
PART VII
QUANTITATIVE MEASURES OF CHAOS

Several statistics, when reliably computed, indicate chaos (at least in theory). Moreover, by their magnitude,
sign, or trend, they suggest (again, at least theoretically) how chaotic a system is. The most important of such
statistics at present are Lyapunov exponents (Ch. 25), Kolmogorov-Sinai entropy (Ch. 26), and mutual
information or redundancy (Ch. 27).



Chapter 25
Lyapunov exponents

A Lyapunov1 (''lee-ah-poo-noff") exponent is a number that describes the dynamics of trajectory evolution. It
capsulizes the average rate of convergence or divergence of two neighboring trajectories in phase space. Its
value can be negative, zero, or positive. Negative values mean that the two trajectories draw closer to one
another. Positive exponents, on the other hand, result from trajectory divergence and appear only within the
chaotic domain. In other words, a positive Lyapunov exponent is one of the most important indicators of chaos.
A positive Lyapunov exponent measures or quantifies sensitive dependence on initial conditions by showing the
average rate (as evaluated over the entire attractor) at which two close points separate with time. Some authors
refer to a Lyapunov exponent as a Lyapunov characteristic exponent (LCE) or simply a characteristic
exponent. As we'll see, a dataset can have several Lyapunov exponents.

The origin of this important component of the chaos game seems to go back to a nineteenth century Russian
mathematician, Sofya Kovalevskaya (1850-91). According to Percival (1989), Kovalevskaya in 1889
mathematically defined dynamical instability as an average of a measure of the rate of growth of small
deviations.2 Russian mathematician Aleksandr Lyapunov made the definition of dynamical instability more
general in a lengthy treatise in 1892 (translated from Russian to French in 1907; both versions subsequently
reprinted, e.g. Liapounoff 1949). Oseledec (1968) provided further theoretical basis.

1. Lyapunov, Aleksandr Mikhailovich (1857-1918) Lyapunov was one of the greatest Russian mathematicians. Born in
Yaroslavl, he attended St Petersburg University in the late 1870s, where the famed P. L. Chebyshev had created a well known
mathematics department. As a university senior in 1880, Lyapunov won a gold medal in a department-sponsored competition for
his composition on hydrostatics. That composition was the basis for his first two publications, which appeared in 1881. He was
awarded his Master's degree at St Petersburg in 1885, married his first cousin in 1886, and received his PhD in 1892. In 1895 he
was appointed to the Chair of Mechanics at Kharkov University and began what was the happiest period of his life. In 1902 he
returned to St Petersburg, having been elected in 1901 to the Chair of Applied Mathematics of the Russian Academy of Sciences.
He now began a relatively secluded life, in which he placed much emphasis on his scientific work but also found time for his
favorite hobby, plants (his apartment was decorated with rubber plants and palms which he had grown himself). During his
productive career his general subject was mathematical physics—stability of motion, equilibrium of mechanical systems,
potential theory, theory of probability, and the like. He is known as the founder of the modern theory of stability of motion. In
1918 his wife died of tuberculosis. Three days later Lyapunov himself died, leaving a note in which he asked to be buried in the
same grave as his wife . . .

Local Convergence or Divergence of Neighboring Trajectories

The simplest way to define a Lyapunov exponent and show its properties is with the one-dimensional map. (As
we'll see later, a system has as many Lyapunov exponents as there are dimensions in its phase space. A one-
dimensional case provides only one exponent. We'll eventually extend our one-dimensional case to many
dimensions [many Lyapunov exponents].) Let's use our faithful friend, the logistic equation (Eq. 10.1):
xt+1=kxt(1-xt). In particular, we'll examine the progressive displacement or gap, over time, between two
trajectories that start close together (Fig. 25.1).

Trajectory convergence



Chapter 10 showed that, with the logistic equation and k < 3 (hence in the nonchaotic domain), all trajectories
for a given k value converge to the same fixed point. Let's inspect that convergence more closely. First we'll
generate a so-called reference trajectory by choosing an appropriate k value and a value for x0 then iterating the
equation many times. (Some chaologists call a reference trajectory a fiducial trajectory; fiducial means "used
as a standard of reference for measurement or calculation.") Armed with a reference trajectory, we'll then
generate a nearby trajectory by starting the iterations over again, using the same k value but a slightly different
x0. Then we'll compare those two trajectories. In particular, for each iteration (each "new time"), we'll compute
the difference δ (Greek delta) between the two predicted values of xt+1 (the difference between the two
converging trajectories). Our goal is to see how the difference or displacement varies with time.

Let's begin with k=0.95. All logistic-equation trajectories for k<1 go to a point attractor at the origin (Ch. 10).
Say we start the reference trajectory at x0=0.40 and the other trajectory at x0=0.41. The absolute difference
(hereafter simply called difference) between those two values, δ0, is 0.41-0.40=0.01. For our comparison of
displacement versus time, therefore, the first datum point is δ0=0.01 at t=0.

For the first iteration of the logistic equation with k=0.95, the reference trajectory starts at x0=0.40 and goes to
an xt+1 of 0.228. For the nearby trajectory, using that same k value but with x0 = 0.41, xt+1=0.229805. The
difference between those two calculated values is 0.229 805-0.228=0.001805. So, the second datum point is a
trajectory separation or gap of δ1=0.001805 at t=1. Next we continue the procedure for subsequent iterations.
Still holding k constant at 0.95, the difference in calculated values for the second iteration (t=2) is δ2 =
0.00092973. For the third iteration, the displacement is δ3=0.00058704, and so on.

2. At the University of Stockholm in 1884, Kovalevskaya became Professor of Mathematics—probably the first woman ever to
do so at a European university. For a fascinating account, see Kovalevskaya (1978).

Figure 25.1 
Logistic equation (parabola) and hypothetical evolution of two trajectories 
that start close together. In this example the trajectories diverge with time.



Plotting separation δ on the ordinate against time shows that, except for transients, the calculated differences
between two neighboring trajectories for our iterations plot as a straight line on semilog paper (Fig. 25.2). The
particular type of semilog paper has the arithmetic scale on the abscissa and the log scale on the ordinate. Any
straight line on that type of graph paper has the general form y =y0ebx, where y0 is the extrapolated value of the
dependent variable y at x=0, e is the base of natural logarithms (a constant, 2.718 . . .), b is a constant
representing the slope of the straight line on the graph, and x is the independent or given variable. If the straight
line slopes upward, b is positive; if it slopes downward, b is negative. This type of relation is an exponential
relation, as defined in the chapter on chaotic equations.

The given variable x here is time (iteration number, n). The dependent variable y is the separation distance δ
between the two trajectories. Extrapolating the straight line back to n=0, we'll symbolize the intercept as δa and
the finite value of δ at a particular time as δn ("delta n"). The general form of the exponential equation for the
straight-line part of the plot therefore is:

δn = δaebn. (25.1)

As our calculated values show, the gaps between trajectories for k=0.95 become smaller (converge) with time.
Consequently, the straight line in Figure 25.2 slopes downward (slope b is negative). Because the plotted points
show virtually no scatter at all about the line, we can draw the straight line by eye. Its slope as measured
graphically is any arbitrarily chosen ordinate distance divided by the associated abscissa distance. For the
example of Figure 25.2, the slope measured in that fashion is about -0.05.

Let's now go to a larger k value (say, 2.8) and again iterate the logistic equation for two neighboring
trajectories. We'll start the trajectories at the same two x values as before (0.40 and 0.41). Within the region 1<
k<3, all trajectories are still in the nonchaotic domain and go to a fixed-point attractor. However, the fixed point
for this range of k isn't at zero. Figure 25.3 plots difference in calculated values (δn, on a log scale) versus time.
Again the gaps get smaller with time. Comparing Figure 25.3 with Figure 25.2 shows that with k=2.8 the slope
of the straight line (the local rate of convergence of the two trajectories) again is negative. In this case the slope
is now about -0.22. (On a minor note, with k=2.8 the points began falling on a straight line after only about five
or six iterations.)



Figure 25.2 
Graph of amount of separation of two neighboring

 trajectories over time for the logistic equation, with k = 0.95 
(hence thenon-chaotic domain with a fixed-point attractor).

Figure 25.3 
Graph of amount of separation of two neighboring 

trajectories over time for the logistic equation, with k = 2.8
 (hence the nonchaotic domain with a fixed-point attractor).

Now we'll increase k to 3.4 and start the two trajectories at x0 values of 0.060 and 0.062. Chapter 10 showed that
the range 3< k<3.57 produces period-doubling (hence no chaos) and that k=3.4 corresponds to an attractor of
period two. The two alternating values of the attractor are approximately 0.45196 . . . and 0.84215 . . . . That is,
each trajectory first approximates one attractor value, say 0.45. Then, on the next iteration, they approximate the
other (0.84). They also get closer and closer to the true value with time (number of iterations). So, we have two
meaningful comparisons at a periodicity of two. One comparison evaluates the gap between the two
neighboring trajectories near the lower of the two attractor values (0.45 . . .). The other looks at the difference
between the two trajectories near the other attractor value (0.84 . . .). It turns out that the gap associated with the
lower attractor value is greater than that associated with the higher attractor value, for any approximate time
(any pair of successive iterations). The plot of trajectory separation versus time (Fig. 25.4) therefore yields two
separate straight lines—a higher one for the gap near the attractor value of 0.45196 . . ., and a lower one for the
gap near the attractor value of 0.84215 . . . . Both lines slope downward at about -0.14.



Figure 25.4 
Graph of amount of separation of two neighboring
trajectories over time for the logistic equation, with

k = 3.4 (nonchaotic domain, period two).

Three important features about all of the above nonchaotic examples are:

• The gap between neighboring trajectories has followed an exponential law in regard to time.

• The neighboring trajectories have converged toward their mutual attractor.

• The convergence means that gaps decrease with time, so the slope of the fitted line is negative.

Trajectory divergence

Sticking with the logistic equation as our model, let's now look at trajectory divergence. Divergence means that
the gaps get larger with time. Neighboring trajectories with the logistic equation (and in fact with all dynamical
systems) diverge only in the chaotic domain. Gaps as the two trajectories approach their mutual attractor are
now less important; instead, we monitor those differences once the two trajec tories are "on" their mutual
attractor. Let's compute some differences and see how they change with time, as before.

We'll choose k and x0 and begin iterating Equation 10.1, as usual. To make sure of getting "onto the attractor,"
we first iterate long enough to get past the transients. Let's say it takes about 100 iterations to get onto the
attractor. We'll designate the 100th point as the new x0 (a point on the attractor). We also arbitrarily choose a
different but nearby x0, as the starting point of a neighboring trajectory. (Strictly, we only know with certainty
that just the first of those trajectories is approximately on the attractor, assuming our 100 iterations were
enough. So, we'll assume that the other trajectory, beginning such a minute distance away, also is approximately
on the attractor.) Finally, we determine the differences in the computed xt+1 (the amount of separation of the two
trajectories) for each successive iteration and plot those differences against time, as before.



Suppose k=3.8 and we begin iterating the reference trajectory at an x0 of 0.06. On my computer the 100th
iteration of the logistic equation (Eq. 10.1) gives xt+1=0.72035971. We assume that the trajectory is now on the
attractor and take that value as a new x0. If we choose a small and arbitrary difference δ0 of 0.002, then the x0 for
the nearby trajectory begins at 0.72035971+0.002 or 0.72235971. (The number of decimal places here also is
arbitrary.) We then calculate the trajectories that start at each of these x0 values (0.72035971 and 0.72235971).
Figure 25.5 shows computed differences in xt+1 plotted against time for 100 iterations. Figure 25.5 looks
radically different from its trajectory-convergent counterparts (Figs 25.2-4). The three major differences are:

• The computed gap between trajectories changes in a systematic way only for a short time (about ten or
so iterations in this case); thereafter, it becomes irregular. So, the divergence rate only applies to an early
and restricted range along a trajectory. The irregular behavior beyond that range corresponds to the stage
in which sensitivity to initial conditions has had such a cumulative and major effect that the two
trajectories go off in totally independent, unrelated directions. (They may occasionally pass close to one
another again, but that's purely by chance.)

• The general trend of systematic change (here over the first ten or so iterations) now slopes upward (has a
positive value) instead of downward (negative value). The upward slope indicates that the gap between the
two trajectories increases with time rather than decreases. The reason is sensitivity to initial conditions,
the hallmark of the chaotic attractor. (And again, "initial" here means any place on the attractor where we
might choose to begin monitoring the divergence of two neighboring trajectories.)

• There's now some scatter about the best-fit line. Hence, the straight line only represents the "average"
rate of change.

The last deviation δn that adheres to the straight line represents the end of systematic divergence and is
important in a practical way: it marks the approximate limit of predictability. For the time over which the
systematic (exponential) divergence holds, the measured slope enables us to predict displacements with
reasonable accuracy. However, once the regular separation ends we might as well select values indiscriminately
from within the range of possible values. In other words, short-term predictions are relatively reliable, but long-
term predictions (defined as those for times later than the end of the systematic divergence on the graph) are
meaningless. Furthermore, that's true even when we know the evolution equations exactly.



Figure 25.5 
Graph of amount of separation of two neighboring trajectories 

over time for the logistic equation, with k = 3.8 (chaotic domain, 
transients excluded, starting gap 0.002).

The predictable range for real-world data can vary widely, from a fraction of a second to millions of years.
Weather predictability, for example, is on the order of a few days, at best. Predictability of the orbits of planets
in the solar system (excluding Pluto) seems to be about 4-5 million years (Laskar 1989, Sussman & Wisdom
1992).

The notion of predictability we're discussing here, as well as most other nonlinear prediction methods, rests on a
key assumption. That is that, for whatever set of conditions (values of the variables) a system might be in, it
always responds in the same way (always goes to the same new set of values). In other words, the assumption is
that phase space trajectories for such a system always follow approximately the same local route.

What if we had chosen a smaller starting gap, δ0? For the same k (3.8) and with x0 for the reference trajectory
again at 0.72035971, suppose δ0=0.00000001, instead of 0.002. (Such a radically smaller starting displacement
might correspond, for example, to a much better measuring capability.) Using the smaller separation distance
makes x0 for the neighboring trajectory equal to 0.72035972. Subsequent computations now produce the graph
shown in Figure 25.6. The smaller δ0 is the cause of all differences from Figure 25.5. Slopes of the straight lines
are not too dissimilar—0.42 on Figure 25.5, 0.48 on Figure 25.6. However, the straight line (range of systematic
divergence and hence of somewhat reliable predictability) lasts much longer on Figure 25.6, namely to nearly
40 iterations. In other words, better accuracy on our measurements enables us to predict further into the future.

Other examples where tiny differences increase exponentially (although I didn't describe them as such at the
time) appeared in the discussion of "Computer Inaccuracy and Imprecision" (e.g. Figs 14.2, 14.3). There I
ignored the concept of transients (i.e. I used the first iterates), and yet the results weren't affected. Discarding
transients therefore may not always be necessary.

In summary, the constant b in the equation δn=δaebn reflects the local exponential rate at which trajectories
converge (negative exponent b) or diverge (positive exponent b). The gap between neighboring trajectories can
also remain constant with time (as on a torus), in which case the constant b is zero.



Figure 25.6 
Graph of amount of separation of two neighboring trajectories 

over time for the logistic equation, with k = 3.8 (chaotic domain, 
transients excluded. starting gap 0.00000001).

Variability of Local Convergence and Divergence Rates Over the Attractor

Does the slope b vary with the two trajectories' location on the attractor? (Because a trajectory visits successive
locations as time progresses, examining different locations on the attractor is tantamount to studying effects
over time.) Continuing with the logistic equation, we'll fix k at 2.8 and conduct five separate experiments,
corresponding to reference-trajectory starting values x0 of 0.05, 0.20, 0.50, 0.80, and 0.95, respectively. In each
case, we'll set δ0 as 0.01. Starting values of the nearby trajectories therefore become 0.06, 0.21, 0.51, 0.81, and
0.96, respectively.

For all five experiments at k=2.8, the rate of convergence (slope b) turns out to be the same, namely -0.22 (the
plots aren't shown here). Therefore, the local rate of convergence seems to be the same, at least for k=2.8 (a
nonchaotic case).

Neighboring trajectories on chaotic attractors, on the other hand, don't necessarily behave so consistently.
Slopes for the Lorenz attractor (Fig. 18.8), for example, range from -15 to +16, depending on the particular
location on the attractor and other factors (Nese 1989). Two adjacent trajectories along the tops of the attractor's
lobes can even converge, producing negative values of the slope b for that small zone. In contrast, adjacent
trajectories monitored at the bottoms of the two lobes separate rapidly, yielding large and positive values of b.
Therefore, we'll have to start referring to a "local slope" (a value of b that pertains to a particular local region on
an attractor) from now on.



The divergence or convergence of neighboring trajectories at different rates depending on phase space location
complicates chaos analyses. Nicolis et al. (1983) proposed to account for that variability with a non-uniformity
factor (NUF). The NUF treats local slope as a statistical variable because it varies from place to place on a
chaotic attractor (even though constant at any small region, per Eq. 25.1). The many different values can be
compiled into a frequency distribution. The Nicolis et al. NUF is simply the standard deviation of that
distribution of local-slope values. Thus, the NUF is a global indicator reflecting the spread of the local slopes
about the mean local slope.

Local Lyapunov Exponents

The exponent b—the exponential rate of trajectory convergence or divergence as derived for any one local
region on an attractor—is a so-called local Lyapunov exponent. It characterizes a system's dynamics for that
particular region, that is, over the associated brief timeframe. Because those local dynamics and hence expo
nents can vary with location on the attractor, it's important always to attach the adjective ''local" when referring
to such exponents. They aren't the same as the standard Lyapunov exponent that we're going to derive in the
next section. A few representative papers dealing with local Lyapunov exponents include Fujisaka (1983),
Nicolis et al. (1983), Grassberger & Procaccia (1984), Nese (1989), and Abarbanel (1992); see also Abarbanel
et al. (1991a) and Abarbanel et al. (1992).

Local Lyapunov exponents can suggest attractor regions of potentially greater short-term predictability. For one
thing, the duration over which the exponential relation holds tells us something about the time limits on
predictability. Also, the value of the exponent reveals something about the reliability of predictions. For
instance, a large and positive local Lyapunov exponent (fast divergence of neighboring orbits) suggests great
sensitivity to initial conditions and poor predictability. Negative local exponents, in contrast, suggest
convergence of neighboring trajectories and hence relatively good predictability. Measuring—and separately
evaluating—local exponents over the entire attractor can tell us how they compare to the global average, their
variability (which can be large) over the attractor, the special conditions for which predictions are reliable or
unreliable, and many other things.

Definition of Lyapunov Exponent

It's convenient to have a single value that represents all the local slopes over the attractor, that is, over time.
Understandably, people adopted an average for that representative number. That average goes by the name of
the first or largest Lyapunov exponent.3 Now we're going to develop the basic exponential equation into an
expression that represents an average local slope for the entire attractor. This will take several minutes, but it'll
be worth it.

We start with Equation 25.1 (δn=δaebn). For simplicity, let's assume that there are no transients, so that δa=δ0.
Inserting δ0 for δa and dividing both sides by δ0:

(25.2)



Equation 25.2 highlights the ratio of the nth gap δn to the starting gap δ0. That important ratio (the left side of
the equation) is the factor by which the initial gap δ0 gets stretched or compressed over the n iterations. Figure
25.7 shows a starting gap (indicated by δ0 parallel to the abscissa) and a stretching over one iteration, in pseudo
phase space. The reference trajectory in Figure 25.7 starts at x0. The neigh boring trajectory also starts at time
zero but at a distance δ0 away. In symbols, the neighboring trajectory therefore starts at a value of x0+δ0, as with
our earlier examples. Values as of the next iteration (time one) are plotted on the ordinate. Those values are
indicated by subscript 1. At time one the reference trajectory has a value x1, the gap has become δ1, and the
neighboring trajectory has a value (x0+δ0)1.

3. "Exponent" applies because each local slope b is an exponent in the basic exponential equation, δn=δaebn. Also, as mentioned
early in the chapter, there are usually several Lyapunov exponents. namely as many as there are dimensions in the phase space.
We'll get to that topic in a later section.

Figure 25.7 
One-dimensional map (pseudo phase space plot) showing hypothetical 
progression of a gap between two adjacent trajectories over one time 

step. Gap at time 0 is d0, and gap at time 1 is d1. The gap changes (here 
grows) at a rate given by the function f(x).

The important quantity is the rate at which the separation distance changes. We'll designate the nature of the
change by an undefined general rule that we'll call a "function of x." We write such a function in symbols as f(x)
(called "f of x"). In Figure 25.7, the rate at which f(x) changes is approximated by the ratio δ1/δ0. Graphically,
the ratio δ1/δ0 is an ordinate distance δ1 divided by an abscissa distance δ0 (Fig. 25.7). In other words, it's the
average slope of the curve or straight line that connects the two sequentially plotted points. (The slope δ1/δ0 isn't
the same as our local slope b. However, the two slopes are mathematically related in some way, as Eq. 25.1
implies.)

Mathematicians symbolize the nth iterate of any function f of x as fn(x). (Putting n in the position of an apparent
exponent is an unfortunate convention, as it looks like a power. Remember, it's not a power when located right
after the f; instead, it's just an identifying label.) To show that iterating the function produces x, they just put "x
=" in front of the expression fn(x), yielding x=fn(x). Also, the applicable iteration number (1, 2, etc.) replaces n.



After n iterations the ratio of gap δn divided by original gap δ0 gives an average rate of change over those n
iterations. Now let's make the initial gap (δ0) smaller and smaller (approaching zero). (In symbols, δ0→0.) That
means the second plotted point on Figure 25.7 approaches the first point. The computed rate of change for that
condition is called a first derivative (or simply a derivative).4 For that special limiting condition (δ0→0),
mathematicians replace δ with a lower-case d. The d still refers to the gap, just like the δ. To make sure
everyone knows that the gap is in terms of x, they write the gap as dx.

Sometimes the gap is expressed in terms of some function such as f or fn(x), in which case it's written df or
dfn(x), respectively. Hence, df or dfn(x) indicates the discrepancy (e.g. the "ordinate gap" in Fig. 25.7) between
two successive iterations as δ0 becomes infinitely small. The relative change for the special condition of δ0

becoming infinitely small then is no longer simply δ1/δ0; instead, that change (ordinate distance/abscissa
distance) becomes df/dx. Since our function f is fn(x), the df/dx is dfn(x)/dx. Mathematicians write dfn(x)/dx as

They call it the "derivative of the nth iterate of the function f with respect to x." (Again, a first derivative is
merely a slope or relative change, measured at the limit where the starting gap δ0 becomes infinitely small. It's
therefore analogous to ratios such as δ3/δ0, δn,/δ0, and so on.) Summarizing: the rate of change as δ0→0 is

(25.3)

As δ0 gets smaller, the calculated rate for the first iteration (δ1/δ0) applies closer and closer to the point that
started at x0 (Fig. 25.7). Hence, we assign δ1/δ0 to the value x0. Also, we'll adopt another standard symbol and
indicate the derivative of the function f (i.e. the value df/dx) by f'(x) (spoken as "f prime of x"). The relative
change for the first iteration therefore is

(25.4)

For the next iteration, value x1 takes the role of x0, gap δ1 takes the place of old gap δ0, and new gap δ2 takes the
place formerly occupied by δ1. Following the same pattern as in Equation 25.4, we symbolize the relative
change associated with point x1 as f'(x1) and calculate it as δ2/δ1:

4. A derivative is a value that derives from, comes from, or is traceable to a particular source, in this case the point on the curve.

 (25.5)

(So, with derivatives written as f'(x0), f'(x1), and so on, the value within parentheses (x0, x1, etc.) indicates where,
along the curve, to measure the rate of change.)

We now invoke a handy rule known as the chain rule. It defines the derivative of the function f, as taken at the
value x0. That is, it defines

In particular, it defines that quantity as the product of two terms. One is the derivative of the function taken at
the value of the preceding iteration xn-1, which in symbols is f'(xn-1). The other is the derivative of that preceding
iterate of the function taken at the value x0, or



Writing the definition in symbols,

 (25.6)

We're going to apply the chain rule to a series of iterates or successive observations. As an example, let's apply
it to four sequential observations. That means writing Equation 25.6 four times, namely for n=4, n=3, n=2, and
n=1. However, a term for n=1 will be part of the expression for n=2 and so doesn't have to be written separately.
Hence, we only have to write Equation 25.6 three times, as follows:

Equation 25.6 with n=4 is

(25.7)

Equation 25.6 with n=3 is

(25.8)

Equation 25.6 with n=2 is

 (25.9)

The term on the far right in Equation 25.9, namely

is an alternate way of writing f' (x0), so Equation 25.9 really is

(25.10)

Equations 25.7,25.8, and 25.10 have some common terms. Hence, we can make substitutions. For instance, the
last term in Equation 25.7 is

and that term is also defined by Equation 25.8. So, we can insert the right side of Equation 25.8 into the last
term of Equation 25.7. Equation 25.7 then becomes

 (25.11)

Again the term on the far right,

has been defined separately (Eq. 25.10). Making that substitution, Equation 25.11 becomes



(25.12)

where xi is a general symbol for the successive values of the iterations and i here ranges from zero to n-1. (And
so, with our little group of equations, the last term in each equation is linked, as in a chain, to the definition
given by the next equation.) Equation 25.12 says that the quantity

is just the product of all the first derivatives, that is, the product of the rates of change f'(xi), for i ranging from
zero to n- 1.

We can write the derivatives on the right-hand side of Equation 25.12 as ratios of gaps, as with Equations 25.4
and 25.5. For instance, f'(x0)=δ1/δ0, per Equation 25.4. Continuing with our example of n=4, we therefore
substitute into Equation 25.12 the ratios δ1/δ0 for f'(x0), δ2/δ1 for f'(x1), δ3/δ2 for f'(x2), and δ4/δ3 for f'(x3):

Cancelling like terms from the top and bottom on the right-hand side leaves

or, in general,

(25.13)

where the value of n reflects the number of derivatives or ratios δi/δi-1 involved. For instance, with n=4 there are
four derivatives, namely the ratios δ4/δ3, . . . δ1/δ0.

Equations 25.12 and 25.13 together say that

(25.14)

Equation 25.14 brings our story full circle back to Equation 25.2, δn/δ0=ebn (with δa=δ0). The ratio on the left
(δn/δ0), according to Equation 25.14, represents the product of a bunch of derivatives. Next we'll rearrange our
transientless version of Equation 25.2 to isolate the exponent b, the separation rate of two neighboring
trajectories. To get b, we first put Equation 25.2 into log form (base e):

loge(δn/δ0)=bnlogee.

The ingredient on the far right, logee, equals 1, so

loge(δn/δ0)=bn.

Finally, dividing both sides by n gives an expression for a local slope, b:

(25.15)



Equation 25.15, by the way, reveals the units of b. The ratio δn/δ0 is dimensionless, since both δ's are in the
same units (units of x). The log of that ratio also is dimensionless (log units). Iterations usually represent time,
so we let n have units of time. Thus, b has dimensions of 1/time (e.g. 1/seconds, 1/years, etc.). In practice,
people often give the numerator a name that depends on the base of the logs. The most popular base of the logs
is either e or 2. If taken to base e, local slope b is in nats per unit time; if to base 2, it's in bits per unit time (Ch.
6).

We're almost done. This next step is important. First, a word about the philosophy behind it. Local slopes on an
attractor, as mentioned, can vary greatly. If we measure only one local slope, we've only examined one locality
on the attractor— a locality that might be unrepresentative. In many cases we want to cover the entire attractor.
The limitation of the exponential scaling zone (the straight-line relation, as in Figs 25.5 and 25.6) means that we
can't use the same two trajectories, from one place to another along the attractor. The usual procedure is to track
the same reference trajectory over the entire attractor but choose different "nearby" trajectories at different
locations on the attractor. That gives us a bunch of local slopes that represent trajectory divergence (or
convergence, or whatever) at different locations on the attractor.

Equation 25.15 describes the separation rate of one pair of neighboring trajectories at some specified location
on the attractor. We'll now rewrite the equation in a form whereby it applies to a group of local slopes. In other
words, it applies to the separation rates of many pairs of neighboring trajectories. We assume that Equation 25.1
and its log-transformed and rearranged version, Equation 25.15, still apply. However, the interpretation is
slightly different when a group of local slopes is involved. For one thing, δn/δ0 according to Equation 25.14
equals the product of the f'(xi) values. Hence, we can substitute the product of the f'(xi) values for δn/δ0 in
Equation 25.15. Equation 25.15 uses the log of (δn/δ0), so we need the log of the product of the f'(xi) values. The
log of a product, such as the log of [f'(x3) f'(x2) f'(x1) f'(x0)] (our example from above with n=4), is the sum of the
logs of each component (Appendix). In our example, that sum is log of f'(x3)+log of f'(x2)+log of f'(x1)+log of
f'(x0). The standard and general way of writing such a sum in concise symbol form (here we'll take logs to base
e) is

For instance, the summation for our values ranges from i=0 for f'(x0) to i=3 for f'(x3), and 3 is n-1 or 4-1. Finally,
although gaps or distances can be positive or negative depending on which value is subtracted, we're interested
only in the absolute values of the gaps; it's not possible to take the log of a negative number. Hence, we want
logs of absolute values of derivatives. In symbol form, that's loge|f'(xi)|. With those revisions, loge(δn/δ0) of
Equation 25.15 (applicable to just one local slope) becomes

(applicable to a group of local slopes). Making that substitution into Equation 25.15:

(25.16)



Equation 25.16 is just a fancy and shorthand way of telling us to add up the logs of the absolute values of the
local slopes and then to get the average log by multiplying that sum by 1/n. To show that the answer isn't just
one local slope but is instead the average of many local slopes, we'll adopt the symbol λ1 (Greek lambda, here
with subscript 1) in place of b. Finally, to indicate that the slopes should come from all over the attractor (i.e.
that the time span should be very long), we qualify the right-hand side of Equation 25.16 with the term . Those
changes bring us to our overall goal—a symbol expression for the first, or largest Lyapunov exponent λ1 (e.g.
Wolf 1986: 275):

(25.17)

Equation 25.17 shows that the first Lyapunov exponent λ1 is a logarithm—the average log of the absolute
values of the n derivatives or local slopes, as measured over the entire attractor. In mathematical terminology, a
Lyapunov exponent is also the logarithm of a so-called Lyapunov number. In other words, a Lyapunov
number is the antilog of the Lyapunov exponent, or the number whose logarithm, to a given base, equals the
Lyapunov exponent.

Because it averages local divergences and/or convergences from many places over the entire attractor, a
Lyapunov exponent is a global quantity, not a local quantity. We can interpret it in three ways.

• In n dimensions, λ1 quantifies, in a single number, the average rate at which the fastest growing phase
space dimension grows.

• It quantifies average predictability over the attractor.

• Because neighboring trajectories represent changes in initial conditions of (or perturbations to) a system,
λ1, is an average or global measure of how sensitive the system is to slight changes or perturbations. A
system isn't sensitive at all in the nonchaotic regime, since any two nearby trajectories converge. In
contrast, a system is highly sensitive in the chaotic regime, in that two neighboring trajectories separate,
sometimes rapidly.

The value of λ1 doesn't depend on where we start monitoring, because we're going to cover the entire attractor
regardless. Therefore, λ1 is a basic characteristic for the attractor and is invariant for any attractor. (Invariant
here means invariant in regard to starting time and also "unaffected by transformations of the data.")

Lyapunov Spectrum

A common approach in visualizing phase space motion is to imagine how a small length, area, volume or
higher-dimensional element might evolve in time. Examples of such elements are a square or circle (in two-
dimensional phase space) and a cube or sphere (in three dimensions). The center of such an element is an
observed datum point. There's an elaborate terminology for describing such an element. Originating at every
measured datum point, and making up the associated element's skeletal framework, are one or more equal-
length orthogonal axes, called principal axes. Each axis ends at another phase space point, although not
necessarily an observed (measured) point. Because those axes start at a common center point (a datum point)
and each axis ends at some other point in phase space, chaologists call each axis a vector (Ch. 5), axis vector, or
perturbation vector. The number of principal axes corresponds to the dimension of the phase space.
(However, as we'll see, their directions continually change and have no relation to the directions of the phase
space axes.) People usually normalize the orthogonal axes (make them orthonormal) so that the axes have unit
(1.0) length.



In any dissipative (energy-losing) system, whether chaotic or not, a length, area, volume or higher-dimensional
element shrinks over time, in phase space (Fig. 25.8a). The frictional pendulum and its point attractor of Figure
11.b are a good example. On a phase space plot of velocity versus position, the dynamics describe a spiral. The
size of the spiral gets smaller and smaller with time. Eventually the pendulum stops swinging altogether. The
spiral then reaches its smallest possible size (a dot), representing a constant velocity and position. Conservative
systems, in contrast, don't lose energy with time. In the graphical illustration of Figure 25.8b, the overall total
area of the box remains constant over time, even though there may be some change in shape (because of
unequal changes in axes lengths).

The phase space orientation of a set of orthonormal axes is arbitrary. In other words, the axes aren't necessarily
parallel to the x, y, and z coordinates of the phase space plot. Each axis vector must simply be orthogonal to all
other axis vectors.

Now we let the system evolve forward in time, that is, we go to the next measurement. In the process, the
imaginary axes or vectors move. Because of the basic nonlinear nature of the system, their lengths change. The
amount of change varies from one axis to another. In other words, our idealized element gets distorted. Its
orientation in the phase space also may change. Principal axes have numerical labels according to how much
change or distortion they undergo. The principal axis that's stretched the most (or reduced the least) is the first
principal axis. That axis, in other words, corresponds to the direction in which the flow is most unstable. The
axis that undergoes the next greatest amount of growth (or least shrinkage) is the second principal axis, and so
on.

Now, what does all of this have to do with Lyapunov exponents? The two endpoints of each principal axis are
considered to be neighboring points in phase space. We monitor the change in their gap, over time. That is, we
measure the growth or shrinkage of each principal axis over the entire attractor, according to whether its
endpoints get closer together or farther apart. That means we get a Lyapunov exponent for each principal axis.
The largest Lyapunov exponent measures the rate of expansion of the first principal axis—the one that shows
the largest amount of growth (or the slowest rate of shrinkage) over the attractor. The second Lyapunov
exponent measures the rate of change of the second principal axis, and so on down to the smallest Lyapunov
exponent.



Figure 25.8 
Phase space area and some possible changes over time (after Bergé et al. 1984: 23). Size (area) of main box (the 

one on the left, in each row) represents an amount of energy. In dissipative systems (the two examples in part
(a)), area of box decreases over time. In conservative systems (the two examples in part (b)), area of box remains 
constant over time. With both systems, shape of area-element can change over time, and trajectories can diverge 

whether area stays constant or not.

For a system to be chaotic, at least one principal axis must show an overall divergence of neighboring
trajectories (Figs 25.5, 25.6). Therefore, at least one Lyapunov exponent has to be positive on a chaotic
attractor. The Lyapunov exponents of an attractor, considered as a group and ordered by magnitude, are known
as the attractor's spectrum of Lyapunov exponents.

A different Lyapunov exponent corresponds to each principal axis, and the number of principal axes equals the
number of phase space dimensions. Consequently, the number of Lyapunov exponents equals the number of
phase space dimensions. However, all principal axes continually change direction or orientation in phase space,
depending on attractor configuration and on flow direction. Hence, a particular Lyapunov exponent doesn't
correspond to a particular phase space direction or to a particular axis of the phase space graph.

Chaos can happen in dynamical systems of any number of dimensions. Thus, there can be any number of
positive Lyapunov exponents (almost as many as the dimensions of the phase space itself).

Besides positive and negative exponents, a ''zero" exponent also is possible. An exponent of zero corresponds to
an axis along which the gap between trajectories either stays constant or increases at a rate less than
exponential. (Some authors call the zero-exponent case marginally stable. "Marginally stable" means that any
perturbation stays at about the same level, as the system evolves.) Mathematicians have proven that, except for
the fixed-point attractor, at least one Lyapunov exponent is always zero (cf. Parker & Chua 1989: 321). Hence,
there are three main types of trajectory behavior in dynamical systems:

• asymptotically unstable (exponential divergence of neighboring trajectories, positive Lyapunov
exponent)

• marginally stable (zero exponent)

• asymptotically stable (exponential convergence of neighboring trajectories, negative exponent).

Authors describe a system's dynamics qualitatively in shorthand form by simply listing the signs of the
Lyapunov exponents. For instance, (+,0,-) means a three-dimensional phase space in which neighboring
trajectories as averaged over the entire attractor diverge exponentially along the first principal axis, are
marginally stable along the second, and converge along the third. The Lorenz attractor (Fig. 18.8) is an
example.



In three-dimensional phase space, the various attractor types have the following spectrum of Lyapunov
exponents:

• A fixed-point attractor is (-,-,-). That label tells us that convergence goes on along all three principal
axes of any phase space volume.

• A limit cycle is (0,-,-), because a volume element stays constant along the direction of the trajectory but
contracts (the gaps converge) in the directions of the other two principal axes.

• Orbits on a torus, once they reach the attractor, keep the same distance thereafter. A volume element
therefore stays constant for two principal axes but contracts along the third (0,0,-).

• Finally, on a chaotic attractor the two trajectories diverge in the direction of the first principal axis,
yielding a positive exponent. The exponent for the second principal axis has to be zero because at least
one axis must have a zero exponent. The exponent for the third principal axis has to be negative (and
larger in absolute value than that of the positive exponent), because the over-all sum of the exponents has
to be negative. So, the classification code for a chaotic attractor is (+,0,-).

You'll often see the statement that the length of any phase space element (i.e. the first principal axis of our Nd

axes) grows as , where c is a constant (usually 2 or 2.718 . . .). Similarly, the cross-sectional area of any
element grows as ; its volume grows as ; and so on. Here's a brief explanation of where those
relations come from. They arise from the assumed (or real) exponential growth rate, as follows. As with the
earlier derivation, we'll deal with local slope b, with the understanding that the same principle applies globally.
With time t as the independent variable and length y as the dependent variable, the exponential relation for the
length of the principal axis at time one (y1) is

(25.18)

in which y0 is the length at time zero and b1 is the slope associated with the first principal axis. The ratio y1/y0

then is the relative growth of the axis over one time unit. Equation 25.18 shows that y1/y0 grows as

Now for the two-dimensional case. The expression for growth of a cross-sectional area stems from the relation
that the area of a disk or circle is π times the radius squared. Let's designate two orthogonal radii, y and z, as the
first and second principal axes. The area of the circle then is πyz. That area at time zero is πy0z0. By the next
time increment (time one), the circle deforms into an ellipse. An expression similar to πyz applies to the cross-
sectional area of the ellipse for time one, so the area at time one is πy1z1. The relative growth of the area during
the time interval is area at time one divided by area at time zero=πy1z1/πy0z0 =y1z1/y0z0. Next we insert expressions
for y1 and z1 into this last ratio. Assuming that the axis y1 grows exponentially, its value at time one is .
Similarly, assuming that axis z1 grows exponentially, its value at time one is , where b2 is the slope
associated with the second principal axis. Inserting these expressions into the relative-growth ratio y1z1/y0z0

gives:

or

(25.19)

In other words, cross-sectional area grows as . In the same way, volume grows as , and so on.

Practical Calculation of Lyapunov Exponents



Some of the proposed methods for calculating Lyapunov exponents from measured data are those of Wright
(1984), Eckmann & Ruelle (1985) (explained in more detail in Eckmann et al. 1986), Sano & Sawada (1985),
Wolfet al. (1985), Briggs (1990), Bryant et al. (1990), Stoop & Parisi (1991), Zeng et al. (1991), Nychka et al.
(1992), and probably others. Wright's (1984) method applies only to relatively limited conditions, so I won't
elaborate on it here. The basic idea behind all other methods is to follow sets of trajectories over short time-
spans and compute their rates of separation, then average those rates over the attractor. These other methods
have at least five features in common.

• They begin by reconstructing the attractor, often with the standard time-delay embedding procedure. If
the attractor can't be reconstructed, then the game is over already; we can't measure a Lyapunov exponent.
(And, as mentioned, there are few reliable criteria to tell us when we've successfully reconstructed the
attractor.)

• Working in the reconstructed phase space, all methods focus on a fiducial trajectory over the attractor.

• They directly or implicitly treat each fiducial point as the center of a little area, sphere or hypersphere
that has principal axes. As mentioned earlier, evolution of the system disrupts the orthogonality of such
principal axes. For instance, a circle in phase space gets distorted into an oval; a sphere evolves into an
ellipsoid. (In chaotic systems, the axes in fact tend to align themselves in the direction of most rapid local
growth.) The loss of orthogonality is undesirable. For one thing, if the axes collapse toward a common
direction they become indistinguishable. In that case we can only measure one trajectory gap. For another,
probing the phase space is more thorough if the vectors are orthogonal. Thirdly, mutually perpendicular
axes are much easier and more familiar to work with than axes that aren't mutually perpendicular. Because
of these considerations, most methods periodically reset the axes to where they are again mutually
perpendicular and of unit length (orthonormalized).

There are several ways to reset principal axes to an orthogonal orientation. Different techniques for determining
Lyapunov exponents use different resetting methods. Probably the two most common methods are Gram-
Schmidt orthogonalization and QR decomposition (Zeng et al. 1992). Adding the normalization step completes
the impressive-sounding procedure called reorthonormalization (re: again; ortho: right angle; normal: of unit
length). The set of principal-axis vectors travels around the attractor, anchored to the reference trajectory, and
every so often we reorthonormalize those vectors.

• They're much better at measuring positive exponents than negative ones. At least with chaotic attractors,
nearby trajectories diverge over much of the attractor. Most of such chaotic data lend themselves to
positive exponents. Of course, one positive exponent is enough to show chaos, so if our only goal is to
find out whether or not the system is chaotic, the problem becomes easier. The Wolf et al. technique, in
fact, provides only the single largest positive exponent.5 The other methods, not necessarily successfully,
try to find the entire spectrum of exponents.



As mentioned, however, negative exponents also are difficult to measure. They reflect trajectory convergence.
Such convergence on chaotic attractors can take place normal to the flow, in a direction where the attractor is
relatively thin and information relatively scarce. In addition, measurement of negative exponents depends on
their magnitudes and on the relative amount of noise in the data (Sano & Sawada 1985). If trajectories converge
to the extent that attractor thickness is less than the resolution of the data (the noise magnitude), then there's no
way to get any further information about contraction rates. Measuring a Lyapunov exponent for those
conditions produces an incorrect zero exponent, because noise on average neither expands nor contracts.
Finally, in other situations, negative exponents for chaotic or nonchaotic attractors measure the rate at which
neighboring trajectories that are off the attractor get onto the attractor (Abarbanel et al. 1990), as explained
early in this chapter. We may need to determine such rates by analyzing transients, and transients usually last
over a very short time or may not have been measured.

• Most methods produce extra (false or spurious) exponents that you have to identify and throw out. (The
methods of Wolf et al. [1985] and Stoop & Parisi [ 1991] may be exceptions.) The extra exponents appear
because the methods normally yield the same number of exponents as the number of dimensions of the
phase space, and the phase space here is an artificial one whose embedding dimension necessarily is
greater than that of the dynamical system it represents. Authors use various approaches, sometimes
apparently successfully, to recognize false exponents. Bryant (1992) gives a good discussion with
recommendations for how to identify them.

So much for what the methods have in common. Now let's take a closer look at three of them—those of Wolf et
al., Eckmann & Ruelle, and Sano & Sawada.

The popular Wolf et al. (1985) method begins by taking the first point of the reconstructed (lagged) phase space
to represent the fiducial trajectory (Fig. 25.9). The authors choose a nearby point as the first observation along
the neighboring trajectory. That nearby point must be from a different temporal section of the dataset. They
monitor the gap between the two trajectories over time. The length of time over which they do so can be until
the occasion of the very next datum value, or until the gap exceeds an arbitrary distance e, or until another
trajectory becomes closer. When such a predesignated condition occurs, they consider that particular
neighboring trajectory to have migrated a maximum allowable distance from the fiducial trajectory. At that
stage, they compute a local slope as [final separation distance minus starting separation distance] divided by the
associated time interval. Then they abandon that first neighboring trajectory.

The last point just analyzed on the fiducial trajectory stays on for additional duty as a new reference point. A
new nearby point is chosen to represent a new nearby trajectory (Fig. 25.9). Then they measure the rate at
which the new nearby trajectory diverges from the fiducial trajectory, as before. They repeat the process until
the fiducial trajectory gets to the end of the data. At this stage, we assume that the data cover the attractor.
Averaging the logs of the absolute values of the various local divergence rates gives the largest Lyapunov
exponent (Eq. 25.17).

5. Those authors do, however, also propose a more elaborate and cumbersome technique for the two largest exponents.



Figure 25.9 
Wolf et al. (1985) approach to estimating largest Lyapunov exponent from 

measured data. At each replacement time, angle θ (between old length 
element and new element) as well as new length element are minimized.

When a nearby trajectory becomes obsolete and is replaced with a new one in the Wolfet al. method, two
criteria determine the starting point for the new nearby trajectory. First, the starting point should be as close as
possible (in the reconstructed phase space) to the new fiducial point. Secondly, the spatial orientation of the last
(now abandoned) separation vector should be preserved as closely as possible. That means making the angle θ
on Figure 25.9 as small as possible. In practice, fulfilling those two criteria can be difficult, and the computer
often must look at more than one nearby datum point to find the best compromise replacement point.
Fortunately, such orientation problems usually don't have a major effect on the Lyapunov exponent. Also,
divergence rates of replacement trajectories must be monitored closely. If they grow suspiciously quickly, the
fiducial and nearby points probably aren't on the same part of the attractor and are going in different directions
because of a fold in the attractor. In that case (very rapid divergence), go back and choose a different second
point. Abarbanel et al. (1990) give further discussion.

The amount of data needed for calculating Lyapunov exponents with the Wolf et al. system depends on three
factors (Wolfet al. 1985: 305). First is the number of replacement points that will be needed; second is the
number of orbits around the attractor needed to assess the stretching adequately; and third is how well the
attractor can be reconstructed with delay coordinates. In practice, the amount of data increases approximately
exponentially with the dimension D of the attractor; the authors give 10D-30D as a general range of that desirable
amount. About 10000-100000 points are typical requirements. Eckmann & Ruelle's (1992) rule of thumb yields
one of the largest estimates: the required number of points is about the square of that needed to reliably
estimate the correlation dimension. (Ch. 24 mentions their rule for estimating the required size of the dataset for
determining the correlation dimension.) For example, if by their rule we need 1000 points to get the correlation
dimension, we need 1000000 points to estimate a Lyapunov exponent!

Eckmann & Ruelle (1985) (also Eckmann et al. 1986) and Sano & Sawada (1985), working independently,
proposed methods that are philosophically very much alike. Hence, in most of the following general description
I'll treat them as one method. This technique follows entire neighborhoods (groups of points) near the fiducial
trajectory, over a short time. In a stripped-down, simplified version, we begin by taking the first datum point as
the first fiducial point. Then we locate all other points (xj1, xj2, etc.) within an arbitrarily prescribed radius ε (Fig.
25.10).



Figure 25.10 
Sketch of Eckmann et al. concept for estimating a Lyapunov 
exponent. A circle of radius ε is centered at fiducial point xi; 

four qualifying neighboring points are shown.

Those qualifying points are called "neighbors." Each neighbor has its own separation distance from the fiducial
point. Moving along the fiducial trajectory to the second datum point, we next find how many of the original
neighbors still qualify as neighbors. Those surviving neighbors have a new gap relative to the fiducial
trajectory. We assume that the time between steps one and two is short enough that the change in gaps is linear
rather than nonlinear. That is, we assume a linear relation between the gaps at time one and those at time two. In
other words, the group relation is that gaps at time 1 equal a constant times gaps at time zero. Fitting a straight
line to those gaps (Eckmann & Ruelle used least squares) gives the value of that constant. The same general
procedure is repeated at each successive point on the fiducial trajectory. From the many values of the constant
determined in the regressions, we compute the Lyapunov exponents from certain mathematical equations.

In practice, we might follow the neighbors over several data values before doing the linear fit. Also, the radius ε
doesn't necessarily have to be constant from one fiducial point to the next. The selected value of ε is a
compromise between the two conflicting requirements that ε be small enough that the flow can be considered
linear (a limitation resulting from nonlinearity) and large enough to include enough neighbors to satisfy certain
statistical requirements (a limitation caused by noise). The optimum choice often appears only by trial and error
and linear fitting. Another problem is that finding neighbors can be difficult. The number of neighbors within a
given radius depends on the size of the dataset, noise, and the fractal nature of the attractor.

Probably the main difference between the Eckmann & Ruelle (1985) approach and that of Sano & Sawada
(1985) is the way of doing the orthonormalization. Abarbanel et al. (1991b) review other differences. Other
methods mentioned above are largely variations or improvements of the Eckmann-Ruelle/Sano-Sawada
approach.



Calculating Lyapunov exponents for an attractor reconstructed from a time series of discretely measured, noisy
real-world data is a problem that has only partly been resolved. For instance, Theiler et al. (1992) found that it
is possible to get positive Lyapunov exponents for data known to be nonchaotic. (In fact, even data that are
essentially random conceivably can have a positive Lyapunov exponent.) Along the same line, Vassilicos et al.
(1993) analyzed dollar to Deutsche mark exchange rates. They found a "marginally positive" largest Lyapunov
exponent (and hence possible chaos) for a subsample of 15000 data points but a marginally negative exponent
using the full sample of 20000 data points. In general, all the various calculation methods also have problems
with quality of data (noise), how best to fit the function that describes local dynamics, and the size of the local
neighborhoods (Glass & Kaplan 1993). In addition, the methods can't always reliably recognize false exponents,
as mentioned. Finally, they have difficulty in high-dimensional systems, possibly because trajectories on those
attractors rarely return to a given locality (a problem mentioned earlier in regard to dimension estimates). But
then again, most chaos tools don't work well in high dimensions.

Summary

A Lyapunov exponent is a number that reflects the rate of divergence or convergence, averaged over the entire
attractor, of two neighboring phase space trajectories. Trajectory divergence or convergence has to follow an
exponential law, for the exponent to be definable. In other words, the separations must plot as a straight line
with trajectory gap on the ordinate (log scale) and time on the abscissa (arithmetic scale). The general procedure
is to determine the logarithms of local slopes of such straight-line relations for all regions of the attractor and
then average those logs to derive the Lyapunov exponent. A negative Lyapunov exponent indicates an average
convergence of trajectories, a positive exponent an average divergence. Convergence and hence negative
Lyapunov exponents typify nonchaotic attractors. Divergence (and hence at least one positive Lyapunov
exponent) usually happens only on chaotic attractors. However, convergence can also take place on chaotic
attractors. Hence, local rates can vary considerably at different regions on the attractor.

A "local Lyapunov exponent" evaluates trajectory separation over short finite time periods (i.e. over local
regions of the phase space attractor). Local Lyapunov exponents can be useful in the practical world in
prediction over short timescales and in assessing how accurate a forecast might be.

The number of Lyapunov exponents for a set of data is numerically the same as the number of phase space axes.
However, each exponent corresponds to a principal axis of a length, area, volume or higher-dimensional
element, and the orientation of such principal axes varies with location on the attractor. Hence, Lyapunov
exponents don't correspond to the phase space axes nor to any particular phase space orientation. The exponents
of an attractor collectively are known as the spectrum of Lyapunov exponents and are represented in a
shorthand form as a string of plusses, minuses, and zeros. There isn't yet a completely reliable way to compute
Lyapunov exponents for attractors constructed from real-world data; the two most common techniques are the
Wolf et al. (1985) method or a refinement of the Eckmann & Ruelle (1985)/Sano & Sawada (1985) method.



Chapter 26
Kolmogorov-Sinai entropy

We come now to a very elegant quantitative measure of chaos. To date, it's been useful mostly with computer-
generated data, because it requires unusually large amounts of relatively noise-free values. It also needs
enormous computer capabilities. It's popular in the chaos literature and involves many important principles of
chaos theory.

The notion of entropy crops up in physics, mathematics, statistics, economics, computer science, literature,
earth sciences, biology, and other fields. To many people, however, it's always been an abstract and confusing
idea. In fact, mathematician John von Neumann supposedly recommended using the term because "no one
knows what entropy really is, so in a debate you'll always have the advantage" (Tribus & McIrvine 1971: 180).
Part of the confusion is because people apply "entropy," like "dimension,'' to many different concepts or
measures.1 Be that as it may, one particular variant of the group is an important indicator of chaos.

Selected Milestones in the History of Entropy

Clausius's thermodynamic entropy

Based in part on French physicist Sadi Camot's groundwork of the 1820s, the German physicist Rudolf
Clausius2 introduced entropy in 1865 in his work on heat-producing engines. The general idea is that it's
impossible to direct all of a system's energy into useful work, because some of that energy isn't available
(escapes, for example). Entropy in this original thermodynamic (heat movement) sense is a measure or
calculation of the inaccessible energy. High entropy means that much of a system's energy can't be used for
work. In other words, only a small part is available for work. Low entropy means that only a small proportion of
the system's energy is unobtainable, that is, most of it's available.

1. Within science, literature and other fields, this plethora of uses of "entropy" causes much unhappiness and hand-wringing.
Denbigh & Denbigh (1985), Schneider (1988), and Hayles (1990) give more extensive discussions.

Boltzmann's statistical entropy

Austrian physicist Ludwig Boltzmann3 contributed a key development in the "career" of entropy when he
devised a statistical or probability measure of entropy H:

 (26.1)

where K is Boltzmann's constant (and depends only on the units) and Pi here is the ordinary probability of an
element being in any one of the Ns phase space states. Equation 26.1 is very similar to our Equation 6.17c,
reproduced below. (In fact, the rest of this chapter relies heavily on the probability material we discussed in Ch.
6.)

Shannon's information entropy

At least as early as the 1870s, some researchers (possibly including even Boltzmann himself) began looking
upon entropy as a measure of information. In the mid-twentieth century, Nyquist, Hartley, Shannon and others
in electrical communications, and Wiener in cybernetics, made major progress toward a numerical measure of
information. Claude Shannon,4 an engineer with the Bell Telephone Laboratories, built on earlier work on
mathematical approaches to information. In the late 1940s (summarized in Shannon & Weaver 1949) he largely
created the then-new discipline of information theory. In particular, by considering probabilities, Shannon
arrived at Equation 6.17c:



2. Clausius, Rudolf (1822-88) Rudolf Clausius, one of the greatest of theoretical physicists, made outstanding contributions to
thermodynamics and kinetic theory during the 1850s and 1860s. After graduating from the University of Halle in 1848 he
became a professor at the Imperial School of Artillery and Engineering in Berlin. Later he was professor at Zürich, Würzburg,
and finally Bonn. His scientific accomplishments include formulating or restating fundamental laws of thermodynamics, putting
the theory of heat on a sound basis, and developing the kinetic theory of gases. Much of this work began when he was in his late
twenties and climaxed in his early forties. Although regarded as the founder of thermodynamics, he gave much credit to such
predecessors as Sadi Carnot, Henri Clapeyron, Robert Mayer, and others. Max Planck, another great German physicist, perhaps
best described Clausius's impact: "One day, I happened to come across the treatises of Rudolf Clausius, whose lucid style and
enlightening clarity of reasoning made an enormous impression on me, and I became deeply absorbed in his articles, with an ever
increasing enthusiasm. I appreciated especially his exact formulation of the two laws of thermodynamics, and the sharp
distinction which he was the first to establish between them . . ."
3. Boltzmann, Ludwig E. (1844-1906) Austrian physicist Ludwig Boltzmann received his doctorate at the University of Vienna in
1866 and later held professorships in mathematics and physics at Vienna, Grad, Munich, and Leipzig. In 1894 he became Professor
of Theoretical Physics at Vienna. where he spent most of the rest of his life. He was one of the principal founders of statistical
mechanics. In the 1870s he published several papers in which he showed that the second law of thermodynamics was explainable by
applying probability theory and laws of mechanics to the motions of atoms. His work was vigorously attacked and long-
misunderstood, but he was eventually proved right. He himself was physically strong, sensitive, and had a fine sense of humor.
However, he tended to have periods of silence and depression. During one of his depressed periods, he took his own life at age 62.

(6.17c, repeated)

Any total (N, Nr, etc.) can replace Ns in that equation. (Norbert Wiener developed essentially the same
expression for his own field, at about the same time.) The formula is, of course, nearly the same as Boltzmann's
long-established equation for entropy (Eq. 26.1) as used in statistical mechanics (with Boltzmann's K=1). The
greatest strength of Shannon's formula is its broad applicability; whereas Boltzmann's formula was limited to
statistical mechanics, Shannon's applies to any field and to many types of probability.

In producing his equation, Shannon simultaneously provided both a gigantic advance and massive
consternation. The consternation arose because of the name he gave the equation. On the one hand, he said it
actually measures information, choice, or uncertainty. However, to the dismay and confusion of many, he opted
to call it "entropy" because his equation was essentially identical to Boltzmann's. Physicists today are still
arguing over whether Shannon's entropy (dealing with the generation of averages of various statistical options)
really measures the same thing as Boltzmann's entropy (dealing with the probabilities of accessible molecular
states). In any event, many people began to treat entropy and information (in the Shannon sense) as the same
thing. Chaos theory treats them as the same thing.

Important examples of equations that quantitatively measure both information and entropy are I=log2(1/P) (our
Eq. 6.16a) and

4. Shannon, Claude E. (1916-) Claude Shannon is generally acknowledged as the father of information theory. After receiving
his PhD in the mathematics of genetic transmission from Massachusetts Institute of Technology (MIT) in 1940, he worked at
Bell Laboratories from 1941-56. During the Second World War he was part of a team that developed digital codes, including a
code that Roosevelt and Churchill used for transatlantic messages. That work led to his theory of communication and to his
introduction of entropy into information theory. His now-classic 1948 paper on that subject wasn't widely understood or accepted
at the time and even received a negative review from a prominent mathematician. Today, however, "Shannon's insights help
shape virtually all systems that store, process, or transmit information in digital form—from compact discs to supercomputers,
from facsimile machines to deep-space probes such as Voyager" (Horgan 1992). In 1956 he returned to MIT as professor of
communications science. His career includes many national and international honors and awards but is also noteworthy for his
many side interests. Juggling is but one example; he reportedly rode through the halls of Bell Laboratories on a unicycle while
juggling four balls. (He claims that his hands are too small to juggle more than four balls at once!) Shannon's home near Boston
(called, naturally, "Entropy House") contains entire rooms devoted to his many inventions and hobbies. Those include a rocket-
powered frisbee, a mechanical mouse that finds its way out of a maze, a juggling robot of the comedian W. C. Fields, and a
computer called Throbac (Thrifty Roman Numeral Backward Computer) that calculates in roman numerals.



(6.17b, repeated)

Since we're now talking about entropy, we'll substitute the symbol H for entropy, in place of I, and Hw (for Iw)
for the weighted sum. Equation 6.16a (the equal-probability case) therefore becomes:

H = log2(1/P) (26.2)

and Equation 6.17b (the unequal-probability case) becomes:

(26.3)

As explained in Chapter 6, the weighted sum Hw is an average value. Some authors call the entropy of
Equations 26.2 or 26.3 the information entropy.

All relations developed in Chapter 6 between information and probability also apply to entropy and probability.
Whether the context is one of information or entropy, probabilities are the foundation or essence of it all; they
are the required basic data. As Equations 26.2 and 26.3 indicate, the entropy or information varies depending on
the distribution of those probabilities. In other words, entropy doesn't depend at all on the actual values of the
variable; rather, it's just a statistic that characterizes an ensemble of probabilities. For that reason, the entropy
Hw properly is called the "entropy of the probability distribution Pi." An important feature of Equation 26.3 and
entropy Hw is that the probabilities Pi can be any type of probability (conditional, etc.), not just the ordinary
ones. We'll come back to that feature later.

Two variants or extensions of information entropy that are important in chaos theory are Kolmogorov-Sinai
entropy5 and mutual information. Both variants (discussed later) use, or are based on, Equations 26.2 and 26.3.

Interpretations of Entropy

Information is but one of many interpretations of entropy (Table 26.1). Chronologically, it was a relatively late
interpretation. There's some debate and confusion in the literature as to whether all interpretations are correct.
Opinions also differ about the sign that the value computed from Equations 26.2 or 26.3 should have, for a
particular interpretation.

The first entry in Table 26.1 is Clausius's thermodynamic interpretation. Other scientists developed the second
interpretation—disorder—soon after Clausius's initial work. The rationale was as follows. Energy is dissipated
and entropy therefore increases not only with heat loss but also with other actions. Examples are the change
from solid to liquid to gas, chemical reactions, and mixing, as when hot and cold liquids mix or when a gas
expands into a vacuum. Those processes involve not only an increase in entropy but also an accompanying
decrease in the orderly arrangement of constituent atoms (an increase in disorder). For example, atoms and
molecules supposedly are ordered (have low entropy) in a solid, less ordered in a liquid, and quite disordered
(have high entropy) in a gas. Consequently, scientists began to look upon a measurement of entropy as a
measurement of the system's degree of disorder or disorganization.



Table 26.1 Extreme or opposite states of entropy (modified and expanded from Gatlin 1972: 29).

High entropy Low entropy

1. Large proportion of energy unavailable for doing work Small proportion of energy unavailable for doing work

2. Disorder, disorganization, thorough mix Order, high degree of organization, meticulous sorting or
separation

3. Equally probable events, low probability of a selected
event

Preordained outcomes, high probability of a selected event

4. Uniform distribution Highly uneven distribution

5. Great uncertainty Near certainty, high reliability

6. Randomness or unpredictability Nonrandomness, accurate forecasts

7. Freedom (wide variety) of choice, many possible
outcomes

Narrowly constrained choice, few possible outcomes

8. Large diversity Small diversity

9. Great surprise Little or no surprise

10. Much information Little information

11. Large amount of information used to specify state of
system

Small amount of information used to specify state of system

12. High accuracy of data Low accuracy of data

5. Kolmogorov, Andrei Nikolaevich (1903-87) It's difficult to name anyone who has matched Russian mathematician Andrei
N. Kolmogorov's scientific, pedagogical, and organizational contributions. His scientific career alone was outstanding. In his
approximately 500 publications, he made important advances in probability theory, Fourier analysis and time series, automata
theory, intuitionistic arithmetic, topology, functional analysis, Markov processes, turbulence, theory of fire. statistics of mass
production, information theory, random processes, and dynamical systems. A significant part of his scientific work dealt with
applying mathematics to natural sciences, life sciences. and Earth sciences. In addition, he wrote papers on philosophy, history,
methodology of science, mathematical education, and other topics. After being awarded his PhD by Moscow University in
1929, he was (besides his teaching and research duties) head of various departments and institutes at Moscow State University
from 1933 until his death in 1987. Over the years he established several institutes and laboratories in Moscow. On top of all that,
he founded and/or edited several technical mathematical journals. He received many national and international awards and
honors. Equally important were his contributions in education. He was keenly interested in teaching, especially young people,
throughout his life. In fact, school mathematics education was his main (but not only) concern during the last third of his career.
During his life he organized national mathematical competitions for students, gave popular lectures to schoolchildren. led
national committees that analyzed teaching methods, helped launch a boarding school (elementary school) for gifted physics and
mathematics students, helped initiate and publish about 200 special (mathematical) issues of a student-oriented magazine,
helped train teachers on new course content (by lecturing and writing articles), served on the editorial boards of pedagogical
publications, chaired many committees on education improvement, and so on. Finally, he had a particularly broad range of other
interests in life—art (especially Old Russian painting and architecture), nature (hiking and mountain skiing), travel (including
trips to at least 20 foreign countries), human company, Russian poetry, and gardening.

The third common interpretation in Table 26.1 is in terms of probability (Eq. 26.1). Boltzmann's probabilities
dealt with particle motion, deviations from equilibrium, and similar notions; we'll take a simpler analogy. Say
we dump the pieces of a picture puzzle on the table and completely stir them up so that they are in great
disorder (high entropy). Selecting a piece at random, there's an equal chance of picking any particular piece.
Similarly, rolling a six-sided die has an equal chance of producing any of the six numbers; the spin of a roulette
wheel can produce one particular number as well as another. Just as entropy is a maximum for disordered
conditions, it's also a maximum for equally probable events. That is, when all possible outcomes are equally
likely, the probability of any one outcome is low, and entropy is high. In contrast, when some scoundrel rigs the
roulette wheel or loads the die so that a particular number will come up, the outcome is far from equi-probable,
and entropy is lowest. So, there's an inverse relation between entropy and probability, as Equation 26.2 shows.



A stripped-down example of two possible states shows how entropy varies with probability distribution.
Equation 26.3 for two states is Hw=P1log2(1/P1)+P2log2(1/P2). Choosing P1 automatically determines P2, since the
probabilities always sum to 1. For instance, if P1=0.1, then P2 = 0.9, and Hw=0.1 log2(1/0.1)+0.9
log2(1/0.9)=0.332+0.137=0.469 bits. Choosing any P1 (and hence P2) and computing the entropy, for different
combinations of P1 and P2, produces the curve shown in Figure 26.1. Probabilities are most unequal when one
of them is zero and the other is 1.0. Computed entropy then is zero (the lowest possible value). As the two
probabilities become closer in value (i.e. as P1 increases from 0 to 0.5), entropy increases. When the two
probabilities become equal (P1=P2=0.5), entropy reaches its maximum value. (And so, as mentioned above, any
value for entropy applies only to a particular distribution of the probabilities Pi.)

The fourth interpretation, based on the probability notion, is that of uniformity of distribution of data. If the data
are uniformly distributed among a certain number of compartments, the probability of getting each
compartment in a sample or trial is equal. In that sense, a uniform distribution is a high-entropy condition (Fig.
26.1 at peak of curve, where P1=P2=0.5). Conversely, a very nonuniform distribution (e.g. all observations in
one compartment) means low entropy, because one bin has a probability of 1 and the other bins a probability of
zero (Fig. 26.1 at either end of the parabola).

A fifth notion of entropy is uncertainty. The uncertainty can pertain to the outcome of an experiment about to be
run, or it can pertain to the state of a dynamical system. For instance, when rolling a die, we really have no idea
which number is going to result. In other words, our uncertainty is greatest. Therefore, we might as well assume
complete disarray, equal probabilities, and a uniform distribution.

Figure 26.1 
Variation of computed entropy Hw with probability 

distribution for the two-bin (binary) case. Probability 
for bin one (P1) is plotted on the abscissa. Specifying

 P1 also specifies P2.

Thus, just as complete disarray and equal probabilities represent greatest entropy, so too does maximum
uncertainty. The other extreme is when we're absolutely sure what an outcome will be. Then there's zero
uncertainty and zero entropy. (For example, absolute certainty means probability P=1, for which case the
entropy in Equations 26.2 and 26.3 computes to zero.) Hence, entropy reflects degree of uncertainty—the lower
the entropy, the less the uncertainty, and vice versa.



In concert with the above five variations is a sixth idea: that of randomly distributed observations versus
reliable predictability (and so in this sense "random" means unpredictable). Where there's disorder (thorough
mixing) and great uncertainty (high entropy), predictions can't be based on any known structure or pattern and
can only be done probabilistically. In contrast, something well organized or nearly certain (low entropy) is
usually very predictable.

Freedom of choice, or large number of possible outcomes or states, is a seventh way of looking at entropy.
When constrained to one choice or outcome, there's no disorder, uncertainty, or unpredictability whatsoever.
Probability is highest (1.0) and entropy is lowest (zero). As more choices become available, entropy increases.
Maximum entropy comes about when the outcome can happen in the largest number of ways. The easiest way
to see this is to use the identity derived in Chapter 6, namely the equal-probability case where 1/P=number of
possible outcomes, Ns. Inserting Ns for 1/P in Equation 26.2 above shows that entropy H=logNs. So, entropy
increases with Ns.

The idea of many possible outcomes suggests diversity, the eighth variation in Table 26.1. Conceptually, the
analogy seems valid. However, please be careful when adapting it to practical problems. Some ecologists, for
example, use Equation 26.1 to measure the diversity of species in a sample. Unfortunately, as Table 26.1 shows,
high entropy can reflect not only large diversity but also uniform distribution. A single value of entropy doesn't
distinguish between the two. For instance, a high entropy can indicate both a large number of species and a
uniform distribution of those species within the sample. Looking at it another way, a sample that has only a few
species but uniform distribution can yield the same value of entropy as a sample with many species that are very
unevenly distributed (Pielou 1969: 222). Entropy therefore isn't a suitable measure of diversity because it can be
ambiguous.

A notion that follows probability, uncertainty, and variety of choice is that of surprise, a ninth interpretation. In
this sense, entropy (the number obtained by calculating Eqs 26.2 or 26.3) reflects the amount of surprise you
might feel upon learning the outcome of an event or measurement. When the likelihood of a particular result is
high and uncertainty therefore is lowest, you aren't surprised when the result comes out as you expected.
Entropy for such a near-certain little-surprise situation is low (as with the no-snow-in-Miami-on-4-July analogy
of Ch. 6). Conversely, where any event is as likely as another out of many possible events, uncertainty before
the event is highest (the high-entropy condition). You are then more surprised at the outcome, whatever it is.

I've already mentioned the idea of interpreting entropy as information (entry 10 in Table 26.1). In this sense, the
number given by Equations 26.2 or 26.3 is an information value that characterizes a particular group of
probabilities. We say that the given ensemble or probability distribution represents an information value of so
many bits. Furthermore, a relatively large number means a relatively large amount of information, and vice
versa. For example, Chapter 6 showed that the two-choice equal-probability case (e.g. whether the baby will be
a boy or girl) carries an information of one bit; that's not very much information, because we knew beforehand
that there were only two possibilities. In contrast, Equation 26.2 tells us that rolling a six-sided die is
characterized by the relatively larger amount of 2.59 bits of information (Ch. 6). To the extent that a new
measurement changes the probability in Equation 26.3, entropy is the average amount of new information we've
gained by making the measurement.



The 11th concept in Table 26.1 interprets entropy as the amount of information needed to specify the state of
the system to a particular accuracy. The grids and computed entropies of Table 26.26 help explain this notion.
The table pertains to cases where all possibilities are equally likely. Each grid represents a subdivision of phase
space, using boxes of size e. Suppose a system is in a particular state (a particular box within a phase space
grid), and we want to guess that state or box. The procedure we'll follow in zeroing in on the target box is to ask
yes-or-no questions (Schuster 1988: 236ff.). In particular, the game will be to locate the target box by asking the
fewest possible questions about where it is. The most economical approach is to ask questions that subdivide
the eligible boxes into two equal groups. In other words, we methodically narrow down the possible locations of
the target box by halving the remaining group of eligible boxes. A typical yes-or-no question might be, is the
box in the lower half of the grid?

6. Table 26.2 is merely Table 6.1, reproduced here
for convenience.

Let's see what happens to the value of information entropy as the required number of yes-or-no questions
increases. For the top row of Table 26.2, we don't need to ask any questions at all because there's only one box
to locate. In other words, to specify the state of the system to that very crude accuracy, the required number of
questions is zero. Here's the important thing: the computed entropy (col. 4 of the table) is also zero. Now let's
move to the next step in complexity: two boxes (second row of table). Suppose the variables that define the
state of our system plot in the left-most of those two boxes. Just one question is enough to locate that box (i.e. to
specify that condition). It makes no difference whether the answer is yes or no. For instance, we can ask "Is it
the right-hand box?" The answer is no, so we'd know we want the left-hand box. One question suffices. Also,
the computed value of H (assuming equal probabilities for the two boxes) is log2(1/P)=log2(1/0.5)=log22=1 bit.
(Or, alternatively, H=log2Ns=log22=1 bit.) In other words, again the required number of questions equals the
computed entropy (here 1). The next level of complexity is the middle row of the table. The grid now has four
boxes. Locating any particular target box takes two questions:

1. Is our mystery box in the upper half of the grid? (The answer tells us whether our target is one of the
upper two boxes or one of the lower two.)

2. Is it the left-hand box?



Table 26.2
Probabilities and information for

equally
likely outcomes (after Rasband 1990:

196).*
* This table contains the same

information as Table 6.1.

Also, the computed entropy H is 2 bits. Again, therefore, the number of yes-or-no questions needed to locate the
box is the same as the entropy. The same principle holds for the other grids in the table. In other words, the
computed entropy H (in bits) tells how many yes-or-no questions it takes to guess the state of the system.

Guessing the state of the system is tantamount to specifying it to a particular accuracy. Entropy increases
proportionally. To specify the system to the lowest possible accuracy, namely to within just the entire grid,
requires zero bits; to the still somewhat crude accuracy of half the grid, 1 bit; to the greater accuracy of one-
quarter of the grid, 2 bits; and so on. The higher the entropy, the greater the accuracy to which we can
determine the state of the system.

The converse of this last statement leads to the final (12th) interpretation of entropy: entropy indicates the
accuracy of the data. For instance, in Table 26.2 each grid pattern might represent the degree of accuracy to
which our tools let us measure the system. A certain computed entropy (col. 4) pertains to each of those grids or
accuracies. If we can only measure to within the entire largest box (row 1—the low-accuracy case), the
associated entropy is low (zero). On the other hand, if we can measure to within a relatively small box (row
4—a relatively high accuracy), entropy is considerably higher. So, high entropy corresponds to high accuracy in
the measurements and vice versa.

In practice the probabilities usually aren't equal and hence are weighted in arriving at the total entropy.
However, the various interpretations of entropy as just described are still valid.

Kolmogorov-Sinai entropy defined

Shannon's entropy (information entropy), regardless of what types of probabilities we use in it, can't by itself
identify chaos. Its value is always positive and finite (except when P=1 and entropy is zero) and can vary by a
lot, depending on the control parameter, number (size) of compartments, and other factors. However, the
equations for information entropy (Eqs 26.2, 26.3) form the basis for another type of entropy—Kolmogorov-
Sinai entropy—that at least theoretically can identify chaos.7 For brevity, I'll usually just refer to it as K-S
entropy. It has several aliases in the literature, including "source entropy," "entropy of the source," measure-
theoretic entropy, ''metric-invariant entropy," and metric entropy.

K-S entropy has the following three important features:

• First, K-S entropy requires sequence probabilities (the probabilities that the system will follow various
routes over time; Ch. 6). The entropy equations (Eqs 26.2, 26.3) are very general and don't specify any
particular type of probability. K-S entropy deals with the information or uncertainty associated with a time
sequence of measurements or observations.

7. A. N. Kolmogorov (1959) proposed applying Shannon's entropy to dynamical systems. Later in 1959 Y. Sinai gave a refined
definition and a proof.



A brief example shows how to use sequence probabilities in computing information entropy. We'll compute
information entropy for longer and longer overall periods—first for a period of one time interval (e.g. week),
then for a period that lasts over two consecutive intervals, and so on. Such computations are easy and
straightforward. Equation 26.3, namely

is the equation. At each successive time we just plug in the first of the various probabilities (an example is given
below), compute the associated product Plog(1/P), repeat for each other probability in turn, and add up the
products, as Equation 26.3 says. The probabilities to use (sequence probabilities) are the likelihood that the
system will follow each of the various possible routes that finish at the chosen time. The summation then is over
all routes represented in the data, or Nr. Changing the symbols slightly helps keep those distinctions in mind.
H∆t, replaces Hw, to show that we're computing entropy over a particular window of time (duration). (Here that
duration usually will be in terms of number of observations rather than actual time units.) Also, Ps replaces Pi to
help us remember that the probabilities are sequence probabilities. Our entropy relation (Eq. 26.3) in new
clothing therefore becomes

 (26.4)

in which Nr is the number of possible phase space routes.

Our example will have just two possible states, A and B. Figure 26.2 (mainly a reproduction of Fig. 6.7) shows
that at "time 1" there are only two possible "routes," namely into bin A or into bin B. (And so entropy
computations for time 1 are an exception to using sequence probabilities, because the only probabilities
available are ordinary ones.) In Figure 26.2, the routes into bins A and B have ordinary probabilities of 0.60 and
0.40, respectively. For each route, Equation 26.4 says to compute P log(1/P), then add the two results. For bin
A, P log2(1/P)=0.60 log2(1/0.60)=0.442. For B, P log2(1/P)=0.40 log2(1/0.40)=0.529. (For brevity, I'll drop the
units of "bits" that actually go with each product.) According to Equation 26.4, entropy is the sum for all routes:
H∆t=0.442+0.529=0.971.

Entropies for two or more successive time intervals are computed in the same way but with sequence
probabilities. Each time gets its own entropy—its own sum for the several products of Pslog2(1/Ps). Let's
compute the entropy for "time 2" of Figure 26.2. To get to time 2, there are four possible routes and associated
probabilities: AA (Ps=0.60 × 0.70=0.420), AB (Ps=0.60 × 0.30=0.180), BA (Ps=0.324), and BB (Ps=0.076).
Using those sequence probabilities, we compute the quantity Ps log2(1/Ps) for each route.



Figure 26.2 
Branching pattern and hypothetical 
probabilities for two bins (A and B) 

over three time steps. Numbers along 
paths are conditional probabilities.

For instance, route AA has 0.420 log2(1/0.420)=0.526. We then add up the four resulting numbers. That gives
H∆t=0.526+0.445+0.527+0.283=1.781, the entropy for time 2.

Over three consecutive measurements with two possible states there are eight possible routes (AAA, AAB,
etc.). For each of the eight sequence probabilities (0.122, 0.298, 0.121, etc. in the example of Fig. 26.2) we
calculate Pslog2(1/Ps), then add up the resulting eight values. That sum is the information entropy for time 3.

In practice, the computer estimates sequence probabilities from the basic data. We need the probability of every
string that leads to each successive time. That is, any one sequence probability applies only to a unique route.
For example, for time 2 we count the number of occasions the system followed each of the four possible routes.
Then we add up the occurrences for all routes to get a grand total. Finally, we divide the number for each route
by the grand total. That produces the sequence probabilities to use in computing the entropy for that time. Then
we repeat that exercise for each subsequent time, in turn, to get its associated sequence probabilities.

The total number of required sequence probabilities can be very large. Therefore, we may well need a large
dataset and much computer time. Efficient histogramming methods, such as a bin sort on a binary tree
(Gershenfeld 1993), can reduce computer time.

Sequence probabilities in chaos analyses usually are based on lagged values of a single variable. That means
pseudo phase space. As with attractor reconstruction, the two aspects that we can vary are the lag itself and the
number of phase space dimensions.

• Secondly, K-S entropy represents a rate. The distinctive or indicative feature about a dynamical regime
isn't entropy by itself but rather the entropy rate. A rate (actually an average rate) is any quantity divided
by the time during which it applies. Hence, any computed entropy divided by the associated time gives an
average entropy rate—an average entropy per unit time:

(26.5)



Claude Shannon, in the classic treatise The mathematical theory of communication (Shannon & Weaver
1949: 55, theorem 5), seems to have been the first to articulate the concept of entropy rate.

• Thirdly, K-S entropy is a limiting value. For discrete systems or observations, two limits are involved, nam
time lengthens to infinity  and bin size ε (width of classes, as in a histogram) shrinks to zero .

Based on the above three features, K-S entropy (HKS) is the average entropy per unit time at the limiting
conditions of time going to infinity and of box size going to zero. In symbols,

(26.6)

There are several ways to interpret K-S entropy. All of them stem from Table 26.1. For instance, K-S entropy
measures the average amount of new information or knowledge gained per measurement or per unit time
(Farmer 1982). In other words, it's the average temporal rate of production, creation or growth of information
contained in a series of measurements (Fraser 1986, Atmanspacher & Scheingraber 1987, Gershenfeld 1988).
Applied to predictions, K-S entropy is:

• the average amount of uncertainty in predicting the next n events (Young 1983)

• the average rate at which the accuracy of a prediction decays as prediction time increases, that is, the
rate at which predictability will be lost (Farmer 1982)

• the average rate at which information about the state of the system is lost (Schuster 1988).

Estimating K-S Entropy

Equation 26.6 tells us to do two general types of operations. It says to first arbitrarily choose a box size ε and,
holding ε constant, see what happens to the entropy rate as time gets bigger and goes to infinity. That gives the
so-called "inner limit" of Equation 26.6. The first steps or computations to make for that purpose are:

1. Choose a bin width ε.

2. Use the basic data to estimate sequence probabilities for all possible routes, for successive times.

3. For each time, compute entropy as

possible routes that aren't represented all the way to the time in question have a probability of zero (based on the
data on hand) and so can be neglected.

There are two ways to use those results to get the inner limit of Equation 26.6. One way is to divide each
entropy by the associated time to get entropy rate, plot entropy rate versus time, and estimate the asymptotic
entropy rate as time increases. That method takes many time events to reach the asymptotic limit, that is, to
converge. In fact, for practical purposes it's computationally impossible in most cases because of the huge
amount of data needed.



The other way needs fewer time steps to show the asymptotic limit (i.e. it converges faster). It uses an
alternative relation that Shannon gave. That alternative expression (Shannon & Weaver 1949: 55, theorem 6)
defines an entropy difference:

(26.7)

where Ht is entropy as of time t, and t-1 refers to the observation just prior to time t. Within the first term on the
right, namely t(Ht/t), the two t's cancel out, leaving just Ht. In the same way, t-1 cancels out in the second
product on the right, leaving just Ht-1. Equation 26.7 therefore reduces to simply

entropy difference = Ht-Ht-1 (26.8)

That result is nothing more than our friend, a first-differencing. It uses just the entropies themselves, not the
entropy rates. At time 1, there isn't any entropy difference because there's no preceding entropy to subtract. At
time 2, Ht-Ht-1 is the entropy at time 2 minus the entropy at time 1; at time 3, Ht-Ht-1=entropy at time 3 minus that
at time 2; and so on.

Shannon said that both the average entropy rate H∆t/t and the entropy difference Ht-Ht-1, when plotted against
time, converge to the same asymptotic value of H∆t/t. He also stated that Ht-Ht-1, "is the better approximation."
For our purposes, what's important is that Ht-Ht-1 becomes asymptotic sooner (Fig. 26.3). It therefore requires
fewer data, less computer power, and so on. So, in practice it's probably better to use Equation 26.8, plot Ht-Ht-1

versus time and take the asymptotic Ht-Ht-1 as the asymptotic H∆t/t.

Figure 26.3 
Decrease of entropy difference Ht-Ht-1 (the "difference 
curve") and entropy rate HDt/t (the "rate curve") with

 time. Data are for logistic equation with k = 3.7 (hence 
chaotic regime), using 10 bins and 1000000 values.

An asymptotic  entropy rate applies only to the particular bin size chosen. The second major operation that
Equation 26.6 requires is to repeat the entire procedure and get estimates of the inner limit for smaller and
smaller bin sizes . The formula for K-S entropy with this approach therefore is:

(26.9)

In the next chapter I'll mention other ways to estimate K-S entropy.



Some Features that Influence Computed Values of Entropy

As we've seen, computing entropy consists largely of just adding up a bunch of P log(1/P) values. However,
anything that affects those P values can also affect the value of P log(1/P) and hence also the entropy. For
instance, Figure 26.1 shows an example of how entropy can vary with the distribution of probabilities. Four
other influential factors are the number (width) of bins, size of dataset, lag, and number of sequential events (or
embedding dimension). Let's look at each of those:

• Bin width (number of possible states) Table 26.2 (cols 2 and 4) shows, for the case of equal probabilities,
the different entropies that result from different partitionings or numbers of bins. Figure 26.4, based on the
logistic equation with k=3.7 and a lag of one, shows the different curves of Ht-Ht-1 versus time for different
numbers of possible states (bin widths). Here there isn't a smooth progression toward an asymptotic limit
as bin size decreases. Instead, for these particular data the relations for 2, 10, and 20 bins all seem to
become asymptotic to roughly the same value of Ht-Ht-1 (about 0.47-0.48). (Extrapolating the values is
somewhat uncertain.) However, the relation for 5 bins in Figure 26.4 becomes asymptotic to a noticeably
lower value, namely about 0.43.

Histogramming actually may not be the best procedure for estimating probabilities. Other methods (Ch.
6) are becoming popular.

• Size of dataset Sample size influences probabilities (and hence entropies) in that a short record (small
dataset) probably won't adequately sample the system's long-term evolution. Probabilities (all types) for
scanty datasets won't be representative. They change as we collect more measurements. Some important
bins may not get sampled at all.

Figure 26.4 
Change of entropy difference with time for different 
partitionings (numbers of bins). Data are for logistic 

equation with k = 3.7, using 1000000 values.



Figure 26.5 
Effect of sample size on the relation between entropy difference Ht-Ht-1

 and time. Data are for logistic equation with k = 3.7, using 10 bins.

Figure 26.5 shows some typical effects of sample size in the K-S entropy step of plotting Ht-Ht-1 against
time. Data represent iterations of the logistic equation with k=3.7, using ten bins and sample sizes
ranging from 100 to 1 million (about the most my computer can handle). The relation for a dataset of
1000000 values seems to become asymptotic toward a constant, positive entropy difference of about
0.47-0.48 (as was also shown in Fig. 26.4). The relation for N=100000 seems to follow that same curve
for about 15 time steps but then veers downward. Relations for datasets of 10000 or less offer no hope
(in this example) of indicating the asymptotic entropy difference. In fact, we'd have a final entropy
difference of zero (rather than the correct value, possibly 0.47-0.48) for all cases except where we have
at least a million observations. And that's for a relatively "clean" (noiseless) dataset.



 

• Lag Lag specifies the particular subset of data values used in estimating probabilities. Different subsets
can lead to different sequence probabilities. For instance, using a lag of one, probabilities depend on the
measured sequence xt, xt+1, xt+2, and so on. Using a lag of two defines a different sequence of
measurements, namely xt, xt+2, xt+4, and so on. Sequence probabilities of getting the two different series of
numbers very likely won't be the same, and therefore neither will the K-S entropy.

• Embedding dimension (number of sequential measurements involved in the vector) Sequence
probabilities used in computing entropy (and hence the resulting value of K-S entropy) change as number
of events (measuring occasions) increases. Most chaos calculations are in a context of pseudo (lagged)
phase space, so they usually deal with lagged values of a single feature. Each additional lagged value
attached to the vector is tantamount to another embedding dimension. That is, embedding dimension
plays the same role as time or number of events. Each additional dimension or event brings an entire new
set of phase space routes (Fig. 26.2) and sequence probabilities. Hence, K-S entropy can change with
embedding dimension or time (Figs 26.3, 26.4, 26.5).

For a given number of possible states, the number of routes increases geometrically with number of lag
space dimensions, in a manner analogous to Equation 6.6. In the present context, Equation 6.6 says that
the number of routes (here probabilities)=statesembedding dimension.

That power-law relation plays a major role in the calculation of K-S entropy. Estimating the sequence
probabilities for each of the various possible routes can require datasets numbering in the millions. Such
large amounts of data are unrealistic for many of us. Consequently, researchers have pursued other
ways to estimate K-S entropy. One proposal is to calculate and sum the positive Lyapunov exponents
(based on the so-called Pesin theorem). Another is to do a mutual-information analysis, the subject of
the next chapter. Both of those alternate approaches need further development, at least for applications
to real-world data.

Identifying the Dynamical Regime

Let's now see how K-S entropy can distinguish between various types of data. We'll take the easy way and look
only at noiseless data. In practice, of course, most data aren't noiseless. And therein lies the rub. One step in
getting K-S entropy involves taking the limit as bin size goes to zero (Eq. 26.6). In practice, once bin size
diminishes to the noise level (the error in the measurements), further decreases in bin size are meaningless. Our
estimate of K-S entropy then becomes less accurate. The mutual-information approach discussed in the next
chapter is an initial attempt to get around this problem.



The basic equation we'll use to estimate K-S entropy is Equation 26.9:

Ht, is entropy at time t, computed as

and Ht-1 is the entropy at time t-1. Our recipe therefore is as follows:

1. Choose bin size ε.

2. For a given time step, estimate Ps for each route and compute Ht-1 as the sum of Pslog(1/Ps) for all routes.

3. Repeat step 2 for the next time step and compute the entropy for that time, Ht.

4. Subtract to get the quantity Ht-Ht-1.

5. Repeat steps 2-4 for higher successive times.

6. See what happens to Ht-Ht-1 as time increases.

7. Repeat steps 1-6 for a smaller bin size, then a still smaller bin size, and so on, to see what happens as ε
gets very small. (This step may not always be necessary.)

Fixed points

The logistic equation helps show the value of K-S entropy for various nonchaotic attractors. Let's start with ten
compartments (step 1 from the above list). The logistic equation yields a fixed-point attractor when the control
parameter k is less than 3. That is, for k<3 all iterations (once the transients die out) yield a constant fixed
value. For instance, with k=2.8 the fixed point is at x*=0.643 (Ch. 10). Excluding transients, the time series
consists of a string of values of 0.643 (or of whatever value the fixed point has). Every route, in other words,
consists of endless values of the same number. Sequence probabilities therefore are always 1.0. Log(1/P)
therefore is log(1), which is zero, so Ps log(1/Ps) is zero and entropies for all time steps are zero (steps 2-6).
That takes care of the first limit in the K-S entropy equation.

Now for the second (final) limit, where bin size goes to zero (step 7). The single attractor value always falls in
the same bin, for a given number of bins. The system is sure to go to that bin. All sequence probabilities
therefore are always 1.0. In other words, using smaller and smaller bins has no effect. So, the K-S entropy—the
limit as time goes to infinity and bin size goes to zero—is zero for a fixed-point attractor.

Period-two attractor

Now we'll increase k and enter the period-doubling zone. The simplest case is period two. As usual, we'll
neglect transients. At k=3.4, the system alternates between the two fixed values of x*=0.452 (bin boundaries 0.4
to 0.5, for a 10-bin partition) and x*=0.842 (bin boundaries 0.8 to 0.9). The first limit to get is the limit as time
goes to infinity, for constant bin size. We'll use ten bins (step 1). The first calculations are for time 1. The two
possible routes for time 1 are into bin 5 (x* between 0.4 and 0.5) or into bin 9 (x* within 0.8 to 0.9). At any
arbitrary starting time, there's a 50 per cent chance (an ordinary probability P of 0.5) that the system is in either
box. The quantity P log2(1/P) for each bin is 0.5 log2(1/0.5) or 0.500. Summing the two values gives Ht-

1=0.500+0.500=1.0 (step 2).



Step 3 is to do the same computations over a duration of two time increments, thus getting Ht. Only two of our
ten compartments (bins 5 and 9) are possible for our period-two attractor. Regardless of which bin the system
goes to at time 1, it's sure (probability=1) to go to the other at time 2. In other words, the only routes possible
over two events are of the sort AB and BA. The sequence probability for each of those routes is 0.5 (for time 1)
× 1 (for time 2), or 0.5. The two values of 0.5 for Ps log(1/Ps) sum to 1 (step 3). That is, entropy again is 1.0.
Furthermore, all subsequent conditional probabilities are always 1.0 because, given one of the two attractor
values, we know the value at the next time. Entropy therefore has a constant value of 1.0 for all times.
Subtracting the entropy of any one time from that of the next time (step 4) gives an entropy difference of zero,
at every time (steps 5 and 6). So, our first limit is zero.

The second limit (step 7) involves decreasing the bin size to very small. As with the fixed-point case,
decreasing the bin size has no effect because the two attractor values always fall into just two known bins. K-S
entropy therefore is zero for a period-two attractor.

Higher-periodicity attractors

Again let's start with bin sizes ε of 0.1 (step 1). A higher k of 3.52 produces a periodicity of four (with
sequential x* values of 0.879, 0.373, 0.823, and 0.512). That's a fixed succession. For instance, if an observation
(say 0.373) is in bin 4 (x* between 0.3 and 0.4), the system is certain to go next to bin 9 (x* between 0.8 and
0.9), because the next attractor value in the sequence is 0.823. If in bin 6 (x* between 0.5 and 0.6, such as for
0.512), the system is also certain to go next to bin 9, because the next attractor value in the sequence is 0.879.
The probability for such certain paths is 1. If, however, we know only that an observation is in bin 9, we
wouldn't know whether the actual value is 0.879 or 0.823. Hence, we have to assume a probability of 0.5 that
the system goes next to bin 4 (x*=0.373) and also a probability of 0.5 that it goes instead to bin 6 (x*=0.512).
The branching pattern going to time 2 therefore looks like that shown in Figure 26.6.

What are the sequence probabilities, entropies, and entropy differences for such data?

• At time 1, ordinary probabilities are 0.25, 0.25, and 0.50 that the system might be in bins 4, 6, or 9,
respectively (Fig. 26.6). The three corresponding values of P log2(1/P) each compute to 0.500. Summing
these gives an entropy of 1.500 (step 2).

• At time 2, there are four possible routes. If the system is in bins 4 (0.373) or 6 (0.512) at time 1, the
routes to time 2 are certain (namely, to bin 9). Sequence probabilities for each of those two routes are
0.25 × 1.0=0.25. Ps log2(1/Ps) is 0.500 for each. The remaining possible bin at time 1 is bin 9 (possible
values of 0.823 or 0.879). For each value, a route leads to time 2. The two possible routes from bin 9 each
have a conditional probability of 0.5, so the associated values of Ps are each 0.50 × 0.50=0.25. Ps

log2(1/Ps) for each of those two routes is 0.500. All four values of Ps log2(1/Ps) therefore are 0.500. The
sum (the entropy) is 2.0 (step 3). Subtracting the entropy at time 1 (1.500) from that at time 2 (2.0) gives
2-1.5=0.5 (step 4).



Figure 26.6 
Branching patterns for five iterations of the logistic equation at period four

 (k = 3.52). Range of 0-1 was divided into 10 bins. Sequential attractor values 
are 0.373 (bin 4), 0.823 (bin 9), 0.512 (bin 6), and 0.879 (bin 9). Boxed numbers

 are bin numbers; numbers along individual routes are probabilities.

• Six possible routes lead to time 3 (Fig. 26.6). As always, the task is to determine sequence probabilities
and associated values of Ps log2(1/Ps) for each route, then sum the results to get the entropy. Entropy here
turns out to be 2.0 (step 3). Subtracting the preceding entropy (2) gives 2-2=0 (step 4). In fact, entropy for
each succeeding time step also turns out to be 2.0 (step 5). Entropy differences therefore are zero at each
time (step 6). Also, decreasing the bin size (step 7) again has no effect because of the fixed attractor
values.

As with periodicities of two and four, K-S entropy also is zero for higher periodicities.

Summarizing, K-S entropy is zero for logistic-equation nonchaotic attractors. Nonchaotic systems don't evolve
with time. The attractor consists either of one value (a point attractor), a group of values regularly repeated
with time (periodic attractor or limit cycle), or a torus on which the frequencies are either periodic or
quasiperiodic. Once we identify the attractor, we can reliably predict further results with virtually zero
uncertainty. Entropy stays constant with time. The K-S entropy of zero means that we don't gain any new
information over time.

Chaotic regime

We've already done some sample computations for the chaotic regime (Figs 26.3, 26.4, 26.5). A chaotic system
continually evolves with time. Compared to any chosen time, the system at a later time is in an unpredictably
different state. That unpredictable evolution provides a steady supply of new information. In other words, the
K-S entropy for chaotic systems is some positive constant. For example, Figures 26.3, 26.4, and 26.5 show that
the logistic equation's chaotic regime at k=3.7 has a K-S entropy of about 0.47-0.48.



Even with unlimited amounts of noiseless data, extrapolating an asymptotic curve to estimate the limiting value
is not easy. For instance, on Figures 26.3-5 it's no problem getting to within 0.1 of the approximate asymptotic
value. However, we probably should question values in the literature that are reported to the nearest 0.01.

Random data

K-S entropy for random data can best be understood by looking at sample computations for the two limits in
the K-S entropy equation (Eq. 26.9). (As usual, ''random" here means that any determinism is essentially
negligible. In addition, the treatment here assumes that the underlying probability distribution is uniform.) The
first limit is time going to infinity. The second is bin size going to zero.

limit as time goes to infinity

Finding this first limit requires keeping the number of possible states constant. Let's use two states (step 1). For
a uniform distribution, probabilities are equal of the system going to either state. At time 1, the ordinary
probabilities are 0.5 for each state. P log2(1/P) for each state then is 0.5 log2(1/0.5) or 0.500. Entropy Ht-1 for
time 1 is the sum of the two values of P log2(1/P), or 0.500+0.500, or 1.0 (step 2).

Time 2 and later times require sequence probabilities (Ps) in the entropy equation. There are four possible
sequences or routes to time 2. Regardless of which of the two states the system went to at time 1, it has an equal
chance of going to either state at time 2. In other words, each of the four routes is equally likely. Each sequence
probability therefore is 0.50 × 0.50 or 0.25. Pslog2(1/Ps) for each of the four routes becomes 0.25 log2(1/0.25) or
0.500. Adding the four values of 0.500, entropy Ht=2.0 (step 3). Subtracting the entropy at time 1 (1.0) from
that at time 2 (2.0) gives an entropy difference of 2.0-1.0 or 1 (step 4).

Step 5 is to move up one time step and make similar calculations. At time 3, there are eight possible routes,
again all equally likely. Each sequence probability now is 0.50 × 0.50 × 0.50=0.125. Pslog2(1/Ps) is 0.125
log2(1/0.125) or 0.375. Adding up eight such values gives a new Ht of 3.0. Entropy difference now is entropy at
time 3 minus entropy at time 2=3.0-2.0=1—exactly the same value as for the preceding time step.

Similar computations to include more successive observations yield the same result: at each time or iteration,
Ht-Ht-1 is 1.0. Thus, for two states the limit of Ht-Ht-1 as time goes to infinity (step 6) is a constant, namely 1.0.
The remaining job is to find out what happens to that constant as we increase the number of possible states (i.e.
as bin size goes to zero) (step 7).

limit as bin size goes to zero

In the foregoing discussion, we used only two states and got Ht-Ht-1=1.0 for any and all times. Now let's divide
our interval of 0 to 1 into three possible states instead of two. For each time, computing the entropy and
subtracting that of the preceding time again produces a constant value of Ht-Ht-1 . However, the constant now is
1.585 instead of 1.0. Using four possible states produces a constant difference (Ht-Ht-1) of 2.0 for all times. In
fact, each constant is the log (here base 2) of Ns, where Ns is the number of possible states. (Log22=1.0;
log23=1.585; log24=2.0; etc.) Hence, for uniformly distributed data, Ht-Ht-1=logNs.

Since Ht-Ht-1=log of number of states, Ht-Ht-1 increases as long as the number of possible states increases, that is,
as long as bin size ε decreases. The increase is at a steady, arithmetic rate as Ns increases geometrically. For
example, as Ns progresses from 1 to 10 to 100, Ht-Ht-1 goes from 0 to 3.32 to 6.64, etc. Thus, Ht-Ht-1 doesn't
become asymptotic to any constant. When the classes become infinitesimally narrow and approach zero in
width, the number of possible states becomes infinitely large. Ht-Ht-1 then approaches infinity. Hence, for
random data, K-S entropy is infinite.



Let's review briefly the relation between Ht-Ht-1 and time (number of iterations) for the various types of data.
For pre-chaotic data, the relation is zero right from the start (time 1), so K-S entropy is zero. For chaotic data,
the curve starts at a relatively high value of Ht-Ht-1 and decays by lesser and lesser amounts with time, becoming
asymptotic toward some positive constant. Thus, K-S entropy is positive. For random and uniformly distributed
data, the relation increases regularly (logarithmically) with number of states, so K-S entropy is infinite. In
practice, noise, insufficient data, and computer capability complicate attempts to distinguish the three classes.
On the other hand, K-S entropy for each category is different enough that it can sometimes be helpful.

Summary

"Entropy" has many meanings or interpretations. They include the proportion of energy available for doing
work, disorder, probability of an event, uniformity of a distribution, uncertainty, randomness or
unpredictability, freedom of choice, diversity, surprise, information, amount of information needed to specify
the state of a system, and accuracy of data. Probabilities (relative frequencies) are the basic data used in
calculating entropy or information; high probability implies a small amount of information, and vice versa.
When all states of a system are equally probable, entropy increases as number of choices (phase space
compartments) increases. When the states aren't all equally probable, entropy is

where Pi is the probability of the ith compartment. In that formula, entropy varies with number of
compartments, distribution of probabilities among the compartments, and with value of control parameter.

Entropy also has various other general properties (see also Krippendorff 1986: 16ff.). For example, its value is
always zero or positive. Entropy is zero (a minimum) when any bin has a probability of one (absolute certainty).
It's a maximum for a uniform distribution (equally probable outcomes). Its value for that equally probable
outcome case increases with number of possible states. Entropy doesn't care what the system or process is—it
only evaluates a set of measured frequencies or probabilities. That is, it's a number that characterizes an
ensemble of probabilities. That means, also, that it makes no a priori assumptions about the nature of the
frequency distribution (that means it's nonparametric). An entropy is an average (a weighted sum). Finally, its
generality has led to applications in many fields. including engineering, physics, chemistry, biology, sociology,
Earth sciences, literature, art, journalism, television, and others.

Information entropy is always positive and finite. By itself, it doesn't identify chaos. To identify chaos, we need
entropy rate (the average entropy per unit time) at the limiting conditions of time increasing toward infinity and
of box size diminishing toward zero. That special case of entropy is called Kolmogorov-Sinai (or K-S) entropy
(HKS). It requires sequence probabilities. In symbols, K-S entropy

K-S entropy quantifies how chaotic a dynamical system is: HKS is zero for a deterministic system that isn't in
chaos; it's a positive constant for a chaotic system; and it's infinite for a random process, at least for uniformly
distributed data.



Chapter 27
Mutual information and redundancy

The idea of "information" (Ch. 6) is becoming very important in chaos theory. As long as there is some relation
between two variables, one contains information about the other. Take, for example, the Christmas season.
Sales of toys are highest by far at that time of year. Looking at a list of the volume of sales throughout the year,
we can immediately recognize the Christmas season, even if we're not given any associated months of the sales.
Measuring just one variable (either month or sales) gives some information about the other. (Low sales indicate
that it's not Christmas time, and vice versa.) Similarly, the amount of water in a river (Ch. 9) typically rises to a
peak in the springtime, then recedes to an annual low in late summer (at least where I live). A few sequential
measurements of just one of the variables (either time of year or streamflow) give us some information about
the other.

Mutual information, defined explicitly later in the chapter, appears in many fields. Like entropy, it's a
commonly studied property of dynamical systems. Potential applications in chaos theory include estimating the
optimum embedding dimension for attractor reconstruction (Fraser 1989a), estimating the accuracy of data
(Fraser 1989a), indicating whether K-S entropy is zero or positive (and hence in revealing chaos) (Fraser 1989a,

 1993), finding whether a time series is periodic, chaotic, or random, estimating the optimum lag to use in
attractor reconstruction (Fraser 1989a, Pineda & Sommerer 1993), estimating how far into the future we can
make reliable predictions, and testing data for nonlinearity (  1993). We'll discuss those research directions
briefly, near the end of the chapter. However, most of the chapter explains the fundamentals of mutual
information. The early part of the chapter establishes our foundation or tools. (We feel much more comfortable
using a tool when we know how it's put together and what it's made from.) As with the entropy chapter, we'll
rely very heavily on the probability and information material of Chapter 6.

Mutual information has several ingredients. Those ingredients are specialized but straightforward variants of
entropy. The entropy or information discussed in the last chapter is sometimes called self-entropy or self-
information, because it's the entropy of one system or variable. In other words, it's the information one system
reveals about itself. This chapter extends our treatment of entropy from one system to two or more systems or
dimensions. Arbitrarily, we'll couple them.

The "systems" can be anything—babies' heights and weights, dice, and so on. Also, coupling or combining
systems doesn't imply anything about when we measured the data for each. We may have measured the systems
at the same time (babies' heights and weights), at different times, or sequentially (a time series of one physical
feature).

Joint and Conditional Entropies

Joint and conditional entropies, as defined in this chapter and as used in information theory, apply to two
systems or dimensions; for more than two dimensions (discussed later in the chapter), terminology is still
developing. For simplicity, we'll usually deal here with two systems. The first, system X, has discrete
observations xi; the second, system Y, has values yj.

Chapter 6 discussed joint probability—the probability of seeing particular values of two or more variables in
some sort of combination. In fact, we rolled a pair of dice (one white and one green, representing separate
systems) and built a joint probability distribution. The joint probability distribution gave the probability of the
joint occurrence of each possible combination of values of the two systems (Fig. 6.6). Since entropy is based
solely on probability, the idea of joint probability easily applies to a so-called joint entropy—the average
amount of information obtained (or uncertainty reduced) by individual measurements of two or more systems.



Having built a word concept of joint entropy, let's follow our standard procedure and express it in symbols.
There are two cases. In the first, knowing value x from system X has no effect on the entropy of system Y. (In
other words, individual observations x and y aren't mutually related.) In the second, knowing x affects our
estimate of the entropy of system Y (and so x and y have some kind of association). For each case, the symbols
(and hence the form of the definition) can be either those of probabilities or of entropies.

Mutually unrelated systems

Let's begin by talking about the first case, in which x and y aren't mutually related. We can express joint entropy
in terms of probabilities or in terms of entropies. First we'll do the probability form, then the entropy form.

Probability Form

In probability terms, the foundation for the symbol definition of joint entropy for two unassociated but coupled
systems is Equation 6.17c. That is the general one-system equation derived in Chapter 6 for information (or
entropy),

(6.17c, repeated)

In that equation, Iw is information, Ns is the number of nonzero probabilities, and Pi is the ordinary probability
of the ith bin. First we'll apply that general equation just to system X. Since it'll apply to just one system, we'll
call it "self-entropy" instead of "information." We therefore replace symbol Iw with HX (the self-entropy of
system X) and the probability symbol Pi with P(xi) to indicate the probability of bin xi. Equation 6.17c as
rewritten for our system X then becomes

(27.1)

in which the sum is over all bins that have at least one observation (and so have a nonzero probability).

Now for system Y. By analogy with Equation 27.1, we'll use P(yj) for the probability of bin yj of system Y. The
self-entropy HY for system Y then is

(27.2)

Now we want an equation for the joint entropy of the "combined" system of x and Y. Such an equation will
have the same form as Equations 27.1 and 27.2. We only need to make two changes in Equations 27.1 and
27.2. First, the appropriate probabilities are no longer those of xi or yj alone. Instead, they are now joint
probabilities-the chances associated with the joint occurrence of each possible combination of x and y. A
statistician would say they are the joint probabilities that, for any given time or sequence, x=xi and y=yj. The
global symbol P(xi,yj) represents the entire group of such joint probabilities. Thus, xi and yj are bin indices that
identify any bin in the joint probability distribution.

The second change is that we now sum over all occupied bins in the joint probability distribution. Three of the
more common ways of symbolizing that summation are



I'll use the first one.

With those two changes, we use the same format as Equations 27.1 and 27.2 to express a joint entropy in
probability terms. The joint entropy of the two systems, HX,Y, here is for mutually unrelated systems:

(27.3)

 

Computing HX,Y in practice involves first preparing a joint-distribution table by empirically determining the
joint probability of obtaining each possible combination of x and y, just as we did with the dice in Figure 6.6.
We estimate that joint probability by looking at our basic data and counting the number of occurrences of each
combination of classes of x and y, then dividing by the total number of all occurrences in the entire dataset.
Next, Equation 27.3 says we need to calculate the quantity P(x,y) log2P(x,y) for every combination represented.
Lastly, Equation 27.3 tells us to add up all those products.

The probabilities to use in computing joint entropy can be tricky. Although they are joint probabilities, they can
be based on "simultaneous" associations or on sequential observations (Ch. 6). The most common situation in
chaos theory is lag space. Observations xi then become xt, and observations yj become xt+m, where m is lag. In that
case, joint probability P(xi,yj) is the sequence variety of joint probability, P(xt, xt+m). That's the probability that
one particular value of x follows another. It's comparable to successive-event routes AA, AB, BA, or BB, that
we used as examples for two sequential time steps in Chapter 6. To compute the joint entropy, we have to
estimate the sequence probability of each route or lag vector represented in the data. We do that by counting the
number of occurrences of each particular route, then dividing each sum by the total number of occurrences of
all observed two-event routes.

Entropy Form

An alternate form shows that joint entropy for two mutually unrelated systems is the sum of their self-entropies.
To see that, we'll just algebraically manipulate the probability form (Eq. 27.3) such that certain probability
expressions within the restructured equation represent entropies.

Suppose you and I each flip a coin once, at the same time. There are four possible outcomes: HH, HT, TH, and
TT, where the first letter (H for heads, T for tails) stands for your result and the second letter my result. With
four possible outcomes, we know intuitively that, any time we flip our coins, each of the four possible outcomes
has a 1 in 4 chance of happening. In other words, each outcome (HH, etc.) has a joint probability of 0.25. Let's
express that in a more mathematical way. Assume that any flip has a probability of 0.5 of being heads. The joint
probability that both of us get heads (HH) therefore is 0.5 × 0.5=0.25 (the same as that of the other three
possible outcomes). In other words, the joint probability of any specified outcome, or P(xi,yj), equals the
ordinary probability of the one value P(xi) (here, that would be 0.5 that you get heads) times the ordinary
probability of the other, P(yj) (here, 0.5 that I also get heads). Generalizing that multiplicative rule and writing it
in symbol form:

P(xi,yj) = P(xi)P(yj) (27.4)

Equation 27.4 lets us substitute the product P(xi)P(yj) in place of P(xi,yj) in Equation 27.3:

 (27.5)



There's a log term on the far right. It has the form log(ab), in which a is P(xi) and b is P(yj). Since
log(ab)=loga+logb (Appendix), we can alter that log term and rewrite Equation 27.5 as

 (27.6)

The equation in this form says, among other things, to multiply each of the two log terms by P(xi)P(yj). That's
analogous to ab (c+d), which is abc+abd. Making that change in Equation 27.6:

(27.7)

Everything to the right of the two summation signs is just the sum of two groups of products. Both summation
signs apply to each of those two groups. We can show that by writing Equation 27.7 as follows:

(27.8)

The right-hand side of the equation now consists of two main parts, each involving

In that combined symbol,

applies to x values (as indicated by the subscript i), and

applies toy values (as indicated by the subscript j). Stating that same thing in symbols,

We therefore rewrite Equation 27.8 such that

more clearly applies to values involving x and

more clearly applies to values involving y:



(27.9)

The sum of the individual probabilities for any system is 1, so

Making those substitutions, Equation 27.9 reduces to

(27.10)

The first summed term is nothing more than the self-entropy HX (Eq. 27.1). The second summed term is self-
entropy HY (Eq. 27.2). Equation 27.10 therefore says simply that

HX,Y = HX + HY (27.11)

And that finishes our task. We've got those probabilities we started with expressed as entropies. Thus, the joint
entropy of two mutually unaffiliated systems or of a pair of unrelated variables is just the sum of their self-
entropies. In terms of uncertainty, the uncertainty of a joint event x,y is the uncertainty of event x plus the
uncertainty of event y, as long as x and y have no mutual association.

Mutually related systems

Now for the second of our two main cases, namely the case where x and y have some kind of mutual relation.
We can again express joint entropy in terms of either probabilities or entropies.

Probability Form

Joint entropy as based on x,y pairs is a general concept that can apply to any two systems or variables, whether
they're mutually affiliated or not. Equations 27.3 and 27.11 apply when they're totally disconnected. They
might, on the other hand, have some kind of mutual association. For example, x might influence y. Even if the
two processes aren't physically interdependent, the association means that measuring x gives some clue or
information about the value of y. The probability associated with yj therefore becomes a conditional
probability—the probability of getting value yj, given that value xi has occurred (Ch. 6). In other words, when
systems X and Y are mutually related we use a conditional probability for the second system (here Y), to reflect
that affiliation.

Use of conditional probability means that P(yj) (the probability of getting the value yj) for unrelated systems or
variables (e.g. Eqs 27.2, 27.4) becomes P(yj|xi) (the probability of getting yj, given that xi has occurred). So,
Equation 27.4, namely P(xi,yj)=P(xi)P(yj), changes to

P(xi,yj) = P(xi)P(yj|xi) (27.12)

As a result, the probability expression for joint entropy (Eq. 27.3) becomes

(27.13)

Entropy Form



Deriving the entropy form, as before, is just a matter of straightforward algebra. Rewriting the joint entropy of
Equation 27.6 so that it applies to the mutually affiliated case:

(27.14)

The terms to the right of the summation signs in Equation 27.14 now consist of items having the form a(b+c).
That's the same as ab+ac. Rewriting the equation that way while still applying the summations to everything:

 (27.15)

The first pair of summation signs applies to the product of three items: P(xi) times P(yj|xi) times log2P(xi). Since
the three items are multiplied, we can write them in any order. We'll write them as P(xi) log2P(xi)P(yj|xi). In that
order, the first two probabilities involve x and the third involves y. With the product rearranged in that order,
we now restate the entire first term so that each summation sign applies to its appropriate probabilities. The
first summations to the right of the equals sign thereby become

Each of the two summations in that expression refers to a familiar quantity. For instance, the first summation

is nothing more than our friend HX, the self-entropy of system X (Eq. 27.1). The expression therefore reduces
to

The other summation in that expression is the sum of all the probabilities of y given x. Probabilities for any
system sum to 1, so the latter sum is 1. The entire first term therefore is merely HX times 1 or HX. Inserting HX in
place of the first term in Equation 27.15 changes Equation 27.15 into

(27.16)

We can simplify that equation by rewriting the double summation. In keeping with their definitions, we'll
associate the summation of i's, symbolized as

with the x probabilities and the summation of j's



with the y probabilities. Rewriting the double summation that way gives

The first summation,

like all summations of probability distributions, is 1. The double summation therefore reduces to just

That term is a variation of the entropy of system Y as expressed in the last term of Equation 27.10. What's
different about it now is that all y probabilities here are conditional probabilities, P(yj|xi). For that reason, that
revised entropy expression is a conditional entropy. A conditional entropy measures the average uncertainty
in y from system Y, given a measurement of x from coupled system X. For two-dimensional lag space,
conditional entropy measures the average uncertainty in xt+m, given that we measured xt at time t. (And again,
the conditional probabilities in lag space are the probabilities that xt+m will follow xt.)

Let's use HY|X as the symbol for the conditional entropy of Y,

Also, we'll retain HX,Y for the joint entropy of two systems (whether related or not). In terms of entropies, the
joint entropy for two mutually associated systems (Eq. 27.16) then becomes

HX,Y = HX + HY|X (27.17)

The derivation is just as valid with the roles of the variables reversed. In that case, we symbolize the
conditional entropy of x as HX|Y. It represents the uncertainty in x as a result of knowing y. We then have

HY,X = HY + HX|Y. (27.18)

Equations 27.17 and 27.18 are both analogous to Equation 27.11 (HX,Y=HX+HY), the disassociated case.
Equations 27.17 and 27.18 simply say that the joint entropy of two mutually related systems is the self-entropy
of one system plus the conditional entropy of the other. In terms of uncertainty: the uncertainty of the joint
event x,y is the sum of the uncertainty of x plus the uncertainty of y when we know x. Hence, for both the
mutually unrelated and related cases joint entropy is the sum of two self-entropies or uncertainties—the
uncertainty in x and the uncertainty in y.

Recapitulation

Let's summarize our two main accomplishments so far in this chapter.



1. We've developed four expressions for joint entropy. Two of them (a probability form and an entropy
form) are for systems that have no mutual relation. The other two are counterpart forms for systems that are
related. The probability form of joint entropy for two unassociated systems is Equation 27.3. The entropy
form is Equation 27.11 (the sum of the two self-entropies). The probability form of joint entropy for two
mutually associated systems is Equation 27.13. The entropy form is either of 27.17 or 27.18, that is, the self-
entropy of one system plus the conditional entropy of the other.

2. We've stipulated what conditional entropy (e.g. HY|X) is. Our discussion actually revealed three alternative
ways of writing or defining it:

(a) In terms of probabilities, as the second of the two major terms in Equation 27.16:

(27.19)

(b) In terms of probabilities, by replacing P(xi)P(yj|xi) in Equation 27.19 with its equal, P(xi,yj), per
Equation 27.12:

 (27.20)

(c) In terms of entropies, by rearranging Equation 27.17:

HY|X = HX,Y-HX (27.21)

This last equation says that the conditional entropy of system Y, given a measurement of system X, is the joint
entropy of the two systems minus the self-entropy of system X. All three of the equations can also be written for
HX|Y, the conditional entropy of system X, given a measurement of y.

Mutual Information

Two systems that have no mutual relation have no information about one another. Conversely, if they do have
some connection, each contains information about the other. For instance, a measurement of x helps estimate y
(or provides information about y, or reduces the uncertainty in y). Suppose now that we want to determine the
amount (if any) by which a measurement of x reduces our uncertainty about a value of y. Two ''uncertainties of
y" contribute. First, y by itself has an uncertainty, as measured by the self-entropy HY. Secondly, there's an
uncertainty of y given a measurement of x, as measured by the conditional entropy HY|X.

Conditional entropy HY|X is a number that represents an amount of information about y. In particular, the basic
uncertainty HY is lessened or partially relieved by an amount equal to HY|X. In symbols, that statement says that
the overall decrease in uncertainty is HY-HY|X. The name for that difference or reduced uncertainty is mutual
information, IY;X:

IY;X = HY-HY|X. (27.22)

Using a semicolon in the subscript Y;X characterizes our symbol for mutual information. For joint probabilities
or entropies, we used a comma, as in joint entropy HX,Y. For conditional probabilities or entropies, we used a
vertical slash, as in HY|X

Alternate definitions



The technical literature and chaos theory also express mutual information in two other ways. As before, one is
in terms of probabilities, the other in terms of entropies. This time we'll take the easy one (the entropy form)
first.

Entropy Form

The entropy form stems from Equation 27.22, IY;X=HY-HY|X. The last quantity on the right, conditional entropy
HY|X, is defined by Equation 27.21 as HX,Y-HX. Substituting that difference in place of HY|X in Equation 27.22:

 (27.23)

In this form, mutual information is the sum of the two self-entropies minus the joint entropy.

We used the mutually associated case to derive Equation 27.23. However, Equation 27.23 also applies to the
mutually unassociated case. For that case, mutual information turns out to be zero. To see that, we use the
equation for the unassociated case, Equation 27.11 (HX,Y=HX+HY). Using that definition, we substitute HX+HY in
place of HX,Y in Equation 27.23. That gives IY;X=HY+HX- (HX+HY), or IY;X=0. So, the mutual information of two
independent systems is zero. In other words, one system tells us nothing about the other.

Incidentally, rearranging Equation 27.23 provides an alternate expression for joint entropy, HX,Y:

HX,Y = HY + HX-IY;X. (27.24)

Joint entropy for two systems or dimensions, whether mutually related or not, therefore is the sum of the two
self-entropies minus the mutual information. (For two unrelated systems, mutual information IY;X is zero. Eq.
27.24 then reduces to Eq. 27.11, HX,Y=HY+HX.)

Probability Form

The probability form of mutual information relieves us of having to compute HY, HX, and HX,Y (or HY|X per Eq.
27.22) individually. It's a more economical form, making mutual information easier and faster to calculate. The
procedure in deriving it is easy. We'll do it with Equation 27.23, which is IY;X=HY+HX-HX,Y. First, we rewrite HY

and HX in terms of probabilities. We do so in such a way that, insofar as possible, those probabilities consist of
the same kinds of probability-terms as HX,Y. Then we simplify the resulting expression of HY+HX-HX,Y (Eq.
27.23) by factoring out some common terms. (And so it's our trusty three-step procedure for developing symbol
definitions. We've got the concept that mutual information is the sum of the two self-entropies minus the joint
entropy. Next we express that in probability symbols. Finally, we simplify.)

Let's begin with HY (Eq. 27.2):

(27.2, repeated)

The crux of that equation is P(yj). Equation 6.8 defines P(yj) as

Substituting that into the first P(yj) term in Equation 27.2:

 (27.25)



That gives an expression for HY that's longer and more cumbersome than Equation 27.2, but there's a reason for
such madness. The reason is that HY now begins with

just like HX,Y (Eq. 27.3) does.

Next we do the same for HX. That is, we take Equation 6.7, namely

and substitute the right-hand side for the first P(xi) term in Equation 27.1:

(27.1, repeated)

(27.26)

Rewriting HY and HX in that fashion puts all three of HY, HX, and HX,Y into the common form of

where A represents certain bins and varies for each of the three expressions (Eqs 27.25, 27.26, and 27.3,
respectively). Now we substitute Equations 27.25 (HY), 27.26 (HX), and 27.3 (HX,Y) into Equation 27.23:

IY;X = HY + HX-HX,Y (27.23, repeated)

= Equation 27.25+Equation 27.26 - Equation 27.3

 

That completes step two—expressing our concept in terms of symbols. The final step is to simplify. In the
lengthy expression just created, the double summation

and the multiplication by P(xi,yj) are operations that apply to all three entropies. Hence, we can factor out those
common ingredients and place them in front. It's like writing -ab -ac+ad as a(-b -c+d). That shortens our
equation to



 

in which, for convenience, I have switched the order of the first two log terms. (And so we've done a lot of
simplifying or condensing already!)

We can do more. One of the rules of logarithms is that -loga=log(1/a). Applying that rule to the first two terms
within the brackets,

We can now finish the entire escapade by using another log rule to combine the log terms within the brackets.
That rule of logarithms is that loga+logb+logc=log(abc). The brackets include the summation of three such log
terms. Multiplying those three log terms gives log2[P(xi,yj)]/[P(xi)P(yj)]. Uniting the log terms in that fashion
brings the entire expression for mutual information to

 (27.27)

That step completes our derivation. It puts mutual information into a condensed symbol form, using
probabilities. The final result (Eq. 27.27) doesn't look like HY+HX-HX,Y (Eq. 27.23), but it is. (That's what we
started out with, several paragraphs ago.)

The log term in Equation 27.27, namely log2[P(xi,yj)/P(xi)P(yj)], involves a ratio. The i and j subscripts tell us to
consider each bin individually, in turn, in the joint probability distribution. The numerator of the ratio is the
joint probability of a given bin, P(xi,yj). The denominator is the product of the two marginal probabilities. That
is, it's the product of P(xi) (the marginal probability of state xi) times P(yj) (the marginal probability of state yj).
Also, Equation 27.27 says to multiply the log of that ratio by P(xi,yj). We therefore end up using each joint
probability P(xi,yj) twice in the overall calculations pertaining to each bin—first as the numerator in the ratio
and then again as the multiplier. Finally, once we have the product of P(xi,yj) times log2[P(xi,yj)/P(xi)P(yj)] for
every observed bin in the joint probability distribution, Equation 27.27 says to add up all those products.

Mutual information is a global measure in that it uses probabilities that we have measured over the entire
attractor. (We have at least measured those probabilities over our entire dataset, and we hope and assume those
data represent the entire attractor.)

In lag space, variable xi becomes xt and yj becomes xt+m. The joint probabilities P(xi,yj) of Equation 27.27 then
become sequence probabilities, P(xt, xt+m). That's the estimated probability that value xt+m follows value xt in the
time series. Equa tion 27.27 requires an estimate of that probability for every observed phase space route. Also,
IY;X as computed with Equation 27.27 has the by-now-familiar basic "PlogP" form. As such, it's a weighted
average value—a weighted average mutual information. (Abarbanel et al. 1993 and some other authors in fact
call it "average mutual information." For brevity, however, I'll just call it mutual information.)

Figure 19.9 dealt with estimating optimum lag in attractor reconstruction by the method of the first minimum in
mutual information. Either Equation 27.27 or 27.23 is the equation to use for that purpose.

Interpretations



Figure 27.1 helps clarify the general concepts of self-entropy, conditional entropy, joint entropy, and mutual
information for two systems. Circles in the figure represent self-entropies HX and HY. The first case (part (a) of
the figure) is that in which x and y aren't related. The joint entropy is the sum of areas HX and HY (per Eq.
27.11). Neither of those entropies contains information about the other. Mutual information therefore is zero
(the smallest possible value).

As an aside, let's take a short paragraph to see how a mutual information of zero can occur in terms of
probabilities. Equation 27.27 says that zero mutual information can only come about when
log2[P(xi,yj)/P(xi)P(yj)]=0 for every bin in the joint probability distribution. That log term is 0 for any one bin
when the numerator of the log term equals the denominator, that is, when P(xi,yj)=P(xi)P(yj) for that bin. The
reason is that when the two are equal, their ratio is 1, and the log of 1 is 0. In other words, if the joint
probability P(xi,yj) equals the product of the marginal probabilities P(xi)P(yj) for every bin, the two systems are
statistically independent. Mutual information then is zero.

Now suppose that the two systems or variables have some sort of loose association. That means that measuring
one variable gives some information about (perhaps even a rough approximation of) the other. Figure 27.1b
shows the same two self-entropies as Figure 27.1a. The amount of overlap of the two self-entropies indicates
the degree of affiliation between systems. That overlap zone represents the mutual information, IY;X. The finite
value of mutual information (or existence of an overlap zone) means that measuring just one variable (i.e.
without measuring the other) reduces our uncertainty in the other. For instance, whereas our uncertainty in y
was a maximum (HY) in the unrelated case (Fig. 27.1a), it decreases to the conditional entropy HY|X (the
uncertainty in y after knowing x) for the mutually related case. The magnitude of that lesser uncertainty (HY|X) is
the area of the hachured overlap zone in Figure 27.1b. The amount of reduction in uncertainty is the size of the
overlap zone. In symbols, that's HY-HY|X, and it's the mutual information (Eq. 27.22). The same ideas also apply
to x.

Joint entropy in Figure 27.b is the area within the outer perimeter of the combined systems. Any of Equations
27.17, 27.18, or 27.24 gives its magnitude.

The largest possible value of mutual information (not shown diagrammatically in Fig. 27.1) occurs when x
completely determines y and vice versa. For that case, as a few trials on a joint distribution grid show, two
results are certain. First, the sums of the marginal probabilities of the two systems are the same, so the self-
entropies of the two systems are the same (Eqs 27.1 or 27.2). Secondly, the sum of the joint probabilities



Figure 27.1 
Sketches showing relations between self-

entropy, joint entropy, conditional entropy, and mutual
 information (redundancy), for two systems, X and Y. (a) Uncorrelated case.

(b) Correlated case 
(in which knowing a value y reduces the uncertainty

in x, and vice versa). Modified and expanded
 from Cover & Thomas (1991: Fig. 2.2).

(c) Differing amounts of mutual information or redundancy.
 Part 1 has a high value of mutual information

(high correlation between x and y). Part 3 has a low 
value of mutual information (weak correlation between x and y).

equals the sum of the marginal probabilities for either system, for example



Hence, the joint entropy per Equation 27.3 equals the self-entropy of either system. For instance, HX,Y=HX.
When that occurs, we can substitute HX in place of HX,Y in the general relation IY;X=HY+HX-HX,Y (Eq. 27.23). That
leaves just IX;Y=HY. (Also, HX,Y=HY, so IY;X=HX.) So when one system uniquely determines the other, mutual
information is just the self-entropy of one system.

Overall, then, mutual information ranges from a minimum of zero (no relation between the two systems) to a
maximum of the self-entropy of either system (which occurs at the limiting condition of one system uniquely
determining the other).

With the above background, let's look at three ways to interpret mutual information:

• One interpretation is in terms of uncertainty. Mutual information is the amount by which a measurement
of one variable reduces the uncertainty in another (Fig. 27.1 b). In other words, it's the reduction in the
uncertainty of one random variable as a result of knowing the other (Cover & Thomas 1991: ch. 2).

• A second interpretation is in terms of information. Three ways to restate the general idea are as follows.
Mutual information is:

• A quantitative measure (in bits) of the average amount of common information between two
variables. The overlap zones in Figure 27.1c, discussed below, demonstrate this concept. This
interpretation shows that we can write our symbol for mutual information either as IY;X or IX;Y, as in the
legends of Figures 27.1 a,b.

• A measure of the average amount of information contained in one system, process, or variable about
another. That is, it's the average amount of information x gives about y. If mutual information is
relatively minor, x doesn't contain much information about y. In fact, a mutual information of zero
means we can't find out a thing about y by measuring x. In other words, x and y are independent (Fig.
27.1a). Conversely, where mutual information is large, x contains much information about y.

• The information contained in a process or variable (e.g. HY) minus the information contained in that
variable when we've measured another variable (e.g. HY|X) (per Eq. 27.22).

 

• From a third point of view, mutual information measures the degree of association between two
processes or random variables. For instance, a high value for mutual information (large reduction in
uncertainty) implies that x and y have a close mutual affiliation (Fig. 27.1c, part 1). Conversely, a low
value for mutual information indicates that x and y have only a weak affiliation (Fig. 27.1c, part 3). In
fact, a value of zero for mutual information means that x and y are independent of one another (Fig.
27.1a). (The notion of the degree of association between two variables again shows why we can
symbolize mutual information alternatively as IY;X or IX;Y.)

All of the above interpretations can be applied to lag space. In the context of lag space, mutual information is:

• The amount (in bits) by which a measurement of xt reduces the uncertainty of xt+m

• The amount of information that one measurement gives about a later measurement of the same variable
(Fraser & Swinney 1986). Here Equation 27.27 gives the average mutual information between
observations at time t and those at time t+m. In other words, it's the average amount of information about
xt+m that we get by making observation xt.



• A measure of the degree to which knowing x at time t specifies x at time t+m. In other words, it
measures predictability—how well we can predict x at time t+m, given that we measured x at time t.

Redundancy

Within chaos theory, redundancy (explained below) is nothing more than the extension of mutual information
to three or more dimensions. Even then, some chaologists don't use the term "redundancy" that way and prefer,
instead, to use "mutual information" for any number of dimensions. As usual, terminology is still developing.
In any case, we'll develop our tools in the rest of this chapter.

First, here's how the idea of "redundancy" applies. Suppose x and y have some kind of direct (straight-line)
relation and we know the equation of the line. Measuring one variable then tells us the other exactly. In that
case, measuring the second variable as well as the first is a waste of time. It merely duplicates information we
already got by measuring the first variable. Measuring the second variable in that case is unnecessary,
superfluous, or redundant. Thus, when measurements of one system provide complete information about the
other (i.e. reduce the uncertainty in the other to zero), then mutual information is a maximum. At the same
time, all measurements of the second system are wholly redundant. That is, both mutual information and
redundancy are a maximum.

Now let's go to the other extreme, namely where there's no relation at all between the two variables. Measuring
x for unrelated systems (Fig. 27.1a) provides absolutely no information at all about y. Mutual information then
is zero, and there's nothing redundant (zero redundancy) in measuring the second variable as well as the first.
So, as before, we can think of mutual information and redundancy as the same thing.

 

For intermediate conditions, x provides some but not all information about y (and vice versa). Mutual
information then is at some intermediate value, and measurements of the second variable might be described as
partly redundant (Fig. 27.1b).

To recapitulate, what we've done in the last three paragraphs is lay a general foundation between mutual
information and the idea of redundancy. Two systems that have a perfect one-to-one relationship have
maximum mutual information. All measurements of the second system in that case are completely redundant
(have maximum redundancy). For partially affiliated systems, mutual information is less. Measurements of the
second system then are partly redundant. Finally, with unrelated systems, mutual information is zero.
Measurements of the second system therefore aren't the least bit redundant (redundancy also is zero).

Figure 27.1c summarizes those concepts graphically. In part 1 of the figure, two systems or variables are closely
related. Measuring one variable enables us to estimate the other quite well, without even having to measure that
other variable. Measuring the second variable in addition to measuring the first is largely redundant. The
relatively large area taken up by the mutual information on the sketch (i.e. the large value of mutual
information) reflects that high degree of redundancy. In part 2 of the figure, the interrelation between systems is
less. Measurements of the second variable then are still redundant to some extent, but not as much as in part 1.
The lesser area represented by the mutual information indicates that lesser redundancy. Finally, in part 3,
measuring one variable gives only a vague idea of the other. In that case, there's very little redundancy
associated with measuring the second variable in addition to the first. Mutual information also is small.

The point here is that, for the two-system case, mutual information measures (and equals) redundancy. Any
value for mutual information also is a quantitative measure of redundancy. Redundancy thereby joins company
with entropy, information, and mutual information as a numerical measure of an ensemble of probabilities.



Derivations of redundancy

Original Definitions

Original definitions of redundancy came from information theory, long before chaos came along. Those
definitions aren't exactly the same as the one used in chaos theory. In other words, the idea of redundancy as
mutual information isn't the only concept of "redundancy" in the literature. However, most schools of thought,
within both information theory (e.g. Shannon & Weaver 1949: 56) and chaos theory (e.g. Gershenfeld &
Weigend 1993: 48), define redundancy in ways that are closely related to the "chaotic" ones. For background,
let's take a quick look at how information theory usually defines redundancy. There are two ways. Each can be
derived from the other.

The first definition is:

redundancy = the difference between some reference entropy and 
an actual or observed entropy. (27.28)

Depending on the circumstances or problem, we can choose different definitions for "actual entropy" and
"reference entropy." For instance, for one system or variable, redundancy might be the difference between the
maximum possible entropy (the reference entropy) and the actual or self-entropy, say HX. Maximum possible
entropy occurs when the probability of every bin is the same; in that case it equals logNs, where Ns is the
number of possible states or bins. Redundancy by the above definition then would be the difference between the
reference entropy (here logNs) and self-entropy (here HX), or (logNs)-HX.

The second definition is a standardized version of the first definition. The standardization is done by dividing
the basic difference by the reference entropy. That puts all redundancies within the range of 0 to 1. In the
example just used, standardized redundancy becomes definition one divided by the reference entropy, or (logNs-
HX)/logNs. That ratio, according to the rules of basic algebra, is (logNs/logNs)-(HX/logNs), or 1-(HX/logNs). Thus,
the second definition of redundancy as used in information theory is:

redundancy = 1 -(actual entropy/reference entropy).

The ratio of the actual entropy to the reference entropy is a type of relative entropy (the ratio of one entropy to
another).

Chaos Theory Definition in Terms of Entropies

Now we advance to chaos theory definitions of redundancy. In that context, as mentioned above, "mutual
information" and "redundancy" are essentially the same thing. However, following Fraser (1986), I'll use
"mutual information" only for two (and only two) variables, systems, or dimensions. ''Redundancy," on the
other hand, will refer to three or more variables, systems, or dimensions. That is, redundancy will be the
generalization of mutual information from two dimensions to three or more dimensions.

Further, we'll usually apply "redundancy" to lag space. Let's now generalize our equation for mutual
information (Eq. 27.23) so that it expresses redundancy (that is, it applies to three or more dimensions) and
applies to lagged values of one feature (x). In this section we'll do it in terms of entropies, in the next in terms of
probabilities.

Mutual information is the starting point. By definition, it involves two dimensions. It's just the sum of the two
self-entropies minus the joint entropy (Eq. 27.23):

IX;Y = HX + HY-HX,Y. (27.23, repeated)



For lag space, system x becomes Xt and system Y becomes Xt+m. To avoid the inconvenience of having a "sub-
subscript," we'll write H(Xt) for HXt (the self-entropy of system Xt) and make similar changes for the other
symbols. With those modifications, Equation 27.23 as applied to lag space becomes

I(Xt;Xt + m) = H(Xt) + H(Xt + m)-H(Xt,Xt + m).

In getting our new definition (redundancy), we follow our standard three-step procedure for defining a new
quantity. The first step is to conceptualize. Here the concept is that redundancy (the multidimensional version of
mutual information) is the sum of three or more self-entropies minus the joint entropy.

Step two is to express that idea in symbols. The modified version of Equation 27.23 that we just wrote is for just
two dimensions (Xt, Xt+m). Now we want to generalize that relation to D dimensions, where D is three or more.
Embedding dimension D represents D axes in lag space or D lagged measurements of x. The last member of the
group of entropies then corresponds to H(Xt+(D-1)m), as explained in the vector chapter. For instance, the symbol
for mutual information, I(Xt;Xt+m), (spoken as "I of X sub t and X sub t plus m") when generalized to redundancy
R in that way, becomes R(Xt,Xt+m, . . . ,Xt+(D-1)m). Similarly, the entire symbol definition for redundancy, based on
our modified version of Equation 27.23, becomes:

So, the sum of the self-entropies is symbolized by H(Xt)+H(Xt+m)+. . .+H(Xt+(D-1)m). Similarly, the joint entropy
that we're subtracting from that sum is H(Xt,Xt+m, . . . Xt+(D-1)m)

Finally, step three of our standard procedure is to simplify and condense. We can do that by letting

represent the sum of the self-entropies. That is,

In that global summation symbol, N is the total number of self-entropies, H(Xi) is the group of self-entropies,
and i=t, t+m, . . . , t+(D-1)m. That step condenses our symbol definition for redundancy in terms of entropies to:



(27.29)

Chaos Theory Definition in Terms of Probabilities

Another common chaos theory definition of redundancy is in terms of probabilities. Here we'll again follow our
three-step procedure but only as a first stage, namely to get a definition applicable to two systems or variables.
Then we'll generalize it to lag space and the multidimensional case.

For step one (the concept), we invoke the above idea that redundancy is a reference entropy minus an actual
entropy (Eq. 27.28). Step two is to express that in probability symbols. For that purpose, we use a reference
entropy based on marginal probabilities (Ch. 6):

The actual or observed entropy is the joint entropy,

 (Eq. 27.3, repeated)

Redundancy R then is

The third and final step is to simplify. The actual entropy (the expression on the far right) in that equation is a
negative quantity that's subtracted from something. That makes it positive, so we rewrite the preceding
equation by putting the actual entropy first:

Common features of the two entropies on the right-hand side of the equation are

In other words, the expression is comparable to ab-ac. That's a(b-c). Thus:

Since loga-logb=log(a/b),

 (27.27, repeated)



That expression for "redundancy" is a bit of a misnomer because it applies only to two systems, as indicated by
the x's and y's. In fact, I've labeled it "Equation 27.27" because it's the same as Equation 27.27 for mutual
information. Incidentally, the log term is another relative entropy, in this case the ratio of the entropy of the
joint probability distribution to that of the "product" probability distribution. The products are those of the
marginal probabilities (cf. Cover & Thomas 1991: 18, eq. 2.28).

Let's now generalize the simplified equation we just got to lag space and three or more dimensions. Lag space
means we're using time-sequential values of one variable. That in turn means we need sequential probabilities.
For lag space, we reinterpret the symbols in the usual way: system X becomes Xt, system Y becomes Xt+m, and
the final system in our group is Xt+(D-1)m; for actual observations, xi becomes xt and yj becomes xt+m; we indicate
data from additional "systems" or "variables" by additional lags, up to Xt+(D-1)m; and our former summation over
all possible values of i and j translates to summing over all represented phase space routes, Nr. Incorporating
those symbols lets us generalize Equation 27.27 to D dimensions as follows:

R(Xt,Xt + m, . . . ,Xt + (D-1)m) (27.30)

That equation is our goal—redundancy for lag space, in terms of probabilities.

The joint probability P(xt, xt+m, . . . , xt+(D-1)m) that occurs twice in Equation 27.30 is deceptive. It's a global symbol
that can encompass a very large number of probabilities. Each variable or dimension (xt, xt+m, etc.) represents an
additional "event" or measurement in the time sequence. Number of events in any specified route or sequence
greatly increases the number of sequence probabilities we need to estimate, according to Equation 6.6: Nr=Nsn,
where Nr is number of phase space routes, Ns is number of possible states, and n is number of events. We need a
sequence probability for every route, or at least for those routes that occur at least once. Therefore, redundancy
for more than two or three events or embedding dimensions usually requires estimating many thousands of
joint (sequence) probabilities. That, in turn, means the dataset (time series) must be of colossal length.

Incremental redundancy and its interpretations

The definitions given above form the basis for the interpretations of redundancy that I'll mention here. Those
definitions generally stem from or follow Fraser's (1989a) ideas. However, some concepts and definitions aren't
yet standardized because the field is relatively young. For example, Gershenfeld & Weigend (1993: 48) define
and interpret redundancy differently from Fraser.

Redundancy as defined in Equation 27.30 quantifies the average amount of common information among
several systems or variables (  1993). In the context of Figure 27.1, for instance, we'd be looking at the
overlap zone of not just two spheres but three or more spheres. If the variables are lagged measurements of one
time series (e.g. xt, xt+m, xt+2), redundancy is the number of bits that are redundant in a vector (Fraser & Swinney
1986), that is, redundant in the vector's components as a group.

Chaos theory sometimes focuses on the amount of change in the redundancy of a vector when we increase the
vector's dimension by one (e.g. from two dimensions to three), at a constant lag. That quantity is just the
difference between the two successive redundancies. That's the redundancy at the higher dimension minus that
at the lower. (And so it's really just another version of first-differencing, discussed in earlier chapters.) Some
authors symbolize it as RD+1-RD, others as RD-RD-1. Fraser (1989a) coined the term marginal redundancy for
each such difference. I'm going to call it incremental redundancy. (Like "fractal dimension," terminology for
mutual information and redundancy can be inconsistent from one author to another.)



One way to interpret incremental redundancy when dealing with lag space is in terms of information.
Incremental redundancy quantifies the average amount of information that several successive measurements of
x give about the next x (  1993: 390). It's the average amount of information that n sequential observations
contain about observation n+1. (In these interpretations, each measurement gets a phase space dimension, so
there are D dimensions providing information about dimension or observation number D+1.)

Another lag space view of incremental redundancy is in terms of prediction. Here incremental redundancy is a
quantitative measure of the average number of bits that several sequential measurements of x can predict about
the next x. That is, it estimates the number of bits that the earlier components of a vector can forecast about the
last component. Hence, it reflects predictability—how well the last member of a measurement sequence can be
predicted from its predecessors. The minimum value of incremental redundancy (zero) means that the data are
useless in regard to predictions; we might just as well throw a dart at the wall or guess any number within the
range of possible values. In contrast, a high value means close association and reliable predictions.

Typical values

Because redundancy depends strictly on probabilities, anything that affects those probabilities affects the value
of redundancy. Five such influential factors are the number of possible states (bin size), number of sequential
events (embedding dimension), lag, distribution of probabilities, and size of dataset. The last two—distribution
of probabilities and size of dataset—are fixed once we've measured the time series. Hence, in analyzing a given
time series for redundancy, we can regulate only the first three—number of possible states (the original
partitioning), embedding dimension, and lag. Varying each of those three factors yields a different set of
probabilities and hence a new value for redundancy. Therefore, each value of redundancy that we calculate
pertains only to a particular combination of bin size, lag, and embedding dimension.

Suppose we choose a particular bin width or partitioning. Then redundancy varies only with lag and embedding
dimension. The usual procedure is to choose a lag and compute redundancy for each of several successive
embedding dimensions. In keeping with the philosophy of mutual information and redundancy, we need at least
two measurements (two embedding dimensions) to compute a meaningful redundancy. (Redundancy for an
embedding dimension of one is zero.) The first meaningful embedding dimension to use is two. At lag one, that
means xt and xt+1. So, we'd first go methodically through the entire dataset to estimate the probabilities. Then
we'd compute redundancy (actually mutual information, since D=2). After that, we compute redundancy at that
same lag (one) for three embedding dimensions (xt, xt+1 and xt+2). Then for lag one at four embedding dimensions,
five embedding dimensions, and so on. Data limitations may prevent computations of redundancy for more than
about five or ten embedding dimensions, but it's worth doing as many as possible.

Once we've computed redundancy for successive embedding dimensions at lag one, the next step is to go to the
next lag (lag two) and again compute redundancy for various successive embedding dimensions. Then repeat
for lags three, four, and so on. Typically, we advance lag by increments of one until lag reaches about 10 or 15,
then by increments of 5 thereafter. Again, data limitations may prevent calculations at lags of more than 30 or
40.



To show what some typical values look like, Table 27.1 lists redundancies and incremental redundancies based
on the x values of 9000 iterations of the Hénon equations (Eq. 13.11). Parameter values used in the equations
were a=1.4 and b=0.3. Those values produce a chaotic attractor. The table includes computations for four
embedding dimensions at lags 1-15, then continues by lags of 5 through lag 50. At a given lag, incremental
redundancy is the amount by which the redundancy changes with each successively higher embedding
dimension. That is, it's the redundancy at a particular embedding dimension minus that at the preceding
embedding dimension. For instance, at lag one, incremental redundancy for an embedding dimension of 4 is the
redundancy at D=4 (having a value of 21.04, listed in col. 5 of Table 27.1) minus the redundancy at D=3 (value
14.31, in col. 4). That difference, RD+1-RD, is 6.73 (col. 8). The calculations are very crude; for instance, negative
incremental redundancies, as columns 7 and 8 show for some greater lags, aren't possible theoretically.
Table 27.1 Redundancies and incremental redundancies computed from 9000 iterations of the Hénon equations (lagged values of
x only; y values not involved); redundancy calculations provided by Andrew Fraser.

1 2 3 4 5 6 7 8

Redundancies Incremental redundancies

Embedding dimension Embedding dimension

Lag 1 2 3 4 2 3 4

1 0.00 6.43 14.31 21.04 6.43 7.88 6.73

2 0.00 5.76 12.27 16.89 5.76 6.51 4.62

3 0.00 4.80 9.97 12.14 4.80 5.17 2.17

4 0.00 4.17 7.39 8.26 4.17 3.22 0.87

5 0.00 3.03 5.35 5.42 3.03 2.32 0.07

6 0.00 2.38 3.76 3.60 2.38 1.38 -0.16

7 0.00 1.83 2.61 2.32 1.83 0.78 -0.29

8 0.00 1.43 1.93 1.67 1.43 0.50 -0.26

9 0.00 1.03 1.24 1.01 1.03 0.21 -0.23

10 0.00 0.65 0.72 0.62 0.65 0.07 -0.10

11 0.00 0.52 0.59 0.65 0.52 0.07 0.06

12 0.00 0.44 0.47 0.44 0.44 0.03 -0.03

13 0.00 0.28 0.31 0.40 0.28 0.03 0.09

14 0.00 0.16 0.25 0.37 0.16 0.09 0.12

15 0.00 0.09 0.11 0.16 0.09 0.02 0.05

20 0.00 0.00 0.04 0.02 0.00 0.04 -0.02

25 0.00 0.00 0.02 0.07 0.00 0.02 0.05

30 0.00 0.01 0.00 0.06 0.01 -0.01 0.06

35 0.00 0.01 0.03 0.09 0.01 0.02 0.06

40 0.00 0.00 0.00 0.06 0.00 0.00 0.06

45 0.00 0.00 0.03 0.11 0.00 0.03 0.08

50 0.00 0.00 0.01 0.03 0.00 0.01 0.02

Applications



Chaologists have suggested several applications of redundancy and incremental redundancy. Fraser's (1989a)
work is the basis for the following idealized descriptions. The potential applications we'll discuss are:

• estimating optimal embedding dimension

• assessing the accuracy of the basic data

• estimating Kolmogorov-Sinai entropy

• distinguishing between periodic, chaotic and random data

• estimating optimal lag

• assessing predictability.

 

Each application carries certain qualifications that we needn't go into here. Also, all applications are exploratory
and need further development to be easily and reliably usable (cf. Grassberger et al. 1991, Martinerie et al.
1992, Pineda & Sommerer 1993).

Embedding Dimensions

Two successive measurements of random data have no mutual relation. One value carries no information about
the next. Their mutual-information values or redundancies are zero. The difference between two such
redundancies (i.e. the incremental redundancy) therefore also is zero. This holds true regardless of embedding
dimension (D) or lag. So, for any and all embedding dimensions with random data, any measurement of x is
useless for predicting the latest x within a series (the latest component of a vector). (I'll sometimes speak of
incremental redundancy as the difference between two successive redundancies, with symbol ∆R. At other
times, I'll speak of it as the average number of bits that several sequential measurements of x can predict about
the next x, that is, about the last component of a series of measurements.)

Data (chaotic or not) based on an underlying rule, on the other hand, have some association (apparent or not)
between successive measurements of x. Such measurements therefore carry some mutual information or
redundancy about each other. For these kinds of data, redundancy for any series of measurements (any
embedding dimension) increases as we add another measurement (another embedding dimension), for a fixed
lag. For example, three successive values (xt, xt+m, xt+2m) are more redundant than two, four are more redundant
than three, and so on. In other words, computed values of redundancy R increase with increase in embedding
dimension, for such data (at fixed lag). Incremental redundancy in those cases is positive (>0), at least in theory.

One or two measurements of x (i.e. low embedding dimensions) may not give us a very good prediction about
the last component of our string. In other words, incremental redundancies at small embedding dimensions tend
to be small, for a fixed lag. Predictability of the last member of a series of measurements (the incremental
redundancy) increases rather rapidly at first, as we incorporate more measurements or components into the
vector, that is, as we increase the embedding dimension (Fig. 27.2). Further increases in the number of
components bring a lesser and lesser gain in predictability of that last member. Eventually the incremental
redundancy becomes approximately constant. A constant incremental redundancy means that further increases
in embedding dimension don't improve the ability of the sequence of measurements to predict the last member
of the string. Hence, there isn't any advantage to using an even larger embedding dimension. (The overall
pattern is similar to that between the correlation dimension and embedding dimension, as we saw in Fig. 24.6.)



The best embedding dimension to use for attractor reconstruction with this approach is the one at which
incremental redundancy no longer increases significantly, at that lag and measuring accuracy. One way to
estimate that embedding dimension is from a graph of incremental redundancy as a function of embedding
dimension, with lag as a third variable. (A simplified version of such a graph is Fig. 27.2, where we analyzed
only one lag.)

Figure 27.2 
Hypothetical change of incremental redundancy 

with embedding dimension, at a fixed lag.

A second type of graph for estimating an optimum embedding dimension is a plot of incremental redundancy as
a function of lag, with embedding dimension as a third variable. Figure 27.3 shows hypothetical examples.
Figure 27.4 (from  1993) shows a similar plot for real data—laboratory measurements of fluctuations in a
far-infrared laser. On such graphs, relations for successively higher embedding dimensions become closer and
closer to one another. When they become very close to one another, incremental redundancy at a given lag stays
about the same (nearly constant) for still larger embedding dimensions (Fig. 27.2). In other words, there's little
advantage in going to a larger embedding dimension. The optimum embedding dimension as estimated from
graphs such as Figures 27.3 and 27.4 therefore is the smallest one for which the plotted relations get relatively
close to one another. That's a subjective decision on our part.

Accuracy

Figures 27.3 and 27.4 show that the relations of incremental redundancy versus lag not only become closer as
embedding dimension increases; they also become straighter. In fact, at small lags the lines converge toward
some limiting perfectly straight "asymptotic accumulation line" as D goes to infinity. That asymptotic
accumulation line, shown as a dashed line on Figure 27.3, is important.



Straight lines have the form y=c+bx, where y is the quantity plotted on the ordinate, x is on the abscissa, c is the
intercept, and b is the slope. For our case, y is incremental redundancy ∆R and x is delay or lag, m. The straight
line's equation therefore is ∆R=c+bm. Ordinarily, we would fit a straight line by some rigorous analysis of the
data to find the parameters b and c. Our data unfortunately are noisy, less plentiful than we might prefer, and
probably won't let us examine conditions of D nearing infinity. Therefore, we can't compute b and c directly. As
a result, we have to fit the straight asymptotic accumulation line by eye. To do that, we first compute the
relation for ∆R as a function of lag for larger and larger embedding dimensions D. Then, when those relations
get very close to one another on the graph, we make a best guess as to where their limit at very large D (the
straight asymptotic accumulation line) will plot, and we draw it in by eye. (For chaotic data, as in Fig. 27.3b,
those straight sections only last over small lags. The asymptotic accumulation lines for chaotic data therefore
apply only to those small lags.) Finally, we measure the values of slope b and intercept c directly from the
graph. For instance, to get the intercept we extrapolate our straight line back to where it intersects the vertical
axis (m=0) and read the value of ∆R.

Figure 27.3 
Idealized sketch of incremental redundancy 

as a function of lag.



Figure 27.4 
Incremental redundancy as a function of 

lag for measurements of fluctuations in far 
-infrared lasers (adapted from Palu 1993, 
with permission from Addison-Wesley- 

Longman Publishing Co.).

 

Let's look further at the intercept, c. In our present context, it's the value of incremental redundancy at a lag of
zero, at an infinitely large embedding dimension. In other words, it reflects the number of bits of information
that several measurements of x predict about the last of a group of such measurements, at that lag. Naturally, we
wouldn't be interested in a lag of zero, but we might be interested in a lag very close to zero. Suppose we make
several measurements very close together in time and average them. Then the only difference between that
average and the next measurement (also taken almost immediately) will be attributable to noise. That noise
represents the accuracy of that latest measurement. So, the incremental redundancy at a lag of zero (or very
nearly zero), that is, the value of the intercept c, in a sense reflects the accuracy of our last measurement. (This
concept of accuracy works in practice only for data that aren't very accurate.)

To help us keep that potential role of the intercept in mind, I'll relabel it ca, in which subscript ''a" stands for
accuracy. The equation for the asymptotic accumulation line then becomes ∆R=ca+bm.

Kolmogorov-Sinai (K-S) Entropy

The standard definition of K-S entropy, written in terms of sequence probabilities (Eq. 26.6), doesn't work well
with noisy data. Fraser (1989a) attempted to avoid that defect by developing an alternate definition based on
incremental redundancies. The plot of incremental redundancy versus lag (e.g. Fig. 27.3) exemplifies his
method. We'll label K-S entropy estimated in this way as H'KS.

An esoteric mathematical theory of dynamical systems (not discussed here), when applied to a plot of
incremental redundancies at successive lags, leads to defining the slope of the asymptotic accumulation line on
the plot as the negative of K-S entropy, or -H'KS. In other words, that quantity replaces slope b in the latest
version of our straight-line equation. Thus, the equation of the asymptotic accumulation line (Fig. 27.3) is:

∆R = ca-H'KSm. (27.31)

Estimating K-S entropy with this approach is just a matter of measuring the slope of the straight asymptotic
accumulation line and then reversing the sign. Slope as always is an ordinate distance divided by an abscissa
distance. Here the ordinate distance ∆y is ∆Rm+1-∆Rm, and the abscissa distance ∆x is (m+1)-m. where ∆Rm+1 and
∆Rm are incremental redundancies at lags m+1 and m, respectively. Again, all of this discussion of the
asymptotic accumulation line applies only in the limit where embedding dimension D approaches infinity. The
symbols D→∞ refer to those conditions. Hence, the slope of the straight line is:

or

Our estimate of K-S entropy (H'KS) is the negative of that slope. So



 (27.32)

This method at present isn't particularly precise. However, it can be useful for identifying zero versus nonzero
K-S entropy, as discussed in the next two paragraphs.

Nature of Time Series

Although K-S entropy as estimated from a plot of incremental redundancy versus lag isn't accurate, certain
tendencies at high embedding dimensions on that plot can characterize or help distinguish between periodic,
chaotic, and random data. Periodic data have a K-S entropy of zero, as calculated with Equation 27.32. When
H'KS is zero, Equation 27.31 (∆R=ca-H'KSm) reduces to just ∆R=ca at all lags. In other words, the relation between
incremental redundancy and lag (Fig. 27.3a) is a horizontal straight line at a positive and constant ordinate
value of ca. Usually, the overall trend with lag is only generally horizontal and can include periodic spikes (not
shown here). An asymptotic accumulation line for such data also is roughly horizontal.

For chaotic data, K-S entropy H'KS is positive. Equation 27.31 then is ∆R=ca-(+H'KS)m=ca-H'KSm. That equation
says that, on the plot of ∆R versus lag, we get a straight line sloping downward (Fig. 27.3b).

Finally, as discussed earlier, incremental redundancies for random data are virtually zero, regardless of lag.

Lag

I mentioned above and in Chapter 19 that mutual information (Eqs 27.23 or 27.27) might help to indicate an
optimum lag. (Mutual information by our definition means two dimensions, such as xt and xt+m.) That approach
involved plotting the relation for mutual information versus lag, at a chosen embedding dimension, and taking
the "best" lag to be the one corresponding to the first minimum in the plotted relation (e.g. Fig. 19.9).

Redundancy, including incremental redundancy, also can possibly help us estimate an optimum lag, for a given
dataset and embedding dimension, D. With this approach, the optimum lag is the one for which the string of D
measurements provides the maximum amount of useful information. "Useful information" here is a special
expression involving redundancy but with an assumed small-scale noise factor removed. The method is as
follows. First, some definitions (Fraser 1989a):

• the quantity H'KSm=the information lost to small scales in the time between any two successive
measurements

• the quantity (D-1)H'KSm=the information lost to small scales over the entire string

• the quantity Dca-R=the total amount of information known over the entire string.

Using those estimates, an expression for the maximum amount of useful information is just a matter of algebraic
manipulation, as follows. We define "useful information" as the total amount known minus that lost to small
scales, where both amounts are taken over the string of D values. That useful information is definition 3 above
minus definition 2, or (Dca-R) minus (D-1) H'KSm. It's a function of lag m. We'll symbolize that function as
f1(m). Stating that function as equal to the useful information (i.e. neglecting any proportionality constants):

f1(m) = Dca-R-(D-1)H'KSm.

Moving Dca to the left-hand side:



f1(m)-Dca = -R-(D-1)H'KSm.

Dividing everything by D-1:

Now we'll call the left-hand side f2(m). It's our new version of "useful information." The optimum value of lag is
the lag that, for the chosen embedding dimension, gives the largest value for f2(m), that is, the largest value for
the quantity [-R/(D-1)]-H'KSm. For any D≥2, the value of m that maximizes fl(m) also maximizes f2(m), since D
and ca are fixed. That's true even if we add a constant to f2(m). For reasons that will soon become clear, we'll
therefore add the constant ca to f2(m), thereby obtaining what we'll call f3(m). So

(27.33)

Equation 27.33 is our final expression for "useful information." We take the optimum lag to be the one for
which Equation 27.33 yields the largest value.

Figure 27.5 
Sketch showing method of estimating 

optimum lag, for one embedding dimension.

Writing "useful information" in the form of Equation 27.33 puts it in familiar quantities or relations. There are
actually two such relations. Both are functions of lag m, as the left-hand side of Equation 27.33 indicates. One
relation consists of lag as a function of the first two terms, ca-H'KSm. That's the straight asymptotic accumulation
line (incremental redundancy at the limit of infinitely large D, per Eq. 27.31). The other relation is the
remaining term, R/(D-1), as a function of lag. As we'll see in a moment, R/(D-1) is the average redundancy.
Equation 27.33 says to subtract that average redundancy from the value of the accumulation line, at a given lag,
in order to get a value for useful information.



Figure 27.5 is a hypothetical plot of R/(D-1) against lag, for a given embedding dimension (the one we have
chosen by whatever means). The same graph also includes the asymptotic accumulation line (incremental
redundancy ∆R as D approaches infinity). Why can we plot that relation for ∆R on a graph on which the
ordinate scale is R/(D-1)? Because in the limit of D approaching infinity the two are equal. That is, in the limit
of D approaching infinity, ∆R=R/(D-1). Table 27.2 shows why that's true.

The first column in the table is embedding dimension D. The second column lists a series of incremental
redundancies that asymptotically approach a limit (here 5.0) with increase in embedding dimension (in
accordance with Fig. 27.2). Column 3 lists the associated total redundancies R. Finally, the last column is R/(D-
1).

Incremental redundancies, as in Table 27.2, are like the vertical distances from one floor to the next in a
building. Summing those separate distances (those incremental redundancies) to any floor gives the elevation or
total height of that floor (analogous to redundancy) above the street. In an alternate way, we'd get the distance
from any one floor to the next (incremental redundancy) by subtracting their redundancies, that is, by
subtracting the elevation of the upper floor from the elevation of the one below it.

Table 27.2 Hypothetical redundancies and associated values.

D ∆R R R/(D-1)

1 1.0 - -

2 3.0 1.0 1.0

3 4.0 4.0 2.0

4 4.5 8.0 2.67

5 4.75 12.5 3.125

6 4.875 17.25 3.45

7 4.9375 22.125 3.6875

8 4.96875 27.0625 3.866

9 4.984375 32.03125 4.004

10 - 37.015625 4.113

Besides the asymptotic increase of incremental redundancies, there are two other important features in the table.
One is that the values of R/(D-1) also approach a limit of 5.0 (although much more slowly than the incremental
redundancies do). So, in the limit of D approaching infinity, both ∆R and R/(D-1) will have the same value
(here 5.0). In other words, in the limit of D approaching infinity, ∆R=R/(D-1). That's why we can plot the
asymptotic accumulation line on the graph of R/(D-1) versus m for the special condition of D nearing infinity.
The second feature is that, to get an average value for any R, there are D-1 values that contribute. (There isn't
any redundancy for a dimension of 1, that is, when we have only one measurement by itself.) So, the last
column, R/(D-1), lists average total redundancies.

As mentioned, the best lag is taken to be the one for which Equation 27.33 yields the largest value. That's the
lag at which we get the largest amount of useful information, according to Equation 27.33. That value is biggest
when R/(D-1), subtracted from ca-H'KSm, gives the largest number. Graphically, that's the lag for which we have
the greatest vertical distance between the asymptotic accumulation line (or ca-H'KSm) and R/(D-1) (the other
plotted relation on Fig. 27.5).

Predictability



Incremental redundancies quantify how well several sequential measurements of x predict the next x, at that lag
and embedding dimension. For instance, say incremental redundancy at the optimum embedding dimension
stays roughly constant with lag (as happens with deterministic, nonchaotic data, as in Fig. 27.3a). That means
predictability about the next x remains constant at some positive value, regardless of the number of
measurements included in the vector. In contrast, a downward-sloping relation (such as for chaos, as in Fig.
27.3b) means that our ability to predict the next x from D measurements decreases with lag.

A typical goal in regard to predictability is to find the smallest embedding dimension that provides optimum
predictive power, for the given accuracy of the measurements and lag. That dimension is indicated by the
proximity of the relations for successive embedding dimensions on the graph of incremental redundancy versus
lag (e.g. Fig. 27.3), as mentioned earlier. When those relations get close to the asymptotic accumulation line,
predictive ability has nearly reached the noise scale. Further increases in embedding dimension then are
fruitless; no more predictive power can be gained.

The same types of graphs also indicate approximate limits of predictability in terms of lag. If the general trend
of the ∆R-versus-m relation is roughly horizontal (e.g. Fig. 27.3a), then lag doesn't affect predictive power. If,
instead, incremental redundancy decreases with lag (Fig. 27.3b at small lags) at a large embedding dimension,
then we're losing predictive power as we increase lag. That decay of ability to predict typifies chaos, although
it's not unique to chaotic systems (Ellner 1991). Predictability at that resolution becomes essentially zero when
the relation falls to the vicinity of the abscissa (an incremental redundancy near zero).

In addition to the possible uses of mutual information and redundancy discussed above, other applications are
being looked at as well. For instance,  (1993) proposes a way to use redundancies to test for nonlinearity in
a time series.

Summary

Mutual information extends the idea of entropy to two systems. Entropy thereby becomes a joint entropy—the
average amount of uncertainty reduced (or information acquired) by measurements of two or more systems.
Joint entropy for two mutually unrelated systems is the sum of their self-entropies. Joint entropy for two
mutually related systems, in contrast, is the self-entropy of one system plus the conditional entropy of the other.
Mutual information is the reduction in the uncertainty of a value of one system as a result of knowing a value of
the other system. In terms of entropies, it's the sum of the two self-entropies minus the joint entropy. That's
often expressed in one condensed equation, in terms of probabilities. Other interpretations of mutual
information are that it's a measure of:

• the average amount of information contained in one system about another

• the degree of association between two processes or variables

• the amount of information that one measurement gives about a later measurement of the same variable.

Redundancy as used in chaos theory extends the idea of entropy to three or more systems. It's the mutual
information of three or more systems or dimensions. As such, it's still the sum of the self-entropies minus the
joint entropy. As with mutual information, it's often defined by a condensed equation in terms of probabilities.
It quantifies the average amount of information common to several systems or variables. Incremental
redundancy (sometimes called marginal redundancy) is the amount of increase in redundancy as a vector's
embedding dimension is increased from D to D+1. Incremental redundancy also is the average amount of
information that several successive measurements of x give about the next x. Alternatively, it's a quantitative
measure of the average number of bits that several sequential measurements of x can predict about the next x.



EPILOGUE

Phase space portraits, correlation dimensions, Lyapunov exponents, K-S entropy, and other measures, are
beautiful and potentially useful tools. However, they still need some development to be trustworthy in practice.
For example, Caputo & Atten (1987:1311) comment that there's no reliable way to estimate Lyapunov
exponents. Eubank & Farmer (1990: 171) say that "algorithms for computing dimension, Lyapunov exponents,
and metric entropy are notoriously unreliable. They produce a number. But . . . it is very difficult to know a
priori how much to trust the number . . . Many incorrect conclusions have been reached by naive application of
these methods." Paul Rapp, lecturing at a 1992 us national conference on chaos, put it as follows: "These
methods are not robust against misapplication. They fail in a particularly pernicious way. Rather than simply
failing to produce a result, they can produce [plausible but totally] spurious results. Even when applied
rigorously, care must be exercised when interpreting results."

The main reasons for those notorious practical difficulties are:

• Small and/or unrepresentative datasets.

• Noise The typical indicator of chaos was developed through numerical experiments with virtually
unlimited amounts of noiseless data. In other words, the methods work best (and indeed depend) on clean,
accurate data with a large number (say, thousands or millions) of observations. We can generate such
voluminous and virtually noise-free datasets in computer experiments and sometimes in the laboratory.
However, they're mighty scarce in the real world.

• Number of important variables The methods were developed with (and therefore work best on) low-
dimensional systems. Identifying chaos in high-dimensional systems is much more difficult than in low-
dimensional systems (Glass & Mackey 1988: 42).

• Questionable fulfillment of basic assumptions (e.g. deterministic systems; transients no longer relevant)
Such assumptions may not hold for a real-world system (Glass & Kaplan 1993).

For all of these reasons, the very important practical aspect of identifying chaos in real data is still in relative
infancy.

Because of the problems just mentioned and others, no single criterion by itself usually is enough or reliable for
determining chaos (Wolf et al. 1985, Glass & Mackey 1988, Prichard & Price 1992, Provenzale et al. 1992).
Instead, try several different tests or approaches. Most of these involve identifying and characterizing the
chaotic attractor. Another advantage to doing several tests is that you learn more about the system, even if it
turns out not to be chaotic or if you can't determine whether it's chaotic.

On another note, one important message I hope you've absorbed from this book is not to be intimidated by the
mysterious, impressive-sounding names given to analytical tools in science and mathematics. Analyses or
concepts with imposing names can be quite simple and straightforward. D-dimensional phase space, invariant
probability distribution of attractor, autocorrelation function, K-S entropy, Lyapunov exponents, correlation
dimension, mutual information, redundancy, and the many other associated ideas really aren't all that difficult
once we pick them apart and see what they consist of.

We've come a long way, you and I. Take a second and think back on what you knew about chaos when you
started this book . . . but only a second. Now that you're up to this rung of the ladder, it's on to the next. It's the
climb that's fun. Hope to see you along the way.



APPENDIX
SELECTED LAWS OF POWERS, ROOTS AND LOGARITHMS
0c = 0 (c being positive)

0-c= ∞ (c being negative), since 0-c= 1/0c=1/0=∞

1c = 1 (regardless of whether c is positive or negative)

x0 = 1 (if x doesn't equal 0)

x1 = x

x-c= 1/xc=(1/x)c

x-1 = 1/x

(xy)c= xcyc

xc(xd) = x(c+d)

xc/xd= x(c-d)

(x/y)c = xc/yc

(xc)d = xcd

-(logx) = log(x-1)=log(1/x)

logx= -[log(1/x)]

log(xc) = clogx

log(xy) = logx+logy

y = cxd transformed into logs: logy=logc+d (logx)

logax = logbx/logba

Hence, if a=2 and b=e: log2x=logex/loge2=logex/0.69315=1.443 logex.



GLOSSARY

A

accuracy (a) A numerical measure of how close an approximation is to the truth; (b) correctness, in the
sense of lack of bias.

adaptive histogramming Any histogramming procedure in which bin width is allowed to vary (usually
according to local densities in the data).

adaptive kernel density estimator A probability-estimation technique consisting of the kernel density
estimator but with the variation that bin width changes according to local density of data points.

affine Produced by a transformation in which the variables or axes haven't all been scaled by the same
factor.

algorithm A recipe, plan, sequence of steps, set of instructions, list of rules, or set of mathematical
equations used to solve a problem, usually with the aid of a computer. Some of the many possible forms of
an algorithm include a loosely phrased group of text statements, a diagram called a flowchart, or a
computer program.

almost-periodic orbit An orbit that comes closer and closer to repeating itself with time.

amplitude (a) The extreme range of a fluctuating quantity, such as a pendulum, tidal cycle, etc.; (b) the
maximum difference between the value of a periodic oscillation and its mean. In ''next-amplitude" plots, an
amplitude is simply a variable's local maximum or peak value of each oscillation, within a sequence of
oscillations.

aperiodic (a) Not repeating with time, that is, lacking periodicity or quasiperiodicity (tantamount to having
an infinite period); (b) occurring as a transient or pulse only once over infinite time.

arithmetic mean Same as mean (the sum of all data values divided by the number of such values).

attractor The phase space point or set of points representing the various possible steady-state conditions
of a system; in other words, an equilibrium state or group of states to which a dynamical system converges.

attractor reconstruction See reconstruction of attractor.

autocorrelation Correlation of a variable at one time with itself at another time. Also called serial
correlation.

autocorrelation coefficient A dimensionless numerical indicator (calculated as autocovariance divided by
variance) of the extent to which the measurements of a time series are mutually related.

autocorrelation function The spectrum or entire series of autocorrelation coefficients for a time series.

autocorrelation time The time required for the autocorrelation function to drop to 1/e (= 1/2.718 = 0.37).

autocovariance A measure of the degree to which the observations of a time series are related to
themselves, numerically calculated as:



 

autonomous (a) Self-governing, propagating from within; (b) independent of time.

axis (a) One of a group of mutually perpendicular reference lines passing through the origin of a graph; (b)
a line about which a body or group of bodies can rotate.

axis vector Principal axis.

B

band-pass filter A filter that passes only those frequencies that fall within a desired range or band.

basic wave Fundamental wave.

basin of attraction The group of all possible phase space points that can evolve onto a given attractor.

basis A set of nonparallel and linearly independent vectors.

bifurcation (a) In general, a branching into parts or into connected segments (usually from one segment to
two); (b) any abrupt change in the qualitative form of an attractor or in a system's steady-state behavior, as
one or more parameters are changed.

bifurcation-rate scaling law An equation that estimates the critical parameter-value at which a particular
bifurcation occurs, within a series of bifurcations in period-doubling.

bifurcation diagram A graph showing all possible solutions (excluding transients) to an equation that
relates a variable to a control parameter. Such a graph usually is drawn specifically to show bifurcations
(period-doublings) of the variable.

bifurcation point A critical parameter value at which two or more branches of system-behavior emerge.

binary Having two equally likely, mutually exclusive possibilities.

binary digit Either of the two digits, conventionally 0 and 1, used in a binary system of reading numbers
or of naming numbers; as such, it's the smallest amount of information that can be stored in a computer.

binary system A system that is set up or operates on binary principles.

bit (a) Contraction of "binary digit;" (b) either of the digits 0 or 1; (c) the unit of information when logs are
taken to the base 2, that is, a measure of information equal to the decision content of one of two mutually
exclusive and equally likely values or states (sometimes also called a shannon).

box-counting dimension Similarity dimension as obtained from a grid of boxes.

box dimension Same as box-counting dimension.

broadband spectrum A frequency-domain (Fourier-analysis) plot revealing no outstanding periodicity.

butterfly effect Sensitive dependence on initial conditions. The "butterfly" name stems from the theoretical
possibility that a very slight change in the state of a system (such as a butterfly flapping its wings) might
create slightly different "initial" conditions and thereby influence the long-term resulting pattern (the
weather), even in some other part of the world.



byte (a) The amount of memory space needed to store one character on a computer (normally eight bits);
(b) a string of binary elements operated on or treated as a unit.

C

Cantor set A fractal obtained by dividing a line into equal subparts, deleting one or more of those parts,
and repeating that process indefinitely.

capacity A dimension Dc defined only at the limit where the scaling object approaches length zero; written
in equation form as:

 

cellular automaton A mathematical construction consisting of a system of entities, called cells, whose
temporal evolution is governed by a set of rules and whose behavior over time becomes, or at least may
appear, highly complex.

chain rule A rule that tells how to differentiate a function of a function, that is, how to find the derivative
of a composite function. The name stems from the fact that the various functions fit together like a chain.
For example, if y is a function of t, and t is a function of x, then the chain rule says that (dy/dx)=(dy/dt)
(dt/dx).

chaologist A person who studies chaos.

chaology The study of chaos.

chaos (a) Sustained and random-like long-term evolution that satisfies certain special mathematical criteria
and that happens in deterministic, nonlinear, dynamical systems: (b) largely unpredictable long-term
evolution occurring in a deterministic, nonlinear dynamical system because of sensitivity to initial
conditions.

chaos theory The principles and operations underlying chaos.

chaotic attractor An attractor that shows sensitivity to initial conditions (exponential divergence of
neighboring trajectories) and that, therefore, occurs only in the chaotic domain.

characteristic exponent Lyapunov exponent.

circle map Any of a class of nonlinear difference equations that map a point on a circle to another point on
the circle (Middleton 1995).

classical decomposition The breaking down of a time series into its component constituents of trend,
seasonality, cyclicity, and noise.

coarse graining Categorizing or partitioning, such as when reducing a set of observations of a continuous
variable to a stream of discrete symbols.

coefficient (a) A constant number or symbol prefixed as a multiplier to a variable or unknown quantity
(and hence a constant as opposed to a variable); (b) a dimensionless, numerical measure of a set of data, for
example, an autocorrelation coefficient.

complex number Any number of the form a+jb, where a and b are real numbers and j is an imaginary
number (the square root of -1).



complexity A type of dynamical behavior in which many independent agents continually interact in novel
ways, spontaneously organizing and reorganizing themselves into larger and more complicated patterns
over time.

conditional entropy The uncertainty in a measurement of variable y from system Y, given a value of
variable x from coupled system X.

conditional probability The likelihood that a particular state or event will happen, given that one or more
other specified states or events have taken place previously.

conservative Not losing energy (keeping instead a constant area or volume in phase space), with time.

constant A quantity that doesn't vary under specified conditions.

continuous Defined at all values of the given (independent) variable.

continuous random variable A random variable that can take on any value over a prescribed continuous
range.

control parameter A controllable constant or quantity, different values of which can produce different
cases or outcomes of an experiment or equation.

converge To approach a finite limiting value.

coordinate (noun) (a) One of a set of numbers that locate a point in space; (b) the axis of a graph, as in
"coordinate axes" or "coordinate system."

coordinate vector A vector whose starting point is at the origin (0,0) of the graph. The word "coordinate"
for such vectors is often dropped for convenience.

correlation dimension An exponent in a power law (i.e. slope of straight line) on a logarithmic plot of
correlation sum (as the dependent variable) versus the radius ε of an encompassing circle, sphere, or
hypersphere.

correlation exponent Correlation dimension.

correlation integral Correlation sum.

correlation sum A normalized total number of pairs of points within a circle or sphere of radius ε,
obtained by dividing that total sum by the total number of points on the attractor.

correlogram A plot of autocorrelation coefficient (on the ordinate) versus lag, on arithmetic scales.

crisis An abrupt, discontinuous change in a chaotic attractor as a parameter is varied, characterized by
either destruction of the chaotic attractor or its expansion to a much larger interval of x.

cubic polynomial A polynomial in which the highest power to which any variable is raised is 3.

cubic spline A smoothly varying, cubic-polynomial curve fitted between two data points, often used to
interpolate "data" values between the two measured points.

cycle A series of events or observations that occur in a fixed sequence and return to the original state and
which then repeat themselves in a regular pattern.



cyclicity Same as periodicity, that is, the tendency for any pattern to repeat itself over fixed intervals of
time.

D

data-adaptive Said of methods of analysis in which the operations are applied to classes or subgroups that
are defined differently from one to another, according to specified peculiarities of the data (e.g. number of
observations in a class).

decomposition (a) The numerical expression of a quantity in terms of its simpler components; (b) see
classical decomposition.

degrees of freedom The number of independent quantities (variables or parameters) or pieces of
information that must be specified to define the state of a system completely. The field of statistics also has
several other less common meanings.

delay-coordinate method Same as time-delay method.

delay method Same as time-delay method.

delay time (a) A delay, in time units, usually accompanied by an integer parameter to account for the
units; (b) in some authors' usage, same as lag time.

delay vector Same as lag vector.

density Same as probability density function.

density estimation The estimation of probabilities.

density function Same as probability density function.

dependent variable The output variable of a function, as determined by the values of the independent
variables.

derivative (a) Generally, a value that derives from, comes from, or is traceable to a particular source, such
as a point on a curve; (b) in mathematics, the slope (rate of change) of the line that is tangent to a point on a
curve.

deterministic (a) Completely and exactly specified (at least to within measuring accuracy) by one or more
mathematical equations and a given initial condition; (b) said of a system whose past and future are
completely determined by its present state and any new input.

deterministic fractal A fractal that looks exactly the same at all levels of detail.

detrend To transform trended data in such a way that they have an approximately constant mean and
variance with time, so that the trend is removed.

diffeomorphic Smooth and invertible.

diffeomorphism A differentiable mapping that has a differentiable inverse.



difference equation A recurrence equation based on changes that occur at discrete times and solved by
iteration. An example is the logistic equation. In mathematical jargon, a difference equation is an equation
in which a difference operator is applied to a dependent variable one or more times. (A difference operator
is a twofold mathematical operation in which (1) a small increment is added to the independent variable,
and then (2) the original value of the independent variable is subtracted.)

difference plot A graph on which the coordinates of each plotted point are successive differences. Each
successive difference is the difference between an observation xt and some later observation (on the
abscissa) and the difference between xt+m and a similarly lagged observation (on the ordinate).

differencing The filtering of a time series by subtracting each value, in turn, from a subsequent (lagged)
value. See also first-differencing, second-differencing, and difference plot.

differential equation An equation expressing a relationship between a function and one or more of its
derivatives and that therefore is based on changes that occur continuously.

digit A code character, such as a number from 0 to 9 or a letter of the alphabet.

digital In numerical form, as in (a) calculation by numerical methods or by discrete units or (b)
representation of data by numerical digits or discrete units.

digitize (a) To approximate by discrete samplings; (b) to put data into digital (numerical) notation (as for
use in a digital computer).

dimension Generally, a magnitude measured in a particular direction, as on the axes of a graph. In chaos
theory, "dimension" is used in any of several variations of that general meaning, such as (a) each axis of a
set of mutually perpendicular axes in Euclidean space; (b) the number of coordinates needed to locate a
point in space; (c) the maximum number of variables of a system; (d) any of various quantitative,
topological measures of an object's complexity, and other variations.

discrete Defined or occurring only at specified values.

discrete Fourier transform (DFT) A mathematical operation that transforms a series of discrete, equally
spaced observations measured over a finite range of time into a discrete, frequency-domain spectrum. Also
called a finite Fourier transform.

discrete random variable A random variable that only takes on certain specified outcomes or values, with
no possible outcomes or values in between.

discretize To extract equally spaced (in time) discrete values from a continuous time series.

dissipative system A system that loses energy with time. Evidence of energy loss with time includes an
irreversible evolution toward an asymptotic or limiting condition over time and a decrease of phase space
area or volume, with time.

distance formula The simple equation, based on the Pythagorean theorem, for finding the straight-line
distance c between two points in Nd-dimensional space:
c = ([x2-x1]2 + [y2-y1]2 + [z2-z1]2 + . . . + [w2-w1]2)0.5

where w is the Ndth variable of the group of Nd variables.



distribution function A mathematical operation that gives the proportion of members in a sample or
population having values less than or equal to any given value. See also frequency distribution and
probability distribution.

dot product A scalar quantity for two vectors that have a common origin, obtained either by (a)
multiplying their x coordinates (x1x2), their y coordinates (y1y2), etc. for any other dimensions involved, and
then summing those coordinate products (x1x2+y1y2+etc.), or (b) multiplying the vectors' lengths by the
cosine of their included angle.

dynamical Changing with time.

dynamical system (a) Anything that moves or that evolves in time; (b) any process or model in which each
successive state is a function of the preceding state.

dynamical-systems theory (a) The study of phenomena that vary with time; (b) a language that describes
the behavior of moving or evolving systems, especially as affected by external control parameters.

dynamics (a) That branch of physics (mechanics) that deals with forces and their relation to the motion and
sometimes the equilibrium of bodies; (b) the pattern of change or growth of an object or phenomenon.

E

embedding The preparation of a pseudo phase space graph to reconstruct a system's dynamics (attractor),
using successively lagged values of a single variable.

embedding dimension The total number of separate time series (consisting of the original series and
subgroups obtained by lagging that series) used in a pseudo phase space plot or in a more rigorous
mathematical analysis.

emergent Said of phenomena or systems in which new, increasingly complex levels of order appear over
time.

entropy (a) A measure of unavailable energy (thermodynamics), degree of disorder or disorganization,
probability (in inverse proportion), uncertainty, randomness, variety of choice, surprise, or information; (b)
a quantity,

 

computed for a discrete random variable whose ith outcome has probability P.

equation of motion An equation in which time is the independent variable.

equilibrium point Same as fixed point.



ergodic (a) The property whereby statistical measures of an ensemble don't change with time and, in
addition, all statistics are invariant from one time series to another within the ensemble; (b) said of a
system for which spatial or ensemble averages are equal to time averages (meaning that time averages are
independent of starting time and that most points visit every region of phase space with about equal
probability); (c) said of a trajectory if it comes back arbitrarily close to itself after some time; (d) the
property whereby averages computed from a data sample converge over time to ensemble averages (i.e.
statistics of all initial states ultimately lead to the same set of statistics). Eubank & Farmer (1990) mention
additional usages of the word and state that "there is no universally accepted definition of the word
'ergodic'."

ergodic hypothesis (a) The dynamical theory that says that, in the limit as the number of observations goes
to infinity, a time average equals a space average (i.e. the theory says that the point that represents the state
of the system spends, in each phase space compartment, an amount of time proportional to the volume of
that compartment); (b) the dynamical theory that says that, for a system in statistical equilibrium, all
accessible states are equally probable, so that the system passes rapidly through all of them.

ergodic theory (a) The mathematical study of the long-term average behavior of dynamical systems; (b)
the study of measure-preserving transformations; (c) ergodic hypothesis.

error The difference between a quantity and an estimate of the quantity.

Euclidean dimension The common or standard notion of "dimension" whereby a point has dimension
zero, a line dimension one, a surface dimension two, and a volume dimension three.

exponential (a) In a general sense, relating to powers (exponents); (b) referring to a rate of change that's
proportional to a constant raised to a power, where the power includes the independent variable (see
exponential divergence and exponential equation); (c) referring to a specific mathematical series known as
an "exponential series."

exponential divergence Temporal separation of two adjacent trajectories according to an exponential law,
that is, by a straight-line relation between the log of separation distance (as the dependent variable) and
time.

exponential equation (exponential function) An equation relating a dependent variable to some constant
raised to a power, where the power includes the independent (given) variable. Examples are y=cx and
y=acbx, where x and y are variables and a, b, and c are constants. An exponential equation plots as a straight
line on semilog paper, with the log scale being used for y (or y/a) and the arithmetic scale for x.

F

false nearest neighbor A point in lagged space that is close to another point only because the embedding
dimension is too low.

fast Fourier transform (FFT) Any member of a family of computer algorithms for calculating the various
real and imaginary parts of the discrete Fourier transform (DFT) efficiently and quickly in about Nlog2N
operations.

feedback That part of the output that returns to serve as input again, in a temporal process.

Feigenbaum constant Same as Feigenbaum number.



Feigenbaum number A universal constant (4.6692 . . .), discovered in the mid-1970s by Mitchell
Feigenbaum, that represents the rate (in the limit where number of periods, n, becomes infinite) at which
new periods appear during the period-doubling route to chaos. The Feigenbaum number (also known as the
Feigenbaum constant) is defined as:

 

fidelity A measure of how closely linked one measurement is to its predecessor.

fiducial Referring to something used as a standard of reference for measurement or calculation. Examples:
"fiducial point," fiducial trajectory.

fiducial trajectory A trajectory used as a reference trajectory from which to compute orbital gaps and the
Lyapunov exponent.

filter (linear filter) Any mathematical technique or operator that systematically changes an input series,
such as a time series or power spectrum, into a new (output) series that has certain desired qualities. Some
purposes of filters are to (a) eliminate periodicity or trend; (b) reduce or eliminate noise; (c) suppress high
or low frequencies; and (d) remove autocorrelation.

final state Point attractor.

first derivative The initial derivative of a function.

first-difference plot A graph on which the coordinates of each plotted point are first differenced data, in
the form of the difference between xt+m and xt on the abscissa and the difference between xt+2m and xt+m on the
ordinate, in which m is lag.

first-difference transformation A transformation performed by first-differencing the data.

first-differencing Calculation of the difference between a measured value (xt) and a lagged measurement
(xt+m), for all values in a time series. This is the most common form of differencing.

first harmonic A wave that has the same frequency as the fundamental wave, in Fourier analysis.

first principal axis The principal axis that is stretched the most (or reduced the least) in the phase space
evolution of an arbitrarily designated element.

first-return map A (pseudo) phase space model of Poincaré-section data, giving the value of some
variable as related to its preceding value at that section.

fixed point (a) In discrete processes, a single phase space point that is its own iterate (a point for which
xt+1=xt); (b) in continuous processes, a constant, time-independent solution to a differential equation. Also
called equilibrium point or steady state. See also stable fixed point and unstable fixed point.

fixed-point attractor Point attractor.

flip bifurcation Period-doubling.

flow (a) A set of differential equations; (b) a phase space trajectory or bundle of trajectories obtained by
solving a set of differential equations.



folding A topologist's explanation of how a particular range of output values results from (a) two different
ranges of input values during iteration; or (b) continued phase space evolution of a chaotic trajectory as it
reaches the limiting value of the variable(s) and then rebounds or deflects back onto the attractor.

forced oscillator A device to which extra energy is periodically added, by some external means.

fork-width scaling law An equation that estimates the width between the two parts of any particular
bifurcation (fork), within a series of bifurcations in period-doubling.

Fourier analysis A mathematical technique for uniquely describing a time series in terms of the
frequency-domain characteristics of its periodic constituents.

Fourier coefficient (a) A numerical value reflecting the strength of a particular constituent wave relative
to that of other constituent waves; (b) one of the coefficients needed to express a function formally in terms
of its Fourier series.

Fourier cosine series An equation for getting wave height for a particular harmonic by adding the cosines
of angles associated with constituent wavelengths, in Fourier analysis.

Fourier integral A mathematical expression that extends the Fourier series to the more general situation
of an infinitely long period by decomposing a continuous time series into sinusoidal constituents at all
frequencies and merging the variances into a continuous distribution of variances.

Fourier series An equation that describes a periodic time series in terms of the cosines and/or sines of
constituent harmonics and their associated coefficients.

Fourier sine series An equation for getting wave height for a particular harmonic by adding the sines of
angles associated with constituent wavelengths, in Fourier analysis.

Fourier transform A mathematical frequency-domain characterization of a time series, consisting of
constituent amplitudes and phases at each frequency.

fractal (a) A pattern that repeats the same design and detail or definition over a broad range of scale; (b) a
set of points whose dimension is not a whole number (Lorenz 1993).

fractal dimension A generic term for any dimension (e.g. similarity dimension, capacity, Hausdorff-
Besicovich dimension, correlation dimension, etc.) that can take on a non-integer value.

fractional dimension Fractal dimension.

frequency (a) In physics, the number of repeating wavelengths, periods, or cycles in a unit of time; (b) in
statistics, the number of observations or individuals in a class; (c) also in statistics, a probability or
proportion (relative frequency).

frequency analysis Same as Fourier analysis.

frequency distribution A list of class intervals or values and their associated number of observations
(frequencies). The frequencies or number of observations in each class are often normalized to range from
0 to 1 and are often assumed equal to probabilities.

frequency domain The representation of time series data in terms of their frequencies (or of some other
wave characteristic) and respective variances.

frequency locking Frequency adjustment by an oscillator in response to some periodic stimulus.



frequency spectrum A plot of the distribution of calculated powers as a function of frequency, as obtained
in a Fourier analysis. Also known as power-density spectrum, power spectrum, or spectral density.

function (a) An output variable or dependent variable whose value is uniquely determined by one or more
input (independent) variables; (b) an equation or relation between two groups A and B such that at least
one member of group A is matched with one member of group B (a "single-valued" function) or is matched
with two or more members of group B (a "multivalued" function). A single-valued function, for instance, is
y=3x; for any value of x, there is only one value of y, and vice versa. A multivalued function is y=x2; for
y=4, x can be+2 or -2, that is, one value of y is matched with two values of x. Many authors use "function''
to mean single-valued function.

fundamental frequency The frequency of the selected basic wave in a Fourier analysis.

fundamental wave A wave (usually the longest available, or the length of the time series) chosen as a
standard or reference wave in Fourier analysis.

fundamental wavelength The wavelength of the selected basic wave in a Fourier analysis.

G

geometric progression A sequence of terms whose successive members differ by a constant ratio or
multiplier. (Also known as a geometric series.)

geometric series A series of numbers in which the ratio of each member to its predecessor is the same
throughout the sequence. Also known as a geometric progression. Example: 1, 2, 4, 8, 16, 32, etc., in
which the ratio of any number to its predecessor is 2.

golden mean The unique value obtained by sectioning (a) a straight line such that the ratio of the shorter
segment to the longer segment equals the ratio of the longer segment to the total length, or (b) the sides of a
rectangle such that the ratio of their difference to the smaller equals the ratio of the shorter to the longer.

Gram-Schmidt orthogonalization Same as orthogonalization.

H

Hamiltonian system A system with no friction.

harmonic (a) As an adjective, expressible in terms of sine and cosine functions; (b) as a noun, any
component of a periodic quantity having a frequency that's an integer multiple of a given fundamental
frequency. In a Fourier analysis, for example, the first harmonic is the fundamental wave; the second
harmonic is the constituent wave having a frequency twice that of the fundamental wave; the third
harmonic is the constituent wave that has a frequency three times that of the fundamental wave; etc.

harmonic analysis The frequency-domain description of a time series, especially of a periodic function, by
summing sine and cosine functions (its constituent harmonics).

harmonic number The number corresponding to a particular harmonic. For example, the harmonic
number of the second harmonic is two, that of the third harmonic is three, etc.



Hausdorff dimension That critical dimension DH at which the computed value of the measure Mε changes
abruptly from zero to infinity (or from infinity to zero), using the relation .

Hausdorff-Besicovich dimension Same as Hausdorff dimension.

Heaviside function A simple mathematical function or number that is zero if a specified expression is
negative (less than zero) and 1 if it is positive (zero or greater).

Hénon map A phase space plot of iterates of the equations xt+1=yt+1-axt2, and yt+1=bxt where a and b are
constants.

high-pass filter A filter that lets high frequencies pass and blocks low frequencies.

histogram A bar diagram showing the frequency distribution of a variable.

homoclinic orbit An orbit that is asymptotic to a fixed point or periodic orbit and that emanates from the
same point or orbit (Lorenz 1993).

homoclinic point The fixed point from which a homoclinic orbit emanates and which it subsequently
approaches (Lorenz 1993).

Hopf bifurcation An abrupt increase (by one) in the number of fundamental frequencies of a system,
caused by the increase of a control parameter past a critical value. Commonly applied in the quasiperiodic
route to chaos. Named for the work done on the subject by mathematician Eberhard Hopf in 1942.

hypercube (a) An imaginary phase space zone or subspace of four or more dimensions and characterizable
by a length; (b) the multidimensional analog of a cube.

hyperspace Space of more than three dimensions.

hypersphere (a) An imaginary phase space zone or subspace of four or more dimensions and
characterizable by a length (e.g. radius); (b) the multidimensional analog of a sphere.

I

identity line (or identity map) A 45° straight line on an arithmetic-scale two-coordinate graph,
representing the relation y=x.

imaginary number Any number consisting of a real number times the square root of minus one.

incremental redundancy The amount of change in the redundancy of a vector when we increase its
dimension by one, at a constant lag.

independent variable (a) An input number to a function; (b) a variable unaffected by the value taken on
by other variables; (c) a variable that an experimenter deliberately manipulates, to find its effect on some
other quantity (the latter being the dependent variable).

information A numerical measure of (a) knowledge or content of any statement, (b) how much is learned
when the contents of a message are revealed or (c) the uncertainty in the outcome of an experiment to be
done.



information dimension The slope of a straight line on a semilog plot of information, here defined as Iε
(dependent variable, on arithmetic scale) versus 1/ε (log scale), where ε is characteristic size of measuring
device and

information entropy A measure devised by Shannon (Shannon & Weaver 1949; called by him simply
"entropy") for the amount of information in a message, and identical in equation form to thermodynamic
entropy.

information theory The formal, standard treatment of information as a mathematically definable and
measurable quantity.

initial conditions Values of variables at the beginning of any specified time period.

inner product Same as dot product.

integer A whole number with no decimal or fractional part.

integral (a) A sum obtained by adding a group of separate elements; (b) the result of mathematically
integrating a function or an equation.

intermittency A complex steady-state behavior (often a route to chaos) consisting of orderly periodic
motion (regular oscillations, with no period-doubling) interrupted by occasional bursts of chaos or noise at
uneven intervals.

interpolation The process of estimating one or more intermediate values between two known values.

interval (a) The length of time between successive events; (b) a set of real numbers that fall between two
end-member real numbers.

invariant (a) Independent of the particular coordinates, that is. unaffected by a change in coordinates or by
a particular transformation, such as a change from an original phase space to a time-delay reconstruction;
(b) remaining forever in (never escaping from) a particular region of phase space; (c) unchanged by the
system's dynamics over time.

invariant manifold A collection of phase space trajectories, none of which ever leave the collection.

invariant measure (a) A measurable property that's unchanged by transformations; (b) a measurable
feature that doesn't change with time, that is, doesn't change under the action of the dynamics; (c) a
probability-distribution function describing the long-time likelihood of finding a system in a particular zone
of phase space.

invariant probability distribution The frequency distribution that is approached as time goes to infinity.
Also known as (an attractor's) probability distribution, probability density, probability density distribution,
invariant measure, and other combinations of these terms.

invertible (a) Having an inverse; (b) having a unique successor or predecessor, or in other words, capable
of being solved uniquely either forwards or backwards in time. Example: capable of indicating either xt or
xt+m, given the other.

isotropic Independent of direction.



iterate (a) As a verb, to repeat an operation over and over, often with the aim of coming closer and closer
to a desired result; (b) as a noun, a value calculated by any mathematical process of successive
approximation.

iteration (a) Any process of successive approximation; (b) repeated application of a mathematical
procedure, with the outcome of one solution fed back in as input for the next; (c) each successive step of an
iterative process.

J

joint entropy The average amount of information obtained (or average amount of uncertainty reduced) by
individual measurements of two or more systems.

joint probability The probability that two specified events (usually independent events) will happen
together. "Together" doesn't necessarily mean "simultaneously."

joint probability distribution A list, table, or function for two or more random variables, giving the
probability of the joint occurrence of each possible combination of values of those variables.

K

K-S entropy Kolmogorov-Sinai entropy.

kernel density estimator A probability-estimation technique in which a fixed, local probability
distribution (kernel) is applied to the neighborhood centered on each datum point.

Koch snowflake A geometric pattern formed from a straight line by applying a particular, constant,
repeated generating procedure. The most common generating procedure is to replace the middle third of the
line with an equilateral triangle (also known as "von Koch snowflake").

Kolmogorov-Sinai (K-S) entropy Entropy (based on sequence probabilities) per unit time in the limits
where time goes to infinity and bin size goes to zero. Also known as source entropy, entropy of the source,
measure-theoretic entropy, metric-invariant entropy, and metric entropy.

L

lag The basic time interval or amount of offset between any two values being compared, within a time
series.

lag-m autocorrelation coefficient Autocorrelation coefficient.

lag-m serial correlation coefficient Autocorrelation coefficient.

lag space A special but very common type of pseudo phase space in which the axes or dimensions
represent successive values of the same feature (x) separated by a constant time interval.

lag vector A plotted point as defined by successively lagged values of some variable in reconstructed
(pseudo) phase space.



lagged phase space See lag space.

limit cycle A self-sustaining phase space loop that represents periodic motion. Hence, it's a periodic
attractor.

line spectrum Periodogram.

linear (a) Pertaining to lines, usually straight ones; (b) having no variable raised to a power other than one
(see linear equation).

linear equation An equation having a straight line for its graph, that is, an equation in which the variables
are raised to the first power only (also called a polynomial equation of the first degree). Examples of linear
equations are ax+b=0, y=c+bx, and ax+by+cz=0, where x, y, and z are variables and a, b, and c are
parameters.

linear filter See filter.

linear function A mathematical relationship in which the variables appear only in the first degree,
multiplied by constants, and combined only by addition and subtraction.

linear interpolation Interpolation based on straight-line relations between observations.

linear system A system in which all observations of a given variable plot as a straight line (arithmetic
scales) against observations of a second (or lagged) variable. In lag space, for example, all observations
then are said to be "linearly related" to observations at a later time.

local Lyapunov exponent The exponential rate of trajectory convergence or divergence in a local region
of an attractor.

logarithm An exponent that is the power to which a base number (usually 10, 2, or e) is raised to give
another number.

logarithmic equation An equation of the form ay=cxd, in which a, c, and d are constants. Such an equation
plots as a straight line on semilog paper (with x on the log scale and y on the arithmetic scale).

logistic (a) In mathematics and statistics, referring to a special type of so-called growth curve (an
expression that specifies how the size of a population varies with time) (however, that curve isn't the
"logistic equation" of chaos theory; see logistic equation); (b) in a general sense, skilled in computation;
(c) in military usage: referring to the provision of personnel and material.

logistic equation (a) Historically and generally, the relation xt+1=k/(1+ea+bx) where the constant b is less than
zero; (b) in chaos theory, the relation xt+1=kxt(1-xt). Both equations are iterative types that are popular in
biology as models for population growth.

low-pass filter A filter that lets low frequencies pass and blocks high frequencies.

Lyapunov characteristic exponent Lyapunov exponent.

Lyapunov characteristic number Lyapunov number.

Lyapunov exponent The average of many local exponential rates of convergence or divergence of
adjacent trajectories, expressed in logarithms and measured over the entire attractor. As such, it reflects the
average rate of expansion or contraction of neighboring trajectories with time.



Lyapunov number The number whose logarithm, to a given base, equals the Lyapunov exponent.

M

manifold (a) In general, an object consisting of many diverse elements; (b) in mathematics, a class with
subclasses (e.g. a plane is a two-dimensional manifold of points because it is the class of all its points); (c)
any smooth geometric object (point, curve, surface, volume, or multidimensional counterpart); (d) in the
nonchaotic domain, an attractor; (e) the basic space of a dynamical system.

map (a) A function, mathematical model, or rule specifying how a dynamical system evolves; (b) a
synonym for correspondence, function, or transformation; (c) the mathematical process of taking one point
to another. In the latter sense, a map tells how x will go, by a discrete step, to a new value of x. More than
one variable can be involved. Common forms of a map are an iterative equation and a graph; in graphical
form, a map shows a historical sequence of values.

mapping (a) A series of iterations of a map; (b) a dynamical system whose variables are defined only at
discrete times; (c) a function, correspondence, or transformation.

marginal distribution The complete distribution (summing to 1.0) of probabilities for any chosen variable
within a joint distribution.

marginal probability The probability of getting a particular value of one variable within a joint
distribution, regardless of the value of the other variable.

marginal probability distribution Same as marginal distribution.

marginal redundancy Same as incremental redundancy.

marginally stable Tending to keep a perturbation at about its original magnitude, over time.

mathematical fractal An object having the property that any suitably magnified part looks exactly like the
whole.

mean Arithmetic average (sum of values divided by the number of values).

measure (noun) (a) The size or quantity of something expressed in terms of a standard unit; (b) a scalar
associated with a vector and indicating its magnitude and sense but not its orientation; (c) the probability of
finding a value of a variable within a particular domain.

measure-preserving transformation A one-to-one transformation made such that the measure of every
set and of its inverse image agree.

measure-theoretic entropy Same as Kolmogorov-Sinai (K-S) entropy.

metric (noun) (a) In general, a standard of measurement (e.g. "there is no metric for joy"); (b) in
mathematics, a way of specifying values of a variable or positions of a point (e.g. "a Euclidean metric");
(c) also in mathematics, a differential expression of distance in a generalized vector space; (d) (adjective)
referring to measurement or to the meter (100 centimeters).

metric entropy Same as Kolmogorov-Sinai (K-S) entropy.

metrical Quantitative.



microstate A phase space compartment, possible outcome, or solution.

model A simplified representation of a real phenomenon, in other words, a stripped-down or
uncomplicated description or version of a real-world process. Models can be classified into physical
(scale), mathematical, analog, and conceptual models.

monotonic Always increasing or always decreasing, that is, pertaining to a continuous line along which the
slope keeps the same sign at all points.

moving average A transformed time series in which each value in the original time series is replaced by
the arithmetic mean of that value and a specified, constant number of adjacent values that come before and
after it.

multifractal Having different fractal scalings (dimension values) at different times or places, on an
attractor.

multitaper spectral analysis A type of Fourier analysis that optimally combines information from
orthogonal tapered estimates to minimize leakage and bias in the spectral estimate at each frequency.

mutual information (a) The amount by which a measurement of one variable reduces the uncertainty in
another; (b) the quantity of information one system or variable contains about another; (c) a measure of the
degree to which two processes or random variables are mutually related; (d) the amount of surprise or
predictability associated with a new measurement.

mutually exclusive A statistical term meaning that only one of various possible outcomes can occur at a
time.

N

nat The unit of measurement for the separation (or convergence) rate of two neighboring trajectories when
logs are taken to base 2.

natural fractal An object having the property that any suitably magnified part looks approximately like
the whole, the differences being minor, negligible and ascribable to chance.

natural measure A measure or observation that is a convergent time-average value.

natural probability measure Invariant measure.

nearest neighbor A pseudo phase space datum point that plots close to another point, for a particular
embedding dimension.

next-amplitude map A one-dimensional first-return map that uses only the high values of successive
oscillations (the successive maxima) of the time series.

next-amplitude plot Next-amplitude map.

noise (a) Any unwanted disturbance superimposed on useful data and tending to obscure their information
content; (b) unexplainable variability or fluctuation in a quantity with time; (c) in a general sense, anything
that impedes communication. Such disturbance or variability may be random fluctuations, reading errors,
analytical errors, sampling errors, and other factors.



nonautonomous Time-dependent.

noninvertible Not capable of being uniquely solved backwards in time, for example, not able to indicate xt

from a given value of xt+m.

nonlinear Not having a straight-line relationship, that is, referring to a response that isn't directly (or
inversely) proportional to a given variable.

nonlinear dynamics The study of motion that doesn't follow a straight-line relation, that is, the study of
nonlinear movement or evolution. As such, nonlinear dynamics is a broad field that includes chaos theory
and many mathematical tools used in analyzing complex temporal phenomena.

nonlinear equation An equation in variables x and y which cannot be put in the form y=c+bx, where b and
c are coefficients.

nonlinear system A system in which the observations of a given variable do not plot as a straight line (on
arithmetic scales) against observations of a second (or lagged) variable.

nonmonotonic Pertaining to a continuous line along which the slope changes sign.

nonparametric Not involving assumptions about specific values of parameters or about the form of a
distribution. ("Parameter" in this case usually refers to the statistical definition, namely numerical
characteristics of a population.)

nonperiodic Same as aperiodic.

nonstationary Said of a time series for which (a) a moving average isn't approximately constant with time
or (b) the mean and variance aren't approximately constant with time.

non-uniformity factor (NUF) The standard deviation of the local rates of convergence or divergence of
neighboring trajectories, sampled over the entire attractor.

norm The magnitude of a vector.

normal distribution A special type of symmetrical (bell-shaped) and continuous frequency distribution,
the graph or curve of which is given by a particular general equation (not reproduced here).

normalization The process of adjusting or converting one or more values to some standard scale. The
standard scale for a group of values usually is from 0 to 1. The conversion then consists of dividing each
value of the original dataset by some maximum reference quantity, such as the greatest value in the dataset
or a theoretical maximum value. A vector is normalized by dividing it by its magnitude, yielding a so-
called unit vector. Probability distributions are normalized by changing the variable so that the distribution
has a mean of 0 and a variance of 1.

null hypothesis A hypothesis that supposes no significant difference between a statistic for one group and
the same statistic for another.

O

observable (noun) A physical quantity that can be measured.



one-dimensional map An equation (in the form of either a written statement or a graphical plot) that gives
the value of a variable as a function of its value at one or more earlier times. The typical expression is xt+1

as some function of xt.

orbit The path through space taken by a moving body or point. Examples: (a) a trajectory that completes a
circuit (as, "the Moon orbits the Earth"); (b) a trajectory or chronological sequence of states as represented
in phase space.

ordinary probability A nonstandard term used in this book to mean the likelihood of getting a specified
state at a particular time.

origin A reference point in ordinary space or phase space. Most often, it's the point at which all variables
have a value of zero.

orthogonal (a) Perpendicular or normal (having to do with right angles); (b) unrelated or independent; (c)
said of elements having the property that the product of any pair of them is zero.

orthogonalization A procedure for realigning two or more nonorthogonal vectors into a set of an equal
number of mutually orthogonal vectors, all of which have the same origin.

orthonormal Said of axes or vectors that are mutually perpendicular and of normalized (unit) length.

orthonormalization The process of reducing mutually orthogonal vectors to unit length.

P

parabola The curve or path of a moving point that remains equidistant from a fixed point (the focus) and
from a fixed straight line (the directrix).

parallelogram law A graphical method for adding two vectors, whereby their starting points are placed
together to form two sides of a parallelogram, the two opposite sides then are drawn in, and the sum or
resultant is given by the diagonal drawn from the two starting points to the opposite corner.

parameter (a) In physics, a controllable quantity kept constant in an experiment as a measure of some
influential or driving environmental condition; (b) in mathematics, an arbitrary constant in a mathematical
expression and that can be changed to provide different cases of the phenomenon represented; (c) in
mathematics, a special variable in terms of which two or more other variables can be written; (d) in
statistics, a numerical characteristic of a population (such as, for example, the arithmetic mean).

parametric Involving parameters.

parametric equations In math, a set of equations that express quantities in terms of the same set of
independent variables (called parameters).

partition (a) As a noun, the collection of possible outcomes of an experiment; (b) as a noun, a
compartment (bin, cell, etc.) or group of compartments within phase space; (c) as a verb, to subdivide a
phase space or the range of values of a variable into a set of discrete, connected subintervals.

partitioning The process of dividing a dataset into classes or groups such that any one observation is a
member of only one class.

percentage-of-moving-average method Same as ratio-to-moving-average method.



period The amount of time needed for a system to return to its original state, that is, the time required for a
regularly repeating phenomenon to repeat itself once.

period-doubling A process whereby increases in a control parameter in certain iterated equations produce
trajectories made up of a successively doubled number of attractor values (e.g. 2, 4, 8, 16, etc. attractor
values), eventually leading to chaos.

periodic Regularly repeating. The repetition can be exact (in a pure mathematical sense) or approximate
(as with virtually all measured data).

periodic attractor An attractor consisting of a finite set of points that form a closed loop or cycle in phase
space.

periodic toroidal attractor A torus on which the composite trajectory's motion repeats itself regularly,
i.e., on an exact or integer basis.

periodic points Points (values) that are members of a cycle (and hence that recur periodically).

periodicity (a) The number of measured observations or iterations to a cycle or period; (b) the quality of
recurring at a definite interval (in other words, repetition of a given pattern over fixed intervals).

periodogram A graph showing the relative strengths (usually variances) of constituent waves at their
discrete frequencies. Discrete wave periods can be used in place of frequencies and are probably the origin
of the name.

perturbation (a) A difference between two neighboring observations, at a given time: (b) an intentional
displacement of an observation, at any given time; (c) a deliberate change (usually slight) in one or more
parameters of an equation.

perturbation vector Principal axis.

phase (a) The stage that a dynamical system is in at any particular time; (b) the fraction of a cycle through
which a wave has passed at any instant.

phase angle The starting angle or reference point within a wave cycle, from which a process begins.

phase diagram Same as phase portrait.

phase locking The beating in harmony or resonating together of many individual oscillators.

phase portrait A phase space plot of a system's various possible conditions, as shown by one or more
trajectories.

phase space An abstract mathematical space in which coordinates represent the variables needed to
specify the phase (or state) of a dynamical system at any time.

phase space portrait Same as phase portrait.

phase space reconstruction See reconstruction of phase space.

pitchfork bifurcation The spawning of two equilibrium points from one equilibrium point, as in period-
doubling.

Poincaré map Same as return map.



Poincaré return map Same as return map.

Poincaré section A slice or cross section in phase space, cutting through an attractor transverse to the
flow. The section shows dots that represent the trajectory's intersections with the plane or slice.

point A state of a system (values of its variables at a given time).

point attractor A single fixed point in phase space, representing the final or equilibrium state of a system
that comes to rest with the passage of time.

polynomial An algebraic expression involving two or more summed terms, each term consisting of a
constant multiplier and one or more variables raised to nonnegative integer powers. (In some mathematics
texts, a polynomial can have one term.)

population Any group of items that is well defined (has a common characteristic).

power (a) The number of times, as indicated by an exponent, in which a given number (say, x) is used
when being repeatedly multiplied by itself (e.g. x3=x·x·x, and we say x is raised to the third power); (b) a
term used in Fourier analysis as a synonym for variance.

power equation An equation of the form y=axc, where x and y are variables and a and c are constants. A
power equation plots as a straight line on log paper. See also power law.

power law Any equation in which the dependent variable varies in proportion to a specified power of the
independent variable. Synonymous with power equation.

power spectrum The ensemble of variances (powers) calculated in a Fourier analysis and plotted against
their respective wave characteristic (frequency, wavelength, period, or harmonic number).

precision (a) In general, the accuracy with which a calculation is made; (b) reproducibility, as with
repeated samplings.

principal axis Any of a body's two or three axes of structural symmetry that were mutually perpendicular
before deformation.

probability (a) Limiting relative frequency; (b) the ratio of the number of times an event occurs to the
number of trials; (c) the encoding of all that we know about the likelihood that a particular event will
happen, with the encoding expressed as a number between zero (no chance that the event will take place)
and 1 (certainty that the event will happen); (d) the formal study of chance occurrences.

probability density Same as probability density function.

probability density curve Same as probability density function.

probability density distribution Same as probability density function.

probability density function The limiting relative frequency density as sample size becomes infinitely
large and bin width goes to zero, for a continuous random variable.

probability distribution A list of the possible outcomes of an experiment and their associated
probabilities, that is, a table or function that assigns to each possible value of a random variable the
probability of that value's occurrence. Also known (possibly depending on whether the variable is discrete
or continuous) as distribution function, statistical distribution, probability density function, density
function, or frequency function.



projection The image of a geometric object or vector superimposed on some other vector. As such, the
projection is a new vector and is called the projection of the first vector onto the second.

pseudo phase space An imaginary graphical space in which the first coordinate represents a physical
feature and the other coordinates represent lagged values of that feature.

Pythagorean theorem The theorem that, in a right triangle, the square of the length of the hypotenuse
equals the sum of the squared lengths of the other two sides.

Q

quadratic Of the second degree, that is, involving one or more unknowns (variables) that are squared but
none that are raised to a higher power.

quadratic map An iterated equation (and sometimes also the phase space plot of those iterates) in which
xt+1 is given as some function of xt2.

quasiperiodic toroidal attractor A torus on which the composite trajectory's motion almost but not
exactly repeats itself regularly.

quasiperiodicity (a) A dynamical state characterized by the superposition of two or more periodic motions
(characteristic frequencies); (b) a route to chaos caused by the simultaneous occurrence of two periodicities
whose frequencies are out of phase (not commensurate) with one another.

R

random (a) Based strictly on a chance mechanism (the luck of the draw), with negligible deterministic
effects (the definition used in this book); (b) disorganized or haphazard; (c) providing every member an
equal chance of selection; (d) unlikely repeatability of any observation; (e) unpredictability of individual
events to within any reasonable degree of certainty; (f) difficult to compute.

random process A process based on random selection, as in a process in which new observations depend
strictly on chance, or in which every possible observation has an equal chance of selection.

random variable (a) A variable whose value cannot be foretold, except statistically; (b) a variable that
takes on different values at different random events (experiments or trials).

ratio-to-moving-average method A classical decomposition technique for isolating the value of
[seasonality times random deviations] by dividing the value of the variable by the moving-average value,
at each sequential time.

reconstruction dimension The embedding dimension in which an attractor is reconstructed.

reconstruction of attractor The graphical or analytical recreation of the topology or es sence of a
multidimensional attractor by analyzing lagged values of one selected variable.

reconstruction of phase space A pseudo (lagged) phase space plot in two or three dimensions, made with
the hope of seeing an attractor (if there is one). Also known as phase space reconstruction, state space
reconstruction, phase portrait reconstruction, trajectory reconstruction, and similar expressions.



recursive Referring to any process or function in which each new value is generated from the preceding
value. (Hence, iterative.) Examples: (a) the logistic equation of chaos theory; (b) forecasting techniques in
which each successive forecast incorporates the preceding forecast.

reductionism The notion that the world is an assemblage of parts.

redundancy The multidimensional generalization of mutual information.

regression A mathematical model stating how a dependent variable varies with one or more independent
variables.

relative entropy A ratio of two entropies (typically an actual entropy to a reference entropy), reflecting the
magnitude of one relative to the other.

relative frequency The ratio of number of occurrences of an outcome to total number of possible
occurrences.

relative frequency density The ratio of relative frequency to class width.

relative frequency distribution A list of relative frequencies, for a particular process or system.

renormalization A mathematical scaling technique consisting of rescaling a physical variable and
transforming a control parameter such that the properties of an equation at one scale can be related to
those at another scale, and the properties at the limiting scale (infinity) can be determined.

reorthonormalization A procedure for again realigning all vectors to be mutually perpendicular and then
making each vector of unit length.

residual The difference between an observed value and the value predicted by a model fitted to the general
dataset.

resolution (a) The act of breaking something up into its constituent elements; (b) the act of determining or
rendering distinguishable the individual parts of something; (c) the size of the biggest element in a
partitioning, such as the length of a box or radius of a sphere.

resultant A vector that is the sum of two or more other vectors.

return map A rule, function, or model that tells where the trajectory will next cross a particular one-
dimensional Poincaré section, given the location of a previous crossing at that section. ''Locations" along
the line are described in terms of distance (L) along the line from some arbitrary origin on the line.
Commonly, a first-return (or first-order-return) map is a model of Ln+1 as a function of Ln, for the Poincaré
section; a second-return (or second-order-return) map is a model of Ln+2 versus Ln; and so on.

Richardson plot A logarithmic graph of a coastline's measured length (on the ordinate) versus the
associated ruler length.

robust Resistant to, or steady under, perturbation.

S



saddle (saddle point) An unstable steady-state phase space condition (fixed point, limit cycle, etc.), the
flow near which is stable in some directions (converges toward the fixed point) and unstable in others
(moves away from the fixed point).

scalar A number representing a magnitude only, as might be indicated on a simple scale.

scalar product Same as dot product.

scalar time series An ordinary time series, in which each successive measurement is recorded along with
its time or order of measurement (and, hence, synonymous with the general meaning of time series).

scale (a) A sequence of collinear marks, usually representing equal steps or increases, used as a reference
in measuring; (b) the proportion that a model bears to whatever it represents (e.g. a scale of one centimeter
to a kilometer); (c) to reduce or enlarge according to a fixed ratio or proportion; (d) to determine a quantity
at some order of magnitude by using data or relationships known to be valid at other orders of magnitude.

scale invariance The property whereby an object's size cannot be determined or estimated without
additional information because the item looks like any of a family of objects of different size but similar
appearance.

scale length Length of tool or device used (usually by successive increments) to estimate an object's size.

scaling ratio A proportion (and hence a value less than 1.0), used in scaling, and equal to that fraction of
the original object which the new (smaller) object represents as measured in the direction of any
topological dimension.

scaling region A straight-line relation (the slope of which is the correlation dimension) on a plot of log of
correlation sum versus log of measuring radius.

Schmidt orthogonalization Same as orthogonalization.

seasonality Same as periodicity (the tendency for any pattern to repeat itself over fixed intervals of time).
In this book, the fixed intervals of time for seasonality are arbitrarily taken as one year or less, whereas
periodicity is used as a generic or general term and can have any fixed interval.

second derivative The derivative of the first derivative of a function.

second-differencing The computation of differences of differenced data.

second harmonic A wave that has twice the frequency as the fundamental wave, in Fourier analysis.

second-order return map Second-return map.

second-return map A pseudo phase space plot of Poincaré-section data on which each observation at the
section is plotted against its second return to that section.

self-affine That property whereby an object is reproduced by a transformation involving different scaling
factors for different dimensions or variables.

self-entropy (a) The entropy for one system or variable; (b) the average amount of information gained by
making a measurement of(or provided by) a random process about itself.

self-information Same as self-entropy.



self-organization The spontaneous, self-generated occurrence of some kind of pattern or structure from an
(usually) orderless dynamical system.

self-organized criticality The property whereby a dynamical system naturally evolves toward a critical
state (a condition where the system undergoes a sudden change). Various perturbations of the system at
that critical state provoke different responses that follow a power law.

self-similarity The property whereby any part of an object, suitably magnified, looks mostly like the
whole.

self-similarity dimension Similarity dimension.

sensitive dependence on initial conditions (a) The quality whereby two slightly different values of an
input variable evolve to two vastly different trajectories; (b) the quality whereby two initially nearby
trajectories diverge exponentially with time.

sensitivity to initial conditions Sensitive dependence on initial conditions.

separatrix A boundary between regions of phase space, such as a boundary between two basins of
attraction in a dissipative system.

sequence probability A nonstandard term used in this book to mean the joint probability of certain
successive events in time and representing the probability that a given sequence of events will take place.

serial correlation Same as autocorrelation.

set A group of points or values that have a common characteristic or rule of formation.

similarity dimension A dimension D defined as D=logN/log(1/r), used in transforming figures into similar
figures of different sizes.

sine wave A wave corresponding to the equation y=sinx, or more generally, y=A sin (x+φ), where A is wave
amplitude and φ is phase angle.

singular spectral analysis An alternative to Fourier analysis that uses empirical basis functions formed by
a principal component analysis of the embedded phase space data matrix instead of the sine/cosine basis
functions.

singular system analysis A phase space reconstruction technique in which orthonormal reconstruction
axes near each point xt are a maximal set of linearly independent vectors that are derived from the local
distribution of points near xt by singular value decomposition.

singular value decomposition Singular system analysis.

sink A phase space point toward which all nearby points flow.

sinusoid (a) The sine curve (y=sin x); (b) any curve derivable from the sine curve by multiplying by a
constant or by adding a constant; (c) any curve shaped like a sine curve but with different amplitude,
period, or intercepts with the axis.

sinusoidal (a) Relating to, and shaped like, a sine curve; (b) describable by a sine or cosine equation.

smooth Said of a frequency distribution that is continuous or, in mathematical terms, is differentiable at
every point.



smoothing (a) In general, reduction or removal of discontinuities or fluctuations in data; (b) more
specifically, application of a low-pass filter, that is, any mathematical technique that combines two or more
observations to reduce variability and to highlight general trends.

smoothing parameter Bin width, usually as required in methods for estimating probability densities.

soliton Solitary wave.

source A phase space point away from which all nearby points flow.

space-filling curve A curve passing through every point in a space of two or more dimensions.

spectral analysis The calculation and interpretation of a spectrum, especially in terms of the frequency-
domain characteristics of a time series. Generally used synonymously with Fourier analysis.

spectrum A collection of all the frequencies, wavelengths, or similar components of a complex process,
showing the distribution of those components according to their magnitudes.

spline (a) A flexible strip used in drafting to form—and to help draw—a curve between two fixed points;
(b) a smoothly varying curve between two data points, often fitted by a cubic polynomial and used to
interpolate "data" values between the two measured points.

stable Tending to dampen perturbations or initial differences, over time.

stable fixed point A type of attractor in the form of a phase space point that attracts all neighboring
points, that is, a point to which all iterates beginning from some other point converge.

stable manifold The set of points that asymptotically approach a given point, over time.

standard deviation A descriptive statistic that reflects the spread of a group of values about their mean,
usually computed as:

 

As such, it's the square root of the average squared deviation, or the square root of the variance.

standard phase space A term used in this book for the usual phase space, the coordinates for which
represent the measured and different physical features that are to be plotted on the associated graph or
phase portrait.

standardization A transformation done by subtracting the mean from each observation of a dataset and
then dividing each such difference by the standard deviation. Such a transformation, for example, removes
seasonality. It converts data of different units to a common or standard scale, namely a scale for which the
mean is zero and the standard deviation is one. The new scale measures the transformed variable in terms
of the deviation from its mean, in units of standard deviation, and is dimensionless.

state (a) The condition of a system or values of its variables, at any one time; (b) an arbitrarily defined
subrange (usually with specified numerical boundaries) that one or more variables of a system can be in at
one particular time.

state space Same as phase space.

state space reconstruction See reconstruction of phase space.



state space vector Same as lag vector.

stationary Time-invariant, that is, (a) lacking a trend; or (b) (more rigidly), keeping a constant mean and
variance with time; or (c) (more formally still), said of a randomlike process whose statistical properties
are independent of time. ("Independence of time" is often a matter of the particular time scale being used.)

statistical self-similarity The property whereby any suitably magnified part of an object looks
approximately like the whole, the differences being minor, negligible and ascribable to chance.

steady state (a) A condition that doesn't change with time; (b) the state toward which the system's behavior
becomes asymptotic as time goes to infinity. The associated equation gives a constant solution.

stochastic (a) Having no regularities in behavior; (b) characterizable only by statistical properties, thus
involving randomness and probability as opposed to being mainly deterministic; (c) random; (d) developed
according to a probabilistic model.

strange attractor (a) Same as chaotic attractor; (b) an attractor having such geometrical features as
fractal dimension, Cantor-set structure, and so on.

stretching (a) A topologist's interpretation of either (1) the amplification of a certain range of input values
to a larger range of output values during iteration or (2) the phase space exponential divergence of two
nearby chaotic trajectories; (b) a transformation of the form x'=ax and y'=ay, where a>1.

stroboscopic map A lag-time phase space model in which data are taken at equal time intervals.

subharmonic bifurcation Period-doubling.

successive-maxima plot Same as next-amplitude map.

surface of section Poincaré section.

surrogate data Artificially generated data that mimic certain selected features of an observed time series
but that are otherwise stochastic.

system (a) An arrangement of interacting parts, units, components, variables, etc. into a whole; (b) a
group, series, or sequence of elements, often in the form of a chronological dataset.

T

tangent bifurcation That special situation on a one-dimensional map whereby the function is tangent to
the identity line.

theoretic (a) Restricted to theory; (b) lacking verification.

thermodynamic entropy A measure conceived by Clausius for describing the unavailable energy of a
closed system such as a heat-producing engine, and subsequently modified for application to other
thermodynamic systems.

time-delay method A lag-time analytical technique that uses data of just one measured physical feature (x)
(regardless of any other features that may have been measured), whereby xt is compared to one or more
lagged subseries, often with the aim of reconstructing an attractor.



time domain The representation of time series data in their raw or unaltered form.

time series (a) A chronological list or plot of the values of any variable or variables and their time or order
of measurement; (b) in a narrow and more rare sense, a set of values that vary randomly with time.

topological dimension An integer that reflects the complexity of a geometric continuum, equal to 1+the
Euclidean dimension of the simplest geometric object that can subdivide that continuum. The topological
dimension usually has the same value as the Euclidean dimension.

topology (a) That branch of geometry that deals with the properties of figures that are unaltered by
imposed deformations or cumulative transformations; (b) the branch of mathematics that studies the
qualitative properties of spaces, as opposed to the more delicate and refined geometric or analytic
properties.

toroidal attractor Torus.

torus (a) A three-dimensional ring- or doughnut-shaped surface or solid generated by rotating a circle
about any axis that doesn't intersect that circle; (b) an attractor that represents two or more limit cycles.
Also called a toroid.

trajectory (a) A path taken by a moving body or point (and hence an orbit); (b) a sequence of measured
values or list of successive states of a dynamical system; (c) a solution to a differential equation; (d)
graphically, a line on a phase space plot, connecting points in chronological order.

transformation (a) A change in the numerical description or scale of measurement of a variable (in other
words, a filter); (b) a change in position or direction of the axes of a coordinate system, without altering
their relative angles; (c) a mapping between two spaces.

transient An early, atypical observation or temporary behavior in a system when first activated that dies
out with time.

translation A shifting (transformation) of the axes of a coordinate system while keeping the same
orientation of those axes. For example, say a is the amount that the x axis is shifted and b is the amount that
the y axis is shifted; then the origin of new axis x' is at x+a and the origin of new axis y' is at y+b; any point
plotted on the new coordinates is located at x'=x-a and y'=y-b.

trend (a) A systematic change, prevailing tendency, or general drift (in chaos, usually a prevailing
direction of plotted points over some period of time); (b) a nonconstant mean.

triangle law A graphical method of adding two vectors whereby the starting point of the second vector is
placed at the terminal point of the first vector, the sum or resultant being given by the new vector drawn
from the starting point of the first vector to the terminal point of the second.

truncate (a) To shorten a number by keeping only the first few (significant) digits and discarding all
others; (b) to approximate an infinite series by a finite number of terms; (c) to exclude sample values that
are greater (or less) than a specified constant value.

two-dimensional map A pair of equations, in each of which xt and yt together are used to yield xt+m (with
the first equation) and yt+m (with the second equation).

U



unit vector A vector having a magnitude of 1. It's usually obtained by dividing a vector by its length
(magnitude).

universal Typical of entire classes of systems.

universality The property whereby many seemingly unrelated systems or equations behave alike in a
particular respect, so that they can be grouped into a class by their generic behavior.

unstable Tending to amplify perturbations or initial differences, over time.

unstable fixed point A fixed point from which successive iterates move farther and farther away.

unstable manifold The set of points that exponentially diverge from a given point, over time.

unstable orbit (unstable trajectory) A trajectory for which, arbitrarily close to any input value, there's
another possible input which gives rise to a vastly different trajectory.

V

variable A characteristic or property that can have different numerical values.

variable-partition histogramming Same as adaptive histogramming.

variance A measure of the spread or dispersion of a group of values about their mean, specifically the
average squared deviation from the mean, or

 

vector A directed straight line, that is, a straight line representing a quantity that has both magnitude and
direction, drawn from its starting point (point of origin) to its terminal point.

vector array The list of paired values that make up a vector time series.

vector time series A listing or series of measurements of a variable in which each value is associated not
with its time or order of measurement explicitly but rather with its value at some constant lag time later.

von Koch snowflake Koch snowflake.

W

wave amplitude A measure of the maximum height of a wave, taken either as the vertical height from
trough to crest or as half the vertical height from trough to crest.

wave frequency See frequency.

wavelength The distance from any point on a wave to the equivalent point on the next wave.

wave period The time needed for one full wavelength or cycle.

weight A factor by which some quantity is multiplied and that reflects that quantity's relative importance.



weighted sum A sum obtained by adding weighted quantities.

weighting The multiplication of each item of data by some number that reflects the item's relative
importance.

white noise Data that are mutually unrelated. For instance, an observation made at one time has no relation
to observations made at earlier times. Such noise might, for example, be generated from independent,
identically distributed observations of a variable. The label "white" comes from the analogy with white
light and means that all possible periodic oscillations or frequencies are present with equal power or
variance.

window A selected subrange or interval of values.
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