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A study was carried out to determine possible effects of 60-Hz electromagnetic-field 
exposure on pineal gland function in humans. Overnight excretion of urinary 6- 
hydroxymelatonin sulfate (6-OHMS), a stable urinary metabolite of the pineal hor- 
mone melatonin, was used to assess pineal gland function in 42 volunteers who used 
standard (conventional) or modified continuous polymer wire (CPW) electric blan- 
kets for approximately 8 weeks. Volunteers using conventional electric blankets 
showed no variations in 6-OHMS excretion as either a group or individuals during the 
study period. Serving as their own controls, 7 of 28 volunteers using the CPW blankets 
showed statistically significant changes in their mean nighttime 6-OHMS excretion. 
The CPW blankets switched on and off approximately twice as often when in service 
and produced magnetic fields that were 50% stronger than those from the conven- 
tional electric blankets. On the basis of these findings, we hypothesize that periodic 
exposure to pulsed DC or extremely low frequency electric or  magnetic fields of 
sufficient intensity and duration can affect pineal gland function in certain in- 
dividuals. 
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INTRODUCTION 

During the past two decades, interest has increased in the possibility that 
exposure to static or extremely low frequency (ELF: 10-100 Hz), including 50- 
or 60-Hz powerline-frequency electric and magnetic fields, may cause biologi- 
cal effects in human populations [Savitz and Calle, 19871. Much of our work has 
been directed toward understanding the association between ELF electric- and 
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magnetic-field exposure and alterations in pineal gland circadian rhythms [Wil- 
son et al., 19891. 

Melatonin (N-acetyl-5-methoxytryptamine), the principal hormone of the 
pineal gland, is produced by the action of N-acetyltransferase (NAT) and hy- 
droxyindole-0-methyl transferase (HIOMT) on serotonin [Deguchi and Axel- 
rod, 19721. Melatonin concentrations normally increase during the hours of 
darkness in both the pineal gland and circulating blood. Maximum melatonin 
concentrations occur between approximately 0200 and 0400 h in humans. In all 
mammals, the internal clock that helps generate this pineal circadian rhythm 
resides in the suprachiasmatic nuclei. The pineal is richly innervated by fibers 
of the superior cervical ganglia (SCG) [Moore et al., 19681 as well as by fibers 
originating in the hypothalamus and optic regions of the brain [Zisapel et al., 
19881. Neuronal input from the eyes acts via the SCG as the principal regulator 
of the melatonin circadian rhythm in the pineal. 

Light of sufficient intensity is effective in suppressing melatonin synthesis 
in many animals [Wurtman et al., 19631. Lewy et al. 119821 reported that the 
light level required for suppression in humans is approximately 2,500 lux. It 
appears that the pineal gland of certain sensitive individuals, however, may 
respond to light levels as low as 200 lux [Mclntyre et al., 19901. Ingested 
alcohol [Wetterberg, 19781, P-adrenergic receptor-blocking drugs such as pro- 
r .olol [Wetterberg, 19791, and certain kinds of stress [Troiani et al., 19871 
A - also been reported to reduce melatonin concentrations in the pineal and 
circulation of rats. Further, altering melatonin circadian rhythms by use of bright 
light has been effective in the treatment of seasonal affective disorder syndrome 
(SADS) [Lewy et  a]., 19871. 

In the circulation, melatonin acts to suppress the function of several other 
endocrine glands, including the gonads. Melatonin also suppresses the growth of 
certain cancers in both in vitro and in vivo models [Blask, 19901. Reduction in 
melatonin secretion has been associated with estrogen receptor-positive breast 
cancers [Sanchez Barcelo et a]., 19881 and prostate adenocarcinoma [Buzzell et 
al., 19881. Stevens [ 19871 proposed that, should there be increased cancer risk 
from ELF electromagnetic-field exposure, such risk may be a consequence of 
altered pineal gland function. 

Chronic exposure to 60-Hz electric fields can reduce the normal nocturnal 
rise in both pineal NAT activity and melatonin concentration in laboratory rats 
[Wilson et a]., 1981, 19831. In 23-day-old rats maintained in a 60-Hz electric 
field for 20 Wday from conception, there was no difference among the pineal 
melatonin levels of animals exposed to field strengths of 10, 60, and 130 kV/m. 
Compared to controls, however, these exposed rats showed an approximate 
40% reduction in maximal nighttime pineal melatonin levels and an approxi- 
mate 1.4-h delay in the occurrence of the nighttime melatonin peak [Reiter et al., 
19881. Rats first exposed at 55 days of age to a 39-kV/m electric field showed no 
statistically significant difference between daytime and nighttime levels of pi- 
neal melatonin [i.e., no circadian rhythm in melatonin secretion) after 21 days 
of exposure. Within 3 days after cessation of ELF electric-field exposure, how- 
ever, strong pineal melatonin rhythms were reestablished. This effect appeared 
t! an "all-or-none" response to  electric fields between approximately 2 and 
13u kV/m [Wilson et al., 19861. 
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ELF Fields and Human pineal Gland Function 

Indeed, an accumulating body of data suggests that ELF electric- and 
netic-field exposure can affect circadian rhythms and pineal function in 
different species. The pineal glands of both pigeons and rats respond =cut 
changes in the geomagnetic field [Olcese et al., 19881, and Welker et al. [ 
showed that NAT activity and melatonin synthesis in pinealocyte cultur, 
suppressed by weak ELF magnetic fields. Lerchl et al. [1990] demons 
marked changes in pineal serotonin metabolism in rats and mice expo: 
intermittent magnetic fields at night, but no such changes were observe 
consequence of daytime exposure. Wever [I9681 reported that expos 
50-HZ electric or magnetic fields can act as a "zeitgeber," arresting the 1. 
ening of the circadian cycle that normally occurs when humans are depri 
temporal cues. However, we know of no direct experimental evidence th 
electromagnetic-field exposure can affect human pineal gland function. 

We have completed a study to determine if domestic ELF electri 
magnetic-field exposure from using electric blankets could affect pineal 
tonin secretion in humans. Use of electric blankets represents a periodic 
sure to ELF fields that normally occurs at night when the pineal is most 
Exposure to electric blankets, as used in this study, did not require alter2 
the normal lifestyle or daily routine of the subjects. TO assess possible c 
in pineal melatonin secretion, we determined overnight urinary 6-h) 
melatonin sulfate (6-OHMS) excretion in healthy adult human voluntec 

MATERIALS AND METHODS 

Exposure Systems 

Both conventional electric blankets and continuous polymer wire 
electric blankets were used. The heating element of CPW blankets col 
two parallel conductors separated by a resistive polymer material. Curre 
ing between the two conductors through the polymer is inversely prop 
to temperature at any point along the element. This feature eliminates t 
for the thermal safety switches used in conventional electric blankets ; 
vides some degree of auto temperature control. CPW blankets were 1 

cause they can be safely heated by either AC or DC power, allowing cor 
of AC and DC field effects. Our original assumption was that the DC-j 
blankets should have little or no effect on pineal gland function. (ffi 
studies were completed, however, Lerchl et al. [1990] showed that intt 
DC magnetic fields can indeed affect pineal gland function in rats.) 
safety switches in the conventional electric blankets tested tended to a 
DC power at temperatures greater than about 1 40°F. This arcing const 
unacceptable f i e  hazard, and hence these blankets were deemed unsu 
use with DC power. 

Modifications to the CPW blankets consisted of power supplies I 

constructed in grounded metal boxes that could fit near, or under th 
the bed. AC and DC power supply boxes could not be distinguishec 
appearance or weight, and both types allowed use of the bedside ter 
controllers that the manufacturer supplied with the blankets. Blanket 
ture control units were dimly lit by an internal bulb that was the Samm 
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Table 1. Measured Steady-State Magnetic Field Valuesa Generated at 10-cm Distance by 
Continuous Polymer Wire (CPW) Blanket in AC and DC Power Modes and by 
Conventional Electric Blanket in AC Power Mode 

Head Chest Knees 

Background 0.78 0.89 0.84 
Conventional 2.4 4.4 5.6 
CPW (AC)~ 4.2 6.6 5.6 
CPW ( x ) ~  0.56 0.56 0.57 

'Values are in milligauss (measured approximately 10 cm from blanket surface). 
%dues were four to five times greater during warmup. 

CPW and conventional electric blankets. When both husband and wife were 
participating in the study, a larger power supply was used to accommodate the 
individual temperature controllers for both sides of the bed. Subjects were not 
informed as to whether their blankets were powered by AC or DC at any given 
time. Nonfunctional (sham) power supply boxes were provided for use with the 
conventionally wired blankets. 

Subjects 

Volunteer subjects in the study consisted of 32 healthy, nonpregnant, pre- 
I._-aopausal women and 10 healthy men. Male and female participants were 
randomly divided into three groups. Each of the groups provided early evening 
and morning urine samples for 2 weeks (period 1-preexposure) before begin- 
ning exposure. When exposure began, group 1 (n = 12 women, 2 men) slept 
nightly for 4 to 5 weeks (period 2) under AC-powered CPW blankets. Group 2 
(n  = 10 women, 4 men) used DC-powered blankets in the same manner. After 
4 to  5 weeks of exposure, power modes on the blankets for groups 1 and 2 were 
switched, and exposure continued for an additional 4 to 5 weeks (period 3). 
Because of differences in the fields produced by AC-powered CPW and con- 
ventional electric blankets (Table 1 ), one group of 14 volunteers (group 3: n = 
10 women, 4 men) used AC-powered, conventionally wired blankets for a total 
of 7 weeks of exposure. Urine samples were also collected from all three groups 
for 2 weeks (period 4) after cessation of exposure. 

Because of the anticipated large variation in melatonin excretion among 
individuals, the study was designed so that volunteers would act as their own 
control. The study population was selected from residents of southeastern 
Washington State, a region centered around 46O15' N latitude. At this latitude, 
winter solstice sunrise was at 0739 h and sunset at 1613 h. To control for 
possible changes in melatonin secretion arising from differences in the hours of 
daylight [Bojkowski and Arendt, 19881, study periods 1 and 2 were contiguous 
and ended just before the winter solstice. Periods 3 and 4 were contiguous and 
began just after the winter solstice. Because of the time required to change 
blanket power modes, there was essentially no break in exposure between 
periods 2 and 3. 

The measure for assessing possible effects from ELF electromagnetic-field 
c sure was pineal gland function, as determined by radioimmunoassay (RIA) 
of urinary 6-OHMS. 6-OHMS is a stable metabolite of melatonin, and its levels in 
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urine reflect pineal melatonin secretion over time [Arendt, 19861. The sample 
collection method did not allow gathering of information on possible temporal 
shifts in the melatonin peak that might occur in the time span between the last 
urine voiding before retiring and the first morning urination. 

Volunteers provided a set of two samples, a late afternoon/early evening 
urine (generally around 1700 h) and the first morning void urine (generally 
between 0600 and 0700 h), three times each week during the study. Samples 
taken in the late afternoon/early evening were used as controls for the morning 
void urine, which was used to assess overnight melatonin excretion. Volunteers 
recorded the clock time of last urination before retiring (urine not retained), as 
well as that for the evening and morning urine samples. Samples were refriger- 
ated by the volunteers immediately after collection, picked up three times per 
week, and processed in the lab within a few hours of pickup. Total urine volumes 
were measured and recorded; three sets of aliquots ( 5  ml each) were then 
taken, one for analysis by RIA, one for creatinine determination, and one to be 
held for archival purposes. In total, more than 2,400 primary urine samples were 
collected and analyzed by RIA. Levels of 6-OHMS were normalized to creatinine 
content and to urinary volume and time. Excreted melatonin levels were thus 
expressed as nanograms of 6-OHMS per milliliters urinehour, or as nanograms 
of 6-OHMS per milligram of creatinine; the measures were essentially equiva- 
lent. Cretainine normalization yielded lower variance and was therefore used 
for further statistical analyses. 

Assay for Urinary 6-Hydroxymelatonin Sulfate 

Urinary 6-OHMS excretion was determined using an RIA kit supplied by 
CIDtech Research Inc. [Mississauga, Ontario, Canada]. The assay is a modifica- 
tion of that described by Arendt [ 19861 in which 6-OHMS is iodinated with '*'I 
using a method adapted from Vakkuri et al. 119841. The iodinated material 
(suspended in methanol) was separated on cellulose F thin-layer chromatogra- 
phy plates using a butanol, water, and acetic acid solvent (4:1.5:1). Measure- 
ments in unknown samples were based on a standard curve using known 
amounts of 6-OHMS antigen (0-200 pg/ml) diluted in stripped urine. The ef- 
fective working range for the assay (linear portion of the curve) was between 
0.5 and 100 pg/ml. Within-assay variance among triplicate samples averaged 
9.5%; between-assay variance was 14%. Samples were run in triplicate at two 
or three different dilutions. Daytime urines were diluted between 50:l and 
250:l and nighttime urines between 2000:l and 8000:l. 

Statistical Analysis 

Results of daytime and nighttime 6-OHMS measurements were compiled 
for each subject and for the three groups of subjects during the study. All 
statistical analyses were performed on overnight 6-OHMS measurements. Data 
for each group were analyzed separately because of the significant difference in 
the measured preexposure urinary 6-OHMS excretion of groups 1 and 2, and 
the delay in the start of exposure of group 3. 

Nested analysis of variance was used to test the hypothesis that the 6- 
OHMS means of preexposure, AC exposure, DC exposure, and postexposure 
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periods are equal for each group [Winer, 19711. A subject within-period error 1.5 
term was used to  test this hypothesis. A natural logarithmic transformation of ( A )  
the data was made before the analyses to achieve homogeneity of variances. 
Data for each subject were analyzed independently by one-way analysis of vari- DC 
ance to  test the hypothesis that the 6-OHMS means of the four periods were ô  
equal for that subject. The measurement within-period error term was used to 

0 
L 

test the hypothesis. Differences among means were delineated using the least- o 
signi€icant-difference test [Fisher, 19491. Again, a natural logarithmic transfor- V) 1.0 - mation of the data was made before the analysis to achieve homogeneity of a 
variances. Also, the nonparametric procedure known as the sign test [Siege], - 
19561 was used to evaluate the direction of the differences between pairs of V) 

period means for each subject and for each group of subjects. All statistical 
hypotheses were tested at the 0.05 level of significance. The general linear 

E s 
model (GLM) procedure from Statistical Analysis System (SAS, 1985) was em- 
ployed for analysis of variance. 

3 
g 0.5 - 

Electric Blanket Magnetic and Electric Fields w 
c 

Magnetic fields associated with the CPW and conventional electric blan- 2 L 
kets were measured on three orthogonal axes using a Denol meter magnetic- 
celd measuring device. The blankets were suspended from the ceiling for these 5 

:asurements. Instrument probe design obviated making actual measurements 
closer than 10 cm from the blankets. Table 1 shows the steady-state magnetic \ 
fields measured for both types of blankets at the human head, torso, and knee I 0 ;  
regions. AC magnetic fields produced in the DC power mode were approxi- I 

Fi.ie. 1. (A) Plot of current draw du 

mately an order of magnitude less than those measured in the AC mode and I 
1 .o 

were not distinguishable from background. 5 
Both the average and maximum magnetic fields associated with the CPW Z 

CT 
blankets in the AC mode are approximately 50% higher than those for compa- I 

rably sized conventional electric blankets. Florig and Holburg [1990] have car- V) 

ried out detailed computer simulations of both the electric and magnetic fields 
associated with conventional and CPW blankets of several sizes. Data from their 

B 
! 5 

work are in general agreement with our measurements. At initial switch-on, the 3 
0.5- 

CPW blanket may draw as much as five times its steady-state current, and during 2 
this period produces a proportionally higher magnetic field. During steady-state 0 

operation the modified CPW blankets had a slightly higher current just after w c 
switch-on than just before switch-off. Blanket duty cycles were characterized at 2 
a room temperature of 23.5"C while the blankets were maintained at approxi- L 

3 
mately 26.5"C. A current shunt and a data-logging device were used to record 0 

I - 
Table 2 shows the group means and corresponding log-transformed data, (cpw) electric blankets using AC pow 

draw during 150-sec interval for con1 
-pressed as nanograms of 6-OHMSImg creatinine, for each exposure period. 

(B)  

AC 

I 

'Deno is a registered trademark of Electric Field Measurements Co., West Stockbridge, MA. 

current draw. Current levels and the on-off cycle for a queen-size CPW blanket 0 
with one side operating are shown in Figure 1A. Comparable data from a con- 1 
ventional queen-size electric blanket are shown in Figure 1B. 0 
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1.5 

TIME (sec) 
Fig. 1. (A) Plot of current draw during typical 150-sec interval for continuous polymer wire 
(CPW) electric blankets using AC power (thick line) and DC power (thin line). (B)  Plot of current 
draw during 150-sec interval for conventional electric blanket using AC power. 
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Table 2. Group Meansa for 6-Hydroxymelatonin Sulbte  (6-OHMS) Excretion During 
Four Exposure Periods 

Exposure Period 

1 4 
(preexposure) 2 3 (postexposure) 

AC DC 
Group 1 (CPW) 21.84 2 3.74 23.46 2 3.22 20.73 & 3.41b 24.53 2 3.26b 

( n  = 14) 2 .8820 .17  2.92k0.18 2.7720.18 3.01 2 0.15 

DC AC 
Group 2 (CFW) 14.1321.83 17.8622.10 13.97k1.55 1 8 . 2 7 2 . 8 9 ~  

(n  = 14) 2.49 2 0.14 2.71 C 0.13 2.48 k 0.12 2.69 * 0.16 

AC 
Group 3 (conventional) 18.89 2 2.89 18.46 f 2.95 - 19.58 2 3.49 

(n  = 14) 2.68 2 0.21 2.60 k 0.19 - 2.68 2 0.19 

"& Values are standard error of the mean. 
'significantly different from previous exposure period by the sign test. 
'Log-transformed (log e) values are listed beneath their respective means. 

tre was no statistically significant difference in 6-OHMS excretion between 
, AC and DC exposure periods as determined by analysis of variance of the 

group means. However, as determined by the nonparametric sign test, there was 
a significant difference in 6-OHMS excretion between periods 2 and 3, and 
between periods 3 and 4 in group 1, as well as between periods 3 and 4 in 
group 2. 

Comparison of mean 6-OHMS excretion for individual subjects among the 
four test periods showed that seven CPW users ( 6  women and 1 man) had 
significant differences in the mean levels of 6-OHMS excretion as determined by 
analysis of variance. That is, there was a statistically significant difference be- [ tween the levels of 6-OHMS excretion among at least two of the latter three test 
periods. Probabilities from analysis of variance on data for those individuals I 
showing changes among exposure periods ranged between P < 0.04 and P < 1 
0.0001. 1 

Figure 2 is a plot of nightly 6-OHMS excretion from a CPW blanket user. 
Mean values for each exposure period are denoted by the height of the shaded 
area. There was a significant decrease (P c0.05) during exposure period 3 as 
compared to exposure period 2 and a rebound to higher values after the ces- 
sation of exposure (P < 0.05). Six of the seven individuals exhibiting differences 
in 6-OHMS excretion showed this same pattern of melatonin excretion among 
the four exposure periods, as did the group 1 and group 2 populations in 
general (see Table 2). 

Similar analysis of the conventional electric blanket data sets showed no 
such changes. Indeed, data from the conventional electric blanket users (group 
3) showed no statistically significant changes among any of the exposure peri- 
ods. As an additional check, we compared mean values before and after either 3 

weeks of conventional electric blanket exposure. We found no significant 
individual or population changes by any of the foregoing criteria in group 3 
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Fig. 2. Nightly 6-hydroxymelatonin sulfate (6-OHMS) excretion for continuous polymer wire 
blanket user. Height of shaded area represents period mean. Note increased 6-OHMS excretion 
immediately after onset and cessation of exposure. 

DISCUSSION 

Data on individual subjects serving as their own controls provided evi- 
dence to suggest that exposure to either or both intermittent DC, and 60-Hz AC, 
electric or magnetic fields of sufficient magnitude or duration may give rise to 
changes in melatonin excretion in some individuals. From the pattern of 6- 
OHMS excretion observed for those volunteers who showed a response to the 
fields, it appeared that there was a transient increase in 6-OHMS excretion in 
response to onset of exposure and a similar increase, of greater magnitude, at 
cessation of exposure. 

During AC operation, the CPW blankets produced a magnetic field approx- 
imately 50% higher than did the conventional electric blankets. Owing to their 
duty cycle, CPW blankets switched on and off approximately twice as often as 
did the conventional blankets. Other possible factors that may have affected the 
outcome of the study include the combined effects of AC and DC exposure, 
differences in the switching transients of the two types of blankets, and the 
presence of operating shielded transformers in the bedrooms of the CPW vol- 
unteers. It is also possible that there were temporal shifts in the nighttime 
melatonin peak for the conventional electric blanket users that were not de- 
tected in the urinary 6-OHMS assay. 

It should be noted that there was no group in the study wherein blanket 
heatingwas present without either an AC or a DC electric field. In the literature, 
however, we could find no evidence that warmth generated by a heated blanket 
has a physiological effect different from that achieved by using more or heavier 
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blankets. In addition, the conventional electric blanket users showed no changes 
in 6-OHMS levels, lending strength to the hypothesis that the electromagnetic 
fields associated with the CPW blankets, and not the heat that they generate, can 
affect human pineal function. 

In further studies, it would be of interest to determine what, if any, phys- 
iological or genetic factors may be common to those individuals who exhibited 
change in 6-OHMS excretion as a consequence of electromagnetic field expo- 
sure. The report of McIntyre et al. [I9901 cited earlier illustrated large varia- 
tions in pineal gland sensitivity among individuals. Further work will be re- 
quired to determine more precisely those electromagnetic-field characteristics 
that may be responsible for the observed changes in 6-OHMS excretion for 
certain individuals in the study. 
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