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Projective geometry is a beautiful subject which has some remarkable applications
beyond those in standard textbooks. These were pointed to by Rudolf Steiner who
sought an exact way of working scientifically with aspects of reality which cannot be
described in terms of ordinary physical measurements. His colleague George Adams
worked out much of this and pointed the way to some remarkable research done by
Lawrence Edwards in recent years. Steiner's spiritual research showed that thereis
another kind of space in which more subtle aspects of reality such as life processes
take place. Adamstook his descriptions of how this space is experienced and found
away of specifying it geometrically, which is dealt with in the Counter Space Page.

A brief introduction to the basics of the subject is given in the Basics Page.
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See a so Britannica: projective geometry

The work of Lawrence Edwards s introduced in the Path Curves Page, and some
explorations of hiswork on further aspectsis described in the Pivot Transforms Page.
Thisis mostly pictorial, with reference to documentation.

YOU ARE INVITED TO EXPLORE!

Nick Thomas

References and selected other sites are listed on the People page.

Feedback welcome! Please include the word "counterspace” in the text and mail to
nctsm<At>safe-mail.net, replacing <At> with @ of course.

@ |locations of recent changes
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http://www.britannica.com/eb/article-9111074/projective-geometry
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Projective geometry is concerned with incidences, that is, where elements such as
lines planes and points either coincide or not. The diagram illustrates DESARGUES

THEOREM, which says that if corresponding sides of two triangles meet in three
points lying on a straight line, then corresponding vertices lie on three concurrent

lines.



http://www.britannica.com/eb/article-9030039/Girard-Desargues#719025.hook

The converseistruei.e. if corresponding vertices lie on concurrent lines then
corresponding sides meet in collinear points. Thisillustrates a fact about incidences
and has nothing to say about measurements. Thisis characteristic of pure projective
geometry.

It also illustrates the PRINCIPLE OF DUALITY, for thereis a symmetry between
the statements about lines and points. If all the words 'point' and 'line' are exchanged
in the statement about the sides, and then we replace 'side’ with 'vertex', we get the
dual statement about the vertices.

The most fundamental fact is that there is one and only one line joining two distinct
pointsin aplane, and dually two lines meet in one and only one point. But what, you
may ask, about parallel lines? Projective geometry regards them as meeting in an
IDEAL POINT at infinity. Thereisjust oneideal point associated with each
direction in the plane, in which all parallel linesin such adirection meet. The sum
total of all such ideal pointsform the IDEAL LINE AT INFINITY.

The next figure shows the process of projection of a RANGE of points on a yellow
line into another range on adistinct (blue) line. The set of (green) projecting linesin
the point of projectioniscaled a PENCIL of lines. The points are indicated by the
centre points of white crosses.
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The two ranges are called PERSPECTIVE ranges. The process of intersection of a
pencil by alineto produce arangeis called SECTION. Projection and section are



dual processes. The above procedure may be repeated for a sequence of projections
and sections. Thefirst and last range are then referred to as PROJECTIVE
RANGES. If corresponding points of two projective ranges are joined the resulting
lines do not form a pencil, but instead very beautifully envelope a CONIC SECTION,
that is an ellipse, hyperbola or parabola. These are the shapes arising if a plane cuts a
cone, and in fact include a pair of straight lines and also, of course, the circle.

Using the dual process a conic can be constructed by points using projective pencils.

There are many theorems that there is no space to explain here. An exampleisgiven
on the home page showing Pascal's theorem, and illustrations of others are listed

below.

A particularly important subject for counter space is that of polarity, which isrelated
to the principle of duality. If thetangentsto aconic through a point are drawn, the



line joining the two points of tangency is called the POLAR LINE of the point, and
dually the point is called the POLE of that line. Thisisillustrated below.

The fact to note here is that the polars of the points on aline form a pencil in a point,
which isthe polar of that line. The situation is self-dual.

In three dimensions we illustrate the same principle but with a sphere and a point.
The cone with its apex in that point, and which is tangential to the sphere, determines
a plane (red) containing the circle of contact. That planeisthe POLAR PLANE of
the point, and the point is the POLE of the plane.



Similarly to the two-dimensional case, if we take the polar planes of all the pointsin
aplane, they all contain a common point which is the pole of that plane. Linesare
now self-polar.

When counter space is studied this property of points and planesis used to
conceptualise the idea of a negative space, as we reverse the roles of centre and
infinity.
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AFFINE & METRIC GEOMETRY

Infinity is not invariant for projective geometry, in the sense that ideal points may be

transformed by it into other points. In aplane the ideal points form anideal line, and
In space they form an ideal plane or plane at infinity. A special case of projective



geometry can be defined which leaves the plane at infinity invariant (as awhole) i.e.
ideal elements are never transformed into ones that are not at infinity. Thisis known
as affine geometry. A further special case is possible where the volume of objects
remains invariant, which is known as special affine geometry. Finally afurther
specialisation ensures that lengths and angles are invariant, which is metric geometry,
so called because measurements remain unaltered by its transformations.

Other Theorems

. Cross Ratio. The cross ratio of four pointsisthe only numerical invariant of

projective geometry (if it can be related to Euclidean space). Flat line pencils
and axial pencils of planes containing a common line also have cross rétios.
. Quadrangle Theorem. If two quadrangles have 5 pairs of corresponding sides

meeting in collinear points, the sixth pair meet on the same line. Proof
indicated using Desargue's Theorem.
. Harmonic Range. Construction of two pairs of points harmonically separated,

which have a cross ratio of -1.

. Homology. A basic projective transformation in which corresponding sides

meet on afixed line called the axis, and corresponding points lie on lines
through the centre.
. Pappus Theorem. Thiswas one of the earliest discoveries, and can be

regarded as a special case of Pascal's Theorem.
. Brianchon's Theorem. Thisisthe dual of Pascal's Theorem athough it was
discovered independently.

M easur es and Transformations

It is best to view the first item before those later in thelist. They show repeated
transformations of the points on aline.



Breathing (or hyperbolic) Measure. A point is shown moving along aline
between two invariant points (with construction).

Growth Measure with one invariant point at infinity. The ratios of the
distances of successive points from the other invariant point are constant.

Step (or parabolic) Measure, in which the two invariant points coincide. This
Is how equal steps appear in counter space for our ordinary consci OUsness.

Step Measure with both invariant points at infinity, which yields equal steps.
The proof follows from the fact that triangles on the same base and between the
same parallels are equal in area.

Circling (or elliptic) Measure in which there are no invariant points. The two
auxiliary lines used in the above constructions may be regarded as special cases
of aconic.

If you attempt to impose three invariant points on aline (e.g. in the first construction
by taking the first corresponding pair as coincident) you will find al points are salf-
corresponding. Thisisthe Fixed Point Theorem of projective geometry.

The following animations show the application of the above to transformation of a
plane, in these examples lines being transformed by means of two measures on two
sides of the invariant triangle.

A

A

Projective transformation in which it is demonstrated that parallelism is not
conserved.

Affine transformation where two red parallel lines are transformed into two
parallel lines (one green and one blue). Thisis affine because one side of the
invariant triangle is at infinity since each measure has an invariant point at
Infinity.

References 6 and 8 and 9 give a good introduction to projective geometry, where the

above facts are proved.
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The picture shows an egg form constructed mathematically. The spirals are
characteristic of the mathematics and are known as PATH CURVES. They were
discovered by Felix Klein in the 19th Century, and are very simple and fundamental
mathematically speaking. Geometry studies transformations of space, and these
curves arise asaresult. A ssimple movement in afixed direction such as driving
along a straight road is an example, where the vehicle is being transformed by what is
called atrandation. In our mathematical imagination we can think of the whole of
space being transformed in thisway. Another example is rotation about an axis. In
both cases there are lines or curves which are themselves unmoved (as awhole) by



http://www.britannica.com/eb/article-9045733/Felix-Klein

the transformation : in the second case circles concentric with the axis (round which
the points of space are moving), and in the first case al straight lines parallel to the
direction of motion. These are ssmple examples of path curves. More complicated
transformations give rise to more interesting curves.

The transformations concerned are projective ones characteristic of projective
geometry, which are linear because neither straight lines nor planes become curved
when moved by them, and incidences are preserved (thisis a simplification, but will
serve us here). They allow more freedom than simple rotations and trandations, in
particular incorporating expansion and contraction. Apart from the path curves they
|leave atetrahedron invariant in the most general case. George Adams studied these
curves as he thought they would provide away of understanding how space and
counter space interact. A particular version he looked at was for a transformation
which leaves invariant two parallel planes, the line at infinity where they meet, and
an axis orthogonal to them. Thisisa plastic transformation rather than arigid one
(like rotation) and atypical path curve together with the invariant planes and axisis
shown below.




Thiswill be recognised as the type of curve lying in the surface of the egg at the top
of the page. If we take acircle concentric with the axis and all the path curves which

pass through it then we get that egg-shaped surface. The construction is shown in the
following animation:



We can vary the transformation to get our eggs more or less sharp, or aternatively we
can get vortices such as the following:




In these pictures particular path curves have been highlighted. This particular vortex
Is an example of awatery vortex, so called by Lawrence Edwards because its profile
fitsreal water vortices. It ischaracterised by the fact that the lower invariant planeis
at infinity. If instead the upper planeis at infinity we get what he calls an airy vortex.

Two parameters are of particular significance: lambda and epsilon. Lambda controls
the shape of the profile while epsilon determines the degree of spiralling. Lambdais
positive for eggs and negative for vortices, while the sign of epsilon controls the
sense of rotation. Thisisillustrated below.

The top row shows lambda increasing from 1 (elliptical) to 10. When lambda
reaches infinity the form becomes conical. The centre row shows lambda increasing
from -0.616 to -0.1 for a vortex. The bottom row shows epsilon varying from 0.2 to



10, and when it reaches infinity the curves are vertical. If it is zero then the path
curves become horizontal circles, and strictly speaking the profileislost.

The profile isthus controlled by a single parameter (lambda), and it is scientifically
interesting that with such a restriction these curvesfit very closely awide variety of
natural forms including eggs, flower and leaf buds, pine cones, the left ventricle of
the human heart, the pineal gland, and the uterus during pregnancy. The watery
vortex closaly fits actual stable water vortices. Together with the airy vortex it also
has significance for pivot transforms. The following shows approximately the way

the left ventricle of the heart behaves as a path curve from diastole to systole:

L awrence Edwards spent many years finding out and testing the above facts
experimentally, which he has described in Reference 7. In 1982 he started testing the
shapes of the leaf buds of trees through the winter, and found that their lambda value
(unexpectedly) varied rhythmically with a period of approximately two weeks. This
was his main topic of research in hislater years, and the evidence is now very strong -
backed by thousands of measurements - that the rhythm corresponds to the
conjunctions and oppositions of the Moon and a particular planet for each tree. This
isapurely experimental fact and care should be taken in interpreting it.

Download document Practical Path Curve Calculations for basic algebra and
formulae to work with path curves (Word 97 document).



http://www.nct.anth.org.uk/ftp/practlpc.doc
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What is Counter Space?

Counter space is the space in which subtle forces work, such as
those of life, which are not amenable to ordinary measurement.
It isthe polar opposite of Euclidean space. It was discovered by



the observations of Rudolf Steiner and described geometrically
by George Adams and, independently, by Louis Locher-Ernst.
Instead of having itsideal e ementsin aplane at infinity it has
them in a"POINT at infinity". They are lines and planes, rather
than lines and points as in ordinary space. We call this point the
counter space infinity, so that a plane incident with it issaid to
be an ideal plane or plane at infinity in counter space. It only
appears thus for adifferent kind of consciousness, namely a
peripheral one which experiences such a point as an infinite
Inwardness in contrast to our normal consciousness which
experiences an infinite outwardness.

Nick Thomas has explored the idea that objects existing in both
spaces at once are subject to strain and stress, and an analysis of
these leads to new approaches to gravity and other forces as
summarised in the diagram below. The pentagons are 'hot
spots' to explore further.



WA, COUNTER SPACE
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LINKAGES

A linkage is an element that belongs to both Euclidean- and counter-space at once
e.g. apoint or plane. Suppose acube s linked to both spaces at once, and is moved
upwards away from the inner infinitude. It will try to obey the metrics of both
spaces, and the diagram below shows what happens as it moves, the yellow version
obeying space and staying the same size and shape in space, while the magenta
version obeys the counter space metric.



/

The counter space- or inner-infinity is shown as a point at the bottom, and lines have
been drawn from it through the vertices of the cube. The counter-spatial movement
IS such that the vertices stay on these lines in order to obey its metric properties, as
illustrated by the magenta cube, while the spatial one stays the same spatially. With
our ordinary consciousness that is what seems natural, of course, but for a counter
space consciousness the other is most natural and the yellow cube appears to be
getting bigger (NOT smaller!!). The geometric difference between the two cubesis
referred to as strain, analogously to the use of that term in engineering where it isthe
percentage deformation in size when, for example, an elastic band is stretched. The
elastic band responds to the strain by exerting aforce, which isreferred to as stress.
The central thesis here isthus:

1. Objectsmay belinked to both spaces at once,

2. When they are, strain arises when they move asthe metricsare
conflicting,

3. Stressarisesasaresult of the strain.



Note well that stressis not a geometric concept, and we move from geometry to
physics when we consider stress. The major stress-free movement or transformation
IS rotation about an axis through the counter space infinity,. which may explain the
ubiquitous appearance and importance of rotation in most branches of physicse.g. in
fluid flow.

This, and all else in the pages concerned with counter space, is explained in more
detail in "Science Between Space and Counterspace”" (Reference 11). Some algebraic

details are given in the subordinate algebraic page.

Bacl Home i
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If any planeis placed in a path curve transformation then it is being moved by that
transformation. There is generally one point in it which is momentarily stationary,
that is, the plane is pivoting about that point. It isknown as the pivot point of the
plane. If we place a surface in the transformation then every one of its tangent
planes has such a pivot point, and they form another surface known as the pivot
transform of the first one. They are described by Lawrence Edwards (Reference 7).
The author has written abrief summary assuming college level mathematics. The
above animation shows how the transform of avortex varies asitslambdavalueis

varied from -0.9 to -0.1, other parameters being held constant.




L awrence Edwards discovered these transforms when investigating the shapes of
plant seed pods. He found that if a suitably positioned watery vortex istransformed it

givesavery good fit. The following animation shows how such atransform may be
constructed:

Theinitial picture shows part of the vortex, the lower invariant plane of the bud
transformation as a horizontal line, and two centres of projection and an auxiliary line
determined by the bud lambda and epsilon. The final profile is shown by black dots

where corresponding blue tangents and red lines meet. The blue lines represent
tangent planes orthogonal to the picture, and the red ones horizontal planes.

He then investigated how an airy vortex is transformed and found forms displaying
Invagination, reminiscent of embryonic forms. He calculated the horizontal profile
of the transform of a particular vortex, and as the the vortex axis was rotated the form
changed as shown below.




The vortex axis starts at 19° to the vertical at an azimuth of 180°, swinging round to
163° azimuth and 62° to the vertical (for the largest image).

The full three-dimensional forms containing these profiles (which were 30 percent up
from the bottom) are shown below:

These images were obtained by cal culating the angle of the tangent plane at each
visible point, and setting the brightness according to its orientation to the direction of
Illumination. This required a sophisticated bisection agorithm which could not



aways find the required root of the equation, which iswhy there are blemishes.

The following image shows some other such forms where the vortex axis always
contains the upper invariant point of the bud transformation (hence the symmetry).
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Of course other surfaces can be transformed, and we see for example how bell forms
can be obtained from quadric surfaces
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PIVOT TRANSFORMSASGYNOECIUM FORMS

On the Path Curves page the application of those curvesisbriefly described.
Below are two examples of actual results:




This shows a Kerria Japonica bud with the theoretical curve superimposed in red,
which can be seen to be an excellent fit. It isaccomplished by selecting the axis by
eye together with several points on the profile, and then finding the best mean lambda

to fit them. The mathematical curve approaches the top and bottom points (marked
by crosses) asymptotically, and we cannot expect an actual physical form to
accomplsh that! So the top and bottom points are varied on the axis to minimise the
deviation. Thetop point isin this case above the physical bud, but more usually for
other buds thereis a physical prominence above the mathematical top. The
percentage deviation of the lambda value is 1.2%, a very good result asthat isamore
sensitive indicator than the mean radius deviation. An added interest in this case was



that only the right profile was analysed, yet the resulting fit is also excellent for the
left profile. Many buds, like the rose below, are asymmetrical and with a prominence
at the top.

L awrence Edwards discovered the Pivot Transform when seeking away to describe

the gynoecium or seed pod. Hisideawas to use the projective transformation that
produces the bud form to transform another surface. The path curves arise as the
invariant curves of alinear transformation, and that very transformation is then used
to transform another surface. He found that transforming a water vortex gave the

form of the gynoecium (in contrast to the transformation of the airy vortex shown

above). The picture below shows arose bud and its seed pod. Asit isasymmetrical
the left profile of the bud was analysed, and the resulting fit is shown in red on the
bud. Then the transformation corresponding to that was used to find a vortex that
transformed into the gynoecium, the result being superimposed on the left side of the
seed pod. The closeness of thefit is striking. What is more striking is that this
process applies to many budsi.e. in every case it isawatery vortex that is
transformed by the bud transformation to give the gynoecium. The vortex is coaxial
with the bud, and itsinvariant plane lies between those of the bud transformation.




Clearly there is some kind of trade-off between the ideal form represented by the
mathematical curves and the physical necessities of actually producing it, together
with the required structural integrity which requires a stalk, and a portion between the
gynoecium and the bud where the sepals were attached, and so on. The attempt to fit
agynoecium form is very sensitive to the relation between the bud lambda and the
actual gynoecium size, and will fail if the lambdais not determined accurately i.e. we
do not just get a bad fit, we get none at all as the mathematics fails with imaginary
values where we require real ones.

The next picture shows the fit for another rose bud , illustrating that the gynoecium
really does depend upon the bud shape and is not just a standard one, as the shapeis
more elliptic than the above one:



In this case there is alarge prominence at the top which evidently is not part of the

bud, and any attempt to include it with a bad fit fails to find any gynoecium form at
all. It opens up the possibility for such buds of finding a criterion for judging what
belongs to the ideal form in physical reality, and reinforces the judgement made by
eye, which iseasy in this case.

Although the right hand profile is less precise, bearing the above remarksin mind it is
nevertheless possible to find a good path curve for it, and a surprisingly good
gynoecium fit:



Such results can only excite wonder at the processes occurring in Nature, and how
much we have to learn about their holistic aspects which can be investigated with this
approach.

The prints shown above were obtained by placing the bud directly in an enlarger to
obtain the profile, and the lines drawn on them were for hand calculation of the
parameters. However the red curves were obtained by computer methods.

The mathematics of the pivot transform is described in Reference 7 and aso in the
document Pivot Transforms.

Bacl Home i
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RUDOLF STEINER

Rudolf Steiner was born in 1861 and lived until 1925. He developed
spiritual science by applying the scientific method to his remarkable powers of
clairvoyant perception.. When observing subtler aspects of existence he could
change his consciousness so that instead of experiencing the world from a central
point of view his consciousness moved to the cosmic periphery. He described his
findingsin over 50 written works and nearly 6,000 lectures. He founded the
Anthroposophical Society in 1912 and gave impulses for new more spiritual

approaches to agriculture (biodynamic), architecture, the arts, education, care of the
handicapped, medicine, science and social science, as well as the path of individual
spiritual development. He was born in Kraljevic in Austria (now in Croatia), he read
chemistry, natural science and mathematics for his degree and obtained his doctorate
in philosophy.

{1
.8 ____________________________J

GEORGE ADAMS




.. George Adams von Kaufmann was born in 1894 and
. lived until 1963. He read chemistry at Cambridge and
came into contact with Steiner's work while a student.
He was active as a pacifist in the First World War and
did social work with the Quakers, in particular with the
Friends War Relief organisation in Poland. He worked
.. for therest of hislife for Anthroposophy with a specia
~ interest in the scientific side as well as developing the
social aspects. He interpreted Steiner's lecturesin
%, England and later translated many of them into

~ English. He discovered how to describe Steiner's
findings about negative space in geometric terms. He
worked particularly with projective geometry and the

application of path curves.

!

LAWRENCE EDWARDS

L awrence Edwards (1912 -2003) studied the work of
Rudolf Steiner and as a result he became a Class
Teacher as well as an upper school mathematics
teacher at the Edinburgh Rudolf Steiner School until
he retired. He was inspired to carry out scientific
research after studying projective geometry with
George Adams, following a"moonlighting" second
career testing whether the path curves he had learnt
about applied to real formsin Nature. This he
confirmed for the forms of many flower and |leaf buds
aswell asfor the human heart. He found important
rhythmic processes active in leaf bud forms over the winter months which correlate




with planetary rhythms. He was afriend, inspirer and helper to many others.

S

NICK THOMAS

i gl R s Nick Thomas was born in 1941, educated as an
ol ”@*’ electrical engineer, and became an engineering officer
| inthe RAF for 16 years. He met the work of Rudolf
~ Steiner at the age of 18 and has been inspired by it
~ ever since. In particular he seeks to reconcile Steiner's
spiritual research with the findings of science, and has
found projective geometry to be a beautiful and
~ appropriate approach. Lawrence Edwards befriended
- him early on and helped him greatly. Some of his

interests and work are outlined in these pages.

S

Refer ences

1. The Philosophy of Spiritual Activity, Rudolf Steiner, Rudolf Steiner Press, London
1979.



2. Space and the Light of Creation, George Adams Kaufmann, Published by the
Author, London 1933.

3. Universal Forcesin Mechanics, George Adams, Rudolf Steiner Press, London
1977.

4. The Lemniscatory Ruled Surface in Soace and Counter space, George Adams,
Rudolf Steiner Press, London 1979.

5. The Plant Between Sun and Earth, Adams and Whicher, Rudolf Steiner Press,
LLondon 1980.

6. Projective Geometry by Lawrence Edwards, Rudolf Steiner Institute, Phoenixville
1985.

7. The Vortex of Life, Lawrence Edwards, Floris Press, Edinburgh 1993.
8. Projective Geometry,Veblen and Y oung, Ginn & Co., Boston 1910 (a classic).

9. Projective Geometry, Dirk J. Struik, Addison-Wesley Publishing Co., London
1953.

10. Geometry, H.S.M. Coxeter, John Wiley & Sons, New Y ork, 19609.

11. Science Between Space and Counterspace, N.C. Thomas, Temple Lodge
Publishing, first published London January 1999.

CORRECTIONS (downloadable Word 97 document).

A second edition of the book I1s now available, with the above
corrections incorporated.

A new publicationis. Space and Counter space, A NewScience of Gravity, Time
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ARE TIME MACHINES POSSIBLE?

Time machines are topical, with articles in popular magazines suggesting that the Large Hadron
Collider (LHC), due to start operation later this year, may produce wormholes enabling time
travellers from the future to reach back to the moment when that first happens. Well known
paradoxes are raised by the possibility of physical time travel to the past, such as a man murdering
his grandmother and so on. Fascinating science fiction stories have been written about the
subject, beginning of course with H.G.Wells The Time Machine. A nicetwist iswhen the
inventer of atime machine travels back to the moment when it isinvented, and publishes the
patent. Some physicists eagerly accept the possibility of time travel while others, such as Stephen
Hawking, do not. So does physical time travel make sense? Two reasons will be suggested here



why not:
A misunderstanding of time-dilation in Special Relatvity that goes back to Einstein himself;
Timeis assumed to be a dimension, which is not necessarily true.

Time Dilation

In his Specia Theory of Relativity, Einstein sought to meet two objectives:

that physical laws are the samein all inertial reference systems;
that the velocity of light in avacuum is constant regardless of the state of motion of an
observer.

The first means that there is no absolute frame of reference for which physical laws are ssmplest,
but rather they are the same in all reference systemsthat are in uniform rectilinear motion with
respect to each other. The second means that the velocity of light will appear to be the samein all
such reference systemsi.e. the observer's velocity is not added to that of light. Three startling
conseguences of the equations of motion that solved this programme are;

Moving objects increase in mass, which becomes infinite at the speed of light;

Moving objects become shorter in their direction of motion, shrinking to zero at the speed of
light;

Clocks on amoving object appear to tick more slowly as seen by outside observers, stopping
altogether at the speed of light.

The third consequence is called time-dilation, and it should be appreciated that it does not only
apply to clocks. All cyclic or rhythmic processes will appear to slow down, including the beating
of ahuman heart. Einstein concluded that time itself slows down for the moving object relative to
outside observers. The famous twins paradox is based on this, where one twin (Fred) stays at
home and the other (Jim) accelerates to a speed near that of light, travels for several years,
reverses velocity and travels back home again. Because Jim's heart appears to slow down he
appears to be younger than Fred when they are reunited. The paradox liesin the fact that the same
argument can be applied to Fred as seen by Jim, so that Jim expects Fred to be younger. However
thereisaflaw, aswhile Fred may well bein aninertial frame of reference, Jim most certainly is
not because of the accelerations he undergoes, and General Relativity may be invoked to show
that JJm will in fact be younger than Fred because of that.

Einstein's (or Lorentz's) equations do not say that time itself slows down, only that time intervals
will appear to be longer, for Einstein banished the notion of absolute time, so time as such is not
involved, only intervals between events. An experimental confirmation of thisideais that
particles called muons arising from cosmic rays entering the atmosphere reach the surface of the



Earth in greater numbers than expected. That is because they decay quickly, having a definite half-
life, which enables the expected number of arrivals to be calculated. The observed rate of arrivals
suggests that the muon's "clocks" are ticking about 9 times more slowly as observed on Earth than
those observed in the laboratory, and so they live long enough to reach the Earth. Now the half-
life of their decay is based on internal physical processes, which time-dilation shows should slow
down thus increasing the observed half-life. Now thisisapurely physical statement about

process rates, and need not imply time itself goes more slowly for the muons. Denying that time
itself is affected does not invalidate any of the experimental findings supporting Relativity, but it
does suggest that no "time travel into the future” isinvolved. Thisis more fully explained in an
article which may be downloaded (see below).

Timeasa Dimension

Einstein also treated time as a fourth dimension alongside the three of space (ignoring for now the
extra dimensions assumed by Superstring Theory). However it is argued in the accompanying
article, which may be downloaded, that this |eads either to a static universe with no genuine
evolution or change, or else to an infinite regress as an extra time-like dimension would be
required to measure changes occuring in four-dimensional space-time, etc, etc.. Thisdilemmais
solved if time is not assumed to be an extra dimension alongside the three of space.

Physical observations can never distinguish between those two views.

Wormholes are supposed to be topological distortions of space-time predicted by General
Relativity that enable "short cuts' to be taken as in science fiction. However if timeisnot a
dimension then the dramatic changes in the rates at which physical processes proceed at either end
of awormhole are just that, but imply no time travel in the sense of H.G. Wells. Similarly the
drastic changes in process-rates supposed to occur in the vicinity of ablack hole are again just that
- changes in process rates - without time itself being affected.

SO: if timeitself does not slow down for moving observers, but only rates-of change of processes
do so, and timeis not itself a dimension, then the physical possibility of time travel does not arise.
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Contra Time Machines

N C Thomas, C Eng, MIET
Introduction

The possibility that time machines could be constructed is taken seriously by the physics community,
although the resultant paradoxes cause unease to many. This depends critically upon two assumptions:

that time is a dimension alongside the three familiar spatial dimensions;

that time dilation predicted by Special Relativity and verified experimentally implies time itself is
affected by relative velocity;

In this article both these assumptions will be challenged without thereby invalidating what is physically
essential in the Special and General Theories of Relativity. The result is that time machines are not possible
in the sense usually envisaged.

Special Relativity

Albert Einstein developed his Special Theory of Relativity to meet two requirements or postulates:
Physical laws should be invariant with respect to uniform rectilinear motion
The velocity of light is constant in vacuo for all observers regardless of their state of motion

The first says that the laws of physics should not be affected by uniform relative motion, so that the
behaviour of a pendulum, for example, should be governed by the same physical factors and the same
mathematical equation relating them in all inertial systems i.e. systems in uniform rectilinear motion. Other
examples are that we do not expect the law of conservation of energy to be correct in only one reference
system, we do not expect fluids to become gases just because their containers are in relative motion, and so
on. In short there is no absolute reference system for which the laws take their simplest form: they have that
form in all inertial reference systems. Another way of saying this is that we do not expect Nature to be
affected by the way we describe her (mathematically). FEinstein himself said that he would find it
“distasteful” were it otherwise (Reference 1).

The second requirement was adopted for a number of reasons, some theoretical and at least one
experimental. In the 19" Century it was supposed that light waves must have a “bearer” medium analogous
to the fact that waves in water, for example, must have water to bear them. This bearer or medium was
called the ether, which was supposed to pervade all space and to have suspiciously ideal physical properties.
Michaelson and Morley carried out a famous experiment in the 19" Century to detect the movement of the
Earth through the ether, but obtained a null result: no such movement was detected. While there may be a
number of interpretations of this remarkable result, the concensus from Einstein onwards is that there is no
ether and that the velocity of light in vacuo is the same regardless of the state of motion of an inertial
observer. Its velocity is supposed to be reduced when travelling through a medium such as air or glass, and
the phenomenon of refraction is explained on that basis.



Einstein developed a set of equations governing the relative movement of inertial systems which satisfy the
two postulates. They are essentially rooted in fensors, which are special mathemematical entities that
permit laws to be expressed in a form that does not depend upon the coordinates of space and time used.
For example we may select as our coordinate system the position of an object relative to London so that one
measurement is along a line (an axis) running north/south through London, another axis is east/west and the
third vertically up and down. Together with time we then have a coordinate system. Or we may choose to
centre our system in the Sun, at the centre of gravity of the Solar System, with one axis through the vernal
equinox, one at right angles to that in the Ecliptic, and the third at right angles to the Ecliptic. Again,
together with time we have an equally valid coordinate system. Should Nature make her laws depend upon
which of these two systems (or any other) that we select? Einstein thought not, which is the basis of the first
postulate above, and tensors are a terse and elegant way of expressing that fact.

As an aside, a problem with London is that the Earth is rotating, so strictly speaking such a coordinate
system is not inertial, but as it is very hard to find a familiar example we let that example illustrate broadly
what is involved. The Sun based system is not exactly inertial either as the Solar System is moving round
the centre of our galaxy rather than on a straight line. So the concept of an inertial system is abstract and it
is hard to find one in practice. When General Relativity is taken into account this problem is actually eased
because it handles acceleration as well as uniform rectilinear motion.

The tensor equations may be cast into a more transparent form, and for example that governing how
velocities should be added is
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where v; and v, are the velocities of two objects relative to an observer, c is the velocity of light and v is the
relative velocity of the two objects as measured by the observer. Thus if v; = ¢ or v, = ¢ (or both) than v = ¢,
showing how the second postulate is satisfied. Of course the two objects are travelling along the same
straight line in this example, but it is readily adapted for other cases. c¢ is an upper limit which cannot be
exceeded, or even reached by massive objects.

Now suppose an observer A has a relative velocity v with respect to another observer B, and each observes
an event E. Einstein showed (Reference 1 for an accessible account) that if E occurs at a distance x from A
at a time ¢, then the distance x' of E from B in its own coordinate system is given by
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where ¢ is the time since A and B coincided. The time #' of the event for B is given by



which contrasts strongly with our intuition that t=t'. These two equations were actually first derived by
Hendrik Antoon Lorentz in 1904, but Einstein gave a convincing rationale for them.

Suppose now that the event is the moment when a pendulum at rest with respect to A is at the bottom of its
swing, and that it has a peroid T as seen by A, so that for A two successive such events occur at times ¢ and
t+T, the time difference trivially being calculated as (¢+7)-=T. For B the time difference is
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i.e. T' > T so that the pendulum appears to be swinging more slowly for B. If that pendulum is part of a
clock then the clock appears to tick more slowly. The above calculation applies to all cyclic or rhythmic
processes, including any type of clock, biological processes and so on. Thus a person's heart will appear to
beat more slowly too, and if v=c it will appear to stop altogether as 7" becomes infinite. This is the basis of
the famous twins paradox, where one twin remains on Earth and the other travels away at a velocity close to
¢, and thus appears to age much more slowly. The catch is that if the travelling twin reverses his velocity
the same happens on the return journey, for then we have
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i.e. as before clocks also tick more slowly. This contrasts with the Doppler shift, illustrating that the two
phenomena are quite distinct. Thus on his return it seems that the much-travelled twin will be younger than
the stay-at-home one. The paradox here is that the travelled twin should observe the other aging more
slowly in an analogous way, so that in the end they should not differ in age. This has been the subject of
much heated debate! See e.g. Reference 2. However sticking to Special Relativity is insufficient to
describe the whole affair, as the travelled twin is not in an inertial reference frame!!! Why this simple fact
is so often ignored is a mystery to the author. For accelerations are involved to set off, reverse velocity, and
slow down at the end. General Relativity is required to account for the effects of acceleration (the paradox
is resolved on this basis in Reference 3).

Time

We will now take issue with a conclusion Einstein drew from this which we claim need not be true. He said
that because clocks tick more slowly therefore time itself slows down. However his equations do not show
that, what they do show is that cyclic and rhythmic processes are slowed down, which has been thoroughly




verified e.g. by the extended apparent lifetimes of muons in the atmosphere. It no more follows as a logical
necessity that time is slowed down than that it would be if we simply lengthened the pendulum of a clock to
make it tick more slowly. Clocks do not determine time! That would be the proverbial tail wagging the
dog. This may seem like a merely philosophical point, but whatever label is attached to it, it is a very
important point. It is intimately connected with the notion that time is a dimension which we travel through,
somewhat analogously to the fact that we may travel through a spatial dimension. That the variable ¢ enters
into all equations involving motion appears to justify that notion, and physicists speak of space-time as a
four-dimensional continuum. Einstein wrote that there is no essential difference between these four
dimensions and that time only seems different to our kind of consciousness.

Returning to the experimental confirmation of time dilation provided by the extended life of 4 mesons,
these particles have a half life of 1.53x10° seconds. Experiments indicated that more muons arising from
cosmic rays entering the atmosphere arrived at the surface of the Earth than would be expected based on that
half life. In fact the half life was about 9 times its laboratory value due to time dilation (Reference 3). Now
the half life results from processes in the muon that lead it to decay, and if those processes are slowed down
then it will have a longer half life. We do not have to conclude that time itself slows down in the muon rest
frame.

But is time really a dimension? Is there any evidence for that? What we know is that we require a variable
t in order to calculate velocity and other variable quantities, and that it seems that ¢ is steadily increasing. It
does not really matter whether it increases steadily or not as it is the yardstick for change. If it increases in
some other way, how would we know? By means of another dimension? This requires us to move on to
General Relativity.

General Relativity

Obviously it would take too long to give a full account of this here (see Reference 4 for a useful account),
but something is needed if we are to discuss time travel. Einstein pointed out that there is no physical
experiment that could exhibit the fact that one is undergoing a rectilinear translation, and in his example a
person in a closed box travelling uniformly along could not determine that fact. For example a pendulum
would not reveal it for the reasons we have already seen: its laws are the same in all inertial reference
systems. However if you are sitting in an aircraft and it starts doing aerobatics you certainly know who is
accelerating, and even if you are a bit slow on the uptake, your stomach is not! This is why Special
Relativity only considers inertial reference systems. Now the first postulate of Special Relativity was

Physical laws should be invariant with respect to uniform rectilinear motion
Surely we should not stop there! We would like to say something like
Physical laws should be invariant in all reference systems

But then we must somehow explain the situation in the above aircraft. This is exactly what Einstein did, as
follows. Returning to his closed box, suppose you are in such a box and unknown to you it is being pulled
along in empty space by a rope (we'd better not ask just how!) such that it is undergoing a uniform
acceleration of 1g. If again you observe the motion of a pendulum in the box it will behave exactly as it
would on the surface of the Earth i.e. you could not tell whether you were being accelerated or were in a
gravitational field. Einstein then postulated that there is no difference. In other words gravity and




acceleration are equivalent in all respects. The mathematics required to capture this idea is beautiful and
difficult, based again on tensors for the reasons explained before. What emerges is that space-time is curved
both by gravity and by acceleration. This curvature is exhibited by the fact that light does not travel on a
straight line in the presence either of a gravitational field or an acceleration. In the accelerated closed box a
photon travelling across the box on a path starting e.g. at right angles to the direction of motion will follow a
curved path. The idea was verified by Sir Arthur Eddington and others in 1918 during an eclipse of the Sun,
when stars seen close to the perimeter were displaced outwards compared with their normal positions. Also
an anomalous precession of the perihelion of the planet Mercury, previously unaccounted for, could be
explained by the equations of motion given by General Relativity. Furthemore the elliptic orbits of the
planets round the Sun could be shown to arise from the curvature of space caused by the intense
gravitational field of the Sun. Many tests of both Special and General Relativity have corroborated them.
(Indeed no falsifying experiment is known to the author, although the entanglement of photons in Alain
Aspect's experiment in 1982 to test Bell's inequality seems to approach that. It is said that no signal could
be transmitted faster than light by that means, the point being that permanent observation of the polarisation
awaiting its determination at the other end is not possible, and otherwise it is not possible to know when to
test that it has been determined by an observation at the other end without receiving some other signal to say
so. But it remains true that the determination of the polarisation has been transmitted faster than light, even
if that is not practically usable).

So far so good. What about an object falling vertically downwards towards the Earth, does it not follow a
straight line? For the point now to be made, we ignore the movement of the Earth round the Sun, and of the
Solar System in our galaxy, which would suggest otherwise. The line is then straight relative to the Earth,
and certainly would be were the Earth alone in the universe. So where is the curvature? It lies in the fact
that the object is accelerating, following a curved world line, which is a special line in space-time.
Geodesics are, in a curved space, the equivalent of straight lines in a flat space. On the surface of the Earth,
for example, the geodesics are (ideally) great circles. General Relativity says that objects follow geodesics
in space-time, which replaces Newton's First Law that an object remains in a state of rest or of uniform
motion unless acted upon by an impressed force. There are, in curved space-time, so-called null geodesics
which have zero length. There are no such geodesics in a flat three-dimensional space, but when time is
included as if it were a dimension then there are such entities, and they are of great importance. For light
travels along null geodesics. This is what distinguishes light (and other radiation) from massive objects.

Thus every object is moving on a world line which is a geodesic, the planets on their (roughly) elliptic
geodesics being examples. More accurately, an object is a world line, for the movement is only apparent
according to this view, since it only arises when one dimension is taken as the reference for change in the
others, that dimension being time. We cannot speak of a space-time movement without invoking some
other reference, such as yet another time-like dimension. For movement, indeed any kind of change,
requires a time-like reference. The conclusion is that the universe is a static assemblage of world lines:
change is only apparent as an artefact of our consciousness (according to Einstein). If the universe is to
evolve, expanding as is supposed, and is not static then the world lines must be developing and changing as
it evolves. But then, as we have seen, we need another reference dimension. So we end up with an infinite
regress, for then we will have a five dimensional universe which is in its way static, with more complex
world lines, or else undergoing change requiring a sixth reference dimension, and so on. We are left with
two broad alternatives: if time is a dimension then we must accept a static universe, or else we must
renounce the assumption that time is a dimension in order to evade the infinite regress.



The fact that Relativity has not so far been satisfactority combined with quantum physics, even by
superstring theory, and that the mathematical concept of chaos has become respectable and unavoidable,
suggests that the static universe view is incorrect. If we accept that conclusion then we must renounce the
assumption that time is a dimension. This does not invalidate the experimental evidence in favour of
Special and General Relativity, for it is clear that processes do slow down for moving objects and that light
does follow curved paths in gravitational fields. The variable ¢ is needed and is part of the mathematical
descriptions given by physics. But we now claim that 7 is not a measurement of a coordinate in a dimension.
Whatever time is, it is not a dimension, but it is a reference entity.

It is instructive to review the use made of the Lorentz equations to calculate 7" for a pendulum. The
essential conclusions of Relativity depend upon differences, where we had the difference between (#+7) and
t, and similarly for 7". Einstein insisted that he had swept away the notion of absolute time, so that ¢ should
never enter our equations in that guise. We used ¢ as the time elapsed since the two observer reference
frames A and B were coincident, so that it too was really also a difference in that case. This is why cyclic
and rhythmic processes are readily described and understood vis-a-vis time dilation. But if ¢ never arises
other than in time differences, then it does not truly play the role of a coordinate. Time, it seems, measures
process rates rather than coordinate positions.

Thus if we consider an object approaching the event horizon of a black hole, for example, we can well say
that on-board processes will appear to slow down for outside observers, without the need to add that time
slows down.

Physical observations can never distinguish between those two views.

In which case there is no empirical case for saying that time itself “slows down”. We lose nothing essential
from our conclusion, other than time machines.

The Light Cone

Since no physical effect is supposed to be propagated faster than the speed of light, a three dimensional
hypercone in four-dimensional space-time is envisaged with its vertex at an observer such that its surface
demarcates objects causally connected with that observer from those that are not. Objects outside the cone
are separated from the observer by space-like intervals, those inside it by time-like intervals. Light is taken
to be the demarcator between these types of interval as it travels along null-geodesics in the surface of the
cone. It is then assumed by some (e.g. Reference 5) that if we could travel faster than light we would
violate the demarcation of the light cone and travel backwards in time, as though overtaking light affects
time itself. We would then see the past when light catches up with us as if we were actually there i.e. back
in time. This forgets that the light has left the scene of the events that could thus be viewed. It is discussed
because light has been slowed down in the laboratory almost to a stop, suggesting theoretically that
something could then overtake it. It also relies on the assumption that velocity affects time itself, which we
deny.

Wormbholes and Time Machines
It has been claimed (e.g. Reference 5) that somebody travelling at near light speed “time travels into the

future” due to Einstein's equations. Well, if one were willing to concede that somebody in cryogenic sleep
for 100 years has time-travelled when unthawed, that loose statement could be accepted. But that



interpretation is emphatically not the kind of time travel envisaged e.g. by H.G. Wells in his novel The Time
Machine. There it is supposed that one may travel through time analogously to travelling along a space
dimension. The distinction is very important if the physical possibility of time travel is to be assessed. Our
interpretation of time dilation as the slowing down of physical processes rather than a slowing down of time
itself leaves the conclusions drawn from Einstein's equations unaffected, as we have already said. But it
denies that time travel has thereby occurred in the sense of H.G. Wells. We will now turn to claims that
time travel into the past is physically possible, with all the paradoxes and problems that would then arise.

Since space-time may be curved, it follows from General Relativity that it is possible to alter the topology of
space-time to include “tunnels” across space-time, like short-cuts from one world location to another. These
tunnels are called wormholes, linking two locations in a non-causal manner, and it is supposed that time
travel into the past could be accomplished by means of them. This is because time is assumed to be a
dimension so that the radical time dilations involved would produce time travel. The catch is that enormous
energy is required to create them, as may appreciated by noting that the large mass of the Sun only caused a
deviation in the path of light by a fraction of a second of arc in Eddington's observations in 1918. The
energy required to roll up a worm hole is thus seriously huge and should give rise to an enormous inertia (as
indeed superstrings should have an enormous inertia).

If time is not in fact a dimension then Wells-style time travel is not in question, and the concept of
wormholes needs re-interpreting. This demands that we re-interpret the meaning of space-time curvature.
What would be observed physically is that light (and other radiation) and physical objects would follow
curved paths in space accompanied by alteration in the expected frequencies of processes (clocks etc.). This
is what the equations actually predict physically. But processes may alter their rates without that implying
time itself is going faster or slower, as we have already noted. It is just time that is the yardstick for rates of
change, not vice-versa. Then a wormhole would radically deviate the paths travelled by radiation and
objects in its vicinity, and also the frequencies of processes. The fact that processes at one end are much
slower than at the other does not constitute time travel if we adopt the above physical interpretation of the
equations. I cannot murder my grandfather by making my clock go backwards very rapidly, for I remain
causally disconnected from him. Likewise a wormhole, if such existed, would not have acausal implications
just because it radically altered the rates of change of physical processes at one or both ends.

Many Worlds Hypothesis

The many-worlds hypothesis is not considered as a solution of the time-travel problem because it violates
the conservation of energy i.e. if parallel universes arise as the result of a quantum interaction where does
the vast amount of energy come from to create them? This problem is severe considering the large number
of interactions continuously occurring across the whole universe.

Conclusion

In conclusion we are saying that physical processes obey Einstein's equations without the implication that
time itself is affected, and that time is not a dimension. Genuine Wells-style time travel is not in question.
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TETRAHEDRAL COMPLEXES

Another branch of projective geometry concernslines. Thereis afour-fold infinity of linesin space, of which we
may form a subset. A subset containing athreefold infinity of linesiscalled aLINE COMPLEX. An example
which issimple to defineisthe TETRAHEDRAL COMPLEX: given atetrahedron, ageneral line in space cuts its
four facesin four points:

These four points have a cross ratio which may be any real number. We may select the set of lines all of which
intersect the tetrahedron in the same cross ratio. Since there are infinitely many possible cross ratios we thus
select athree-fold infinity of lines from the four-fold infinity of all possible lines. The resulting line complex has
a definite structure such that through any point of space it possesses a set of lines forming a cone, whilein any
plane of space it possesses a set of lines enveloping a conic.

Just as we have polarity wrt (with respect to) conics and quadrics, so we may have polarity wrt aline complex.
This means that if we choose any line u then the complex determines aline u' polar to u. This is accomplished by
taking the axial pencil of planesin u, and for each such plane finding the point P polar to u wrt the conic of the
complex in that plane:



The points Pin al the planes of the pencil lie on astraight line u' which is the polar of u. ( If u happensto be a
line of the complex then it is self-polar).

We may then find the polar of u’, which isathird line u", and so on. An interesting question then arises: what
figure isformed by such a sequence of polar lines?

The answer turns out to be quite simple: it isaruled quadric which is self-polar wrt the tetrahedron. This means
self-polar in the sense that the faces of the tetrahedron and their opposite vertices are harmonic wrt the quadric.
Although we started with a discrete set of lines u,u’,u”... it turns out that if we take any line v on a self-polar
guadric Q then its polar line v' wrt the complex aso lieson Q.

Since we could have chosen any cross ratio to define the complex, and since aquadric Q is self-polar wrt the
tetrahedron irrespective of that cross ratio, we see that the lines on Q form a self-polar set for all possible
tetrahedral complexes sharing the same base tetrahedron (such complexes are known as COSINGULAR
COMPLEXEYS). Of course agiven linev of Q will have different lines of Q asits polar for different cosingular
complexes.

| found this result myself and have not seen it anywhere in the literature. Has anyone seen it published el sewhere?




The proof is available from me (viaemail).
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OTHER REPRESENTATIONS OF GEOMETRY

Projective geometry does not have to have points and lines as its basic elements. For example circles
through afixed base point Z, and points, may be used instead. Just as any two lines meet in one point, so
any two circles through Z meet in just one other point. Dually just as any two points determine one line
S0 any two points together with Z determine just one circle. We may then expect anal ogues of the basic
theorems of projective geometry to apply to such a geometry of circles and points. The following
diagram shows the construction of a"conic" in this geometry, where two projective ranges giverise to a
set of "lines" (circles) joining them, enveloping a*conic” (lemniscate).

The construction iswell known (e.g. Lockwood A Book of Curves) but this approach views it in another
way.
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COMET IMPACT

Remember this?

It will be recalled that in 1994 Comet Shoemaker-Levy crashed into Jupiter. When Lawrence Edwards was investigating the profile shapes of leaf buds
(i.e. their lambda values) he found that they vary rhythmically with a two-week cycle, except when in the neighbourhood of electric and/or magnetic

fields. The original observation concerned atree near atransformer, so to test theidea (and avoid waiting for trees to grow near transformers!) he
checked the behaviour of knapweed (centaurea scabiosa & nigra) which could be checked under electric cables. The suppression of the two-weekly

rhythm was indeed verified for such plants, but not if they were remote from cables. The two-week rhythm correl ates with the conjunctions and
oppositions of the Moon and a planet depending upon the tree. Thisisthefirst scientific evidence of atraditionally held relationship between trees and
planets, now well verified by thousands of observations (predictably scoffed at by the New Scientist reviewer of Reference 7). In the case of knapweed
the planet is Jupiter. By 1994 Edwards had made many observations of knapweed and so could compare its behaviour that year against the norm, and
the result was interesting indeed, asillustrated below.
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The upper and lower dotted lines show boundaries outside which no lambda values had ever been observed for this plant, before or since. The 1994 line
shows values well outside these limits, suggesting that the comet impact affected the forms of the plant buds.
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DOUBLE LI NES

A path curve transformation (or space collineation) has an invariant tetrahedron
with 6 invariant or double lines at least two of which must be real (see Path
Curves). Whilethisis quite easy to show algebraically, it isno trivial matter to
derive amethod of construction for the real double lineswhich is purely
synthetic. For those who enjoy advanced pure projective geometry the proof and
method is outlined below, and the full nine-page proof may be downloaded.

If A A, Az arethree successive corresponding points of a space collineation C
then the bundles of planesin A; A, and A3 are collinear. The triples of

corresponding planes meet in points describing a cubic surface C (see e.g. Semple
and Kneebone " Algebraic Projective Geometry") . C possesses in general six
special lines each of which contains three corresponding planes, and which are
thus double-lines of C. C intersects an arbitrary plane 1tin a plane cubic C; i.e.

the pointsin Ttwhere triples of corresponding planes meet all lie on C;. Each

double-line of C must lie in all three planes of such atriple, so it must intersect
C,. If we consider the plane cubic C' in which C intersects the plane at infinity,

generally a plane triple meeting in one of the points of C' is such that its planes
meet in pairsin three parallel lines, and these will coincide for the double-lines.
We select one line of each of these triples generated by the planesin A, and A3 to

Intersect 1tin a second plane cubic C,, which will generally intersect C,in 9
points. Six of these are significant and the lines through them are the double-lines



of C e.g. if the two nodes coincide then so do 4 points of intersection leaving 5
others, giving 6 actual points. In these cases the three parallel lines of the plane
triples must coincide as the triples also meet in 11, so those six points give the
double-lines of C. Since two plane cubics must meet in at least one real point we
see that thereis at least one real double-lineof C. The doublelinesof C form
the invariant tetrahedron we are seeking.

The reason for using plane cubics is that they are guaranteed to meet in at least
one real point, unlike conics! From these ideas a method of construction (in
principle, thisisal in 3 dimensions) can be derived to find three of the double
lines without having to construct anything more complicated than aconic. The
other three require the additional construction of a plane cubic.

Download Proof

<<BACK


http://www.nct.anth.org.uk/ftp/doubline.zip

SIMPLE CHAOS THEORY

Can chaos be explained in avery fundamental way, without resorting to Hamiltonians
and phase space, to give an intuitive feel for what isgoing on? Thisis attempted here.

Chaos theory isto be found in many places from the giant red spot on Jupiter to dripping
taps, and in the biological realm in heart fibrillation and brain seizures. Feigenbaum
discovered away of describing it, although he was not the first to discover chaos, it
being known to Einstein, and even before him in the 19th Century from the study of
dynamical systems where phase-space orbitals could cease to be well defined. It was
largely ignored until the meteorologist Lorentz found that his simple model of the
atmosphere did not give repeatable results. The advent of the PC with sufficient power
to implement chaotic systems finally opened up the subject to wide research and
application, although we might recall that Feilgenbaum used a ssimple calculator to make
hisinitial discovery! The actual existence of chaos as a fundamental fact rather than a
mere appearance arising from inadequate precision in the calculations interested the
engineer writing this. In other words he was sceptical: wasit just 'hype'? What is
actually happening is not easy to grasp from the advanced maths used. Below we show

the classic figure for the equation y=rx(1-x) when handled recursively i.e. the calculated

value of y isre-inserted as x in the equation, and so on. The value of r isincreased from
1 to 4 along the x-axis.



|gnoring the asymptotes, the function appears as a single line on the left where the
recursions converge on asingle value. Asr isincreased abifurcationisreached at r = 3,
the two resulting lines continuing toward the right until two more bifurcations occur (a
so-called period-doubling) at r = 3.449, and so on. The dense blue regions contain
regions of genuine chaos mixed with reversions to non-chaos. In brief, what happensis
that the interval between period doublings decreases asr increases, tending to zero
before r reaches 4, at which point there are infinitely many bifurcations, and we have
chaos. Reversion to non-chaos occurs when the equation cycles finitely for reasons we
cannot explain briefly. An exploration of thistogether with ajustification that chaos
does exist fundamentally is explained in the article IS CHAOS GENUINE? which may

be downloaded. ItisaZIP file containing three WORD files, one containing diagrams.

The tetrahedral complex isintroduced in the archive article TETRAHEDRAL compPLEX, , and it


http://www.nct.anth.org.uk/ftp/chaos.zip

was found that chaos occurs within projective geometry itself when polarity is traversed
recursively in atetrahedral complex. The picture below shows a diagram for this
chaotic polarity which isits equivalent of the famous Mandelbrot set.
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The colour codes for the number of iterations before the cubic function goesto infinity
are shown on theright. Thisisonly a portion of the whole set which extends to

infinity. On the upper left thereis a'fractal bridge' between two 'globs, which looks the
same at all magnifications, reminiscent of God reaching his finger towards Adam. The
true fractal nature of the processisillustrated by the following picture taken from within
the vertical strip:
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The equation relating polar lines in the complex which when iterated |eads to the above
picturesis

K —2k+a)

5 =
k* —2kat S

where lambda is the cross-ratio in which aline cuts the tetrahedron and k is the
fundamental cross-ratio defining the complex.



ASYMPTOTIC LINES

George Adams was interested in asymptotic lines as possible interfaces between physical and ethereal forces.
In terms of counterspace this might be equivalent to alinkage between space and counterspace.

An asymptatic line isakind of boundary between positive and negative curvature on asurface. For example, consider a ruled hyperboloid:

The red plane intersects it in acircle, a curve which has positive curvature, while the blue plane intersects it in a hyperbola, which has negative
curvature. |f we rotate the plane from red to blue, at one position it meets the surface in two straight lines called rulers, which have infinite (or
no) curvature. Those lines are asymptotic lines because they mark the transition between cross sections with positive and negative curvature.
There are many asymptotic lines on a surface, and the rulers are the asymptotic linesin this case.

It is clear that no such argument can be applied to an ellipsoid as all intersecting planes meet it in ellipses, which have positive curvature.
Surfaces such as the ruled hyperboloid are said to have negative curvature because planes can meet them in curves with either positive or
negative curvature, and only such surfaces can have asymptotic lines.

Another way of expressing all thisisto say that curves with positive curvature have their centres of curvature inside the surface, while those

with negative curvature have their centres of curvature outside. The asymptotic curves are atransition between these two cases. For acircle

the centre of curvature is obviously its centre, while for other curvesit varies and at agiven point it is the centre of the tangential circlein the
osculating plane which has the same curvature as the curve at that point.




For more complex surfaces there may exist points such that all the curves through them have their centres of curvature on only one side of the
surface, known as élliptical points, and hyperbolic points with centres of curvature on both sides for the various curves passing through it. A
surface must possess hyperbolic points for it to contain asymptotic lines.

The spiralling curves on the vortex below are its asymptotic lines:




For such surfaces we have to go to the infinitessmal and consider the asymptotic direction at a point P on the surface. If we take all possible
planesin that point each meets the surface in a curve, and the asymptotic direction is that tangent at P which separates tangents to curves with
positive curvature from those with negative curvature. In general there exist two asymptatic directions through P, tangential to two curves
such that the tangent at every point of them is an asymptotic direction, and hence those two curves are asymptotic lines of the surface.

Furthermore, the asymptotic lines are curves whose osculating planes coincide with the tangent planes at each point of the curve. Now an
osculating plane at apoint P on a curve isthat plane in which the tangent at P is momentarily turning i.e. the curve momentarily lies in that
plane. In the diagram below the red plane represents a tangent plane and the three tangentsiillustrate what is meant, although they should of
course be 'consecutive' tangents as the curve only liesin the plane at the indicated point of tangency:

If that plane is also tangential to the surface then the curve is neither turning towards the inside of the surface nor towards its outside, and
hence demarcates those curves with their centres of curvature on one side of the surface from those with them on the other. Hence the tangent

is an asymptotic direction.

Returning to the vortex shown above, it is a surface defined by path curves with lambda equal to -1.618. There can be many sets of path
curves on one such surface, and in fact its asymptotic curves are also path curves. Thisisnot atrivial result, and alittle manipulation is
required to proveit. Given a path curve specified by its lambda and epsilon, a unique surface exists for which it is an asymptotic line, and all
other such asymptotic lines on that surface with the same sense have the same parameters. The parameters of the surface are mu and beta,
where mu is the lambda value for its vertical profiles (always negative) and beta is the cotangent of the angle defining the horizontal
logarithmic spiral cross sections. Thus given such a spiral together with a given point O below the centre of the spiral, the surface may be
envisaged as composed of all the vertical path curves specified by mu which start from O and intersect the spiral.




If beta = 0 then the spirals degenerate to circles, which is the case for the previous vortex. In that case the asymptotic lines in the opposite
sense have the same lambda but their epsilon isreversed in sign i.e. they are essentially the same path curves but winding round the surface in
the opposite sense. mu equals lambdain that case, and it is epsilon that singles out the asymptotic path curves from all the others. The
previous vortex has epsilon = 0.2429. For more general surfaces such as above the second set of asymptotic path curves has a different
lambda from the first. Another way of thinking of the surface isto take afixed vertical path curve and the axis, and rotate a horizontal
logarithmic spiral such that its centre remains on the axis and it always intersects the path curve; its plane will move upwards or downwards
paralel toitself. The diagram below shows a set of logarithmic spirals for such a surface seen from the top, with an example of each type of
asymptotic line:

The practical formulae for calculating the asymptotic path curves derived by the author are:
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Itis clear that although a unique surfaceis defined by choice of lambda and epsilon for the asymptotic line, a given surface hasin general two
possible values each of epsilon and lambda, corresponding to the two sets of asymptotic lines winding in opposite senses (note that epsilon is
the same for both apart from sign, but lambdais distinct). Also, setting beta = 0 makes lambda unigue and equal to mu, as stated above.

The late Dr Georg Unger first analysed asymptotic path curves and derived the following formulafor George Adams:

cotT =t {(1+€)/a - a)j

where T = equiangular spiral parameter in formula r = roef="
SO cott =P
o = pathcurve parameter = € (A-1)/( A+1)

Footnote:

The great mathematician Gauss studied curves in surfaces when commissioned to make a survey of Germany, and derived the equations for
such curves and their curvatures. Thisis the subject matter of differential geometry, and severa types of curvature are defined. A very
beautiful theorem is that of Meusnier which states that the circles of curvature of all plane sections through the same line element of a surface
lieon asphere. There aretwo principal radii of curvature at a point, R; and R, , obtained by solving the equation for coincidence of the two

directions of curvature for anormal section. The tangents for R; and R, define the principal directions, and in general two curves through a

point are such that all their tangents are principal directions. Such curves are called lines of curvature. The Gaussian curvatureis defined as
K=1/R;R, , and the average curvature H by 2H=1/R;+1/R,. The angles between two asymptotic lines through a point are bisected by the

lines of curvature through that point. Texts on vector algebra or differential geometry derive these resuilts.

Barck Home



COVARIANCE AND CONTRAVARIANCE

When studying tensor calculus the distinction between covariance and
contravariance may be obscure and is rarely explained visually. A geometric
explanation will be exhibited here.

First we will explain the distinction between the covariant and contravariant
components of vectors, thinking of vector-fields where a vector is defined at a point
rather than as a position vector. This extends naturally to the components of higher
order tensors. Strictly speaking, despite usage to the contrary, there is no such thing
as a“covariant vector” or a*“contravariant vector”. A vector is avector is a vector.
However it may be handled in two ways. Firstly by means of its components parallel
to the coordinate directions which form a parallelogram in the two-dimensional case,
in the same way that dx and dy are defined as the sides of the parallelogram related to
an infinitesimal displacement ds. These components are referred to as its
contravariant components. Secondly we may handle it by means of its resolved parts
along the coordinate directions, which are its covariant components. The latter are the
inner products of the vector with the coordinate unit vectors. The distinction is
important e.g. when finding inner products such as F.s for the work done by aforce
F producing a displacement s. We will follow that up later.

We will work with vectors in two dimensionsto illustrate the principles involved. We
will use non-orthogonal cartesian coordinatesi.e. coordinates defined relative to non-
orthogonal axes. However tensors are especially concerned with the use of

curvilinear coordinates, where vectors and tensors are referred to curved coordinate
lines which approach linearity at infinitesimal distances. The coordinate axes used
below should be regarded as the tangents to such coordinate lines in such cases, and



vectors as directed magnitudes at an origin O which isalocal point inafield. The
coordinate directions thus vary as O is varied. This covers cases where both
coordinates are of the same type (polar coordinates in two dimensions are an example
where they are not).

Figure 1

Contravariant Components

The components of a vector in two dimensions are defined in the literature in relation
to a change of coordinates from (x,y) to (x',y"), say. The contravariant components
are those which transform as follows e.g. for the new coordinate x' in terms of the
old (x,y):

1)

and similarly for y'. Thisisfar from obvious at first sight, so we will show how the
partial derivativesrelate to the geometry.

Thisis how the coordinates themselves are transformed, and oddly enough vectors
defined in thisway are referred to as contravariant, which at first sight seems rather
perverse. However the comments about inner products below may shed light on this

oddity.

Figure 2

The vector at O is represented by OV and the parallel ogram-component on the axis
OX isOA, where VA isparallel to theaxis QY. We will only illustrate the situation
for the x-components. If we change coordinates to OX', OY' then the new x-
component is OA' where VA' is parallel to OY'. Now wejoin A to P on OX' such that
AP isparallel to OY'. Using the sine rule we get



(2)
where y=@+3-a and «=180-¢-3.
Noting that OA'=x', OA=x and AV =y, partial differentiation of this with respect to x
gives

from triangle OAP, holding y
constant, and

from triangle VQA', holding x
constant,

giving from (2)

asrequired. A ssimilar argument holds for the new y coordinate. The generalised
version of (1) for more than two dimensions, using overlines instead of primes, is

or, using the repeated-index summing convention for K,
©)

For the contravariant componentsit is customary to use superscripts for the indices
such as| and k.

Thus our previous X' = x1 and y'=x2 .
Useful expressions for the contravariant coordinates of OV are, using the sine rule,

(4)



Covariant Components

The covariant components of a vector are defined by the transformation

©)

using subscripts for the indices in the covariant case. For the x-coordinate in two
dimensionsthisis

©)

where the partial derivatives are "inverted" compared with the contravariant case.
We start by assuming we know X, y, a and @i.e. we know theinitial coordinates of
the vector rather than its magnitude OV=v or its angle 8 to OX. OA=x and OB=y
(Figure 3):

Figure 3
Then
(7)
Solving for O gives
(8)
Now

which by (7) is

which by (8) is



We now encounter a subtlety of the meaning of the "inverted" partial derivatives, for
they refer to the coordinates which are contravariant, so we must relate this back to
them as follows:

Figure 4

If OX'=0x', OX=0x and OY =0y then using the sinerule in the infinitesimal case we
get

showing that (9) isthe same as (6), as required. For more than two dimensions the
principle is the same but OV isno longer necessarily in a coordinate plane.

We have thus exhibited how the geometrical interpretation of covariance and
contravariance relates to the formal definitions when the components are of the same

type.

iInner Product

The distinction between contravariance and covariance isimportant e.g. when finding
Inner products such as F.s for the work W done by aforce F producing a
displacement s. We take the inner product of the two vectors which usually means
resolving F along the direction of s. The actual evaluation of W amounts to summing
the products of the coordinate-system-components of s by the resolved parts of F.
That is, we sum the products of the contravariant components of s and the covariant
components of F asfor an inner vector product. To use instead the contravariant
components of F (which are perfectly respectable quantities) would obviously give
the wrong result for W. However, we may instead use the covariant components of s
multiplied by the contravariant ones of F and get the correct result, but it seems an
unnatural way to handle the problem. It is more natural to handle F by means of its



covariant components, which is perhaps why the loose description of aforce asa
“covariant vector” has crept in. Similarly sis most naturally handled by means of its
parallelogram components.

We will now show how this works explicitly. Applying (4) to the vector s represented
by OV of length sasin Figure 2, but at an angle ) to OX, gives

The covariant components of F represented by OV asin Figure 3 are:

and combining the two gives the inner product in tensor form:

which is the standard expression for the inner product.

If we change the coordinate system then the covariant components of F will change
such that the above inner product remains invariant (and valid!). This may explain the
use of covariant for such components.

Generally atensor is characterised by a set of functions defining how its components
vary with the coordinates. A set of functions comprise atensor if the components
satisfy (3) or (5). Another test isto multiply a set of functions by atensor, and if the
result is atensor then so are those functions. To find out whether the functions are the
simplest possible for atensor is more difficult, remembering that the tensor is an
entity that is described by the functions, just as a velocity is an independent physical
entity that may be described in various ways. Such an entity exists independently of
the coordinates used to describe it since any equationsinvolving it will, in view of (3)
and (5), be the same in any coordinate system e.g. work done expressed by an inner
product. However the functions may prove to be ssmpler in one coordinate system



than another e.g. aradia electric field is better described in polar coordinates than
cartesian.



PIVOT TRANSFORMS

ANNEX 1

TANGENT PLANES TO SURFACES

If a surface is defined by two parameters u,v i.e.

x=x(u,v)

y=y(u,v)
z=z(u,v)

and (x,y,z) is the tangent point of a plane while (&, n, {) are the coordinates of a variable point in that plane
then the plane is given by the equation

o(y,z) Z,X
(E—x)a(u’v)Jr(n—y)a(u’v)Jr(C—Z)

where e.g.

(c.f. for example Partial Differentiation by R.P. Gillespie).

If (x,y,2)=(0,0,0) then

)
<
la\|
N
)

(x,y) _
8(u,v)_0

which gives a plane through the origin parallel to the tangent plane with the determinants as its plane
coordinates.

It follows that the direction cosines of the normal to the surface at (X,y,z) are proportional to

We select the parameters u,v as follows

u = the vertical height of G above O (see main text)
v = the height h of the contour plane.

Then from (13) in the main text we have



}’(M,V)_l+m2
x(u,v)=—my(u,v)
z(u,v)=v

noting that a+b=e+c=1 (c.f. Figure 9).

Since b=h’ and a=1-b, and recalling (11) and (12), we have

kv

b=
kiv+k,(1-v)
k,(1=v)

a:
kiv+k,(1-v)

a[ex2+u(x1—x2)]

x3:e[a—e+u}

a{eyz"ku(yl_yz)}

e[a—e+u}

3=
The following partial derivatives are then obtained:

0y3 _a (a_e)(yl_yz)_eyz]
ou e(a—e+u)’

0 x, :a (a—e)(xl—xz)—exz}

ou e(a—e+u)’
Oy, kb (u—e)ey,tuly,~y,)|
ov k,ev’ (a—e+u)

0x;  k,b* (u—e) ex2+u(x1—x2)}

ov k,ev’ (a—e+u)
Since z=v we have
oz
ou
0z
ey |
ov

We now require dm/du and dm/dv which requires us to find a suitable expression for m. Referring to
Figure 9 let the equation of the tangent to the circle be y=mx+q. Then since it contains (x3,y;) we have
V3 = mX3+q.

It intersects the circle x*+y*-2xx,-2yy;+(x,*+y,*-R*=0 in the points given by

(mx+q)*+x2-2xx;-2y; (mx+q)+(x,*+y,>-R?)=0



which may be rearranged as a quadratic equation in x:
x*(m*+1)+2x(mg-y m-x,)+(q*2y,q+x,*+y,-R*)=0
Setting the descriminant to zero to give us equal roots (for a tangent) we find
m’(R%-x)+2mx, (y1-q)+R*+2qy:-y,*-q*)=0
Substituting q=y;-mx; and simplifying gives
M’ [R*-(X1-X3)”[+2m(X1-X3) (Y 1-ys)+R*-(y1-y3)*=0

which is a quadratic equation in m for the two tangents to the circle in Figure 9, in terms of known
quantities. Noting that x; and y, are constant we obtain from this

0y, oxy| 0x; 9R 0y; OR
am_m (xl_x3)ﬂ+(yl—y3)a —m (X, )C3) e RE (yl—)’3) du —RE
ou m[Rz—(xl—x3)2}+(x1—x3)(y1—y3)
Similarly we get
6y3 6)53 ) 6x3 ay3
a’n_m (xl x3)ﬁ+(yl—y3 P m |\x, x3)E yl_y?a)ﬁ
dv m[Rz—(xl—Xg)z}‘F(Xl x3)(y,— ;)

All the subsidiary partial derivatives are given above except dR/du, which needs to be derived from an
expression for R which is independent of m, and determined by the vortex.

In the main text we saw that R is given by

rR=w <22
u \e
so clearly
OR
220
ov
and differentiating wrt u gives
OR_W{u\"
o 2l ule—u)=el

Now we can find the partial derivatives of X, y and z wrt u and v:
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ov 6v 8v

This gives us what we need to calculate




Figure 1

Three dimensional versions of Figure 8

Figure 2

First three of above cases from various views



Figure 3

Last three of above cases from various views

Figure 4

Effect of varying vortex A with ¢=0



Figure 5
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Cases with vortex axis intersecting bud axis

Figure 6

Cases with vortex axis through X



Figure 7

Axis vertical & close to bud axis; A varying

Figure 8

Cases with vortex axis meeting orth line to axis



Figure 9

Large d, axis at 40 & at azimuth 160
Figure 10

EFFECT OF UVARYIHG ANGLE OF UORTEX AXIS TO BUD AXIS

Effect of varying vortex axis angle to vertical



Figure 11

EFFECT OF VARYING THE DISTANCE OF O FROM THE AXNIS

Effext of varying d
Figure 12

EFFECT ©OF VARYING AZIMUTH OF AXIS

Effect of varying azimuth of vortex axis tilt



Figure 13

EFFECT OF CHAHNGING VUORTEX SIZE

Effect of varying vortex size

Figure 14

EFFECT OF UARYING UORTEX LAMEDA

Effect of varying vortex A



Figure 15

EFFECT OF UARYING EUD LAMEDA

Effect of varying bud A
Figure 16

EFFECT OF VARYING HEIGHT ©OF VERTEX

Effect of varying fractional height of O



Figure 17

EFFECT OF VARYING BUD EPSILOHM

Effect of varying bud €
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Theterm "elements’ is used here in the ancient sense: Fire, Air, Water and Earth
corresponding in modern terminology to heat, gas, liquid and solid. Plasmaisyet to
be studied in the present context.

GRAVITY and SOLIDS

Given the central thesis then we expect that stresses may appear either in space or

counter space or both. Should they arise only in counter space then they will
manifest as forces which are difficult to explain if counter space is not taken into
account (asis the case conventionally). A notable exampleis gravity which Newton
never explained, and Einstein also only described. Thiswas the first subject
analysed, and it proved possible to obtain Newton's law of gravity, which encouraged
further work. It isexplained asthe gradient of the stress arising from the linkage of
points (see Reference 11 for the details). In counter space points are separated by a
different kind of measure which isthe dual of angle, and is referred to as shift. Thus
gravity arises from the gradient of shift stress.

The analysis of point linkages has been useto treat gravity, liquids and gases. In
each case the gradient of stress arising from point linkages isinvolved which lends a
coherence and consistency to the whole subject. The difference between the states of
matter liesin the different kinds of geometry lying behind the linkages:

affine linkages for gases



special affine linkages for liquids

Euclidean metric linkage for solids.

HEAT

When space and counter space are linked then the calibration or scaling of the two
spaces is important. How much shift corresponds to one metre for two points, for
example? In the case of planes how isturn scaled to spatial quantities? It has been
found that the ideal gas law and the behaviour of liquidsis comprehensible if
temperature is related to the scaling between the two spaces. This may vary
throughout a body in a stochastic manner which givesrise to scaling strain and stress
which we relate to heat.

GASES

Gases are studied on the basis of an affine linkage between space and counter space.
The concept of apoint linkage is abstract, and in practice it has proved fruitful to
consider afractal relationship between space and counter space such that every point
linkage is a fractal image of the infinitude of the primal counter space involved.
Different primal counter spaces are envisaged for different elements. Thisis
particularly suited to shift which is a scale-invariant quantity, as fractals are
essentially scale-invariant. A quantity of gasis seen as an assemblage of CSls
(counter-space-infinity images) which suffer affine stress as each CSl "sees” the
others from a different perspective. The linkage hereis affine. Hencein the primal
counter space there is strain and stress, analysis of which givesthe ideal gas law.
Thisis based on the chord law:




If we havethree CSIsat A B and C, thetwo CSIsat A and B "see" C in conflicting
directions denoted by the angles alphaand beta. Their difference phi is a measure of
the strain. The gradient of this strain is shown as the red arrow, which must pass
through the centre of the circle because the rate of change of phi is zero along the
tangent at C. It can be shown (Reference 11) that the magnitude of the gradient at C
Is proportional to AB/(AC.BC), the actual value depending also upon the scaling.
Thisis used to derive the gas law by summing the stresses for all such triangles, as
illustrated below for a metric (solid) container containing an affinely linked gas.




A and B are CSls anchored in the wall of the container and P is afree one, the chord
law being applied to all such triangles for all orientations within the sphere, the nett
result being PV=KT where Kk is a constant depending on the scaling, which thus

enables the scaling constant to be found from Boltzmann's constant K.

LIQUIDS

Liquids are studied on the basis of a specia affine linkage which conserves volume.
A constant volume tetrahedron is taken as the basis, just as atriangle was taken for
gases. The affine stress gradient is summed vectorially at the vertices, but the result
Is considerably more complicated than for the chord law. The following animation
shows how a tetrahedron released from a particular shape evolves under the action of
the stresses (from a computer model of the equations):




The two pointsto note are: (1) that it stabilises as aregular tetrahedron, and (2) the
base to the left moves towards the apex at the upper right. These tetrahedra are only
stable when regular, but the equilibrium is dynamic as the residual stresses are not
zero, but in a sensitive balance, giving the fluid its sensitivity. The fact that the base
moves to the apex (i.e. where the angles are initially greatest) is significant for
surface tension and the way awater drop behaves, as tetrahedra within the drop arein
equilibrium but those with bases in the surface are not, and strive to pull the surface
inwards. Surfaces are thus the principal source of imbalance.

The next animation shows the behaviour of an initially longer, thinner tetrahedron:




Note how the form evolves slowly and rotates until equilibrium sets in quite suddenly
(not fully realisable with this animation). This behaviour may refer to vorticity.

The speed of development in all cases depends upon the scaling between space and
counter space (i.e. the temperature).

Flat "tetrahedra’ behave chaotically, and have relevance to behaviour in the surface
such as Brownian movement and also evaporation. The reason is that they have zero
volume and are thus singular for special affine geometry. Again asurface is most
significant for such cases.

Thus the behaviour of avolume of liquid is based on the constant volume property of
special affine linkages coupled with the action of affine stress.

Hemne p Mext
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The animation shows how a plane in counter space moves towards itsinfinity in
egual steps for counter space. These are not equal angles, asis obvious, and we refer
to this measure as turn, which is for counter space the analogue of distance. Its
magnitude becomes infinite if the plane reaches the infinitude (shown asastar). The




polar relationship between space and counter space means that the measure of
separation of planesis polar to that of pointsin space, while the measure of the
separation of points (shift) is polar to that of planes and hence like an angle. Thus

pairs of planes can define vectors, but not pairs of points.

This means that the metric of counter space is expressed by turn and shift, whereas
that of space is embodied in length and angle. In addition the polar opposite of area
and volume may be defined, which are referred to as polar area and polar volume.
The polar area of a cone in counter space is made up of the planesin its vertex, as

Ilustrated below:

Planes in the vertex only have two degrees of freedom and thus make up a polar area,
not a polar volume. This may take some getting used to as our Euclidean
consciousness tends to regard the region described by the planes as an infinite
volume. The polar areais calculated by integration, which isfiguratively illustrated
In the following animation:



On the left is the integration of the polar area of a cone in counter space and on the
right the dual integration of the area of acirclein space. Asitisdifficult to represent
the planes involved in this diagram we have taken successive conical segments
bounded by a sphere to represent steps in the progress of the integration. However
thisis purely representational to help convey the idea, and should not be
misunderstood in a point-wise manner. The spherical boundary is adopted to keep
the diagram finite, the actual polar area extending outwards to infinity, as do the
Cones.

The formulae for polar area and volume are the same as those for the dual spatial
figures, except that lengths and angles are replaced by turns and shifts respectively
(Reference 11).

LIGHT

When dealing with the states of matter we worked with point linkages between space
and counter space. For the ethers (as the more subtle aspects of reality are called by
Steiner) we are concerned with planar linkages. The most suitable linkage tensor for
light is the contravariant bivector, represented by a cone in counter space (dual to the
oriented-circle-representation in space). It is suitable for polar affine linkages
characteristic of light. Thisturned out to be an investigation of actual counter space




cones acting as photons, the polar area of a photon being constant. Thus photons are
initially neither waves nor particles. Their polar area embraces the whole of the
apparatus and so the "spooky" multi-path type experiments of modern physics may
be more comprehensible. Reflection, refraction, absorption and diffraction are all
treated on this basisin Reference 11.

This led to the conclusion that time is the reciprocal of radial turni.e. the turn
between spatially parallel planes. Thus time increases outward from the CSl in
counter space. The consequence isthat light itself does not in fact have a velocity,
but it appears to have onein ordinary space, and moreover that is necessarily constant
without the necessity for Relativity. This follows because the product of the radia
distance of the apex of a cone from a CSl, and the turn of the orthogonal planein the
apex, is constant. An interaction must occur at the apex (Reference 11), so if the turn
Isthe reciprocal of the time then we have a constant ratio of distance to time, which
seems like avelocity for our spatial consciousness. It isindependent of the state of
motion of the observer.

We see two CSls emitting photon cones (yellow) interacting at their apices. Since



the turn T increases inwards while the radial distance increases outwards, and T is
inversely proportional to r, we have rl. T1=r2.T2, so rl/t1=r2/t2=c, a constant which
is clearly the so-called velocity of light. The light represented by the polar areais not
moving in this way, but an interaction forces the cone to adopt a particular
configuration instantaneously, which then gives the appearance of a velocity when
interpreted spatially.

The same view of time arose independently from a consideration of momentum and
potential energy.

The residual two-dimensionality is timeless and concerns the ether proper, which
need not be linked to space. When the light ether is linked we get photon cones as
described above.

This prompted the idea that the ether is concerned with time-invariant processesin
counter space, and for light the transformations involved make the polar area of
photon cones time-invariant.

CHEMISTRY

An obvious time-invariant field of study is action in the surface of a sphere, noting
that thisrefersto its tangent planes. Surface spherical harmonics provide a suitable
approach. They are especially significant when the action is linked to space as then
L aplace's equation must be satisfied. They are like standing longitudinal wavesin
the surface. A standing wave round a circle must consist of a whole number of
wavelengths to be single-valued, and a similar restriction exists in the surface of a
sphere, but of course in amore complicated manner. The following image shows an
example of the distribution or wave pattern for such a harmonic:



This depicts a pointwise distribution for the X(30,11) surface spherical harmonic, red
for positive amplitudes and cyan for negative. For counter space the colour of each
point represents the magnitude of a surface turn in a plane tangential at that point.

The use of surface spherical harmonics bringsin the need for quantisation or whole
numbers, and it also brings in rhythm, which suggests that the ether concerned is the
chemical ether. Thisis because Steiner found it could be depicted as the number
ether, the tone ether and the chemical ether. Thus the relation of thisto chemical
action is being explored (Reference 11). In particular chemical bonding is being

studied with the help of prolate spheroids. Thelinkage is polar special affine.

It also suggests that the "waves' of the conventional wave function may be
interpreted as rhythms in the chemical ether (i.e. the surface longitudinal waves
depicted above), as an alternative to the Born interpretation. It isinteresting that the
same mathematics is required as for much of quantum physics, but for different
reasons. The necessity for time-invariance arises from the whole approach of the
work, whereas in conventional physicsit is adopted for mathematical convenience.



LIFE

Life ether is concerned with fully metric counter space linkages, which are the most
rigid (compared with affine linkages) and are seemingly unsuitable for it. But
membranes are fundamental structuresin living organisms, being metric in character
and yet not rigid. They govern "inside" and "outside" in a most important way e.g.
the neuronal membrane which may be interfered with by drugs. Each cell is
surrounded by a plasma membrane which governs what may enter or leave.

In counter space the term "inside" apparently has the opposite meaning, for if we
consider a sphere with a CSl at its centre then the inside is where no elements making
up the polar volume are at infinity for counter spacei.e. the planes that do not
intersect the sphere. Thus for counter space the "inside" of the sphereiswhat we
would normally call the"outside". Thisreversal is seen as being significant for
membranes, for then all cells of an organism are "inside" the plasma membranein
counter space (for an individual cell). In other words all cellsareinside al others!

Thisiswhat makes an organism an organism.

The synergy of such a system of cells forming an organism in thisway will thus
govern its growth and healing, and mathematically this kind of synergy can be related
to fractals, and may explain why we find fractal formsin Nature. Also the polarities
involved invoke path curves which - as explained elsewhere - are ubiquitous in

Nature. A particular form of polarity that seems fruitful is the pivot transform.
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ALGEBRAIC APPROACH TO COUNTERSPACE

Polariy and Quadric Surfaces

The basic algebra for handling projective geometry is introduced in the Basics page.
| mportant is the duality it so clearly expresses which enables the concept of polarity

to be handled conveniently. The equation of a quadric surface is a general
homogeneous equation of the second degree in the homogeneous coordinates (X, v, z,
w):

ax” +by® + ¢z° + dw’ + 2exy + 21Xz + 2 gXW + 2myw + 2nzw =0

In matrix form thisis

I:x y = u:l a e ¥ g_ _}:_
e b h m Yy
= a
f h ©c n =
g m n 4 W

which may be expressed as x' Qx = 0 where x is a column vector, X' isthe
corresponding row vector and Q is the symmetrical 4x4 matrix representing the
guadric surface. Now consider the equation y'Qx = 0. We may regard Qx as the
coordinates u of a plane so that y'u = 0 simply expresses the fact that Y liesin U
(using Y to denote the geometric point represented by vy, etc.). Now Y need not lie on
Q, so the expression requiresit to lie in the plane U, and any value of x that ensures
that satisfies the equation. As X variesin accordance with thiswe obtain all the



planesU in Y. Looking at the situation the other way round, y'Q is also a plane,
moreover afixed planev since Y isfixed, and asvx = 0, all the points X must liein
V. Thusfor every fixed point Y the quadric Q determines a plane of pointswhichis
the polar plane of Y. Conversely given aplaneV, v=y Q for aunique point Y,
sincey' = Q"vdetermines Y uniquely, where Q" istheinverse matrix of Q. Y isthe
pole of V, and this polar relationship is one-to-one provided the quadric is not
singular. If Y lieson Q then one solution for x isx =y asthen y'Qy = 0 by definition
of the quadric, so the plane Qy isthe tangent plane a Y since no other point X can
satisfy y'Qx = 0 and lie on the surface. If Y lies outside the quadric then planes U
exist which touch Q in which case, by what we have just seen, X lieson Q (recalling
that X isgiven by u = Qx). This corresponds to the diagram in the Basics page where

the polar of Y intersects Q when Y liesoutside Q, and conversely if Y liesinside Q
then no real plane U can be atangent plane so V does not intersect Q.

A quadric may also be expressed in terms of plane coordinates asfollows. In x'Qx =
0, u' =x'Q touching at x, and u = Qx also touching at Xx. Thusx'Qx =x'QQ" Qx =
u'Q" u =0, giving the class quadric as the envelope of its tangent planes U, which is
the same as the surface described by X. This connection isonly valid for non-
singular quadrics, but of course any quadric also has a class equation, singular or not
(e.g. acone possesses tangent planes). A dlight economy ispossible asit is not
necessary to divide by the determinant of Q when deriving Q" since we are using
homogeneous coordinates, so in the literature we usually find the class quadric
expressed as u'(Q)u = 0 where (Q) is the adjoint matrix of Q.

Projective Classification of Quadrics

There are three distinct types of quadric in purely projective geometry, distinct
because no real projective transformation can transform a member of onetype into a
member of another. By suitable change of coordinatesit is possible to reduce the
eguation of the quadric to canonical form (e.g. Reference 8, 9 or 14) where only the

termsin the leading diagonal of Q are non-zero. This gives an equation

ax” + by* + cz* + dw* =0



which issingular if any of ab c or diszero (conesif oneis zero, plane pairsif two
are zero, two coincident planes for three zero).

Three distinct possibilities exist for the relative signs of ab c and d:
1. one of opposite sign to the other three,
2. two positive and two negative,
3. dl of the same sign.

In the first case, taking d to be negative and reverting to Cartesian coordinates by
dividing by w"2, we have ax"2 + by”2 + ¢z*2 = d which is the equation of an
ellipsoid. A similar result isobtained if instead a b or c is negative, recalling that
infinity is not invariant so all central quadrics are projectively equivalent.

In the second case, setting a=A”2 etc. such that A B C D are all positive, we have for
example when b and d are negative the equation (Ax + By)(Ax - By) = (Cz + Dw)(Cz
- DW). Thisis satisfied by any line which is the intersection of the two planes Ax+By-
Cz-Dw = 0 and Ax-By-Cz+Dw = 0, and also by the plane pairs Ax+By-Cz+Dw=0,
AX-By-Cz-Dw = 0. Itisthusaruled quadric, the two alternatives yielding the two
complementary sets of generators.

In the third case the quadric contains no real points and is accordingly purely
imaginary.

Cayley's Metric Quadric

We will now briefly outline Cayley's derivation of metric from projective geometry
(which followed an initial insight of Laguerre). The problem in projective geometry
IS that the only numerical invariant is the cross-ratio (of four points, lines or planes),
so thisis all that is available for use in defining a quantity that is to be thought of as
distance or length. Metric geometry is so-called precisely because its legitimate
transformations leave lengths and angles invariant, and also areas and volumes. This
is untrue in projective geometry. Cayley proposed restricting the allowable
projective transformations to those leaving a quadric surface invariant, which is



known as the absolute quadric G. Then given two points P and Q, the line PQ
intersects G intwo points | and Jsay. The cross-ratio (PQ,lJ) is now available for the
definition of length, as when we make atransformation P and Q moveto P and Q/,
say, and | and Jmoveto |' and J suchthat I' and J lieon G sinceit isinvariant (asa
whole, note, not pointwise) and the cross-ratio (P Q',1'Y) = (PQ,1J). Cayley chose the
following expression for length:

s=log(PQ, | J/2i

so that sisindeed invariant. sisimaginary for real G, and in addition | and J need
not be real, so that gives a non-Euclidean geometry. If however G is an imaginary
guadric then | and J are always imaginary, so log(PQ,lJ) iscomplex and if it is purely
imaginary then sisreal. If we select the singular imaginary disk quadric at infinity
given by x"2 + y"2 + 72 = 0 = w then we recover the familiar Pythagorean
expression for length, which is of course why the above expression was selected by
Cayley. Thisisrather messy and limiting arguments must be used. The clearest
exposition is given in Reference 15 for two dimensions. The result is readily
generalised to three dimensions giving for Euclidean geometry the length s between x
andy as.

o? (Xo¥s = ¥oXs [ + (XY —¥iXs [ + (X, 9,5, )
22
£3¥3

which reduces to Pythagoras Theorem for Cartesian coordinates with x3 =y3 = 1.

For the angle between two planes U and V Cayley took the two planes| and Jin the
line (U,V) which are tangential to G, and then used

cos(theta) = log(UV, | J)/2i

For the Euclidean G the angle between u and v in terms of their plane coordinatesis
then



UV + 1V, + UV,

cosf=

2, 12 22, ol 2
‘/(un+u1 +u21v,j+v1 +v2)

which is the familiar normalised inner product for the cosine.

Thus choosing an imaginary circle in the plane at infinity gives the Euclidean metric.
A circle may be regarded as a singular class quadric known as adisk quadric, in the
sense that there are an infinite number of axial pencilsin its tangents which may be
thought of asits tangent planes. Those planes are of course imaginary in the present
case.

Counter space Metric

We may dualise adisc quadric as follows: we have the dual of the plane of the circle
asapoint O, the duals of itstangents aslinesin O forming a cone, and the duals of its
"tangent planes' (axial pencilsin the tangents) as the points of thelinesin Oi.e. we
simply have a cone of points, which is of course more readily felt to be a quadric!

For an imaginary circle O is still real (as polar of the real plane at infinity), but its
tangents and "tangent planes' are imaginary, so the cone isimaginary apart from its
real vertex. It ishowever awrap of tangent planes, and therefore a class quadric,
sinceit isdual to G which is treated as being composed of imaginary points. George
Adams (Reference 5) suggested using this quadric, say H, as the absolute quadric
defining the metric for a quite different kind of space. It isdifferent from the usual
notion of non-Euclidean geometry in two main ways: first of all it isbased on aclass
guadric, and secondly that implies the fundamental metric relates planes rather than
points. In Relativity the metric tensor g determines how infinitesimal coordinate
displacements may be related to the corresponding infinitesimal distance
displacements. Thisis necessary for general coordinates e.g. even for ordinary
spherical polar coordinates. Now g isasymmetrical matrix and thus may also be
regarded as a quadric, which is exactly the connection between Cayley's work and the
metric tensor. Indeed a grasp of Cayley'swork gives an immediate intuitive feel for
the metric tensor. For a curved space the components of g are functions of the
coordinates, which obey specia conditions to ensure the matrix is also atensor, and
thus we can visualise the absol ute quadric varying from point to point in a curved




space, which is all that is meant by the forbidding formalism of the metric tensor. An
important point is that the so-called signature of the quadric cannot change. This
simply means that no real transformation can change its type e.g. from any of an
ellipsoid, hyperboloid, paraboloid, ruled quadric or imaginary quadric to another of
them.

Adam's H fully expresses the metric of a new kind of space, but noting that g is
always assumed to define the distance between points whereas H defines a new kind
of displacement between planes that is not an angle. We discover this by dualising
the above expression for distance in ordinary space, giving the displacement between

two planesu and v as:

Tzz[unv3—-vnu3)2+(u1v3—-vﬂ13f-+(u2v3—-v2u3]2

52
UV,

We will refer to tau as the turn between U and V. That it isnot an angleis clear from
the fact that it may become infinite if u3 or v3iszero. Itisfully analogousto
distance in that sense, but refers to planes. Adams studied it by means of projective
measures.

The geometry characterised in this way istechnically polar-Euclidean geometry asis
clear from its derivation, and it is usually referred to as counter space when thought of
as the geometry of another kind of space.

So far we have not said anything about the location of O. It acts asinfinity for
counterspace, being the dual of the plane at infinity, but the process of dualising does
not otherwise locate it. Indeed we are free to locate this real point anywhere in our
ordinary space, and in so doing we establish a linkage between the two spaces.
Lacking linkages the the two spaces are quite digoint. We refer to such alinkage as
aC3 (counterspace infinity). The turn tau becomesinfinite if either of the planes
contains O i.e. is"at infinity".

We can also dualise the above expression for the angle between two planesin space
to give the separation between two points in counterspace, which we will call shift:
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Thus sigma behaves just like an angle, which is to be expected from the dualising
process. In other words points are separated in counterspace by a quantity which is
never infinite, a notion that takes some getting used to. We may have parallel points
In counterspace, but not parallel planes. Thusif the vectorsx and y are parallel but
the points are distinct then sigmais zero, the dual of two distinct parallel planes. A
useful "crutch” isto see that the numerical value of sigma equals that of the angle
between the lines XO and Y O in space, regarding x and y as position vectors wrt O.
However, x and y are shift coordinates, not distance coordinates, and such a
visualisation is only valid if the points are linked.

Thus far we have treated counterspace as a"flat" space since its metric H does not
vary with position.



Projective Geometry may also be studied by means of algebra. Linear
transformations are expressed as matrices, and the transformation of a point or plane
is accomplished by multiplying the vector representing it by the transformation
matrix.

HOMOGENEOUS COORDINATES

The Cartesian coordinates of apoint may be expressed as (x,y,z) with respect to the
three orthogonal axes. The problem encountered in using them, however, is that ideal
points at infinity cannot be handled because x,y or z (or al three) become infinite. If
a point moves towards infinity in afixed direction then theratiosx : y : zremain
constant. WWe may introduce a fourth number w and re-express the coordinates as x/w
. ylw : z/w, noting that the ratios are unaffected. If we multiply all coordinates by a
constant k the ratios are still unaffected. We now re-express the point as (x,y,z,w) as
If we were working in four dimensionsi.e. we regard w as afourth coordinate. If w
becomes zero then we see that x/w, y/w and z/w each become infinite to give us a
point at infinity, but instead of retaining these improper ratios we instead express that
fact as (x,y,z,0). This formulation retains intact the ratios of x : y : z of the
point before it reached infinity, and we use w=0 to indicate we have gone to infinity.
Thus for each direction in space (X,y,z,0) is unigque, the twofold infinity of ratiosx : y
. Z representing that direction and (x,y,z,0) itsideal point. Two aspects should be
noted:

1. (x,y,z,1) returns us to the Cartesian coordinates when w=1 is discarded,;

2. (kx,ky,kz,kw) isthe same point as (X,y,z,w) as we are now only interested in
ratios.



These coordinates are known as homogeneous coor dinates because they still refer to
three dimensions despite the use of four coordinates, and the coordinates are
homogeneous in the sense that they are are not absolute but enter into equations fully
symmetrically, just as a homogeneous equation contains all products of its variables
to afixed overall power.

(x,0,0,0) isthe point at infinity on the x-axis, and similarly for they and z axes.
Since we may divide throughout by k=x this simplifiesto (1,0,0,0).

(0,0,0,1) isthe origin.

Once we switch to homogeneous coordinates the axes need not remain orthogonal,
and we end up with atetrahedron of reference with vertices (1,0,0,0), (0,1,0,0),
(0,0,1,0) and (0,0,0,1). All connection with Cartesian coordinatesisthen lost as
distances can no longer be associated with X,y,z and w. This expresses the non-
metric nature of projective geometry. Theinfinite planeis no longer defined as the
plane w=0 but can be any face of the tetrahedron, consistent with the fact that an
infinite plane is not defined for projective geometry, only for affine and metric
geometry.

DUALITY

If we take y=0 then we have al the pointsin the XZW plane. If we take x+y=0 then
we have al the pointsin the plane for which x=-y. Generally alinear equation in
X,y,z,w yieldsaplanei.e.

kx +ly+mz+nw=0

for constant k,I,m,n is the equation of aplane. Now suppose we hold x,y,z,w
constant and vary k,|I,m,n while satisfying the equation. Clearly we obtain all
possible quadruples (k,I,m,n) satisfying the equation for that fixed point (x,y,x,w) i.e.
all possible planes containing (x,y,x,w), from which it is clear that (k,|,m,n) may be
regarded as the coordinates of the planes. The duality of point and planeis
beautifully expressed by the symmetry of the equation. The meaning of these
coordinates may be appreciated if we think of the Cartesian special case with w=L1.
On the x-axis y=z=0 so x=-n/k, and similarly on the y- and z-axes, so the plane



represented by the coordinatesis as illustrated bel ow.

TRANSFORMATIONS

A linear transformation (x',y',z',w') = f(x,y,z,w) is such that x y z w enter the function
f homogeneoudly to the first power. This means we cannot have terms such as x"2,
Xy, yw or xyz for example. Thusx' = ax+by+cz+dw for some constantsab c d, and
similarly for y', z' and w'. The most convenient way of collecting together these
linear equations for x' y' z' and w' is to express them in matrix form:

b a b c 4 *
u’ _ e £f o h u
= Jd k 1 m =
W n P 9 xr W

recalling that the inner product of arow of the square matrix with the right hand
column vector gives the corresponding term in the left hand column vector. We may
denote this also as x'=Ax where capitals denote matrices and lower case letters
represent column vectors.

The same transformation may be applied to a plane (s,t,u,v) :



= a b c 4 =
T _ e £ o h +
w’ J k1 m 11
A | n P oa r v

It has long been known that projective geometry may be expressed in terms of linear
transformations such as these. However the actual geometry is easily lost sight of if
we are not careful !

Generally the point X' isdistinct from x, but we may ask if there are any points that
correspond to themselves. |f so then such apoint pissuchthat p=Tp. Because we
are concerned with ratios rather than absolute valuesit is more accurate to set kp=Tp
for some constant k. To solve thisfor p we need to multiply the left hand side by the
unit matrix | (which has 1 in the leading diagonal and O elsewhere e.g. in the above
square matrix that would mean a=f=I=r=1 and b=c=d= ... =g=0). Then we have the
eguation (T-kl)p=0, and as we do not want p=0 then T-kl=0. Thisreally consists of
four simultaneous equations in k which give rise to the characteristic equation which
isafourth order equation in k. The four roots are known as the characteristic values
or eigenvalues and from them it is possible to derive four vectors p which transform
into themselvesi.e. in geometric parlance there are four invariant points. There can
be no more than four provided the roots are distinct, and furthermore they need not be
real. Applying the sameideato find the invariant planes u gives (T-kl)u=0 and
hence the very same equation T-kl=0. The four planes must evidently each contain
three of the invariant points as such atriple determines an invariant plane. The nett
result is an invariant tetrahedron with four invariant vertices, four invariant planes
and six invariant edges. It is non-degenerate if the four characteristic roots are real
and distinct as then the invariant points are also real and distinct. If however some of
the roots are complex the tetrahedron possesses imaginary elements. In particular the
so-called semi-imaginary tetrahedron arises when two of the roots are complex
conjugates, as then only two real invariant planes, points and lines arise. Pairs of
egual real roots give rise to lines of invariant points (which are also the axes of axial
pencils of invariant planes). Thisisall described for example in Reference 14.

PATH CURVES




Denoting a square transformation matrix such as that above by T, a path curve arises

when it is repeatedly applied to an initial point. If that is a then anew point b=Ta
arises. We now apply the same transformation to b to give c=Th=TTa and so on.
Continuing in thisway the series of pointsabc... arefoundtolieonacurve. The
nature of the curve depends upon the characteristic roots of the matrix T. If al four
are real and distinct then there are four invariant points as we have just seen, and the
curve passes from one to another of them. If two are conjugate imaginary then the
egg and vortex spirals arise that are described on the Path Curve page.

Felix Klein discovered path curves and Sophus Lie gave the transformation for a
continuous curve in place of the discrete recursive approach above which places
points on that curve.

Instead we may start with aninitial plane u and transform it to v=Tu and so on. This
results in the polar of alocuswhich is called a developable, consisting of asingle-
parameter sequence of planes that are the osculating planes to the path curve, but the
latter isnow more strictly referred to as the cuspidal edge of the developable. An
osculating plane has triple contact with the curve.


http://www.britannica.com/eb/article-9045733/Felix-Klein
http://www.britannica.com/eb/article-9048172/Sophus-Lie
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