The result is the symmetrical, 
intricate battle depicted in Plate 24, in which the deployment of troops is constantly changing. Nowak 
and May claimed that this conflict will eventually generate 'every lace doily, rose window or Persian 
carpet you can imagine'. The patterns are, in fact, fractalfeatures appear on all possible size scales 
between the limits of the grid size and the board size.

Life is just a game

For all the infinite variety of patterns here, one can pick out a menagerie of characteristic forms that 
tend to recur again and againrather like the coherent structures that occasionally arise out of turbulence. 
These forms seem to have a life of their ownthey possess certain properties, and carry out specific roles 
within the community. For example, one grouping of cells appears to glide across the landscape (Fig. 
9.16a).the cells themselves don't really move, of course, but the shape of these gliders is faithfully 
transmitted from place to place. Regions of D are often invaded by

     



Fig. 9.16 
Characteristic cooperator structures that survive an 

propagate in a D community include: (a) Gliders, (b) Rotators 
and (c) Growers. The last of these expands into a set of 'jaws' 

that eats its way into the surrounding defectors.
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configurations of C that expand from 'growers' to eat up the D's like a set of jaws (Fig. 9.16c).

Nowak and May had seen such 'virtual creatures' before. Their game of cooperators and defectors is yet 
another cellular automaton, since the behaviour of each cell depends on that of its neighbours. Cellular 
automata, as we saw in Chapter 3, were the brainchild of John von Neumann and Stanislaw Ulam in the 
1930s. Von Neumann was interested in the idea of automatarobotic entitiesthat could interact according 
to simple rules. His dream was to create automata that could reproduce, and which could give birth to 
other automata that were more complex and sophisticated than themselves. In this way, he speculated, 
automata might evolve into thinking machines. Ulam helped von Neumann to develop this idea into a 
simple, tractable model. Instead of actually trying to build mechanical devices, they envisaged a 
periodic array of cells that could hold information by existing in one of several different states. In its 
simplest form, each cell holds a binary bita 1 or a 0. The state of each cell, however, is determined by 
the states of those around it, according to simple, deterministic rules. In this way, information can be 
transmitted from place to place, as each cell readjusts its state to reflect those of its neighbours. Von 
Neumann hoped that it might be possible to write into these cellular automata a pattern of information 
that would be capable of duplicating itself elsewhere on the checkerboard lattice.

There are innumerable ways in which each cell can influence its neighbours, and the spatial Prisoner's 
Dilemma model of May and Nowak represents just one of the possibilities. Robust, propagating cell 
clusters with distinct shapes and behavioural characteristics, like those in their scheme, are also a 
feature of one of the most famous of all cellular automata games, called the Game of Life. This was 
devised in the late 1960s by Cambridge mathematician John Horton Conway. It is a grand name to call 
a game, of course: at that time no one was used to thinking of these checkerboard experiments as 
metaphors for living systems, so to call the game 'Life' introduced a provocative new perspective, even 
though arguably much more biologically realistic cellular automata have since been proposed.

Conway's game resembles that of the cooperators and defectors insofar as it considers two types of cell 
which 'compete' for dominance of the landscape. (This might seem the most obvious first choice for a 
cellular automaton, but von Neumann initially considered 29 cell states!) The two states are considered 
to represent

cells that are either living or dead. The state of each cell in each round is determined by that of its eight 
neighbours in the previous round, according to the following rules:

1. A 'living' cell will stay alive if it has two or three living neighbours. If there are fewer or more than 
this, it dies.

2. A 'dead' cell will stay dead unless it has exactly three live neighbours, in which case it too comes 
alive.

     



We can justify these rules in biological terms, although the precise numbers are somewhat arbitrary. 
Living cells surrounded by too many other living cells die of overcrowdingthey starve. Living cells 
surrounded by too few others, meanwhile, die of 'exposure'you could say that they don't encounter 
enough others to reproduce. But groups of a certain size that surround a 'dead' cell can colonize it (make 
it come alive) by reproducing. OK, it takes a lot for granted about the way life works; but in Conway's 
Game of Life simplicity is a virtue, because it makes it relatively easy to explore the possible range of 
behaviour.

Fig. 9.17 
Denizens of the Game of Life. (a) Honey 

comb, (b) Long Snake, (c) Aircraft Carrier, 
(d) Sinking Ship.

And that range is extraordinary. From these very simple rules spring forms and patterns that you'd never 
be able to predict from an analysis of the rules. The only way to appreciate the Game of Life is to play 
it. As an increasing number of enthusiasts did so in the 1970s, they discovered a diverse zoo of robust 
cellular groupings, with colourful names such as the Snake, Ship, Beehive Loaf and Pulsar (Fig. 9.17). 
There were also Gliders, like those found in the game of cooperators and defectors. The ways in which 
these denizens of the twodimensional checkerboard world interact are suggestive of the encounters 
between different speciessome ignore each other, some prey on each other, others
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Fig. 9.18 
Snapshots of 'live' (black) cells on the checkerboard of the Game of 

Life. These are just a few of an immense gallery of patterns that have 
been observed.

replicate. Meanwhile, elaborate, shifting spatial patterns of living and dead cells unfold across the 
landscape (Fig. 9.18). The proportions of live and dead cells fluctuate as the game progresses, and 
significantly, these fluctuations appear to follow a 1/ f rule (see p. 211): mostly the variations are small, 
but on rare occasions one cell type or the other can sweep across the grid in profusion. In other words, 
this system seems to operate in a self-organized critical state. Within the Game of Life there is a whole 
universe of artificial life; it is a paradigm of the science of complexity, and has been described in some 
detail in several recent books.

There are endless variations on the rules governing the Game of Life cellular automatayou could alter, 
for example, the thresholds above which cells survive or die. Stephen Wolfram at the Institute for 
Advanced Studies in Princeton has managed to bring some structure to this multiplicity of universes by 
identifying four general classes of behaviour in cellular automata, of which the constantly shifting, 
complex patterns of the Game of Life exemplifies the most interesting. But I have little more to say 
about these games. They are a fascinating new facet of computer science, but it isn't at all clear that 
their relevance extends beyond this. Artificial-life enthusiasts are captivated by the gliders, ships and so 
forth for their own sake, not because they withstand any clear analogy with ecosystems in the real 
world. There is a great deal of social organization in the animal kingdom, but rarely does it take the 
form of a little cluster of individuals that progress across the landscape in a rigid, geometric 
arrangement. We might be reminded of the flying formations of birds, or the collective swarms of bees; 
but artificial life has so far had little to say to behavioural biologists about such traits.

Urban sprawl

     



The Game of Life might put you in mind of the models of bacterial communities described at the end of 
Chapter 5there too, we saw model representations of living organisms that, confined to a cellular grid, 
reproduced and ran the risk of starvation through over-population. (They were also able to move from 
place to place, however.) Biologically motivated rules of this sort were sufficient to generate the 
branched community structure, which looked for all the world like a metal electrodeposit grown by 
diffusion-limited aggregation.

As bacteria are rather simple creatures, we can probably accept this resemblance to the patterns of the 
inanimate world with equanimity. How humbling, then, to find that a very similar picture emerges when 
we look at the shapes of our own communitiescities!

Take a look, for instance, at a map of the employment density of London (Fig. 9.19a). It's a fragmented, 
irregular cluster of little units, and from this perspective we can't discern any sign of the regularity that 
urban planners might try to impose on the city's structure. Instead, this structure is highly reminiscent of 
that which one sees when microscopic polymer spheres stick together in solution (Fig. 9.19b), a 
phenomenon that mimics the flocculation of silt in a river. In this case, the central dense cluster steadily 
accumulates new particles at random points on its ramified periphery in a process that is essentially a 
variant of diffusion-limited aggregation (Chapter 5). Alternatively we might compare the city's shape to 
that of a bubble formed as air is injected under pressure into a liquid-saturated porous rock (Fig. 9.19c). 
Is this resemblance superficial, or are there really any similarities between these growth processes?

That question was addressed in the early 1990s by Michael Batty from the State University of New 
York,
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Fig. 9.19 
The shape of the city of London, as represented by this map of employment density, is an irregular cluster of 

small units (a). Rather similar shapes can be seen in the aggregation of polymer spheres in solution (b), and the 
slow percolation of air into very viscous oil (c). (Images: (a) Michael Batty, University College, London; (b) Arne 

Skjeltorp, Institute for Energy Technology, Kjeller; (c) Roland Lenormand, Institut Français du Petrole, 
Rueil-Malmaison.)

     



who, with Paul Longley from Bristol University, has shown that models based on diffusion-limited 
aggregation (DLA) can indeed reproduce much of the characteristic form and growth behaviour of 
major cities.

The models proposed by Batty and Longley represent a break from traditional studies of urban structure. 
It is scarcely surprising that, since the major preoccupation of urban planners is with the design of cities, 
they have generally attempted to analyse city forms in terms of the effects of their efforts. That is to say, 
theories of urban planning have tended to focus on cities in whose form the guiding hand of human 
design is clearly discernible.

The trouble is, hardly any cities are like this. In spite of the efforts of planners to impose a simplistic 
order, most large cities present an apparently disordered, irregular scatter of developed space, in which 
residential areas, business districts and green areas are mixed haphazardly. By focusing on regions 
where planning has created some regularity (like Manhattan's grid-iron street plan), urban theorists have 
often ignored the fact that overall, a city grows organically, not through the dictates of planners.

This is seldom what is intended. As geometry became a dominant aspect of ancient Greek thought, its 
influence extended beyond architecture into the way in
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which the buildings themselves were arranged in settlements. The grid street plan has a history older 
than Greek culture, being evident also in Babylon and the cities of Assyria. It found its apotheosis, 
perhaps, in the towns built by Imperial Rome, since it provided a scheme by which these 
settlementsoften starting as military encampmentscould be erected quickly. The grid-iron pattern has 
been used extensively in North American towns and cities (Fig. 9.20a).

Also strongly featured throughout history is the radial or circular city plan, which became particularly 
favoured during the Renaissance (Fig. 9.20b). In the twentieth century these two forms have been 
augmented by other, more exploratory forms, such as the curvilinear plan, and an expansion into the 
third dimension in the form of tower blocks. Yet for all the bold schemes of planners, most cities have 
always ended up with an irregular appearance like that of modern Londonan indication that they have 
grown 'too fast to plan'. Cities began to grow with particular alacrity during the Middle Ages in Europe, 
and their expansion really took off in both the New and Old Worlds in the nineteenth century. But even 
the 'classical' cities of Athens and Rome ended up with an organic appearance, although what we can 
now see of their ancient remains distorts this picture because the parts that remain tend to be those on 
which most forethought and money were lavished.

So it appears that cities are, and have probably always been, non-equilibrium structures. This is a notion 
that might seem unpalatable to planners, an indication that in the broad scheme of things they have little 
control. Yet the idea of an 'organic city' is an old one, though it has gained more acceptance in the past 
century. Cities have been compared to living organisms, with a heart (the central business district), a 
vascular system (transportation networks), lungs (green spaces) and so forth. The concept has been 
received with ambivalence, however. Should cities be allowed to grow this way, or should we try to 
impose some structure on it all? Does irregular growth mean that cities will get out of hand, that we will 
see an accretion of slums and a decline in public services; or do cities grow as they 'need' to, so that the 
imposition of a rigid geometry constrains social and functional structures and ends up creating more 
problems than it solves?

No doubt these are questions that will continue to be debated, and it's very unlikely that there is a 
universal answer independent of the social and economic context in which growth occurs. But what 
bothered Batty and Longley is that there weren't even any good models to describe how cities grow. 
The value of a good predictive

model for urban growth would be tremendousit would, for instance, allow planners to make accurate 
predictions about the likely future requirements of an area in terms of transportation, water, gas and 
electricity supplies, and so forth. In their 1994 book Fractal Cities, Batty and Longley state:

There is a need for a geometry that grapples directly with the notion that most cities display organic or 
natural growth, that form cannot be properly described, let alone explained, using Euclidean geometry.

And Batty believed, as his title proclaimed, that this new geometry was to be found in the concept of 
fractals developed by Benoit Mandelbrotthe 'geometry of nature'.

     



One clue to the fact that cities have fractal characteristics lies in the observation that they obey scaling 
laws. You might recall from earlier chapters that these laws relate some property of the system (say, 
population density p) to some other variable (say, distance from the city centre x) through a power law: 
p ∝ xn. Urban planners have long known that urbanized areas do obey scaling laws: for example, they 
describe the relationship between the size (in population, say) of a settlement (a city, town or village) 
and the number of such settlements in a given area. There are many more small villages than there are 
towns, and still fewer cities, in any geographical area. This sounds obvious, but the scaling law 
quantifies that obviousness by assigning it some scaling exponent n, and so gives urban modellers 
something concrete to test their models against.

But for decades, urban theorists have been stumped by the known scaling laws describing the shapes 
and growth processes of cities. They could measure them, but they couldn't then figure out how these 
particular laws arose from the underlying economic and demographic processes that determine the 
evolution of an urban area. A physical model that captures the growth and scaling behaviour of 
cityscapes would not just provide an empirical predictive tool; it might suggest to planners what the 
underlying rules are that determine a city's form.

Fractal geometry provides a means to characterize both the structure of a city and the way that this 
changes over time. In the early 1990s, Batty and others used the methods of fractal analysis to deduce 
the fractal dimensions of cities from maps like that in Fig. 9.19a. They found that these span a range of 
values, typically between about 1.4 and 1.9: for example, for London in 1962 the fractal dimension was 
1.77, for Berlin in 1945 it was 1.69 and for Pittsburgh in 1990 it was 1.78. The
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Fig. 9.20 
Geometric cities: (a) the grid-iron plan is a common feature of North American cities, such 
as Washington DC; (b) the radial design of the Renaissance city of Palma Nuova in Italy. 

(Images: (a) Michael Batty, University College, London; (b) from Batty & Longley 1994, after 
Morris 1979.)
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Fig. 9.21 
The Paris metro is a branched network with a fractal form. 

(Image: M. Daoud, CEN Saclay.)

closer the fractal dimension is to 2, the more dense the city isthe more it resembles a blob that spreads 
without gaps over the landscape. In general, this dimension increases slowly over time, reflecting the 
fact that more and more of the 'free' space between centres of development tends to get filled in. In 
addition, two teams of French researchers have found that the transportation networks of Lyon, Paris 
and Stuttgart are branched fractals with dimensions ranging from only just over 1 (a very sparse 
network) to almost 1.9. The Paris metro and suburban rail network, for instance, has a fractal dimension 
of 1.47 (Fig. 9.21).

     



What do these numbers mean? Well, not much by themselvesthe challenge is to understand how they 
come about, to look for a model of a growth process that reproduces the observations. Now, Batty and 
Longley realized that the mean fractal dimension of the cities that they and others had analysedabout 
1.7is rather close to the fractal dimension of DLA clusters, 1.71 (see p. 115). So as a 'baseline' model 
for urban growth, they decided to use the DLA model developed in the 1980s. In DLA, particles 
execute random walks until they strike the perimeter of a growing cluster, whereupon they stick where 
they strike. Batty and Longley suggested that maybe something similar happens as cities grow: new 
development units (such as business or residential neighbourhoods) are gradually added to the city with 
a probability that is greater at the city's perimeter (since there is more space there for the development). 
Of course, this highly simplistic model ignores a great deal that is important for urban developmentnot 
least, all efforts of planners to impose some order on it! All the same, the researchers found that some of 
the scaling laws observed in real cities, such as those describing the dependence of variables like the 
number or density of 'development units' on the distance from the city centre, are similar to those that 
pertain to the number or density of particles in a DLA cluster.

But for all that they might have similar fractal dimensions and scaling laws, DLA clusters (Fig. 5.7) and 
fractal cities (Fig. 9.19a) don't look very alike. This is a crucial consideration for disordered patterns: 
while, as I mentioned in Chapter 5, it is not necessarily enough to judge similarities by appearances 
alone, we can't neglect them either. The denser, more compact forms of cities can be more closely 
approximated by relaxing the 'stick-where-you-hit' rule for DLA. If the particles are allowed the chance 
to make a few hops around the cluster's periphery before finally becoming immobile, the result is a 
form like that shown in Fig. 9.19b. In effect, a model of this sort assumes that the particles are less 
sticky, so that they don't necessarily become attached where they first strike the cluster but only have a 
certain probability of sticking each time they strike. By allowing for improved packing, the model 
brings the resulting non-equilibrium cluster a little closer to the equilibrium form of a close-packed 
crystal.

But the real challenge is in finding a physical model of city growth that makes sense in terms of the 
processes involvedwe know, for example, that urban development does not really bounce from site to 
site before finally coming to rest. Batty and Longley explored one such variation on the DLA model: 
the dielectric breakdown model (DBM) introduced in Chapter 6. You may recall that this model 
generates fractal electrical discharge patterns, like lightning, which can have forms and fractal 
dimensions very closely related to those of DLA. But the DBM is a more physically realistic model for 
urban growth, because it creates clusters that 'push their way out' from a central point, rather than ones 
that grow by accumulating wandering particles at their edges. The former is a better approximation to 
the way that cities expand: by a kind of pressure on new development to spread outwards and colonize 
the surrounding land.

  

     



Page 247

Fig. 9.22 
The dielectric breakdown model (DBM) provides an attractive model for city growth because the density 

of its branches can be adjusted by changing a model parameter, denoted η. When η is large, the branching pattern 
is highly linear, with a fractal dimension close to 1 (right). As η decreases, the pattern becomes denser, and the 

fractal dimension approaches 2 (left). From left to right, η = 0, 0.5, 2, 4. (Images: Michael Batty, University 
College, London.)

But what really attracted Batty and Longley to the DBM was the fact that the form of the clusters it 
generates can be tuned from highly tenuous, almost linear shapes to dense, more circular ones. The 
DBM discharge advances from its perimeter at random, but with a probability that is higher where the 
electric field around the perimeter is highest (that is, at the tips). The discharge patterns can be tuned by 
varying how strongly the higher-field positions are favoured as the locations of further growth. As this 
bias gets smaller, the pattern becomes more circular and dense (the fractal dimension approaches 2), 
whereas if the bias is made very large then growth is completely dominated by the very first tips, and 
the clusters are highly linear (the fractal dimension approaches 1) (Fig. 9.22). Batty and Longley 
suggested that this bias could be loosely associated with the degree to which planning influences the 
city's growth: highly linear cities are not very 'natural', requiring a strong degree of planning, whereas 
cities that are entirely unplanned should resemble more closely the amorphous mass on the left of Fig. 
9.22. The strength of the bias is determined by a parameter denoted η (pronounced 'eta') in the model. 
When η is equal to 1, the model generates DLA-like clusters; when η is zero, the cluster is dense.

Using this approach, Batty and Longley attempted to simulate the growth of the city of Cardiff (Fig. 
9.23). They conducted a simulation of DBM growth constrained by the local geography: by the presence 
of the coastline to the southeast and the rivers Taff (to the west of the city centre) and Rhymney (to the 
east). The cluster was seeded from a point between these rivers. Its probability of growth became zero 
(sensibly enough) beyond the coastline; and the rivers too acted as impenetrable barriers to growth 
except at two points, where the cluster could 'squeeze' across bridges. In the model, these bridges were 
located where real ones exist in Cardiff. The results of the model, for different values of the probability 
bias parameter η (Fig. 9.23b-e), show that somewhat realistic approximations to the city shape can be 
generated when η is a little less than 1.

     



But physicists Hernàn Makse, Gene Stanley and Shlomo Havlin from Boston University were not 
persuaded that these models of fractal cities mirror the reality. For one thing, the models predict that 
cities form a single large fractal cluster, which is densest in the centre (around the central business 
district) and gets rapidly more tenuous, growing almost exclusively from the tips of its outer periphery. 
That doesn't sound quite right. Local areas of development commonly spring up around the verges of a 
city, creating little satellite clusters of population. As the city grows, these local developments get 
swallowed up by the sprawl. You can see several clusters of this sort beyond the edges of the main 
cluster in the structure of London (Fig. 9.19a).

The Boston physicists decided that a new growth model was needed to capture this sort of structure. 
They realized that in urban areas, localized development can be correlated. This means that, rather than 
new units appearing entirely at random, the development in any area is sensitive to what is happening in 
the immediate vicinity. In short, development attracts further development. Once two small clusters of 
population appear in close proximity, there is a good chance that development will spring up between 
themshops to serve the new inhabitants, or local businesses keen to gain a
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Fig. 9.23 
The DBM has been used to model the growth of the city of Cardiff, which is constrained 

by a coastline and by two rivers. (a) The structure of the real city today, with the city shown 
as dark grey and the sea as light grey. (b-e) Model simulations for different values of the 
parameter η in the model. The best match occurs for a value of η around 0.75. Note that 

bridges are included to allow the city to spill over the rivers in two places. In these simulated 
images, earlier growth is shown as lighter. (Images: Michael Batty.)
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foothold in an 'up-and-coming' area. To simulate this sort of local correlation, Makse and colleagues 
borrowed from physics the so-called correlated percolation model, developed to mimic the kind of fluid 
permeation process discussed in Chapter 6. Within this model, new particles (representing units of 
population) are added to a growing cluster at random, as in DLA; but in addition, growth in one region 
enhances the prospects of growth nearby, with a probability that falls off quite sharply with distance. So 
the addition of new particles is not fully randomit depends on what happens in the immediate 
neighbourhood.

     



Fig. 9.24 
Simulations of urban growth using the correlated 

percolation model. For increasing degrees of 
correlation between the growth units, the shape 

changes from more or less circular (a, for no correlation) 
to increasingly fragmented and clumpy (b, c). (Images: 

Hernán Makse, Schlumberger-Doll Research, Ridgefield, 
Connecticut.)

This model can generate a jumbled scattering of clusters of different sizes. But real cities are firmly 
rooted to a core, which is usually the central business districtit has been long known that the population 
density tends on average to fall off exponentially with distance from this core. So to provide their 
simulated cities with a root, Makse and colleagues imposed the condition that the probability of adding 
a new unit declined exponentially from a central point. This rule on its own generates a compact, 
roughly circular cluster in which the population (that is, the density of particles) falls off fairly smoothly 
with increasing distance from the centre (Fig. 9.24a). The short-ranged correlation between units is 
added on top of this basic pattern, and as the degree of correlation becomes stronger, the cluster breaks 
up into fine-scale sub-clusters and tendrils which resemble the structures that spread from a real city 
(Fig. 9.24b, c.

     



Fig. 9.25 
The performance of the correlated percolation model 

can be tested by looking at the scaling law that it 
predicts for the number of towns N around the 

city that have a size S. The real data from Berlin in 1920 and 
1945, and from London in 1981, all show a power law with 
an exponent of about 2.06 (which shows up on the log-log 

plot here as a straight line with a slope of 2.06). The 
strongly correlated model (solid line) gives the same 

scaling law, whereas in the absence of correlations the slope 
is steeper, corresponding to an exponent of 2.45. (After: Makse 

et al. 1995.)

You can probably see straight away that this shape looks more realistic than Batty's DLA- or DBM-
based
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Fig. 9.26 
(a) The growth of Berlin from 1875 to 1945. (b) The growth of a city predicted by the correlated 

percolation model. (Images: Hernán Makse.)

     



forms, at least for a city like London. But Makse and colleagues wanted more quantitative tests. First 
they looked at the scaling law relating the number of towns surrounding a large city (N) to the size of 
those towns (S). The models predict a scaling law in which N increases in proportion to Sn, with the 
numerical value of the exponent n depending on how strongly correlated the growth is. For the 
completely uncorrelated model (Fig. 9.24a), n has the value 2.45; for strongly correlated growth, n is 
equal to 2.06. As we saw in the last chapter,
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log-log plots of these scaling relationships give straight lines with slopes equal to the value of n. The 
difference in slope seems rather subtle; but when the researchers plotted the real data for N and S for 
three different urban environmentsBerlin as it was in 1920, Berlin in 1945 and London in 1981they 
found that the data seemed to fall on or close to the less steep line, corresponding to the strongly 
correlated model (Fig. 9.25). In other words, these cities do indeed seem to show correlated growth.

As a further test, the researchers showed that their model generated a pretty good picture of how city 
shapes evolve over time: Fig. 9.26a shows how Berlin and its environs have developed from 1875 to 
1945, while Fig. 9.26b shows the kind of growth predicted by the strongly correlated model. Not only 
do these look similar to the eye, but they show similar scaling relationships in terms of how the 
population density falls off with increasing distance from the centre of the city.

What does any of this tell us about urban growth? By showing that at least some aspects of city shapes 
can be reproduced by physical models, such as diffusion-limited aggregation or the dielectric 
breakdown model, Batty and Longley demonstrated that randomnessuncoordinated local decisions 
about development, akin to the uncoordinated aggregation of particles in DLAis by itself enough to 
generate the characteristic clumpy, messy sprawl of cities. But in addition, they showed that this 
randomness is modulated by (in Batty's words) a 'deeper order'. In other words, different cities share 
scaling laws in common because they follow a certain class of growth processone that includes other, 
apparently far simpler phenomena such as silt flocculation or electrical sparking. Says Batty, 'The time 
is now ripe for the new approach to cities and urban form for which we have been waiting for more than 
a generation'.

He points out that, while his simpler DLA and dielectric breakdown models work fairly well in 
describing the shapes of cities that sprung up during the early industrial erawhich tended to be single 
clusters organized around the central business districtthe model of Makse and co-workers is better 
suited to capturing the growth and form of post-industrial cities. In these, new communications 
technologies have made work in the centre of the city less prevalent, and the structures therefore tend to 
be less centralized. In addition, the centres of many large cities have become less desirable as places of 
work or residencethey have fallen prey to 'inner-city' decay, while affluent population centres evolve 
around the city edges. The concept of an 'edge city' is providing a new paradigm for urban life in the 
USA.

The success of these physical models, based on random growth influenced by local interactions, in 
describing the forms of cities has a salutary message for planners too. It raises the question of whether 
centralized planning for an 'organism' as complex as a city has any chance of succeeding. In the 1960s, 
planners sought to influence the way in which London sprawled into the surrounding countryside with a 
Green Belt policy that would restrict urbanization. Yet there is no sign that these policies have had any 
effect on the city's growth, which has gone right on expanding to the tune of the same scaling laws. It 
will take more than this, it seems, to undermine the inexorable physics of cities.
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10 
Principles

Nature uses only the longest threads to weave her patterns, so each small piece of her fabric reveals the 
organization of the entire tapestry. 
Richard Feynman 
The Character of Physical Law

I hope you have not been holding your breath in anticipation that in this final chapter I will disclose a 
grand, unifying picture of pattern formation. I had better start out by saying that I shall not be 
presenting one, since I don't know that such a thing exists. Some physicists have in recent years 
encouraged an unfortunate aspiration towards grand unified pictures, but I fear we must accept that the 
world that we encounter, the world of real stuff that we see and touch, is far too messy for that.

At the same time, it is far more beautiful. Perhaps it is a matter of taste, but I feel that there is much 
more wonder in a world that weaves its own tapestry using countless elegant and subtle variations, 
combinations and modifications of a handful of common processes than one in which the details 
become irrelevant, in which a few recondite equations are supposed to provide us with all we need. To 
my mind, the astonishing thing about, let's say, butterfly wing patterns, is not just that we can implicate 
a few basic processes that lie at the heart of them all (reaction-diffusion mechanisms? morphogenetic 
fields?) but that small changes in the details, in the specific initial or boundary conditions, produce such 
fantastic variety. By the same token, the patterns of a river network and of a retinal nerve are both the 
same and utterly different. It is not enough to call them both fractal, or even to calculate a fractal 
dimension. To explain a river network fully, we must take into account the complicated realities of 
sediment transport, of changing meteorological conditions, of the specific vagaries of the underlying 
bedrock geologythings that have nothing to do with nerve cells.

     



Physicist Rolf Landauer has expressed very succinctly this need to resist over-enthusiastic attempts at 
universalization:

A complex system is exactly that; there are many things going on simultaneously. If you search 
carefully, you can find your favorite toy: fractals, chaos, self-organized criticality, phase transition 
analogies [which I'm coming to], Lotka-Volterra predator-prey oscillations, etc., in some corner, in a 
relatively well-developed and isolated way. But do not expect any single simple insight to explain it all.

I guess it is a shame to begin a summary chapter with a caution against too much summarizing, but I 
think it is best that I do so. For the ideas that form the backbone of our understanding of spontaneous 
pattern formation seem so powerful, so all-encompassing, that they are all too often paraded as the keys 
to a theory of everything. Even D'Arcy Thompson would not have wanted us to believe that.

And yet what is extraordinary and thrilling is that so many pattern-forming systems have so much in 
common, to the extent, that by understanding one, we can predict a great deal about the others. This 
realization has made a delicious mockery of the traditional, rigid divisions between scientific 
disciplines, so that physicist, economist, ecologist, chemical engineer and geologist can all talk to one 
anotherand in the same language. When this happens, something very exciting is going on in science.
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And yet we've seen that many of the ideas behind pattern formation are not new. Oscillating chemical 
reactions were known in 1901; convection cells showed up around 1900; and Kepler perceived an 
underlying sixfold symmetry in the snowflake's make-up in the seventeenth century. But D'Arcy 
Thompson was unable to persuade most of his peers of the importance of form and pattern in the 1920s, 
and only in the past two decades or so has pattern formation emerged as anything like an identifiable 
field of study in its own right. Why so?

Surely one of the most pivotal reasons is the explosion in computer power. Many of the theoretical 
ideas about patterning are tough to test experimentally, since there are so many factors to bring 
simultaneously under control; but as we've seen in every previous chapter, computers allow researchers 
to perform 'ideal' experiments in which everything can be repeated exactly and complicating factors 
included or excluded at will. Many theoretical models are simple in principle but utterly impossible to 
test by manual number-crunchingthe calculations would take astronomical times if done by hand. But 
although this increase in computer power has provided scientists with perhaps the most important 
technological tool currently at their disposal, I thinkit also serves to underline the phenomenal 
achievements of early researchers into complex systems, like Lord Rayleigh, Geoffrey Taylor and 
Andrei Kolmogorov, who had to rely on their exquisite intuition alone to deduce the essential physics of 
pattern-forming processes.

I believe that there is another factor, little emphasized but equally important, in the recent development 
of ideas in pattern formation. This is the maturation in the past two decades of a field of theoretical 
physics that provides much of the framework for understanding the features that accompany 
spontaneous patterning, such as abrupt, global changes of state and scaling laws. The field is the study 
of phase transitions and critical phenomena, and it is the bedrock of all of physics today. I shall say 
more about this discipline in what follows.

So let me now try to pull together some of the threads that have run, more or less perceptibly, through 
all of the previous chapters. They do not collectively constitute a 'theory of patterns' (much the same 
could be said of the mixed bag of concepts that are popularly touted as 'chaos theory'). Rather, these 
ideas are like stepping stones that lead us through the turbulent ebb and flow of pattern and form in the 
physical and natural world.

Competing forces

     



Spontaneous patterns represent a compromise. The ordered bicontinuous phases of block co-polymers 
and surfactants (Chapter 2) are an elegant solution to the conflicting demands of minimal surface area, 
minimal curvature and optimal molecular packing. The dynamic spiral waves and static Turing 
structures of non-linear chemical reactions result from a delicate balance between reaction and 
diffusion, between short-ranged activation (autocatalysis) and long-ranged inhibition. The bulbous 
pseudopodia of viscous fingering are the manifestation of competition between the Saffman-Taylor 
instability, which promotes branching, and surface tension, which limits its size scale. When anisotropy 
is thrown in to the balance, we get the Christmas-tree arms of dendrites, so long as noise does not 
overwhelm them. Vortex streets appear in fluid shear flows when the wavy instability wins out over 
viscosity.

Competition lies at the heart of beauty and complexity in pattern formation. If the competition is too 
one-sided, all form disappears, and one gets either unstructured, shifting randomness or featureless 
homogeneitybland, in either event. Patterns live on the edge, in a fertile borderland between these 
extremes, where small changes can have large effects. This is, I suppose, what we are to infer from the 
clichéd phrase 'the edge of chaos', beloved of complexity enthusiasts. Pattern appears when competing 
forces banish uniformity but cannot quite induce chaos. It sounds like a dangerous place to be, but it is 
where we have always lived.

Symmetry breaking

At the beginning of the book I explained that spontaneous patterns generally arise from a state of higher 
symmetry, so that the patterning process breaks symmetry. In this way we saw (I hope) the important 
distinction between symmetry and pattern: high symmetry does not by any means imply the richest 
patterns, and indeed those that appear to us to be most striking often have rather low symmetry (such as 
Plate 17), or none at all (such as Fig. 5.6). On the other hand, symmetry tends to break a bit at a time, so 
that the first patterns that appear as a system is driven away from equilibrium are often highly 
symmetrical, such as the honeycomb array of Bénard convection cells. It is time in this final chapter to 
look at why a system might break its symmetry. In this respect, I will say for now only the following: 
that symmetry breaking is not like laying a tiled floor, or indeed like making a real
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honeycomb. A hexagonal cellular arrangement like that of Rayleigh- Bénard convection is not a matter 
of imposing cells of an arbitrary shape, one by one, on an inert medium. Rather, the medium  becomes 
everywhere at once imbued with a 'hexagon-forming tendency', once the critical Rayleigh number is 
exceeded. It then takes only the minutest fluctuation to trigger an expression of this 'hexagon-ness' 
globally. The hexagonal array seems to rise out of the floor, you might say.

Non-equilibrium

Nearly (but not entirely) all of the pattern-forming systems that I've discussed in this book are out of 
equilibrium. That is to say, they are not in their thermodynamically most stable state. Once scientists 
considered such systems to be unapproachable, perhaps even unseemly. Thermodynamics, the science 
of change that developed initially as an engineering discipline in the nineteenth century, was intended to 
describe the equilibrium state of systems. It told us about the direction of change, and about what 
amount of useful work we could expect to extract from such a change; but what actually took place 
during a change was something that classical thermodynamics could barely touch. It was a pretty good 
tool for chemical and mechanical engineers who wanted to figure out whether they were getting the best 
from their machines; but it ran up against the difficult fact that some processes never seem to reach 
equilibrium. A river does not simply empty itself into the sea in one glorious, ephemeral rushthe water 
is cycled back into the sky and redeposited in the highlands for another journey. And so will it always 
be, while the Sun still shines.

Systems out of equilibrium were scrupulously avoided by the early pioneers of thermodynamics, such 
as the German Rudolf Clausius and the American Josiah Willard Gibbs. As a result, thermodynamicsfor 
all its practical valuepresented a rather artificial view of the world, in which everything happens in a 
series of jumps between stable states that have no intrinsic time variation. Not much like the world we 
know!

Out of this somewhat restrictive picture, however, emerged the idea of a directionality to the process of 
change. It is a familiar enough observation that nearly all processes seem to have a preferred 
directionthey go one way but not the reverse. Heat flows from hot to cold, an ink droplet disperses in 
water. These processes are said to be irreversible. That they have a directionality in time appeals to our 
intuition, but it becomes something of a puzzle when we look closely at the microscopic physic behind 
such processes. In the equations that describe the motion of an individual ink particle in water, there is 
no 'arrow of time': you could play a film of the particle's progress backwards and not notice the 
difference, nor appear to break any physical laws. It is only when you look at the behaviour of the 
whole ensemble of particles that you'd notice anything odd when time is reversed: the droplet coalesces 
from a uniform solution of ink.

     



Irreversibility is connected with the second law of thermodynamics, which states that in a system 
isolated from its surroundings (so that it can't exchange energy or matter), the direction of change is 
always towards greater entropy. This is a probabilistic law, one that emerges when a system has a large 
choice of accessible states that it can adopt. We encountered the second law in Chapter 3, where I 
explained that it is regarded as an infallible tenet of nature and was therefore raised as an objection to 
Boris Belousov's oscillating chemical reaction in the 1950s. And as entropy is in some sense a measure 
of disorder, the second law seems to pose a big problem for the spontaneous appearance of pattern.

But the thermodynamics of non-equilibrium systems is concerned not with some end point in which 
entropy has increased relative to the initial state; rather, it considers the process of becoming, of how 
change occurs. As irreversible processes are ones that have a time direction specified by the 
requirement that have a time direction specified by the requirement that they end up with more entropy 
than before, such processes produce entropy. When a system reaches equilibrium, entropy production 
ceases.

In the 1930s the Norwegian-born scientist Lars Onsager began to delve into the factors that govern 
entropy production while equilibrium has not been attained. He considered the case of only small 
deviations from an equilibrium state, under which circumstances one can assue very simple (linear) 
mathematical relationships between, say, the rate of entropy production, the rates of the irreversible 
process taking place, and the forces driving them (such as differences in temperature, which, as we saw 
in Chapter 7, drive convection). In this linear regime, we can assume, for example, that the rate of 
change of some parameter of the system varies in direct proportion to the forces that drive the system 
varies in direct proportion to the forces that drive the change. Onsager's great achievement in this arena 
was to show that under these conditions there are universal laws relating the various forces and rates 
which do not depend on the specific details of the system being consideredwhether it is, for instance, a 
chemical process like the BZ reaction or a convecting
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fluid. For this work, Onsager was awarded the Nobel prize for chemistry in 1963.

In 1945 the Russian-born chemist Ilya Prigogine in Brussels attempted to extend this picture by 
suggesting that in the near-equilibrium (linear) regime, non-equilibrium systems tend to adopt a 
behaviour tat minimizes the rate of entropy production. That is to say, if prevented from reaching 
equilibrium (where the rate of entropy production is zero), the system will (he said) instead settle into a 
state in which entropy is at least produced at the lowest possible rate. For a long time, Prigogine's 
principle of minimal entropy production was deemed to provide a criterion for determining the most 
stable state out of (but close to) equilibrium.

And what about patterns? Nothing in these early attempts to prescribe non-equilibrium behaviour gave 
any hint that, away from equilibrium, one might suddenly stumble into states that have long-ranged 
order, like Bénard's convection cells or Turing's spots. States like this become manifest rather far from 
equilibrium, where the linear equations formulated by Onsager and others no longer apply and where 
Prigogine made no claims for his rule of minimum entropy production. Where do they come from?

Fig. 10.1 
A bifurcation occurs when a stable state 

develops an instability that offers the 
system a choice of two new states. A pitchfork 
bifurcation of the type shown here commonly 

occurs as a system is driven further from 
equilibrium.

During the 1950s and 1960s, Prigogine and his colleague Paul Glansdorff attempted to extend the 
treatment on non-equilibrium thermodynamics to the more interesting non-linear regime, where it was 
clear from experiments like Bénard's and models like Turing's that complex structures and patterns can 
appear. By making a series of approximations, they suggested that further from equilibrium the state of 
minimal entropy production reaches some crisis point at which it breaks down and becomes 
transformed to another state. Technically speaking, there is a bifurcationliterally, a branching in twoat 
which the evolution of the steady state splits into two branches, presenting a choice of new states that 
the system can adopt (Fig. 10.1).

     



What are these new states? The theroy of Prigogine and Glansdorff couldn't say much about that; but it 
seemed reasonable to suppose that they might correspond to the self-organized structures and patterns 
that were known to appear far from equilibrium.

These ideas seemed at least to provide a promising start. But in 1975 Rolf Landauer showed that the 
criterion of minimal entropy production cannot hold in general fro deciding which steady state a system 
will adopt slightly away from equilibrium. Even in this linear regime, he concluded, there can be no 
such simple rules for determining the most 'favourable' non-equilibrium state. Non-equilibrium 
thermodynamics is not, it seems, conquered so easily.

Dissipative structures

What is it that distinguishes the regular or ordered non-equilibrium states we have seen in the earlier 
chapters from superficially similar ordered states in equilibrium systems, such as crystals?

Regularity is not uncommon. A swinging pendulum, a bouncing ball, the 'grocer's stall' atomic packing 
of a crystal, the yearly passage of the Earth around the Sunall are periodic in space or time. But the 
regular hexagonal lattice of Rayleigh-Bénard convection differs from the hexagonal lattice of a crystal 
like copper metal. The later is an equilibrium structure whose periodicity is determined by some 
characteristic dimension of the componentsthe sizes of the atoms. The former, meanwhile, is 
maintained away from equilibrium by a throughflow of energy, which it dissipates in the process 
(thereby generating entropy). Stop the input of energy (that is, let the top-to-bottom temperature 
gradient equalize), and the pattern goes away. Likewise, the oscillations of the BZ reaction persist only 
when the reaction is fed with fresh reagents and the products are removed in a continuously stirred tank 
reactor. Structures that are supported away from equilibrium by the generation of entropy are called 
dissipative structures, a term first alluded to by Landauer in 1961.

In contrast to most equilibrium structures, the spatial scale of the pattern features in a dissipative 
structure bears no relation to the size of its constituents (the size of convection cells is much, much 
larger than the size of the circulating molecules), and this scale is robust in the face of perturbations. A 
transient perturbation may disrupt the structure temporarily, but the disturbance will
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pass and eventually the structure will regain the same period as before (Fig. 10.2a). Thus the 
characteristics of a dissipative structure are not at the mercy of perturbations, but are set by the intrinsic 
interactions in the system. These structures are said to possess an attractor in the set of variables that 
describe the system (the so-called phase space), because the system will always be drawn back to this 
particular set of variables (provided that it is not knocked so far that it falls into the basing of another 
attractorsee Fig. 10.2b). An example of such an attractor is the limit cycle of the oscillating BZ reaction 
(Fig. 3.2). The converse of a dessipative structure is a conservative structure, which possesses no 
attractors and so can be altered arbitrarily. An example is the orbit of a planet around the Sun: if the 
radius of the orbit is altered (say, by a catastrophic collision), it stays that way rather than returning to 
its former value.

Fig. 10.2 
Non-equilibrium systems typically adopt steady states that 
correspond to dissipative structures, which act as attractors 

towards which the system returns after a disturbance. An 
oscillatory dissipative structure, for instance, will return to 

its original period of oscillation after a perturbation(a). Dissipative 
structures often have several attractors in  the 'phase space'' of 

their variables, and large enough perturbations might 
allow the system to be trapped by a different attractor, 

producing a different steady-state behaviour (b).

     



Fig. 10.3 
The 'hidden' forms of chaotic systems are revealed in 

portraits of their strange attractors fin phase space. Here I 
show two such attractors. (a) The famous Lorenz attractor 

which meteorologist Edward Lorenz discovered in the 1960s 
in a model of atmospheric circulation. This is commonly regarded 

as one of the key discoveries in the study of chaos. (b) The 
attractor generated in Taylor-Couette flow as it becomes turbulent. 

(Image: Tom Mullin, University of Manchester.)

     



Even chaotic non-equilibrium states are dissipative structures of a kind, since they too have 
corresponding attractors in phase space. The difference from ordered states is that the attractors are 
fractalthe trajectories spin a web with an infinite hierarchy of structure, so
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Instabilities, thresholds and bifurcations

Most of the patterns that I've talked about appear suddenly. One moment there is nothing. Then you 
turn the dial up a notch, and everything is different: stripes appear, or dunes, or pulsations. This seems 
to be the nature of most symmetry-breaking processes: they happen all at once. They bear a close 
analogy with so-called phase transitions, which are the leitmotif of the discipline of statistical physics, 
the result of attempts to put thermodynamics on a fundamental, microscopic basis.

Phase transitions are generally abrupt jumps from one equilibrium state of matter to anotherfrom ice to 
water, to steam, magnet to non-magnet, insulator to superconductor. Like spontaneously formed 
patterns, phase transitions are global transformations. When you cool water through its freezing point, 
you don't get part of it turning to ice and the rest remaining liquid. (In practice you're probably used to 
seeing this coexisting mixture quite a lot, for example in a layer of ice on top of a pond. But this is 
because the water may not all be below freezing point, or because the process of freezing takes time so 
that part of the water might drop below freezing point before it has a chance to freeze. Both are non-
equilibrium situations.) Below 0°C, all of a pond is imbued with ice-forming potentialgiven enough 
time, all will freeze solid. Moreover, it is all or nothing. At a fraction of a degree above freezing point, 
the water is all liquid once equilibrium is reached. And a fraction of a degree below, it is all ice.

In other words there is a threshold in some control parameter, like temperature, that, once crossed, 
leaves the entire system globally unstable to some change in state. Just the same is true for, say, Turing 
patterns, which appear in some activator-inhibitor systems at a certain temperature threshold (p. 83) and 
may change from one pattern to another at a different threshold. Similarly, there is a temperature 
threshold (more properly, a Rayleigh-number threshold) for convection patterns.

In addition, the change in state during an equilibrium phase transition can involve a change in 
symmetry. Crystalline ice has an ordered structure (in fact ice has many ordered structures, as well as 
some disordered ones, but let's not worry about that). Liquid water is disorderlythe molecules are free to 
move about almost at random. You could be forgiven for thinking that symmetry is therefore broken 
during melting, when the periodic structure of the ice is lost; but in fact it is the other way around. 
Symmetry is broken during freezing because, whereas the liquid state is isotropic (all directions in 
space are equivalent), the crystal structure of ice picks out certain directions as 'special'.

So equilibrium phase transitions, like the abrupt transitions that characterize much of pattern formation, 
are spontaneous, global instabilities that set in when a threshold is crossed; and they may involve 
symmetry breaking.

     



A particularly important and common class of global instabilities is the bifurcation (Fig. 10.1). We have 
encountered examples of mathematical bifurcations, like the Hopf bifurcation that takes place when a 
predator-prey system or an autocatalytic chemical reaction starts to undergo oscillations (pp. 67 and 
224). I showed in Chapter 9 how a population kept in check by over-crowding can become oscillatory 
(Fig. 9.3). We can think of these oscillations as alternate switches between two populations, one more 
numerous than the other: these are called 'fixed points', and they represent solutions to the logistic 
equation (p. 227) in the oscillatory regime. As the sensitivity parameter a in these equations is increased 
from a value giving a steady state (Fig. 9.3a) to one that gives oscillations (Fig. 9.3b), a bifurcation like 
that in Fig. 10.1 takes place as the equations acquire two stable fixed-point solutions instead of one. For 
obvious reasons, this is called a pitchfork bifurcation. In the case of a Hopf bifurcation (the 'onset of a 
wobble', remember), the choice of which branch to follow is not made once and for all; rather, the 
system oscillates between the two branches. It might therefore be more accurate to depict the Hopf 
bifurcation in the manner shown in Fig. 10.4.

Fig. 10.4 
A Hopf bifurcation occurs at the onset of certain 
oscillatory instabilities. The system undergoes 
an oscillation between the two branches of a 

pitchfork bifurcation.

We have also seem examples of bifurcations in real (as opposed to mathematical) space: in the tip-
splitting of
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bubbles during viscous fingering, or the forking of a tree's limb. Figuratively these two types of 
bifurcation are analogous; but we should not take the analogy too far. For one thing, in the case of 'real' 
branches, the pattern-forming system follows both of the two arms of the fork, whereas in mathematical 
bifurcations the two arems represent choices, of which any part of the system can at any instant take 
only one or the other.

Pitchfork bifurcations are familiar to physicists who study equilibrium phase transitions. They 
represents, for example, the behaviour of a magnetic material like iron as it is heated or cooled through 
its magnetic transition. Iron is an example of a ferromagnet, which means that in its magnetized state all 
of the iron atoms act like little bar magnets with their north and south poles aligned. If you heat a 
magnetized piece of iron above 770°C (its so-called Curie point), this alignment is lostthe jiggling 
effect of heat destroys the alignment, and the directions of the atomic magnetic poles are randomized. 
The magnetic fields due to each atom then cancel each other out on average, and the piece of iron as a 
whole is no longer magnetized. This abrupt change at the Curie point, from a magnet to a non-magnet 
on heating, or vice versa on cooling, is an example of a phase transition.

You might think that this phase transition involves a single choiceeither the iron is magnetic or not. But 
in fact there are two choices as the metal is cooled from a non-magnetized state through the Curie point: 
the atomic magnetic poles can all point either in one direction or the other (Fig. 10.5a). Which direction 
do they choose? There is no way to answer thatboth directions are entirely equivalent. What happens is 
that the choice is made at random, and is at the mercy of the smallest fluctuations, which can tip the 
balance one way or the other. (You may wonder how (or if) this random choice can be made in the 
same direction throughout the entire system. I'll come back to this.) The situation is very much like that 
of a ball perched on top of a perfectly symmetrical hill (Fig. 10.5b): it is unstable at the top, and has to 
roll down one side or the other, but which way it goes is unpredictable and subject to the whims of the 
most minuscule disturbance.

The same arbitrary choice of two equivalent alternatives is faced by a heated fluid about to develop 
convection rolls. Adjacent rolls turn over in opposite directions; but what determines whether a 
particular roll goes clockwise or anticlockwise? Again, the choice is down to chance.

     



Fig. 10.5 
(a) A magnetic material like iron cooled through 

its Curie temperature (Tc) undergoes a bifurcation 
at which its magnetization changes from zero (due to 

randomly oriented atomic magnetic poles) to a non-zero 
value (due to aligned poles). The alignment can point 
in one of two equivalent directions. (b) This kind of 

bifurcation is analogous to the situation of a ball 
perched on top of a hill, which must roll down one 

side or the other. The choice is arbitary.

     



To develop this analogy further, I must clarify an important characteristic of both equilibrium phase 
transitions and non-equilibrium bifurcations which bears on their relationship to symmetry breaking. I 
illustrated the idea of phase transitions initially with the freezing and melting of water, because this is a 
familiar example; but I spoke subsequently about the magnetization of iron, which is considerably less 
so. I'm not simply trying to test your perseverance here; the fact is that the two are different classes of 
phase transition, and only the latter is an appropriate analogy for what I wanted to say about symmetry-
breaking bifurcations in non-equilibrium pattern formation. Freezing and melting are (at least in the 
familiar forms that we know them) examples of first-order phase transitions, in which some 
characterizing parameter of the system (say, the density of water), changes in a discontinuous, step-like 
manner as the control parameter (say, temperature) is altered. When water freezes, it so happens
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that there is a change in symmetry; but first-order phase transitions do not necessarily involve 
symmetry breaking. Moreover, exactly at (but not above or below) the transition temperature, the two 
states (here liquid and solid) can coexist with each other at equilibrium. And one commonly finds that 
first-order phase transitions display hysteresis, meaning that the transition occurs at a somewhat 
different temperature if approached from above or below, since in the vicinity of the transition the 
system can get 'trapped' in a state that is not the most stable one.

The spontaneous magnetization of iron at the Curie point, on the other hand, is an example of a second-
order phase transition. Here the the magnetization changes abruptly but continuously as the system goes 
through the transitionthere is no sudden jump from one value to another (see Fig. 10.5a). Second-order 
and other continuous phase transitions always involve symmetry breaking. Furthermore, there can be no 
co-existence of the states between which the system switches, even exactly at the transition point: it is 
all or nothing. And there is no hysteresis. Now, many of the pattern-forming bifurcations that I've 
discussed are analogous to continuous phase transitionsthey are called supercritical bifurcations, and 
they lead to symmetry breaking. That's why I had to resort to the less familiar magnetic system for an 
appropriate analogy in equilibrium phase transitions. The onset of convection is like this, as is the 
switch between hexagonal and striped Turing patterns shown in Plat 4. But a few pattern-forming 
processes are subcritical bifurcations, analogous to first-order phase transitionslike the switch between 
spiral and target patterns in convecting fluids (p. 173), which, as Fig. 7.14 shows, can coexist. These 
distinctions may seem rather esoteric; but I'll show shortly that the details of what happens at a 
continuous phase transition provide important clues to how patterns arise away from equilibrium.

Model behaviour

These analogies with phase transitions are useful, but they don't provide any kind of rigorous 
mathematical description of pattern-forming bifurcations. Physicists like analogies, but they prefer 
rigour. Attempts to develop a more concrete description of what happens at a symmetry-breaking 
bifurcation in non-equilibrium systems began in earnest in 1916 when Lord Rayleigh analysed the case 
of convection studied experimentally by Henri Bénard. Geoffrey Taylor conducted a similar analysis 
for the case of Taylor-Couette flow between rotating cylinders in 1923. As I explained in Chapter 7, a 
thorough treatment of any problem in fluid flow must start with the Navier-Stokes equation, which 
relates the changes in fluid velocity at all points to the forces that act on the fluid. The approach taken 
by both Rayleigh and Taylor was to look for the solution to the Navier-Stokes equation close to 
equilibrium for the particular conditions in their respective systems, and then to examine the stability of 
this 'base state' in the face of perturbations as the system is taken increasingly further from equilibrium. 
For the case of convection, the base state is one in which no flow at all occursif the temperature 
gradient between the top and bottom plates is small enough, the heat flow can be accommodated purely 
by heat conduction through the fluid, which is just like conduction through a solid material. For Taylor-
Couette flow, the base state is one in which the fluid velocity varies in a particular fashion with distance 
from the axis of the cylinders, but does not vary in the vertical direction.

     



Rayleigh and Taylor conducted what is known as a linear stability analysis of these states as the forcing 
parameterthe Rayleigh number and the rotation rate of the inner cylinder, respectivelyis varied. That is 
to say, they imposed an infinitesimally small wavy disturbance on the base state, with a particular 
wavelength, and calculated how the disturbance evolved in time. Let's consider Rayleigh's case; 
Taylor's follows similar lines. Below the critical Rayleigh number Rac , perturbations of all wavelengths 
die away over time, and the system returns to the base state. But exactly at Rac, something stirs: the 
perturbation with a wavelength corresponding to the critical wave vector 3.12 neither decays nor grows, 
although perturbations with all other wavelengths still decay. Infinitesimally above Rac the wavy 
perturbation with wave vector 3.12 grows to a finite amplitude: a pattern with this wavelength develops. 
The instability corresponds to a pitchfork bifurcation (Fig. 10.6). I should mention that above Rac the 
base state is still a possible solution to the Navier-Stokes equationbut it is an unstable solution, since the 
slightest disturbance will trigger the appearance of a pattern at one of the allowed wave vectors. It is 
like the ball balanced on top of the hill, or a needle on its tip.

Now, the real point I want to make about this kind of analysis is that it can be generalized to a wide 
range of systems that undergo spontaneous patterning via a pitchfork bifurcationnot just those in fluids 
that obey the Navier-Stokes equation. A similar kind of analysis can be applied, for example, to the 
kind of equa-
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tions that describe reaction-diffusion systems. Some researchers have attempted to construct simplified 
'model equations' that capture the generic features of pattern-forming systems such as these without 
encountering the complexity (and thus the intractability) of, say, the full Navier-Stokes equation. One of 
the most popular of these model equations was proposed by Jack Swift and Pierre Hohenberg in 1977, 
and it has proved to be an excellent 'toy' for exploring the behaviour of this class of pattern-forming 
systems around the onset of the instability of the unpatterned base state.

Fig. 10.6 
(a) The growth rate of wavy pertubations to the featureless base state of Rayleigh-Bénard 

convection, as revealed by a linear stability analysis. When the growth rate is negative, the 
perturbations decay over time. At the critical Rayleigh number 

Rac, the growth rate is zero for a perturbation of the critical wavelength wcthis perturbation  
neither grows nor decays. Above Rac, the growth rate is positive for a range of wavelengths. 

 (b) The onset of the instability is a pitchfork bifurcation. Note that the unpatterned base  
state remains a solution to the appropriate Navier-Stokes equation for this system  

even above Rac (dashed line); but it is no longer a stable solution.

Perhaps the most important message to have emerged from these studies on instabilities is that we do 
not necessarily have a complete understanding of a system once we know the equations that govern it; 
what we really want to know are the particular solutions to those equations. The latter need not be 
obvious from the former. This cannot be emphasized too strongly in any branch of science. The 
American physicist Freeman Dyson has pointed out that for Albert Einstein and J.Robert Oppenheimer 
in their later years, 'to discover the right equations was all that mattered.' One might say the same about 
some physicists working today to develop a 'theory of everything'. But if you take this view, then fluid 
dynamics was all sewn up once we could write down the Navier-Stokes equation. Yet if we had stopped 
there, we'd never have guessed at the rich variety of solutions that it held in store even for relatively 
simple experimental set-ups (take a look again at Fig. 7.38, for instance). Sometimes even knowing the 
solutions is not enoughonly through experiments can one interpret what they are telling us.

     



Finally, I should point out that not all changes of pattern or form take place via abrupt instabilities. I 
showed in Chapter 5 how a cluster of particles growing by diffusion-limited aggregation can be 'tuned' 
continuously between two characteristic branching forms by gradually changing the balance between 
noise and anisotropy (p.121). But notice how, even in this case, the growth forms involve abrupt 
instabilities in the sense that a small protrusion can blossom into a side-branch. This extreme sensitivity 
to small fluctuations is another characteristic of continuous phase transitions, as we shall see.

Pattern selection

A linear stability analysis can reveal the point at which a non-equilibrium system is driven across the 
threshold of pattern formation. But can it tell us anything about the pattern that results? Exactly at the 
threshold, we've seen that (at least for the cases considered by Rayleigh and Taylor) there is a single 
'marginally unstable' wave vectora single characteristic length scale in the system. But how does this 
length scale manifest itselfas stripes, spots, travelling waves? And once the threshold is surpassed, an 
increasing number of perturbations with different wavelengths become able to grow. Which wavelength 
is selected?

This question is not peculiar to these examples in fluid dynamics; just about any system with pattern-
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forming potential faces choices. Like ourselves in a carpet warehouse, they have a gallery of designs 
from which to select. Soap molecules on the water surface (Fig. 2.22), metal deposits grown at 
electrodes (Figs 5.6 and 5.24), bacterial colonies (Figs 3.27, 5.31 and 5.32), jumping grains (Fig. 
8.3)they all find a catalogue of riches. Which to choose?

There is no universal way to answer this question; and in this respect we can see a major distinction 
between too often have several choices of pattern and formbut there is a simple rule (in principle) for 
deciding the best choice. Take, for example, a mineral such as calcium carbonate precipitating out of a 
supersaturated solution. There are three different forms of crystalline calcium carbonate, called calcite, 
aragonite and vaterite. Each has its own distinct pattern, defined in terms of the way that the calcium 
and carbonate ions are stacked together in the crystal. But left to its own devices, precipitating calcium 
carbonate will always choose to crystallize as calcite at room temperature and atmospheric pressure. 
The reason for this has been long known: calcite is the most thermodynamically stable of the options 
under these conditions. In other words, the energy (technically speaking, the free energyp. 19) of calcite 
is lower than that of the other two crystal forms. At equilibrium, a system will always seek to adopt the 
configuration that has the lowest free energy. This means that balls will roll down hills, iron will rust in 
air, water below freezing point will turn to ice.

So when complex patterns form under equilibrium conditions, as is the case for example in lipid 
vesicles (Figs 2.19 and 2.20) or block co-polymers (Fig. 2.46), we know at least what the criterion for 
pattern selection is; and if we know the various contributing factors to the free energy, we can predict 
the most favorable pattern by finding the shape that minimizes this free energy. All of the structures in 
these figures can be understood on this basis.

During the 1960s and 1970s, Ilya Prigogine's group at Brussels held out the hope of finding a similar 
'minimization principle' that would determine the choice of pattern adopted by systems away from 
equilibrium. That is to say, they hoped that there was some quantity analogous to free energy that non-
equilibrium systems would seek to minimize. This would provide a universal criterion for pattern 
selection. For systems close to equilibrium Prigogine proposed the principle o minimum entropy 
production; but as I've said, this was subsequently ruled out as a general selection principle, even in this 
relatively simple 'linear' regime, by Rolf Landauer. In doing so, Landauer seemed to show that there 
cannot even in principle be any all-encompassing minimization criterion that can be applied to pattern 
selection out of equilibrium. He considered the case of non-equilibrium systems with more than one 
locally stable statemore than one potential pattern, you could say. Such states can be compared to 
mountain reservoirswater reaching any one reservoir will sit in it quite stably, even though it would be 
stabler still (that is, have less potential energy) at the foot of the mountain. For a system in equilibrium, 
it is a straightforward matter to calculate the relative probability that a particular locally-stable state will 
be occupiedthis depends on its free energy. But away from equilibrium? Landauer's analysis of the 
problem built on the pioneering but often neglected work of the Soviet scientist R.L. Stratonovich, who 
studied these 'multistable' systems in the 1950s and 1960s. Landauer's results implied that, to identify 
the most favoured state, it is never enough simply to compare the characteristics of the system in the 

     



vicinity of the locally stable states (the shapes and altitudes of the reservoirs, you might sayor in 
Prigogine's case, the rates of entropy production in these states)one has to consider what the terrain 
looks like along the pathways connecting the states. In other words, to address the problem of pattern 
selection, we are forced to consider the specific details of each system, including the nature of the 
randomizing 'noise' it experiences.aa

Bit by bit

Nonetheless, we can make a few generalizations, provided we bear in mind that these are not at all 
rigorous. Spontaneous pattern formation involves symmetry breaking; and as I've said, symmetry tends 
to break a bit at a time as the system is driven harder and harder. This alone helps us to understand why 
two types of patternstripes and hexagonsare particularly common. The minimal way to break the 
symmetry of a uniform two-dimensional systemthat is, the way to break as little symmetry as possibleis 
to impose a periodic variation in just one dimension. What that means is that we impose a wavelike 
disturbance in one direction (Fig. 10.7), which creates parallel bands, stripes or rolls. Parallel to the 
stripes, symmetry is not broken: as we travel through the medium in this direction, we see no change in 
its character. It is only in the perpendicular direction that we can identify the broken symmetrytravelling 
in this direction, we see a periodic change from one state to another and back again. Thus, stripe-
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like patterns are often the first to appear from a uniform system in two dimensions: we saw this in the 
formation of sand ripples and in the appearance of convection and Taylor-Couette rolls.

Fig. 10.7 
The simplest way to break two-dimensional symmetry is to 
impose periodic variations in one dimension, creating stripe 

patterns.

Fig. 10.8 
When symmetry is broken in both directions in two 

dimensions, square or triangular cells result. In the latter 
case, the resulting pattern can be a triangular lattice or a 

hexagonal pattern of cells. In Rayleigh-Bénard convection, 
for example, the centers of the triangular lattice correspond 

to regions of upwelling, and the downwelling regions 
delineate hexagons (dashed lines).

     



After breaking symmetry periodically in one dimension, the next 'minimal' pattern in a two-dimensional 
system involves breaking it in the other. This imposition of a second periodic variation breaks the 
system into discrete cells. If the state is to remain ordered and as symmetric as possible, there are only 
two options: to impose the periodic variation perpendicular to the rolls, creating square cells, or to 
impose two such variations at 60° angles, creating triangles or hexagons (Fig. 10.8). We saw right at the 
beginning of Chapter 2 that only these types of perfect polygonal tiles can be packed to fill space 
without gaps (Fig. 2.2). So the square, triangular and hexagonal patterns that we've seen in Turing 
patterns (Fig. 4.3), in convection (Figs 7.4b and 7.9) and in shaken sand (Fig. 8.3) are no mysterythey 
are consequence of the geometric properties of space, which constrain the ways in which symmetry can 
be (minimally) broken.

These heuristic arguments aren't, however, a reliable guide for determining exactly what kind of broken 
symmetry will arise in any particular case. For example, the question of whether stripes/rolls or 
hexagons will be preferred has no universal answer. A linear stability analysis of convection won't help 
you either: you have to go to a more sophisticated level of theory to find that rolls are generally 
favoured. Qualitatively we can understand this on the grounds that rolls do not distinguish between 
upflow and downflow, whereas hexagonal cells do: upflow occurs in their centre an downflow at the 
edges. So rolls are geometrically symmetrical about the plane midway between the two plates of the 
convection chamber, but hexagonal cells are not. The initial patterned state tends to favour the retention 
of this symmetry is already broken in the unpatterned base statefor example, if the warmer fluid near 
the bottom is significantly less viscous than the cooler fluid towards the top (which is quite 
possible)then hexagonal cells might appear instead. In the case of the Turing instability of reaction-
diffusion, systems, meanwhile, hexagonal spots are usually the default option; stripes have a tendency 
to break up into spots (see p. 87).

The only other choice to be made in pattern selection for these relatively simple cases is the size of the 
featuresthat is, the wavelength of the stripes or the separation of the hexagonal spots. Again, it's not 
possible to identify a single criterion that determines this. In some cases, such as Rayleigh-Bénard 
convection, I indicated above that linear stability analysis can be used to derive the wavelength of the 
instability at the onset of patterning (although if the simplifications in Rayleigh's analysis of convection, 
concerning the properties of the heated fluid, do not constitute good approximations, the critical 
wavenumber is different). But above the critical Rayleigh number there is a range of allowed 
wavenumbers, and then the wavelength of the roll pattern becomes dependent on the history of thte 
systemhow it reached the convecting state. Moreover, it is possible then for both the amplitude and the 
wavelength of the roll pattern to vary in time and in space throughout the system.

In an activator-inhibitor system, it is the relative ranges of the activator and inhibitor that is critical to 
the selection of pattern scale: recall that the inhibitor
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diffuses more rapidly, and so acts over long ranges. Just how long (and so how far away the next stripe 
has to be before activation can again dominate over inhibition) depends on the relative diffusion 
constants.

I should mention that there is one other possible mode of behaviour at the onset of pattern formation in 
systems like these that I have not yet mentioned. I said that below the threshold, wavy perturbations 
decay in time, while above it they grow (for a certain range of wavelengths). But they can also oscillate 
above the threshold. Then the pattern that appears is not stationary but is instead a travelling wave, 
commonly a spiral. The spiral patterns seen in the BZ reaction (Fig. 3.3) and in convection (Fig. 7.13) 
are examples of this type of instability.

So we can perhaps hope to understand a little about pattern selection close to the onset of spontaneous 
pattern formation; but further from the onset, when the system is being driven harder away from 
equilibrium, there really isn't any good theory that allows us to predict or rationalize the patterns that 
form. In most cases the only option is to resort to experiment, to characterize and categorize the 
taxonomy of dissipative structures that appear. If one knows enough about the basic physical 
interactions in the system, however, one might be able to devise a model that can be simulated on the 
computer, which can provide some insight into the essential ingredients of the pattern-forming 
processsome of the granular patterns described in Chapter 8 have been tackled this way.

Defects

Very often the patterns that appear further from the instability threshold are less than perfectly 
symmetrical; they are laced through with defects, sometimes to such an extent that all appearance of 
symmetry is lost. For example, we saw how the roll cells in convection or Turing structures can run into 
one another in dislocations (Figs 4.3b, 7.10 and 7.11), and how the hexagonal cells of Rayleigh-Bénard 
convection can exhibit a high degree of disorder (Fig. 7.2). Through an accumulation of such 
distortions, parallel stripes can become bent into more or less disordered wavy patterns, and a triangular 
lattice of spots can disintegrate into a more random scattering (Fig. 4.3a). This gives us the stripes of 
zebras, the spots of the leopard. Notice, however, that even in cases where disorder has over-whelmed 
all semblance of symmetry, we can still identify order of a kind: the average distance between spots or 
stripes remains more or less constant.

Rather than despairing at the disorder that defects engender, we can make some headway by shifting 
our attention from regularity to the defects themselves, developing taxonomies like that in Fig. 7.11 and 
asking how generic members of these schemes arise from characteristic deformations of the underlying 
pattern. There already exists a rich theory of defects to draw on here from studies of crystals and the 
structures of liquid-crystal materials (Fig. 7.12).

Close to the edge

     



All of this applies to infinite systems, by which I mean ones for which we ignore the boundaries. But of 
course no pattern-forming system is infinitethey always have edges. If the size of the system is vastly 
greater than that o the pattern's characteristic length scale, the effects of edges on the pattern as a whole 
may be negligible. Commonly, though, the system is not this large, and then the pattern may be 
influenced globally by the size or shape of the 'container.' We saw in Chapter 4, for example, how either 
hoops or spots could be selected from the same pattern-forming mechanism on animal tails, depending 
on the size and shape of the embryonic tail when the pattern is laid down during development. And 
more generally, the patterns of different animal peltsa two-tone division of the whole body, a few large 
blotches or a multitude of small spotscan be determined by the relative size of the embryo at the 
patterning stage.

The shape of the boundary can occasionally change a pattern to something qualitatively different. In 
long, rectangular trays, convection rolls tend to form stripes (Fig. 7.7), whereas in circular dishes the 
rolls curl up into concentric circles (Fig. 7.8c). Moreover, the need for a whole number of pattern 
features to fit within the container may determine the wavelength, just as the wavelength and thus the 
frequency of an organ note is determined by the length of the pipe. In some systems, the pattern may 
change locally to adapt to the presence of a boundaryin Fig. 10.9, for example, concentric roll cells give 
way to short parallel rolls at the edges, so that the rolls can meet the boundary at the preferred right 
angles.

The race for dominance

In all of these cases, static factorsthe geometry of regular divisions of space, the size and shape of 
boundariesact to select a pattern. In cases where the pattern is growing, dynamic considerations may 
determine the choice made from the gallery of possible alter-

  

     



Page 264

natives. This is particularly the case for branching growth patterns. We saw in Chapter 5 that the 
characteristic scale of the tip and branching side-arms of a dendritic crystal is set by the condition that 
the growth speed just about balances the tendency for the tip to splitthere is a unique, 'marginally stable' 
solution to the mathematics of the growth process. The question of what determines the pattern of a non-
equilibrium electrodeposit or an expanding bacterial colony has been much debated. Why does the 
growing cluster adopt, say, an irregular fractal form, like a DLA cluster, rather than the dense-branched 
morphology (see Figs 5.31 and 5.32)? One proposal is that the pattern selected is simply that which 
grows fastest, and which therefore 'outruns' the others. There is some evidence to support this idea in 
certain cases, but it's not clear that it provides a robust criterion for branching growth in general. 
Another proposal is that the selected mode is that which maximizes the generation of entropy. At the 
moment, this issue remains unresolved.

Fig. 10.9 
Concentric convection rolls in carbon dioxide 

gas. The concentric pattern is surrounded 
by short, parallel rolls, which enable the pattern to adapt to the boundaries by 

meeting them at right angles. (From: Cross 
and Hohenberg 1993).

     



Finally, we should include noise as a pattern-selecting influence. By noise I just mean the inevitable 
randomness in the environment, deriving from thermal fluctuations for instance. We saw in Chapter 5 
that increasing noise can induce a change-over between branching growth modes from tip-splitting of 
broad, fat fingers to the ragged disorder of diffusion-limited aggregation (see Fig. 5.18). The message 
here is that noise does not necessarily affect all patterns equallyit may favour some over others. Rolf 
Landauer has argued that noise is central to the transitions between different states of a non-equilibrium 
multistable system, and so is a critical (but commonly neglected) feature of pattern formation and 
selection. 'If we cannot characterize the noise', he says, 'we are going to be limited in our analysis of the 
system.' For Per Bak's self-organized critical states, meanwhile, much of the essential form of the 
system lies in the noise itself.

Increasing complexity with increasing driving

Although many pattern-forming systems have several faces, usually only a single pattern will be stable 
for a given set of conditions, and transitions between patterns take place as thresholds in control 
parameters are crossed. I have shown (in Chapter 7 in particular) that there is a common tendency for 
the patterns to become more ornatewe might say more complexas the system is driven harder and 
harder. Shear flows progress from simple sine-like waves to embellished vortex streets to intermittently 
and then fully turbulent wakes as the Reynolds number (the flow velocity) increases (Fig. 7.29). So too 
do convection patterns progress from simple rolls to turbulent, dynamic structures. This sequence of 
increasing complexity is perhaps most clearly illustrated in the case of the oscillating Belousov-
Zhabotinsky reaction in a continuous-flow stirred-tank reactor (Chapter 3). As the flow rate of 
chemicals through the vessel increases, the oscillations undergo a series of period-doubling 
bifurcations, so that the cycle repeats with every oscillation, then with every second oscillation, then 
with every fourth and so on. The same is true of the population model represented by the logistic 
equation (p. 227). This behaviour can be depicted as a cascade of pitchfork bifurcations (Fig. 10.10). 
One might liken this (albeit very loosely) to the excitation of additional harmonics as a trumpeter blows 
harder. Eventually the oscillations become chaotic (non-periodic), as if the system becomes over-
whelmed with choices. Then the cascade loses its branched structure and breaks up into a dense forest 
of spotsand we lose sight of any order at all.

Correlations

One of the most striking things about many of the patterns (particularly the more ordered ones) that I've 
discussed in this book is that they seem to acquire a characteristic length scale out of thin air. Sand 
ripples and dunes have a particular wavelengthin the case of
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dunes especially, this is so far removed from the size of the grains themselves, or of their typical 
trajectory lengths, that one can't imagine these fundamental length scales having any influence on that 
which appears in the pattern. Just the same is true for Turing patterns. The size of the molecules and 
atoms in the chemical mixture, and the range of the interactions between them, is minusculeabout a 
tenth of a millionth of a millimetre. Yet the patterns have length scales big enough for us to see with our 
unaided eyes, perhaps several millimetres or so. How on earth can interactions on these unimaginably 
tiny scales give rise to patterns millions of times larger?

Fig. 10.10 
Bifurcations in many non-equilibrium systems come 
in a sequential cascade as the system is driven further 

from equilibrium (here from left to right). At each bifurcation 
the number of fixed points doubles, leading to period doubling. 
The oscillations repeat every two four, eight cycles and so on. 
The cascade structure gets increasingly finer and eventually 

gives way to non-periodic (chaotic) behaviour, seen here 
as a dense 'dust' of dots.

     



To put it another way: the appearance of these patterns implies that the components of the system must 
be able to communicate over distances much longer than those to which they are accustomed at 
equilibrium. Think of the rolls that appear in Rayleigh-Bénard convection. Before the onset of 
convection, the molecules are moving about throughout the quiescent fluid in a random, disorderly way; 
each molecule barely takes heed of what its immediate neighbors are doing, let alone what is happening 
a millimetre or so away, many millions of molecules distant. Yet above the critical Rayleigh number 
this independence has been lost, and the molecular motions have (on average) become correlated over 
these vast distances. That is to say, if we were to observe the molecular motions on the descending edge 
of one of the roll cells, we would know that statistically identical motions were being executed by 
molecules one wavelength awayand two, three and so forth throughout the container. This kind of long-
ranged correlation, according to which molecules behave coherently over distances that far outstrip the 
sphere of their own influence, is characteristic of many pattern-forming systems.

How is it made possible? Perhaps the molecules are able to relay their individual, tiny influences from 
neighbour to neighbour over such scales? Forget itin the frenzied environment of a hot liquid, that is 
like trying to play Chinese whispers at a rock concert. Yet long-ranged correlations do imply an 
extraordinary degree of cooperativity amongst the molecular constituents.

The appearance of long-ranged correlations in systems undergoing abrupt changes in behaviour is not 
unique to non-equilibrium systemsit has been long recognized in equilibrium phase transitions too. The 
key to such behaviour, both at equilibrium and away from it, is that the system loses all sense of scale. 
Long-ranged correlations may develop when a system becomes scale-invariant, and so is able to 
support fluctuations over scales ranging from those of intermolecular forces to these millions of times 
longer.

This is what happens to iron at the Curie point, which is an example of a critical point (p. 213). All 
continuous phase transitions happen at these special locations in phase space. I mentioned earlier that at 
a critical point, fluctuations occur on all length scales. Take a look at Fig. 8.19: here the black and white 
regions represent regions of gas and liquid as a fluid is taken through its liquid-vapour critical point. 
But they could equally well represent regions in a piece of iron where the magnetization points in one 
direction or the other. Above the Curie temperature the directions are random (the image would look 
grey from a distance); below it they are predominantly in a single direction. But exactly at the Curie 
temperature there are black and white regions over all scales up to the size of the entire system. At this 
point, there is no telling whether black or white will prevail upon cooling. The critical system is 
infinitely sensitive to fluctuationsthe slightest imbalance suffices to tip it one way or the other.

As a system like this approaches its critical point, each element feels the influence of more and more of 
the rest of the system. Far from the critical point, only the behaviour of a magnetic atom's nearest 
neighbours mattersif these all point in one direction, the atom in
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question will be inclined to follow suit. But as the critical point is approached, each atom's sphere of 
influence (called its correlation length) extends wider and wider. And exactly at the critical point, the 
correlation length becomes as big as the entire system. I should point out that this does not imply that 
the magnetic field set up by each atomic magnet becomes stronger, or reaches out further; rather, the 
behaviour of the atoms becomes more collective, so that progressively larger groups will behave 
cooperatively.

To this extent, non-equilibrium pattern formation can resemble a critical phase transition. But there are 
important differences too, particularly in terms of the structures that result. For in our piece of iron, the 
ordering the results as we pass through the phase transition has a characteristic length scale that reflects 
the scale of interatomic forces: the magnetized iron adopts a regular structure in which the periodicity 
of the magnetic alignment occurs on the same scale as the periodicity of the atoms. We could have 
guessed this length scale at the outset, for it is of the same order as the range of each atom's magnetic 
influence. In non-equilibrium patterns this is not so: the scale of ordering vastly exceeds the range of 
interaction of the constituents, and there is no obvious hint of a length scale of this magnitude in the 
microscopic physics of the unpatterned state. This is why we can regard such patterns as global 
emergent properties of the system, which are likely to remain hidden to a highly reductionistic analysis.

Power laws and scaling

In most of the discussion above I've been concerned with patterns that form in systems that are 
essentially deterministic, which is to say that at least in principle we can write down equations (such as 
the Navier-Stokes equation) that describe the behavior exactly. As we saw, that doesn't by any means 
imply that we can solve the equations, but it follows that, once the initial and boundary conditions are 
specified, we have all the ingredients of the process.

Some of the patterns that I've talked about in the book do not share this deterministic character; the 
equations that describe them contain a random (stochastic) element that is unpredictable and impossible 
to formulate in anything other than statistical, average terms. Diffusion-limited aggregation is like 
thisthe particles become attached to the growing DLA aggregate only after executing a random walk, 
for example of the kind generated by the jostling of air molecules, so that their precise trajectories are 
indeterminate in advance. Sand piles formed by the sequential addition of grains are like this too. Noise 
is a major ingredient of the form-determining process in these cases.

     



The universal patterns and forms of noise-dominated systems are commonly 'hidden'they become 
apparent only in 'mathematical space'. We saw in Chapter 8, for example, how fluctuations or variations 
in space and time that look at first glance to be random can contain the hidden form of self-organized 
criticality, distinguished by power laws that follow a 1/ f law or something close to it. And the most 
robust feature of disordered fractals like DLA clusters or city shapes is their power-law scaling 
behaviour, which reveals fractional exponent that tells us much about the similarity or otherwise of 
structures that bear no particular visible features in common. Some researchers believe that power laws 
hold the key to much of the complex behavior exhibited by non-equilibrium systems, and that long-
ranged correlations and critical-like behavior are a natural and inevitable consequence of this. It is 
likely, however, that self-organized criticality and power-law behaviour are the exception rather than 
the rule. Nonetheless, it is clear that noise, power-law behaviour, scale invariance, avalanche behaviour 
and fractal forms are intimacy connected in some deep way that remains to be fully explored and 
unravelled.

That universal power-law scaling arises in self-organized critical systems is at least in one sense no 
surpriseyet again, it is found in equilibrium continuos phase transitions too. As a system approaches its 
critical point, the variables that describes its behaviourthe correlation length, the density differences 
between liquid and gas, or ore technical quantities such as the magnetic susceptibility or the 
compressibilitystart to obey power laws. That is to say, their value is proportional to the distance from 
the critical point (say, the temperature difference T-Tc , where Tc is the critical temperature) raised to a 
power corresponding to some 'critical exponent.' For the correlation length ξ the relationship might be ξ 
α (T-Tc))v, with v being the critical exponent. What this relationship implies is that the behaviour of 
these variables no longer depends on the details of the systemwhether the fluid approaching its critical 
point is water or carbon dioxide, whether the magnet is iron or cobalt. Instead, everything is determined 
by the university class of the phase transition: those in the same class have the same critical exponents. 
This scaling behaviour therefore reveals an underlying universality in critical phenomena: apparently 
very
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different kinds of system can undergo critical transitions in the same universality class, and so their 
scaling laws, as the critical point is approached, are identical. Conversely, this means that we can find 
out all about the critical behaviour of one system by studying another in the same universality classeven 
if one system is a fluid separating into liquid and gas phases and the other is a magnetic material! We 
can see an encho here of the kind of universality i pattern formation that I have implied throughout the 
book: apparently very different systems can exhibit the same pattern-forming sequences.

Look and see

Well, I suspect that all this may seem like heavy going in comparison with the previous chapters, and 
I'm afraid that overviews can tend to be a bit like that. In order to pull out unifying themes, we have to 
forgo the particulars of tangible example and become somewhat abstract (and the attractive pictures in 
the process). I hope you have been able to tolerate that, because I believe it is one of the principal 
messages of this book that we can map many of nature's tapestries onto some universal blueprints, in 
which specifies cease to matter. At the same time, I want to stress that it is a mapping that is being 
performed here, and that 'the map is not the territory'. Maps have a fascination of their own, but that't 
nothing compared to the real thing. This is why I hope you can try to create some of these patterns for 
yourself, with the recipes given in the appendices, and why too I hope you will discover that the most 
exciting, the most profound experience of them is to be found through direct encounter. These self-
made patterns are everywherein the vegetable patch, in the coffee cup, on mountain tops and in the city 
streets. I hope you enjoy them.
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Appendix 1 
Soap-Film Structures

Plateau's rules for intersecting soap films give rise to some striking symmetrical patterns when the films 
are suspended on wire frames of regular geometrical shapes. These are fairly easy to make even for 
someone with a soldering technique as laughable as mine. I show in Figs 2.10 and 2.11 some of the 
simplest possibilities, but the options are limited only by your skill at fabrication. I have used copper 
wire of 1-mm diameter, and made figures with sides 5-cm long. The task is made easier by bending a 
continuous piece of wire to construct as much of the frame as you can, rather than trying to solder 
together lots of 5-cm lengths. And remember to include an extra appendage to hold on to.

These frames can be dipped into a solution of water and washing-up liquid. Note that the solution loses 
some of its film-making ability over time. For more complex frames, like the octahedron, the pattern of 
films is not unique, and you can induce rearrangements by blowing gently. If small extraneous bubbles 
get trapped along some vertices, these can be removed by careful pricking.

To make a catenoid (see p. 36), you can construct a tweezer-like frame with two circular loops at the 
ends.

Dipping the ends will often generate two half-catenoids with a circular film in between them; this can 
be converted to a catenoid by pricking the central film. You'll find that the films are surprisingly 
resilient when freshly made.

For a wider range of experiments with bubbles and foams, I highly recommend C.V. Boys' Soap 
Bubbles (see Bibliography: Bubbles and Foams).
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Appendix 2 
Oscillating Chemical Reactions

There is a variety of reliable oscillatory chemical reactions described in the chemistry literature, 
including many accessible recipes in books intended for teaching or for a general readership. One of the 
most striking in terms of the colour change is the iodate/iodine/peroxide oscillator .  The recipe that I 
have tested for myself is as follows:

Solution A: 200 ml of potassium iodate (KIO3) solutionmade by adding 42.8 g KIO3 and 80 ml of 
2M sulphuric acid to distilled water to make a total volume of 1 litre.

Solution B: 200 ml of malonic acid/manganese sulphate (MnSO4) solutionmade by adding 15.6 g 
malonic acid and 4.45 g MnSO4 to distilled water to a total of 1 litre.

Solution C: 40 ml of 1% starch solutionmade by adding a slurry of 'soluble' starch to boiling water.

Solution D: 200 ml of 100 vol. (about 30%) hydrogen peroxide (H2O2) solution.

Mix solutions A, B and C together in a conical flask and then initiate the reaction by adding solution D. 
Mix well using a magnetic stirrer. After a minute or two the solution, which is initially blue (owing to 
the formation of iodine, which reacts with starch to form a blue compound), turns a pale yellow (as the 
iodine intermediate disappears), and then abruptly blue again to begin another cycle. The colour 
changes persist for about 15–20 min, but finally run out of steam because some of the initial reagents 
are consumed in each cycle and not replenished.

After a few minutes the mixture begins to bubble, as carbon dioxide gas is generated from the oxidation 
of malonic acid.

If the mixture is not stirred, the colour changes still take place but grow from filamentary patches 
throughout the solution.

It is important that the malonic acid solution is not prepared too far in advanceit begins to decompose 
over the course of several weeks.

The most famous oscillatory reaction is the Belousov-Zhabotinsky reaction, for which various recipes 
are available in the literature. Here's one that I have seen work:

Solution A: 400 ml of 0.5M malonic acid (52.1 g malonic acid in a litre of water).

Solution B: 200 ml of 0.01M cerium(IV) sulphate (Ce(SO4)2) in 6M sulphuric acid.

     



Solution C: 0.25M potassium bromate (KBrO3) (41.8 g KBrO3 in 1 litre of water).

Mix solutions A and B in a magnetically stirred conical flask, and then add solution C to initiate the 
reaction. After about 3 min, the solution starts to alternate between colourless and yellow. The 
oscillations last for 10–15 min.

This is the colour change that Belousov first saw; but it can be made more dramatic by adding 1 ml of 
an indicator called ferroin (iron tris(phenanthroline)), which makes the solution change between blue 
and a purplish red. The chemistry behind these oscillations is described in Chapter 3.

I have taken these recipes from the chemical demonstrations leaflet of the chemistry department of 
University College, London, and am extremely grateful to Graeme Hogarth and Andrea Sella for help in 
performing these experiments and those in the following two appendices.

There are many other oscillating reactions, and variants of these two recipes, to be found in:

B.Z. Shakhashiri (1985). Chemical Demonstrations: A Handbook for Teachers of Chemistry. University 
of Wisconsin Press, Madison.

H.W. Roesky & K. Möckel (1996). Chemical Curiosities. VCH, Weinheim.

L.A. Ford (1993). Chemical Magic. Dover, New York.
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Appendix 3 
Chemical Waves in the BZ Reaction

The target patterns of the inhomogeneous Belousov-Zhabotinsky (BZ) reaction always looked to me so 
extraordinary that I found it hard to believe they would be easy to reproduce. I was thrilled to find, 
when I tried the reaction first-hand, that this was not the case. This is a recipe that seems very reliable:

Solution A: 2 ml sulphuric acid + 5 g sodium bromate (NaBrO3) in 67 ml water.

Solution B: 1 g sodium bromide (NaBr) in 10 ml water.

Solution C: 1 g malonic acid in 10 ml water.

Solution D: 1 ml of ferroin (25 mM phenanthroline ferrous sulphate).

Solution E: 1 g Triton X-100 (a kind of soap) in 1 litre of water.

     



Put 6 ml of solution A into a Petri disk about 3 inches in diameter, add 1–2 ml of solution B and 1 ml of 
solution C. The solution turns a brownish colour as bromine is produced. Make sure you do not inhale 
deeply over the dishbromine is noxious! After a minute or so the brown colour will disappear. Once the 
solution has become clear, add 1 ml of solution D (which will turn the liquid red) and a drop of solution 
E. Swirl the Petri dish gently to mix the solutions (it will turn blue as you do so, but then quickly back 
to red), then leave to stand. Gradually, blue spots will appear in the quiescent red liquid, and these will 
slowly expand as circular wave fronts. New wave fronts will be initiated behind the expanding waves. 
Typically there will be one to a dozen or so separate target-wave centres, and the blue fronts annihilate 
one another as they collide.

This reaction is most impressively seen when the dish is placed on an overhead projector (see above). 
The heat of the projector will warm the solution and accelerate the wave fronts somewhat. After some 
time, bubbles (of carbon dioxide) will start to appear. These can begin to obscure or disrupt the pattern, 
but you can get rid of them and restart the process by swirling the solution around a little.

This recipe is taken from the chemical demonstrations leaflet of the chemistry department of University 
College, London.
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Appendix 4 
Liesegang Bands

This is a wonderful experiment, but takes several days. The bands are zones of precipitation of an 
insoluble compound, which occur at intervals down a column filled with a gel, through which one of the 
reagents of the precipitation reaction diffuses from above.

You can use a burette as the column (about 1-cm diameter), although ideally a glass tube without 
gradation markings is best. The recipe I have used involves the reaction between cobalt chloride and 
ammonium hydroxide, which precipitates bluish bands of cobalt hydroxide. The cobalt chloride is 
dispersed in a gelatin gel:mix 1.5 g of fine-grained gelatin and 1 g of hydrous cobalt chloride 
(CoCl2.6H2O) with 25 ml of distilled water and heat to boiling point for five minutes. Then transfer this 
mixture immediately to the glass column, cover the top of the column with plastic film, and allow to 
stand for 24h to set at room temperature (22°C).

Then add 1.5 ml of concentrated ammonia solution to the top of the solidified gel using a pipette. Cover 
the tube again and leave it to stand.

After several days, the bands begin to appear down the column. They are closely spacedabout a 
millimetre apart, although the spacing is not constant (see p. 62). You have to get on eye level with the 
bands to see them clearly, but they should be sharp and well defined (see figure).

     



This recipe is taken from:

R. Sultan and S. Sadek (1996). Patterning trends and chaotic behaviour in Co2+/NH4OH Liesegang 
systems. Journal of Physical Chemistry 100, 16912.

References to other systems are given in Henisch (1988) (see Bibliography: Waves).

  

     



Page 273

Appendix 5 
The Hele-Shaw Cell

The cell is basically two clear, rigid plates separated by a small gap. The plates are in fact trays, having 
raised edges to contain the liquid. Glass is recommended, but clear plastic (Perspex) works fine and is 
easier to work with. I have taken my design from:

Tamás Vicsek (1988). Construction of a radial Hele-Shaw cell. In Random Fluctuations and Pattern 
Growth, (ed. H.E. Stanley and N. Ostrowsky), p. 82. Kluwer Academic Publishers, Dordrecht.

The top tray measures 27 × 27 cm, and the bottom one 34 × 34 cm; the Perspex is 4 mm thick. The 
pieces are glued with epoxy resin.

The top plate is separated from the lower one by flat spacers at each cornerBritish pennies give about 
the right separation. The viscous liquid is glycerine, purchased from a pharmacist; the viscous fingering 
patterns are clearer if the glycerine is coloured with food colouring. (Using glycerine rather than oil 
makes the assembly easier to clean in water.) Air is injected through a small hole in the top plate. A 3-
mm hole is recommended, but I simply used the empty ink tube from a ball-point pen, which is closer to 
2 mm in internal diameter. This was glued in place in the central hole. The air can be injected through a 
large plastic syringe if you can get one; but it is just as good to blow. Remember that the viscous 
fingering pattern is a non-equilibrium shape, so that you should blow quite sharply rather than slowly to 
ensure that the bubble grows out of equilibrium.
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Appendix 6 
Bénard Convection

Polygonal convection cells will appear in a thin layer of a viscous liquid heated gently from below. This 
is a classic 'kitchen' experiment, since it really does not involve much more than heating oil in a 
saucepan on a cooker. The base of the pan must be flat and smooth, however, and preferably also thick 
to distribute the heat evenly. A skillet works well. The oil layer need be only about 1 or 2 mm deep. The 
flow pattern can be revealed by sprinkling a powdered spice such as cinnamon onto the surface of the 
oil.

For a more controlled experiment, silicone oil can be used: this is available commercially in a range of 
viscosities, and a viscosity of 0.5 cm2/s is generally about right. The convection cells can be seen more 
clearly if metal powder is suspended in the fluid (see Plate 1). Bronze powder can be obtained from 
hardware shops or arts suppliers. Aluminium flakes can be extracted from the pigment of 'silver' model 
paints, by decanting the liquid and then washing the residual flakes in acetone (nail-varnish remover). 
These powders will settle in silicone oil if left to stand.

These procedures are based on:

S.J. VanHook and Michael Schatz (1997). Simple demonstrations of pattern formation. In Physics 
Teacher, October 1997.

This paper provides the names and addresses of some US suppliers of the substances involved.
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Appendix 7 
Grain Stratification in the Makse Cell

My Makse cell is not a masterpiece of engineering, because I was impatient to put it together and see if 
the experiment worked. No doubt far more elegant varieties could be devised. The main feature I 
wanted to include was that the Perspex plates be detachable, so that they might be cleaned. Ideally they 
should also be treated with an anti-static agent, like those used on vinyl records, to prevent grains from 
sticking to the surface, but I haven't found this essential.

The plates are 20 × 30 cm, with a gap of 5 mm between them (see figure). (I am told that the Boston 
team have made a cell 2-ft high for lecture demonstrations, but I haven't seen this in action.) The cells 
described in the original paper by Makse et al. are left open at one end, but I have preferred to secure 
the plates to an endpiece at both ends. Partly this helps to ensure that they remain parallel (which is 
otherwise trickier to ensure if the plates are not glued to the base), but it also means that the striped 
layers can be deposited to fill the cell completely, which I think makes for a more attractive effect.

The prettiest results are achieved with coloured grains, but granulated sugar and sand (purchased from a 
pet shop) work well. The important factor is that the grains be both of different sizes and of different 
shapesthe sugar grains are larger and more square. (Table salt, which is more similar to the sand in both 
size and shape, didn't work at all.) And the best results are obtained by pouring the 50 : 50 mixture of 
grains at a slow and steady rate into one corner of the cell. To ensure this, I used an A5 envelope as a 
funnel, with the tip of one corner cut off.

This is one of the most satisfying experimentsa dramatic result for rather little effort.
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