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Abstract: Emergent quantum mechanics (EmQM) explores the possibility of an ontology for quantum
mechanics. The resurgence of interest in realist approaches to quantum mechanics challenges the
standard textbook view, which represents an operationalist approach. The possibility of an ontological,
i.e., realist, quantum mechanics was first introduced with the original de Broglie–Bohm theory, which
has also been developed in another context as Bohmian mechanics. This Editorial introduces a Special
Issue featuring contributions which were invited as part of the David Bohm Centennial symposium
of the EmQM conference series (www.emqm17.org). Questions directing the EmQM research agenda
are: Is reality intrinsically random or fundamentally interconnected? Is the universe local or nonlocal?
Might a radically new conception of reality include a form of quantum causality or quantum ontology?
What is the role of the experimenter agent in ontological quantum mechanics? The Special Issue also
includes research examining ontological propositions that are not based on the Bohm-type nonlocality.
These include, for example, local, yet time-symmetric, ontologies, such as quantum models based
upon retrocausality. This Editorial provides topical overviews of thirty-one contributions which are
organized into seven categories to provide orientation.

Keywords: quantum ontology; nonlocality; time-symmetry; retrocausality; quantum causality;
conscious agent; emergent quantum mechanics; Bohmian mechanics; de Broglie-Bohm theory

“Towards Ontology of Quantum Mechanics and the Conscious Agent” was the heading of the
David Bohm Centennial symposium as part of the Emergent Quantum Mechanics (EmQM) conference
series (www.emqm17.org). The three-day symposium was held at the University of London, right
next to Birkbeck College, the final academic home of David Bohm. The symposium offered an open
forum for critically evaluating the prospects and significance—for 21st century physics—of ontological
quantum mechanics, an approach which David Bohm helped pioneer. The Editorial introduces
contributions featuring the original research of the EmQM symposium speakers, as well as additional
researchers who are exploring the ontological implications of quantum mechanics. The contributions
are thematically organized as follows: (1) Quantum Ontology and Foundational Principles, (2) The
Continuing Impact of the Bohmian Theory, (3) Beyond the Bohmian Theory: New Developments,
(4) Quantum Ontology and Time: Retrocausality and Irreversibility, (5) Entropy, Thermodynamics,
and Emergent Quantum Gravity, (6) Alternative Quantum Models and Tools, and (7) Advanced
Quantum Experimentation.

Entropy 2019, 21, 113; doi:10.3390/e21020113 www.mdpi.com/journal/entropy1
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1. Quantum Ontology and Foundational Principles

Foundational principles and concepts are introduced to help guide thinking about the validity
of ontological propositions for quantum mechanics. Tim Maudlin starts with the key insight that
any possible ontology for quantum mechanics necessitates “a radical change in our understanding of
physical ontology” [1]. Employing as an example the Aharonov-Bohm effect, he develops a method
for “clarifying what the commitments of a clearly formulated physical theory are”. Referring to the
well-known conceptual challenges in interpreting quantum theory, Maudlin concludes by noting that
if “physicists were to adopt this method . . . to convey physical theories clearly and unambiguously,
many conceptual problems could be avoided”.

Jan Walleczek advances the concept of agent inaccessibility as a fundamental principle in quantum
mechanics, based on the objective uncomputability of quantum processes as a formal limit [2].
In support of the Bohmian theory, the proposal of an agent-inaccessibility principle presents an
alternative position to the standard textbook view of quantum indeterminism. Walleczek concludes
that the 20th century quantum revolution need not imply “a radical shift from determinism to
indeterminism” but that—based on current knowledge—it is only valid to assert that “the quantum
revolution signifies the profound discovery of an agent-inaccessible regime of the physical universe”.

Maurice De Gosson next introduces the mathematics of Poincare’s recurrence theorem, and the
associated notion of ‘superrecurrence’, in relation to the properties of symplectic topology, as applied
to quantum mechanics [3]. De Gosson suggests that these recurrence properties “are closely related to
Emergent Quantum Mechanics since they belong to the twilight zone between classical (Hamiltonian)
mechanics and its quantization”, and he views these properties “as imprints of the quantum world on
classical mechanics in its Hamiltonian formulation”.

William Seager provides a 21st century interpretation of the philosophy and scientific metaphysics
of David Bohm [4]. Specifically, Seager examines three core features of Bohm’s foundational views,
namely “the holistic nature of the world, the role of a unique kind of information as the ontological
basis of the world, and the integration of mentality into this basis as an essential and irreducible aspect
of it”. Importantly, Seager corrects the persistent, but flawed, view that Bohmian ontology “is a return
to a classical picture of the world“, and he explains that “Bohm’s metaphysics is about as far from that
of the Newtonian classical metaphysical picture of the world as one could get”.

2. The Continuing Impact of the Bohmian Theory

The focus of the second category is the continuing impact, based on recent assessments and
conceptual innovations, of the original de Broglie–Bohm (dBB) theory and Bohmian mechanics.
The opening article by Basil Hiley and Peter Van Reeth engages the historically controversial problem
of the reality of Bohmian quantum trajectories [5]. The authors argue that the previous “conclusion
that the Bohm trajectories should be called ‘surreal’ . . . is based on a false argument.” Specifically,
Hiley and Van Reeth show that “standard quantum mechanics produces exactly the same behavior as
the Bohmian approach so it cannot be used to conclude the Bohm trajectories are ‘surreal’.”

Robert Flack and Basil Hiley—again addressing the problem of quantum trajectories—explore
“the relationship between Dirac’s ideas, Feynman paths, and the Bohm approach” [6]. After studying
the relationship in detail, Flack and Hiley propose that “a Bohm ‘trajectory’ is the average of an
ensemble of actual individual stochastic Feynman paths”, and that, therefore, these paths “can be
interpreted as the mean momentum flow of a set of individual quantum processes and not the path of
an individual particle.”

Nicolas Gisin, next, clarifies the long-standing debate between those in the mainstream of
physics who argue that the Bohmian approach is “disproved by experiments”, and those who insist
that “Bohmian mechanics makes the same predictions as standard quantum mechanics” [7]. After
performing a careful analysis, Gisin arrives at the conclusion that “ . . . Bohmian mechanics is deeply
consistent”, and he notes that “Bohmian mechanics . . . could inspire brave new ideas that challenge
quantum physics.”
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Dustin Lazarovici, Andrea Oldofredi, and Michael Esfeld continue with key arguments in support
of the physical consistency of Bohmian mechanics [8]. In particular, these authors offer a critical
assessment of standard no-hidden-variables theorems, which have long been used to challenge the
plausibility of the Bohmian ontology. In particular, they argue that “far from challenging—or even
refuting—Bohm’s quantum theory, the no-hidden-variables theorems, in fact, support the Bohmian
ontology for quantum mechanics.”

Oliver Passon, next, tackles a common misconception regarding the dBB theory [9], namely the
specific criticism that the theory “not only assigns a position to each quantum object but also contains
the momenta as ‘hidden variables’.” In response to this perceived inconsistency, he points out that the
measurement of momentum in the dBB theory is strictly contextual and does not reveal a “preexisting
value”, and that, therefore, the Bohmian interpretation “is not only a consistent interpretation of
quantum mechanics but includes also ‘quantum weirdness’—like any other interpretation of quantum
theory.”

Travis Norsen offers an explanation of the Born-rule statistics for the dBB pilot-wave theory [10].
In the task of finding a realist account of the Born rule expressing the probability distribution of
measurement outcomes, Norsen compares the two competing approaches from the literature and he
finds that “there is somewhat less conflict between the two approaches than existing polemics might
suggest, and that indeed elements from both arguments may be combined to provide a unified and
fully-compelling explanation, from the postulated dynamical first principles, of the Born rule.”

Ángel Sanz highlights the impact of Bohmian theory—beyond mere theoretical significance,
namely, as a “useful resource for computational and interpretive purposes in a wide variety of
practical problems” [11]. Specifically, an analysis of “the problem of the diffraction of helium atoms
from a substrate consisting of a defect with axial symmetry on top of a flat surface” is performed,
and the behavior of Fermatian trajectories (optical rays), Newtonian trajectories, and Bohmian
trajectories is compared, whereby, the latter are shown to “behave quite differently, due to their
implicit non-classicality”.

The final article in this category is contributed by Roderich Tumulka [12]. He provides an overview
of Bohmian mechanics, and then continues to describe “more recent developments and extensions
of Bohmian mechanics, concerning, in particular, relativistic space–time and particle creation and
annihilation.” Tumulka concludes by emphasizing that the described theoretical work represents “the
most plausible ontological theory of quantum mechanics in relativistic space–time”, and it, therefore,
holds great promise “as a fully satisfactory extension of Bohmian mechanics, to relativistic space–time.”

3. Beyond the Bohmian Theory: New Developments

This category features research pursuing ideas beyond the Bohmian theory and its typical
interpretation. Although the researchers agree that the notion of nonlocality is essential to an
ontological quantum mechanics, new developments are explored, based on the assumptions and
propositions that are not normally covered by the dBB theory and by Bohmian mechanics.

Gerhard Grössing, Siegfried Fussy, Johannes Mesa Pascasio, and Herbert Schwabl present a model
of quantum reality that “does not need wave functions”, and one that assumes a “cosmological
solution” to the problem of nonlocality [13]. That is, the researchers propose “that from the beginning
of the universe, each point in space has been the location of a scalar field representing a zero-point
vacuum energy that nonlocally vibrates at a vast range of different frequencies, across the whole
universe.” Assuming this cosmological nonlocality, the authors provide classical computer simulations
of double- and n-slit interference patterns, which reveal trajectories that “are in full accordance with
those obtained from the Bohmian approach.”

Mohamed Hatifi, Ralph Willox, Samuel Colin, and Thomas Durt present an analysis of a quantum
model inspired by “the properties of bouncing oil droplets”—as observed by the so-called ‘walkers’ in
non-equilibrium experiments—and which “have attracted much attention because they are thought
to offer a gateway to a better understanding of quantum behavior” [14]. In particular, the authors

3
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perform an analysis comparing “walker phenomenology in terms of the de Broglie–Bohm dynamics
and of a stochastic version, thereof.” They conclude that “the programs that aim at simulating droplet
dynamics with quantum tools or at describing the emergence of quantum dynamics, based on droplet
dynamics . . . raise challenging fundamental questions.”

Mojtaba Ghadimi, Michael Hall, and Howard Wiseman describe research findings related to the
Many Interacting Worlds (MIW) proposal, which is “a new approach to quantum mechanics, inspired
by Bohmian mechanics” [15]. The MIW proposal represents an entirely novel way of addressing the
problem of nonlocality in Bohmian mechanics, and while “it is conceptually clear how the interaction
between worlds can enable this strong nonlocality”, a proof by simulation has not been possible so far.
In the present contribution, the authors now “report significant progress in tackling one of the most
basic difficulties that needs to be overcome: Correctly modelling wave functions with nodes.”

4. Quantum Ontology and Time: Retrocausality and Irreversibility

Time-related aspects and interpretations of quantum mechanics are the focus of this category.
The first three articles present work that considers, in three distinct ways, the possible relationships
between the implicit time-symmetry of the quantum formalism and physical ontology. The final article
discusses the concept of fundamental irreversibility in nature.

Emily Adlam starts by noticing that “the physics community has come to take seriously, the
possibility that the universe might contain physical processes which are spatially nonlocal, but there
has been no such revolution with regard to the possibility of temporally nonlocal processes” [16].
The author suggests that “the assumption of temporal locality is actively limiting progress in the
field of quantum foundations”, and then offers an investigation into “the origins of the assumption,
arguing that it has arisen for historical and pragmatic reasons rather than good scientific ones.” Adlam
concludes with the proposal that “once we accept that the universe may be generically nonlocal, across
both time and space, it becomes at least plausible that quantum theory as we know it is simply the
local limit of a global theory, which applies constraints across the whole of space and time.”

Kenneth Wharton introduces a new class of retrocausal models that he hopes will “guide
further research into space–time-based accounts of weak values, entanglement, and other quantum
phenomena” [17]. This work is inspired by the recognition that “globally-constrained classical fields
provide an unexplored framework for modeling quantum phenomena, including apparent particle-like
behavior.” In relation to prior retrocausal models in the literature, Wharton explains that “the central
novelties in the class of models discussed here are: (1) Using fields (exclusively) rather than particles;
and (2) introducing uncertainty to even the initial and final boundary constraints.”

Nathan Argaman reconsiders a central tenet of Bell’s nonlocality theorem—the causal arrow
of time. He points out that “the physical assumptions regarding causality are seldom studied in
this context, and often even go unmentioned, in stark contrast with the many different possible
locality conditions which have been studied and elaborated upon” [18]. Argaman envisions the future
generalization of “retrocausal toy-models to a full theory—a reformulation of quantum mechanics—in
which the standard causal arrow of time would be replaced by a more lenient one: An arrow of time
applicable only to macroscopically-available information.” He concludes by suggesting that for “such
a reformulation, one finds that many of the perplexing features of quantum mechanics could arise
naturally, especially in the context of stochastic theories.”

Lajos Diósi compares two fundamental concepts of irreversibility which, as he emphasizes in this
work, have “emerged and evolved with few or even no interactions” [19]. First, the concept of universal
gravity-related irreversibility, and, second, irreversibility in “quantum state reductions, unrelated
to gravity or relativity but related to measurement devices”. The author first summarizes the two
concepts and then highlights the significant fact that the precise relationship “between the Planckian
and the Schrödinger–Newton unpredictability of our space–time” remains unknown. In conclusion,
Diósi notes that “Planckian unpredictability survives non-relativistically—for massive macroscopic
quantized degrees of freedom.”

4
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5. Entropy, Thermodynamics, and Emergent Quantum Gravity

Theoretical issues are addressed linking entropic and thermodynamical considerations with
quantum systems and possible emergent quantum phenomena. The first article by Jen-Tsung Hsiang
and Bei-Lok Hu starts out by explaining that–in view of “quantum mechanics as an emergent
theory”—thermodynamical theory “is perhaps one of the most powerful theories and best understood
examples of emergence in physical sciences, which can be used for understanding the characteristics
and mechanisms of emergent processes” [20]. The authors stress that even for the initial goal of
developing a viable “quantum thermodynamics”, there are “many new issues which need be addressed
and new rules formulated.” For the present contribution, Hsiang and Hu offer “quantum formulations
of equilibrium thermodynamic functions and their relations for Jarzynski’s classical thermodynamics
at strong coupling”.

Osvaldo Civitarese and Manuel Gadella start with a review of “the concept of entropy in
connection with the description of quantum unstable systems”, whereby the goal of this work is
to show “that a comprehensive scheme leading to the definition of entropy for resonances can be
rigorously designed by adopting path integration techniques” [21]. Specifically, these authors advance
“a proper definition of this entropy based on the use of Gamow states as state vectors for resonances.”
In conclusion, Civitarese and Gadella explain that the “resulting entropy is complex, with an imaginary
part which gives an account for the interactions of decaying states with their surroundings.”

Arno Keppens pursues a “complex systems approach, as a kind of toy model, for identifying
space–time’s ontological micro-constituents and their interaction, i.e., their sub-quantum dynamics” [22].
Towards that end, he combines two research strategies, whereby, the first views “gravity as an
entropic phenomenon”, and the second derives “a sub-quantum interaction law” from the solution of
Einstein’s field equations. Keppens argues that “novel views on entropic gravity theory result from this
approach, which eventually provides a different view on quantum gravity and its unification with the
fundamental forces.”

Massimo Tessarotto and Claudio Cremaschini formulate a Bohmian trajectory-based representation
for the quantum theory of the gravitational field [23]. Specifically, the researchers describe “the
basic principles of a new trajectory-based approach to the manifestly-covariant quantum gravity
(CQG) theory.” Importantly, their work provides “new physical insight into the nature and behavior
of the manifestly-covariant quantum-wave equation and corresponding equivalent set of quantum
hydrodynamic equations that are realized by means of CQG-theory.” Remarkably, as Tessarotto and
Cremaschini emphasize, based on their approach “the existence of an emergent gravity phenomenon is
proven to hold.”

6. Alternative Quantum Models and Tools

A wide variety of different approaches, including those proposing the construction of alternative
ontologies, are grouped together in this category. The five contributions range from quantum models
that seek to explain quantum phenomena by local, yet unconventional, accounts of physical reality to
a quantum model based on an observer-independent event ontology.

Tim Palmer presents a cosmological model in “which the universe evolves deterministically
and causally, and from which space–time and the laws of physics in space–time are
emergent” [24]. Significantly, the author counters the view that a Bohm-type nonlocality—in view
of Einstein–Podolsky–Rosen (EPR)-type quantum-entanglement correlations—might exist in reality.
The model “challenges the conclusion that the Bell Inequality has been shown to have been violated
experimentally, even approximately”, and it “postulates the primacy of a fractal-like ‘invariant set’
geometry”. Palmer concludes by discussing the relationships between the Invariant Set Theory, which
is “deterministic and locally causal”, and the Bohmian theory, the cellular automaton interpretation of
quantum theory and the p-adic quantum theory.

Thomas Filk continues the challenge for the need of a Bohm-type, nonlocal ontology as an
explanation of the EPR-type quantum-entanglement correlations [25]. In particular, as an alternative,
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he describes “an interpretation of the mathematical formalism of standard quantum mechanics in
terms of relations”, and from this he develops “the notion of a relational space.” In this description,
as the author explains, “entanglement is interpreted as a relation between two entities (particles or
properties of particles).” Importantly, in the proposed relational view, “the concept of ‘locality’ receives
a completely different meaning when the positions or locations of entities (objects or events) are
defined in a relational sense, as compared to an absolute space or space–time.” In conclusion, Filk
discusses the quantum measurement problem, from the perspective of this relational interpretation.

Dimiter Prodanov’s contribution describes “the mathematical foundations of the scale relativity
theory, its link to stochastic mechanics, and the theory of the Burgers equation” [26]. This work
is motivated “by the premise that inherently nonlinear phenomena need development of novel
mathematical tools for their description.” In particular, Prodanov investigates “the potential of
stochastic methods for simulations of quantum–mechanical and convection–diffusive systems”,
whereby, the “presented numerical approaches can be used . . . for simulations of nanoparticles
or quantum dots, which are mesoscopic objects and are expected to have properties intermediate
between macroscopic and quantum systems”.

Louis Kauffman reviews “previous results about discrete physics and non-commutative
worlds” [27]. As the author points out, important “aspects of gauge theory, Hamiltonian mechanics,
relativity and quantum mechanics arise naturally in the mathematics of a non-commutative framework
for calculus and differential geometry.” The article explores “the structure and consequences of
constraints linking classical calculus and discrete calculus formulated via commutators.” Specifically
for the reported second-order constraint, which is “based on interlacing the commutative and
non-commutative worlds”—as Kauffman reports—“leads to an equivalent tensor equation at the
pole of geodesic coordinates for general relativity”.

Rodolfo Gambini and Jorge Pullin provide a short review of the Montevideo interpretation of
quantum mechanics [28]. Briefly, in their account of quantum phenomena, Gambini and Pullin “adopt
an interpretation that provides an objective criterion for the occurrence of events”, whereby, for that
purpose they are constructing “an ontology of objects and events”. Notably, in this alternative to
the more familiar realist interpretations, the quantum events represent “actual entities” which are
independent of any observers. Importantly, the Montevideo interpretation “is formulated entirely in
terms of quantum concepts, without the need to invoke a classical world.”

7. Advanced Quantum Experimentation

The final category is devoted to experiments, and their interpretation, targeting advanced
research questions in quantum foundations, as well as practical applications. The first article
is by Lukas Mairhofer, Sandra Eibenberger, Armin Shayeghi, and Markus Arndt, who present
quantum-interference experiments with biomolecules, and discuss the sensitivity to weak magnetic
fields of the observed fringe patterns [29]. Under suitable conditions, “the molecules can . . . be
prepared in superpositions of position and momentum”, the authors write, “even though we can
assign classical attributes such as internal temperatures, polarizabilities, dipole moments, magnetic
susceptibilities and so forth to them”. The researchers go on to explain that “macromolecular
interferometry has very practical applications in metrology, for the measurement of electronic,
optical, and even magnetic molecular properties.” Specifically, the authors report data for “quantum
interference of the pre-vitamin 7-dehydrocholesterol”, and present the key finding that “even very
small magnetic contributions can become accessible in matter-wave assisted deflectometry.”

Lev Vaidman and Izumi Tsutsui offer a conceptual analysis of “the history of photons in a nested
Mach–Zehnder interferometer with an inserted Dove prism” [30]. The analysis refers to previous
experimental results which “became the topic of a very large controversy”, as the authors explain. This
contribution by Vaidman and Tsutsui serves to clarify the involved issues. Included in the article is an
analysis also of the “nested interferometer in the framework of the Bohmian interpretation of quantum
mechanics.”
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Finally, Robert Flack, Vincenzo Monachello, Basil Hiley, and Peter Barker describe a method
for measuring the weak value of spin, for atoms using a variant of the original Stern–Gerlach
apparatus [31]. The purpose of the methodological design is to enable the testing of “the original
Bohm approach”, which must use “non-relativistic atoms”. Specifically, the described experiment “is
designed to measure the real part of the weak value of spin for an atomic system”, in this case for
helium atoms. Reported in this work is a “full simulation of an experiment for observing the real part
of the weak value”. The obtained results suggest that a “displacement of the beam of helium atoms
in the metastable 23S1 state . . . is within the resolution of conventional microchannel plate detectors
indicating that this type of experiment is feasible.”

8. Outlook

The wide range of perspectives which were contributed to this Special Issue on the occasion of
David Bohm’s centennial celebration, provide ample evidence for the continuing possibility of an
ontological quantum mechanics. In fact, the case for realist approaches towards explaining quantum
phenomena, including in the account of EPR-type quantum correlations, has only strengthened,
in recent years. Pivotal to this emerging development—for which stands the project of emergent
quantum mechanics or EmQM—has been the following realization: A physical ontology for the
quantum level represents a measurement-dependent, contextual, or relational ontology; that is,
the advancement of ‘quantum ontology’, as a scientific concept, marks a clear break with classical
ontological propositions in the form of direct or naïve realism. Indeed, such an approach to ontology
is a vital part of David Bohm’s legacy. He noted that, in classical ontological theories in physics, there
has been a tendency to assume that the basic concepts of the theory correspond to independently
existing realities, i.e., to realities that are not dependent either on context or deeper levels of being.
By contrast, in his ontological interpretation of quantum theory, the basic concepts, such as “particle”
or “momentum”, reflect a reality that is inherently dependent either on context, or on deeper levels,
or on both. For the future, instead of denying the possibility of a ‘quantum reality’, the mainstream
of quantum physics might embrace, and join in, the search for unconventional causal structures and
non-classical ontologies, which can be fully consistent with the known record of quantum observations
in the laboratory.
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Abstract: Quantum physics demands some radical revision of our fundamental beliefs about physical
reality. We know that because there are certain verified physical phenomena—two-slit interference,
the disappearance of interference upon monitoring, violations of Bell’s inequality—that have no
classical analogs. But the exact nature of that revision has been under dispute since the foundation
of quantum theory. I offer a method of clarifying what the commitments of a clearly formulated
physical theory are, and apply it to a discussion of some options available to account for another
non-classical phenomenon: the Aharonov–Bohm effect.
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1. Introduction

Metaphysicians rightly look to physics for insight into the nature of the physical world. And once
upon a time, they would get clear and articulate answers. Newton, in his Scholium on space and
time, for example, beautifully conveys both the exact content of his account of Absolute Space and
Absolute Time and provides the bucket argument as an empirical demonstration that the relationist
theory of motion cannot be correct ([1], pp. 6–12). One can investigate whether Newton’s empirical
considerations really confirm his particular account of space and time over all others (they don’t),
but you know with perfect clarity what Newton thought and why.

Unfortunately, the present day situation with respect to physics and metaphysics (ontology)
is nowhere in the vicinity of that clarity. Newton did not answer every ontological question one
might have been interested in—first and foremost, the source of the universal force of gravitation
among particles, concerning which he did not fingere a hypothesis—but Newton was both clear about
some things and clear about where there was more to be said but he didn’t know what to say.
Nowadays nothing is clear and sharp in the area at all. This is not news. But like the weather,
everybody talks about it and nobody does anything. This paper outlines a program for the steps that
might be taken.

The main aim is illustrative. It has been widely accepted that the discovery of the Aharonov–Bohm
effect, in 1959, forced—or at least suggested—a radical change in our understanding of physical
ontology. Briefly, the effect (once it was verified) suggested that the electromagnetic scalar and vector
potentials, which were regarded as mere mathematical artifacts in the classical theory, should be
regarded instead as “physically real”, while the electric and magnetic fields, which were the basic
ontology of Maxwell’s theory, should be somehow ontologically downgraded. This common
suggestion has been disputed, e.g., by regarding the fundamental physical ontology to be a connection
on a fiber bundle, the vector potential as a means to represent the connection, and the electromagnetic
field as the curvature of the bundle [2] (p. 226). However, none of the objections to it support or even
permit the reversion back to Maxwell’s ontology or the Relativistic version of it: the electromagnetic
field tensor.
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Drawing metaphysical conclusions (or teasing metaphysical possibilities) from physics requires
a certain level of clarity about just what the physical theories at issue posit. And since the advent of
quantum mechanics, the practice of physics has been to relentlessly and aggressively refuse to be clear
about precisely the issue that concerns the metaphysician: what exactly physically exists? In Newton’s
age, this question would have been regarded as one of, if not the, central concerns of physics itself.
Oddly, practicing physicists nowadays are likely to direct a student asking such questions to the
philosophy department. The way this plays out in quantum theory over questions such as the status
and “reality” of the wave function is well known, and I do not propose to plow that over-farmed soil
yet again here. Rather, I want to pursue a similar question, as far as I can, without taking issues about
the ontology of quantum theory into account. That makes the particular suggestions about ontology
reached here questionable and provisional, but it should have the compensating virtue of making the
methodological proposal clear and easy to follow.

What is accomplished by having a general framework in which the precise ontological
commitments of a theory are made manifest and unambiguous in a disciplined way? Benefits accrue
on both the conceptual and heuristic sides. Conceptually, one requires this sort of clarity to truly
understand a physical theory. Without it, one can do calculations and produce predictions, but not be
clear about what kind of physical world the theory presents. Quantum theory, as a whole, presents an
excellent example. As for developing new theories, we will see that the method of presentation
suggests almost algorithmic ways to alter the ontology of a theory.

With that as prelude, then, let’s begin.

2. What Is a Physical Theory?

Let’s start by zooming out all the way to the most general question we can ask: what is physics?
Back in the day, physics was characterized as the theory of matter in motion. That remains a wonderful
place to start, although the slogan needs some tweaks and updates. One nice thing about the slogan is
that it immediately indicates the “foundational” aspect of physics as opposed to all the other empirical
sciences. Every empirical science—biology, geology, psychology, economics, etc.—deals with systems
that are matter in motion. A living horse, whatever else it is, is matter in motion and, as such, falls under
the purview of physics. It also falls under the purview of biology, evolutionary theory, economics,
cognitive science, and so on. But the converse does not hold: not every physical system provides
subject matter for biology or geology or psychology or economics. A red dwarf star, for example,
does not. However, the red dwarf is matter in motion and must be susceptible to physical analysis.

The phrase “matter in motion” offers two targets for conceptual and physical analysis: matter
and motion. In contemporary physics, there is no such objective state as “being in motion”. A particle
in interstellar space, for example, can be “at rest” in the sense of not moving relative to its own inertial
frame and at the same time “moving” relative to other perfectly legitimate inertial frames. Since the
theory of Relativity, talk of the “motion of a system” has come to be understood as talk of the trajectory
of the system through space-time. If you specify a space-time structure and the worldlines of the
constituents of the system, then you have specified all there is to say about the “motion” of the system.

Of course, in order to have a trajectory through space-time, a worldline, the constituent has to be a
local beable in John Bell’s sense [3]. That is, the constituent has to be something that has a reasonably
well-defined location in space-time. And there may exist items in the physical ontology of a theory that
fail to have this characteristic. Those would be the non-local beables of the theory. In quantum theory,
the quantum state (the item represented by the wave function) is such a non-local beable according
to most explications of the theory. Hence there arises a trivial semantic issue: should the non-local
beables of a theory count as matter or as something else, some tertium quid beside the space-time and
the local beables?

Nothing hangs in this semantic decision, but for the sake of clarity I will, in this paper, refer only to
local beables as “matter”. According to this usage, the quantum state, if it exists at all, is an immaterial
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and non-local physical item. If the reader dislikes this terminology, she is invited to systematically
rewrite it in whatever way is congenial.

Adopting this updated terminology, then, the fundamental ontology of any physical theory
contains a space-time structure, some local beables (matter), and whatever else may have come up.
Physics, the theory of matter in motion, has become the theory of the trajectories of local beables
through space-time.

In the course of theorizing, we may increase the ontology of a theory by postulating some
new items, local or nonlocal. Methodologically, the grounds for doing that is typically in service of
accounting for the motions of a particular set of local beables, the postulated constituents of familiar
observable matter. Thus, for example, Maxwell introduced the electric and magnetic fields as novel
local beables in order to account for the motions of observable objects such as iron filings. By our
convention, these fields are material because they are local beables. On the other hand, the postulation
of a quantum state, which is a non-local beable, counts as adding an immaterial entity. It is, in any case,
certainly an entity that cannot be directly observed. The only grounds we have to believe in quantum
states is the influence they have on observable collections of local beables such as those that constitute
pointers and radios and tables and chairs.

To sum up so far, and present this account in more detail: physics is the description of local beables
and whatever else is required to account for their trajectories through space-time. That updates the more
mellifluous “Matter in motion” in a way useful for present purposes. Another, essentially equivalent
characterization of physics is the most general account of what there is and what it does, at the fundamental
level. The “what there is” part is provided by the ontology of the theory, and the “what it does” part by
the dynamics. The restriction to fundamental items excludes treating derivative entities, such as horses
or species or economic systems, as the basic subject matter.

Specifying both what there is and what it does has, throughout history, involved specification
of a space-time structure in which the behavior occurs. Whether the spatiotemporal structure is
substantival, or relational, or something else, we do not prejudge. For the purposes of this paper,
we will consider mostly classical space-times, but that is just an historical accident.

We now have four basic “categories of being” postulated by a physical theory:

(1) The local beables or matter, which exists at delimited regions of the spatio-temporal structure.
(2) The non-local beables (if any) that have no particular value at any space-time location.
(3) The spatio-temporal structure, in terms of which the distinction between local and non-local

beables is drawn.
(4) The dynamical laws, which specify, either deterministically or probabilistically, how the various

beables must or can behave.

There is no requirement that the elements of each of these categories be definable independently of
the rest. Indeed, differentiating the local from the non-local beables obviously requires reference to the
spatio-temporal structure. Nor is there any transcendental argument that these four categories of being
exhaust the whole of physical reality, or that all of them must be exemplified. Einstein, for example,
famously opined that the progress of physics marched inexorably toward locality, in the ontology and
even in the laws:

If one asks what, irrespective of quantum mechanics, is characteristic of the world of ideas
of physics, one is first of all struck by the following: the concepts of physics relate to a real
outside world, that is, ideas are established relating to things such as bodies, fields, etc.,
which claim “real existence” that is independent of the perceiving subject—ideas which,
on the other hand, have been brought into as secure a relationship as possible with the
sense data. It is further characteristic of these physical objects that they are thought of as
arranged in a space-time continuum. An essential aspect of this arrangement of things
in physics is that they lay claim, at a certain time, to an existence independent of one
another, provided these objects “are situated in different parts of space” . . . This principle
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has been carried to extremes in the field theory by localizing the elementary objects on
which it is based and which exist independently of each other, as well as the elementary
laws which have been postulated for it, in the infinitely small (four-dimensional) elements
of space [4] (pp. 170–171)

All of our four categories of being have been subject to intense philosophical scrutiny through
the ages. The nature of space and time has already been mentioned. The nature of matter has been
equally treated in fundamentally different way: as that which occupies space; as the center of forces;
as a bundle of properties, etc. Laws, of course, have been rendered as relations of necessitation,
as members of the simplest and strongest axiomatization of the Humean mosaic, as dispositions and
as primitive entities not subject to further analysis. For our purposes here, though, these controversies
are inessential: one way or another every physical theory does postulate a dynamics or, as we will
say, a nomology. Just as the ontology of a theory specifies what exists in a more “concrete” sense,
the nomology specifies the laws. The spatiotemporal structure has traditionally been taken to be
somehow less than material but more than nothing. And the non-local ontology is a recent innovation
in physics, still a matter of much dispute (See, e.g., [5]).

Let’s try a couple of simple exercises, drawn from antiquity. Democritean atomism has a material
ontology of solid, shaped, indivisible, and solid bodies. The spatiotemporal structure is an infinite
Euclidean space that persists through time, with the opposite directions “up” and “down” intrinsic to
it. The nomology specifies that the atoms will fall at a constant rate down, save for two circumstances:
collisions between atoms and the occasional random “swerve”. The timing and nature of these swerves
are not precisely defined by Democritus, nor are the laws of collision.

Aristotelian physics, in contrast, posits a finite, spherical spatial structure that persists through
time. There are five fundamental types of matter: earth, water, air, and fire (which correspond to the
modern notion of the states of matter: solid, liquid, gas and plasma), as well as the quintessence, viz.
aether. The spherical spatial structure defines the “up” and “down” directions as towards and away
from the center of the universe. The dynamics is given in terms of nature rather than in terms of laws:
the natural motions of earth and water are to the center and the natural motions of fire and air to the
periphery. The natural motion of aether is uniform circular motion about an axis through the center of
the universe.

The four basic categories used in our anatomy of a physical theory are to be taken cum grano
salis. The category of non-local beables is a recent addition, and there may be more to come. In the
other direction, one could imagine categories melding: the spatio-temporal and material aspects,
for example, becoming so entwined as not to always be distinct. But at least in some conditions the
separate categories must emerge if the theory is to be recognizable as physics at all.

The most profound conceptual addition to this basic scheme of physical theorizing is strongly
associated with the scientific revolution: the geometrization or mathematization of physics.
Galileo famously declared:

Philosophy is written in this grand book—I mean the universe—which stands continually
open to our gaze, but it cannot be understood unless one first learns to comprehend the
language in which it is written. It is written in the language of mathematics, and its
characters are triangles, circles, and other geometric figures, without which it is humanly
impossible to understand a single word of it; without these, one is wandering about in a
dark labyrinth [6] (p. 65)

Modern physics cannot be separated from this mathematization. Our next task is to consider the
use of mathematics in physics and how to cope with it.

3. Mathematical Physics and the Canonical Presentation

As the simple examples of Democritus and Aristotle illustrate, a physical theory need not employ
any sophisticated mathematical apparatus. However, both the glory and the bane of modern physics

12



Entropy 2018, 20, 465

is its highly mathematical character. This has provided both for the calculation of stunningly precise
predictions and for the endemic unclarity about the physical ontology being postulated. The unclarity
arises from a systematic ambiguity among terms that refer to the ontology and nomology of a theory
and terms that refer to the mathematical representations of the ontology and nomology.

Mathematical physics uses mathematical structures to represent physical states of affairs.
Unfortunately, the distinction between the representations and the entities represented is often elided
in the common manner of speech. As a simple example, take the term “scalar field”. It would not
sound in the least odd to say: “The Higgs field is a scalar field”. Further, if one inquires what a scalar
field is, it would not be at all out of place to be told that a scalar field is a mapping from space-time
points into a set of scalars, i.e., real or complex numbers. However, if we naively put these two
innocuous statements together we appear to get the result that the Higgs field (which we took to be
a physical item) is a mapping from space-time points into the field of numbers (which is an abstract
mathematical object). As a purely abstract matter, infinitely many such mappings exist, but that does
not mean there are infinitely many physical scalar fields. Something has gone wrong.

On the other hand, to take a familiar example, we often talk of the wave function of a system
in quantum mechanics, and ask whether the wave function is “real”, “physical”, or “objective”.
However, what is a wave function? As the term implies, it is a function, a mathematical mapping from
(e.g.,) the configuration space of a system to the complex numbers. So is the dispute about the “reality”
of the wave function a dispute about the ontological status of such a mapping? Obviously not.

What has gone wrong in both of these examples is straightforward: the terms “scalar field” and
“wave function” are being used ambiguously. In one sense, they refer to a specific mathematical structure.
In the other, they are used to refer to a postulated physical item that is supposed to be represented by the
mathematical structure. It is trivial that the mathematical structure exists in whatever sense mathematical
entities do. It can be highly contentious whether any physical entity exists that can be represented by
that mathematical item in the way that the physical theory requires.

The most efficient way to resolve any systematic ambiguity is by a linguistic convention. In the
case of the “wave function”, I have adopted the convention that the mathematical representation shall
be called a “wave function” (because a function is plainly a mathematical item) and the non-local beable
that it is posited to represent shall be called the quantum state of a system. So the metaphysical battles
are over the existence and nature (if they exist) of quantum states.

There is no canonical way for a mathematical item to represent a physical one. No amount
of staring at the mathematics per se can resolve questions like: which mathematical degrees of
freedom in the representation correspond to physical degrees of freedom in the system represented?
Mathematical degrees of freedom in the representation that do not correspond to physical degrees of
freedom in the represented system are called gauge degrees of freedom, and representations that differ
only in their gauge degrees of freedom are called gauge equivalent. Transformations between gauge
equivalent mathematical representations are called gauge transformations.

As a seemingly trivial example, a global constant change in the phase of a wave function is
standardly taken to be a gauge transformation and the resulting mathematical representation to
be gauge equivalent to the original. One way to remove this redundancy from the mathematical
representations is to change to another mathematical object as the vehicle of representation. In this case,
one says that quantum states are not properly represented by vectors in a Hilbert space but by rays in a
projective Hilbert space. In one sense of “ideal”, an ideal mathematical representation for a physical
system would implement a one-to-one map from the space of mathematical representations to the
space of physically possible states of the system. At least, such a representation would be maximally
convenient for the metaphysician, while it might be severely impractical for the physicist who actually
has to compute numbers. We will see an example of this anon.

If one cannot distinguish the gauge from the non-gauge degrees of freedom in a mathematical
representation by any purely mathematical analysis, how is that job to be done? The only way is by a
commentary on the mathematical representation. We can only be sure what a piece of mathematics is
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supposed to represent (if anything) by being told by the expositor of a physical theory. One and the
same mathematical apparatus accompanied by a different commentary can convey different physical theories,
theories with different ontologies and even with different laws. Our examples from classical electromagnetism
will illustrate this possibility.

Although this paper is not particularly about quantum theory, it is worthwhile to pause for
a moment to reflect on the situation there. It is commonly said that there is this thing called
“quantum theory” which works splendidly well as a physical theory but nonetheless lacks an
“interpretation”. The project of interpreting quantum theory is assigned to (or dumped on) people
who work on the foundations of physics, and perhaps most usually to philosophers. “Interpreting”
quantum theory is regarded by many physicists as pointless or frivolous or unscientific or even
meaningless, except insofar as it means altering the empirical predictions of the theory. This attitude
has a long history: already in 1926 the physicist Charles Galton Darwin wrote to Niels Bohr: “It is a
part of my doctrine that the details of a physicist’s philosophy do not matter much” [7] (p. 4).

According to the linguistic usage urged here, though, all of this talk of “interpreting” quantum
theory is mistaken. If a physical theory is supposed to address the questions of what there is and
what it does, the questions of physical ontology and physical nomology, then what goes by the name
“quantum theory” is not a theory at all. It is rather a mathematical method of making predictions. If all
one cares about are the accuracy of the predictions, then one can be completely satisfied with “quantum
theory”, but that is the attitude of the engineer rather than the natural philosopher. “Quantum theory”
is a prediction-making recipe in need of a real physical theory, a theory that specifies what exists
and how it behaves, thereby accounting for the remarkable reliability of the predictive algorithm.
Rather than there being a theory in need of an interpretation, there is a calculational tool in need of a
theory that accounts for it.

How, then, is one to clearly and unambiguously specify a physical theory? And what difference
might it make to have our physical theories clearly and unambiguously presented? The most important
elements of a mathematically formulated physical theory have already been given, and all that is
required is a systematic way to exhibit them. What we need to make clear are the physical ontology,
the spatiotemporal structure, and the nomology (i.e., the fundamental laws) of the theory, by means of
presenting the mathematical representation of these various elements along with a commentary that relates
the mathematical representation to the physical item it is meant to represent. The commentary should
make clear which mathematical degrees of freedom in the representation are gauge and which rather
correspond to physical degrees of freedom in the system represented. In addition, it can be useful to
specify any mathematical fictions that may be employed for the purpose of simplicity of presentation or
of calculation, as well as any derivative ontology, i.e., physically real items that are composed of and
analyzable into more fundamental entities. To take an obvious example, hydrogen atoms are real
physical entities, but they are not physically fundamental: they are just bound states of a proton and
an electron. If protons and electrons are already in one’s physical ontology and the nomology allows
for them to form bound states, then the recognition of hydrogen atoms as physically real does not
increase one’s ontology at all.

In presenting a clear and precisely articulated physical theory, then, one ought to specify the
fundamental physical ontology and how the fundamental physical ontology is to be represented
mathematically. The fundamental nomology—the laws—will be represented by mathematical
equations that make reference to the spatiotemporal structure, and we demand that these mathematical
representations of the laws contain only representations of the fundamental ontology. Hydrogen atoms may
be physically real, but the laws of nature do not influence them qua hydrogen atoms but qua electron
and proton (or better: electron and quarks) that happen to form a bound state. Carrying this insight
further, we see that there can be no fundamental physical laws that mention tables or chairs or horses or
economic systems or measurements as such. Physics deals with these items only as derivative ontology,
not as fundamental ontology. The special sciences can usefully then be regarded as operating under the
fiction that the sorts of items they trade in are fundamental rather than derivative, and are governed by
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sui generis laws. Ultimately, physics must explain the predictive effectiveness of these special science
laws, just as it must explain the predictive effectiveness of the quantum predictive algorithm.

Collecting together all of these threads, we can at last make a concrete proposal. A Canonical
Presentation of a mathematical physical theory shall specify:

(1) The fundamental physical ontology of the theory, which may further be divided into the local
beables (matter and space-time structure) and the non-local beables, if any (e.g., a quantum state
represented by a wave function on configuration space).

(2) The spatio-temporal structure of the theory.
(3) The mathematical items that will be used to represent both 1 and 2, with a commentary making

clear which degrees of freedom in the mathematics are gauge and which are not.
(4) The nomology of the theory, which will be represented by equations couched in terms only of the

items mentioned in (3).
(5) Mathematical fictions—these are mathematically defined quantities that are not intended to

directly represent any part of the physical ontology. Such fictions can play an important practical
role when trying to calculate with the theory.

(6) Derivative ontology—these are items that are taken to be physically real but not fundamental.
They must be definable in terms of the fundamental ontology and nomology.

The only way to argue for the utility of this sort of systematic presentation of a physical theory is
to see it in action. That is our next task.

4. The Canonical Presentation of Classical Electromagnetic Theory

Let’s see how this general approach to specifying a theory in mathematical physics works in
a relatively uncontroversial setting: classical electromagnetism. Even there, we will confront some
interesting and perhaps unexpected choices when trying to lay out the theory in such an explicit way.

Expressed in words, classical electromagnetic theory, as codified in Maxwell’s equations, posits the
existence of an electric field, a magnetic field, matter with mass and charge, a classical space-time,
and several laws.

A naïve Canonical Presentation of the physical theory, drawn straight from a standard textbook,
might look like Table 1.

Table 1. Standard E-M Theory.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely Mathematical Facts Nomology
Derivative Ontology;

Mathematical Fictions

Classical
E & M,
Mass

Density
Version

Electric Field
Magnetic Field
Charge Density
Mass Density
Lorentz Force;

Time
3-D Euclidean Absolute Space

→
E(x, y, z, t)
→
B(x, y, z, t)
ρ(x, y, z, t)
μ(x, y, z, t)
→
FL(x, y, z, t)

t ∈ R
(x, y, z) ∈ R 3

If Curl
→
C = 0 on a simply

connected space, then
→
C = Grad(ξ)
for some ξ.

If Div
→
B = 0 on a simply

connected space, then
→
B = Curl

(→
A

)
for some

→
A

Gauge transformations
→
A′ =

→
A + gradξ

φ′ = φ− ∂ξ
∂t

Div
(→

E
)
= ρ

Div
(→

B
)
= 0

Curl
(→

E
)
+ ∂

→
B

∂t = 0

Curl
(→

B
)
− ∂

→
E

∂t = ρ
→
v

→
FL = ρ

(→
E +

(
→
v ×

→
B

))
→

Fnet = μd
→
v

dt

Derivative Ontology:
→
J = ρ

→
v

→
Fnet = vector sum of all

forces on a body at a point.
Mathematical Fictions:

Let
→
B = Curl

(→
A

)
Then Curl

(→
E + ∂

→
A

∂t

)
= 0

so
→
E + ∂

→
A

∂t = −Grad(φ)

or
→
E = −Grad(φ) − ∂

→
A

∂t

In presenting the nomology, we have adopted Metaphysician’s Units: the speed of light c and 4π
have both been set to unity. We have allowed ourselves the liberty because for our purposes now those
quantities just clutter the Presentation up.

The Canonical Presentation makes some things immediately clear. We are considering a theory in
which the electric and magnetic fields are two distinct physical items, each represented by a vector
field on a Euclidean space. The Lorentz force, and hence forces in general, are taken to be real parts
of the physical ontology. They, like all the rest of the physical ontology, are local beables. We could
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provide more detail about the mathematical structure of the mathematical representations, some of
which is easy to fill in. For example, both ρ and μ are functions defined over R3 for each value of t.
t ranges over some interval of the real numbers.

Looking carefully at the nomology, we see that we have not quite managed to satisfy all of the
requirements of a Canonical Presentation. In particular, the mathematical term

→
v appears thrice in

the nomology but is not the mathematical representation of any part of the ontology. Intuitively,
→
v is

the velocity of the charged matter density, and one would think that specifying μ as a function of t
would serve to fix

→
v . However, because μ is supposed to be a continuous matter density, this is just

not so. For example, suppose μ is the same for all t: a positive constant inside a sphere in E3 and zero
outside it. One might immediately assume that this is the mathematical representation of a uniform
sphere of matter at rest. However, a moment’s thought reveals that it could just as well represent a
uniform sphere of matter rotating on an axis, or performing any other motion that an incompressible
continuous fluid might. In short, the physical content expressed by the function

→
v(x, y, z, t) outruns the

physical content expressed by μ(x, y, z, t). If one really wants to make a matter density on a continuum
a fundamental part of the physical ontology, then one must also accept that there is a velocity function
assigned to the matter density that does not supervene on the distribution of the matter density over
all of space for all of time.

The theory also has as yet no mechanism to implement conservation of charge or conservation of

matter. Conservation of charge is easy: add a law to the effect that ∂
→
J

∂t + Div(
→
J ) = 0. Conservation of

matter would require a similar law: ∂μ
→
v

∂t + Div(μ
→
v) = 0.

It might also strike one as odd that the physical ontology contains both a matter density and a
charge density with nothing to link them together, either in virtue of a definition or in virtue of a law.
As far as our principles tell us, there could be a positive charge density where the matter density is zero,
just as there could be positive matter density where the charge density is zero. The latter represents
something we understand: the possibility of uncharged matter. The former, though, makes no obvious
sense as it represents, as it were, free-floating charge.

Both of these problems are soluble by changing the theory from one with a matter density ontology
to one with a point particle ontology. A point particle has a precise location at every moment of time
that it exists. If we require that point particles neither be created nor destroyed and that they always
move continuously, then the spatio-temporal career of every point particle will be represented by a
world line: a continuous path through space as a function of time (or, relative to a different set of
representational conventions, a continuous path through space-time). Charge conservation is secured
by simply associating a quantity, the charge, with each particle, and similarly for mass. The Canonical
Presentation of this new theory would be as seen in Table 2.

Table 2. E-M with a Particle Ontology.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely Mathematical
Facts

Nomology
Derivative Ontology;

Mathematical Fictions

Classical
E & M,

Particle Version

Electric Field
Magnetic Field
Point Particles
Particle Charge
Particle Mass

Lorentz Force;
Time

3-D Euclidean Absolute Space

→
E(x,y,z,t)
→
B(x,y,z,t)

→
xi(t) = (xi,yi,zi)

qi ∈ R
mi ∈ R > 0
→
FL(x,y,z,t)

t ∈ R

(x,y,z) ∈ R 3

If Curl
→
C = 0 on a simply

connected space, then
→
C = Grad(ξ)
for some ξ.

If Div
→
B = 0 on a simply

connected space, then
→
B = Curl

(→
A

)
for some

→
A

Gauge transformations
→
A′ =

→
A + gradξ

φ′ = φ− ∂ξ
∂t

Div
(→

E
)
= qi

Div
(→

B
)
= 0

Curl
(→

E
)
+ ∂

→
B

∂t = 0

Curl
(→

B
)
− ∂

→
E

∂t = qi
→
vi

→
FLi = qi

(→
E +

(
→
vi ×

→
B

))
→

Fneti = mi
d2→xi (t)

dt2

Derivative Ontology:
→
vi =

d
→
xi (t)
dt→

Ji = qi
→
vi

→
Fnet = vector sum of all

forces on a particle.
Mathematical Fictions:

Let
→
B = Curl

(→
A

)
Then Curl

(→
E + ∂

→
A

∂t

)
= 0

so
→
E + ∂

→
A

∂t = −Grad(φ)

or
→
E = −Grad(φ) − ∂

→
A

∂t

→
vi is now rigorously defined, and we understand why there cannot be charge where there is

no matter: charges are ascribed to particles and so can only exist where particles do, and particles
must also have non-zero mass. But some of our mathematical issues have just been moved around
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to different places: officially, Div
(→

E
)

cannot be well-defined if the charge is only non-zero at a point.
So to get our ducks in order we would have to massage the Presentation even more. But since our
main concern here is with the status of the electric and magnetic fields, not with the mass density
or the particles, we will not pursue that problem further. We only pause to note that getting one’s
ducks in a row requires first figuring out which ducks have strayed, and that the discipline we have
imposed on ourselves by trying to present the theory in the form of a Canonical Presentation brings
those delinquent ducklings into focus.

Let us turn our attention now to the nomology of the particle theory. There are a surprising
number of “laws of nature” in this presentation: six just for classical electromagnetism with charged
point particles. The ideal of a completed physics is usually envisaged as a single equation that covers
everything, so compact as to fit on the proverbial T-shirt. Surely we can do better than this unruly
crowd of a half-dozen. In terms of our Canonical Presentation, we would like to depopulate the
nomology. There are several different sorts of moves that can accomplish this.

The easiest case to consider is the “law” Div(
→
B) = 0. The content of this equation is often

described as saying that there are no magnetic monopoles. But the proposition “There are no
magnetic monopoles” does not really have the form of a paradigmatic law. Consider, for comparison,
the proposition that water is H2O. That is certainly true, and necessarily true, but does not have
the characteristics of a physical or chemical law. We do not think that there are as many distinct
chemical laws as there are chemical species: that would lead to millions of laws of chemistry. Water is
H2O is rather the answer to the fundamental philosophical question: What is it? It tells of the
metaphysical nature of water, what water fundamentally is. Although different in some respects,
“There are no magnetic monopoles” is a similar sort of claim: it specifies part of the fundamental
nature of magnetic charges.

Still, to make the connection between the absence of magnetic monopoles and Div(
→
B) = 0,

we need a connection between the divergence of the magnetic field and magnetic charges. What would
cut this Gordian knot is another statement about the fundamental metaphysical nature of electric and
magnetic charges: what if magnetic charges just are the divergences of magnetic fields, and electric
charges just are the divergences of electric fields? Then the ontological claim that there are no magnetic
monopoles is completely equivalent ontologically to the claim that the magnetic field is divergenceless,

which in turn is represented by the mathematical equation Div(
→
B) = 0. The net result of this ontological

move is to shift the equation Div(
→
B) = 0 from the category of the nomology to a logical consequence

of an ontological analysis of the form Div(
→
B) = qm, with qm representing a magnetic charge, together

with the negative ontological claim that magnetic charges do not exist.
A non-existence claim such as this is the sort of beast that drove Parmenides around the bend,

and there are various methods we might use to incorporate it into our Canonical Presentation. But the
most elegant is a simple rule of silence: in a physical theory nothing exists unless we explicitly say
it does. So the elegant way to deny the existence of magnetic charges is simply not to list magnetic
charges in the ontology.

Electric charges, though, do exist. But we can eliminate Div(
→
E) = qi from the nomology by

exactly the same shift. Let us propose that this equation represents not a physical law but an ontological
analysis: electric charges just are the divergences of electric fields. In this way we reduce both the
physical ontology and the nomology, and further gain an explanation of why electric charges cannot
exist without electric fields.

Bundling these two changes together (one could in principle do just one or the other alone) yields
a new, different physical theory (Table 3).
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Table 3. E-M with Derived Charges.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely Mathematical
Facts

Nomology
Derivative Ontology;

Mathematical Fictions

Classical
E & M,
Particle
Version

With Derived
Charges

Electric Field
Magnetic Field
Point Particles
Particle Mass
Lorentz Force;

Time

3-D Euclidean Absolute Space

→
E(x, y, z, t)
→
B(x, y, z, t)

→
xi(t) = (xi, yi, zi)

mi ∈ R > 0
→
FL(x, y, z, t);

t ∈ R

(x, y, z) ∈ R 3

If Curl
→
C = 0 on a simply

connected space, then
→
C = Grad(ξ)
for some ξ.

If Div
→
B = 0 on a simply

connected space, then
→
B = Curl

(→
A

)
for some

→
A Gauge

transformations→
A′ =

→
A + gradξ

φ′ = φ− ∂ξ
∂t

Curl
(→

E
)
+ ∂

→
B

∂t = 0

Curl
(→

B
)
− ∂

→
E

∂t = qi
→
vi

→
FLi = qi

(→
E +

(
→
vi ×

→
B

))
→

Fneti = mi
d2→xi (t)

dt2

Derivative Ontology:

Div
(→

E
)
= qi

Div
(→

B
)
= qm

→
vi =

d
→
xi (t)
dt→

Ji = qi
→
vi

→
Fnet = vector sum of all

forces on a particle;
Mathematical Fictions:

Let
→
B = Curl

(→
A

)
Then Curl

(→
E + ∂

→
A

∂t

)
= 0

so
→
E + ∂

→
A

∂t = −Grad(φ)

or
→
E = −Grad(φ) − ∂

→
A

∂t

If the method of handling Div(
→
B) = 0 strikes one as too baroque, there is another tack available.

Simply stipulate that magnetic fields are to be represented mathematically by divergence-free vector
fields. There is nothing preventing this sort of decision, which now appears as a further restriction on
the mathematical apparatus (Table 4).

Table 4. Particle Ontology with derived charge.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of Physical

Ontology

Purely Mathematical
Facts

Nomology
Derivative Ontology;

Mathematical Fictions

Classical
E & M,

Particle Version
With Derived

Charges

Electric Field
Magnetic Field

Point Particles

Particle Mass

Lorentz Force;

Time
3-D Euclidean Absolute Space

→
E(x, y, z, t)

→
B(x, y, z, t) s.t. Div(

→
B ) = 0

→
xi(t) = (xi, yi, zi)

mi ∈ R > 0
→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

If Curl
→
C = 0 on a simply

connected space, then
→
C = Grad(ξ)
for some ξ.

If Div
→
B = 0 on a simply

connected space, then
→
B = Curl

(→
A

)
for some

→
A.

Gauge transformations
→
A′ =

→
A + gradξ

φ′ = φ− ∂ξ
∂t

Curl
(→

E
)
+ ∂

→
B

∂t = 0

Curl
(→

B
)
− ∂

→
E

∂t = qi
→
vi

→
FLi = qi

(→
E +

(
→
vi ×

→
B

))
→

Fneti = mi
d2→xi (t)

dt2

Derivative Ontology:

Div
(→

E
)
= qi

→
vi =

d
→
xi (t)
dt→

Ji = qi
→
vi

→
Fnet = vector sum of all

forces on a particle;
Mathematical Fictions:

Let
→
B = Curl

(→
A

)
Then

Curl
(→

E + ∂
→
A

∂t

)
= 0

so
→
E + ∂

→
A

∂t = −Grad(φ)

or
→
E = −Grad(φ) − ∂

→
A

∂t

Note that although this Canonical Presentation is not identical to the last, a strong argument can be
made that they present one and the same physical theory. The two presentations have identical physical
ontologies, identical spatiotemporal structures and identical nomologies. Their methods of handling
magnetic monopoles can therefore be reasonably regarded as merely presentational differences, to which
no ontological fact corresponds.

There are a couple more mathematical worries one might have about particle ontology
electromagnetic theories. If the charge of a particle is concentrated at a point, then the electric

field will not be defined there. That raises problems for both the divergence in Div(
→
E) = qi and for

the equation for the Lorentz force on the particle. There are different mathematical approaches to
solving problems like this, but for illustration’s sake here is a sketch of one.

Div(
→
E) is problematic at every point along the worldline of the particle—exactly the points where

the charged particle exists! But we can take a page from Gauss to circumvent this problem. Gauss’s
theorem says that the integral of the flux of a vector field over a closed surface equals the integral of
the divergence over the enclosed volume. And there is no problem defining the flux over any surface
enclosing the particle. So instead of defining qi as the divergence of the electric field at a point, we can
define it as the limit of the flux over surfaces that enclose the point as the maximum distance from the
point to the surface goes to zero. In a similar spirit, define the qi-adjusted electric field Eqi at a point p as
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the electric field at p minus qi
r2 r̂, where r is the distance from the location of particle i to p and r̂ is the

unit vector in the direction from the location of the particle to p. Let Eqi, Σ be the average of Eqi over
the surface Σ. Finally, define the electric field at a point on the worldline of particle i to be the limit of
Eqi, Σ as the distance of the points on Σ from the point on the worldline goes to zero. It is that value of
E that is used in the Lorentz force law.

What are the solutions to these dynamical equations like? I make no representation that
they give the correct results. I have rather just been illustrating the sorts of conceptual, technical,
and mathematical issues that have to be resolved to complete the Canonical Presentation. It forces one
to answer questions about the ontology of a theory, the nomology, and the way the mathematics is
being used to represent both. Those questions, in turn are illuminating and suggestive.

The last and most important thing to note in all of these Canonical Presentations is the status of
the vector and scalar potentials. When one learns classical electromagnetism, the ontological status
of these potentials is not in doubt: they are not “real”, meaning that there is nothing in the physical
ontology that they directly represent. They can, of course, indirectly represent the electric and magnetic
fields, which are real, but the representation relation is indirect. It goes through the mathematical truths
listed on the Presentation, which imply the well-known gauge freedom in choosing the potentials.
It is that very freedom—the fact that there are mathematical degrees of freedom in the representation
that do not correspond to physical degrees of freedom in the object represented—that makes the
potentials so useful. One is free to choose a convenient gauge, different for different circumstances,
that makes the mathematics easier to handle. One of the most important entries in our charts so far,
then, is the characterization of the potentials as mathematical fictions. So far we have been considering
moves—changes in the fundamental ontology of the theory—that can shift entries out of the nomology
category and the ontology category and so reduce the basic posits of the physics. However, the theory
of electromagnetism had to deal with a shocking empirical discovery that shifted in the other direction:
from mathematical fiction to ontological posit. That is the next chapter of our tale.

5. The Aharonov–Bohm Effect

The physical theories presented above are not capable—even in principle—of accounting for some
observable results that can be obtained in the lab. It is true that these results were not discovered at
random: they were predicted by quantum theory and then confirmed. However, there is no reason in
principle why they could not have been stumbled across. Since the illustrative points I want to make
would become too bogged down if we tried to deal with quantum theory here, I will ignore all the
theoretical details and just focus on the phenomenon and the trouble it causes.

The story is well known. There is both an electric and a magnetic Aharonov–Bohm effect described
in [8], but the magnetic is more familiar and certainly striking enough. Take the usual two-slit set-up
for demonstrating interference effects with electrons and embed a solenoid between the two slits.
Shield the solenoid so no magnetic field inside leaks out and no electrons from outside can penetrate in.
Run the experiment and note where the interference bands are formed. Then change the magnetic flux
in the solenoid without altering either the electric or magnetic fields outside the solenoid. Run the experiment
again. The interference bands will be found to have shifted. The exact amount of the shift as a function
of the flux in the solenoid can be calculated and the prediction checked. They match. Figure 1 shows
the experimental set-up as depicted in the original paper of Aharonov and Bohm [8] (p. 486).
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Figure 1. The Aharonov–Bohm set-up.

It is clear from our Canonical Presentations above that none of those theories are capable, even in
principle, of accounting for the effect if the experimental conditions are as described. Note that
everything in these theories—both the ontology and the nomology—is local in Einstein’s sense.
There are no non-local beables, and the equations in the nomology take the form of local differential
equations. That means the if there are no changes in the experimental conditions outside of the solenoid
on the two trials of the experiment, then there can be no changes in the outcome of the experiment
outside of the solenoid either. But changing the flux inside the solenoid, according to the theory,
does not alter either the electric or the magnetic field outside. And the electrons themselves cannot
penetrate the solenoid to be affected. In principle, an action-at-a-distance theory could account for the
difference in outcomes, but none of the laws in any of the nomologies are action-at-a-distance laws.
So none of our ways of articulating classical electromagnetic theory is up to the task of explaining
the effect.

How was the effect originally predicted? The quantum state of the electron gets coupled to the
vector potential, not to the electric and magnetic fields. Furthermore, when the magnetic field inside
the solenoid changes, the potentials outside the solenoid have to change as well. This follows from
the Generalized Stokes Theorem: the integral of a one-form over the surface enclosing a volume
must equal the integral over the enclosed volume of the exterior derivative of the one-form. In three
dimensions, as stated in the more familiar vector calculus, this amounts to the claim that the integral
of a vector field over the surface of a volume equals the integral over the enclosed interior of the Curl
of the vector field. Now as noted in the Canonical Presentations above, since the divergence of the

magnetic field
→
B is zero, there exists a vector field

→
A such that

→
B = Curl(

→
A). So if we change

→
B inside

the solenoid, we change Curl(
→
A) inside the solenoid, and hence we change Curl(

→
A) in the interior

of any closed surface that contains the solenoid. However, by the Generalized Stokes Theorem that

means that
→
A must change on the surface of the volume, even if the surface lies as far as you like from

the solenoid. Changing
→
B inside forces a change in

→
A outside, even though

→
B may not change a bit

outside. And since the electron wavefunction couples to
→
A, this allows there to be local laws that

predict the shift in the interference bands so long as those laws advert to
→
A, rather than to

→
B.

But according to our rules,
→
A can only be used in specifying the nomology if it appears in the

ontology. So the obvious way to try to account for the Aharonov–Bohm effect is to move the scalar
and vector fields from the category of Mathematical Fictions to the category of Physical Ontology. This is
the formal implementation in the setting of Canonical Presentations of the moral that Aharonov and
Bohm draw in their paper. The title is straightforward: “Significance of Electromagnetic Potentials in
Electromagnetic Theory”. The paper opens ([8], p. 485):

In classical electrodynamics, the vector and scalar potentials were first introduced as a
convenient mathematical aid for calculating the fields. It is true that in order to obtain a
classical canonical formalism, the potentials are needed. Nevertheless, the fundamental
equations of motion can always be expressed directly in terms of the fields alone.
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In the quantum mechanics, however, the canonical formalism is necessary, and as a result,
the potentials cannot be eliminated from the basic equations. Nevertheless, these equations,
as well as the physical quantities, are all gauge invariant; so that it may seem that even in
quantum mechanics, the potentials themselves have no independent significance.

In this paper we shall show that the above conclusions are not correct and that a further
interpretation of the potentials is needed in quantum mechanics.

Colloquially, this change in the status of the potentials is often reported by saying that in
quantum theory, but not in the classical Maxwell theory, the scalar and vector potentials are physical,
physically real, or real.

The Canonical Presentation offers a direct way to indicate this change: move the two potentials
from the category of Mathematical Fictions to the category of Physical Ontology. There is no obvious
need to make them non-local beables, so we won’t.

Having added the potentials to the Physical Ontology, there are then a series of other decisions to
make, which can be made in many ways. The first one is whether the addition of the potentials to the
ontology should be accompanied by the elimination of the electric and magnetic fields.

Were we to leave the fields in place there would be several consequences. One is simply that the
ontology becomes more bloated, presumably to Ockham’s consternation. However, that is the least
of it. The real problem is that the potentials and the fields are not independent degrees of physical
freedom: they cannot vary independently of each other. In order to avoid such dependent behavior,

we would have to add a new law to the nomology. In particular, the relation
→
B = Curl(

→
A), which has

so far appeared only as a mathematical observation, would have to become a law relating two distinct
physical magnitudes. While Ockham is known for trying to reduce the ontology to the smallest
possible set, our main goal has been to reduce the nomology to just one compelling equation. Any sort
of behavior can be accounted for by any ontology if you allow yourself enough laws, but that is not
the case given a single fixed law, even if you increase the ontology.

There is one obvious new home for
→
B = Curl(

→
A): a constitutive definition of the magnetic field in

terms of the vector potential. In this picture, magnetic fields are real but also derivative: magnetic fields
are, as it were, made out of or aspects of vector potentials. As derivative, they come with no ontological
cost. Since the equation is now just part of a (real) definition, they come with no nomological cost
either. They are, in a sense, descriptive conveniences as the potentials were originally calculational
conveniences. However, while the original potentials did not exist at all, in the new scheme the fields
do exist as derivative physical entities. These derivative entities will certainly obey Humean laws: the
very laws of Maxwell. However, just as the ontology is derivative and comes at no cost, so too does
that Humean nomology.

The same move can be made by swapping out the scalar potential for the electric field. However,
having made the potentials “real”, there are knock-on consequences for the nomology. Recall that the
mathematical expression of the Nomology should be couched in only in terms of the Physical Ontology

and the Spatiotemporal Structure. So the reference to
→
E and

→
B must be expunged in favor of

→
A and

φ. Rewriting Maxwell’s equations in terms of the potentials was the bread and butter of physicists
using the classical theory because, as we have mentioned, the gauge freedom of the potentials offered
opportunities to simplify calculations. If we do nothing more than rewrite the equations in this
way and return from the point particle ontology to the mass density ontology, we get this Canonical
Presentation (Table 5).
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Table 5. Naïve Theory with Ontology of Potentials.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely
Mathematical Facts

Nomology
Constitutive
Principles of

Derivative Ontology

Vector and
scalar

potentials,
Mass density,
Newtonian

Space and Time

Vector Potential
Scalar Potential
Charge density
Mass density

Lorentz Force;
Time

3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)
ρ(x, y, z, t)
μ(x, y, z, t)
→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

The nomology does
not fix the history of

→
A, or φ, given

complete initial
values. Radical
indeterminism→

A′ =
→
A + Gradξ

φ′ = φ− ∂ξ
∂t

∇2φ− ∂ Div
→
A

∂t = − ρ

∇2
→
A− ∂2

→
A

∂t2 − Grad
(

Div
→
A + ∂φ

∂t

)
= ρ

→
v

→
Fnet = μd

→
v

dt
→
FL = ρ

(
−Gradφ− d

→
A

dt + Grad
(
→
v ·

→
A

))
→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t

This theory has the same problem with the
→
v term in the nomology as our original theory did.

However, a much more severe issue has arisen: the new dynamics of
→
A and φ is now radically

indeterministic. The gauge freedom so prized by mathematicians has been converted into a real
unconstrained physical freedom. Given any solution of the dynamical equations with a given set of
initial conditions one can generate a physically different solution with the same initial conditions.
Simply choose an arbitrary function ζ(x, y, z, t) whose initial gradient is zero and initial time derivative
is zero. Plugging that into the equations for what used to be a gauge transformation yields a new
solution from the same initial state.

The Canonical Presentation above is the most naïve and ham-handed way to implement the
command to “regard the scalar and vector potentials as real”. It illustrates the dangers of mindlessly
reifying some mathematical object to serve some end. It is true that according to the theory when the

physical state in the solenoid changes (by changing the
→
A field so that it’s Curl changes), the state of

→
A

out in the region available to the electron also changes. It becomes possible, then, to account for the
phenomena with a theory that posits only local interactions. However, the radical indeterminism is
surely too high a price to pay, especially when the phenomena themselves display no indeterminism
or unpredictability (at the level of the location of the interference bands).

The problem is that we now have more physical degrees of freedom than are required for
explanatory purposes. The solution is to posit some new constraint or restriction that kills off that
surplus physical degree of freedom. In classical electromagnetic theory, carried out using the potentials,
this would be called “fixing a gauge”, but keep in mind that in that theory nothing at all physical was
at stake. The most convenient gauge for each problem could be chosen, varying the choice from one
situation to the next. However, exactly because of the practical utility of finding a convenient gauge,
various gauge-fixing conditions were developed. Our job now is to consider what happens if we use
one or another of these conditions to eliminate the indeterminism. What physical features do these
various theories have?

The first, and most famous, gauge is Lorenz gauge (after Ludvig Lorenz). Lorenz gauge kills off

some of the extra degrees of freedom by requiring that Div
→
A = − ∂φ

∂t . This condition clearly simplifies

the nomology, in that the second equation becomes ∇2
→
A− ∂2

→
A

∂t2 = ρ
→
v . That has two notable effects.

First, it separates the variables, so there is one equation that mentions only the scalar potential and
another than mentions only the vector potential. Second, the two equations have the same form,

namely ∇2X− ∂2
→
X

∂t2 = Y or �2 X = Y.
Here is the Canonical Presentation (Table 6).
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Table 6. Lorenz-Gauge Theory with Charge Density.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely
Mathematical Facts

Nomology
Constitutive
Principles of

Derivative Ontology

Vector and
scalar

potentials in
Lorenz Gauge,
Mass density,

Charge density
Newtonian

Space and Time

Vector Potential
Scalar Potential
Charge density
Mass density

Lorentz Force;
Time

3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)
ρ(x, y, z, t)
μ(x, y, z, t)
→
FL(x, y, z, t)

t ∈ R
(x, y, z) ∈ R 3

Definition of Lorenz
Gauge:

Div
→
A = − ∂φ

∂t
φ is fixed by initial

boundary conditions,
e.g., requiring it to

go to zero
sufficiently fast at ∞.

∇2φ− ∂2 φ
∂t2 = − ρ

∇2
→
A− ∂2

→
A

∂t2 = −ρ→v
or, using the d’Alembertian:

�2 φ= − ρ

�2
→
A = −ρ→v

μd
→
v

dt = ρ

(
−Gradφ− d

→
A

dt + Grad
(
→
v ·

→
A

))
(if

→
FL =

→
Fnet)

→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t

This method of gauge-fixing does not kill off the gauge degrees of freedom completely. In addition,
one must put a constraint on how the scalar field behaves as it goes to spatial infinity. That is, the Lorenz
condition itself only partially fixes a gauge. The remaining freedom—such as how the potentials
behave as one goes to spatial infinity—can be specified in the initial conditions, but no empirical
considerstions can dictate what those initial conditions are.

Lorenz gauge is mathematically convenient because in it the dynamical equations for the vector
and scalar potentials decouple, which explains why Lorenz would have employed it in 1867, long before
any hint of the Theory of Relativity. However, to a more modern eye, something quite different jumps
off the page. The d’Alembertian operator is obviously exactly the right form to be invariant under a
Lorentz transformation (that’s Hendrik Lorentz). In other words, having decided to take the potentials
ontologically seriously, we find that in one gauge the nomology simplifies and shows common
structure for the scalar and vector potentials. And if one had the Canonical Presentation of Maxwellian
electromagnetism in Lorenz gauge, it might possibly occur to you that the fundamental dynamical
equations for the potentials could suggest a change in the spatiotemporal structure. At least as far
as the potentials go, all the spatiotemporal structure would need to do is to allow for the definition
of the d’Alembertian. By such a route, one could have arrived at Special Relativity—as understood
by Minkowski—as a new theory of space-time structure. In short, to a modern sensibility, Maxwell’s
theory expressed in Lorenz gauge virtually shouts “I want to live in Minkowski space-time”. This gives
some indication of the heuristic power that may accrue to presenting a theory in Canonical form.
It becomes clear exactly what is being postulated and how the parts fit together.

We can, of course, play exactly the same game on the new theory as we did on the other theories:
instead of the ontologically independent scalar potential and charge density requiring a law in the
nomology to keep them correlated, one can just decide to cut the Gordian knot by making the
ontological identification of ρ with ∂2 φ

∂t2 − ∇2φ. Just as we made the electric charge density into a
structural feature of the electric field above, so we can make it a structural feature—indeed, a Lorentz
invariant structural feature—of the scalar potential here. That move reduces the whole dynamics of
the potentials to one law, as shown below (Table 7).

Table 7. Lorenz Gauge, Derived Charge Density.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely
Mathematical Facts

Nomology
Constitutive Principles of

Derivative Ontology

Vector and
scalar

potentials in
Lorenz Gauge,
Mass density,

Derived
Charge Density

Newtonian
Space and Time

Vector Potential
Scalar Potential

Mass density
Lorentz Force;

Time
3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)
μ(x, y, z, t)
→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

Definition: Lorenz
Gauge

Div
→
A = − ∂φ

∂t
φ is also gauge-fixed
if it has to go to zero
sufficiently fast at ∞.

∇2
→
A− ∂2

→
A

∂t2 = −ρ→v
or, using the d’Alembertian:

�2
→
A = −ρ→v

μd
→
v

dt = �2φ

(
−Gradφ− d

→
A

dt + Grad
(
→
v ·

→
A

))
(if

→
FL =

→
Fnet)

→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t

∇2φ− ∂2 φ
∂t2 = − ρ

or ρ = −�2φ

Of course, in direct parallel to the discussion above, the status of the velocity vector is obscure
when using a mass density rather than a particle theory. And the same move to a particle theory is
available again.
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We are now in a position to make the most important observation so far. By trading off the electric
and magnetic fields in the original ontology for the scalar and vector potentials, we have been able
to save locality even while handling the Aharonov–Bohm effect: in fact, in the quantum mechanical
one-particle theory the wave function of the electron couples to the vector potential in a completely
local way. Changing the physical state of the solenoid necessarily changes the vector potential outside
the solenoid, so the trick behind the effect seems to be revealed. However, one price we pay for taking
the potentials seriously is taking the gauge ontologically seriously as well. What in the classical theory
was a merely conventional and unphysical change of gauge becomes the means of changing out one
theory in favor of a rival, distinct theory. Our next example illustrates this.

Another of the most popular gauges used in classical Electromagnetism is the Coulomb gauge.

The Coulomb gauge condition is Div
→
A = 0. Looking back at the form that Maxwell’s laws take in

terms of the potentials, the Coulomb condition again simplifies the nomology. Further, unlike the
Lorenz condition, the Coulomb condition is a full gauge-fixing condition: imposing it eliminates all
the original freedom in picking a gauge. Hence the resulting theory—once we take the potentials as
elements of the physical ontology—is both deterministic and does not require any choice of initial
conditions not motivated empirically. We take for granted that the local charge distribution, unlike the
value of the scalar or vector potential, is empirically observable.

Here is a naïve attempt at a Canonical Presentation of Classical Electromagnetism formulated
in terms of the potentials in Coulomb Gauge. We have eliminated the charge density by ontological

definition in terms of the scalar potential (Table 8). To improve readability, we have employed
→
j in

presenting the nomology, but it can be eliminated in favor of the fundamental Physical Ontology via
the Constitutive Principles at will.

Table 8. A Naïve Attempt at Coulomb-fixed Potentials.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely
Mathematical

Facts
Nomology

Constitutive Principles of
Derivative Ontology

Vector and
scalar

potentials in
Coulomb

Gauge, Mass
density, Charge

Density
Newtonian

Space and Time

Vector Potential
Scalar Potential
Mass Density

Charge Density
Lorentz Force;

Time
3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)
μ(x, y, z, t)
ρ(x, y, z, t)
→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

Definition of
Coulomb Gauge

Div
→
A = 0

∂2
→
A

∂t2 −∇2
→
A =

→
J − Grad

(
∂φ
∂t

)
or, using the d’Alembertian:

−�2
→
A =

→
J − Grad

(
∂φ
∂t

)
μd

→
v

dt = −∇2φ

(
Grad

(
φ−

(
→
v ·

→
A

))
+ d

→
A

dt

)
(if

→
FL =

→
Fnet)

φ
(→

x , t
)
=

∫ ρ

(→
x′ ,t

)
|→x−

→
x′ |

d3
→
x′

→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t
−∇2φ = ρ

A careful examination of the Canonical presentation reveals an anomaly: there are two separate
equations that relate the scalar potential φ and the charge density ρ. One is the local equation that
derives from the desire to eliminate the charge density by definition as first just the Divergence of
the electric field and then as the negative of the Laplacian of the scalar potential. This is a local
equation in that the scalar potential in any neighborhood of a point determines the charge at that point.
The second equation is most naturally read the other way. It defines the scalar potential in a non-local
way: the scalar potential is the sum of all the contributions of all the charge densities in the universe
with an inverse squared-distance dependency. This definition makes the value of φ at any point a
function of the contemporaneous charge distribution throughout the universe.

Clearly, one does not want to define the charge distribution in terms of the scalar potential and
then turn around and define the scalar potential as a function of the charge distribution. So at best
one of the two equations can survive: either the local or the non-local one. Einstein’s choice, of course,
would be the local one, but we are going to make the other decision: keep the equation relating the
scalar potential to the contemporaneous charge distribution. The next question is the ontological status
of this equation. Is it an ontological analysis of charge in terms of scalar potential, an ontological
analysis of scalar potential in terms of charge, or an element of the nomology: a law relating the scalar
potential to the contemporaneous charge distribution? Again, we will make the choice of treating it as
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a law, an “instantaneous production-at-a-distance” law. The picture is that the scalar potential is an
effect of the contemporaneous global charge distribution.

One could obviously make any of these decisions differently, and so end up with a different
theory. The whole universe of such theories would be interesting to map, but for reasons that will soon
become apparent, this is the articulated theory I want to pursue here.

The Canonical Presentation is seen in Table 9.

Table 9. Coulomb Condition, Derived Charge Density.

Theory
Physical Ontology;

Spatiotemporal Structure

Math
Representation of
Physical Ontology

Purely Mathematical
Facts

Nomology
Constitutive
Principles of

Derivative Ontology

Vector and
scalar

potentials in
Coulomb

Gauge, Mass
density,
Derived

Charge Density
Newtonian

Space and Time

Vector Potential
Scalar Potential

Mass density
Lorentz Force;

Time
3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)

μ(x, y, z, t)→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

Definition of Coulomb
Gauge Div

→
A = 0

∂2
→
A

∂t2 −∇2
→
A =

→
J − Grad

(
∂φ
∂t

)
or, using the d’Alembertian:

−�2
→
A =

→
J − Grad

(
∂φ
∂t

)
μd

→
v

dt = −∇2φ

(
Grad

(
φ−

(
→
v ·

→
A

))
+ d

→
A

dt

)
(if

→
FL =

→
Fnet)

φ
(→

x , t
)
=

∫ ρ

(→
x′ ,t

)
|→x−

→
x′ |

d3
→
x′

→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t
−∇2φ = ρ

Of course, as a theory with matter densities rather than particles, the significance of the velocity
that occurs explicitly in the Lorenz Force Law and implicitly in the dynamical equation for the vector
potential (via the current) is somewhat obscure. So, as our final adjustment of the theory we will
replace the mass density and charge density with point particles that have characteristic masses and
charges. That yields Table 10.

Table 10. Potentials with Coulomb Condition and Particles.

Theory
Physical Ontology;

Spatiotemporal Structure

Mathematical
Representation of
Physical Ontology

Purely Mathematical
Facts

Nomology
Constitutive
Principles of

Derivative Ontology

Vector and
scalar

potentials in
Coulomb

Gauge,
Particles with

Mass and
Charge,

Newtonian
Space and Time

Vector Potential
Scalar Potential
Point Particles
Particle Charge
Particle Mass
Lorentz Force

Time
3-D Euclidean Absolute Space

→
A(x, y, z, t)
φ(x, y, z, t)

→
xi(t) = (xi, yi, zi)

qi ∈ R
mi ∈ R > 0
→
FL(x, y, z, t)

t ∈ R

(x, y, z) ∈ R 3

Definition of Coulomb
Gauge

Div
→
A = 0

∂2
→
A

∂t2 −∇2
→
A =

→
J − Grad

(
∂φ
∂t

)
or, using the d’Alembertian:

−�2
→
A =

→
J − Grad

(
∂φ
∂t

)
mi

d
→
vi

dt = qi

(
Grad

(
φ−

(
→
vi ·

→
A

))
+ d

→
A

dt

)
(if

→
FL =

→
Fnet)

φ
(→

x , t
)
=

n=N
∑

n=1

qi

|→x−
→
x′ |′

omitting points on particle worldlines

→
J = ρ

→
v

→
B = Curl

→
A

→
E = −Grad(φ) − ∂

→
A

∂t
→
v =

→
vi =

d
→
xi (t)
dt→

Ji = qi
→
vi

There are various ‘t’s to cross and ‘i’s to dot, but let us stop here. So far we have articulated
eight separate theories—theories with distinct ontologies and nomologies—based on classical
electromagnetic theory. If one uses the phrase “Maxwell’s theory” or “classical electromagnetic
theory” in a way that is neutral between all or some of these precisely specified theories then one is
using the term “theory” too loosely for metaphysical or ontological purposes. If you want to know
what a theory posits about the world then you need to have a theory that is clearly enough articulated
to correspond to a single Canonical Presentation.

Note that there is nothing that would have prevented Maxwell from considering and accepting some
of these had it occurred to him to “take the potentials seriously”. Note also that of all the theories we have
considered yield the same empirical predictions, on any clear notion of “empirical predictions”.

6. Adjusting the Spatiotemporal Structure

So far, we have considered ways of changing a theory so that particular equations in the Canonical
Presentation get moved around: from the Nomology to the Constitutive Principles of Derivative
Ontology, from Mathematical Fictions to Mathematical Representations of Fundamental Ontology, etc.
In order to account for the Aharonov–Bohm effect, either we needed something more than the electric
and magnetic fields in the ontology or we needed an explicit action-at-a-distance law. Aharonov and
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Bohm’s original suggestion was that we have to take the potentials more seriously, an idea that can be
implemented in many ways (as we have seen). However, the immediate price to pay for changing the
status of the potentials is simple: radical indeterminism. One obvious way to get rid of that is to fix
gauge. Both the Lorenz and Couloumb conditions fix the gauge enough to eliminate the indeterminism.
A weaker reduction in the gauge degrees of freedom, could leave us with radical indeterminism.

However, one thing has remained untouched so far: the spatio-temporal structure. Every one
of our theories has been constructed in the same space-time setting: Newtonian Absolute space and
Absolute Time. Obviously, this is a component that not only can but must be adjusted to account for
Relativistic effects in a plausible way. Our final topic is reflection on this situation.

Just as the physical ontology and the nomology are mutually constraining—only mathematical
representations of items in the physical ontology should appear in the nomology and every such
representation should appear somewhere in the nomology—so too are the contents of the nomology
and the spatio-temporal structure. You need enough spatio-temporal structure to express the laws,
and don’t want more structure than is required for that purpose. Having the full Absolute Space and
Time gives one a lot of structure to work with, and indeed more structure than one needs. In particular,
it allows one to define the absolute velocity of a particle, which is a notion that has long been regarded
as suspect. Playing the same game with Newtonian mechanics reveals that some of the structure
of Absolute Space and Time is otiose for that theory, and one can set a similar theory in Galilean
space-time. What considerations apply to the question of spatio-temporal structure here?

If we set r(x, y, z, t) or all the qi to zero, all that is left of Maxwell’s theory is the homogeneous
Maxwell equations. In the theory that makes the potentials fundamental, choosing the Lorenz gauge

condition converts the nomology to �2φ = 0 and �2
→
A = 0. As noted above, if this where the

whole story ended then the theory would be suggesting that it lives naturally in a Minkowski space.
The d’Almerbertian is easily and naturally definable in Minkowski space-time, where it is Lorentz
invariant. Indeed, the Lorentz invariance of the nomology in Lorenz gauge is one of the reasons so
many people refer to Lorenz gauge as Lorentz gauge. Even more importantly, the manifest Lorentz
invariance of the theory cast in Lorenz gauge provides an easy argument to the conclusion that
Maxwellian electro-magnetic is a Lorentz invariant theory. One should then switch the spatio-temporal
structure to Minkowski, as it is simpler.

There are a few flies in the ointment. One is that the homogeneous equations are not the
whole story. Charged matter does have to be introduced into the theory somehow, so we need
an updated version of the Lorentz force law and a dynamics to go with it. The current also needs
to be reintroduced and the dynamical equation for the vector potential made sensitive to the matter.
Nonetheless, the very existence of the Lorenz gauge has convinced physicists to regard Maxwell’s
theory as implicitly Relativistic.

Another fly, concerns the fact that the Lorenz condition makes the exact value of the vector
potential empirically inaccessible. This can be settled in an island universe by imposing a demand
on how the potential behaves as it goes to infinity, but what is the physical motivation for such a
constraint?. So long as the potentials were regarded as mere mathematical fictions this made no
difference, and the potentials in Lorenz gauge could be used to prove the Lorentz invariance of the
field theory. However, if the potentials are not mere fictions, then we would prefer a deterministic
theory with empirically justified attribution of values to the potentials.

These reflections suggest a different conclusion: instead of Lorenz gauge, consider a theory in
which the potentials are subject to the Coulomb condition. Now the gauge is completely fixed given
the charge distribution, yielding both determinism and empirical justification of the initial conditions.
What sort of spatiotemporal structure would be needed to express the nomology of this theory?

The presence of the d’Alembertian in the equation for the vector field once again suggests a
Minkowski space-time structure. But Coulomb’s Law for the scalar potential points in a very different
direction. Since the scalar potential, in Coulomb gauge, is a function of the contemporaneous charge
distribution throughout all space, one requires a structure akin to Absolute Simultaneity in order to
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define the theory. It is natural, from this point of view, to add such a structure—a preferred foliation—to
the Minkowski space-time.

By this line of argument, merely noticing the Aharonov–Bohm effect, without having a clue about
where it originates, could motivate replacing Absolute Space and Absolute Time with a Lorentzian
space-time plus a preferred foliation. This suggestion has arisen without any consideration of
experimental violation of Bell’s inequality. To review the argument: the Aharonov–Bohm phenomenon
suggests that the electromagnetic situation outside of the solenoid must change when the flux inside
changes. But according to the field theory, the fields outside do not change at all. The vector potential,
however, does. So we reify the vector and scalar potentials. Now when the flux changes inside the
solenoid the vector potential outside must change since the Curl of it has changed inside (via Stokes’
Law). So by reifying the potentials we provide the resources needed (ultimately by quantum mechanics)
to account for the effect using only local interaction of the vector potential and the electron quantum
state. However, in Coulomb gauge, one posits at the very same time a non-local law relating the charge
distribution on a leaf of the preferred foliation to the value of the scalar field there. This combination
of Relativistic locality with foliation-dependent non-locality is at least strongly suggested by taking
the Coulomb condition seriously. It is worthy of both careful consideration and astonishment that
the corresponding space-time structure is precisely what one needs to adapt Bohmian mechanics to a
Relativistic setting.

It is worthwhile to reflect on this astonishing fact. A little counterfactual history illustrates the
point. Suppose that, before the development of quantum theory, an experimentalist just stumbled
on the two-slit interference phenomenon. Then again, quite by accident, the experimentalist stuck
a solenoid in the experimental design and discovered the Aharonov–Bohm effect. Armed only
with classical Maxwellian electro-magnetism in a classical space-time and the familiar Maxwellian
calculational techniques, what conclusions might such a physicist entertain?

Without any prompting, the experimentalist would notice that there are shifts in the interference
bands even though the electric and magnetic fields outside the solenoid are unchanged. Wary of
action-at-a-distance, the experimentalist would look for some physical magnitude that does change
outside the solenoid. It is not far to seek in the mathematics: when the magnetic flux in the solenoid
changes, the vector potential outside the solenoid must of necessity change too: Gauss’s Law demands
it. So the experimentalist would first be enticed by Aharonov and Bohm’s conclusion: rather than
merely being mathematical conveniences for solving problems, the mathematical scalar and vector
potentials directly represent something physically real!

However, now the specter of gauge freedom raises its head. Our physicist has become accustomed
to choosing whatever gauge equivalent vector and scalar potentials happen to be most convenient for
the problem at hand, and has done so with a clear conscience because the potentials were regarded as
just mathematical fictions, mere conveniences. “Making them real”, whatever that precisely may come
to mean, makes the conscience uneasy. If a changed vector potential in a region with an unchanged
electric and magnetic field can make an observable difference, then the choice of a gauge cannot just
be written off as unproblematic.

We now imagine a chain of possible reactions (not the only possible ones by any means!).
First, it occurs to the physicists to cut out the former gauge degrees of freedom by gauge fixing.
However, Alice chooses Lorenz gauge and Bob Coulumb gauge. Each puts the appropriate
fundamental equation into the nomology, and asks: “What sort of a space-time structure do I really
need to make sense of these equations?”. Alice has chosen Lorenz gauge, and is now paying much
more attention to it. She sees that the equations for A and phi decouple, and furthermore that the
decoupled equations both have the form of a d’Alembertian acting on the potential. Noting that the
d’Alembertian looks just like a Laplacian with an extra term that has flipped parity, we have already
come perilously close to considering the Minkowski metric and what it could describe. So we have the
familiar straight-line route from Maxwellian E & M to Special Relativity.
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Meanwhile, Bob always liked to work in Coulomb gauge, so he imposes it as the condition on A
and phi. Now there are two interlocked equations, one using the d’Alembertian again and the other
a simple instantaneous action-at-a-distance formula for the electric potential. Having heard about
Alice’s work, the d’Alembertian suggests a Minkowski space-time. However, the phi dynamics require,
laid over this space-time, a physical foliation. Thus we arrive at a picture of the space-time structure
containing both a Relativistic metric and a privileged set of level surfaces.

The Aharonov–Bohm effect does not violate any Bell’s Inequality, and can be explained in a
completely local way as Alice’s theory shows. Nonetheless, the extensive use of Coulomb gauge
makes a natural opening—once you decide to reify the vector and scalar potentials—for a space-time
structure with both a Lorentzian metric and a preferred foliation. It is exactly that space-time structure
that makes it easy to explain Relativistic effects in Bohmian Mechanics, as well as to implement the
non-locality that we know any empirically successful theory requires.

Our examination of various proposals for how to account for the Aharonov–Bohm effect by
altering the fundamental ontology and/or nomology of the Maxwellian electrodynamics has been for
illustrative rather than substantial purposes. As we have seen, even before trying to take quantum
theory explicitly into account and operating in a purely classical setting, there are many, many options.
We have only just touched on the changes in spatio-temporal structure that Relativity introduces.
Further, the effect itself has more complex and subtle forms (see, for example, [9,10]). There is a
tremendous amount of detailed work to be done in order to really come to grips with the ultimate
ontology of what Maxwell thought of as the electric and magnetic fields. This essay has been concerned
with what the general nature of that work is, and how it can be pellucidly displayed, not with what
the ultimate outcome should be.

7. Conclusions

Having seen how many different ways the basic structure of classical electromagnetism can
be used when constructing alternative, precisely defined theories (as articulated by a Canonical
Presentation) it may come as no surprise that we have barely scratched the surface. Electromagnetic
theory can, for example, be reformulated in the mathematical language of fiber bundles. In that
setting, the fields are derivative, corresponding to the curvature of the connection on the bundle [2].
That mathematical formalism is suggestive of yet another bevy of precise physical theories that the
Canonical Presentation could help keep straight.

If physicists were to adopt this method—or any other standardized method—to convey physical
theories clearly and unambiguously, many conceptual problems could be avoided. First and foremost
is the unfortunate tendency to portray different theories as nothing but different “interpretations” of
one and the same theory. Further, the discipline that a standardized format of this sort imposes can
make it easier to notice alterative theories that have not yet been considered.

Talk of physical ontology vs. nomology; of derivative ontology vs. mathematical fiction;
of spatio-temporal structure; and of fundamentality may strike one as philosophical rather than physical.
But these sorts of distinctions lie at the heart of physics, even if they are not often acknowledged.
Aharonov and Bohm recognized this perfectly well, so it seems apt to give the last word to them:

In classical mechanics, we recall that potentials cannot have such significance because
the equation of motion involves only the field quantities themselves. For this reason,
the potentials have been regarded as purely mathematical auxiliaries, while only the field
quantities were thought to have a direct physical meaning.

In quantum mechanics, the essential difference is that the equations of motion for a particle
are replaced by the Schrödinger equation for a wave. This Schrödinger equation is obtained
from a canonical formula, which cannot be expressed in terms of the fields alone, but
which also requires the potentials. Indeed, the potentials play a role, in Schrödinger’s
equation, which is analogous to that of the index of refraction in optics. The Lorentz force
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[eE + (e/c)v × H] does not appear anywhere in the fundamental theory, but appears only
as an approximation appearing in the classical limit. It would therefore seem natural at
this point to propose that, in quantum mechanics, the fundamental physical entities are the
potentials, while the fields are derived from by differentiations ([1], p. 490).
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Abstract: The inaccessibility to the experimenter agent of the complete quantum state is well-known.
However, decisive answers are still missing for the following question: What underpins and
governs the physics of agent inaccessibility? Specifically, how does nature prevent the agent from
accessing, predicting, and controlling, individual quantum measurement outcomes? The orthodox
interpretation of quantum mechanics employs the metaphysical assumption of indeterminism—‘intrinsic
randomness’—as an axiomatic, in-principle limit on agent–quantum access. By contrast, ontological
and deterministic interpretations of quantum mechanics typically adopt an operational, in-practice
limit on agent access and knowledge—‘effective ignorance’. The present work considers a third
option—‘objective ignorance’: an in-principle limit for ontological quantum mechanics based
upon self-referential dynamics, including undecidable dynamics and dynamical chaos, employing
uncomputability as a formal limit. Given a typical quantum random sequence, no formal proof is
available for the truth of quantum indeterminism, whereas a formal proof for the uncomputability
of the quantum random sequence—as a fundamental limit on agent access ensuring objective
unpredictability—is a plausible option. This forms the basis of the present proposal for an
agent-inaccessibility principle in quantum mechanics.

Keywords: ontological quantum mechanics; objective non-signaling constraint; quantum inaccessibility;
epistemic agent; emergent quantum state; self-referential dynamics; dynamical chaos; computational
irreducibility; undecidable dynamics; Turing incomputability

1. Introduction

The fast rising interest in ontological quantum mechanics has brought to the fore again the problem
of the fundamental limits of experimenter agency in quantum mechanics. For example, the physical
consistency of de Broglie-Bohm (dBB) theory [1–4] and Bohmian mechanics [5–8], as well as recent
quantum models within the ontological model framework [9–12], depends strictly on the imposition
of a limit on agent access to nature. However, what governs the physics of ‘agent inaccessibility’? How
and why does nature prohibit the experimenter agent from having unlimited access to reality at the
level of the quantum? Is the universe “fine-tuned” against agent access to the quantum state? What is
the difference between ‘agents’ and observers’ in relation to quantum inaccessibility? Finally, if agent
inaccessibility is fundamental, then what is the ontological status of inaccessible quantum states?

The specific choice of an answer to these foundational questions strongly constrains the plausibility
of any type of quantum-ontological formalism, whether for ψ-ontic or ψ-epistemic interpretations [9,11],
including for quantum models that involve globally deterministic constraints [13–17], such as those
exploring the possibility of an emergent quantum mechanics (e.g., see the Special Issue on Emergent
Quantum Mechanics in the Entropy journal). Critically, this suggests that an informal principle like ‘agent
inaccessibility’ can decide whether—or not—a formal quantum model, or related mathematical theorem,
might be physically realistic in view of the known record of quantum observations in the laboratory.
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In terms of advancing a physical account of EPR-type quantum correlations, for example, how to
assess whether a proposed quantum formalism is prone to causal-paradox formation? The ineliminable
dependence—apparently—of the respective answers upon an informal agent-centric notion should
cause concern and motivate the development of a model or theory of the physics of agent inaccessibility.

The present work considers an agent-inaccessibility principle (AIP) as a fundamental principle
in quantum mechanics. This analysis adopts the standard assumption that individual quantum
detection events are objectively unpredictable, i.e., unpredictable by any experimenter agents. In search
of an explanation for quantum unpredictability, three distinct physical scenarios will be compared,
as captured by the concepts of (i) intrinsic randomness, (ii) effective ignorance, and finally (iii) absolute
or objective ignorance (see Section 5). The latter concept introduces the possibility of an in-principle
limit for agent inaccessibility based upon formal uncomputability and objective unpredictability.
As a definition of objective unpredictability, and of objective non-signaling, in quantum mechanics,
three types of uncomputability will be considered, all of which are based upon self-referential
relations: (i) uncomputability due to the impossibility to know initial conditions with infinite precision,
as in dynamical chaos, (ii) uncomputability due to ‘computational irreducibility’ [18,19], and (iii)
uncomputability due to the halting problem as specified in the Church-Turing thesis [20,21]. Regarding
the latter concept, the term ‘Turing incomputability’ will also be employed in this article. Next, without
adopting an AIP, how could an ontological quantum theory be physically realistic?

2. Many-World and Single-World Quantum Interpretations

A well-known instance of an ontological quantum interpretation that might—possibly—do
without an AIP is Everett’s many-worlds (MW) interpretation [22,23]. The problem of (non-signaling)
agent access is circumvented in the MW interpretation by branching—upon the agent’s measurement
of the quantum state—into parallel world ontologies. However, in the MW interpretation,
the agent is prohibited from accessing any world ontology but the agent’s own, which is, again,
a notion of agent inaccessibility, and one that lacks a physical explanation in the MW proposal.
For many-interacting-worlds interpretations, see References [24–26]. For any single-world (SW)
quantum ontology, in particular, such as dBB-theory and Bohmian mechanics, but also for theories
involving time-symmetric ontologies, the adoption of an AIP appears to be strictly required in view
of possible violations of the non-signaling theorem of quantum mechanics (for an overview see, e.g.,
Reference [27]). Consequently, the question of whether an experimenter agent can access, predict,
compute, and control, quantum information, e.g., as involved in EPR-type quantum correlations
during tests of Bell’s inequality [28], is crucial for assessing the plausibility of any proposed quantum
formalism, whether the formalism posits (local) retrocausality [12–16,29–32], or nonlocality [1–8],
including in the development of an emergent quantum mechanics (e.g., Reference [17]).

The target of the present analysis will be SW quantum interpretations in relation to agent
inaccessibility. A defining feature of any SW interpretation, whether it is an operational or an
ontological one, is that “ . . . from the viewpoint of an agent who carries out a measurement, this
measurement has one single outcome”, as was explained by Frauchiger and Renner [33] in the
context of their recent argument against the self-consistency of quantum theory due to self-referential
relations—in Wigner’s friend paradox—between multiple experimenter agents. The significance of the
phrase “from the viewpoint of an agent” concerns the additional question—in relation to the single
outcome in a SW interpretation—of whether a quantum detection event, e.g., a ‘spin-up’ observation
by an agent in the laboratory, does—or does not—constitute an “objective fact” of nature. For different
criticisms of the argument by Frauchiger and Renner [33], see References [34–36].

3. Restricting Agent Access to Ontological Quantum States and Quantum Information

The physical plausibility of SW realist quantum theories, including those based upon nonlocal
or retrocausal quantum ontologies, has long been recognized to depend strictly on the assumption
that an ontic state (λ) exists whose exact properties are inaccessible to, and hence unobservable by,
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an experimenter agent. For example, in reference to a time-symmetric quantum ontology, Leifer and
Pusey [12] have found that regarding the “ . . . exact ontic state . . . we cannot actually construct an
experiment that would reveal it”. An example from a wholly different context is decoherence theory,
where “ . . . definite, classical pointer states are selected in the interaction between environment and
system” as Zwolak and Zurek [37] explained. There, constraints on agent access are also adopted, of
course, and it was noted by these authors [37] that “ . . . a world where objective information is present
is also a world with quantum information inaccessible to all but the most encompassing observer”.

The above examples serve as reminders that agent inaccessibility is a central and unavoidable
concept in quantum mechanics. That is, the existence of inaccessible quantum information is assumed
in diverse quantum-theoretical contexts, and ontological quantum mechanics must typically posit the
existence of an ontic state λ whose exact properties are experimentally unobservable. Is it physically
feasible, however, that strictly inaccessible, i.e., unobservable, ontic states may—in fact—exist? What
is the ontological status of a property or information that does exist but that could not be accessed and
predicted either in-practice or in-principle?

3.1. On the Reality of an Indefinite Quantum Ontology: Contextuality and Relationality

An ontological regime whose exact properties are unobservable because they cannot—actually—
be revealed experimentally, will be called an indefinite ontology. The term ‘indefinite’ was chosen
as a neutral term in reference to an ontological state prior to its measurement, whether or not that
state might possess relational or contextual properties. For clarification, regarding an indefinite
(possibly relational or contextual) ontology, the question is not whether a property exists “when
no one is looking”, but whether some property, or value, exists that cannot be predicted by any
amount of “looking”, i.e., by any local or nonlocal tests, including computer simulations, prior to
performing the actual measurement. That question is closely tied, of course, to the well-known
fact that the predictions of orthodox quantum mechanics are wholly incompatible with the (naïve
realist) notion of pre-existing quantum properties, i.e., with the false notion that quantum states may
possess (non-contextual) definite properties or values prior to, and independent of, their measurement.
Put generally, a non-contextual (non-relational) property of an ontological system is one whose
outcome state or value is entirely independent of whether, or how, the property is measured by
the agent. It is well-known that Einstein, Podolsky, and Rosen, first introduced a definition of
definite, non-contextual ontic states in relation to the problem of “action-at-a-distance” in quantum
mechanics—the concept of “the elements of reality” [38]. To be sure, quantum ontologies that could be
consistent with orthodox quantum predictions must—by contrast—possess value-indefinite properties,
thereby allowing consistency with the physical demands of the theorem by Kochen and Specker [39].

Again, the term ‘indefinite ontology’ is employed because, prior to any measuring interaction,
ontic state λ exists in an indefinite state, i.e., a state whose exact value is not accessible, computable,
or predictable; by contrast, again, a definite, i.e., measurement-independent, state is one whose value
could—in principle—be accessed in nature by the experimenter agent. Importantly, using the present
terminology, a quantum-measurement process entails the transformation of an indefinite ontic state
(IOS) into a definite ontic state (DOS). Consequently, the standard measurement problem of quantum
mechanics is recast as the problem of how to explain, and how to conceptualize, an IOS–DOS transition
event. By that definition, a contextual, or relational, ontology is simply one that is governed by
IOS-DOS transitioning during the (dynamical) process when the agent performs a measurement upon
the quantum state as defined by a particular ontological quantum model.

For explanation, take a typical, experimentally generated quantum random sequence. In the
orthodox interpretation of quantum mechanics, each individual random event is presumed to be
objectively unpredictable as a function of quantum indeterminacy (see also Section 5.1.1). However, and
this is the main proposal of the present analysis, there may be another option for explaining quantum
unpredictability—an explanation that is compatible with the presence of an underlying ontology.
In the ontological option, each one of the individual quantum detection events that together constitute
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a quantum random sequence, existed—prior to the measurement-dependent DOS transformation—in
the form of an IOS, which is a state possessing value-indefinite properties (e.g., see References [40–42]);
only the actual measurement interaction induces the IOS-DOS transition which results in the definite
value of the measured ontic state. The present work considers the proposal that an indefinite, likely
contextual, ontic state λ represents either (i) an effectively uncomputable element in the weak option
of ‘effective ignorance’ (Section 5.2), or (ii) an objectively uncomputable element in the strong option
of ‘objective ignorance’ (Section 5.3).

Notably, contextuality might represent the “non-information-theoretic kernel” of quantum theory,
Koberinski and Müller [43] have suggested recently, and that therefore contextuality could be a
genuine physical (ontological) feature of a possible quantum reality. With respect to contextuality as a
“genuine physical feature”, the investigators cited Fuchs [44] who had also expressed the similar hope
earlier that the “ . . . distillate that remains—a piece of quantum theory with no information-theoretic
significance—will be our first unadorned glimpse of ‘quantum reality’.” Related to that suggestion,
the following idea is here pursued also: what Koberinski and Müller [43] have referred to as
the “non-information-theoretic kernel” of quantum theory may refer directly to the uncomputable
ontological features that are the topic of the present article (compare Section 6).

3.2. The Inaccessible Universe and the Limits of Science

In addition to an ontology being contextual or relational, further important questions
are (i) whether the ontology is nonlocal [1–8], locally time-symmetric [12–16,29–32], or locally
time-asymmetric [45–47], and (ii) what an experimenter agent can know exactly about a given quantum
ontology. For example, in the case of the above-mentioned, time-symmetric ontological model, Leifer
and Pusey [12] have noted that the exact ontic state λ—although it “ . . . may be unknown to the
experimenter”—“ . . . is in principle knowable”. If so, then in what specific manner? To address
questions such as these, the present work proceeds by investigating this general question: What is the
ontological status of an empirically inaccessible regime of physical reality?

An objective limit on access to the nature of reality is, of course, anathema to the goals of the
project of modern science. Science is thought to be about an understanding of reality based upon
the capacity to measure, predict, compute, and control. By contrast, the revolutionary discovery of
the fundamental quantization of matter and energy has long been held to imply that—at its smallest
dimensions—the universe is intrinsically random, which—from the start—prevents an agent from
accessing, predicting, and controlling, individual measurement outcomes. This is, of course, the
standard position known as the orthodox interpretation of quantum mechanics. With the advent
of ontological quantum mechanics, however, science started to consider the possibility that (ontic)
“elements of reality” might exist—at the quantum level—in a form that is both compatible with (i)
determinism as well as with (ii) contextuality and single-event unpredictability. However, prior to
answering the question of how a fully deterministic system may produce outcome states that are
unpredictable and uncomputable as a matter of principle, three related issues will be considered
first: (i) the no-hidden-variables theorems in quantum mechanics (Section 3.2.1), (ii) the concept of
agent-inaccessible variables (Section 3.3), and (iii) the definition of the experimenter agent (Section 4).

3.2.1. On No-Hidden-Variables Theorems in Ontological Quantum Mechanics

As a way to begin to frame the above question of unpredictability in deterministic systems, the
ontological status will be reviewed briefly of the variables called ‘hidden’ in the original formulation
of an ontological quantum theory, namely in dBB-theory [1–3]. The present analysis argues that the
introduction of the ‘hidden variable’ (HV) marked a turning point, not only for quantum physics, but
for modern science in general. That is, if proven valid, the HV-concept necessitates the introduction
of a radical limit for science: the idea that an inaccessible, or hidden, ontology of nature exists,
which is beyond the scientific method to measure, predict, compute, and control (compare Section 6).
Importantly, it is the very HV-concept which may ensure that a model of quantum reality could
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be free from causal-paradox formation, by prohibiting, for example, superluminal signaling and
communication, in the typical thought experiments that envision physical inconsistencies due to
unorthodox ontological propositions such as nonlocality (e.g., [27]). The opposite and orthodox view
has long been defended by those who have employed the traditional “no-hidden-variables” theorems,
i.e., the no-go theorems against the physical plausibility of, for example, dBB-theory and Bohmian
mechanics (see also Section 5.1).

For critical views arguing against standard interpretations of no-hidden-variables theorems see, for
example, Mermin [48], Maudlin [49,50], Lazarovici et al. [51], Passon [52], Tumulka [8,53], Norsen [6,54],
Palmer [47], De Gosson [55], Wharton [13,32], Adlam [14,15], Ghadimi et al. [26], Khrennikov [56,57],
Hiley and Van Reeth [58], Flack and Hiley [59], and Walleczek [60]. After performing a careful analysis,
Gisin [61] noted recently that “ . . . Bohmian mechanics is deeply consistent”, and he remarked that
“Bohmian mechanics . . . could inspire brave new ideas that challenge quantum physics.”

3.3. Hidden-Variables in Quantum Mechanics are Agent-Inaccessible Variables

The concept of the HV in quantum mechanics was introduced by David Bohm [1,2]. In original
dBB-theory, the mathematical formalism refers to hypothetical ontic elements such as the quantum
potential [1–4]. Crucially, to avoid any misunderstanding, it should be mentioned that dBB-theory,
which has also been developed in another context as Bohmian mechanics [5–8], is not a classical,
ontological theory, but an ontological theory manifesting entirely non-classical properties, including
nonlocality. The term ‘hidden’ usually explains this in Bohm’s theory: no measurement can
be performed that might reveal exact information about the ontic state in a way that allows an
experimenter agent to controllably direct nonlocal information transfers. For example, Holland [4]
commented that “ . . . the quantum potential implies that a certain kind of ‘signaling’ does, in fact,
take place between the sites of distantly separated . . . particles in an entangled state”, but that this “
. . . transfer of information cannot, however, be extracted by any experiment which obeys the laws
of quantum mechanics”. More recently, Valentini [62] had also remarked that this “ . . . information
flow is not visible at the statistical level”. Walleczek and Grössing [27] have clarified the point that
this nonlocal quantum information transfer must not be understood as information transfer in any
communication-theoretic sense. That is, for an ontological quantum theory, such as dBB-theory, which
is both contextual and nonlocal (e.g., [48]), the adoption of an AIP—as an informal non-transfer-control
theorem in Reference [27]—prohibits access to, and the instrumental control of, nonlocal information
transfers for the purpose of sending superluminal (Shannon-type) signals, or messages, between
sender and receiver, while—at the same time—allowing the presence of non-Shannon signals [27].
Please note that the term ‘hidden signaling’ has also been used recently, for example by Bendersky et
al. [63], in reference to the concept of non-Shannon signaling [27].

In summary, in a quantum theory such as dBB-theory, the HV indicates the presence of an
indefinite ontological element in the theory (i.e., ontic state λ) whose exact value cannot be accessed,
predicted, or controlled (e.g., a spin property). That is, again, the HV-concept refers to an unobservable
property, not merely to one that is unobserved, and—as a consequence—it cannot be controlled by
an observing agent (see Section 3.1). Therefore, John Bell [64], for example, noted that “The usual
nomenclature, hidden variables, is most unfortunate”, and he proposed that “Perhaps uncontrolled
variable would have been better, for these variables, by hypothesis, for the time being, cannot be
manipulated at will by us.” The present work continues in the spirit Bell’s understanding that a variable
called ‘hidden’ represents an uncontrollable variable, i.e., a variable that “cannot be manipulated
at will by us” [64]—an agent-inaccessible variable using the present terminology. Therefore, before
proceeding any further, a definition should be given for what constitutes an ‘agent’—as opposed to an
‘observer’—in quantum physics and for science in general. How to define the experimenter agent to
begin with?
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4. Defining the Experimenter Agent

In the particular context of assessing the role of the agent in relation to the non-signaling theorem,
John Bell [65] insisted that needed is at least “ . . . a fragment of a theory of the human being” to be
able to address the question of whether or not “we can signal faster than light?”. Put differently, Bell
requested having a partial theory, at least, of what defines agency in the context of quantum physics.
Specifically, the definition should be relevant, as Bell [65] requested, to the question of who “we think
we are, we who can make measurements, we who can manipulate external fields, we who can signal
at all, even if not faster than light?”. In the context of Bell’s theorem, a consistent understanding of
the notions of agent-dependent versus agent-independent signaling—in terms of Shannon versus
non-Shannon signaling—is available from the above-mentioned analysis that applied the operational
framework of Shannon’s mathematical theory of communication to answer Bell’s questions regarding
the valid interpretation of the non-signaling theorem [27].

As was described by Walleczek and Grössing [27], an experimenter agent is not merely an
observer in the world but is an entity capable of acting in the world in the pursuit of goals, such
as (i) in setting-up an experiment for the purpose of asking questions of nature, or (ii) in selecting
specific measurement settings (for details see Section 4.3). However, the continuing lack of a model
of, or of a theory for, the experimenter agent in quantum physics, and in science in general, impedes
making progress towards understanding the foundations of quantum mechanics. The present work
suggests that the success to counter the no-go theorems against the possibility of an ontological
quantum mechanics also depends (i) on the particular model of the experimenter agent, and (ii) on
an understanding of the distinctive role of an AIP in ontological and deterministic interpretations of
quantum mechanics (see Section 3).

4.1. The Quantum Measurement Problem

For a long time, the observing agent was considered in the context only of the familiar
quantum-measurement problem, especially vis-à-vis collapse-type interpretations such as the
Copenhagen interpretation (for an introduction see, e.g., Reference [66]). In recent years, however,
the distinct significance of the notions of observation versus agency has been recognized well beyond
the issue of collapsing the wave function. It is increasingly understood that the concept of the
experimenter agent is central to any plausible SW interpretation of ontological quantum theories, not
only for ψ-epistemic or purely operational interpretations, such as for quantum Bayesianism [67].
The present work, therefore, seeks to establish a minimum framework, one that is capable of addressing
the question of the limits of ‘observer agency’ in the context of new ontological perspectives for
quantum physics. For example, as was described above, traditional assumptions and theorems such as
nonlocality, contextuality, free choice, and non-signaling, need not necessarily contradict the existence
of certain quantum ontologies. Importantly, the non-contradiction, i.e., the theoretical consistency, of
permissible ontologies, such as in the measurement problem as captured by the concept of IOS-DOS
transitioning described in Section 3.1, depends on the validity of an AIP in relation to a given quantum
formalism. In light of an AIP, who or what is the experimenter agent?

4.2. An Early Definition of the Experimenter Agent: “Maxwell’s Demon”

An early notion of the experimenter agent was introduced into physics by James Clerk
Maxwell [68]. To review briefly, in Maxwell’s thought experiment, an intelligent being or agent
was proposed to be capable of lowering the entropy of a “closed” physical system. This being or agent
became known of course as ‘Maxwell’s demon’—a ‘demon’ because of the apparent supernatural
powers to observe, and act in, the world. The term ‘super-natural’ is used to characterize the
kind of exceptional demon agency which Maxwell (falsely) presumed to be “free” from known
natural constraints, such as from the Law of Energy Conservation. In short, Maxwell’s agent adopts
therefore an isolated and quasi-transcendent position towards the rest of the physical universe (see
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also Section 5.2). In this pre-quantum thought experiment, the feat of entropy reduction is achieved
by micro-causal interventions of the observing demon-agent who is granted unlimited access to, and
predictive control over, the relevant microphysical processes of the targeted system: first, the agent
observes microscopic events, and, second—based on observational knowledge—selectively acts upon
the physical system so that the system becomes increasingly ordered. That is, in Maxwell’s thought
experiment, knowledge-based agent interventions can predictably counter the intrinsic tendency of
the closed system to spontaneously disorganize. The problem of the apparent violation of the Second
Law of Thermodynamics by the “ordering agent influence” was, of course, first resolved formally by
Szilard [69]. It is noteworthy in the present context that elements of Szilard’s proof assisted in the
development of von Neumann’s mathematical foundations of quantum mechanics [70]. The point will
be made next that, despite the known shortcomings, the concept of Maxwell’s demon captures key
features that are still relevant to recent definitions of the experimenter agent (Section 4.3).

4.3. Recent Definition of the Experimenter Agent: “Epistemic Agency”

Already in the early concept of Maxwell’s demon were implicit two distinct capacities which
continue to be employed in recent definitions of the experimenter agent: (i) the capacity of the agent to
observe and to obtain knowledge (the epistemic dimension), and (ii) the capacity of the agent to act in
the world in the pursuit of a goal (the agentic dimension). Hence, the term ‘epistemic agent’ can be
used synonymously with the term ‘observing agent’. The following informal definition for epistemic
agency was introduced previously [27]:

“Agency is generally defined as the capacity of humans or other entities to act in the world. Put
differently, an agent is defined initially by possessing the capacity to influence causal flows in nature.
By prefacing “agent” with the term “epistemic”, attention is drawn to the fact that a complete
definition of agency represents more than the mere “capacity to influence causal flows”: an agent
possesses knowledge-based, i.e., epistemic, capacity for predictably directing, and redirecting, causal
flows, and thus for directing, and redirecting, information flows as well. That is, an epistemic
agent holds the power to (statistically) control physical activity based upon an ability to predict the
outcome of specific actions on targeted processes in reference to a known standard or goal. In short,
an epistemic agent thus manifests in the world a genuine source of operational control”.

Importantly, the above definition of ‘operational control’—as a criterion for epistemic
agency—ensures that entities other than human systems, such as artificial devices implementing
goal-driven control systems, including devices and algorithms capable of computation and message
communication, qualify as complete epistemic agents. Finally, in contrast to the pre-quantum
conception of the agent in Maxwell’s thought experiment (Section 4.2), after the quantum revolution,
from the perspective of the agent as an effective actor in the world, agent inaccessibility is now
characterized by the denial of operational control in relation to an inaccessible quantum regime of
nature. For example, ‘t Hooft [71] noted recently also that what “ . . . distinguishes quantum systems
from classical ones is our fundamental inability to control the microscopic details of the initial state . . . ”.
Critically, in the present proposal for an AIP, the measure of ‘operational control’ is the computational
accessibility and predictability of physical processes by the agent. This raises the all-important
question of exactly how nature—after the quantum revolution—prohibits (computational) access to
the experimenter agent in a way that the purely classical world view—apparently—could not.

5. How does Nature Prohibit Access to the Experimenter Agent?

No scientific consensus exists concerning the question of how nature denies unlimited access
to the experimenter agent of quantum states and quantum information. Entirely different physical
explanations are on offer—as part of different quantum interpretations—regarding how nature limits
agent access to quantum states or information and, therefore, how nature prohibits the prediction, and
operational control by epistemic agents of individual quantum measurement outcomes. As was noted
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already, pre-quantum, classical, physics, by contrast, knows of no fundamental limits regarding agent
access to nature (compare Section 4.2).

In the textbook, SW operational interpretation, which is orthodox quantum mechanics, it is
the metaphysical assumption of ‘intrinsic randomness’, i.e., ‘quantum indeterminism’, which
fundamentally limits the powers of the agent to predict the value of a single measurement outcome
(see Section 5.1). By contrast, an ontological quantum theory, such as dBB-theory, typically derives
its constraint on quantum predictability from the technological inability of the experimenter agent to
collect complete information about initial conditions (see Section 5.2). These opposing explanations
are frequently discussed in terms of in-principle versus in-practice limits of agent-access to quantum
systems. It is often presumed that an in-principle limit to agent-quantum access can only be posited in
the case of operational quantum approaches, whereas only an apparently weaker, in-practice limit is
available for ontological quantum mechanics.

The present work introduces a third option: the possibility of an in-principle limit for ontological
quantum mechanics based upon self-referential dynamics which may produce outcome states whose
predictability would require either (i) access to infinitely precise knowledge about initial conditions
and/or (ii) the availability of infinite computational resources (see Section 5.3). In the following,
the three distinct options will be compared, whereby each one, albeit based on completely different
physical assumptions, seeks to explain how nature prevents the agent from computing, predicting,
and controlling, individual quantum events. First, the standard position of ‘universal indeterminism’
will be briefly discussed and criticized in Section 5.1.

5.1. Orthodox Quantum Mechanics: “Universal Indeterminism”

In orthodox quantum mechanics, the assumption of ‘intrinsic randomness’ serves as an absolute
barrier to agent knowledge at the quantum level. Importantly, in the orthodox interpretation, the
observed randomness is viewed as an a priori property of nature herself, e.g., prior to any additional
physical constraints involving the agent. Remarkably, in universal indeterminism, a single random
event can initiate an entirely new causal chain—apparently “out of nothing” (e.g., [72]). Nevertheless,
and this—again—is the remarkable feature, the detection, for example, of a single ‘spin-up’ event by
the measuring apparatus manifests a classical (pointer) state from which may propagate new causal
flows, such as those triggering the formation of new biophysical events during sensory perception
in the agent who observes the ‘spin-up’ measurement outcome. However, the question of what
the exact nature might be of that initiating event, i.e., the question of ‘what is a quantum?’, is not
addressed—famously—in the orthodox interpretation, and therefore, Plotnitsky [73], for example, has
noted that “ . . . quantum objects are seen as indescribable and possibly even as inconceivable”, in the
indeterministic interpretation of textbook quantum physics.

What is problematic, however, is that the very same indeterminism, or quantum randomness,
which already serves as an absolute limit on agent knowledge, is often—at the same time—held to be
the source also of the free-willed agency of the experimenter as in the free-will theorem by Conway
and Kochen [74,75]. This is the exact opposite of being the source of a universal constraint. How could
this be? How could one and the same (quantum) randomness be the source of both (i) objective
chance and (ii) free-willed agent control of physical events in the world, such as freely selecting a
measurement setting? This self-contradictory view, which has previously been captured in the concept
of quantum super-indeterminism (see Figure 1), has long obscured insight into the plausibility of those
no-go arguments against the possibility of ontological quantum mechanics which are based upon the
freedom of choice of the experimenter agent (for an overview see Walleczek [60]).
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Figure 1. Quantum super-indeterminism [60]. The shortcomings of the orthodox view, which are
revealed by the simple concept of super-indeterminism, in the attempt to prove, or justify, the
metaphysics behind quantum indeterminacy, are recognized increasingly. The fallacy of circular
reasoning is illustrated in Figure 1, which arises from the use of the intrinsic randomness assumption
in support of the free choice assumption, which—in turn—rationalizes the presumably “free” selection
of measurement settings. Bera et al. [76], for example, have confirmed the fact of ‘super-indeterminism’
by noting that there is indeed present “ . . . an unavoidable circulus vitiosus” in any tests for true
randomness, because any available tests for “ . . . the indeterministic character of the physical reality”
must presume that “ . . . it is, in fact, indeterministic.” Similar arguments have been put forth by, and
prior developments were summarized in, Landsman [77].

Standard no-go theorems, such as Bell’s theorem [28] or, again, the Conway-Kochen free-will
theorem [74,75] fail to account for this contradiction within the orthodox view, which is implied by
super-indeterminism (see the legend to Figure 1). Therefore, such no-go theorems, i.e., the theorems
claiming the impossibility of particular ontological propositions, imply conclusions of debatable
value against the validity of deterministic quantum theories. For example, John Bell recognized the
shortcomings himself regarding his own (no-go) theorem in view of an axiomatic interpretation of
the non-signaling theorem, and he later adjusted his views [78–82]. For a detailed analysis of Bell’s
evolving positions—from an axiomatic to an effective non-signaling constraint—see Walleczek and
Grössing [27]. Concluding, the simple concept of super-indeterminism (Figure 1) explains why the
free choice assumption of the experimenter agent in selecting measurement settings does not imply
the necessary rule of the standard, i.e., axiomatic, non-signaling theorem (for details see Figure 2).

Figure 2. Illustration of the irreducible interdependency of basic assumptions that are implicit
in standard interpretations of orthodox quantum mechanics (adapted from Walleczek and
Grössing [27,83]). (A) Free choice assumption, (B) Intrinsic randomness assumption, and (C) Axiomatic
non-signaling assumption. Importantly, the validity of interpreting the non-signaling theorem as
a foundational theorem, or axiom, for quantum mechanics, i.e., one which would imply strict
indeterminism as the only viable option for interpreting quantum theory, depends on the independent
validity of assumptions (A,B). However, neither assumption (A) nor assumption (B) can be confirmed
independently if the possibility of ‘free choice’ depends on the existence of a process that is intrinsically
random and vice versa (compare Figure 1). Therefore, for example, the observation of EPR-type
nonlocal correlations in the laboratory does not represent empirical proof for the indeterministic nature
of the locally observed measurement outcomes, if that proof relies on the employment of an axiomatic
non-signaling theorem (for more details see Walleczek and Grössing [27]).
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5.1.1. On the Impossibility of Proving the Truth of Quantum Indeterminism

Long-running arguments against the possibility of deterministic, quantum-ontological approaches
are increasingly criticized as falling short of their stated aims, in particular those based upon the
free-will theorem and the non-signaling constraint as an axiom (see Figures 1 and 2). Importantly, it is
widely accepted that quantum indeterminism in the form of actual or objective chance can neither be
proven by empirical tests nor by mathematical reasoning (e.g., [84]). However, what might be provable
instead is the objective unpredictability of individual quantum measurement outcomes, as defined,
for example, by a formal theorem such as Turing incomputability (see Sections 5.3 and 6). Again,
“indeterminism” captures a metaphysical assumption about how nature really is—prior to any formal
theorizing. Furthermore, an empirical proof of indeterminism is out of reach, likely always, as a final
loophole-free test seems to be a logical impossibility (compare Figure 1).

Finally, for a long time, because of the widespread belief that constraints such as absolute
unpredictability, free will, nonlocality, non-signaling, or contextuality, could be compatible only with
quantum indeterminism, any deterministic approaches to quantum theory have met with little interest
by the mainstream of quantum physics, except often in reference to the perceived implausibility of the
SW ontological quantum approaches (compare Section 2). This lack of interest has long been due to the
near exclusive use—in the mainstream discourse on quantum foundations—of definite, non-contextual
ontological assumptions, i.e., those that are consistent only with the classical, metaphysical assumption
known as direct or naïve realism. As was mentioned before, the proposed “elements of reality”
in the argument by Einstein et al. [38] represent, of course, entirely non-contextual ontic states in
agreement with the classical metaphysics of naïve realism; there, the “elements” merely reveal their
own “intrinsic”, already given, properties at the moment of their measurement.

As was reviewed in Section 3.1, any non-contextual, measurement-independent ontology, such
as naïve realism, is wholly incompatible with the measurement predictions of orthodox quantum
mechanics [39]. In recent years, however, new research has been pushing the frontiers of ontological
possibilities beyond naïve realism, such as in the form of relational ontologies (e.g., Esfeld [85]),
time-symmetric ontologies (e.g., Leifer and Pusey [12]), including unconventional causal structures
such as retrocausality (e.g., Sutherland [29], Price [30], Wharton [13,31], Price and Wharton [32]).
In addition, there has been a revival of interest in the nonlocal and contextual ontologies related
to dBB-theory [1–4] and Bohmian mechanics [5–8], which are ontological propositions that posit
the fundamental interconnectedness, instead of the intrinsic randomness, of the physical universe
(e.g., Walleczek and Grössing [86]).

The focus of the subsequent Sections 5.2 and 5.3 will be an assessment of the continuing
possibility of ontology and determinism in quantum theory in relation to the experimenter
agent. Specifically, what is sought is a scientifically based notion of “determinism without
pre-determination” [60,86]. Next, Section 5.2 presents the traditional option for quantum mechanics in
a globally deterministic universe.

5.2. Ontological Quantum Mechanics: “Effective Ignorance in Global Determinism”

Instead of the metaphysical assumption of intrinsic randomness (Figure 3A), an ontological
quantum mechanics opts for an alternative approach to explain the origins—in a globally deterministic
universe—of experimentally observed quantum randomness. That is, ontological approaches typically
seek an agent-dependent explanation based upon the unpredictability of individual measurement
outcomes as a function of an epistemic limit, which—in the present analysis—is introduced as ‘effective
ignorance’ (Figure 3B).
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Figure 3. Agent inaccessibility as a function of (A) Intrinsic randomness versus (B) Effective ignorance
(adapted from Walleczek [60]). Intrinsic randomness represents the orthodox interpretation of
quantum mechanics, which is universal indeterminism. There, the presence of the experimenter
agent introduces an apparent metaphysical dualism between agent and world (see the main text
for additional explanations), which is indicated by the closed line that encloses the presence of the
experimenter agent (Figure 3A). By contrast, in universal or global determinism, agents and the physical
universe are subject to the same fundamental determinism, whereby, there, the experimenter agent
is an integral element of the physical universe, i.e., agent and universe together constitute a lawful,
physical continuum (e.g., Szilard [69]), as is indicated by the open line (see Figure 3B). In this picture, the
experimenter agent constitutes an entity possessing distinct ‘epistemic’ as well as ‘agentic’ properties
(for definitions see Section 4.3). For a detailed explanation of an axiomatic (Figure 3A) versus an
effective (Figure 3B) non-signaling constraint—in the context of Bell’s nonlocality theorem—consult
Walleczek and Grössing [27]. Briefly, an axiomatic non-signaling constraint (see also Figure 2) is
compatible with the violation of measurement outcome independence, which is the standard violation
in the context of orthodox quantum theory; by contrast, an effective non-signaling constraint is thought
to be compatible with the violation of setting or parameter independence (Shimony [87]), which is
the standard violation in the context of an ontological quantum mechanics such as dBB-theory in a
universally deterministic universe (Section 3.3).

Importantly, the approach towards an “effective randomness”—by way of the concept of ‘effective
ignorance’—is an option that can be consistently adopted if agent and universe are not metaphysically
separated entities as suggested by the open line in Figure 3B (for details see legend to Figure 3).
This is in contrast to the orthodox view shown in Figure 3A, where the agent stands in a physically
isolated (quasi-transcendent) position towards the rest of the physical universe. For explanation,
in the orthodox interpretation of quantum indeterminism, the agent is presumed to be capable of
somehow initiating new cause-effect chains “out of nothing”, e.g., in violation of Leibniz’ Principle of
Sufficient Reason (compare Section 5.1). This extra-physical agentic power is reminiscent of Maxwell’s
demon-agent who was—falsely—thought to be unconstrained by the Laws of Nature, such as by the
Second Law of Thermodynamics (see Section 4.2). This isolated, or dualistic, notion of agency in the
orthodox picture is indicated by the closed line in Figure 3A (for details see legend to Figure 3).

The essential point of ‘effective ignorance’ is the following (Figure 3B): If assuming that the
complete initial conditions of some deterministic system could be obtained, then the exact prediction of
outcome states is possible—at least in principle. An example is a computer-generated pseudorandom
bit sequence that becomes fully predictable once the (random) seed, i.e., the initial condition, as well
as the algorithm, which is used to generate the bit sequence from the seed, is known to the scientific
agent. By analogy, having complete knowledge of initial conditions, the properties of a (deterministic)
quantum state could be computed, e.g., for the purpose of prediction and control, even if possessing
finite computational resources only. Significantly, in the case of effective ignorance—when discrete
events are finite—while access to initial conditions (compare the “seed” above) is technologically
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impractical, there exists, however, no formal limit that fundamentally constrains access to the complete
initial state. For explanation, the definition of finite resources includes the whole universe as a finite
resource, which—again—imposes an in-practice, effective limit, but not an in-principle, objective limit.
In summary, the notion of “effective” quantum randomness as a result of the weak epistemic option
is—at least in principle—computable by a Turing machine, even if the whole universe is to be recruited
as a super-computational resource to achieve quantum predictability.

5.2.1. Understanding John Bell’s Concept of “Free Variables” for Quantum Mechanics

The weak epistemic option of effective ignorance is consistent with, and explains, Bell’s
own proposal of effectively “free variables” [79]. “I would expect a serious theory to permit . . .
‘pseudorandomness’ for complicated subsystems (e.g., computers),” Bell [65] suggested “ . . . which
would provide variables sufficiently free for the purposes at hand.” In addition, Bell provided the
following explanation [79]:

“Consider the extreme case of a ‘random’ generator which is in fact perfectly deterministic in
nature—and, for simplicity, perfectly isolated. In such a device the complete final state perfectly
determines the complete initial state—nothing is forgotten. And yet for many purposes, such a
device is precisely a ‘forgetting machine’. A particular output is the result of combining so many
factors, of such a lengthy and complicated dynamical chain, that it is quite extraordinarily sensitive
to minute variations of any one of many initial conditions. It is the familiar paradox of classical
statistical mechanics that such exquisite sensitivity to initial conditions is practically equivalent to
complete forgetfulness of them.”

This in-practice limit, which Bell [65,78,79] had argued for, does not, however, deny the theoretical
possibility that the evolution of a deterministic system could be (computationally) predicted—at least
in principle—if it were possible to access and determine “the complete initial state” [79]. By contrast,
under the assumption that there exists a fundamental limit on computability and agent knowledge
about the initial state (compare Section 5.3) that theoretical possibility would be denied also. Although
Bell did mention ‘deterministic chaos’ in the context of ‘pseudorandomness’ [65], he did not propose
that chaotic dynamics may represent a limit in any fundamental sense. On that specific point, the present
work revises the conclusions of an earlier discussion of Bell’s effectively free-variables concept [27,60].

By relying on an additional principle, sometimes the powers of the weak option of effective
ignorance are sought to be enhanced (e.g., Aharonov et al. [88]): the Uncertainty Principle prevents
the simultaneous determination with arbitrary precision of, e.g., particle properties, thereby failing
to characterize the relevant initial conditions for the same instant of time. However, the concept of
‘uncertainty’ is an operational, epistemic notion also, and the physical foundations of the Uncertainty
Principle also remain to be identified (e.g., Rozema et al. [89]). Summarizing, the weak epistemic
option represents an instance of subjective agent-inaccessibility, because that option depends upon the
incomplete state of knowledge of the experimenter agent, i.e., upon an “uncertainty”, about the physical
universe, including about initial conditions. However, note that even if the entire universe were
available as a super-computational resource, then the presence of a black-hole singularity, for example,
might render impossible even the purely theoretical prospect—in the weak epistemic option—of the
cosmic computability of an individual quantum measurement outcome.

5.2.2. Criticizing the Weak Option Interpretation

The weak option described above has often been criticized on the grounds that quantum
randomness cannot possibly be a function of merely some in-practice limit on agent knowledge
(Figure 3B). That skeptical position is echoed, for example, by Bub [35], who noted that quantum
probabilities that describe the “nonlocal probabilistic correlations that violate Bell’s inequality” must
be “intrinsically random events”, and that these probabilities “do not quantify incomplete knowledge
about an ontic state (the basic idea of ‘hidden variables’).” For a counterpoint to Bub’s skeptical
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position, consult, for example, Figures 1 and 2 in the present article (Section 5.1). Finally, Bub [35] also
reaffirmed the popular position that this very fact in particular “ . . . means that quantum mechanics is
quite unlike any theory we have dealt with before in the history of physics.”

Indeed, the perceived uniqueness of quantum mechanics, and it is supposed ‘weirdness’, is often
cited as an “explanation” for strange or surprising features that are encountered in quantum studies
involving single-particle observations. Specifically, concepts such as superposition (e.g., Schrödinger’s
cat) and objective chance (i.e., intrinsic randomness)—in the form of objectively unpredictable
measurement outcomes—are presumed to operate exclusively in the domain of the quantum, but
never in the classical domain. However, what equally ‘weird’ phenomena may be produced as part of
entirely classical systems? One example is the notion of ‘undecidable dynamics’ in classical systems as
a function of self-referential systems dynamics. The present work introduces self-referential dynamics
as a novel explanation that might underpin the physics of agent inaccessibility (see Section 5.3). This
third and final option counters the idea that what distinguishes a quantum from a classical system is
the capacity to generate objectively unpredictable outcomes.

5.3. Ontological Quantum Mechanics: “Objective Ignorance in Global Determinism”

The hypothesis that objective ignorance, as opposed to effective ignorance, can be the source of
the unpredictability of individual quantum events in a deterministic system, represents the strong
ontological option for explaining the physics of agent inaccessibility. Specifically, it had previously
been proposed that agent inaccessibility in ontological quantum mechanics might be due to the limit
that “ . . . self-referential processes may generate physical observables whose values are universally
uncomputable, i.e., their computation would require an infinite amount of computational resources”
(Walleczek [60]). Briefly, the key feature of a nonlinear dynamical process called ‘self-referential’ is that
a system output becomes a new input for the system within the same system (e.g., Walleczek [90]).
In dynamical chaos, the constant action of feedback loops (recursive processes) is responsible for the
generation of the chaotically evolving dynamics. In physical systems that can be characterized by
undecidable dynamics, self-referential, recursive processes are, again, responsible for the objective
unpredictability of outcome states. Importantly, the presence of self-referential dynamics (see Table 1
below) can be identified both in concrete physical systems as well as the computational models that
describe them.

Table 1. Two types of self-referential dynamics are considered as a basis for the proposed physics of
agent inaccessibility. For the proposal of an AIP as a fundamental principle in quantum mechanics
(objective ignorance), the objective unpredictability of an individual measurement outcome as part of a
typical quantum random sequence is a function of formal uncomputability; both, dynamical chaos as
well as undecidable dynamics posit “infinity”—the lack of infinite resources—as a fundamental limit
on computability. Regarding the limit of infinite precision detection in relation to the concept of formal
uncomputability, note that—in computational predictions of chaotic dynamics—an arbitrarily small
difference in initial conditions may lead to a vastly different future outcome state. Note also that the
concept of undecidable dynamics underpins both computational irreducibility [18,19] as well as the
halting problem in the Church-Turing thesis [20,21].

Self-Referential Dynamics Formal Uncomputability

Dynamical chaos Infinite precision detection of initial conditions is impossible in-principle
Undecidable dynamics Infinite computational resources are unavailable in-principle

The strong option based upon fundamental uncomputability of outcome states—as a necessary
and sufficient criterion for objective ignorance—is illustrated in Figure 4B. This proposal is
contrasted with the orthodox position of intrinsic randomness shown in Figure 4A. Importantly,
two different types of self-referential dynamics are currently known to support the concept of formal
uncomputability—dynamical chaos and undecidable dynamics; each type posits the lack of infinite
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resources as a fundamental limit on computability (see Table 1). The question of the physical plausibility
of the notion of formal uncomputability in the account of the objective unpredictability of quantum
processes in nature will be discussed in Section 6.

 

Figure 4. Agent inaccessibility as a function of (A) Intrinsic randomness versus (B) Objective ignorance
(adapted from Walleczek [60]). Intrinsic randomness represents the orthodox interpretation of quantum
mechanics, which is universal indeterminism (see legend to Figure 3 for an explanation of the nature
of the experimenter agent). Objective ignorance, by contrast, advances the alternative proposal that
quantum mechanics in a universally deterministic universe (i.e., global determinism) could account for
(objective) quantum unpredictability as defined by an in-principle limit (Figure 4B). Please note that a
prior report referred to a related proposal by the term ‘intrinsic complexity’ [60] due to the fact that such
an option is available for complex systems dynamics. An objective non-signaling constraint, which
is proposed here as an option that may underlie the non-signaling theorem of quantum mechanics,
is equally governed by an objective, in-principle constraint; that is, the capacity for operational control
by the experimenter agent (for definition see Section 4.3) of, for example, time-symmetric, or nonlocal,
ontic influences, or information transfers, is formally and objectively limited by the unavailability to
the agent of either (i) infinitely precise knowledge about (time-symmetric) initial conditions, or (ii)
infinite computational, or generally technological, resources, or a combination of (i) and (ii). For an
overview, see Table 1.

A key distinguishing feature of the concept of objective ignorance—in contrast to that of effective
ignorance—is the following (Figure 4B): Even if assuming that the complete initial conditions of
some deterministic system could be obtained, then the exact prediction of outcome states is still
impossible—even in principle. That is, in the option of objective ignorance (Figure 4B), the lack of
infinite computational resources as a criterion places an objective limit on the experimenter agent as
a function of undecidable dynamics (see Table 1), which, as Bennett [91] put it, is dynamics that
is “ . . . unpredictable even from total knowledge of the initial conditions”. This type of objective
unpredictability is exemplified also in the halting problem for Turing machines, with the essential
point being that Turing machines “ . . . are unpredictable”, as Moore [92] noted, “even if the initial
conditions are known exactly”.

A second key distinguishing feature which is covered by the strong option of objective ignorance,
but not by effective ignorance (Section 5.2), concerns the emergence of dynamical chaos in physical
systems. Importantly, due to the theoretical impossibility of gathering information with infinite
precision about the initial state from which evolves a dynamically chaotic system, an objective limit is
imposed on the computability of the system’s outcome states. For explanation, note that arbitrarily
small differences in initial conditions may generate strongly divergent outcome states in computational
models of dynamical chaos (see Table 1).
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Because the strong option is also a knowledge-constraining option, the term ‘ignorance’ has been
retained as part of the present proposal of an AIP for quantum mechanics. However, in contrast
to effective ignorance, in the concept of objective ignorance, agent knowledge is not incomplete in
the sense that gathering more information about initial conditions, or amassing more computational
power, might eventually lead to complete knowledge and total predictability. Instead, an in-principle
limit guarantees the incompleteness of agent knowledge, and therefore the agent’s inability to control
and predict even a single quantum measurement outcome is ensured (see Table 1).

Therefore, the concept of objective ignorance represents an instance of objective agent-inaccessibility,
which—obviously—is a more restrictive notion than subjective or effective agent-inaccessibility.
Accordingly, the difference between the effective non-signaling constraint (Figure 3B) and the objective
non-signaling constraint (Figure 4B) is that the latter constraint adopts a fundamental, and not a
practical, limit on complete agent access towards an ontic state λ, and towards quantum information
transfers, in ontological quantum mechanics in general. For example, this holds true for (SW) quantum
ontologies that are locally time-symmetric [12–16,29–32], locally time-asymmetric [45–47], or strictly
nonlocal [1–8]. Finally, the here proposed principle (AIP) is fundamental in the sense that a Turing oracle
only could predict the exact value of an individual outcome state as a function of physical systems and
computational model evolution. The strong option of objective ignorance (Figure 4B) might represent
a fundamental principle by which nature prohibits access to the experimenter agent in the quantum
regime. In the subsequent Section 6, a selection of available views and results are reviewed briefly which
may support the present proposal for an AIP based upon the concepts of objective unpredictability,
undecidability, and uncomputability.

6. In Search of Incomputable Nature: Quantum Reality and Quantum Randomness

The use of computational concepts and terminology in the search of the origins of the observed
randomness in quantum systems, in combination with the recent “ontological turn” in quantum
foundations (see Section 1), offers a new pathway towards exploring the physics of agent inaccessibility.
In regard to the radical concept of incomputability in nature, one of its pioneers, S. Barry Cooper,
once remarked—in reference to the puzzling features of nonlinear emergent states and chaos in
nature—that “ . . . many of the troublesome problems can be placed in a helpful explanatory context
. . . ” if one “ . . . admits the possibility that the Universe is deeply imbued with incomputability and
its mathematics” [93].

How realistic is the proposal that notions such as computability and uncomputability are relevant
for physical laws, i.e., for the laws that explain the behavior of concrete micro-physical systems in
nature, including those that are quantum-based? For example, Lloyd [94] has recently advanced
the position that “ . . . uncomputability is ubiquitous in physical law”, and that this is a natural
consequence, he argued, of the fact that many “ . . . physical systems are capable of universal
computation”. Importantly, “ . . . it is difficult to find an extended system with nonlinear interactions
that is not capable of universal computation”, he explained, “ . . . given proper initial conditions and
inputs”. Furthermore, he argued that there may be special cases when “ . . . quantum systems that
evolve according to nonlinear interactions are capable of universal computation”, which yields the
path-breaking possibility that “ . . . the halting problem arises in the computation of basic features of
many physical systems” [94].

Crucially, therefore, the concepts of uncomputability and undecidable dynamics [18–21,91–94]
may have far greater significance to physics, and to the limits of science in general (compare Section 3.2),
than—merely—as a concept that describes an abstract problem in recursive logic. For example,
Rucker [95] has also argued that “ . . . we should be able to find numerous examples of undecidability
in the natural world”. Consequently, the formal concepts of undecidability and uncomputability may
challenge the need for the (unprovable) metaphysical assumption of indeterminism as an explanation
for the objective unpredictability in quantum systems. For example, Cubitt et al. [96] offered a physical
model demonstrating the notion of objective unpredictability, not however as a function of quantum
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indeterminism, but due to self-referential, undecidable dynamics operating in the quantum regime
(compare Table 1 in Section 5.3).

6.1. Computational Approaches to Quantum Theory Invoking Nonlinear Interactions

The method of conceptualizing, or even explaining, the physical universe as a (quantum)
computational process has a long history, and for recent overviews, see, e.g., Cooper and Soskova [97]
and Fletcher and Cuffaro [98]. For example, in relation to quantum mechanics, researchers such as
’t Hooft [45,71] and Elze [46] have long promoted the idea that the probabilistic aspect of quantum
physics does not necessarily have to contradict its possible algorithmic nature as demonstrated in
work with quantum cellular automata. Generally, cellular automata (CA) can present models of the
physical world and for the following discussion the equivalence of Turing machines and CA is assumed.
“It is conceivable that the physical processes described by the laws of nature never come to an end”,
Franke [99], for example, remarked, and that in adopting a CA-simulation of the physical world, “
. . . we are simulating the behavior of a cellular automaton which runs deterministically, but is not
computable.” Franke [99] emphasized that in such a model—therefore—the apparent randomness in
the world might be due to an “ . . . equivalent of chaos as understood in dynamical chaos theory, which
as we know, is not based on actual chance, but on non-computability”. For explanation, Franke [99],
in that quote, refers to ‘actual chance’ as denoting the standard indeterminism of orthodox quantum
theory. By contrast, the non-computability stems from the fact that the possession of knowledge about
the initial conditions of a dynamically chaotic process is not possible with infinite precision, which
imposes a fundamental, in-principle limit on computability (see Table 1 in Section 5.3).

Very recently, the potential power of the approach that combines the notion of universal
computation with unconventional ontological propositions has also been noted, for example, by
Koberinski and Müller [43]. They considered the kind of information-theoretic properties of quantum
theory “ . . . which are directly linked to the possibility of having a universal computing machine, like
the quantum Turing machine”, which is “ . . . in principle able to simulate the time evolution of any
physical system”. These authors have proposed that the “ . . . notion of ‘universal computation’ . . . is
powerful enough to uniquely determine the state space, time evolution, and possible measurements
(and thus also other properties like the maximal amount of non-locality) of quantum theory.”
Again, however, as was emphasized by Lloyd [94], any computational interpretation of quantum
systems might give rise to uncomputable elements, i.e., undecidable outcome states, which—within
the constraints of a universal Turing machine—may therefore yield, again, a fundamental limit
on agent-quantum access and predictability regarding the calculation of exact outcome values
or individual ontological properties. One specific model of undecidable dynamics operating in
the quantum regime was mentioned above [96]. Besides the notion of objective or fundamental
uncomputability, how might the notion of the indefinite, contextual, or relational, ontology (for details
see Section 3.1) enter the picture of the information-theoretic approach towards a quantum reality?

6.2. Quantum Ontology and the Information-Theoretic Paradigm in Quantum Mechanics

As was described in Section 5.1.1, novel ontological possibilities beyond naïve realism are
increasingly considered as a basis for quantum mechanics, given that indeterminacy proofs are
impossible. This includes relational ontologies such as ontic structural realism (e.g., [85,100]), locally
time-symmetric ontologies (e.g., [12]), including unorthodox causal structures such as retrocausality
(e.g., [29–32]). In the pursuit of possible ontological features of quantum mechanics, Koberinski
and Müller [43] have also speculated about the presence of a relational ontology as part of a
future construction of quantum theory, in particular, in reference to the proposal of ontic structural
realism [85,100]. They have acknowledged that while “ . . . the information-theoretic reconstructions
. . . do not typically tell us what quantum states are, or what is really going on in the world when
we perform a Bell experiment, for example”, the possibility might be considered of an “ . . . ontology
of structural relations in some sense—simply of the relational structure uniquely picked out by the
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information-theoretic postulates . . . ”, which is an approach, they suggested, that “ . . . does not
rule out the possibility of discovering a constructive successor to quantum theory, in particular since
ontological stability across theory change is a characteristic of ontic structural realism.” The combined
computational-ontological research strategy, such as the one described above, may chart a new
course also towards understanding the original HV-concept in Bohm’s ontological quantum theory
(Section 3.3). That is, the application of ideas such as dynamical chaos and undecidable dynamics
(see Table 1), to quantum ontology in dBB-theory and Bohmian mechanics, may in the future allow a
new understanding of the variables traditionally called ‘hidden’ as uncomputable variables (compare
Section 3.3).

6.3. Could Hidden Variables Represent Uncomputable Variables Such as Turing-Incomputable Variables?

Following the above analysis, the HVs of original dBB-theory may not only be ‘hidden’, and
uncontrollable, in the familiar sense of the weak option known as ‘effective ignorance’ (Section 5.2);
instead, the HV-concept might represent a case of uncontrollability and unpredictability as a function
of the strong option involving nonlinear relations as described by the concept of ‘objective ignorance’
(Section 5.3). That proposal suggests the presence of a fundamental limit on agent inaccessibility
in dBB-theory based upon the interpretation of the HV-concept as, for one speculative possibility,
a Turing-incomputable variable (TIV). At a minimum, for starters, the proposal of TIVs in an
ontological quantum mechanics, such as dBB-theory [1–3], would require—in the constructive approach,
at least—the presence of nonlinear, self-referential interactions as part of the ontology of a quantum
theory, i.e., an ontology that is compatible with emergence and chaos theory (see Table 1). Where in
the Bohmian approach could that be found? Could Bohm’s theory manifest self-referential, chaotic
behavior in a way similar to that seen in some constructions of an emergent quantum mechanics,
which implements self-referential dynamics as a basic resource also?

The original writings of Bohm and Hiley [3] reveal that the nonlinear perspective on the quantum
state in Bohm’s theory was evident already 25 years ago: “The general behavior described”, Bohm and
Hiley [3] wrote, “ . . . is similar to that obtained in the study of non-linear equations whose solution
contain what are called stable limit cycles”, whereby, however, the “ . . . difference from the usual kind
of non-linear equations is that for each stable motion we have a whole set of possible limit cycles rather
than just a single cycle. Each quantum state thus corresponds to a different set of limit cycles and a
transition corresponds to an orbit going from one of these to another”. Importantly, quantum state
transitions, as the authors further explained, happen at “ . . . bifurcation points dividing those orbits
entering one channel from those entering another. Near these points, the motion is highly unstable and,
indeed, chaotic in the sense of modern chaos theory” [3]. To mention only one new example: Work
by Tzemos et al. [101] has described the origins of chaos in a mathematical model of a generalized
Bohmian quantum theory. To be sure, there are additional reports that Bohmian trajectories could be
chaotic and that chaotic dynamics could be the source of ‘quantum relaxation’ in Bohmian mechanics
(e.g., References [102–104]).

Work such as the above may pave the way towards conceptualizing the HV as an (effectively)
uncomputable variable, or possibly even a TIV should, e.g., evidence for undecidability emerge
in a future quantum-theoretic construction (see Table 1). Next, one topic of debate has long been
the potential risk of violating the non-signaling condition of quantum mechanics as a function of
the intrinsic nonlocality of ontological quantum theories such as dBB-theory (compare Section 3.3).
For prior work which defined an effective non-signaling constraint for ontological quantum mechanics
based upon an analysis of the concept of free variables by John Bell (see Section 5.2), consult
Walleczek and Grössing [27]. Here, the concepts of an effective (Section 5.2.) and of an objective
(Section 5.3) non-signaling constraint will be discussed briefly in the context of approaches considering
computational constraints towards fashioning an understanding of the non-signaling theorem.
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6.4. The Non-Signaling Theorem and Effective versus Objective Computational Constraints

Bendersky et al. [63] have implemented a computational protocol to assess whether, or not, the
nonlocal features associated with results from EPR-type quantum correlation experiments could be
used to communicate messages between two space-like separated locations—in apparent violation of
the non-signaling theorem. That study concluded that this is impossible because the “ . . . computability
of results imposes a strong limitation on how nature can behave if it only had computable resources
to generate outputs for the experiments.” Central to that conclusion is, of course, the standard
assumption that computational (Turing-type) processes “ . . . cannot generate random sequences”,
and that therefore, as Berendsky et al. [63] have added “ . . . we need to accept the existence of truly
unpredictable physical processes.”

Significantly, Berendsky et al. [63] concluded with the message that their findings are not in
“ . . . conflict with the different interpretations of quantum mechanics”, and they further noted that in
“ . . . the Copenhagen interpretation, the measurement process is postulated as random, whereas,
for example, in Bohmian mechanics, it is deterministic but the initial conditions are randomly
distributed and fundamentally unknowable.” For quantum theories operating in a universally
deterministic universe (see Figures 3 and 4), such as dBB-theory and Bohmian mechanics, the
quantum randomness would be generated by uncomputable processes, whether they be effectively
uncomputable (see the effective non-signaling constraint in Section 5.2), or (ii) objectively uncomputable
in the strong sense of dynamical chaos and/or undecidable dynamics, e.g., in the form of Turing
incomputability (see the objective non-signaling constraint in Section 5.3); only the strong option of
objective ignorance in deterministic systems could entail objective or true unpredictability. However,
the specific topic of self-referential dynamics in formal uncomputability (see Table 1) was not
addressed in the work by Berendsky et al. [63], although these workers did make the important
point that “...in Bohmian mechanics . . . the initial conditions are . . . fundamentally unknowable.”
Previously, Islam and Wehner [105] had also suggested that quantum mechanics must entail the
presence of (agent-inaccessible) uncomputable states as otherwise a violation of the non-signaling
constraint would inevitably ensue, and these researchers noted that “ . . . in any theory in which
the Church-Turing principle holds, certain states and/or measurements are not available to us as
otherwise any (approximate) no-signaling computation could be performed.” To employ the present
terminology, in order (i) to prevent superluminal Shannon-type signaling in nonlocal quantum
ontologies or, alternatively, (ii) to prohibit (future-to-past) retro-signaling in time-symmetric quantum
ontologies, these “states and/or measurements” must be subject to an AIP as a fundamental principle
in quantum mechanics.

6.5. Quantum Randomness and Turing Incomputability

How might the proposed link be explored further between Turing-incomputable processes and
the problem of quantum randomness? On the one hand, a skeptic might argue against the notion of a
successor to standard quantum theory, i.e., against the successful construction of a future quantum
theory which could provide a physical account of quantum randomness. On the other hand, as was
investigated in the present work, a new research movement is fast gaining traction which seeks to
reanalyze, and explore again, the validity of ontological propositions for quantum mechanics (see
Section 1). Could undecidable, Turing-incomputable processes be of significance for the research
program towards an ontological quantum mechanics, including in the account of objective quantum
unpredictability? Further evidence in favor of the plausibility of such a program has come forward in
recent years. “Is quantum randomness Turing incomputable?”, asked Calude [106], and he described
“ . . . a procedure to generate quantum random bits that provably are not reproducible by any Turing
machine”. Based on work that employed an operational version of the theorem by Kochen and
Specker [39], the author suggested that quantum randomness might be the best evidence, so far,
for the existence of a Turing-incomputable phenomenon in the natural world [106]. For a detailed
analysis of that possibility, which posits the existence of value-indefinite observables in nature (compare
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Section 3.1), see Abbott et al. [40–42]. Given that a formal proof for quantum indeterminism is lacking
in principle (see Section 5.1.1), the promise of a formal proof for the uncomputability of the observed
randomness in quantum experiments both suggests and motivates the present proposal of an AIP for
quantum mechanics (Section 1).

In summary, if the best available evidence for the true randomness of a sequence (that is generated
by a quantum-based randomness generator) is the uncomputability of that sequence by a Turing
machine, then this does not—necessarily—imply that the origins of that randomness is to be found
in the metaphysics of quantum indeterminism. Consult Section 5.1 regarding arguments against
the possibility of indeterminacy proofs, and Section 5.3 regarding the possibility of objective (true)
unpredictability in fully deterministic systems (see Table 1). Given an AIP based upon objective
ignorance, the following question remains unanswered at present: How to determine empirically
whether the source of experimentally observed quantum randomness is either (i) ‘intrinsic randomness’
as in the orthodox position of Section 5.1 (Figure 3A), or (ii) ‘objective ignorance’ as in the strong option
proposed in Section 5.3 (Figure 4B)? At present it remains unknown whether decisive experimental
tests could be identified and performed. Until such tests might become available, the decision should
be postponed between quantum indeterminism versus agent inaccessibility as a fundamental principle
in quantum mechanics.

7. Conclusions

The question remains an open one as to whether agent inaccessibility in quantum experiments is
either (i) due to metaphysical indeterminism or (ii) due to a quantum ontology of a form where the
exact ontic state λ is either effectively or objectively uncomputable. The latter option is the basis of
the present proposal for agent inaccessibility as a fundamental principle (AIP) in quantum mechanics.
What is the ontological status of a fundamentally agent-inaccessible quantum state? The status is
indefinite of the agent-inaccessible (“hidden”) ontic state (IOS) because only an infinite amount of
measurement information, and/or access to infinite computational resources, might enable the exact
prediction of a definite measurement outcome (DOS). Finally, the concepts of self-referential dynamics
and formal uncomputability may represent key elements in a physical theory of agent inaccessibility.
Instead of framing the 20th century quantum revolution as a radical shift from determinism towards
indeterminism, this work has argued that—given the available scientific evidence—it is valid only to
claim the following: the quantum revolution signifies the profound discovery of an agent-inaccessible
regime of the physical universe.
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Abstract: Poincaré’s Recurrence Theorem implies that any isolated Hamiltonian system evolving
in a bounded Universe returns infinitely many times arbitrarily close to its initial phase space
configuration. We discuss this and related recurrence properties from the point of view of recent
advances in symplectic topology which have not yet reached the Physics community. These properties
are closely related to Emergent Quantum Mechanics since they belong to a twilight zone between
classical (Hamiltonian) mechanics and its quantization.
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1. Introduction

In his famous prize-winning 1890 paper [1], Henri Poincaré proved that almost every phase space
trajectory of an isolated three-body system must return arbitrarily close to its initial position, and this
infinitely many times. Poincaré called this result théorème de stabilité à la Poisson, but it is nowadays
universally known as Poincaré’s recurrence theorem. Poincaré’s theorem lies at the foundations of ergodic
theory, and is actually true of any dynamical system moving in a bounded set under the action of
measure-preserving transformations. One of the most well known applications of Poincaré’s recurrence
is that a bounded Hamiltonian system (“Universe”) must return after some (usually extraordinarily
large) time arbitrarily close to its initial configuration. Let us focus on a subsystem of that Universe
(a galaxy, or more modestly, the solar system, are good examples). This subsystem will return to
its initial configuration after some time—but, what time? If this subsystem does not interact with
the rest of the Universe, it will have its own private return time, and it is reasonable to expect (and
possible to prove) that this return time is usually shorter than the return time of the whole Universe.
Things being what they are, subsystems do usually interact with the rest of the Universe, and it is
then no longer reasonable to expect (or possible to prove) that the subsystem will return to its initial
configuration before the whole Universe does. The aim of this paper is to briefly and tentatively discuss
the possibility of such “superrecurrence” in the presence of interactions: an interacting subsystem of
a Hamiltonian system will have its own return time, which is of the same order of magnitude as if
there were no interaction. The difficulty lies in the fact that an interacting subsystem of a Hamiltonian
system is not Hamiltonian in its own right, but has a much more complicated structure due to the
interactions. We use a tool from symplectic topology, related to Gromov’s symplectic non-squeezing
theorem (also known as the “principle of the symplectic camel”) which we have abundantly explained
and discussed elsewhere [2–5] (cf. [6]). This theorem plays an essential role in quantum mechanics,
and also in the study of entropy [7], aeronautics [8,9], and statistical mechanics [10]. Its importance
and potential applications have however not yet been fully exploited in physics. This might be
due to the mathematical difficulty of the result, which was only discovered in the mid-1980s by the
mathematician Mikhail Gromov, who was awarded the Abel Prize (the equivalent of the Nobel Prize
in mathematics) for his discovery. In fact, the principle of the symplectic camel can be seen as an
imprint of the uncertainty principle of quantum mechanics in classical mechanics—or the other way
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around! Without becoming embroiled in a sterile polemic, let me just say that if one considers (as one
should do!) quantum theory as the “master theory” of which classical mechanics (in its Hamiltonian
formulation) is a macroscopic approximation, then one should find traces of the mathematical structure
of quantum theory in the macroscopic domain. This is exactly what happens here: as we have shown
in the papers cited above, uncertainty relations (in their strong Robertson–Schrödinger form) are not
per se quantum mechanical, but also exist in classical mechanics, but this time for an arbitrary value of
Planck’s constant h, which is now viewed as a free parameter. It is then the more exact theory (quantum
mechanics) which forces us to choose a lower limit for the indeterminacy by fixing a lower bound for
the admissible value of the parameter h (in more physical terms, it is the quantum phenomena which
force us to do so: quantum theory exists only to describe quantum phenomena, and not the other way
round). However, more about this is in the Discussion ending the paper.

2. Subsystems of Hamiltonian Systems

2.1. Description of the Problem

Consider a mechanical system of N point-like particles whose motion is determined by a Hamilton
function H. If the system is confined to a bounded region of phase space R6N

q,p, Poincaré’s recurrence
theorem tells us that any initial pattern of positions and velocities (specified within a given error) will
recur, independently of any permutation in the numbering of the particles of the system. The recurrence
time is however generally extremely long, (see [11] for a recent analysis of recurrence time), except
of course for periodic (or quasi-periodic) systems. Of course, the boundedness condition is essential:
a free particle in an infinite Universe will never return to its initial position. Suppose indeed that
the system, represented by a phase point (q, p) = (q1, ..., qN , p1, ..., pN), with qi = (xi, yi, zi) and
pi = (pxi , pyi , pzi ), is confined to a “universe” U . We are not asking for an exact return of (q, p)

but we content ourselves with the return of some (arbitrarily) small neighbourhood Ω of that point.
Then, an upper bound for the first return time of that neighbourhood has a magnitude of order
T ≈ Vol(U )/ Vol(Ω). This number is usually very large. Let us now focus on a subsystem, identified
with a point (q′, p′) = (q1, ..., qn, p1, ..., pn) with n < N. Assume first that the total Hamiltonian
function is of the type

H = H′(q′, p′) + H′′(q′′, p′′) (1)

where (q′′, p′′) = (qn+1, ..., qN , pn+1, ..., pN). Due to the absence of interaction between the two
subsystems (q′, p′) and (q′′, p′′), their motions are independent; the time-evolution of (q′, p′) is thus
governed solely by its own private Hamiltonian H′; the equations of motions are

q̇j =
∂H′

∂pj
(q′, p′), ṗj = −

∂H′

∂qj
(q′, p′) with 1 ≤ j ≤ n (2)

and their solutions only dependent on the initial values q′(0) and p′(0). The corresponding universe
U′ consists of the set of all points (q′, p′) such that (q′, q′′, p′, p′′) is in U for some q′′, p′′; it is thus the
projection of U on the reduced phase space R6n

q′ ,p′ and, accordingly, the corresponding neighbourhood

Ω′ is the projection of Ω on R6n
q′ ,p′ . Let us now compare the return time T′ ≈ Vol(U′)/ Vol(Ω′) for the

system (q′, p′) with that of (q, p). To fix the ideas, we choose for U a hypercube with sides of length L
and for Ω a hypercube with sides of length ε 	 L. It follows that T ≈ (L/ε)6N and that T′ ≈ (L/ε)6n

so that the ratio T/T′ between both return times is of order (L/ε)6(N−n). Consider next the general
case, where the subsystems interact; we can no longer separate the variables that qi and pi; this is the
case if for instance,

H(q, p) =
N

∑
j=1

|pj|2
2mj

+ V(q1, ..., qN) (3)
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although everything will hold for an arbitrary function of the variables qj, pj. We consider again the
subsystem (q′, p′); its motion will now depend on the global behaviour of the system (q, p), since the
solutions of the corresponding Hamilton equations

q̇j =
∂H
∂pj

(q, p), ṗj = −
∂H
∂qj

(q, p) with 1 ≤ j ≤ n (4)

now depend on the initial values of all variables qj, pj, not only the n first. It follows that the motion of
the subsystem (q′, p′) is not governed by a Hamiltonian; this can be easily seen by finding the explicit
solutions for simple systems. Let us illustrate this using Sharov’s argument [12]. Suppose Equation (4)
represents the time-evolution of a bona fide Hamiltonian system. Denoting by q0

1, ..., q0
n; p0

1, ..., p0
n any

set of initial conditions we have∫
|J (t)|dp0

1 · · · dp0
ndq0

1 · · · dq0
n =

∫
dp1 · · · dpndq1 · · · dqn

where J (t) is the Jacobian of the transformation from the initial conditions to (q′, p′). If the system
Equation (4) is Hamiltonian, then this transformation must be canonical, so we should have |J (t)| = 1.
However, we have, as Sharov [12] showed, dJ (t)/dt 
= 0, hence J (t) 
= J (0) = 1. In fact,
the principle of the symplectic camel which we discuss below implies, without any calculation at all,
that |J (t)| ≥ 1. Thus:

A subsystem of a Hamiltonian system is usually not a Hamiltonian system in its own right.

What about the return time? A first educated guess is that since the subsystem interacts (perhaps
very strongly) with the rest of the system this interaction will influence the return time which will
become much longer than in the interaction-free case, perhaps even of the order T ≈ (L/ε)6N , at which
the total system returns.

2.2. Non-Squeezing and Packing

Liouville’s theorem tells us that Hamiltonian motions are volume preserving: this is one of the
best known results from elementary mechanics. However, in addition to being volume-preserving,
Hamiltonian motions have unexpected “rigidity properties”, which distinguish them from ordinary
volume-preserving diffeomorphisms. The most famous is Gromov’s non-squeezing theorem. Assume
that we are dealing with a Hamiltonian system consisting of a large number N of particles with
coordinates qi = (xi, yi, zi) and momenta pi = (pxi , pyi , pzi ). If these points are sufficiently close to
each other, we may, with a good approximation, identify that set with a “cloud” of phase space fluid;
by phase space we mean the space R6N

q,p with q = (q1, q2, ..., qN) and p = (p1, p2, ..., pN). Suppose that
this cloud contains at time t = 0 a ball with radius R:

BR : |q− q0|2 + |p− p0|2 ≤ R2. (5)

The orthogonal projection of the cloud of points on any plane of coordinates (x, px), (x, py),
(x, pz), etc. will thus have area at least πR2. Let us now watch the motion of this phase-space cloud.
As time evolves, it will distort and may take after a while a very different shape, while keeping constant
volume in view of Liouville’s theorem. However—and this is the surprising result—the projections of
that deformed cloud on any of the planes of conjugate coordinates (x, px), (y, py) or (z, pz) will never
decrease below the value πR2. This fact is of course strongly reminiscent of the uncertainty principle
of quantum mechanics, of which it is in fact a classical version; we have discussed this analogy in
detail in de Gosson [4,10]. Scheeres et al. [9] used our results to study orbit uncertainty in space
craft navigation.

The phenomenon described above seems at first sight to conflict with the usual conception of
Liouville’s theorem: according to folk wisdom, the ball BR can be stretched in all directions, and
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eventually get very thinly spread out over huge regions of phase space, so that the projections on any
plane could a priori become arbitrary small after some time t; this stretching generically increases
with time. In fact, one may very well envisage that the larger the number N of degrees of freedom,
the more that spreading will have chances to occur since there are more and more directions in which
the ball is likely to spread! This possibility has led to many quasi-philosophical speculations about
the stability of Hamiltonian systems (in [4,5] we have discussed Penrose’s claim ([13], p. 183, l.–3)
that phase space spreading suggests that “classical mechanics cannot actually be true of our world”).
However, the phenomena we shortly described above show that such statements (which abound
in the literature) come from a deep misunderstanding of the nature of Hamiltonian mechanics.
The non-squeezing theorem prevents anarchic and chaotic spreading of the ball in phase space which
would be possible if it were possible to stretch it inside arbitrarily thin tubes in directions orthogonal
to the conjugate planes. This possibility is perfectly consistent with Katok’s lemma [14], which can be
stated as follows: consider two bounded domains Ω and Ω′ in R2n which are both smooth volume
preserving deformations of the ball BR. Then, for every ε > 0, there exists a Hamiltonian function H
and a time t such that Vol( f H

t (Ω)ΔΩ′) < ε. Here, f H
t (Ω)ΔΩ′ denotes the set of all points that are in

f H
t (Ω) or Ω′, but not in both. Katok’s lemma thus shows that up to sets of arbitrarily small measure ε

any kind of phase-space spreading is a priori possible for a volume-preserving flow, because f H
t (Ω)

can become arbitrarily close to Ω′.
The properties outlined above are best understood (and proved) in terms of a new generation

of theorems from symplectic topology, the first of which goes back to the mid-1980s, and is known
as Gromov’s non-squeezing theorem [15], which is often referred to as the principle of the symplectic
camel (for various interpretations of this Biblical metaphor, see the comments to the online version
of Reich’s review [16] of my paper [4]. This theorem—whose implications to physics have not yet
been fully explored—has allowed us to give a symplectically invariant topological version of the
principle of quantum indeterminacy [3–5], and to describe in a precise classical uncertainties arising in
some systems [10].

2.3. One Step Further: Subsystems

Gromov’s non-squeezing theorem can be reformulated rigorously as follows: let f be a
canonical transformation (often called a symplectic diffeomorphism, or symplectomorphism in the
mathematical literature). This means that, if (q′, p′) = f (q, p), then the Jacobian matrix

D f (q, p) =
∂(q′, p′)
∂(q, p)

(6)

is symplectic, and thus, for every point (q, p) in R6N (Arnol’d [17]): D f (q, p) ∈ Sp(3N). Gromov’s
theorem says that

Area Πj( f (BR)) ≥ πR2 (7)

where Πj is the orthogonal projection on the plane of conjugate variables (qj, pj); here the index
j is any of the integers 1, ..., N. We now address the following more general question: is there a
generalization of this result to higher dimensional subspaces of R6N? More specifically, what we have
in mind is the volume of the projection Π′ of f (BR) on a subspace R6n in the conjugate coordinates
(q′, p′) = (q1, ..., q3n, p1, ..., p3n); 1 < n < N. Such a subspace of R6N inherits in a natural way a
symplectic structure, and we ask: is the “obvious” generalization

Vol6n Π′( f (BR)) ≥
π3n

(3n)!
R6n (8)

of Equation (7) true? Let us call a canonical transformation satisfying the property in Equation (8)
a “hereditary” canonical transformation. It has been very recently proved by Abbondandolo and
Matveyev [18] that:
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All linear (or affine) canonical transformations are hereditary.

An immediate consequence of this fact is that if ( f H
t ) is the flow determined by the Hamilton

equations for a Hamiltonian function of the type

H(q, p) =
3N

∑
j=1

aj(t)p2
j + bj(t)q2

j + cj(t)pj + dj(t)qj

where aj, bj, cj, dj are continuous real functions of the time t, then each f H
t is hereditary. This applies,

in particular to the independent oscillator model of a heat bath where

H(q, p, x, px) =
1

2m
p2

x + Kx2 +
3N

∑
j=1

1
2mj

(p2
j + mω2

j (x− qj)
2)

is the Hamilton function of a linear oscillator in the (x, px) variables coupled with N isotropic oscillators
with frequencies ω1, ..., ωN .

Let us discuss the non-linear case. In [18], the authors constructed a counterexample showing that
there exist nonlinear canonical transformations which are not hereditary. However, the transformation
they constructed deforms the ball BR tremendously and seems to be very unphysical. Now, in the same
paper, Abbondandolo and Matveyev discussed the validity of Equation (8) for more general canonical
transformations when the radius R is small; they conjecture that this property is generically true of all
Hamiltonian systems. At the time of writing, there is however no convincing proof of this conjecture.
We are thus in the unusual (and unpleasant) situation where we would like to use a theorem valid for a
class of Hamiltonians which has not, at the time of writing, been fully characterized! (However, see the
comments in Schlenk’s review paper [19]). If true, there would be large subclasses of Hamiltonian
(sub)systems exhibiting superrecurrence.

2.4. A Simple Case of Superrecurrence

As was pointed out by Polterovich (see Schlenk [19]), the original motivation for Gromov to study
“packing numbers” in symplectic topology was his search for recurrence properties which are stronger
than those of volume preserving mappings. Consider first the following simple planar situation:
we have a disk DR(0) in the plane R2, that is, the set of points (x, px) such that x2 + p2

x ≤ R2. We have
Area(DR(0)) = πR2. We now ask the question: For which radius r can we embed two smaller disjoint
disks Dr(a) and Dr(b) inside DR(0) using a canonical transformation? The answer is easy: in the plane,
canonical transformations are just the area preserving diffeomorphisms, so it suffices that

Area(Dr(a)) + Area(Dr(b)) ≤ Area(DR(0))

that is, 2r2 ≤ R2. We can thus embed at best two disjoint disks DR/
√

2(a) and DR/
√

2(b) inside a
disk with radius R, and that disk is then completely filled by the images of deformed smaller disks.
Choose now a general phase space R2n (with for instance n = 3N) and consider the same problem for
a ball BR(0) with radius R. We want to pack two smaller disjoint balls Br(a) and Br(b) inside BR(0)
using general canonical transformations. Calculating the volumes, we have

Vol2n(BR) =
(πR2)n

n!
, Vol2n(Br) =

(πr2)n

n!

and hence
Vol2n(BR)/ Vol2n(Br) = (R/r)2n. (9)

This indicates that, at first sight, we could pack 2n balls with radius r = R/
√

2 inside
BR(0) and this number becomes very large when the number n of degrees of freedom increases.
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The reality is, however, very different. The argument above, while true for arbitrary volume
preserving diffeomorphisms, does not take into account the fact that we are dealing here with
canonical transformations, and that the latter are much more “rigid” than ordinary volume
preserving diffeomorphisms. In fact, when we are dealing with canonical transformations (and hence, in
particular, Hamiltonian flows), the following result holds:

Gromov’s Two Balls Theorem [15]: If two disjoint phase space balls with radius r are mapped inside a ball BR
by a canonical transformation, then we must have r ≤ R/

√
2.

In other words, there is no quantitative difference between the packing number in
two-dimensional phase plane and a general phase space R2n with n > 1. This implies that
any obstruction to symplectically embedding a ball into a larger ball is much stronger than the
volume constraint given by Equation (9). This is a very strong result, and allows proving a simple
superrecurrence theorem: assume that we have a “Universe” U that is the image of a very large ball
BR by some canonical transformation (it may be a symplectic ellipsoid, or more generally any compact
symplectic manifold with boundary). Take a subset B of U which is the image of a ball with radius
(R + ε)/

√
2 where ε is a small number, say ε = (1/n)R. Then,

Vol2n(U )/ Vol2n(B) = N ≈ e−22n. (10)

Now, let H be a Hamiltonian function whose flow ( f H
t ) preserves the universe U , that is f H

t (U )
(it is sufficient that the Hamiltonian vector field XH is tangent to the boundary ∂U ). The flow f H

t
displaces the “subuniverse” B which becomes f H

t (B) after time t. If we only use the fact that f H
t

volume preserving; then Equation (10) would imply that the recurrence time could be very large:
choosing t = 1 as a unit of time and setting f = f H

t the sets f (B), f 2(B),...., f N−1(B) cannot be all
disjoint, and hence the return time can a priori be as large as N − 1. However, by Gromov’s Two Balls
Theorem, we will have f (B) ∩ B 
= ∅ so the first return time is t = 1.

Remark 1. Gromov’s Two Balls Theorem’ whose classical consequences we discussed above is related to the
notion of dislocation of quantum states as discussed by Polterovich [20] and Charles and Polterovich [21].

3. Discussion

I have discussed in this contribution to EMQM17 some consequences of symplectic topology on
Poincaré recurrence from a perfectly classical point of view. However, as I have explained elsewhere
with Basil Hiley [6], the properties of symplectic topology described here are reminiscent of certain
aspects of quantum mechanics (for instance, the uncertainty principle). I view them as imprints of the
quantum world on classical mechanics in its Hamiltonian formulation. Of course, this point of view
might be felt as controversial by some physicists, so let me explain what I have in mind (thus, partially
answering some interesting remarks and objections made by a Referee). In either of its formulations,
quantum mechanics is built on classical mechanics. In the Heisenberg picture, one wants to give an
operator-theoretical meaning to Hamilton’s equations of motion

dq
dt

=
∂H
∂p

(q, p, t) ,
dp
dt

= −∂H
∂q

(q, p, t)

and this is done by replacing the classical position and momentum variables q and p with operators
q̂ and p̂ satisfying the Born condition [q̂, p̂] = ih̄; after some work, one is led to the quantum
Hamilton equations

dq̂
dt

=
∂H
∂p

(q̂, p̂, t) ,
dp̂
dt

= −∂H
∂q̂

(q̂, p̂, t). (11)
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In the Schrödinger picture, which is based on de Broglie’s wave mechanics, the time-evolution of
the wavefunction ψ is governed by Schrödinger’s equation

ih̄
∂ψ

∂t
= Ĥψ (12)

where Ĥ is an operator associated with the classical Hamiltonian function H. Now, it is often
claimed that both pictures lead to the same physical predictions. However, this is only true if one
uses the same quantization procedure for both the Heisenberg and Schrödinger theories. In fact,
the quantum Hamilton equation (Equation (11)) only make sense if one quantizes products qm pn

using the prescriptions given in 1923 by Born and Jordan, together with Heisenberg, in their famous
“Dreimännerarbeit”; it follows that the operator Ĥ in Schrödinger’s Equation (12) must be derived
from the Hamiltonian function H also using the Born–Jordan prescription (for otherwise both pictures
would no longer be equivalent, as I have discussed in detail in [22,23]). This short digression is
intended to explain that, no matter how one “defines” quantum mechanics, the classical (Hamiltonian)
theory is always present as a watermark. In fact, in my opinion, this is a quite logical consequence of
the fact that we, humans, are macroscopic objects and as such the only direct experience we have from
our World is of a macroscopic nature, and there is no “pedagogical” way to reverse this approach,
that is to make us in first place become aware of the quantum nature of our environment, and then to
deduce the classical properties as an approximation thereof. Thus, all this brings me to the following
observation: quantum physics is a mathematical construct. However, mathematics is an exact Science;
there is no place for polemic, interpretations, or controversy. Mathematics is not as “emotional”
as physics is: a mathematical statement is either true, or it is false. It turns out that I have shown
in [24] that symplectic geometry is the common mathematical background of classical and quantum
mechanics (also see our paper with Hiley [6]), and that both theories are mathematically equivalent. The
proof mainly relies on the fact that a Hamiltonian isotopy automatically generates a quantum isotopy
(it is a consequence of the theory of the metaplectic group) and vice versa to every quantum isotopy
we can associate a Hamiltonian isotopy. This property shows that there is a canonical isomorphism
between quantum and classical theory. A caveat here: the Reader is invited to observe that this is
by no way a provocative or paradoxical statement: it is just a mathematical theorem, which may be
perceived as counterintuitive by many physicists. Now, a mathematical theory has no a priori physical
meaning unless one creates an interpretational apparatus allowing to draw real-life consequences
from the mathematical objects: an equation is not a physical theory! This explains the statement I
made above, namely that “...properties of symplectic topology ... can be viewed as imprints of the
quantum world on classical mechanics...”. If both the quantum and classical theory are mathematically
equivalent, the sentence could indeed be reversed by saying that it is classical mechanics which leaves
imprints on the quantum world. However, from the physical point of view, we are in a “Cheshire cat”
scenario: since experience shows that quantum mechanics yields a better description of Nature than
classical mechanics, quantum theory contains classical mechanics as an approximation, and leaves in
this approximation some features reminiscent of the true theory, exactly as when the legendary cat
disappears but leaves his grin.
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Abstract: Although David Bohm’s interpretation of quantum mechanics is sometimes thought to
be a kind of regression towards classical thinking, it is in fact an extremely radical metaphysics of
nature. The view goes far beyond the familiar but perennially peculiar non-locality and entanglement
of quantum systems. In this paper, a philosophical exploration, I examine three core features of
Bohm’s metaphysical views, which have been both supported by features of quantum mechanics
and integrated into a comprehensive system. These are the holistic nature of the world, the role of a
unique kind of information as the ontological basis of the world, and the integration of mentality into
this basis as an essential and irreducible aspect of it.
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David Bohm is famous for re-invigorating and developing the “pilot wave” interpretation of
quantum mechanics (QM) originally articulated in 1926 by Louis de Broglie. Bohm’s theory envisages
a world of particles which all have definite momenta and positions, albeit the values of which are
generally inaccessible. (It is important to point out that the concept of momentum in Bohm’s theory
is not straightforward. The fact that we can assign a value of mv to a particle is not directly related
to what we would find if we performed a QM measurement of momentum [1,2].) The particles
are deterministically “steered” or “guided” by a universal field which is described by the quantum
wave function. It is sometimes said that Bohm’s view is a return to a classical picture of the world,
embracing atomistic particularity and determinism. For example, the philosopher David Albert
forthrightly claims that “the metaphysics of [Bohm’s] theory is exactly the same as the metaphysics
of classical mechanics” ([3], p. 174). A recent text book casually characterizes Bohm’s account as one
endorsing “local realism” ([4], p. 65). Christopher Fuchs once wrote that “Bohmism” represents a
hopeless “return to the womb of classical physics . . . yuck!” ([5], p. 417).

A core classical theory is of course that of Newton. A “Newtonian world view” is a metaphysical
interpretation of a theory which can plausibly be extended to embrace the entire world instead of
and speculatively beyond the systems to which it can actually be successfully applied in experiment
and technology. The Newtonian viewpoint at issue is that of a world of locally interacting particles
which obey well defined laws of nature and whose proclivities for combination lead to all of the
complexity of form and the variety of composite systems that we so abundantly observe. As is well
known, Newton himself was unable fully to subscribe to Newtonianism in this sense because his
theory of gravitation postulated a non-local and instantaneously active “force” generated by every
material object which permeated the universe. At the time, the notion of such a thing as “force” was
dubious, carrying the taint of the occult (forces are akin to older notions of the “spirit”) and the
retrograde Scholastic concept of substantial forms (see [6]). Moreover, Newtonian non-locality is
considerably more radical than the more recently discovered quantum variety. It permits (in principle)
faster than light, indeed instantaneous, signaling via the mere rearrangement of matter. This extension
of the Newtonian metaphysics of nature adds mysterious forces to the push and pull of particle
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collisions which many at the time regarded as an illicit intrusion of immaterial entities into a part of
the world—the material universe—that should be intelligible solely in terms of mechanical principles.

If we take a hard line on Newtonianism—as surrogate for the mechanical metaphysics—then it is
hard to seriously maintain that Bohm’s account of quantum mechanics is Newtonian. The quantum
potential invoked by Bohm and required to duplicate the empirical success of standard quantum
mechanics is irredeemably non-local, and Bohm held views entirely at odds with the mechanical view
of the world as consisting of independent, causally interacting individual parts.

Even if we take a softer line, more in line with what Newton himself was willing to postulate,
then Bohm’s view is still at odds with a Newtonian picture of the world. There is a split worth noting
here in those who work on theories that develop Bohm’s original insight. Bohm himself took the radical
and philosophical line I will investigate in this paper. Others, those who develop so-called Bohmian
Mechanics, strongly resist any need for a new metaphysical outlook and cleave to a particle-based
picture in which the world evolves via, in the words of Peter Holland, “objective processes” ([7], p. 25),
albeit non-local ones; numerous papers by Sheldon Goldstein, Detlef Dürr, and their co-workers would
also fall on this side of the split (for an overview, see [8]). Newton was not averse to the postulation of
forces in nature. However, such forces come in at least two varieties: local forces that are properties
of kinds of material bodies and non-local forces such as gravitation which are suspiciously uncaring
about the nature of the bodies giving rise to it. The former he welcomed and hypothesized that they
would ultimately explain chemistry: “. . . many things lead me to have a suspicion that all phenomena
may depend on certain forces by which the particles of bodies, by causes not yet known, either are
impelled toward one another and cohere in regular figures, or are repelled from one another and
recede” ([9], p. 382–383). The latter were anathema to Newton, who disparaged those who might
favour the idea of action at a distance: “I believe no Man who has in philosophical Matters a competent
Faculty of thinking can ever fall into it” ([10], p. 102). For many at the time, even the local forces were
suspicious. Pure mechanical contact interaction based upon the impenetrability of matter was the
“gold standard” for explanations of the natural world. Bohm’s view could hardly be more different
than this vision of classical physics.

Of course, Newton was right; the “forces brigade” won the day over pure mechanism, and
Newton’s theory funded the development of classical physics. Still, although physicists became inured
to the scandal of action at a distance and non-local instantaneous forces, there were regular calls
to recast physical theory in terms of local forces smoothly transmitted through space within some
kind of genuinely physical medium. This persistent attitude culminated in Maxwell’s field theory of
electromagnetism and, later, Einstein’s revolutionary field-based account of gravitation (for a brief
history of the field concept, see [11]). QM entanglement apparently introduces an entirely new kind of
non-local relation, which was strongly suggestive to Bohm that a similarly new picture of reality was
needed to accommodate it.

Bohm’s account of QM introduces some new ideas and a radically different general outlook
on nature. However, it does not make any empirical difference: Bohmian predictions are identical
to those of “standard” QM. It’s worth noting that there have been some controversial attempts to
empirically distinguish the views. Bohm’s account assumes that the initial conditions of a system
satisfy the quantum equilibrium condition (that is, the probability distribution of the initial positions
of the particles is given by |ψ|2). It is conceivable that (parts of) the universe do not abide by this
condition. It has also been argued that, although Bohmian theory matches QM statistically, it could
vary from it in individual cases, and this divergence might not be absolutely impossible to measure.
For references and discussion, see Riggs ([12], pp. 142 ff.). Still, the basic empirical equivalence is the
view is often called the Bohmian or (de Broglie–Bohm) interpretation of QM. It thus joins the ranks of a
host of alternative interpretations and turns into a metaphysics of nature.

This raises an unavoidable question of what is metaphysical about interpretations of QM and,
in general, what distinguishes a metaphysical question from a scientific question about the structure
of reality. Looming behind this issue is a more general one that questions the value of engaging in
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metaphysics at all. Metaphysical skepticism has a long and distinguished history and debates in this
area remain vigorous (see, e.g., [13]). In this paper, I will proceed on the assumption that metaphysical
speculation is both possible and valuable, at least to the extent that trying to understand the kind of
world which our best science suggests we live in is worthwhile, as the lively debate about the meaning
of QM suggests. The quest of metaphysics is succinctly expressed by Wilfred Sellars: “to understand
how things in the broadest possible sense of the term hang together in the broadest possible sense
of the term” ([14], p. 1). This quest goes beyond the purview of theoretical science. Yet delineating
the distinctive nature of metaphysical questions is not a straightforward task because modern science
is a more or less direct descendant of early thought about the general nature of reality. When, for
example, Anaxogoras postulated that “everything is in everything,” that matter is infinitely divisible,
and that every portion of it is a mixture of all possible qualities in different proportions, was he doing
proto-science or philosophical metaphysics? (Anaxogoras’s views are in fact intriguing, complicated
and far from clear; see [15].) At the time, and for long after, there was no such distinction. As the
centuries accumulated, many such questions drifted from the metaphysical towards the scientific pole.

A good clue to a metaphysical question is its distance from empirical testability: the more remote
from empirical consequences, the “more metaphysical” the question. I should add the usual rider of
“in principle” testability. Technical difficulties in constructing appropriate experimental apparatus does
not a metaphysics make. There may also be a general demand on the perceived significance of the
question: metaphysics is supposed to tackle big questions. However, I don’t see exactly why there
can’t be utterly trivial metaphysical questions. Contrary to positivists, this does not mean the question
is empty or meaningless.

To give a pointedly philosophical illustration to illustrate how even the most scholastic seeming
question can still link to scientific concerns, consider the nature and identity of composite objects.
A persistent question in metaphysics is about the ontological status of such entities. The standard
example is the contrast between a bulk lump of clay and the statue artistically formed from it. The lump
of clay is the material from which the statue is made. The clay is still there after this operation as is the
statue. Are they one and the same entity, about which we merely have two different ways of talking?
They occupy exactly the same space and move inexorably together wherever they go. Surely they are
one. And yet while we can destroy the statue with a hammer, the bulk lump of clay remains. It seems
a reasonable principle that, if one can destroy x without destroying y, then x 
= y. The metaphysics of
composite objects can get quite hairy (see [16]). One thing is pretty clear, however: it is hard to think
of an empirical test which would answer the question whether the statue and lump are one or two.
One might suggest a quick test with a scale. If there are two objects here, then we should sum the
weight of lump and statue. But no one thinks that composite objects count for weight beyond that of
their constituents (and the function relating mass of constituents to mass of the composite, which is not
in general simply summation). Empirically speaking, we already know everything we could possibly
need to know to answer this question.

Although this question has been selected as a paradigm example of a “purely philosophical”
worry, the point is that it does link to scientific concerns. The general problem of understanding
material composition is ancient but also has modern offshoots, obviously in studies of the chemical
bond and solid state physics. A pure reductionist might dismiss the lump and statue question as merely
verbal; what is “really real” is simply the atoms arranged thus and so. However, others hold that
“more is different” [17] and that composition introduces new physics into the world. Most dramatically,
understanding the place of the ordinary objects of everyday experience connects to the effort to show
how a “classical world” can be retrieved from its more fundamental quantum mechanical description.
Despite the seeming inevitability of rampant superposition of quantum states, we experience a world
of stable and determinate composite objects. The modern investigation of decoherence (see [18,19])
has gone a long way towards solving this problem, which has a history of fairly radical suggestions
behind it, as in the suspension of physical law required by the orthodox but infamous projection
postulate, the idea that consciousness itself somehow intervenes in the measurement process or the
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idea that the classical realm is somehow independent of the quantum and in some way is what is
fundamentally real.

In fact, although it is true to say that metaphysical questions are remote from empirical testability,
we see many suggestive connections between them and scientific theorizing. As another example,
there is a perennial tension between the view of the world as an unchanging unity (traditionally
represented by Parmenides) versus a view that sees in nature a universal and ceaseless dynamism
of change (traditionally represented by Heraclitus). At the appropriate (metaphysical) level of
analysis, no empirical test will favour either side of this debate. It is true that we seem to experience
change, but a feeling of change is not (necessarily) a changing feeling. It is hard not to see a dim
foreshadowing of the “block universe” often associated with relativity theory in the Parmenidean
view. Modern quantum cosmology deploys a master equation, the Wheeler–DeWitt equation, that
seems to forbid change in the universe. Of course, temporal dynamicists (if I can call them that) push
back (see, e.g., [20]). No experiment can decide this, the question seems obviously significant, and
important and philosophical reflection here is greatly aided and extended by scientific development.

The grandest metaphysical question of all was posed by Leibniz in 1697: Why is there something
rather than nothing at all [21]? It is hard to see how to even begin to grapple with this. Leibniz’s
sensible answer was that there must be an absolutely necessary ground of being (which he naturally
equated with God) for there could not be a chance “eruption” of contingent reality out of nothingness.
Even here, modern physics is not entirely disconnected from this problem. In a recent book, Lawrence
Krauss [22] outlines how random but statistically inevitable fluctuation in quantum fields could give
rise to particle states from the vacuum state. A trenchant review of Krauss’s book by the philosopher
(and physicist by degree) David Albert led to a testy exchange in the New York Times, which makes for
an amusing read. Albert’s main point (apparently revealing him to be, in Krauss’s words, a “moronic
philosopher”) was that the QFT vacuum is not nothing: “Krauss seems to be thinking that these
vacuum states amount to the relativistic-quantum-field-theoretical version of there not being any
physical stuff at all,” but this has “nothing whatsoever to say on . . . why there should have been a
world in the first place” [23]. Clearly, nothingness is incompatible with the existence of any quantum
field state, vacuum or otherwise. Perhaps an analogy is this. If you shut your eyes, you see “nothing,”
but it appears to you as a blacked out visual field. Contrast that with your visual sense of what is
behind your head. That is a nothing which is not any kind of “blackness” but simply an absence.
Metaphysical nothingness is pure absence.

While Albert is obviously right about this, the relation between the vacuum state and various
particle states nonetheless provides an interesting perspective in the philosophy of nothingness.
In general, scientific development illuminates and, it must be admitted, usually deepens rather
than answers metaphysical questions (The situation is thus reminiscent of the following anec dote:
In a summary of lectures on electrodynamics delivered at Moscow University by A. A. Blasov, the
following sentence was stated: “The purpose of the present course is the deepening and development
of difficulties underlying contemporary theory . . . ” (as reported in the delightful [24], p. 88)). It would
be hard to overstate the significance of the transformation in our metaphysical outlook occasioned by
the scientific revolution’s mechanistic metaphysics, which replaced the largely Aristotelean theological
metaphysics, which dominated thought for more than a millennium.

In all these examples, to a greater or lesser extent, we see how advances in science serve not
to eliminate metaphysical questions, but illuminate them and sometimes to reawaken metaphysical
options that had faded from view.

Such a metaphysical question, and one that Bohm was deeply concerned with, is whether the
universe is primarily a unified whole, as opposed to a collection of ultimate fundamental parts.
As noted above, for a long time, the second, mechanical or part-to-whole, view received vast support
from the advance of scientific understanding. In recent times, QM has with its discovery and
experimental verification of entanglement, revived universal holism. Theoretical advances once
again can underpin or weaken philosophical views in the absence of any decisive empirical test.
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Therefore, what is philosophically spectacular about the development of quantum mechanics is
the possibility that it heralds an equally momentous shift in metaphysical outlook. The still dominant
mechanistic metaphysics, which pictures the world as made of independent interacting parts, will be
hard to overturn. And for good reason. It has generated vast insights, leading to revolutions in
technology that are now generating consequences on a planetary scale. Its philosophical impact has
been no less significant. The rise of physicalism or scientific naturalism as the “default” metaphysics
can in large measure be traced to its long history of success (see [25]).

The fundamental appeal of the mechanical metaphysics is its promise of maximum intelligibility
and conceptual simplicity. Discover the fundamental parts of which everything is composed, and
discover the laws which govern how they interact, and you have in principle the key to understanding
the entire world. The idea of part–whole intelligibility also seems to be ingrained in the human psyche.
When faced with something we don’t understand our natural instinct is to take it apart and “see how
it works.” This has without question served us extremely well, probably since before we were fully
human. Part–whole intelligibility arises from understanding how the properties of the parts and their
interactions determine the property of the whole. Newton nicely codified this procedure, breaking it
into “analysis” and “synthesis”:

By this way of Analysis we may proceed from Compounds to Ingredients, and from
Motions to the Forces producing them. . . And the Synthesis consists in assuming the
Causes discover’d, and established as Principles, and by them explaining the Phænomena
proceeding from them, and proving the Explanations ([26], Query 31).

Note here that Descartes, and others, had a similarly named distinction but applied it in its
standard domain of logic and mathematics. Newton’s use of the notions in the context of material
constitution presumably harks back to the alchemical tradition in which Newton was very well versed.

Let us call this still ongoing attempt to understand reality in terms of a construction out of
independent components the Parts Project. Rooted in common experience of the material world,
after the 17th century, science or, as it was then known, natural philosophy, and most especially what
became physics and chemistry, was charged with completely vindicating the commonsense vision that
the material world has a part–whole structure. The initial, seemingly crystal clear conception of pure
mechanism slowly gave way to a picture which permitted interactions governed by novel forces. In the
19th century, fields were added to the ontology of interacting particles. However, the electromagnetic
field had material sources and, initially, a special material substrate in which it inhered. Recall that
Maxwell devoted considerable energy to developing mechanical models of the electromagnetic field
(see [27], pp. 451 ff.; for discussion of Maxwell’s “ontological intent” with regard to these models,
see [28], pp. 55 ff.). As for the ether, Maxwell wrote that “there can be no doubt” about the existence of
the “luminiferous aether” whose properties “have been found to be precisely those required to explain
electromagnetic phenomena” [29]. The Parts Project assimilated these changes without difficulty.

The Parts Project is arguably humanity’s most successful intellectual endeavour. Its effect
on the material conditions of life is undeniable, and its associated physicalist metaphysics of an
intelligible—albeit rather aloof, cold and comfortless—picture of reality is both comprehensive and
possesses a still growing cultural influence.

But there is a spectre haunting this history of success. Leaving aside the instrumental and
technological accomplishments, the metaphysical dream behind the Parts Project was exploded with
the birth of QM. One can find many, often astonished, expressions of this:

. . . a particle certainly is. . . not a durable little thing with individuality ([30], p. 241);

the historical idea. . . that the material world is. . . structured by some kind of interacting
“elementary systems” is in sharp contradiction [with] quantum mechanics ([31], p. 88);

quantum phenomena require us to think in a radical new way, a way in which we will have
to ultimately give up both the notion of particles and fields ([32], p. 116).
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David Bohm himself expressed the collapse of the Parts Project in strong terms that prefigured his
favoured replacement metaphysics:

[The] entire universe must, on a very accurate level, be regarded as a single indivisible
unit in which separate parts appear as idealizations permissible only on a classical level of
accuracy of description ([33], p. 167).

Given our discussion of the nature of metaphysical questions above, it is clear that the problem
of interpreting QM is a metaphysical problem. This in part explains the reluctance and even distaste
some physicists, notoriously, for example, Richard Feynman, have about the interpretation project.
However, one cannot really avoid the metaphysical side of things since it forms a kind of backdrop or
implicit viewpoint that conditions thought.

The literature on the interpretation of QM is truly vast and comes with a corresponding
proliferation of interpretations (Wikipedia currently lists 18). Some interpretations do indeed posit an
in principle empirically detectable change in QM (e.g., dynamic collapse theories). We have to say “in
principle” because these new theories must duplicate the predictive successes of standard QM, and
these are so numerous and so rigorous that alternative theories must put any empirical divergence
from QM in hard to reach corners of experimental search space. However, many interpretations do not
imply any distinct empirical predictions and can be regarded as providing relatively pure metaphysical
pictures of the world which their proponents take to be the deep lesson of QM.

Far from an attempt to return to something like a classical mechanistic world view of independent
interacting particles, Bohm’s interpretation is philosophically extremely radical. Three key features of
Bohm’s view are especially worth emphasizing:

• holism;
• information;
• mind.

In metaphysics, the main claim of holism is that the whole is prior to, or more fundamental than,
the parts (an excellent philosophical discussion and defense of holism can be found in Schaffer [34];
Ismael and Schaffer [35] explore the connection between holism and QM). Thus, it is in absolute
contradiction with the mechanistic picture of the whole being determined by the system of interaction
of a set of independent parts. Instead, the parts are the derivative entities. Bohm sometimes uses the
analogy of mathematical projection from higher to lower dimensional spaces. For example, he writes

we may regard each of the “particles” constituting a system as a projection of a
“higher-dimensional” reality, rather than as a separate particle, existing together with
all the others in a common three-dimensional space ([36], p. 238).

Since each entangled particle is a projection of a single encompassing higher dimensional whole,
it is not surprising that particle properties are correlated. Bohm explicates the Bell correlations in
these terms.

However, holism should not be identified with non-locality. All that non-locality shows is the
possibility of interaction (of some sort) between spatially separated features of reality. One could
imagine a world of particles that are able to “talk” to one another after they have met and established
a “special bond.” But once again we see some signs from QM that favour the holistic interpretation.
It seems that the distant connection supported by entanglement does not permit the communication of
information. This is so even in the case of non-relativistic QM. There is no a priori reason to expect
that; if non-relativistic entanglement had predicted superluminal signaling, this would simply be a
false prediction of a false theory. This is noted in Haroche and Raimond ([4], p. 65): “Non-relativistic
quantum physics is non-local in a way subtle enough not to contradict the inherently relativistic
causality principle.” A holistic view makes better sense of this as a global constraint rather than some
very peculiar and highly tuned property of individual particles.
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Again, the wave function seems to be more fundamental than the particles. Experimenters are
free to choose any measurement basis they want (e.g., position vs. momentum) but cannot as it were
“mix and match.” Both the lack of a privileged set of properties associated with the parts and the
inability to measure “across” bases suggests the priority of the whole. We can so to speak pull out
particulate features if we wish but only as permitted by the nature of the wave function.

There is no doubt that Bohm embraced a holistic interpretation on which the universe
is “undivided”:

Ultimately, the entire universe (with all its “particles,” including those constituting human
beings, their laboratories, observing instruments, etc.) has to be understood as a single
undivided whole, in which analysis into separately and independently existent parts has
no fundamental status ([36], p. 221).

Instead of being the signature of ultimate reality, the world dreamt of by the mechanical
philosophers, which is more or less the world of everyday experience, dissolves into a shadowy
realm: non-fundamental, derivative, and merely approximate. The development of physics has
not proven this, but current theories at least strongly hint if not outright suggest that the holistic
metaphysics is to be favoured.

The embrace of holism leaves open the question: what is the nature of (holistic) reality?
The metaphysical atomism of the mechanical world view had a simple answer to this question, based upon
our intuitive familiarity with objects in the everyday world. According to this view, the world is basically
material and matter itself is ultimately resolved into impenetrable, movable, independent, but capable of
causal interaction, “chunks” (quite analogous to microscopic lego bricks). This “lego world” is essentially
what Richard Feynman was talking about in this famous pronouncement:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one
sentence passed on to the next generations of creatures, what statement would contain
the most information in the fewest words? I believe it is the atomic hypothesis. . . that all
things are made of atoms—little particles that move around in perpetual motion, attracting
each other when they are a little distance apart, but repelling upon being squeezed into
one another ([37], v. 1, p. 2).

As attractive and as useful as this picture of the world is, another deep lesson of QM is that
we do not live in a lego world. The rather disturbing philosophical consequence of this is that
we have lost any positive conception of the nature of matter itself. Matter, or “the physical” in
general, has disappeared into an obscurity masked by our vast knowledge of how “it” structures
experience. The unease this should engender is suppressed by our false impression that ordinary
perception reveals, more or less directly, the nature of matter as hard, massy, and space-filling. Both
the growing mathematical abstractness of physical theory and the realization that whatever lies behind
our experiential contact with the material world is completely unlike the tiny “marbles” envisioned by
traditional atomism leads to the insight that theory reveals only structural or relational properties of
the world. These properties tell us how things interact without telling us what those things are. Mass
is the “resistance” a body has to motion when a given force is applied; force is that which induces
motion in mass. A certain pattern of observable effects is codified by theory, but these patterns tell us
nothing about the intrinsic nature of what lies behind them. In the early to mid twentieth century, this
was frequently noted. In 1927, Bertrand Russell wrote:

Physics is mathematical not because we know so much about the physical world, but
because we know so little: it is only its mathematical properties that we can discover ([38],
p. 125).

and this view is echoed by Arthur Eddington:

Physical science consists of purely structural knowledge, so that we know only the structure
of the universe which it describes ([39], p. 142).
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Note that the general thesis that the structural relations which science is limited to revealing
require an intrinsic base often goes by the name Russellian Monism and is enjoying a current
renaissance of interest (see e.g., [40]).

Now, it may not be part of the job of science to dig down into the intrinsic nature of things;
maybe all it can and should deliver is this kind of structural knowledge, which is, in principle,
within the realm of empirical testability. This leads to the movement in philosophy of science called
structuralism (see [41] for discussion) and its radical offspring, ontological structural realism (see [13]).
The metaphysical project of investigating the what-it-is that is being structured remains. Here, Bohm’s
(with Basil Hiley) notion of “active information” may be important (see [42]). Active information is a
proprietary concept of Bohm (again, along with Hiley). It is supposed to explicate the relation of the
quantum wave function’s “guidance” role to the particles being guided. It must be admitted that the
concept is not without some obscurity. As Bohm and Hiley describe it, it is unclear how exactly active
information operates in the world, specifically whether it is simply another operative causal feature,
and hence another aspect of the relational structure of the empirical world, or whether it is something
deeper which is involved in the structuring itself. I wish to explore the latter interpretation.

Bohm and Hiley characterize active information in terms of the original etymology of the word
“information”: to in-form or to give form to something. This notion goes back at least to Aristotle’s core
distinction between form and matter. In our terms, “form” would refer to the structural features of
the world: the pattern of interaction and system of spatial-temporal relations described in physical
theory. The “matter” in this case is not material—the physical as scientifically characterized, but rather
whatever it is that makes the structural relations investigated by science into concrete reality. We might
say that this “matter” is what “breathes fire into the equations,” to use Stephen Hawking’s famous
phrase ([43], p. 174). Bohm and Hiley hold that active information operates “actively to put form
into something or to imbue something with form” ([42], p. 35). Most of their examples I regard as
merely illustrative (such things as weak radio signals remotely controlling a much stronger flow of
energy) for they would, if interpreted literally, just make active information into another element in
the causal-structural nexus, albeit one with a distinctive role. I think the notion of active information is
more radical than that.

One way to see this is, following Bohm and Hiley, to contrast active information with what
they call “Shannon information.” The latter is what is studied in the theory of communication and
information. It is a paradigm example of how theory reveals only relational structure. Bohm and Hiley
try to point this out with the claim that Shannon information is “for us,” that is, the significance of
information carried in some channel (information theory is in essence an analysis of such channels)
is a matter of interpretation (see [44,45]). There is nothing intrinsic to a string of bits that makes it
about missile guidance as opposed to, say, a Gilligan’s Island rerun. However, active information is, as
Hiley sometimes puts it, “for the particle” (see, e.g., [32]). Such information is intrinsically semantic as
opposed to the merely syntactic or structural information of standard information theory.

Active information is not local and pervades the universe outside of or “behind” space, ready to
“in-form” aspects of the world, in particular those aspects we call particles “to accelerate or decelerate”
according to its overall content (see [42], p. 37). As Bohm and Hiley discuss this, we see again the
ambiguity between positing more structural features of reality versus positing something which
underlies the structure which physics investigates. For example, Bohm and Hiley conjecture that
particles such as electrons (that is, those particles we take to be elementary) have “a complex and
subtle inner structure” ([42], p. 37). Perhaps this structure is simply more of what physics can
investigate, and will reduce to another, albeit deeper, system of causal relations holding between
entities whose nature remains ultimately mysterious. Or it could be that we should interpret this as
an “inner” nature that underpins the system of physical relations rather than being directly part of it.
Although it cannot be disputed that Bohm and Hiley frequently encourage the former interpretation
of active information, the latter avoids certain basic objections, such as that whether or how active
information can involve energy transfer and the back reaction, or rather the lack of same, on this field
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of information by the in-formed entities (for such worries, see [46]). Regarding the wave function as
embodying information also helps to solve the problem of the very high dimensionality of many body
systems. Normally, configuration space is conceived of as merely a way to describe a complicated
system; however, if we take the wave function ontologically seriously, then we have to grapple with
the mismatch between its extremely high dimensionality and the three dimensions of space found
in experience. Bohm developed the idea that the high dimensionality was an intrinsic feature of a
“pool of [active] information” (though at the time he discussed this in terms of what he called the
“implicate order”) (see [36], pp. 236 ff.). This seems plausible insofar as information is inherently
multidimensional, with no intuitive constraint to merely three dimensions. This is evident even within
the realm of Shannon information, where information is quantified in terms of bits, each capable of
two states. A system or pool of information of n bits is then organized in a space of n dimensions and
the information state is a point in this space. The analogy with configuration space is clear, but in the
case of information there is no pre-existing intuitive constraint limiting the space to three dimensions.
Of course, as we have seen, Bohm did not think that Shannon information was anything like his
active information. However, it is no less clear that a pool of intrinsically semantic information would
also have an organizational structure of high dimensionality. Bohm thought that, if we regarded the
quantum wave function as fundamentally informational, its high dimensionality might seem less
mysteriously connected to the world of experience.

Seeing the universe as based upon an underlying field of information might also help with the
so-called problem of “empty branches.” This is the worry that, although the wave function evolves
throughout its space, the particles are restricted to certain regions (there are no genuine superpositions
of particles in Bohm’s view). This can seem a rather arbitrary imposition of reality on a mere portion
of the world as described by the wave function. As David Deutsch put it, “pilot-wave theories are
parallel-universes theories in a state of chronic denial” ([47], p. 225).

But this misunderstands the nature of the particles within Bohm’s metaphysics. Particles are
abstractions of the holistic reality or can be regarded as projections from the higher dimensional
underlying reality where we find active information. They are not to be thought of as privileged
markers of what is physically real as opposed to the ghostly empty branches of the universal wave
function. Of course, thinking in terms of particles can be useful, perhaps even indispensable. As Bohm
puts it:

Under the ordinary conditions of our experience, these projections will be close enough
to independence so that it will be a good approximation to treat them in the way that
we usually do, as a set of separately existing particles all in the same three-dimensional
space. ([36], p. 239).

If the introduction of this new sort of intrinsically semantic information into the heart of a
world hypothesized to be fundamentally holistic was not strange enough, the final aspect of Bohm’s
metaphysical interpretation of QM is more peculiar still. We can approach—gingerly—this feature of
Bohm’s philosophy by asking if we are familiar with any source of intrinsic semantic information?
Information is everywhere, but sources of information that do not require interpretation are rare.
The need for interpretation is of course the clue we need. Mental states are the terminus of interpretation
and seem to be the only carriers of information which is intrinsically semantic. This suggests a possible
connection between active information and mentality. Bohm did indeed try to forge such a connection,
pointing the way to an unorthodox solution to the mind–body problem.

At a very general level, Bohm endorsed a vision that connects an underlying reality (active
information) with mind:

. . . reality can be considered as in essence a set of forms in an underlying universal
movement or process. . . Thus, the way could be opened for a world view in which
consciousness and reality would not be fragmented from each other ([36], p. xiv).
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More directly, Bohm suggested that “the particles of physics have certain primitive mind-like
qualities” ([48], p. 272). We must always recall that for Bohm “particles” are not anything like tiny,
individual entities. In the quoted philosophical article, he is writing to be understood by a wider and
non-scientific, or at least non-physicist, audience. This audacious proposal integrates well with the
metaphysical viewpoint we have been developing: mentality possesses the intrinsic semantics needed
for active information and active information’s non-local universal presence provides support for the
doctrine of holism.

The idea that mental features are a fundamental and ubiquitous feature of the world is the
ancient doctrine of panpsychism. It has seen a remarkable revival in recent philosophical work
(see, e.g., [49–52]). The general metaphysical outlook that places the mental as the intrinsic ground of
the structural relations studied by science provides a viewpoint that integrates mind and the physical
world, which leaves the physical world causally complete, avoiding outside influences distorting the
laws of nature, but nonetheless provides a role for mind in the world. We can see Bohm as a kind
of pioneer for this rebirth (The Bohmian approach to the mind–body problem and panpsychism is
explored in depth in [53]; I have tried to explore the connection to Russellian Monism in [54]).

I will conclude with one more puzzle. The most intractable aspect of the mind–body problem is the
problem of understanding consciousness. Although the identification of mentality with consciousness
was philosophical orthodoxy for centuries, in modern times it has been generally accepted that
mentality does not automatically imply consciousness. Bohm would seem to accept this. After the
above quoted endorsement of the mentality of fundamental physical entities, he quickly goes on to
add that, “of course, they do not have consciousness” ([48], p. 272).

This raises a question that has almost as many answers as there are those who ask it: what is
consciousness? We can to some extent cut the complexity of this question by focusing on two basic
conceptions of consciousness, call them the “thick” and the “thin” conceptions of consciousness.
The thick conception is one that sees consciousness as bound up with self-awareness, or a reflective
appreciation of our own mental lives and a palpable sense of knowing that one has awareness. Such a
conception of consciousness is not uncommon and has a distinguished pedigree going back at least to
Aristotle, who arguably equated consciousness with “awareness of awareness” (see [55]) and Leibniz
who defined consciousness as “reflective knowledge of this [i.e., perceptual] inner state” (see [56]).
There is evidence that Bohm too subscribed to a thick conception of consciousness. For example, he
characterizes “conscious awareness” in terms of “attention, sensitivity to incoherence, all sorts of subtle
feeling and thoughts and creative imagination as well as much more” ([42], p. 300). It would indeed
be strange to assign all these mental functions to the lowly electron!

But there is also a thin conception of consciousness. Most think that animals can feel things
such as pain and pleasure, though there is much disagreement about how far bare sentience is
spread throughout nature. Nonetheless, it seems clear that primitive feelings occur without such
higher functions as self-reflection or creative imagination. But feeling pain is a kind of consciousness.
This thin conception is what Thomas Nagel [57] was trying to get at when he pointed out that there is
“something it is like” to be an experiencing creature (famously, a bat). This basic sort of consciousness is
the essence of the difficulty we have integrating consciousness into a physicalist metaphysics, because
how could subjective experience arise from entirely non-experiential constituents? This is in essence
David Chalmers’ famous “hard problem of consciousness” (see [58]). Given a world of physical entities
entirely lacking any subjective aspect, how could the intrinsic subjectivity of conscious experience ever
arise in the world?

The seeming intractability of the problem of consciousness suggests that it is not a phenomena
amenable to direct scientific understanding. We can investigate the links between consciousness and
physical processes, most especially of course those of the brain (though we do not know whether
non-neural substrates, such as make up digital computers, are possible). However, these linkages will
not reveal what consciousness is or how it arises. Bohm’s view offers a novel explanation for both the
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elusiveness of consciousness when examined from the ordinary scientific standpoint and offers a place
for consciousness within the natural world.

It seems fairly easy to imagine that basic sentience comes in degrees of complexity, ranging
down to extremely simple forms that would be little more than the merest spark of feeling. Although
intellectually challenging and, to many, intuitively implausible, it is not so hard to assign such forms
to the fundamental physical entities. This will be the basic case of intrinsic semantically significant
active information. Presumably then, more complex forms of consciousness will emerge via some
process of increasing physical complexity of structure. Bohm and Hiley have some remarks along
these line in ([42], pp. 381 ff.). How exactly this kind of “mental chemistry” would work is of course
mysterious, but the idea is not incoherent. If we take on board a thin conception of consciousness, we
can perhaps equate it with the primitive mind-like qualities, which Bohm assigned to the foundation
of the world. We would then have the outline of a complete, and anti-reductionist, solution to the
mind–body problem.

In the end, Bohm’s metaphysics is about as far from that of the Newtonian classical metaphysical
picture of the world as one could get. It is highly speculative and audacious. However, it appears to
hold the promise of a new view of nature that integrates consciousness into the world, which science
studies in a way that does not presume to dictate how science ought to proceed, nor does it suggest
that mind or consciousness in any way “interferes” with natural law. At the same time, the view
does not attempt to reduce or eliminate consciousness but rather offers it a place in the world as an
irreducible fundamental feature of it. Overall, it is an inspiring and even exhilarating combination of
philosophical and scientific metaphysics.
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Abstract: The claim of Kocsis et al. to have experimentally determined “photon trajectories” calls
for a re-examination of the meaning of “quantum trajectories”. We will review the arguments that
have been assumed to have established that a trajectory has no meaning in the context of quantum
mechanics. We show that the conclusion that the Bohm trajectories should be called “surreal” because
they are at “variance with the actual observed track” of a particle is wrong as it is based on a
false argument. We also present the results of a numerical investigation of a double Stern-Gerlach
experiment which shows clearly the role of the spin within the Bohm formalism and discuss situations
where the appearance of the quantum potential is open to direct experimental exploration.

Keywords: Stern-Gerlach; trajectories; spin

1. Introduction

The recent claims to have observed “photon trajectories” [1–3] calls for a re-examination of what
we precisely mean by a “particle trajectory” in the quantum domain. Mahler et al. [2] applied the Bohm
approach [4] based on the non-relativistic Schrödinger equation to interpret their results, claiming
their empirical evidence supported this approach producing “trajectories” remarkably similar to those
presented in Philippidis, Dewdney and Hiley [5]. However, the Schrödinger equation cannot be
applied to photons because photons have zero rest mass and are relativistic “particles” which must be
treated differently. In fact details of how to treat photons and the electromagnetic field in the same spirit
as the non-relativistic theory have already been given in Bohm [6], Bohm, Hiley and Kaloyerou [7],
Holland [8] and Kaloyrou [9], but this work seems to have been ignored. Flack and Hiley [10] have
re-examined the results of the experiment of Kocsis et al. [1] in the light of this electromagnetic
field approach and have reached the conclusion that these experimentally constructed flow lines
can be explained in terms of the momentum components of the energy-momentum tensor of the
electromagnetic field. What is being measured is the weak value of the Poynting vector and not the
classical Poynting vector suggested in Bliokh et al. [11].

This leaves open the question of the status of the Bohm trajectories calculated from the
non-relativistic Schrödinger equation [4,5] for particles with finite rest mass. The validity of the
notion of a quantum particle trajectory is certainly controversial. The established view has been
unambiguously defined by Landau and Lifshitz [12]:—“In quantum mechanics there is no such
concept as the path of a particle”. This position was not arrived at without an extensive discussion
going back to the early debates of Bohr and Einstein [13], the pioneering work of Heisenberg [14] and
many others [15]. We will not repeat these arguments here.

In contrast to the accepted position, Bohm showed how it was possible to define mathematically the
notion of a local momentum, p(r, t) = ∇S(r, t), where S(r, t) is the phase of the wavefunction.
From this definition it is possible to calculate flow-lines which have been interpreted as ‘particle
trajectories’ [5]. To support this theory, Bohm [4] showed that under polar decomposition of the wave
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function, the real part of the Schrödinger equation appears as a deformed Hamilton-Jacobi equation,
an equation that had originally been exploited by Madelung [16] and by de Broglie [17].

Initially this simplistic approach was strongly rejected as it seemed in direct contradiction to the
arguments that had established the standard interpretation, even though the approach was based
on the Schrödinger equation itself with no added new mathematical structures. However, recently
this approach has received considerable mathematical support from the extensive work that has been
ongoing in the literature exploring the deep relation between classical mechanics and the quantum
formalism which has evolved from a field called “pseudo-differential calculus”. Specific relevance of
this work to physics can be found in de Gosson [18] and the references found therein.

In this paper we want to examine one specific criticism that has been made against the notion
of a “quantum trajectory”, namely the one emanating from the work of Englert et al. [19] (ESSW).
They conclude, “the Bohm trajectory is here macroscopically at variance with the actual, that is:
observed track. Tersely: Bohm trajectories are not realistic, they are surreal”. A similar strong criticism
was voiced in Scully [20] who added that these trajectories were “at variance with common sense”.
However the claim of an “observed track" in the above quotation should arouse suspicion coming
from authors who claim to defend the standard interpretation as outlined in Landau and Lifshitz [12].

The first part of the ESSW argument involved what they called the ‘standard analysis’ of a
gedanken experiment consisting of several Stern-Gerlach magnets, an experiment that is discussed in
Feynman [21]. It is this part of the argument that we examine in this paper. We show that they arrive at
the wrong conclusion because they have not carried through the analysis correctly. Although Hiley [22]
and Hiley and Callaghan [23] have presented a detailed criticism of this topic before in a different
context, the point that we make in this paper is new. The standard use of quantum mechanics itself
shows that what ESSW call the “macroscopically observed track” is identical to what has been called
the “Bohm trajectory”. We support our arguments with detailed simulations of potential experiments
that are being planned at present with our group at UCL.

2. Re-Examination of the Analysis of ESSW

2.1. General Results Using Wave Packets

The ESSW paper [19] contains an error in their analysis of the Stern-Gerlach experiment as shown
in Figure 1 which is similar to the set-up shown in Figure 4 appearing in ESSW [19]. It depicts the
tracks of spin one-half particles entering two Stern-Gerlach (SG) magnets. The particles enter along
the y-axis with their spins initially pointing along this axis. The orientation of the magnetic field in
each SG magnet is as shown in the figure, the second SG magnet being twice the length of the first.

Figure 1. Sketch of Particle Tracks Presented in ESSW.
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On entering the first magnet, the wave packet begins to split into two wave packets which move
apart in the magnetic field. The packet, ψ+, moves in the +z direction while the other, ψ−, moves in
the −z direction. Thus the ψ+ packet follows the upper track, while the ψ− packet follows the lower
track. Note here it is the wave packet we are discussing, not the particle.

To account for the z-motion of the packets, we use standard quantum mechanics as in ESSW [19],
where the spin-dependent Hamiltonian is

H =
1

2m
P2 + E(t)σz − F(t)zσz,

where E(t)σz is the magnetic energy at z = 0 and F(t)zσz is the energy due to the inhomogeneous field.
The two components of the wave function are initially chosen to be

ψ+(z, 0) = ψ−(z, 0) = (2π)−1/4(2δz0)
−1/2 exp

[
−

(
z

2δz0

)2
]

,

where δz0 is the initial spread in z which is assumed small compared with the eventual maximum
separation of the two beams.

At a later time, the equations of motion of the two wave packets are

ψ±(z, t) = A(t) exp
[
−B(t)[z∓ Δz]2 ± i

h̄
[zΔp +

h̄
2

Φ(t)]
]

,

where A(t) = (2π)−1/4
[
2

(
δz0 + i h̄t

2mδz0

)]−1/2
and B(t) = 1

4δz0(δz0+
ih̄t

2mδz0
)
. In arriving at this expression

we have used the impulse approximation as presented in Bohm [24]. Here Δp(t) =
∫

0
tdt′F(t′) is

the momentum transferred to the “up” wave packet. The actual magnitude is not relevant to our
discussion; the interested reader is referred to the original ESSW paper for these details. The magnitude
of Φ(t) = 2/h̄

∫
0

tdt′E(t′) is again not relevant to our argument.
Since no measurement has been made and the two beams are still coherent, the wave function

after it has traversed the magnet is written in the form

|Ψ〉 = |ψ+〉|+ z〉+ |ψ−〉| − z〉. (1)

This gives the final probability density as

ρ(z, t) = |ψ+(z, t)|2 + |ψ−(z, t)|2,

showing that there is no interference as the wave packets no longer overlap.
The z-component of the current is given by

j(z, t) =
h̄

2im

[
Ψ∗

∂

∂z
Ψ−Ψ

∂

∂z
Ψ∗

]
(2)

=
h̄
m

[
(ψ∗+ψ+ + ψ∗−ψ−)C(t)z + (ψ∗+ψ+ − ψ∗−ψ−)

(
C(t)Δz +

Δp
h̄

)]
where C(t) = −h̄t/[2m((δz0)

4 + (h̄t/2m)2)]. Note that the probability density is symmetric about the
z = 0 plane, while (ψ∗+ψ+ − ψ∗−ψ−) is anti-symmetric, showing that the probability current is therefore
antisymmetric, therefore,

ρ(z, t) = ρ(−z, t) with j(z, t) = −j(−z, t). (3)

Also, as (ψ∗+ψ+ − ψ∗−ψ−) = 0 on the z = 0 plane, j(z, t) = 0 at z = 0. Until this stage we agree
totally with the calculations of ESSW using standard quantum mechanics based on conventional wave
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packet calculations, but it should be noted that this argument only holds when the incident spin is in
the y-direction as in the ESSW thought experiment. Particle trajectories have not been discussed so far.

2.2. What Can Be Said about the Behaviour of Individual Particles?

Now we turn to consider what can be inferred about the behaviour of the individual particles,
if anything. To answer this question let us return to Landau and Lifshitz [25] who argue that although
we cannot talk about a precise particle trajectory, we can talk about the probability of finding a particle
in a volume ΔV, provided the volume is large enough so that we avoid any problems associated with
the uncertainty principle. Particles will flow into and out of the volume by crossing the boundary of
the small volume. In this process we must ensure that probability is conserved.

To see how this works in detail, let us write the well-known conservation of probability equation
in integral form. Thus

d
dt

∫
|Ψ|2dV = −

∫
∇.jdV = −

∮
jdΣ (4)

where at the last stage we have used Stokes’ theorem. Here j is the probability current density used
to ensure probability conservation. The integral of this current over the surface Σ is the probability
that a particle will cross the surface in unit time. By considering a series of connected volumes we
can construct what can be regarded as a “macroscopic particle track”. Mott [26] has given a deeper
analysis of this process.

Let us now apply this analysis to the situation shown in Figure 1. Construct a surface Σ comprising
the z = 0 plane and a surface enclosing the upper half of the figure so as to include the upper parts of
the magnet. Since the current density is zero everywhere on the z = 0 plane, no particles can cross
this plane. Thus the particles that arrive in the upper-half of the experimental setup must remain
in the upper-half and can never cross the z = 0 plane as long as the wave packets remain coherent.
This clearly shows that the continuation of the trajectories sketched in Figure 4 of the ESSW paper
(as in Figure 1 here) is not correct.

In Figure 5 of their paper, ESSW show more explicitly the spin directions together with a sketch of
two Bohm trajectories. This shows that their spin wave packets cross the z = 0 axis whereas the Bohm
trajectories do not. ESSW take this to mean that at first, part of the Bohm trajectories follow one of the
wave packets and then, after their spin wave packets cross this axis, the trajectories follow the other
wave packet. We will show in Section 4.3 the behaviour of their wave packets is not correct because
they have not included spin correctly into the Bohm model.

3. The Bohm Approach When Spin Is Included

To give an account of the behaviour of a particle with spin in the non-relativistic limit, we must
widen the scope of the Bohm approach. An extended model for a spin-half particle based on the
Pauli equation has already been presented in Bohm, Schiller and Tiomno (BST) [27]. Full details
of this model have also been discussed in a series of papers by Dewdney et al. [28–31] and by
Holland [32]. This simple model has been applied to neutron diffraction and a single Stern-Gerlach
magnet, the results being reported in [29,30]. It should be noted that none of this work is referred
to in the ESSW paper and yet this is clearly significant as the Stern-Gerlach magnets operate on the
magnetic moments of the particles.

If they had been aware of this work they would not have made the statement that in the Bohm
theory a particle has a position and nothing else. In the BST extension, not only do we have position,
but also the orientation of the spin vector. Here the Euler angles (θ, φ, ψ) are used to specify the spin
direction. This is essentially the precursor of the flag picture of the spinor presented in Penrose and
Rindler [33]. Bell [34] has a simpler model which was also based on the three components of the
spin vector. A more general approach using Clifford algebras in which the Pauli spin matrices play a
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fundamental role has been presented in Hiley and Callaghan [35]. This approach shows how the BST
model emerges as a particular representation using Euler angles.

3.1. Spin and the Use of the Pauli Equation

We start with the Pauli equation

ih̄
∂ξ

∂t
= Hξ, (5)

where ξ is the two-component spinor which we write in the form

ξ = Rei(ψ/2)

(
cos(θ/2)ei(φ/2)

i sin(θ/2)e−i(φ/2)

)
. (6)

Here (θ, φ, ψ) are the three Euler angles.
The Hamiltonian H is then written in the form

H = − h̄2

2m

(
∇− ie

2m
A

)2
+ μσ.B + V, (7)

where μ is the magnetic moment of the particle.
The original physical idea here was to assume the particle is a spinning object whose orientation

is specified by the three Euler angles (θ, φ, ψ). The probability of the particle being at a given position,
(r, t), is ρ(r, t) = R2(r, t) = |ξ(r, t)|2. This means the properties of the Pauli particle are specified
by four real numbers (ρ, θ, φ, ψ) given at the point (r, t). The time evolution of these parameters is
determined by the Pauli Equation (5) as we will now show.

It is more convenient to rewrite the wave function in the form

ξ(r, t) =

⎛⎝R+ei S+
h̄

R−ei S−
h̄

⎞⎠ ,

where

θ = 2 tan−1 R−
R+

; ψ =
S+ + S−

h̄
− π/2; φ =

S+ − S−
h̄

+ π/2. (8)

To find the velocity of the particle, let us first write the quantity ξ†∇ξ in terms of the Euler angles,

ξ†∇ξ = R∇R + i
2 R2∇ψ + i

2 cos θR2∇φ.

Then following Hiley [36] we can define a complex local velocity

v = vRe + ivIm =
−ih̄
m

ξ†∇ξ

ξ†ξ

where the probability density is given by R2 = ξ†ξ.
The real part of the local velocity is

vRe =
h̄

2m
ẑ(∇ψ + cos θ∇φ) (9)
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which replaces v(r, t) = ∇S(r, t)/m defined for the spin-less particle. The imaginary part, which was
not discussed by Bohm in his original paper (but see Bohm and Hiley [37]) is called the “osmotic
velocity” and has the form

vIm = − ih̄
m

ẑ
[∇R

R

]
. (10)

We will now use Equations (9) and (10) to simulate the detailed behaviour of the particles and
their spin orientations as they traverse the set-up illustrated in Figure 1.

4. Detailed Calculation of the Trajectories

4.1. One Stern-Gerlach Magnet

We begin by simulating the behaviour of the particles having passed through a single
Stern-Gerlach magnet. For simplicity we use the impulse approximation given in Bohm [24] to
analyse the evolution of a wave packet as it leaves the magnet (A full treatment using Feynman
propagators is being prepared by Hiley and Callaghan. This allows us to calculate trajectories inside
the SG. Preliminary results confirm the results presented here.).

In the Hamiltonian given in Equation (7), we replace B by the field in the SG magnet, which we
write as B ≈ μ(B0 + zB′0), where B′0 is the field gradient inside the magnet and set A and V to zero.

Following Dewdney et al. [30] and Holland [32], we choose the initial wave function to be

ξ0 = ξ+ + ξ− = f (z)(c+u+ + c−u−) = (2π)−1/2
∫

g(k)(c+u+ + c−u−)eikzdk,

where g(k) = (2σ2/π)1/4e−k2σ2
is a normalised Gaussian packet centred at k = 0 in momentum space.

Here u+ and u− are the eigenstates of the spin operator σz. The solution of the Pauli equation at time t
after the particle has left the SG magnetic field is

ξ = (2π)−1/2
∫

dkg(k)
{

c+u+ exp
[

i
(
−Δ + (k− Δ′)z− h̄t

2m
(k− Δ′)2

)]
+c−u− exp

[
i
(

Δ + (k + Δ′)z− h̄t
2m

(k + Δ′)2
)] }

where Δ = μB0Δt/h̄, Δ′ = μ0B′0Δt/h̄ and Δt is the time spent in the field. Carrying out the integral
we find

ξ(z, t) = (2πs2
t )
−1/4

{
c+u+ exp[−(z + ut)2/4σst] exp

[
−i(Δ + (z + 1

2 ut)Δ′)
]

+c−u− exp[−(z− ut)2/4σst] exp
[
i(Δ + (z− 1

2 ut)Δ′)
] }

.
(11)

Here st = σ(1 + ih̄t/2mσ2), and u = h̄Δ′/m. We now write ξ(t) in the form

ξ(z, t) = c+R+eiS+/h̄u+ + c−R−eiS−/h̄u− (12)

where

R± =
(

2πσ2
)−1/4

(1 + h̄2t2/4m2σ4)−1/4 exp

(
−(z± ut)2

4σ2(1 + h̄2t2/4m2σ4)

)
(13)
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and

S±/h̄ = ∓Δ∓ (z± 1
2 ut)Δ′ − 1

2 tan−1(h̄t/2mσ2) +
h̄t(z± ut)2

8mσ4(1 + h̄2t2/4m2σ4)
. (14)

We are now in a position to calculate the local velocities from the specific solution given
by Equation (12). Since the real part of the local velocity is given by Equation (9), namely,
h̄(∇ψ + cos θ∇φ)/2m, we need only evaluate ∂ψ/∂z and ∂φ/∂z since we are only considering the
motion along the z-direction. In order to find these derivatives, and those required for the osmotic
velocity and the quantum potential, we express the parameters (ρ, θ, φ, ψ) in terms of (R+, R−, S+, S−)
using Equations (8), (13) and (14), and obtain,

∂ψ

∂z
=

4h̄tz
8mσ4(h̄2t2/4m2σ4 + 1)

,

∂φ

∂z
= −2Δ′ +

4h̄ut2

8mσ4(h̄2t2/4m2σ4 + 1)
,

∂θ

∂z
= sin θ

ut
σ2(h̄2t2/4m2σ4 + 1)

,

and

1
R

∂R
∂z

= − z + ut cos θ

2σ2(h̄2t2/4m2σ4 + 1)
.

The Bohm velocity given by Equation (9) then becomes

vRe =
h̄ẑ
2m

(
−2Δ′ cos θ +

h̄t[z + ut cos θ]

2mσ4(h̄2t2/4m2σ4 + 1)

)
. (15)

Note here that the second term in the above expression corresponds to the spreading of the wave
packet and contributes little to the overall behaviour. The main effect of the field comes from the
first term Δ′ cos θ, which reveals clearly how the velocities and therefore the trajectories are strongly
affected by the behaviour of the spin vector. This term depends implicitly on (z, t, u) and is responsible
for the splitting of the beam.

The imaginary part or osmotic local velocity given in Equation (10), namely, vIm = −ih̄[∇R/R]/m,
now becomes

vIm =
2h̄
m

ẑ[z + ut cos θ]

σ2(h̄2t2/4m2σ4 + 1)
. (16)

Note there is no explicit dependence on the magnetic field gradient but there is an implicit
dependence through u and cos θ.

These results enable us to calculate specific trajectories and spin vectors for various particle initial
positions and for various values of (c+, c−) should that become necessary. The choice of the latter
determine the initial value of the spin vector direction θ which, in our case was chosen to be along the
y-direction, hence (c+, c−) = 1/

√
2. The results shown in figures below are calculated for parameters

listed in Table 1.
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Table 1. Parameters used in the numerical investigation.

Atom Ag

Mass 1.8× 10−25 Kg
Width of magnets 4 and 8× 10−4 m
Length of magnets 1 and 2× 10−2 m
Velocity of atoms vy = y/t = 500 m/s

Time within magnets Δt = 2 and 4× 10−5 s
Magnetic field strength at centre B0 = 5 Tesla

Magnetic field gradient B′0 = 1000 Tesla/m
Wave packet width σ = 1× 10−4 m
Wave packet speed u = μBB′0Δt/m = 1 m/s

Δ′ = μBB′0Δth̄ = mu/h̄ Δ′ = 1.714× 109 m−1

4.2. Numerical Values for Single Stern-Gerlach Magnet

Integrating Equation (9) will give us the Bohm trajectories. In Figure 2 we show the ensemble of
Bohm trajectories and the spin orientations as they leave the Stern-Gerlach magnet, shown in brown at
the LHS of the figure. The background colours show the probability density, black being the greatest,
while blue is zero.

Figure 2. Trajectories with spin vectors immediately on exiting the Stern-Gerlach (SG) magnet.

The dark background shows how the wave packets diverge along straight lines, as do the
trajectories. Superimposed on the trajectories are the spin orientations.

Notice that, contrary to the conventional view, the atoms do not immediately “jump” into one or
other z-spin eigenstates, rather the spin vectors undergo continuous evolution until they reach their
final z-spin eigenstate. This occurs once the two wave packets ψ+(z, t) and ψ−(z, t) have separated and
have no significant overlap. The upper beam will contain only atoms with spin “up" in the z-direction
while those in the lower beam will all be “down” in the z-direction. Notice also that the rotational
changes occur in a magnetic field-free region . We can also see that the alignment of the spin vector at
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a given y value close to the magnet depends on z, with the spin associated to trajectories closer to
the z = 0 axis rotated least. In Section 4.7 we will see that the cause of these behaviours is a torque
produced by the quantum potential. These results for a single magnet confirm what was already found
in Dewdney et al. [29–31].

Figure 3 shows the effect of the osmotic velocity, which we have represented by arrows. They are
responsible for maintaining the wave packet profile and will be discussed further in Section 4.6.
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Figure 3. The osmotic flow vectors immediately on exiting the SG magnet.

4.3. Two Stern-Gerlach Magnets

Having seen how the atoms behave in a single SG magnet, let us now move on to consider two
SG magnets with opposite field directions as shown in Figure 1. Note here the second SG magnet is
double the length of the first.

The method is similar to the case of the single magnet, except now we use, as initial wave packet,
the inverse Fourier transform of the wavefunction at the second magnet at time t = t1. We obtain the
real part of the local velocity as

v2Re =
h̄ẑ
2m

⎛⎝⎡⎣−2Δ′2 − 2 Δ′1(
h̄2(t1+t)2

4m2σ4 +1
)

⎤⎦ cos θ

+ h̄(t1+t)

2mσ4
(

h̄2(t1+t)2

4m2σ4 +1
) [z + u2t cos θ]

⎞⎠ (17)

and the osmotic velocity as

v2Im =
h̄ẑ
m

1

2σ2
(

h̄2(t1+t)2

4m2σ4 + 1
) [z + (u1(t1 + t) + u2t) cos θ] (18)
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where t = 0 at the exit of the second magnet. In Figure 4 we have plotted the trajectories together with
the spin orientations as the atoms pass through two SG magnets. The details of the parameters used in
the calculations are again as listed in Table 1. The position of the second magnet is as indicated by the
brown bar between y = 0.1 m and y = 0.12 m.

Figure 4. Spins emerging from two Stern-Gerlach magnets.

There are several features of the ensemble of trajectories that are noteworthy. Firstly, at the exit
of the second magnet, the wave-packets are refocused toward the y-axis until the inner edge of the
packets reaches the axis at y ≈ 0.22 m at which point they diverge again.

Secondly, no trajectories are found to cross the z = 0 plane. This should, in fact, not be surprising
since vRe can also be obtained from j(z, t)/ρ(z, t). This means that the “Bohm trajectories” are identical
to the probability flow lines and, as we have seen, the probability flow lines do not cross the z = 0
plane. Thus there is no experimental difference between the Bohm approach and standard quantum
mechanics at this stage. It could be argued that it is quantum mechanics that is “at variance with
common sense”!

Thirdly, notice once again that the spins do not immediately “jump” into the eigenstates as
assumed by the standard theory. Rather they take a small but finite time to reach the final eigenstate as
discussed above in Section 3.1. Furthermore note that when the beams are refocused close to the z = 0
plane, at about y = 0.22, the spin vectors are rotated so that they all become aligned with the y−axis
before being rotated again until they end up anti-parallel to the direction with which they entered the
second magnet. This rotation is very surprising but is generated by the quantum torque that arises
from the quantum potential as we show in the next section in Equation (21).

Furthermore this is in contradiction with Figure 5 of ESSW where they argue that the Bohm
trajectories are not realistic because in order to get the observed final spin state, their particles must
cross the z = 0 axis. Therefore the present work shows clearly the importance of coupling the spin and
the centre of mass motion in order to obtain a correct and consistent analysis of the problem.

Figure 5 shows the direction of the osmotic velocity in the two SG magnets case. Its behaviour is
again exactly the same as in the one SG magnet case.
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Figure 5. The osmotic velocity superimposed on the trajectories for two Stern-Gerlach magnets.

To return the packet to its original state with all the spins pointing in the y-direction, we have
to add a third magnet as indicated in the original diagram in Feynman et al. [38]. Thus the Bohm
approach gives a complete account of the average behaviour of the individual quantum processes.

4.4. The Appearance of the Quantum Torque

Now let us show the source of the quantum torque. We start by examining the real part of the
Pauli Equation (5) under polar decomposition of the wave function, which can be written in the form

1
2 h̄

(
∂ψ

∂t
+ cos θ

∂φ

∂t

)
+ 1

2 mv2 + QP +
2μ

h̄
σ.s + V = 0. (19)

Here once again we see, as in the case of the Schrödinger equation, an extra energy term, QP,
the quantum potential energy, appears. In the present case QP takes the form

QP = −(h̄2∇2R)/2mR− h̄2

8m
[(∇θ)2 + sin2 θ(∇φ)2]. (20)

The first term will be recognised as the quantum potential found in the Schrödinger equation.
The second term determines the evolution of the spin vector which is given by

s = 1
2 h̄ξ†σξ = 1

2 (sin θ sin φ, sin θ cos φ, cos θ).

The equation of motion for the spin vector s, is then found to be

ds
dt

= T − 2μ

h̄
(s × B). (21)

Here B is an external magnetic field and

T = (mρ)−1s×∑
i

∂

∂xi

(
ρ

∂s
∂xi

)
. (22)

It is the quantum torque, T , that acts on the individual atoms, rotating their spin vectors and the
flag plane.
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4.5. Detailed Calculation of the Quantum Potential

To understand better the role played by the quantum potential, let us examine in more detail its
mathematical structure as shown in Equation (20). We restrict our analysis to the case of a single magnet.
As the quantum Hamilton-Jacobi Equation (19) is an equation that conserves energy, the appearance of
Q implies that some of the kinetic energy of the particle is transferred to the quantum potential energy
Q. As we see from Equation (20), the quantum potential energy has two components

Qtrans = −
h̄2∇2R
2mR

and Qspin =
h̄2

8m
[(∇θ)2 + sin2 θ(∇φ)2].

We will examine the two terms independently. First consider Qtrans. Since the particle is moving
in one-dimension

∇2R → ∂2R
∂z2 = − 2

bd

(
−2R(z + ut cos θ)2

bd
+ R

(
1− 4u2t2

bd

)
sin2 θ

)
,

where we have written

b =

(
h̄2t2

4m2σ4 + 1

)
and d = 4σ2.

Then

Qtrans = −
h̄2∇2R
2mR

=
h̄2

bdm

(
− 2

bd
[(z + ut cos θ)2 + 2u2t2 sin2 θ] + 1

)
.

Now we turn to evaluate the spin part of the quantum potential, Qspin, where we need to evaluate

∇φ = −2Δ′ +
4h̄ut2

8mbσ4 and ∇θ = sin θ
ut

bσ2 .

This gives

Qspin =
h̄2 sin2 θ

8bm

(
u2t2

σ4 − 2Δ′
h̄ut2

2mσ
+ 4Δ′2

(
h̄2t2

4m2σ4 + 1

))
.

The expression for the total quantum potential, Q = Qtrans + Qspin is rather complex so it will
be helpful if we can make an approximation without significantly altering the final result. This can
be done by noticing the magnitude of b =

(
h̄2t2

4m2σ4 + 1
)
≈ 1. This means that we are assuming the

wave packet does not spread significantly during the flight times considered. We arrive at the final
expression for the total quantum potential:

Q ≈ h̄2

mσ

(
− 2

mσ4 [(z + ut cos θ)2 + 2u2t2 sin2 θ] + 1
)

+
h̄2 sin2 θ

8m

(
u2t2

σ4 − 2Δ′
h̄ut2

mσ4 + 4Δ′2
)

.

4.6. Numerical Details: Quantum Potential Single Stern-Gerlach Magnet

In Figure 6 below we plot the transverse quantum potential Qtrans and the spin quantum potential,
Qspin for the single SG magnet. The end of the SG magnet is again along the z-axis at y = 0, with the
atoms flowing along the y-axis out of the page.
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Figure 6. Transverse (left) and spin (right) quantum potential at exit of a single SG magnet.

The atoms initially experience the first part of the quantum potential where the beam begins to
split into two as shown in Figure 2. Both quantum potentials split symmetrically into two parts about
the y-axis. The two “domes” of Qtrans, shown in the left hand of the figure, cover each beam as they
separate. The width of each dome characterises the spreading wave packet as it evolves in time. Also,
when compared to the osmotic velocities shown in Figure 3, we can see how these velocities are related
to the gradient of Qtrans. The trajectories are seen to follow paths of constant gradient and the osmotic
velocities are constant along the trajectories in Figure 3. Furthermore, those trajectories in the wings
of the wave packets experience a more steep gradient and the osmotic velocities are indeed found to
be larger there. At the maximum of the packet, the osmotic velocity is zero. An interpretation of the
Qtrans would therefore be that it gives rise to a force, which is anti-parallel to the osmotic velocity and
restricts the spreading of the wave packet.

The spin part of the quantum potential Qspin is shown in the right hand of Figure 6. The upward
slope produces the quantum torque that rotates the spin vectors of the atoms as the two beams separate.
This rotation continues until the two packets are completely separate. When this happens all the
spins point “up” in the upper beam, while they all point “down” in the lower beam. At this stage the
Qspin → 0 ensuring the atoms remain in their final spin eigenstates. Figure 7 shows the projection of
the Qspin of Figure 6 on the trajectories and spin orientation. Note also that the trajectories close to
the y-axis do not experience the same steepness of Qspin as do those which are off-axis. This explains
why, as remarked earlier, the spin vectors closer to the y-axis take longer to align themselves either up
or down.
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Figure 7. Trajectories with spin vectors overlaid on the spin quantum potential immediately on exiting
a single SG magnet.
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4.7. Numerical Details: Quantum Potential in Two SG Magnet Case

Now let us consider the case when the two Stern-Gerlach magnets are in place. The positions of
the magnets are shown in brown. Recall here that the inhomogeneities in the magnetic fields oppose
each other.

In Figure 8 we show both Qtrans and Qspin for the case of two magnets. The gap in each figure
corresponds to the position of the second magnet. The quantum potential after the second magnet is
similar to that of the single SG magnet as shown in Figure 6. These results give a detailed picture of the
expected evolution of a non-relativistic atom with spin one-half as it goes through both SG magnets.

Figure 8. Qtrans (left) and Qspin (right) quantum potential for a two SG magnets system.

Figure 9 shows the projection of the spin quantum potential superimposed on the trajectories.
Notice that the quantum torque is strongest well outside the second SG magnet in the magnetic
field-free region, producing a 180 degree rotation of the spin vector. It is at this point that the wave
packets begin to interfere strongly. In fact the quantum torque continues to act outside the magnet
until the two wave packets ψ+(z, t) and ψ−(z, t) cease to overlap. Notice once again how the spin
does not immediately ‘jump’ into one of the two spin z-eigenstates, but undergoes a well-defined time
evolution. Such a behaviour would have, perhaps, been welcomed by Schrödinger himself [39].

0.0 0.1 0.2 0.3 0.4 0.5
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Y(m)

Z
(m

m
)

Figure 9. Trajectories with spin vectors overlaid on the spin quantum potential for a two SG
magnet system.
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Once they no longer overlap, each atom remains in one or the other spin eigenstates. Again,
as was the case with the single SG magnet, the spin vectors along the trajectories close to the y-axis,
especially at the point where the two beams are refocused, experience less of the gradient of Qspin.
Thus it is clear that the quantum torque arises from the interference region, implying it is an internal
feature of the overall behaviour, suggesting a kind of dramatic re-structuring of the underlying process.

Bohm was intuitively well aware of this possibility and it was one of the reasons why he
abandoned the view that the atom only had a local, “rock-like” property. He preferred to regard
the atom as a quasi-local region of energy undergoing a new type of process that he described in
more general terms as an “unfolding-enfolding” process, comparing it to a gas near its critical point,
the particle itself constantly forming and dissolving, as in critical opalescence [40,41]. In other words,
the quantum evolution involves an entirely new re-ordering process which should not be regarded as
a particle following a well defined trajectory.

This view of the evolving quantum process becomes even more compelling since Hiley and
Callaghan [42] and Takabayasi [43] have shown that the local momentum and energy are actually
related to the energy-momentum tensor, Tμν, through the relations

ρpj(r, t) = T0j(r, t) and ρE(r, t) = T00(r, t),

a feature of which Schwinger [44] was well aware. The question of which particular trajectory a
specific atom actually takes cannot be answered because the experimenter has no way of choosing or
controlling the initial position of the particle. The final result is also totally independent of the observer.
A detailed discussion of the role of the experimenter in the Bohm approach can be found in Bohm and
Hiley [45,46]. A more recent paper by Flack and Hiley [47] shows how the Bohm trajectories emerge
from an averaging over this deeper process.

We can see from Figure 9, the above simulations predict some interesting structure in near field
behaviour of the atoms after they leave the second SG magnet. This could be experimentally explored
through weak measurements as suggested in [48]. At present, our group [49] is attempting to measure
the weak values of momentum and spin which, if successful, would ultimately enable us to not only
construct these flow lines, but also to measure the time evolution of the angle θ(y, t) of the spin vector.

We are also exploring the possibility of using the techniques we are developing to check the
results shown in Figure 2. At present we are on the edge of what is technically possible and
if we are successful, the experiments will show that the quantum potential energy appearing in
Equation (19) has an observable experimental consequence and therefore cannot be ignored in
analysing quantum phenomena.

5. Conclusions

In this paper we have shown that the differences that are claimed to exist between the standard
approach to quantum mechanics and the Bohm approach do not exist when both are applied correctly.
Indeed it is hard to imagine how there could be any differences in the predicted experimental results
since both approaches use exactly the same mathematical structure. For the type of experiments
considered by ESSW [19], the probability current plays a key role. In both approaches the probability
current is considered as a particle flow, the conventional approach regarding it as a measure of particles
flowing out of a small region, ΔV, of space, whereas the Bohm approach assumes the probability current
arises from the velocities of individual particles through the relation j(r)/ρ(r) = ∇S(r)/m = p(r)/m.
In the Bohm model this is taken as the definition of the local momentum, p(r). Clearly the behaviour
of the probability currents is identical to the local momentum. This is what ESSW failed to recognise.
Notice that this disagreement arises before the addition of any device to measure which path the
particle actually took.

The inclusion of a which-way detector into the discussion merely confuses the issue. Traditionally
it is assumed that any measurement to determine which path a particle actually takes brings about
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the “collapse” of the wave function. Suppose a position measurement is made after the atom has left
the second SG magnet as shown in Figure 1. The wave function (1) will not then be the pure state
but instead will be a mixture which must be described by a density matrix ρ with ρ2 
= ρ. This means
there is no interference between the two wave packets ψ+ and ψ− in which case the particles actually
cross the z = 0 plane as shown in Figure 1. Exactly the same thing happens in the Bohm model as was
discussed in detail in Hiley [22] and Hiley and Callaghan [23]. We will not repeat the argument again
in this paper but refer the interested reader to the original papers. Our conclusion is that the standard
quantum mechanics produces exactly the same behaviour as the Bohmian approach so it cannot be
used to conclude the Bohm trajectories are “surreal”.

Since these earlier objections were raised, an entirely new way of experimentally constructing the
“Bohm particle trajectories” has been developed by Kocsis et al. [1] as discussed in the introduction.
Furthermore in the case of atoms the claim that these are “particle trajectories” has been re-examined
recently by Flack and Hiley [47] who have concluded that the flow lines, as we shall now call them,
are not the trajectories of single atoms but an average momentum flow, the measurements being taken
over many individual particle events. In fact they have shown that they represent an average of the
ensemble of actual individual stochastic Feynman paths.

The calculations we have presented in this paper provide a detailed background to the experiments
of Monachello et al. [49] and Morley et al. [50]. This means that we will not have to rely on theoretical
arguments alone to reach an understanding of the behaviour reported in this paper but we hope to be
able to provide experimental evidence to further clarify the situation.
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Abstract: There has been a recent revival of interest in the notion of a ‘trajectory’ of a quantum
particle. In this paper, we detail the relationship between Dirac’s ideas, Feynman paths and the
Bohm approach. The key to the relationship is the weak value of the momentum which Feynman
calls a transition probability amplitude. With this identification we are able to conclude that a Bohm
‘trajectory’ is the average of an ensemble of actual individual stochastic Feynman paths. This implies
that they can be interpreted as the mean momentum flow of a set of individual quantum processes
and not the path of an individual particle. This enables us to give a clearer account of the experimental
two-slit results of Kocsis et al.

Keywords: Feynman paths; weak values; Bohm theory

1. Introduction

One of the basic tenets of quantum mechanics is that the notion of a particle trajectory has
no meaning. The established view has been unambiguously defined by Landau and Lifshitz [1]:
“In quantum mechanics there is no such concept as the path of a particle”. This position was not
arrived at without an extensive discussion going back to the early debates of Bohr and Einstein [2],
the pioneering work of Heisenberg [3] and many others [4].

Yet Kocsis et al. [5] have experimentally determined an ensemble of what they call ‘photon
trajectories’ for individual photons traversing a two-slit interference experiment. The set of trajectories,
or what we will call flow-lines, they construct is very similar in appearance to the ensemble of Bohmian
trajectories calculated by Philippidis et al. [6]. Mahler et al. [7] have gone further and claimed that
their new experimental results provide evidence in support of Bohmian mechanics. However such a
claim cannot be correct because Bohmian mechanics is based on the Schrödinger equation which holds
only for non-relativistic particles with non-zero rest mass, whereas photons are relativistic, having
zero rest mass.

The flow-lines are calculated from experimentally determined weak values of the momentum
operator, a notion that was introduced originally by Aharonov et al. [8] for the spin operator. When
examined closely, the momentum weak value is the Feynman transition probability amplitude (TPA) [9].
In fact, Schwinger [10] explicitly writes the TPA of the momentum in exactly the same form as the weak
value. Recall that the TPA involving the momentum operator plays a central role in the discussion of
the path integral method, an approach that was inspired by an earlier paper of Dirac [11] who was
interested in developing the notion of a ‘quantum trajectory’.

Weak values are in general complex numbers, as are TPAs. The real part of the momentum
weak value is the local momentum, sometimes known as the Bohm momentum. The imaginary part
turns out to be the osmotic momentum introduced by Nelson [12] in his stochastic derivation of the
Schrödinger equation. In this paper, we will show how the weak value of momentum, Feynman
paths and the Bohm trajectories are related enabling us to give a different meaning to the flow-lines
constructed in experiments of the type carried out by Kocsis et al. [5] and Mahler et al. [7].
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Entropy 2018, 20, 367

Feynman [9] also shows that in his approach the usual expression for the kinetic energy becomes
infinite unless one introduces a small fluctuation in the mass of the particle. We will show that this is
equivalent to introducing the quantum potential, a new quality of energy that appears in the real part
of the Schrödinger equation under polar decomposition of the wave function [13].

2. Dirac’s Notion of a Quantum Trajectory

2.1. Dirac Trajectories

To make the context of our discussion clear, we will begin by drawing attention to an early paper
by Dirac [11] who attempted to generalise the Heisenberg algebraic approach through his unique
bra-ket notation, not as elements in a Hilbert space, but as elements of a non-commutative algebra.
In this approach the operators of the algebra are functions of time. Dirac argued that to get round
the difficulties presented by a non-commutative quantum algebra, strict attention must be paid to the
time-order of the appearance of elements in a sequence of operators.

In the non-relativistic limit, operators at different times always commute. (In this paper, we will,
for simplicity, only consider the non-relativistic domain. Dirac himself shows how the ideas can be
extended to the relativistic domain.) This means that a time ordered sequence of position operators
can be written in the form,

〈xt|xt0〉 =
∫
· · ·

∫
〈xt|xtj〉dxj〈xtj |xtj−1〉 . . . 〈xt2 |xt1〉dx1〈xt1 |xt0〉. (1)

This breaks the TPA, 〈xt|xt0〉, into a sequence of adjacent points, each pair connected by an
infinitesimal TPA. Dirac writes “. . . one can regard this as a trajectory . . . and thus makes quantum
mechanics more closely resemble classical mechanics”.

In order to analyse the sequence in Equation (1) further, Dirac assumed that for a small time
interval Δt = ε, we can write

〈x|x′〉ε = exp[iSε(x, x′)/h̄] (2)

where we will take Sε(x, x′) to be a real function in the first instance. Then Dirac [14] shows that

p′ε(x, x′) = 〈x|P̂′|x′〉ε = ih̄∇x′ 〈x|x′〉ε = −∇x′Sε(x, x′)〈x|x′〉ε (3)

and
pε(x, x′) = 〈x|P̂|x′〉ε = −ih̄∇x〈x|x′〉ε = ∇xSε(x, x′)〈x|x′〉ε. (4)

Here P̂ is the momentum operator. The remarkable similarity of these objects to the canonical
momentum appearing in the classical Hamilton-Jacobi theory should be noted, a fact of which Dirac
was well aware. They are also the canonical momenta appearing in the real part of the Schrödinger
equation under polar decomposition of the wave function exploited by Bohm [13] who identified the
momentum with the gradient of the phase of the wave function.

In an earlier paper, Dirac [11] did not specify how Sε(x, x′) could be determined. It was
Feynman [9] who later identified its relation to the classical Lagrangian L(ẋ, x, t) through the relation

Stt′(x, x′) = Min
∫ t

t′
L(ẋ, x, t)dt. (5)

However, this Lagrangian determines the classical path, so using the exponent of the classical
action seems puzzling. Is there a mathematical explanation for such a choice? The answer is ‘yes’
and is discussed in Guillemin and Sternberg [15]. The essential reason for this lies in the relation
between the symmetry group, in this case the symplectic group, and its covering group. Exploiting
this structure, de Gosson and Hiley [16] have shown in detail how it is possible to mathematically
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‘lift’ classical trajectories onto this covering space. It is from this structure that the wave properties
emerge. The lift is achieved by exponentiating the classical action, namely using exp[iSε(x, x′)]. It is
the existence of this structure that the close relation between the Dirac quantum ‘trajectories’ and the
de Broglie-Bohm ‘trajectories’ first calculated by Philippidis et al. [6] emerges. We will bring out this
relationship in the rest of this paper.

2.2. The Feynman Propagator

Equation (5) allows us to write the propagator in the well known form

K(x, x′) =
∫ x

x′
eiS(x,x′)Dx′

where the integral is taken over all paths connecting x′ to x. We have written Dx′ for dx0
A , . . . ,

dxj−1
A

where (x0, x1, . . . , xj−1) are points on the path and A is the normalising factor introduced by Feynman.
Clearly here S(x, x′) is real.

For a free particle with mass m, we have L = mẋ2/2 and one can show that

Ktt′(x, x′) =
1
A

exp
[

im(x− x′)2

2h̄(t− t′)

]
(6)

where A =
(

2πi(t−t′)
m

)1/2
. With this propagator, Feynman was able to derive the Schrödinger equation

by assuming the underlying paths were continuous and differentiable.
However if we examine the terms 〈x|x′〉ε for ε → 0, we find the curves, although continuous,

are non-differentiable. To show this let us introduce the TPA of a function F(x, t) defined by

〈φt|F|ψt′ 〉S = Limε→0

∫
· · ·

∫
φ∗(x, t)F(x0, x1, . . . , xj)

× exp

[
i
h̄

j−1

∑
k=0

S(xk+1, xk)

]
ψ(x′, t′)Dx(t).

Here D is now written as Dx(t) = dx0
A . . .

dxj−1
A dxj.

These TPAs can be evaluated by using functional derivatives. In fact, the average of the functional
derivative of a function F(x, t) is given by〈

δF
δx(s)

〉
S
= − i

h̄

〈
F

δS
δx(s)

〉
S

(7)

at the point x(s) on the path x(t). In the case of the specific integral

∫
∂F
∂xk

exp[(i/h̄)S(x(t))]Dx(t),

Equation (7) can be written in the form〈
∂F
∂xk

〉
S
= − i

h̄

〈
F

∂S
∂xk

〉
S

.

Feynman notes that the quantities in this expression need not be observables, nevertheless the
equivalence is true [17].
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Let us now consider three adjacent points xk−1, xk, xk+1, each separated by a small time
difference ε, we have

− h̄
i

〈
∂F
∂xk

〉
S
=

〈
F

[
∂S(xk+1, xk)

∂xk
+

∂S(xk, xk−1)

∂xk

]〉
S

.

This equation is correct to zero and first order in ε. If we choose the action for a particle moving
in a potential V, we have

S(x, x′) =
[

m(x− x′)2

2ε

]
− εV(x, x′).

Then at the point xk this gives us

− h̄
i

〈
∂F
∂xk

〉
S
=

〈
F

[
−m

(
xk+1 − xk

ε
− xk − xk−1

ε

)
− ε

∂V
∂xk

(xk)

]〉
.

If F is unity and we divide by ε we get

0 =

〈
1
ε

[
−m

(
xk+1 − xk

ε
− xk − xk−1

ε

)
− ∂V

∂xk
(xk)

]〉
. (8)

If we follow Feynman and call (xk+1 − xk)/ε a ‘velocity’, then this equation gives the ‘average’
over an ensemble of individual velocities. It is the quantum equivalent of Newton’s second law of motion;
the potential V at xk gives rise to a force which changes the incoming momentum m(xk − xk−1)/ε

to the outgoing momentum m(xk+1 − xk)/ε. Notice to order ε, no extra term corresponding to the
quantum potential appears. de Gosson and Hiley [18] have shown in a detailed analysis that this is to
be expected.

These paths are reminiscent of Brownian motion, a characteristic feature of which is the appearance
of two ‘derivatives’ at xk, a ‘forward’ and a ‘backward’ derivative, illustrating the non-differentiable
nature of the path. In this paper, we need not discuss the precise nature of these paths to arrive at
our conclusion. It is sufficient for us to note that the substructure of a quantum process is certainly
not classical. In passing we should also note that the ‘velocities’, being of order (h̄/mε)1/2, diverge as
ε → 0 and therefore, in Feynman’s terms, are not observables.

2.3. TPAs Involving the Momentum

In 1974 Hirschfelder [19,20] introduced a quantity ψ(x, t)−1 p̂ψ(x, t), which he called a
‘sub-observable’ as he could see no way of measuring it directly, although integrating it over the
whole of configuration space gave the measurable expectation value. Using the polar form of the wave
function, ψ(x, t) = R(x, t) exp[iS(x, t)/h̄], this ‘sub-observable’ is the weak value of the momentum
operator which can be written in the form

ψ(x, t)−1 p̂ψ(x, t) =
〈x| p̂|ψ(t)〉
〈x|ψ(t)〉 = m[vB(x, t)− ivO(x, t)], (9)

where explicitly vB(x, t) = ∇S(x, t)/m is the local Bohm velocity and vO(x, t) = ∇R(x, t)/mR(x, t) is
the localising osmotic velocity, originally introduced by Nelson [12] in a stochastic theory. The meaning
of these velocities is discussed in more detail in Bohm and Hiley [21]. Much later Hiley [22] showed
exactly how these expressions emerged directly from the weak value of the momentum operator.
It should be noted that weak values are essentially TPAs of the type considered by Feynman [9] and
Schwinger [23].

In the spirit of Schwinger [10], where he argues that “the quantum dynamical laws will find
their proper expression in terms of the transformation functions” that is TPAs, we can introduce two
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momentum TPAs, 〈x|−→P |ψ(t)〉 and 〈ψ(t)|←−P |x〉 where
−→
P = −ih̄

−→∇ and
←−
P = ih̄

←−∇ . Notice by placing
the arrows over the momentum operators, we are emphasising the distinction between left and right
multiplication and it is this distinction that is equivalent to the forward and backward derivatives.
In fact we may identify

〈X|−→P |ψ(t′)〉 = 〈X|−→P |x′〉ψ(x′, t′) = −i lim
(x′→X)

ψ(X)− ψ(x′)
(X− x′)

with the forward derivative at X, a point that lies between x′ and x.

〈ψ(t)|←−P |X〉 = ψ∗(x, t)〈x|←−P |X〉 = i lim
(X→x)

ψ∗(x)− ψ∗(X)

(x− X)

corresponds to the backward derivative. Note that the words ‘forward’ and ‘backward’ here have
nothing to do with time order.

If we again evaluate these TPAs using ψ = R exp(iS/h̄), we find

1
2

⎡⎣ 〈x|−→̂P |ψ(t)〉
〈x|ψ(t)〉 +

〈ψ(t)|
←−̂
P |x〉

〈ψ(t)|x〉

⎤⎦ = ∇S(x, t) = PB(x, t), (10)

and

1
2i

⎡⎣ 〈x|−→̂P |ψ(t)〉
〈x|ψ(t)〉 − 〈ψ(t)|

←−̂
P |x〉

〈ψ(t)|x〉

⎤⎦ =
∇R(x, t)
R(x, t)

= PO(x, t). (11)

Notice how the sums and differences of the left/right operators produce real values.
We can immediately connect these results with those of Dirac [11] if, in Equations (3) and (4),

we replace the real value of Sε(x, x′) by a complex value which we will write as S′ε(x, x′) = Sε(x, x′)−
i ln Rε(x, x′). In this case, we find

p′ε(x, x′) = −∇x′Sε(x, x′)− i
∇x′Rε(x, x′)

Rε(x, x′)
(12)

and

pε(x, x′) = ∇xSε(x, x′)− i
∇xRε(x, x′)

Rε(x, x′)
. (13)

Notice also the connection with the classical relations obtained in Equations (3) and (4).

2.4. The Relation between Weak Values and TPAs

In the previous two sections, we have shown how TPAs of the form 〈φt|F̂|ψt′ 〉 arise from some
underlying non-differentiable process. The original assumption was that these quantities could not be
investigated experimentally. However starting from a different perspective, the notion of a weak value,
introduced by Aharonov, Albert and Vaidman [8], allows us to experimentally measure these quantities.

A weak value of an operator F̂ is defined by

〈F̂〉w =
〈φt|F̂|ψt′ 〉
〈φt|ψt′ 〉

.

Clearly these weak values are Feynman TPAs. Using the suggestions of Leavens [24] and
Wiseman [25], Kocsis et al. [5] have actually measured the weak value of the transverse momentum in
an optical two-slit experiment and as a result have constructed what they called photon ‘trajectories’.
We refer to their paper to explain the details of how this is done.
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Unfortunately photons cannot be treated as particles that satisfy the Schrödinger equation.
They have zero rest mass and are excitations of the electromagnetic field. Nevertheless this does
not invalidate the notion of a momentum flow line; the question remains “How are we to understand
these flow lines?” Flack and Hiley [26] have shown that if we generalise the Bohm approach to include
the electromagnetic field [27], each flow line emerges as the locus of a weak Poynting vector.

To connect with the non-relativistic approach we are discussing in this paper, we need to use atoms.
Indeed experiments are being developed at UCL to measure weak values of spin and momentum,
〈 p̂〉w, for helium atoms [28] and argon atoms [29] respectively. The experimental details can be found
in these references. In this paper, we will clarify further the relation between the Feynman paths and
weak values.

3. Weak Values Are Weighted TPAs

3.1. Flow Lines Constructed from Weak Values

In quantum mechanics, the uncertainty principle does not allow us to give meaning to the
‘trajectory’ of a single particle so we are left with the question: “How does a particle get from A to B?”.
Rather than taking two points, consider two small volumes, ΔV′(x′) surrounding the point A = x′

and ΔV(x) surrounding B = x. We assume these volumes are initially large enough to avoid problems
with the uncertainty principle.

Now imagine a sequence of particles emanating from ΔV′(x′), each with a different momentum.
Over time we will have a spray of possible momenta emerging from the volume ΔV′(x′), the nature
of this spray depending on the size of ΔV′(x′). Similarly there will be a spray of momenta over time
arriving at the small volume ΔV(x) surrounding the point x.

Better still let us consider a small volume surrounding the midpoint X. At this point there is
a spray arriving and a spray leaving a volume ΔV(X) as shown in Figure 1. To see how the local
momenta behave at the midpoint X, we will use the real part of S′ε(x, x′) defined by

Sε(x, x′) =
m
2
(x− x′)2

ε
. (14)

X

(x',t') (x,t)

Figure 1. Behaviour of the momenta sprays at the midpoint of 〈x, t|x′, t′〉ε.

Let us define a quantity

PX(x, x′) =
∂Sε(x, x′)

∂X
=

∂Sε(X, x′)
∂X

+
∂Sε(x, X)

∂X
, (15)

then using the action (Equation (14)), we find

PX(x, x′) = m
[
(X− x′)

ε
− (x− X)

ε

]
= p′X(x, x′) + pX(x, x′). (16)

Not surprisingly, this is exactly what Feynman [9] is averaging over at the point X, agreeing with
the term between the brace [. . . ].
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What is more important is the relation of Equation (16) to Equation (10) which is the real part of
the weak value of the momentum operator. Thus, the mean momentum of a set of Feynman paths at
X is clearly the real part of this weak value. However, this weak value is just the Bohm momentum.
Thus the Bohm ‘trajectories’ are simply an ensemble of the average of the ensemble of individual
Feynman paths.

To see how this unexpected result also emerges from a different perspective, let us consider
the process in Figure 1 which we regard as an image of an ensemble of actual individual quantum
processes. We are interested in finding the average behaviour of the momentum, PX, at the point X.
However, we have two contributions to consider, one coming from the point x′ and one leaving for
the point x. We must determine the distribution of momenta in each spray to produce a result that
is consistent with the wave function ψ(X) at X. Feynman suggests [9] that we can think of ψ(X)

as ‘information coming from the past’ and ψ∗(X) as ‘potential information appearing in the future’.
This suggests that we can write

lim
x′→X

ψ(x′) =
∫

φ(p′)eip′Xdp′ and lim
X→x

ψ∗(x) =
∫

φ∗(p)e−ipXdp.

The φ(p′) contains information regarding the probability distribution of the incoming momentum
spray, while φ∗(p) contains information about the probability distribution in the outgoing momentum
spray. These wave functions must be such that in the limit ε → 0 they are consistent with the wave
function ψ(X).

Thus, we can define the mean momentum, P(X), at the point X as

ρ(X)P(X) =
∫ ∫

Pφ∗(p)e−ipXφ(p′)eip′Xδ(P− (p′ + p)/2)dPdpdp′ (17)

where ρ(X) is the probability density at X. We have added the restriction δ(P− (p′ + p)/2) since
momentum is conserved at X. We can rewrite Equation (17) and form

ρ(X)P(X) =
1

2π

∫ ∫
Pφ∗(p + θ/2)e−iXθφ(p− θ/2)dθdP

or equivalently taking Fourier transforms

ρ(X)P(X) =
1

2π

∫ ∫
Pψ∗(X− σ/2)e−iPσψ(X + σ/2)dσdP

which means that P(X) is the conditional expectation value of the momentum weighted by the Wigner
function. Equation (17) can be put in the form

ρ(X)P(X) =

(
1
2i

)
[(∂x1 − ∂x2)ψ(x1)ψ(x2)]x1=x2=X (18)

an equation that appears in the Moyal approach [30], which is based on a different non-commutative
algebra. If we evaluate this expression for the wave function written in polar form
ψ(x) = R(x) exp[iS(x)], we find P(X) = ∇S(X) which is identical to the expression for the local
(Bohm) momentum used in the Bohm interpretation.

This then confirms the conclusion we reached above, namely, that the set of Bohm ‘trajectories’ is
an ensemble of the average ensemble of individual paths. Notice, once again, that this gives a very
different picture of the Bohm momentum from the usual one used in Bohmian mechanics [31]. It is
not the momentum of a single ‘particle’ passing the point X, but the mean momentum flow at the point
in question.

This conclusion is supported by the experiments of Kocsis et al. [5]. They construct the flow lines
from an average made over many individual input photons. Thus, the so-called ‘photon’ flow-lines
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are constructed statistically from an ensemble of individual events. As was shown in Flack and
Hiley [26], these flow lines are an average of the momentum flow as described by the weak value of the
Poynting vector. This agrees with what one would expect from standard quantum electrodynamics,
where the notion of a ‘photon trajectory’ has no meaning, but the notion of a ‘momentum flow’ does
have meaning.

Bliokh et al. [32] have presented a beautiful illustration showing the results of a two-slit
interference experiment. Figure 2a shows the real part of the momentum flow lines in the
electromagnetic field, while the imaginary component (osmotic) momentum flow lines are shown in
Figure 2b. It is then clear that we can regard vB(x, t) = pB(x, t)/m as a local velocity, while the
osmotic velocity vO(x, t) = pO(x, t)/m can be regarded as a localising velocity as discussed in
Bohm and Hiley [33]. The osmotic velocity behaves in such a way as to maintain the form of the
probability distribution.

Figure 2. (a) Local field momentum; (b) Localising field momentum.

3.2. Where Is the Quantum Potential?

One of the features that many find ‘mysterious’ [34] is the appearance of the ‘quantum potential’
in the Bohm approach. Is there any trace of it in the Feynman paper [9]? To answer this question,
we must first refer to de Gosson and Hiley [18] where it is shown that this energy term is absent in
quantum processes when taken only to O(Δt = ε) so we must consider terms to O(Δt = ε2).

Feynman shows that the kinetic energy is of O(ε2) when written in the form
K.E. = [(xk+1 − xk)/ε]2, and diverges as ε → 0. Feynman points out that this quantity is not an
observable functional. However, let us now define the kinetic energy to be

K.E.′ =
m
2

(
xk+1 − xk

ε

) (
xk − xk−1

ε

)
.

This function is finite to O(ε) and therefore is an observable functional. Feynman then shows that
if we allow “the mass to change by a small amount to m(1 + δ) for a short time, say ε around tk” we
can obtain the relation

m
2

(
xk+1 − xk

ε

) (
xk − xk−1

ε

)
=

m
2

(
xk+1 − xk

ε

)2
+

h̄
2iε

, (19)

the extra term arising from the normalising function A. Thus, we must add a ‘correction’ term to the
K.E. in order for the total energy to be finite to O(ε2).

This is the forerunner of mass renormalisation used in quantum electrodynamics. In that case the
charged particle is subjected to electromagnetic vacuum fluctuations. The particle we are considering
here is not charged and so the fluctuation must arise from a different source, but however it arises,
it changes the TPA by δ.
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Later in the same paper, Feynman shows that any random fluctuation in the phase function
will produce the same effect. A random fluctuation at the point xk implies we must replace
S(xk+1, tk+1; xk, tk) by Sδ(xk+1, tk+1; xk, tk − δ). Thus, to the first order in δ we have

〈ξ|1|ψ〉S − 〈ξ|1|ψ〉Sδ
=

iδ
h̄
〈ξ|Hk|ψ〉S

where Hk is the Hamiltonian functional

Hk = −
∂S(xk+1, tk+1; xk, tk)

∂tk+1
+

h̄
2i(tk+1 − tk)

. (20)

Apart from the minus sign, the last term is identical to the last term in Equation (19).
Thus Feynman required extra energy to appear from somewhere. A more detailed discussion of
this feature appears in Feynman and Hibbs [35]. The Bohm approach indicates that some ‘extra’ energy
appears in the form of the quantum potential energy at the expense of the kinetic energy. Could it be
that the source of the energy is the same?

To explore this possibility, let us use the method explained in Section 2.3 to obtain a more general
result for the K.E. The real part of the weak value of the momentum operator squared is obtained from(
〈ψ(t)| p̂2|x〉+ 〈x| p̂2|ψ(t)〉

)
/2. Under polar decomposition of the wave function, we find the real part

of the weak value of the kinetic energy is

1
2m
〈 p̂2〉w =

1
2m

[
(∇S)2 − ∇

2R
R

]
. (21)

With the identification ∇S ↔ m(xk+1 − xk)/ε, we see that the quantum potential is playing a
similar role as the mass/energy fluctuation in Feynman’s approach. In fact, de Broglie’s original
suggestion was that the quantum potential could be associated with a change of the rest mass [36].

Notice that the quantum potential appears essentially as a derivative of the osmotic velocity,
which in turn is obtained from the imaginary part of S′(x, x′). Any fluctuating term added to the real
part of Sε(x, x′) should also be added to the imaginary part. This would also introduce some change
in the energy relation shown in Equation (20). This interplay between the real components of the
complex Sε(x, x′) is clearly presented as an average over fluctuations arising from some background.
Here we can recall Bohr insisting that quantum phenomena must include a description of the whole
experimental arrangement. More details will be found in Smolin [37] and in Hiley [38].

4. Conclusions

Our explorations of the weak values of the momentum operator [22] have led us to reconsider the
basis on which Feynman [9] developed his path integral approach. We have shown that there is an
unexpected close connection between the Feynman propagator, the weak values of the momentum
and the original Bohm approach [13].

Feynman had already noticed that to prevent the kinetic energy tending to infinity as the time
interval between steps tends to zero, it was necessary to introduce a ‘fluctuation’ in the mass/energy
of the particle. This extra energy can be thought of as arising in a way similar to the way the quantum
potential energy appears as an effect of some background field. Indeed, as we have remarked above,
de Broglie [36] had already proposed that the quantum potential could be included in the mass term
M =

√
[m2 + (h̄2/c2)�R/R], R being the amplitude of the wave function. Hiley [38] has shown a

similar conclusion arises for the Dirac equation.
The approach outlined in this paper shows that the basic assumption made in Bohmian mechanics,

namely, that each particle follows one of the ensemble of ‘trajectories’ calculated by Philippidis et al. [6]
from PB(x, t) cannot be maintained. Rather the trajectories should be interpreted as a statistical average
of the momentum flow of a basic underlying stochastic process.
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It is now possible to experimentally explore weak values, perhaps clarifying the nature of this
stochastic process. In the case of the electromagnetic field this has already been done by Kocsis et al. [5],
but as we have seen the notion of a ‘photon trajectory’ has no meaning. However, the average
momentum flow does have meaning [26]. As mentioned above, new experiments using argon and
helium atoms are now being carried out at UCL by Morley et al. [29] and by Monachello, Flack, and
Hiley [28]. It is hoped that these future experiments will throw more light on the nature of individual
quantum processes.
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Abstract: In Bohmian mechanics, particles follow continuous trajectories, so two-time position
correlations have been well defined. However, Bohmian mechanics predicts the violation of Bell
inequalities. Motivated by this fact, we investigate position measurements in Bohmian mechanics
by coupling the particles to macroscopic pointers. This explains the violation of Bell inequalities
despite two-time position correlations. We relate this fact to so-called surrealistic trajectories that,
in our model, correspond to slowly moving pointers. Next, we emphasize that Bohmian mechanics,
which does not distinguish between microscopic and macroscopic systems, implies that the quantum
weirdness of quantum physics also shows up at the macro-scale. Finally, we discuss the fact that
Bohmian mechanics is attractive to philosophers but not so much to physicists and argue that the
Bohmian community is responsible for the latter.

Keywords: Bohmian mechanics; quantum theory; surrealistic trajectories; Bell inequality

1. Introduction

Bohmian mechanics differs deeply from standard quantum mechanics. In particular, in Bohmian
mechanics, particles, here called Bohmian particles, follow continuous trajectories; hence, in Bohmian
mechanics, there is a natural concept of time-correlation for particles’ positions. This led M. Correggi
and G. Morchio [1] and more recently Kiukas and Werner [2] to conclude that Bohmian mechanics
“cannot violate any Bell inequality” and hence is disproved by experiments. However, the Bohmian
community maintains its claim that Bohmian mechanics makes the same predictions as standard
quantum mechanics (at least as long as only position measurements are considered, arguing that, at the
end of the day, all measurements result in position measurement, e.g., a pointer’s positions).

Here, we clarify this debate. First, we recall why two-time position correlation is at a tension
with Bell inequality violation. Next, we show that this is actually not at odds with standard quantum
mechanics because of certain subtleties. For this purpose, we do not go for full generality but illustrate
our point with an explicit and rather simple example based on a two-particle interferometers, partly
already experimentally demonstrated and certainly entirely experimentally feasible (with photons,
but also feasible at the cost of additional technical complications with massive particles). The subtleties
are illustrated by explicitly coupling the particles to macroscopic systems, called pointers, that measure
the particles’ positions. Finally, we raise questions about Bohmian positions, about macroscopic
systems, and about the large differences in appreciation of Bohmian mechanics between philosophers
and physicists.

2. Bohmian Positions

Bohmian particles have, at all times, well defined positions in our three-dimensional space.
However, for the purpose of my analysis, I need only to specify in which mode the Bohmian particle is.
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Here I use “mode” as is usually done in optics, including atomic optics. For example, if a particle in
Mode 1 encounters a beam splitter (BS) with Output Modes 1 and 2, then the Bohmian particle exits
the beam splitter either in Mode 1 or in Mode 2, see Figure 1.

D

D
mode “in” mode “1”

mode “2”

detector 1

detector 2

Figure 1. A Bohmian particle and its pilot wave arrive on a beam splitter (BS) from the left in Mode “in”.
The pilot wave emerges both in Modes 1 and 2, as per the quantum state in standard quantum theory.
However, the Bohmian particle emerges either in Mode 1 or in Mode 2, depending on its precise initial
position. As Bohmian trajectories cannot cross each other (in configuration space), if the initial position
is in the lower half of Mode “in”, then the Bohmian particle has the BS in Mode 1 or, if not, in Mode 2.

Part of the attraction of Bohmian mechanics lies then in the following assumption:

• Assumption H:
Position measurements merely reveal in which (spatially separated and non-overlapping) mode the Bohmian
particle actually is.

Accordingly, if Modes 1 and 2 after the beam splitter are connected to two single-particle detectors,
then, if the Bohmian particle is in Mode 1, the corresponding detector clicks, and the case of Mode 2 is
similar, see Figure 1.

3. Two-Time Position Correlation in a Bell Test

Let’s consider a two-particle experiment with 4 modes, labeled 1, 2, 3, and 4, as illustrated in
Figure 2. The source produces the quantum state:

ψ0 =
(
|1001〉+ |0110〉

)
/
√

2 (1)

where, e.g., |1001〉means that there is one particle in Mode 1 and one in Mode 4, and Modes 2 and 3 are
empty. This is an entangled state that can be used in a Bell inequality test. For this, Alice (who controls
Modes 1 and 2) and Bob (who controls Modes 3 and 4) apply phases x and y to Modes 1 and 4,
respectively, and combine their modes on a beam splitter, see Figure 2. Taking into account that
a reflection on a BS induces a phase eiπ/2 = i, the quantum state after the two beam splitters reads

ei(x+y)

23/2

(
|1001〉+ i|0101〉+ i|1010〉 − |0110〉

)
+

1
23/2

(
|0110〉+ i|0101〉+ i|1010〉 − |1001〉

)
. (2)
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If Modes 1, 2, 3, and 4, after the beam splitter, encounter four single-particle detectors, also labeled
1, 2, 3, and 4, then the probabilities for coincidence detection are

P14 = P23 =
1
8
|ei(x+y) − 1|2 =

1− cos(x + y)
4

(3)

P13 = P24 =
1
8
|ei(x+y) + 1|2 =

1 + cos(x + y)
4

(4)

from which a maximal violation of the CHSH-Bell inequality of 2
√

2 can be obtained with appropriate
choices of the phase inputs.

Figure 2. Two Bohmian particles spread over four modes. The quantum state is entangled,
see Equation (1), so the two particle are either in Modes 1 and 4 or in Modes 2 and 3. Alice applies
a phase x on Mode 1 and Bob a phase y on Mode 4. Accordingly, after the two beam splitters,
the correlations between the detectors allow Alice and Bob to violate Bell inequality. The convention
regarding mode numbering is that modes do not cross, i.e., the nth mode before the beam splitter goes
to detector n.

In Bohmian mechanics, this experiment is easily described. Denote the two particles’ positions
rA and rB. In the initial state (Equation (1)), the particles are either in Modes 1 and 4, a situation we
denote rA ∈ “1” and rB ∈ “4,” or in Modes 2 and 3, i.e., rA ∈ “2” and rB ∈ “3.” According to Bohmian
mechanics, the particles have more precise positions, but for our argument this suffices.

Now, according to Bohmian mechanics and Assumption H, one does not need to actually measure
the positions of the particles; it suffices to know that each is in one specific mode. Hence, one can
undo Alice’s measurement as illustrated in Figure 3. After the phase shift −x, the quantum state is
precisely back to the initial state ψ0, see Equation (1). Alice can thus perform a second measurement
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with a freshly chosen phase x’ and a third beam splitter, see Figure 3. Moreover, as Bohmian trajectories
cannot cross each other (in configuration space), if rA is in Mode 1 before the first BS, then rA is also in
Mode 1 before the last BS.

detector 1

detector 2

detector 4

detector 3

x

y

'x
-x

Figure 3. Alice’s first “measurement”, with phase x, can be undone because in Bohmian mechanics
there is no collapse of the wavefunction. Hence, after having applied the phase −x after her second
beam splitter, Alice can perform a second “measurement” with phase x’. Mode number convention
implies, e.g., that Mode 1 is always the upper mode, i.e., the mode on which all phases x, −x and x’,
are applied.

There is no doubt that, according to Bohmian mechanics, there is a well-defined joint probability
distribution for Alice’s particle at two times and Bob’s particle: P(rA, r’A, rB|x, x’, y), where rA denotes
Alice’s particle after the first beam splitter and r’A after the third beam splitter of Figure 3. But here
comes the puzzle. According to Assumption H, if rA ∈ “1”, then any position measurement performed
by Alice between the first and second beam splitter necessarily results in a = 1. Similarly, rA ∈ “2”
implies a = 2. Thus, Alice’s position measurement after the third beam splitter is determined by
r’A, and Bob’s measurement is determined by rB. Hence, it seems that one obtains a joint probability
distribution for Alice’s measurements results and Bob’s: P(a, a’, b|x, x’, y). However, such a joint
probability distribution implies that Alice does not have to make any choice (she merely makes both
choices, one after the other), and in such a situation there cannot be any Bell inequality violation.
Hence, as claimed in [2], it seems that the existence of two-time position correlations in Bohmian
mechanics prevents the possibility of a CHSH-Bell inequality violation, in contradiction with quantum
theory predictions and experimental demonstrations [3].

Let’s have a closer look at the probability distribution that lies at the bottom of our puzzle:
P(rA, r’A, rB|x, x’, y). More precisely, it suffices to consider in which modes the Bohmian particles are.
That is, it suffices to consider the following joint probability distribution:

P(rA ∈ “a”, r’A ∈ “a”’, rB ∈ “b”|x, x’, y) (5)
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where a, a’ = 1, 2 and b = 3, 4 number modes. This can be computed explicitly:

P(rA ∈ “a”, r’A ∈ “a”’, rB ∈ “b”|x, x’, y) =
1 + (−1)a+b cos(x + y)

4
· 1 + (−1)a’+b cos(x + y)

2
. (6)

Note that, if one sums over a’, i.e., traces out Alice’s second measurement, then one recovers the
quantum prediction equations (Equations (3) and (4)):

P(rA ∈ “a”, rB ∈ “b”|x, y) =

∑
a’

P(rA ∈ “a”, r’A ∈ “a”’, rB ∈ “b”|x, x’, y) =

1 + (−1)a+b cos(x + y)
4

. (7)

It is important is to notice that P(rA ∈ “a”, rB ∈ “b”|x, y) does not depend on Alice’s second
measurement setting x’, as one would expect. Similarly, if one traces out Alice’s first measurement,

P(rA ∈ “a”’, rB ∈ “b”|x’, y) =
1 + (−1)a’+b cos(x’ + y)

4
(8)

one recovers Equations (3) and (4). Again, the probability that Equation (8) does not depend on Alice’s
first measurement setting.

So far so good, but now comes the catch. If one traces out Bob’s measurement, one obtains
a probability distribution for Alice’s particle’s position that depends on Bob’s setting y:

P(rA ∈ “a”, rA ∈ “a”’|x, x’, y) =

∑
b

P(rA ∈ “a”, r’A ∈ “a”’, rB ∈ “b”|x, x’, y) =

1 + (−1)a+a’ cos(x + y) cos(x’ + y)
4

. (9)

Hence, the joint probability distribution (Equation (6)) is signaling from Bob to Alice! Is this
a problem for Bohmian mechanics? Probably not, as the Bohmian particles’ positions are assumed to
be “hidden”. Actually, it is already well-known that they have to be hidden in order to avoid signaling
in Bohmian mechanics. Some may find this feature unpleasant, as it implies that Bohmian particles are
postulated to exist “only” to immediately add that they are ultimately not fully accessible, but this is
not new.

Consequently, defining a joint probability for the measurement outcomes a, a’, and b in the
natural way,

P (a, a’, b|x, x’, y) ≡
P (rA ∈ “a”, rA ∈ “a”’, rB ∈ “b”|x, x’, y) (10)

can be done mathematically but cannot have a physical meaning, as P(a, a’, b|x, x’, y) would
be signaling.

4. What Is Going on? Let’s Add a Position Measurement

In summary, it is the identification in Equation (10) that confused the authors of [1,2] and led
them to wrongly conclude that Bohmian mechanics cannot predict violations of Bell inequalities in
experiments involving only position measurements. Note that the identification of Equation (10)
follows from Assumption H, so Assumption H is wrong. Every introduction to Bohmian mechanics
should emphasize this. Indeed, Assumption H is very intuitive and appealing, but wrong
and confusing.
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To elaborate on this, let’s add an explicit position measurement after the first beam splitter on
the Alice side. The fact is that, according to both standard quantum theory and Bohmian mechanics,
this position measurement perturbs the quantum state (hence the pilot wave) in such a way that the
second measurement, labeled x’ on Figure 4, no longer shares the correlation (Equation (9)) with the
first measurement, see [4–6].

detector 1

detector 2

detector 4

detector 3

x

y

'x
-x

+
p

p

Figure 4. We add a pointer that measures through which path Alice’s particle propagates between her
first and second beam splitter. The pointer moves up if Alice’s particle goes through the upper path,
i.e., rA ∈ “1”, and down if it goes through the lower path, i.e., rA ∈ “2”. Hence, by finding out the
pointer’s position, one learns through which path Alice’s particle goes, i.e., one finds out Alice’s first
measurement result, though it all depends how fast the pointer moves. See text for explanation.

Let’s model Alice’s first position measurement, labeled x (i.e., corresponding to the input
phase x), by an extra system, called here the pointer, initially at rest in a Gaussian state, see Figure 4.
One should think of the pointer as a large and massive system; note that it suffices to consider
the state of the center of mass of the pointer. If Alice’s particle passes through the upper part of
the interferometer (rA ∈ “1”), then the pointer gets a kick in the upward direction and is left with
a momentum +p; however, if Alice’s particle passes through the lower part of her interferometer
(rA ∈ “2”), then the pointer gets a kick −p. We made p large enough so that the two quantum
states of the pointer | ± p〉 are orthogonal, i.e., according to quantum theory, we consider a strong
(projective) which-path measurement. Note, however, that, immediately after the pointer has interacted
with Alice’s particle, the two Gaussians corresponding to | ± p〉 overlap in space, so no position
measurement can distinguish them. It is only after some time that the two Gaussians separate in space
and that position measurements can distinguish them. Since in Bohmian mechanics there are only
position measurements, this implies that, in Bohmian mechanics, it takes some time for the pointer to
measure Alice’s particle.

Accordingly, if p is large enough for the pointer to have moved by more than its spread by the
time Alice’s particle hits the second BS, then the pointer acts like a standard measurement, and the
second position measurement x’ of Alice’s particle is perturbed by measurement x, as discussed in the
previous paragraph. However, if p is small enough, then, by the time the second measurement x’ takes
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place, the pointer barely moves. In this case, the second position measurement is not affected [4–6],
see also the appendix. However, it is now this second measurement x’ that perturbs the “first” one,
i.e., perturbs measurement x. Indeed, because of the entanglement between Alice’s particle and the
pointer, if one waits long enough for the pointer to move by more than its spread and then reads
the result of the “first” measurement out of this pointer, then one will not find the expected result:
the second measurement perturbed the “first” one. I put “first” in quotes because, in such a slow
measurement, the result is actually read out of the pointer after the “second” measurement took place.

This is very similar to the so-called surrealistic trajectories, see [4–6]. In the appendix, I recall this
counter-intuitive aspect of Bohmian mechanics.

5. What about Large Systems?

So far so good. But let’s now consider, not single particles, but elephants. One of the advantages
of Bohmian mechanics is that whether systems are microscopic and macroscopic makes no difference:
all systems are treated alike. The price to pay, as we illustrate below, is that all the strangeness of
quantum physics at the microscopic level has to show up also at the macroscopic level.

Let’s consider two elephants in the state of Equation (1) corresponding to entangled elephants
in Modes 1 & 4 superposed with elephants in Modes 2 & 3. Note that, instead of elephants, one may
consider classical light pulses and replace, in Equation (1), the one-photon state |1〉 with a coherent
state |α〉 with mean photon number |α|2 as large as desired:

(
|α, 0, 0, α〉+ |0, α, α, 0〉

)
/
√

2. The beam
splitters have to be replaced by EBSs—Elephant Beam Splitters—which split elephants: an incoming
elephant emerges from an EBS in a superposition of elephant-transmitted and elephant-reflected.
In the case of coherent states, the transformation reads:

|α, 0〉 →
(
|α, 0〉+ i|0, α〉

)
/
√

2 (11)

|0, α〉 →
(
i|α, 0〉+ |0, α〉

)
/
√

2. (12)

Note that the above deeply differs from the standard BS, which corresponds to |α, 0〉 →
|α/
√

2, iα/
√

2〉.
The story of the single particles described above remains the same. In Bohmian mechanics,

the elephants’ positions are also hidden, or at least not fully accessible. However, this is puzzling, as it
means that, when one “looks slowly” (as the pointer in Section 4, see also the Appendix) at an elephant,
one may see it where it is not. Indeed, according to Bohmian mechanics, an elephant is where all the
Bohmian positions of all the particles that make up the elephant are, but what does this mean if it does
not correspond to where one sees the elephant? Bohmians may reply that one does not “look slowly”
at elephants and that EBSs do not exist. This is certainly true of today’s technology, but there will soon
be beam splitters for quantum systems large enough to be seen by the naked eye. In addition, to avoid
signaling, it has to be impossible to “see” or find out in any way two-time position correlations of such
quantum systems, even when they are large.

Admittedly, it is an advantage that, in Bohmian mechanics, the difference between micro- and
macro-worlds is immaterial. But, accordingly and unavoidably, quantum weirdness shows up at
the macro-scale.

6. Assumption H Revisited

Assumption H is wrong. How should one reformulate it? Clearly, a position measurement does
not merely reveal the Bohmian particle because of the following:

1. A position measurement necessarily involves the coupling to a large system, some sort of pointer,
and this coupling implies some perturbation. Hence the “merely” in assumption H is wrong [7].

2. Whether a position measurement reveals information about the Bohmian particle or not depends
on how the coupling to a large system is done and on how that large system (the pointer) evolves.
Hence, not all measurements that, according to quantum theory, are position measurements,
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are also Bohmian-position measurements: some quantum-position measurements do not reveal
where the Bohmian particle is.

The first point above is very familiar to quantum physicists. However, it may take away some
of the appeal of Bohmian mechanics. Indeed, the naive picture of particles with always well-defined
positions is obscured by the fact that these positions cannot be “seen”—in fact, one can not “merely see”
in which mode a Bohmian particle is. At the end of the day, Bohmian mechanics is not simpler than
quantum theory. The promise of a continuously well-defined position and the associated intuition
is deceptive.

The second point listed above is interesting: One should distinguish between quantum-position
and Bohmian-position measurements. The latter refers to measurements that provide information about
the position of Bohmian particles. It would be interesting to figure out how to characterize such
Bohmian-position measurements without the need to fully compute all the Bohmian trajectories.

7. Why Bohmian Mechanics

From all we have seen so far, one should, first of all, recognize that Bohmian mechanics is deeply
consistent and provides a nice and explicit existence proof of a deterministic non-local hidden variables
model. Moreover, the ontology of Bohmian mechanics is pretty straightforward: the set of Bohmian
positions is the real stuff. This is especially attractive to philosophers. Understandably so. But what
about physicists mostly interested in research? What new physics did Bohmian mechanics teach us in
the last 60 years? Here, I believe it is fair to answer: Not enough! Understandably disappointing.

It is deeply disappointing that an alternative theory to quantum mechanics, a theory that John Bell
thought should be taught in parallel to standard textbook quantum mechanics [8], did not produce
new physics, nor even inspirations for new ideas to be tested in the lab (though see [9–12]). How could
this be? Some may conclude that not enough people worked on Bohmian mechanics. But tens or
hundreds of passionate researchers worked on it for decades. Some may conclude that this lack of new
ideas proves that Bohmian mechanics is a dead end. But how could a consistent theory, empirically
equivalent to quantum theory, have no future?

Let me suggest some possible, albeit only partial, answers to the above puzzle. I am afraid that
almost all the research on Bohmian mechanics over the last several decades remained trapped within
an exceedingly narrow viewpoint and worked only on problems of interest that were highly specific to
their Bohmian community. I believe this is especially disappointing, as there were several interesting
open problems that Bohmian-inspired ideas could have addressed. The positive side is there are likely
still interesting open problems that open-minded researchers can explore.

Let me illustrate some of the ideas I believe Bohmian mechanics should have triggered. This list
is obviously subjective—it is only important that it is not empty. Bohmian mechanics, like quantum
theory, is in deep tension with relativity theory. I know of Bohmians who claim that it is obvious that
any non-local theory, Bohmian or not, requires a privileged universal reference frame. I also know
of Bohmians who claim that it is obvious that Bohmian mechanics can be generalized to a relativistic
theory (though, admittedly, I never understood their model). However, I know of no Bohmians who
are inspired by their theory and its tension with relativity to try to go beyond Bohmian mechanics,
as illustrated in the next two paragraphs.

According to Bohmian mechanics, particles “make decisions” at beam splitters in the sense that,
after a beam splitter, the particle is definitively in one of the output modes. Admittedly, this is not
a real decision as everything is determined by the initial state of the particle and of all other systems
entangled with the particle. However, let me continue using this inspiring terminology. Accordingly,
and following Suarez, we call such beam splitters choice-devices [13]. Such choice-devices take into
account everything in their past. Now, a natural assumption inspired by the sketched description is
that the past is not merely the past light cone, but all of the past in the inertial reference frame of the
choice device. This idea led Suarze and Scarani to suggest that one should test situations in which
several choice-devices, e.g., several beam splitters, are in relative motion such that what is the past
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for one choice-device may differ from the past of another choice-device [14]. This has the advantage
(at least for researchers in physics) that it leads to experimental predictions that differ from standard
quantum predictions and that can be experimentally tested. Hence, this brings Bohmian-inspired
ideas to physics. This has been tested in my lab, and the result have shown that the idea, in spite of its
appeal, is wrong [15].

Another Bohmian-inspired idea follows directly from an observation by Hiley and Bohm [16]:
“it is quite possible that quantum nonlocal connections might be propagated, not at infinite speeds (as in
standard Bohmian mechanics), but at speeds very much greater than that of light. In this case, we could
expect observable deviations from the predictions of current quantum theory (e.g., by means of a kind of
extension of the Aspect-type experiment).” Again, this can be experimentally tested [17–20]. The results
put lower bounds on this hypothetical faster-than-light-but-finite speed influence, something like
10,000 to 100,000 times the speed of light. Aspect-type experiments between two sites can only either find
that hypothetical speed or set lower bounds on it. However, recently we have been able to demonstrate
that, by going to more parties, one can prove that either there is no such finite-but-superluminal
speed or that one can use it for faster than light communication using only classical inputs and output
(i.e., measurement settings and results) [21,22].

I am confident that Bohmian mechanics and other alternative views on quantum mechanics will
inspire further ideas that will lead to experiments that might work to extend quantum theory. The real
question is whether the Bohmian community will pursue such ideas.

8. Conclusions

Naive Bohmian mechanics that assumes Assumption H is wrong. Still, Bohmian mechanics is
deeply consistent. Position measurements perturb the system, even in Bohmian mechanics. Hence,
the existence of two-time position correlations is not in contradiction with possible violations of
Bell inequalities.

Generally, position measurements sometimes reveal information about Bohmian positions,
but never full information and sometimes none at all. Simple and handy criteria for determining when
the Bohmian position measurements of a particle under test highly correlate with the position of the
center of mass of some large pointer are still missing.

Bohmian mechanics is attractive to philosophers because it provides a clear ontology. However,
it is not as attractive to researchers in physics. This is unfortunate because it could inspire brave new
ideas that challenge quantum physics.
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Appendix A. Slow Position-Measurements in Bohmian Mechanics

Appendix A.1. Bohmian Trajectories in a Semi-Interferometer

Let us consider a “half Mach-Zehnder” interferometer, which is a Mach-Zehnder interferometer in
which the second beam splitter is removed, see Figure A1. We call such a circuit a semi-interferometer.
After the beam splitter, any particle entering from the input mode is in a superposition of Modes 1 and 2:
|1〉 →

(
|1, 0〉+ |0, 1〉

)
/
√

2, with possibly a relative phase irrelevant in semi-interferometers.
According to quantum theory, if Detector 1 clicks, then the particle went through Mode 1.

This should be interpreted as “if one adds position measurements in Modes 1 and 2, then there
is a 100% correlation between Detector 1 and the position measurement in Mode 1 (and similarly for
Detector 2 and the position measurement in Mode 2)”.

111



Entropy 2018, 20, 105

According to Bohmian mechanics, things are different. If Detector 1 clicks, then the particle went
through Mode 2, in sharp contrast to the quantum retro-diction. However, the interpretation is also
totally different. According to Bohmian mechanics, particles follow continuous trajectories and the
interpretation here is that, if Detector 1 clicks, then the Bohmian particle followed Mode 2.

In order to reconcile both views, let’s add position measurements in Modes 1 and 2.

D

D

mode “in”

mode “2”

mode “1”

detector 2

detector 1

No beam splitter

Bohmian

trajectories

BS

Figure A1. A Bohmian particle and its pilot wave arrive on a beam splitter (BS) from the left in Mode
“in”. The pilot wave emerges both in Modes 1 and 2, as the quantum state in standard quantum
theory. Modes 1 and 2 meet again, but there is no beam splitter at this meeting point. Nevertheless,
the Bohmian trajectories bounce at this point as indicated by the red arrows. Intuitively, this can be
understood because the evolution equation of the Bohmian position is a first order differential equation,
so Bohmian trajectories never cross each other. This intuition is confirmed by numerical simulations.

Appendix A.2. Position Measurements in Modes 1 and 2

In order to describe position measurements in both modes, we add two pointers, each initially at
rest, denoted |pj = 0〉, that we locally couple to Modes 1 and 2 in such a way that, if the particle is in
Mode j, then the corresponding pointer gets a momentum kick k, resulting in state |pj = k〉, while the
other pointer is left unaffected, see Figure A2. The joint particle-pointers state after the two local
interactions thus read

(
|1, 0〉|p1 = k〉|p2 = 0〉+ |0, 1〉|p1 = 0〉|p2 = k〉

)
/
√

2. Note that the pointers are
in some localized (e.g., Gaussian) states, the kets only indicate the mean momenta.

Let us emphasize that the pointer should be thought of as large and massive and consisting of
many internal degrees of freedom; in short, it is a “macroscopic” object, and the result of the position
measurement can merely be read of the pointer’s position: if the pointer moves, then it has detected
the presence of the particle; if the pointer hasn’t moved, then the particle went the other way. Such
a formalization of position measurements applies both to quantum and Bohmian theories.

Note that, in order for the pointer to indicate an unambiguous result, one has to wait long enough
for the pointer to have moved by much more than it’s spread Δx and the kick has to be large enough,
k >> h̄/Δx.

According to quantum theory, if Detector 1 clicks, then Pointer 1 got a kick and thus moves,
while Pointer 2 rests in state |p = 0〉. However, the situation as described by Bohmian mehcanics is
more interesting.

First, consider the case that the kick k is so large that the pointer, if kicked, moves by more than
its spread before the two Modes 1 and 2 cross at the place of the “missing beam splitter”. In this case,
the particle and the kicked pointer become entangled, and this modifies the Bohmian trajectory of
the particle. According to this modified trajectory and in full agreement with quantum predictions,
if Detector 1 clicks, then Bohmian mechanics predicts that it is Pointer 1 that moved (including the
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Bohmian position of pointer 1). Note that, in this situation, Bohmian trajectories can apparently cross
each other, because the trajectory actually happens in a higher dimensional (configuration) space and
it is only its shadow in our space that crosses.

Next, consider the case that the kick k is not that large and that, by the time Modes 1 and 2 cross,
the pointer has barely moved. Bohmian mechanics predicts that, if Detector 1 clicks, the particle went
through Mode 2 (as if there were no pointer); however, if one waits long enough for the pointer to
eventually move by more than its spread, then one finds that it is Pointer 1 that moves. Accordingly,
in the case of “slow pointers”, the pointer indicates where the Bohmian particle was not. This is
surprising, at least to physicists that are used to quantum theory. However, this is how Bohmian
mechanics describes the situation, and one should add that there is nothing wrong with this description
in the sense that all observable predictions are in agreement with quantum predictions [23,24].

Finally, we investigated numerically intermediate cases in which, at the time Modes 1 and 2 cross,
the pointer moved but not much. We find that, in such cases, some trajectories of the particle bounce
in the region of mode crossing, while other trajectories go through the crossing region more or less in
straight lines. Accordingly, conditioned on Detector 1 clicking, there is a chance that the particle went
through Mode 1 and a complementary chance that it went through Mode 2, depending on the precise
value of the kick k and the exact initial position of the Bohmian particle.

D

D

mode “in”

mode “2”

mode “1”

detector 1

No beam splitter

Pointer 1

Pointer 2

detector 2

BS

Figure A2. Semi-interferometer with two macroscopic pointers locally coupled to Modes 1 and 2.
The pointers are initially at rest, |pj = 0〉, but when detecting a particle they get a kick and end in
a quantum state with momentum k: |pj = k〉.

Note that one of the two detectors moves fast to prevent the Bohmian trajectories from bouncing
in the crossing region. In fact, there is only one detector; if the kick is received by this single detector,
the Bohmian trajectories bounce.

Finally, note that, for pointers composed of many internal degrees of freedom, one of the pointer’s
particle motion depends on whether the test particle is present or not for the counter-intuitive surreal
Bohmian trajectories to disappear. However, if only the center of mass is coupled to the test particle,
then there is no reason for any of the particles making up the pointer to move differently, regardless of
whether or not the test particle is present.
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Appendix A.3. Conclusions

What is a position measurement? Quantum theory has a clear answer to this question. However,
in Bohmian mechanics, there are two possible definitions. First, the natural one: a Bohmian
position measurement is any interaction between the particle under test and a macroscopic device
(e.g., a pointer) that fully correlates the Bohmian position of the particle immediately before the
interaction took place with the final state of the device (e.g., the final position of the pointer). Next,
a quantum-inspired one: Anything that is a position measurement according to quantum theory
(i.e., represented by the position operator q or a function of it) is also a quantum-position measurement in
Bohmian mechanics.

Hence, in Bohmian mechanics, one should distinguish between Bohmian-position measurements
and quantum-position measurements. In most situations, both types of position measurements
coincide. However, there are cases, such as the slow pointer described in this note, where the two
starkly differ.

When one says that Bohmian mechanics makes the same predictions as quantum theory as
long as all measurements, at the end of the day, reduce to position measurements, one refers to
quantum-position measurements. This may differ from Bohmian-position measurements, so Bohmian
trajectories may differ from quantum expectations. This is surprising to quantum physicists, but one
should emphasize that there is nothing wrong with that: different theories lead to different pictures
of reality.
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Abstract: The paper argues that far from challenging—or even refuting—Bohm’s quantum theory,
the no-hidden-variables theorems in fact support the Bohmian ontology for quantum mechanics.
The reason is that (i) all measurements come down to position measurements; and (ii) Bohm’s
theory provides a clear and coherent explanation of the measurement outcome statistics based on
an ontology of particle positions, a law for their evolution and a probability measure linked with that
law. What the no-hidden-variables theorems teach us is that (i) one cannot infer the properties that
the physical systems possess from observables; and that (ii) measurements, being an interaction like
other interactions, change the state of the measured system.

Keywords: no-hidden-variables theorems; observables; measurement problem; Bohmian mechanics;
primitive ontology

1. Introduction

The famous no-hidden-variables theorems have played a crucial, though often questionable
role in the history of quantum mechanics. For decades, they have been employed to defend the
quantum orthodoxy and to argue, nay prove, that any attempt to go beyond the statistical formalism of
standard quantum mechanics in providing a “complete” description of the microcosm is bound to fail.
Even after David Bohm [1] got “the impossible done” (as Bell [2] (p. 160) later put it) and showed how
the statistical predictions of quantum mechanics can be derived from an ontology of point particles
and a deterministic law of motion, many scientists and philosophers refused to pay attention to this
theory on the basis that the no-hidden-variables theorems had established that it couldn’t be correct
(one striking example of such a misunderstanding is Wigner [3] (pp. 53–55)).

Of course, Bohm’s theory is not a counterexample to these theorems qua mathematical theorems.
It is rather the most striking demonstration of the fact that these mathematical results do not support
the ideological conclusions in defense of which they have been generally cited. That notwithstanding,
it would be premature to dismiss the “no-go theorems” as physically and philosophically irrelevant.
They capture something not only about the nature of measurements and the statistical predictions of
quantum mechanics that strikes us as remarkable and contrary to classical intuitions, but also about
the nature of physical objects. The aim of this paper is to work out what exactly these theorems show
and how they support in fact Bohm’s quantum theory, instead of being an argument against it.

In the next section, we briefly recall the quantum orthodoxy and Bohm’s quantum theory.
Section 3 outlines three of the most important theorems useful for our discussion. Section 4 rebuts the
conclusions that are commonly drawn from them. Section 5 provides an account of the Bohmian theory
of measurements. Section 6 shows how it supports an ontology of point particles that are characterized
by their positions only. Section 7 draws a general conclusion.
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2. Quantum Orthodoxy and Bohmian Mechanics

In the words of David Mermin [4] (p. 803), the scope of the no-hidden-variables theorems is to
defend “a fundamental quantum doctrine”, namely that

(Q) A measurement does not, in general, reveal a preexisting value of the measured
property.

However, accepting this doctrine leads to at least two urgent questions:

1. How do the quantum observables acquire definite values upon measurement?
It is now generally acknowledged that measurements are not a new type of interaction—let alone
a primitive metaphysical concept—that requires a special treatment, but come under the common
types of physical interactions (electromagnetism, gravitation, etc.). Hence, our physical theories
should be able, at least in principle, to describe them. This, in turn, entails that the notion of
measurement must not be part of the axioms of a physical theory. Thus, if quantum theory
implies that the observable values are not merely revealed but produced by the measurement
process—that is, by the interaction between the measurement device and the measured system,
the theory should tell us how they are produced.

2. What characterizes a physical system prior to—or better: independent of—measurement?
After all, there must be some sort of ontological underpinning to the measurement process
and the empirical data that it yields. That is, there must be something in the world on which
the measurement is actually performed—something with which the observer or measurement
device interacts, and there must be something definite about the physical state of the observer or
measurement device that does not, in turn, require a measurement of the measurement (and so
on, ad infinitum).

According to Mermin [4] (p. 803), the orthodox response to question 1 is that “Precisely how the
particular result of an individual measurement is brought into being—Heisenberg’s ‘transition from
the possible to the actual’—is inherently unknowable”. The response to 2 seems to be some sort of
radical idealism, expressed in his now famous assertion (and belated response to Einstein) according
to which the moon is demonstrably not there when nobody looks (Mermin [5]). Bohm’s theory entirely
rejects this way of talking. Its presentation as a “hidden variables theory” suggests that it denies
the doctrine Q. However, most contemporary Bohmians actually endorse this doctrine, and quite
emphatically so. Let us briefly recall why this is the case.

For present purposes, we use the formulation of Bohm’s theory that is today known as Bohmian
mechanics (see Dürr et al. [6]; for a discussion of the different contemporary formulations of Bohm’s
theory, see Belousek [7]; Bohm and Hiley [8] is the latest elaborate treatment by Bohm himself).
Bohmian mechanics can be defined in terms of the following four principles:

1. Particle configuration: There always is a configuration of N permanent point particles in the
universe that are characterized only by their positions X1, . . . , XN in three-dimensional, physical
space at any time t.

2. Guiding equation: A wave function Ψ is attributed to the particle configuration, being the central
dynamical parameter for its evolution. On the fundamental level, Ψ is the universal wave function
attributed to all the particles in the universe together. The wave function has the task to determine
a velocity field along which the particles move, given their positions. It accomplishes this task by
figuring in the law of motion of the particles, which is known as the guiding equation:

dXk
dt

=
h̄

mk
Im
∇kΨ

Ψ
(X1, . . . , XN). (1)

This equation yields the evolution of the k-th particle at a time t as depending on, via the wave
function, the position of all the other particles at that time.
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3. Schrödinger equation: The wave function always evolves according to the Schrödinger equation:

ih̄
∂Ψ

∂t
= −

N

∑
k=1

h̄2

2mk
ΔkΨ + VΨ. (2)

4. Typicality measure: On the basis of the universal wave function Ψ, a unique stationary
(more precisely: equivariant) typicality measure can be defined in terms of the |Ψ|2–density
(see Goldstein and Struyve [9] for a proof and precise statement of the uniqueness result).
Given that typicality measure, it can then be shown that for nearly all initial conditions, the
distribution of particle configurations in an ensemble of sub-systems of the universe that admit
of a wave function ψ of their own (known as effective wave function) is a |ψ|2–distribution.
A universe in which this distribution of the particles in sub-configurations obtains is considered
to be in quantum equilibrium.

Assuming that the actual universe is a typical Bohmian universe in that it is in quantum
equilibrium, one can hence deduce Born’s rule for the calculation of measurement outcome statistics
on sub-systems of the universe in Bohmian mechanics (instead of simply stipulating that rule).
In a nutshell, the axiom of |Ψ|2 providing a typicality measure with Ψ being the universal wave function
justifies applying the |ψ|2–rule for the calculation of the probabilities of measurement outcomes on
particular sub-systems within the universe, with ψ being the effective wave function of the particular
systems in question (see Dürr et al. [6] (Chapter 2); cf. Section 5 for the notion of effective wave
functions). Thus, the quantum probabilities have in Bohmian mechanics exactly the same status as the
probabilities in classical statistical mechanics: they are derived from a deterministic law of motion via
an appropriate probability measure that is linked with the law. Moreover, if a sub-system admits for
an autonomous description in terms of an effective wave ψ, its complete physical and dynamical state
at any time t is given by the pair (Xt, ψt), where Xt = (X1(t), . . . , XM(t)) describes the actual spatial
configuration of the system.

Consequently, measurements of observables such as energy, angular momentum, spin, etc. do not
reveal predetermined properties of the particles, because Bohmian mechanics does not admit them
as intrinsic properties of the particles to begin with. Similarly, a simple analysis of the theory shows
that a measurement of the momentum observable does not, except under special circumstances,
measure the instantaneous velocity of a particle. It is a crucial feature of the theory that the only
property of the particles is their position in space. The particles have a velocity, of course, but velocity
is nothing else than the change of position in time. The Bohmian velocity is not an observable
(see Dürr et al. [6] (Chapter 3.7.2) for a simple proof, but also Wiseman [10] for the possibility of weak
measurements; see [6] (Chapter 7) for a good discussion of both results). And velocity is not—in
contrast to the Newtonian case—a dynamical degree of freedom that can be specified independently of
the position, because the guiding law (1) is a first order differential equation, requiring only positions
as initial data.

The first and foremost role of the wave function is a dynamical one, namely to yield the motion
of the particles as output, given their positions as input. This explains the name “pilot-wave theory”
historically given to Bohm’s theory, as if the particles were literally guided or piloted by a wave in
physical space. This way of speaking, however, cannot be taken literally, since the wave function is
defined on configuration space; it is not a wave propagating in physical space (for the debate about
the status of the wave function in Bohmian mechanics, see [11]). Even in the special case when the
wave function of a subsystem happens to be an eigenstate ψα of a certain observable Â with eigenvalue
α—for instance after an ideal measurement—and it would be safe to say that “the particle possesses
a definite value of A”, this way of speaking is unwarranted. It should be replaced by the statement
that a (repeated) experiment, whose statistics is encoded in the operator Â, would yield the outcome
α with certainty; or simply by the statement that the effective wave function, guiding the motion of
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the system, is ψα. In summary, the validity of doctrine Q is not denied, but substantiated by Bohmian
mechanics on the basis of this theory recognizing only a position as a property of the physical system.

3. No-Hidden-Variables Theorems

The basic question that the no-hidden-variables theorems set out to address is whether the
probabilistic nature of the quantum formalism allows for an ignorance interpretation in the sense that
the measured values of quantum observables are in fact predetermined by additional parameters,
whose actual values, in individual runs of an experiment, are unknown to us, but whose statistical
distributions over a series of measurements reproduce the observed outcome statistics. In more formal
terms, the question is whether for any relevant family of quantum observables Â, B̂, Ĉ, . . . there exists
a corresponding family of random variables ZA, ZB, ZC, . . . on a common probability space Ω such
that the values of these random variables correspond to the possible measurement outcomes—that is,
the eigenvalues of the observable operators. Any ω ∈ Ω would then be a value of the hypothetical
hidden variable(s), determining the measurement values ZA(ω), ZB(ω), ZC(ω), . . ., and the quantum
predictions, for some quantum state ψ, would be reproduced by a probability distribution μψ over this
hidden variable, such as 〈ψ|Â|ψ〉 =

∫
Ω ZA(ω)dμψ(ω), etc.

A no-hidden-variables theorem is thus, in general, a result of the following form (cf. Dürr et al. [6]
(Chapter 3)):

There is no “good” map Â �→ ZA from the set of self-adjoint operators on a Hilbert space
H to random variables on a common probability space Ω such that the possible values of
ZA correspond to the eigenvalues of Â (that is, the possible measurement values).

The term “good map” is not quite precise, but deliberately so, for it is essentially on this
point—the requirements on the assignment Â �→ ZA—that the various no-hidden-variables
theorems differ.

3.1. Von Neumann

The first no-hidden-variables theorem was proven by von Neumann in his seminal 1932 book
Mathematische Grundlagen der Quantenmechanik ([12], English translation [13]). In this theorem, a “good”
map from observables to random variables was supposed to be linear, that is, in particular:

Â + B̂ �→ ZA+B = ZA + ZB. (3)

It is easy to see that such a map cannot exist, since, for non-commuting operators, the eigenvalues
of their sum are in general not sums of their eigenvalues. Von Neumann’s linearity assumption was
arguably motivated by the additivity of quantum mechanical expectations values (〈ψ|Â + B̂|ψ〉 =
〈ψ|Â|ψ〉+ 〈ψ|B̂|ψ〉 holds for all observables Â, B̂ and any state ψ), but is nowadays considered as
rather naive (Mermin [4] (pp. 805–806) calls it “silly”). As Mermin [4] (p. 806) points out, requiring
Equation (3) “is to ensure that a relation holds in the mean by imposing it case by case—a sufficient, but
hardly a necessary condition”. In addition, the physical significance of this assumption—in particular
for non-commuting observables that cannot even simultaneously measured—is rather obscure. If, let
us say, X̂ is the position and P̂ the momentum observable, what is a “measurement of X̂ + P̂” even
supposed to mean? For decades, von Neumann’s impossibility proof was a key element in the defense
of the quantum orthodoxy, but it started to fall apart rather quickly, once people began to study it
more systematically.

3.2. Kochen–Specker

The theorem of Kochen and Specker [14] was a considerable improvement because it makes
a requirement for the “goodness” of the assignment Â �→ ZA that seems a priori much more plausible:
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(NC) Whenever the quantum mechanical joint distribution of a set of self-adjoint operators
(A1, . . . , Am) exists, that is, when they form a commuting family, the joint distribution of
the corresponding set of random variables, that is, of (ZA1 , . . . , ZAm), must agree with the
quantum mechanical joint distribution.

This assumption actually implies that all algebraic identities that hold between the observable
operators must also hold between the random variables (e.g., if Â× B̂ = B̂× Â = Ĉ, it means that
the joint distribution is zero on the value set {(c 
= ab) | a, b, c eigenvalues of Â, B̂, Ĉ} and hence
ZA × ZB = ZC almost surely), but the condition is now only imposed on families of commuting
observables that can be jointly measured.

Families of commuting observables always have a common probability distribution (as random
variables on a classical probability space). So what could possibly go wrong? One can consider
an observable Â once as part of a commuting family (Â, B̂, Ĉ, . . .) and once as part of
a commuting family (Â, L̂, M̂, . . .) such that B̂, Ĉ, . . . and L̂, M̂, . . . are incompatible—that is,
non-commuting—with each other. Assumption (NC) would be trivial if the observable Â could
be associated with a random variable ZA, as part of the family (ZA, ZB, ZC, . . . ), and another
random variable Z̃A as part of the family (Z̃A, ZL, ZM, . . . ). The considered hidden-variables-schemes
presuppose, however, a rigid assignment Â �→ ZA, independent of the measurement context. In other
words, ZA must be the same, whether Â is measured together with B̂, Ĉ, . . . or together with L̂, M̂, . . . .
The crucial assumption underlying the no-go theorem of Kochen and Specker has thus been named
non-contextuality. The upshot is that non-contextual hidden variables are incompatible with the
predictions of quantum mechanics.

A particularly nice and simple proof is due to Mermin [4] (p. 810). It consists in the following
arrangement of 3× 3 observables on a four-dimensional Hilbert space:

σ1
x σ2

x σ1
x σ2

x ,

σ2
y σ1

y σ1
y σ2

y ,

σ1
x σ2

y σ2
x σ1

y σ1
z σ2

z .

Using the standard commutation relations of the Pauli-matrices (“spin observables”) and the fact
that the possible eigenvalues are ±1, it is easy to verify that:

(a) The observables in each of the three rows and each of the three columns are
mutually commuting.

(b) The product of the three observables in each of the three rows is 1.
(c) The product of the three observables in first two columns is 1, while the product of the right

column is −1.

Thus, no consistent assignment of predetermined values to the nine observables is possible,
since identity (b) would require the product of all nine values to be +1, while (c) would require it to be
−1. This proves the Kochen–Specker theorem.

3.3. Bell

One of the more tragic chapters in the history of quantum mechanics is that, for many defenders of
the supposed orthodoxy, Bell’s theorem (reprinted in Bell [2] (Chapter 2)) has replaced von Neumann’s
as the mathematical result that finally spells the dead for any “completion” of the quantum formalism.
Certainly, the physical significance of Bell’s theorem can hardly be overstated, but to understand it as
just another no-hidden-variables argument is to miss the point entirely. Bell himself has addressed the
misunderstanding on various occasions, for instance:
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My own first paper on this subject (Physics 1, 195 (1965)) starts with a summary of the EPR
argument from locality to deterministic hidden variables. However the commentators have
almost universally reported that it begins with deterministic hidden variables. (Bell [2]
(p. 157))

The point of Bell’s theorem is not hidden variables but nonlocality (see Maudlin [15] for an excellent
discussion). Bell’s analysis starts from the EPR argument that assumes locality and concludes that the
quantum formalism must be incomplete. EPR did indeed attack the quantum doctrine that observables
do not have predetermined values prior to measurement. In brief, they did so by noticing that,
when considering two entangled systems A and B, certain observable values of A can be determined
by measurements on the distant system B (and vice versa). However, this would presuppose some sort
of nonlocal influence unless these values were actually predetermined, prior to the measurement on the
distant system, by hidden variables (and thus only revealed rather than determined by our interaction
with the distant system).

Three decades later, Bell proved that even by introducing additional variables, the statistical
predictions of quantum mechanics cannot be reproduced without nonlocal influences. The conclusion
is thus that quantum mechanics is nonlocal, no matter what. In addition, since a substantial amount
of experimental evidence confirms the predictions of quantum mechanics, the conclusion is that any
correct theory of nature is nonlocal, no matter what. Nonlocality, in other words, is not the price
that we pay for introducing hidden variables. Hidden variables were Einstein’s hope for avoiding
the nonlocality of standard quantum mechanics, and Bell proved that this hope cannot be realized
because nonlocality is a fact of nature. Hence, using nonlocality as an argument against Bohmian
mechanics, or so-called ”hidden variables theories” in general, gets the issue completely wrong.
Quantum mechanics is nonlocal, and any extension of—or alternative to—quantum mechanics better
be nonlocal as well; otherwise, it is demonstrably wrong.

4. The Message of the Quantum

Thus, what is the upshot of the no-hidden-variables theorems? In this section, we consider some
common responses and briefly indicate why they are wrong-headed.

4.1. Completeness of Quantum Mechanics

The no-hidden-variables theorems are usually cited in support of the claim that standard quantum
mechanics is “complete”, that is, in particular, that the wave function or quantum state —with its role
in determining the probabilities of measurement outcomes—represents the complete physical state
of a quantum system. However, when used in this context, the traditional hidden variables program
seems to commit the following mistake that Einstein warned the young Heisenberg about:

I suspect that you will run into problems at exactly that part of your theory that we
just talked about . . . You pretend that you could leave everything as it is on the side of
observations, that is, that you could just talk in the former language about what physicists
observe. (Quoted after Heisenberg [16] (p. 89); translation by the authors.)

Indeed, the idea that physical observations must be reported in “classical language” (while the
same language is unable to provide an objective description of the microcosm) became one of the core
tenants of the so-called Copenhagen interpretation. This included the (at least tacit) assumption that
the relevant observables of quantum physics are just the familiar properties known from Newtonian
mechanics, or at least that the physical and ontological status of the properties, once measured, is the
same as had been generally assumed in classical physics, namely that the observables refer to intrinsic
properties of the physical systems. The no-hidden-variables theorems then show that the intrinsic
properties of physical systems, insofar as they are captured by observables, cannot have predetermined
values (unless one buys into undesirable consequences such as “contextuality” that seem to defeat the
purpose of assuming predetermined properties).
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However, this orthodox way of reading the no-hidden-variables theorems directly runs into
the two questions raised in Section 2: How do the quantum observables acquire definite values
upon measurement? What characterizes a physical system prior to—or better: independent
of—measurement? The “industry of no-go theorems” (Laudisa [17]) drives us towards the negative
conclusion of no predetermined values, but it does not provide an answer to these questions. Instead
of this reading of no predetermined values of intrinsic properties of physical systems, there also is
another, arguably more radical reading of the no-hidden-variables theorems possible: they tell us
that observables do not correspond to properties of physical systems at all, so that the question of
predetermined values of such properties does not even arise. This is the Bohmian reading, which then
does provide an answer to these questions.

4.2. Metaphysical Indeterminacy

Following the lead of mainstream physics, the philosophical literature has recently developed
a renewed interest in the concept of metaphysical indeterminacy, which is intended in this context
to capture the idea that the values of quantum observables, prior to measurement, are not merely
unknown but, in a metaphysically robust sense, unspecified. According to Calosi and Wilson [18],
properties of quantum systems are metaphysically indeterminate in the sense that they have
a determinable property without a unique corresponding determinate. Thus, an electron, for instance,
possesses a determinable property “spin”, but its value is indeterminate until we actually measure it.

In contrast, and arguing against the concept of metaphysical indeterminacy, Glick [19] (p. 207)
proposes what he calls a “sparse view” of standard quantum mechanics:

Sparse view: when the quantum state of A is not in an eigenstate of Ô, it lacks both the
determinate and determinable properties associated with Ô.

Obviously, none of these views does anything to address the measurement problem, that is,
to clarify how a measurement turns an indeterminate—or non-existent—property of a physical system
into a determinate one. In addition, while this is not the issue of this particular philosophical discussion,
it certainly is dubious to base metaphysics on imprecise or even inconsistent physics.

Bohmian mechanics, by contrast, shows that there is no work to do for a concept of metaphysical
indeterminacy: the state of a physical system is completely and precisely determined, at any moment
in time, by the actual particle positions and the wave function, fixing how the positions change in time.
Furthermore, this theory supports a metaphysical view that is even sparser than the one advocated
by Glick: neither the determinate nor the determinable property associated with an observable Ô is
part of the ontology, independent of whether or not the quantum state of a system is an eigenstate or
not. The only property that particles have—and need—is a position in physical space (see Esfeld and
Deckert [20] for an elaboration on a sparse ontology in that sense).

4.3. Quantum Logic

One of the more audacious claims in support of which the no-hidden-variables theorems are
employed is that quantum mechanics compels us to give up classical logic in favor of a new quantum
logic. It is easy to see where this idea comes from. If we consider the simple example of spin
(for a spin-1/2-particle, to be discussed in detail in Section 5), it is tempting to assign to the proposition

q ∨ ¬q: The particle has z-spin up or z-spin down

the truth-value true. However, according to the doctrine Q, neither

q: The particle has z-spin up

nor

¬q: The particle has z-spin down
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can be considered true prior to a measurement or unless the particle happens to be in a z-spin eigenstate.
Since Quine’s seminal paper “Two dogmas of empiricism” [21], it is widely accepted in philosophy

that not even a revision of the rules of logic is out of bounds when adjusting a theoretical system to
new empirical evidence, though they are the last knob to turn. In that vein, the first and most
important objection to quantum logic (as a proposal for the “true” logic of the physical world)
is not that it is a priori absurd, but that it is hardly justified by theoretical or explanatory merits.
Giving up on classical logic does nothing to address the two crucial questions formulated in Section 2.
The various proposed systems of “quantum logic” are merely modeled on the standard theory and
thus inherit all its problems—including the measurement problem. In particular, changing a logical
formalism does not elucidate the ontology of quantum mechanics, nor does it provide for a physical
account of when and why propositions involving quantum observables acquire definitive truth values.
Conversely, the example of Bohmian mechanics shows that once we have a clear ontology, and take
the measurement process seriously as part of the theory, no departure from classical logic is called for.

5. Measurements in Bohmian Mechanics: Spin

In this section, we explain how Bohmian mechanics treats measurement experiments, how this
treatment supports doctrine Q and what the consequences for the status of observables are.

5.1. The Bohmian Treatment of the Measurement Process

The solution to the measurement problem offered by Bohmian mechanics comes from a simple
idea: to describe quantum mechanically also the experimental devices, since macroscopic objects are
composed of microscopic objects. Thus, to describe experimental situations in Bohmian mechanics,
we split the total configuration (of, in the last resort, the entire universe) into (X, Y) ∈ R3M ×R3(N−M)

where the former variable refers to the particle configuration of the investigated M-particle sub-system
and the latter to the configuration of the environment, which includes the particles of the measurement
device registering the outcomes in “pointer positions”. Fundamentally, in the Bohmian theory, there is
only one wave function, the universal wave function Ψ = Ψ(x, y), guiding all the particles together
(the lower case variables refer to the possible configurations—Ψ is a function on the entire configuration
space—in contrast to the actual configurations denoted by upper case letters). However, by inserting
the actual configuration of the environment at time t, we get a conditional wave function, which is
a function of the degrees of freedom of the sub-system only:

ψt(x) := Ψt(x, Yt). (4)

This conditional wave function is always well-defined but not very useful in practice, since it has
a non-trivial dependence on the exact configuration of the environment. However, in some situations,
when the universal wave function takes the form

Ψ(x, y) = ψ(x)Φ(y) + Ψ⊥(x, y), (5)

where Φ(y) and Ψ⊥(x, y) have macroscopically disjoint support in the y-variables and Yt ∈ supp Φ,
i.e., Ψ⊥(x, Yt) = 0 ∀x, we can for all practical purposes forget about the “empty” wave Ψ⊥ and
provide an autonomous description of the subsystem in terms of the effective wave function ψ, which is
the Bohmian analog to the usual wave function used in textbook quantum mechanics. Now, let
us consider an ideal measurement associated with an “observable” with eigenvalues α1, . . . , αn and

corresponding eigenstates ϕ1, . . . , ϕn. In general, ψ will be a superposition ψ =
n
∑

i=1
ci ϕi, ci ∈ C.

Under the Schrödinger evolution—after the subsystem has coupled to the measurement device in the
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course of the measurement process—the state of system + environment (ignoring again the empty part
of the wave function Ψ⊥) will thus have the form

Ψ(x, y) =
n

∑
i=1

ci ϕi(x)Φi(y), (6)

where the environment states Φi are concentrated, in particular, on different pointer configurations,
indicating the measurement outcomes αi, and have therefore pairwise disjoint supports in configuration
space. Note that it is only for simplicity that we do not distinguish between the degrees of freedom of
the measurement device and the rest of the universe, subsuming both in the “environment” (y-system).
However, the actual configuration Y of the universe (pointer) will lie inside only one of the branches,
let us say Y ∈ supp Φk. Hence, the actual pointer configuration will indicate the measurement
outcome αk and the new effective (=conditional) wave function of the subsystem becomes
ψY(x) = ck ϕk(x)Φk(Y) =̂ ϕk after normalization. Hence, while the universal wave function always
evolves according to the linear Schrödinger equation, the effective wave function automatically
collapses into the eigenstate corresponding to the registered measurement result (for a detailed
exposition see Dürr and Teufel [22] (Chapter 9)).

This account notably has the following five features:

1. There never are superpositions of anything in physical space. All there is in physical space
are particle configurations with always definite positions. Thus, Schrödinger’s cat always is in
a configuration of either a live cat or a dead cat. Superpositions concern only the wave function
in physical space in its role to determine the trajectories on which the particles move.

2. Consequently, quantum logic is irrelevant when it comes to an account of measurement:
the particle configuration belongs unambiguously to one of the possible supports of the wave
function, which in turn correspond to macroscopically different components of the experimental
device, determining in this way the final outcome of the observation at hand.

3. Nevertheless, there is entanglement in physical space: the motion of any particle depends on,
strictly speaking, the positions of all the other particles in the universe via the wave function.
Thus, for instance, in the double slit experiment, the motion of any particle after having passed one
slit depends on the position of all the particles making up the experimental set-up, in particular
on whether or not the other slit is open. This is the way in which Bohmian mechanics implements
the quantum nonlocality proven by Bell’s theorem. The consequence is that the trajectories of the
particles often are highly non-classical.

4. A measurement is an interaction that will in general change the wave function of
the measured system. “Incompatible measurements”—corresponding to non-commuting
observables—are simply experiments in which the first measurement interaction changes the
wave function in a way that influences the statistics of the second, etc.

5. The fact that we cannot go beyond Born’s rule in making predictions is explained not by
any indeterminacy of the properties of the particles, or any indeterminism of the dynamics,
but by the fact that we cannot have more precise knowledge of the initial particle configuration.
As mentioned in Section 2, in Bohmian mechanics, Born’s rule is derived from the laws of motion
plus a probability (more precisely: typicality) measure linked with these laws.

Once “measurements” and “observations” are no longer treated as primitive but as physical
processes, to be analyzed on the basis of a precise microscopic theory, it turns out that the quantum
orthodoxy was right about the fact that measurements do not reveal preexisting values of observables,
but wrong about the idea that these observables correspond to properties of physical systems.
The important contrast between classical and quantum mechanics that the no-hidden-variables
theorems reveal is thus not that quantum phenomena are irreducibly random, but rather that quantum
phenomena are at odds with a metaphysics of intrinsic properties that classical mechanics did not
necessitate but indulge.
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5.2. What Is Measured in a Spin Measurement?

Let us now discuss a Stern–Gerlach spin measurement, as the simplest but maybe most
instructive example of a measurement process in Bohmian mechanics. In this famous experiment,
a spin-1/2-particle (originally a silver atom) is sent through an inhomogeneous magnetic field
(Stern–Gerlach magnet) and then registered on a detector screen, where one observes a deviation
perpendicular to the flight direction and parallel or anti-parallel to the gradient of the magnetic field.

To describe the experiment theoretically, we consider the propagation of a concentrated
wave packet

Φ0 = ϕ0(z)
(

α

(
1
0

)
+ β

(
0
1

))
(7)

through an inhomogeneous magnetic field with the gradient in the z-direction. We ignore the
components of the wave-function in the x, y-directions and the spatial spreading of the wave function,
assuming that the flight time is reasonably short. A straightforward computation using the Pauli
equation (which is the non-relativistic limit of the Dirac equation, describing the time evolution of a
spinor-valued wave function in an external electromagnetic field) then shows that the equations for
the two spin-components decouple and that each acquires a phase

Φ(n)(τ) = exp[i(−1)n+1 μbτ

h̄
z]Φ

(n)
0 ,

where τ is the time spent in the magnetic field, corresponding to a group velocity of

vz = (−1)n+1 μbτ

m
.

The inhomogeneous magnetic field thus leads to a spatial separation of the wave packets,
corresponding to the spin-components: The wave packet Φ(1)(t) = αϕ1(t, z)(1

0) propagates in the
positive z-direction (in the direction of the gradient of the magnetic field) and the wave packet
Φ(2)(t) = βϕ2(t, z)(0

1) in the negative z-direction. Assuming that the two wave packets remain
reasonably well localized, they will have approximately disjoint supports after a little while, that is,
Φ(1) is concentrated above the symmetry axis and Φ(2) below. It is important to emphasize that this is
purely a result of the Schrödinger (respectively Pauli) time evolution, which is part of every quantum
theory, independent of interpretative issues.

However, in Bohmian mechanics (and only there), it now makes sense to ask whether the particle
moves upwards—guided by the wave packet Φ(1)—or downwards, guided by the wave packet Φ(2).
In the first case, it would hit a detector screen above the symmetry axis and one says that “the particle
has z-spin up”; in the second case, it would hit a detector screen below the symmetry axis and one
says that “the particle has z-spin down”. However, this is a rather unfortunate way of speaking.
Spin is not a property that the particle possesses over and above its position. To “have” spin up or
spin down means nothing more and nothing less than to be guided by the part of the wave function
that corresponds to the upper or lower spinor-component (in the z-spin basis)—that is, to move, in the
pertinent measurement context, in the respective way. In other words: spin is a degree of freedom of
the wave function (related to its transformation under rotations) that manifests itself, under certain
circumstances, in a particular kind of particle motion. As such, it belongs to the dynamical structure of
the theory, not to the ontology of objects in physical space (see also Bell [2] (Chapter 4) and Norsen [23]).

According to Born’s rule for the particle positions, we can compute the probability of finding the
particle with “spin up”, that is, in the support of Φ(1), or “spin down”, that is, in the support of Φ(2) as:

P(“z-spin up”) = P(X ∈ supp Φ(1)) =
∫

supp Φ(1)
|Φ(1)(t, z)|2dz = |α|2,

P(“z-spin down”) = P(X ∈ supp Φ(2)) =
∫

supp Φ(2)
|Φ(2)(t, z)|2dz = |β|2.

(8)
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Obviously, these probabilities can already be computed from the initial state, using the projections
on the respective spin-components:

P(“z-spin up”) = 〈Φ0| ↑〉〈↑ |Φ0〉 = |α|2,

P(“z-spin down”) = 〈Φ0| ↓〉〈↓ |Φ0〉 = |β|2.
(9)

Finally, assigning to “spin up” and “spin down” the numerical values ± h̄
2 , the expectation value

is computed as
h̄
2
〈Φ0|

(
|↑〉〈↑| − |↓〉〈↓|

)
|Φ0〉 =

h̄
2
〈Φ0|σz|Φ0〉. (10)

In standard quantum mechanics, the operator h̄
2 σz has developed a certain life of its own as

the “spin observable”. The Bohmian analysis reveals it to be nothing more and nothing less than
a convenient book-keeper of the measurement statistics (for a general discussion of observables and
operators in Bohmian mechanics, see Dürr et al. [6]) (Chapter 3). We should note that the example of
spin is particular in Bohmian mechanics in that the statistical analysis does not require the coupling to
a measurement device. It makes sense to ask whether the particle moves upwards or downwards after
passing the Stern–Gerlach magnet, without considering a screen or detector in which its position is
finally recorded. In many cases, though, the “observable values” have meaning only insofar as their
are registered in some sort of “pointer” configuration.

It is interesting to observe that all precise formulations of quantum mechanics, which solve the
measurement problem, agree on this basic point that the measured values are produced rather than
revealed by the interaction between system and measurement device. According to spontaneous collapse
theories (such as the Ghirardi–Rimini–Weber (GRW) theory), it is the Stern–Gerlach magnet that causes
the wave packets to separate and the subsequent coupling to a detector (screen) that (very very likely)
causes a collapse and forces the system to go into one of the possible outcomes. According to the more
sophisticated versions of many-worlds, it is the splitting of the wave packets in the Stern–Gerlach
magnet and the subsequent interaction with a detector that leads to decoherence and a branching into
“worlds”, in which the detector has registered “spin up” and “spin down”, respectively.

Only in Bohmian mechanics, however, is a unique measurement outcome determined by
the initial position of the particle and the deterministic law of motion (Collapse theories are
fundamentally stochastic, while, in many-worlds theories, measurements do not have unique
outcomes). That notwithstanding, it would be misleading to say that the particle possesses
a predetermined spin, irrespective of the measurement context. In particular, what we end up
calling the “spin value” is a number that encodes the result of the measurement interaction—how the
particle moves after passing the magnetic field—by contrast to an additional physical quantity that
determines it.

5.3. Is Bohmian Mechanics “Contextual”?

In fact, this confusion between “predetermined outcomes” and “predetermined properties” is all
there is to the discussion of contextuality in Bohmian mechanics. What this theory rejects is the “naive
realism about operators” or observables (Daumer et al. [24])—these unholy and categorically confused
amalgams of self-adjoint operators, physical properties, and observed data points. As mentioned
before, observables play no fundamental role in the theory; they merely arise, in a statistical analysis,
as book-keepers of outcome statistics. Consequently, they are not properties of anything. It is simply
wrong, and giving rise to further confusion, to call them “contextual properties” of physical systems.
In fact, different experimental setups associated with the same “observable” may have nothing in
common besides the fact that they are associated with the same statistical book-keeping operator.

To illustrate this point, let us return to Mermin’s proof of the Kochen–Specker theorem
(see Section 3.2) and focus, for instance, on the observable σ1

x σ2
x in the upper right corner of his scheme.

This observable can be trivially measured together with σ1
x and σ2

x : Take two spin-1/2-particles and
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measure their x-spin separately in the way described above. Assign the value +1 if the particle moves
in positive x-direction and −1 if the particle moves in negative x-direction and compute the product
of the outcome values to obtain “the value of σ1

x σ2
x”. However how to measure σ1

x σ2
x together with

σ1
y σ2

y and σ1
z σ2

z ? We have no idea, actually. In any case, one cannot simply measure the x-spin of
particle 1 and 2 separately, as before, since this would preclude the simultaneous measurement of σ1

y σ2
y

and σ1
z σ2

z . Hence, whatever an experimentalist would have to do to perform a joint measurement of
(σ1

x σ2
x , σ1

y σ2
y , σ1

z σ2
z )—and whatever the physical significance of this measurement might be—it certainly

requires a completely different experiment than the measurement of (σ1
x , σ2

x , σ1
x σ2

x).
In Bohmian mechanics, the initial state (wave-function + positions) of the particles (possibly

together with the initial state of the experimental setup) would determine the outcome of
“the σ1

x σ2
x -measurement” in both experiments, but there is simply no reason why these outcomes must

in every case agree. A disagreement would be troubling only if one assumed that the particles actually
have a preexisting σ1

x σ2
x -property that both experiments are supposed to reveal by different methods.

However this is just not the case in Bohmian mechanics. Furthermore, taking the physical situation
seriously, there is no reason why it should be the case in any reasonable theory. As Goldstein [25]
notes: “If we avoid naive realism about operators, contextuality amounts to little more than the rather
unremarkable observation that results of experiments should depend on how they are performed . . . ”.

5.4. Why Measurements?

Nonetheless, since, according to Bohmian mechanics, the outcome of any measurement is
determined by the initial state of the system (or at least of system + apparatus), the measurement
outcome does reveal a certain amount of information about the state of the system prior to
measurement. In fact, in some cases, the Bohmian theory allows us to infer significantly more
information about the measured system than standard quantum mechanics does. If we consider,
for instance, a z-spin measurement on a particle in the spin state 1√

2
(| ↑z〉+ | ↓z〉) and assume that the

setup is reasonably symmetric about the incident axis, we can infer from the “no-crossing property”
of Bohmian trajectories that if a particle hits the screen above/below the symmetry axis (corresponding
to z-spin up or z-spin down, respectively), its initial position must have been above/below the
symmetry axis as well.

In general, though, a quantum experiment provides more information about the state of the
system after the measurement process. In particular, if we perform an ideal (projective) measurement
and find a non-degenerate eigenvalue α of some observable Â, we know that the effective quantum
state of the system after the measurement is the corresponding eigenstate ψα. According to Bohmian
mechanics, this quantum state is an objective physical degree of freedom of the system (in accordance
with the Pusey–Barrett–Rudolph (PBR) theorem [26]), providing statistical information about the
particle configuration and determining its state of motion. It is thus highly informative about the
future behavior of the system. Note, however, that it would be wrongheaded to interpret the effective
quantum state as an additional intrinsic property of the particles, a) because one can, in general, assign a
wave function only to the subsystem as a whole but not to each particle individually (non-separability)
and b) because the effective wave function depends—implicitly—on the universal wave function and
the configuration of all the other particles in the universe (cf. Equations (4) and (5)).

Orthodox quantum mechanics agrees that a measurement provides, in general, more information
about the post-measurement state of the system, but would, strictly speaking, disagree on what the
information is actually about. The disagreement can be summarized as follows: According to Bohmian
mechanics, the “observable values” are best understood as encoding information about the quantum
state (i.e. the dynamical state) of the system, while according to standard quantum mechanics (or at
least most versions thereof), the quantum state is understood as encoding information about the
observable values. What makes the Bohmian view more coherent is the fact that the observable values
per se—in contrast to the quantum state—have no causal role within the theory (except maybe for
conserved quantities, but even those get their physical significance mostly in the “classical limit”).
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To appreciate this point, it might be helpful to engage in a little thought exercise: Suppose we write
down some abstract self-adjoint operator Â on a Hilbert space and tell you that a certain physical
system (an electron, let us say) has the value α of this “observable”. What information have we actually
given you about the world? How would you (or any other physical system) have to interact with the
electron to “notice” that it has the Â-value α rather than α′? Try to answer these questions by taking
the physical theory seriously, whatever you consider quantum theory to be.

6. Are Observables Observable?

The suggestive but misleading terminology of “measuring an observable” has not only lead to
a naive realism, but also to a naive empiricism about observables in quantum mechanics. It is usually
taken for granted that all empirical data underlying quantum physics consist in measured values
of observables, represented by—or corresponding to—self-adjoint operators. Against this backdrop,
our previous analysis seems to lead to a certain dilemma. Since the measured values of quantum
observables are emergent in a measurement process, they must emerge from an underlying ontology
that is not itself characterized in terms of definite values of quantum observables. This seems to leave
us with two possible options:

1. The physical properties are not observable.
2. The physical properties are a small subset of the observables (small enough to avoid the

no-hidden-variables results).

Both options invite criticism. In the first case, the underlying ontology would have no direct
empirical basis. The second option is open to the charge of arbitrariness, as it seems to reify some
observable properties but not others that have the same empirical status. In fact, both lines of attack
are occasionally used against Bohmian mechanics, the first in form of the claim that “the Bohmian
trajectories cannot be observed”, the second in form of the question “why take the position as your
‘hidden variable’ and not something else?”. While some interesting remarks could be made in response
to these objections, we want to take a step back and question the basic assumption that the “observables”
are somehow a priori given as fundamental objects of empirical observation.

Consider the following image (Figure 1) from an original Stern–Gerlach experiment, reported as
the first experimental observation of a “quantized direction (Richtungsquantelung)” of the angular
momentum/magnetic moment of atoms in an external magnetic field (Gerlach and Stern [27]).
Should we say that what was actually observed in this experiment—what the empirical data consists
in—is the particles’ spin?

Figure 1. Pattern created by a ray of silver atoms in the original Stern–Gerlach experiment: left: without,
right: with magnetic field.

Evidently, our more immediate observation is that of dark marks on a screen, the “non-classical
two-valuedness” being manifested in the distinct separation of the arcs on both sides of the symmetry
axis, when the magnetic field is turned on. In addition, evidently, the statistics of “spin up” and “spin

128



Entropy 2018, 20, 381

down” (deviation to the right/left) alone are too coarse-grained to capture all observable details of
the pattern.

However, this now puts the orthodox view in a predicament. Either quantum mechanics could
describe the experiment, in more detail, as series of position measurements (the points of impact
of the atoms building up the pattern on the screen); then, the spin observable is redundant or,
at least, derivative upon the observable “position”—or standard quantum mechanics somehow
compels us to describe this experiment as a measurement of “spin”. Then, the theory is empirically
incomplete, since it cannot—even statistically and in principle—account for all observable details of
the experimental outcome.

In general, all that we observe are the positions of discrete objects and the change of these positions.
Of course, there is more to these discrete objects than their mere positions, that is, spatial relationships
and change of these relationships. They notably have different colors, which makes it possible to
discern them in perception. However, color perception is not an observable that figures in any physical
theory, and the quantum observables do not help us to come up with an account of color perception.
In electromagnetism, “colors” are identified with certain wavelengths in the electromagnetic field.
However, the electromagnetic field should be first and foremost understood in terms of its role for the
motion of particles (and be it particles in our visual receptors). In other words, we do not observe fields,
but only certain patterns of motion that we explain and calculate in terms of fields (cf. Lazarovici [28]).
For classical electrodynamics, even a field free formulation is available, namely the one of Wheeler
and Feynman [29], which may have a number of drawbacks, but certainly does not fail for the reason
that it denies alleged field observations. By the same token, even in the case of the gravitational waves
detected by LIGO (Laser Interferometer Gravitational-Wave Observatory) in 2016, all the evidence is
evidence of change in the relative positions of particles, which is then mathematically described in
terms of a wave rippling through the gravitational field.

Bell [2] (p. 166) considered it to be the first and foremost lesson of Bohmian mechanics that

in physics the only observations we must consider are position observations, if only the
positions of instrument pointers. It is a great merit of the de Broglie–Bohm picture to force
us to consider this fact. If you make axioms, rather than definitions and theorems, about
the “measurement” of anything else, then you commit redundancy and risk inconsistency.

This crucial point applies to the whole of physics. Also in classical mechanics, we do not observe
mass when we observe gravitational attraction, and we do not literally see angular momentum when
we notice the regular motion of the moon around the earth. What we observe is just that: certain
regularities in the motion of matter, which are captured by the dynamical structure of the theory.

Hence, even in classical physics, quantities like energy, momentum, angular momentum, etc.
get their meaning and relevance from what they tell us about the way matter moves. The same applies
also to the classical parameters of mass and charge. Ernst Mach [30] (p. 241) highlighted this issue
when he emphasized in his comment on Newton’s Principia that “The true definition of mass can be
deduced only from the dynamical relations of bodies”. In Bohmian mechanics, then, the way matter
moves is encoded in the wave function, making all additional properties unnecessary or redundant
(mass and charge, as well, are best understood as situated on the level of the wave function, instead
of being intrinsic properties of the particles, see most recently Pylkkänen [31] and Esfeld et al. [32]).
This is the basic reason why Bohmian mechanics endorses doctrine Q. In that respect, the lesson of
the no-hidden-variables theorems is that in quantum mechanics, one cannot treat the observables as
properties of the physical systems, whereas in classical mechanics, one does not run into a problem with
the physics if one regards quantities like energy, momentum, angular momentum, etc. as properties of
the physical systems (although there is no cogent reason to do so in classical physics either).

Any quantum theory that admits what is known as a primitive ontology of matter in physical
space privileges position—be it the position of permanent particles as in the Bohm theory, be it the
value of the density of matter at the points of physical space as in the GRWm theory, or be it single
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events (flashes) occurring at some points of space as in the GRWf theory (see Allori et al. [33]). In all
these theories, the quantum observables are construed on the basis of the positions of objects, namely
in terms of how these positions behave in certain experimental contexts. Also in the many worlds
theory, which does not recognize a primitive ontology of matter in physical space, but proposes an
ontology in terms of the universal wave function, position is privileged: it is the position basis in
which the wave function decoheres, splitting into different branches, which constitute “many worlds”
on this view.

7. Conclusions

What we perceive with the naked eye are the positions of macroscopic objects. However, we
know from scientific experience that the macroscopic objects are composed of discrete microscopic
objects. If the macroscopic objects have precise positions when we observe them, so do the microscopic
objects. There is no coherent theory of a magic power of the mind to change macroscopic objects in
such a way that they acquire positions only when a being with a mind perceives them. Thus, the
macroscopic objects better have positions independently of someone observing them. If not the moon,
so surely the desk in my office is there also when I do not observe it. However then it follows that
also the microscopic objects that compose these macroscopic objects do have positions independently
of them being observed. Again, there is no coherent theory according to which there is something
special about the microscopic objects that compose my desk and the like. Thus, the conclusion is that
the microscopic objects tout court have a position independently of them being observed.

Bohmian mechanics shows how to build a quantum theory on this simple and obvious reasoning.
Superpositions then concern only the parameter that encodes the dynamics of the particles, namely the
wave function, but not the particles themselves. This insight is the key to answering the two questions
raised at the beginning of this paper and to avoid all the puzzles of standard quantum mechanics,
such as notably the measurement problem. However, as it is trivial that physical objects have positions,
so it is trivial that in order to access these positions, we have to interact with these objects and thereby
change their positions. Generally speaking, for one particle configuration, say a macroscopic object,
to contain information about the positions of other particles, there must be a correlation between
them, which is, furthermore, reliable in the sense of being reproducible. This applies in particular
to correlations between particle configurations in human brains and particles outside the brains,
assuming that all the perceptual knowledge that persons acquire passes through their brains.

Hence, for reasons stemming from the very way in which we acquire knowledge about the natural
world, a limited accessibility of physical objects is to be expected. In that sense, classical mechanics is
an idealization, and quantum mechanics brings out that limitation on our knowledge. In Bohmian
mechanics, this is done in the theorem of “absolute uncertainty” (Dürr et al. [6] (Chapter 2)), stating
that we cannot have more information about the actual particle configuration of a sub-system than
what is provided by the |ψ|2-distribution in terms of its effective wave function. That notwithstanding,
there is, of course, no question of an a priori deduction of this theorem—or the Heisenberg uncertainty
relations—from general conditions of our knowledge. It is just that some principled limit on our
knowledge of particular matters of fact—such as initial conditions of physical systems—is to
be expected.

If the evolution of the physical systems is highly sensitive to slight variations in their initial
conditions, as is the case with quantum systems, it then follows that in general we can only make
statistical predictions about the behavior of ensembles of physical systems prepared under the same
conditions, but not predictions about the evolution of an individual system, although the laws of
motion that govern the evolution of these systems can be fully deterministic (cf. Oldofredi et al. [34]).
Again, classical mechanics is deceptively generous in this respect, and quantum mechanics brings out
a fact that turns out to be trivial upon reflection (and actually comes out already in classical statistical
mechanics): deterministic laws require a probability measure to yield predictions, which then are
statistical. However, all these are facts about epistemology, the theory of knowledge—as the word
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“uncertainty relations” clearly brings out, and not about ontology, that is, about what there is in
the world.

Nonetheless, the no-hidden-variables theorems have a great merit: they tell us that a sparse
ontology of positions is not just good metaphysics, but strongly suggested by our best theory of physics.
In classical mechanics, one can attribute dynamical parameters and all sorts of “observables”, which are
functions of the particle positions and momenta, as intrinsic properties to the particles. This does
not lead to conflict with the phenomena because the active role of the measurement process—both in
producing the data and in changing the state of the measured system—can be usually neglected in the
classical regime. In quantum mechanics, as we have seen, the situation is markedly different. The moral
then is of course not that there is nothing if one cannot go from observables to ontology, but that one
has to start with conceiving a—provisional, hypothetical—ontology for whose evolution the dynamical
parameters then are formulated. The guideline for this is the experimental evidence together with the
coherence and explanatory fruitfulness of the proposed ontology. Bohmian mechanics shows how the
simplest suggestion in that respect—the evidence of discrete objects and their composition by discrete
micro-objects suggesting to try out a particle ontology—can go through also in the quantum case and
yield all the explanations that one can reasonably demand.

In a nutshell, the lesson of the no-hidden-variables theorems is that it is position only when it
comes to the ontology of the physical world, and Bohmian mechanics teaches us how to do physics on
that basis (see Esfeld and Deckert [20] for a general treatment of that insight from classical mechanics
to quantum field theory). Note that this is not about classical vs. quantum. The ontology neither is
classical nor quantum. The dynamics may be classical (as in local field theories) or quantum. What a
quantum dynamics has to be subsequent to Bell’s theorem is clearly brought out by the nonlocality
implemented in the Bohm theory. There is no a priori explanation of why the dynamics of the world is
nonlocal. However, this nonlocality fundamentally deviates from the ideas that drive classical field
theory, showing a profound interconnectedness (holism) of the things in the universe.
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Abstract: We discuss a common misconception regarding the de Broglie–Bohm (dBB) theory; namely,
that it not only assigns a position to each quantum object but also contains the momenta as “hidden
variables”. Sometimes this alleged property of the theory is even used to argue that the dBB theory is
inconsistent with quantum theory. We explain why this claim is unfounded and show in particular
how this misconception veils the true novelty of the dBB theory.
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1. Introduction

Bohm’s interpretation of quantum theory [1] is an example for a (non-local) hidden variable theory
which avoids the notorious measurement problem of quantum mechanics. It is usually assumed that
this theory reproduces all predictions of ordinary quantum theory. Some times this claim is qualified
by the remark “as long as the latter are unambiguous” (see e.g., [2]). This refers e.g., to the fact that the
quantum mechanical predictions regarding “time” (e.g., the “arrival time” or the “tunneling time”)
are problematic.

However, there is a common misconception with regard to the question which quantities exactly
are promoted to the “hidden variable” status. For example Mario Bunge writes ([3], p. 453):

“In particular, Bohm enriched standard non-relativistic quantum mechanics with a classical
position coordinate and the corresponding momentum [...].”

While it is true that Bohmian mechanics assigns a well defined position to each quantum object
at any moment, this quote suggests, that each particle possesses also a well defined momentum.
Given that a well defined position apparently translates into a velocity which may be multiplied with
the mass of the corresponding object (say, the electron) this claim is seemingly very natural. However,
it turns out to be wrong nevertheless. At the same time this alleged property of Bohmian mechanics
has been used to argue that this theory is inconsistent with quantum theory. An argument along these
lines was recently given by Michael Nauenberg [4]. We think that the explanation why this charge
is unfounded provides a good opportunity to combat certain long-standing prejudices surrounding
the Bohm interpretation. In addition it provides a opportunity to unveil what we take to be the true
novelty of the Bohm theory.

In Section 2 we will briefly outline the basics of the Bohm theory. Section 3 contains the most recent
example for the criticism outlined above, namely the interesting contribution of Michael Nauenberg [4].
Section 4 explains the underlying misconception on which these claims are based. Finally, we will
summarize our discussion in Section 5.

2. A (Very) Brief Introduction to the dBB Theory

In Bohm’s interpretation a system of N particles is described by the wave function (i.e., the solution
of the corresponding Schrödinger equation) and the configuration qk, i.e., the actual positions of the
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quantum objects. Thus, Bohm has to add an “equation of motion” or “guiding equation” for the
positions to the formalism. Assuming a wave function, ψ = R exp(iS/h̄), the guiding equation for the
position q of a spin-less particle takes (in the 1-particle case) the form:

dq
dt

=
�∇S
m

. (1)

Note, that this equation is of first order in time, i.e., the initial configuration alone fixes the motion
uniquely. The generalization to the many particle case and including spin is straightforward [5].
Choosing initial conditions for the position according to Born’s rule (i.e., ρ = |ψ|2) the
continuity equation

dρ

dt
+∇j = 0 (2)

with the usual quantum mechanical probability current

j =
h̄

2mi
[ψ∗(∇ψ)− (∇ψ∗)ψ] (3)

= ρ
∇S
m

(4)

ensures that the positions remain |ψ|2 distributed. Hence, in terms of position any measurement
yields exactly the result of the standard formalism. Thus, the guidance equation is consistent with the
requirements of quantum mechanics. An other way to bring out the difference between ordinary QM
and the dBB theory is the following: In QM the probability current refers to the probability to measure
a certain position. Within the dBB theory it can be viewed as the probability of the particle to be at a
certain position—independent of any measurement. The different strategies to explain why the |ψ|2
distribution holds initially are critically examined by Norsen [6].

We may add a remark with respect to further references which provide a full exposition. Bohm’s
work was essentially an independent re-discovery of work that was done by Louis de Broglie already
in the 1920s [7]. Thus the term “de Broglie–Bohm” (dBB) theory is more appropriate. Further more
there are different schools of the dBB theory. While [5] presents a version called “Bohmian mechanics”,
the books by Bohm and Hiley or Holland [8,9] stick closer to the original presentation of Bohm from
1952 [1]; sometimes called “ontological” or “causal” interpretation of quantum mechanics. However,
these distinctions play a minor role in what follows.

3. The Asymmetry between Position and Momentum

We now turn to the criticism mentioned above, which arises if the special role of the position
observable within the de Broglie–Bohm theory is not taken into account. Reference [4] claims that
the equivalence holds only in the “coordinate representation” while moving into the “momentum
representation” leads to conflicting results. To reach this conclusion it introduces the “velocity operator”
(i.e., the momentum operator divided by the mass):

�v = − ih̄
m
�∇q. (5)

The author investigates the expectation value of this operator (in particular its second moment)
and finds a result which differs from the second moment of the expression v = ∇S

m , i.e., the velocity of
the Bohmian particles (called �vB by this author). In [4] it is further claimed that this feature has gone
unnoticed by the recent literature on the Bohm interpretation and we will come to this point shortly.

Reference [4] discusses as a specific example the velocity of a Bohmian particle for stationary
solutions with vanishing phase, i.e., described by real wave functions. Such wave functions describe
for example the electron in the ground state of the hydrogen or the energy eigenstates of the quantum
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mechanical harmonic oscillator. In all these cases the velocity vanishes (v = ∇S
m = 0). Examples like

this are among the oldest objections raised against the Bohm interpretation [10]. Already in 1953
Einstein discussed a particle-in-a-box example with vanishing velocity. Clearly, that these examples
are old calls into question the originality of this argument but as such not its soundness. Interestingly,
Einstein did not conclude that the Bohm interpretation is in contradiction with quantum mechanics
but finds fault with it since [11]:

“The vanishing of the velocity contradicts the well-founded requirement, that in the case of
a macro-system the motion should agree approximately with the motion following from
classical mechanics.”

Now, Reference [4] goes a step further and claims the refutation of Bohm’s interpretation:

“But this result contradicts the fact that in quantum mechanics the velocity or momentum
distribution for stationary solutions, given by the absolute square of the Fourier transform
of ψ in coordinate space, is not a delta function at �v = 0, as is implied by Bohm’s
interpretation.” (p. 44)

Before we turn to the question why this statement is unfounded we may note that along similar
lines the argument could have been developed further. Comparing the expectation values for the kinetic

energy with the expression 〈mv2
B

2 〉 or the angular momentum with the alleged Bohmian prediction
“�L = �r × m�vB” would have yielded a host of “predictions” which differ from the corresponding
quantum mechanical result. In addition, perhaps most devastating: given a momentum �p = m�vB
would in general contradict with Heisenberg’s uncertainty principle.

4. Contextuality of All Observables Other than Position

Now, we finally should explain why and where all this reasoning goes astray. In Reference [4] it is
apparently presumed that in Bohm’s theory the expression “�p = m�vB” should describe a momentum
and should relate to the momentum operator of standard QM. After having shown that this does not
work it is claimed that:

“[...] this interpretation is not only inconsistent with the standard formulation of quantum
mechanics, but also with classical mechanics, where momentum is defined by the relation
�p = m�v.” (p. 45)

Let us discuss these points in reversed order. Bohm’s interpretation is certainly inconsistent
with classical mechanics since it is a quantum theory. In the case of Bohmian mechanics there can be
something added to this general argument. Given that the guiding equation is of first order one would
not even expect that concepts of (second order) Newtonian mechanics (like momentum and work)
play any role on the level of individual particles whatsoever.

However, the actual mistake in Nauenberg’s argument is the assumption, that via �p = m�vB the
momentum of the particles should be constrained, i.e., that Bohm’s theory has not only a “hidden
variable” for the particle position, but also for momentum (and why stop here and not add energy,
spin, angular momentum etc.—as indicated above). That this cannot be the case is acknowledged
by all scientists working on the field. Technically speaking this follows from the Kochen–Specker
no-go theorem which implies that such a scheme contradicts quantum theory [12]. Now, Bohm’s
theory avoids this problem by not introducing such additional variables for momentum, spin and the
like. Reference [4] re-introduces them in the case of momentum (or rather velocity) and demonstrates
(correctly) the inconsistency of this modified theory.

However, all this still leaves open how one should actually think about these quantities within
Bohm’s theory. The starting point is the observation that any measurement of, say, momentum or
spin involves a position measurement. The momentum of a charged particle is usually inferred from
the bending inside a homogeneous magnetic field or the spin from the position measurement after
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the particle passing a Stern–Gerlach magnet. The outcome of these experiments is—according to
Bohm—determined by the wave function and the initial position(s) and not by the value of any other
“hidden variable”. This is expressed by saying that all quantities but position are “contextualized”
(compare the discussion in [13]).

To see better what this means take the above example of a Stern–Gerlach experiment to determine
the spin of a silver atom. Suppose that the north-pole of the magnet is situated above the south-pole
and that a single silver atom gets deflected up (call this deflection towards the north pole “spin up”).
The reason for this specific outcome lies—according to Bohm’s interpretation—in the fact that the initial
position of the coordinate was above the symmetry plane of the system. Thus, a reversed orientation
of north- and south-pole would have led to an up deflection still while this time (“deflection towards
the south pole”) the opposite spin (“down”) would have been assigned to the atom. Note, that this
example illustrates also in nuce how the Bohm interpretation explains definite outcomes for each single
measurement, hence, solves the infamous measurement problem.

In other words, according to this view the specific spin value is not an intrinsic property of the
particle but depends on the wave function, ψ, the configuration, qi, and the experimental arrangement
(viz. the “context”) as well. The same holds for the momentum, energy etc.

All this illustrates that the “Bohmian particle” should not be confused with, say, an electron.
The latter is a fermion with specific mass and charge. In addition the “measurement” of momentum,
energy and the like gives certain results which can be predicted by the theory (the term “measurement”
has been put into scare quotes since it does not reveal a preexisting value of these quantities).
The former just has the properties “position”. To describe the “electron” the de Broglie–Bohm
interpretation needs both, the configuration and the wave function. In Daumer et al. this contextuality
is even put into a wider context and the authors argue against what they call “naive realism about
operators”. They conclude [14]:

“We thus believe that contextuality reflects little more than the rather obvious observation
that the result of an experiment should depend upon how it is performed!”

5. Summary

We have dealt with the common misconception, that the de Broglie–Bohm theory does not only
assign position to each quantum object but also a well defined momentum (or the value of any other
observable). This idea is apparently very reasonable since the velocity of the Bohm-particles can
certainly be multiplied with its mass. Michael Nauenberg has turned this misconception into an
ingenious argument against the dBB theory—or rather into an argument against this modified version
of it.

However, within the de Broglie–Bohm theory the product of velocity and mass has no physical
meaning. In general its ambition is not to restore a classical world-view, but to solve the conceptual
problems of quantum theory. In doing so any system is described by the pair of wave function and
configuration. This implies an interesting reinterpretation of the property-concept. Properties like
mass, charge, spin or momentum cannot be assigned to the object moving along the well-defined
trajectories. Instead, they “belong” to the wave function, or rather: the result of a measurement of
these quantities is determined by the wave function, the configuration and the specific experimental
arrangement and does not reveal a previously existing (“hidden”) value. On the level of the individual
trajectories concepts like momentum, energy and the like lose their meaning. This should not confuse
anybody, since this motion is ruled by Bohmian mechanics and not by Newtonian mechanics.

All this may appear odd and nobody has to like or even to support the Bohm interpretation.
However, it has to be acknowledged that it is not only a consistent interpretation of quantum mechanics
but includes also “quantum weirdness”—like any other interpretation of quantum theory.
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Abstract: The de Broglie-Bohm pilot-wave theory promises not only a realistic description of
the microscopic world (in particular, a description in which observers and observation play no
fundamental role) but also the ability to derive and explain aspects of the quantum formalism that
are, instead, (awkwardly and problematically) postulated in orthodox versions of quantum theory.
Chief among these are the various “measurement axioms” and in particular the Born rule expressing
the probability distribution of measurement outcomes. Compared to other candidate non-orthodox
quantum theories, the pilot-wave theory suffers from something of an embarrassment of riches in
regard to explaining the Born rule statistics, in the sense that there exist, in the literature, not just
one but two rather compelling proposed explanations. This paper is an attempt to critically review
and clarify these two competing arguments. We summarize both arguments and also survey some
objections that have been given against them. In the end, we suggest that there is somewhat less
conflict between the two approaches than existing polemics might suggest, and that indeed elements
from both arguments may be combined to provide a unified and fully-compelling explanation,
from the postulated dynamical first principles, of the Born rule.

Keywords: pilot-wave theory; Bohmian mechanics; Born rule statistics; measurement problem

1. Introduction

In standard textbook formulations of quantum mechanics, microscopic systems are described by
wave functions which, under normal circumstances, obey Schrödinger’s equation. However, there
are also abnormal circumstances in which the normal rules cease to apply. When a measurement
occurs, for example, the system’s wave function momentarily ceases to evolve in accordance with
Schrödinger’s equation and instead “collapses” to one of the eigenstates of the operator corresponding
to the type of measurement being performed. Simultaneously, the outcome of the measurement comes
to be registered in some directly-observeable (and separately-posited) classical object which we can
think of as the pointer on the measuring device.

Which particular outcome is realized (i.e., to which particular eigenstate the quantum system’s
wave function collapses and to which particular position the pointer ends up pointing) is supposed
to be irreducibly random, with probability given by the Born rule: the probability for a particular
eigenstate is given by the absolute square of the coefficient of that eigenstate in the linear expansion of
the pre-measurement wave function.

For example, consider a position measurement on a quantum system with wave function ψ(x).
The apparatus is initially in its ready state (including, say, a pointer with position Y = Y0, resting at
the left end of its scale next to an illuminated green light indicating that the device is able to make
a measurement). The position operator x̂ satisfies

x̂ δ(x− X) = X δ(x− X), (1)
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i.e., the eigenfunctions of the position operator are the delta functions δ(x − X) corresponding to
particles which are definitely located at x = X. The initial wave function of the quantum system can
be written as a linear combination of these eigenfunctions as follows:

ψ(x) =
∫

ψ(X)δ(x− X) dX. (2)

Then, according to the quantum measurement postulates, during the measurement, the wave
function of the quantum system collapses to δ(x− X) for some particular value of X, with probability
(density) P(X) = |ψ(X)|2—and, simultaneously, the apparatus pointer jumps from Y = Y0 to Y = λX
(where λ is some proportionality constant capturing the calibration of the device) with, say, the light
changing from green to blue to indicate that the measurement has been successfully completed.

More generally, if a measurement of the property corresponding to operator Â is performed on
a system with quantum state

ψ = ∑
m

cmψm (3)

where Âψm = amψm, the probability that the measurement outcome is am (and that the system is left
in quantum state ψm) is

P(am) = |cm|2. (4)

This is the Born rule.
Followers of orthodox (and/or, here equivalently, Copenhagen) quantum theory have tended

to read allegedly deep truths about nature (such as the failure of determinism and the ineliminable
dynamical role of observation in creating the observed reality) off from this account. More sober critics
have instead regarded the orthodox formulation as obviously not providing the final truth, with the
cluster of related implausible aspects of the orthodox formulation (for example, its division of the
world into separate quantum and classical realms, with different kinds of ontologies and different
dynamical laws, but also ad hoc exceptions to the usual dynamics when the two realms interact)
being described as the “measurement problem” [1,2]. Recognition of the measurement problem has
motivated the search for theories which cure it—or better, avoid it from the outset—by providing
a description of the world (in both its ontological and dynamical aspects) that is uniform (i.e., consistent,
coherent) and in which, in particular, “measurement” can be understood as simply another physical
interaction to be treated just like any other, and with the orthodox measurement postulates (including
especially the Born rule) becoming theorems derived from the more basic dynamical postulates.

There is thus a high degree of overlap between the quest to find a believable “quantum theory
without observers” [3,4] and the quest to explain (rather than simply postulate) the Born rule.
Perhaps the simplest such alternative theory to understand is the spontaneous collapse theories,
in which Schrödinger’s equation is replaced by a stochastic differential equation that incorporates
occasional, random, partial collapses which occur at a certain fixed rate per particle [5]. Such theories
(approximately) reproduce the Born-rule randomness by, in effect, modifying the Schrödinger equation
to include it [6]. So it is relatively easy to understand how the Born rule statistics arise in this kind
of theory. By contrast, in the Everettian (a.k.a. “many worlds”) formulation of quantum theory [7],
the collapse posulates of orthodox QM are eliminated entirely, with the wave function (of the universe)
obeying Schrödinger’s linear equation all of the time. This cleanly removes the schizophrenia that
gave rise to the measurement problem in the context of ordinary QM, but makes it rather difficult to
understand how the Born rule might be derived—or even what the probabilities the Born rule is about
could possibly mean in the context of a (deterministic!) theory in which every “possible” outcome is
guaranteed to actually occur. This situation has given rise to a lively debate [8–16]. In addition, there
have been many other attempts to similarly derive and/or explain Born’s rule, in the context of other
alternative approaches to quantum theory, as well [17–24].

Here we will focus on the de Broglie-Bohm pilot-wave formulation of quantum
theory [25]—a so-called “hidden variable theory” in which the usual quantum mechanical wave

139



Entropy 2018, 20, 422

function (obeying Schrödinger’s equation) is supplemented with actual particle positions (A note on
terminology: The phrase “hidden variable theory” is used here simply to denote a theory in which,
contra orthodox QM, the complete description of a quantum system is given by a wave function plus
some additional variables. However, as applied to the pilot-wave theory, the word “hidden” is rather
inappropriate and misleading—Bell called it a piece of historical silliness [26]—since, if anything, it is
the wave function and not the particle positions that are “hidden”. According to the theory, the world
we literally see around us—including tables, chairs, other humans, planets, etc.—is composed of
these particles, with the wave function playing a rather mysterious, invisible, background role
of choreographing the particles’ motion). In terms of the simple example from a few paragraphs
back, the pilot-wave theory can be understood as extending the quantum world all the way up into
the macroscopic classical realm in the sense that the entire universe (including both the “quantum
sub-system” and the “measuring apparatus”) will now be (partially) described by a wave function
Ψ(x, y). The theory also extends the classical realm down into the microscopic quantum realm in the
sense that now not only the particles composing the apparatus, but also the “quantum sub-system”
particle, will be assigned definite positions (Y and X, respectively).

The introduction of additional variables (in particular the definite position X of the “quantum
sub-system”) has often been regarded as pointless (or worse) in so far as the pilot-wave theory, at the
end of the day, makes the same statistical predictions as ordinary QM. This concern is however
wrong-headed for two (overlapping) reasons. First, to whatever extent one accepts that orthodox
QM suffers from a measurement problem, one should be willing to (and should expect to) pay some
price for its solution. It is ridiculous, that is, to dismiss the positing of new things, simply on the
grounds of wanting as few things as possible, without considering what problems the new things are
posited to solve. For example, should Pauli’s postulation of the existence of the neutrino have been
dismissed, simply on the grounds that its introduction would make particle theory more complicated?
However—second—it is not even clear that, overall, the pilot-wave theory is more complicated than
orthodox QM. It is true that, as mentioned above, it extends the realm to be described in terms of wave
functions from the microscopic to the entire universe, and extends the realm to be described in terms
of particles with definite positions from the macroscopic to the entire universe. However, in so far as
this supplemented ontology allows one to derive—rather than awkwardly postulate—the Born rule
(and other rules about measurements), a strong case can be made that the pilot-wave theory is actually,
overall, not more complicated but rather simpler than the orthodox formulation.

In the rest of the paper we attempt to explain and clarify this derivation of the Born rule in the
context of the pilot-wave theory. We focus on the two recent, prominent, and fully-developed programs,
ignoring for the most part their historical roots; [27] gives a helpful overview of some of the territory
we will cover, including more historical references. Note also that virtually all of the issues to be
discussed have close parallels in the context of (classical) statistical mechanics. We again want to focus
on the explanation of Born rule statistics in the pilot-wave theory and avoid getting into generalized
questions about the nature of statistical explanation, the relative merits of competing approaches
to formulating and understanding the second law of thermodynamics, etc. However, readers who
already know something about such controversial questions in the foundations of statistical mechanics
will recognize parallel controversies playing out here. Readers who want to learn more about the
foundations of statistical mechanics might see, for example, [28].

In the following section we give a more technical overview of the pilot-wave theory. Section 3
then provides an overview of one of the extant approaches to deriving the Born rule—the dynamical
relaxation program of Antony Valentini. Some objections to Valentini’s program are reviewed in Section 4.
Then, in Sections 5 and 6 we review and then discuss some objections to the other extant program for
deriving the Born rule—the “typicality” approach of Dürr, Goldstein, and Zanghí. The points discussed
in these sections are illustrated with the results of numerical simulations for a simple example system.
Finally, in Section 7, we take stock of the situation and suggest that elements from both the dynamical
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relaxation and the typicality programs are needed for—and make possible—a very clear and satisfying
explanation of the origin of the Born rule in the context of the pilot-wave theory.

2. Pilot-Wave Theory and the Born Rule

The de Broglie-Bohm pilot-wave theory is best thought of as a candidate explanation of the
measurement formalism of ordinary quantum mechanics, much as the kinetic/atomic theory (coupled
with ideas from statistical mechanics) can be understood as the explanation of phenomenological
thermodynamics. We begin here by reviewing the basic dynamical and ontological postulates
of the theory as well as the “quantum equilibrium hypothesis” (QEH), the use of which allows
a straightforward derivation of the standard quantum phenomenology. This overview is intended to
establish a foundational context for the sketches of the two leading proposed analyses of the QEH
which will be presented in the following sections.

For an N-particle system of, for simplicity, spinless, non-relativistic particles, the pilot-wave
theory posits a wave function Ψ(q, t) = Ψ(�x1,�x2, ...,�xN , t) obeying the usual Schrödinger equation

ih̄
∂Ψ
∂t

= −
N

∑
i=1

h̄2

2mi
�∇2

i Ψ + V(�x1,�x2, ...,�xN , t)Ψ (5)

as well as N (literal, point) particles with configuration Q(t) = {�X1(t), �X2(t), ..., �XN(t)} evolving
according to

dQ
dt

= v(q, t)
∣∣
q=Q(t). (6)

The configuration-space velocity field v is given by v(q, t) = {�v1(q, t),�v2(q, t), ...,�vN(q, t)} where

�vi(q, t) =
h̄

mi
Im

[
�∇iΨ

Ψ

]
=

�ji(q, t)
ρ(q, t)

. (7)

Here �ji = −ih̄
2mi

(Ψ∗�∇iΨ − Ψ�∇iΨ∗) is the ith particle component of the usual quantum
“probability current”

j(q, t) = {�j1,�j2, ...,�jN} (8)

and
ρ = |Ψ|2 (9)

is the usual quantum “probability density”. Note, though, that despite these traditional names
ρ and j have not yet been invested with any probabilistic significance, and should instead be
thought of simply as properties of the pilot-wave field Ψ. (It is perhaps helpful here to regard ρ

and j as analogous, respectively, to the “field energy density” and “Poynting vector” in classical
electromagnetism. However, of course the fact that Ψ, and hence ρ and j, are functions on the
3N-dimensional configuration space, rather than 3-dimensional physical space, strains the analogy to
some extent).

It is a purely mathematical consequence of Equation (5) and the definitions (8) and (9) that ρ and j
jointly obey the continuity equation

∂ρ

∂t
+∇ · j = 0 (10)

where ∇ = {�∇1, �∇2, ..., �∇N}. In light of Equation (7), this can be re-written as

∂ρ

∂t
+∇ · (ρv) = 0. (11)

On the other hand, if at some initial time (say, t = 0), the particle configuration Q is random with
distribution P(q, 0), then the distribution will evolve, under Equation (7), according to
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∂P
∂t

+∇ · (Pv) = 0. (12)

The wave function “intensity” ρ and the particle probability distribution P thus evolve the same
way in time and will hence remain identical for all times if they are equal at any one time. As this
important fact is sometimes expressed, the particular distribution PB = ρ = |Ψ|2 is “equivariant”.

One should think here of the more familiar case of the Liouville distribution (that is, the Lebesque
measure restricted to the energy surface in phase space) being “invariant” in classical statistical
mechanics: The Hamiltonian flow guarantees that if the phase space point is Liouville-distributed at
t = 0 it will remain Liouville-distributed for all times. So the Liouville distribution has a dynamically
privileged, equilibrium status, that is usually thought to play an important role in, for example,
justifying the consideration of micro-canonical ensembles.

In the case of the pilot-wave theory, the analogous—dynamically privileged, equilibrium—
distribution is not invariant, i.e., is not constant in time: PB will evolve non-trivially in time whenever
Ψ does. However, the time-evolutions of Ψ and PB “track” one another, i.e., PB retains a constant
relationship to Ψ even as both evolve: PB(q, t) = |Ψ(q, t)|2. Hence “equivariance.”

The subscript “B” on PB is meant to stand for “Born”. This is because the assumption—that the
initial (t = 0) configuration of a quantum system was random with distribution PB, i.e., the so-called
“quantum equilibrium hypothesis” (QEH)—allows a straightforward proof that the pilot-wave theory
reproduces the phenomenological predictions of ordinary quantum theory, i.e., the Born rule statistics.
To see this, consider a typical measurement scenario involving a setup with generic configuration
q = {x, y} which we decompose into two parts representing the system-to-be-measured (x) and the
measuring device (y). The measuring device should include a “pointer” whose final configuration
indicates the outcome of the measurement. Suppose it is the property of the system corresponding
to Hermitian operator Â that is to be measured. Then (in order to justify calling the interaction
a “measurement”) it must be that an initial state

Ψ(x, y, 0) = ψm(x)φ0(y) (13)

(where ψm(x) is an eigenfunction of Â with eigenvalue am and φ0(y) represents the “ready” state for
the measuring apparatus) evolves, under the Schrödinger equation, into

Ψ(x, y, T) = ψm(x)φm(y) (14)

where φm(y) is “narrowly peaked” around configurations in which the apparatus pointer is pointing to
the value “am”. (By “narrowly peaked” here we mean that φ∗m(y)φn(y) ≈ 0 whenever m 
= n. That is,
the functions φm(y) for distinct values of m have approximately non-overlapping support.)

Now suppose that the initial state of the system-to-be-measured is instead an arbitrary
superposition of eigenfunctions, i.e.,

Ψ(x, y, 0) =

(
∑
m

cmψm(x)

)
φ0(y). (15)

(Note, we assume here that things are normalized in the standard ways so that, for example, ∑m |cm|2 = 1).
It then follows, from the linearity of Schrödinger’s equation, that the post-measurement wave function
will be

Ψ(x, y, T) = ∑
m

cmψm(x)φm(y). (16)

The post-interaction system-apparatus wave function is an entangled superposition which
picks out no one particular measurement outcome. In ordinary quantum mechanics, where there
is supposed to be nothing but the wave function, Equation (16) thus tends to lead to apoplexy,
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evasion, or the hand-waving introduction of new “measurement axioms”. However, in the pilot-wave
theory, the actual measurement outcome is to be found, not in the wave function, but in the actual
post-interaction configuration, Y, of the particles composing the apparatus pointer.

In addition, it is easy to see that if we adopt the QEH and thus regard the
configuration Q(0) = {X(0), Y(0)} as random and PB-distributed, then, because of the equivariance
property discussed above, the post-interaction configuration Q(T) will have distribution
P(q, T) = PB(q, T) = |Ψ(x, y, T)|2. Because of the property mentioned just after Equation (14), the cross
terms will vanish and the marginal distribution for the pointer configuration Y becomes

PT [Y = y] =
∫

PB(q, T)dx = ∑
m
|cm|2|φm(y)|2. (17)

Or equivalently, calling “Ym” the set of (macroscopically indistinguishable) configurations in the
support of φm(y), we can express this as follows:

PT [Y = Ym] = |cm|2. (18)

That is: the probability is |cm|2 that, at the end of the experiment, the pointer indicates that the
measurement had outcome am. This is of course just exactly the Born rule, Equation (4).

Please note that it may—and probably should—seem that there is hardly any distinction at all
between the quantum equilibrium hypothesis (QEH) that we put in, and the Born rule that we get
out. In effect, we put in the Born rule (for particle positions) at t = 0, and get out the Born rule
(for particle positions and so, in particular, for the positions of the particles composing the apparatus
pointer) at t = T. Of course, it is noteworthy that the Born rule for particle positions is preserved
in time (“equivariance”) and it is noteworthy that the Born rule for particle positions is sufficient to
guarantee the generalized Born rule for arbitrary measurements. Still, though, to the extent that we
simply assert the QEH as an additional postulate of the pilot-wave theory, the claim that the theory
predicts Born rule statistics has a somewhat embarrassingly circular feel to it. This is why a genuinely
convincing derivation of Born-rule statistics (in the context of the pilot-wave theory) needs to go a little
deeper, by providing some kind of justification for the QEH. Let us then turn to exploring the two
extant candidate justifications of this type.

3. The Dynamical Relaxation Justification

Following up an idea that was suggested by Bohm already in the 1950s [25,29], Antony
Valentini proved, in his 1992 Ph.D. thesis [30] and associated papers [31–33], a “sub-quantum
H-theorem” purporting to establish that non-equilibrium probability distributions will undergo
a kind of dynamical relaxation toward coarse-grained equilibrium. This can be understood
as a justification of the QEH, the idea being that even if, say, back at the big bang, particle
positions were not PB-distributed, they would inevitably become PB-distributed (at least in a
good-enough-for-all-practical-purposes, FAPP, coarse-grained sense) during the subsequent dynamical
evolution of the universe, thereby justifying the application of the QEH to the “initial” conditions
relevant to contemporary experimental investigations.

Let us review Valentini’s proof (Actually we will rehearse just one of several related arguments
that he presents). Define g(q) as the ratio of ρ = |Ψ|2 and the particle probability distribution P:

g(q, t) ≡ ρ(q, t)
P(q, t)

(19)

and define the sub-quantum entropy “S” (which is really a kind of relative entropy between ρ and
P) as

S ≡ −
∫

dq P g ln(g) = −
∫

dq ρ ln[ρ/P]. (20)
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To begin with, we note that in “quantum equilibrium” ρ = P, so g = 1 and hence S = 0.
Also, since x ln(x/y) ≥ x− y for all x and y, we have that

S ≤ −
∫

dq (ρ− P) = 0. (21)

Thus quantum equilibrium is a maximum (sub-quantum) entropy condition.
It follows from the fact that P and ρ obey the same continuity equations—(11) and (12)—that their

ratio g is constant along particle trajectories. That is:

dg
dt

=
∂g
∂t

+
dQ
dt
· ∇g = 0. (22)

It is then a closely related fact that the exact (sub-quantum) entropy remains constant in time:

dS
dt

= 0. (23)

What Valentini showed, however, (following a long history of parallel demonstrations in the case
of classical mechanics) is that an appropriately defined coarse-grained (sub-quantum) entropy can be
shown to relax toward equilibrium.

Let us thus divide the configuration space up into cells of finite volume δV and define
coarse-grained versions of the probability measure P and wave function intensity ρ as follows:

P̄(q) =
1

δV

∫
δV

dq′ P(q′) (24)

and
ρ̄(q) =

1
δV

∫
δV

dq′ ρ(q′) (25)

where, in both cases, the integration is over the cell containing the point q. We may also define
a coarse-grained version of g as follows:

ḡ(q) =
ρ̄(q)
P̄(q)

. (26)

In terms of these quantities we may then also define the coarse-grained (sub-quantum) entropy

S̄ = −
∫

dq ρ̄ ln(ḡ). (27)

Let us then consider the change in S̄ from some initial time (0) to some later time (t):

S̄(t)− S̄(0) = −
∫

dq ρ̄(t) ln[ḡ(t)] +
∫

dq ρ̄(0) ln[ḡ(0)] (28)

Now comes an important assumption on the initial conditions: we assume what Valentini
describes as “no ‘micro-structure’ for the initial state”, which basically means that the functions ρ(0)
and g(0) are “smooth” and are therefore equal to their coarse-grained counterparts. Thus

S̄(t)− S̄(0) = −
∫

dq ρ̄(t) ln[ḡ(t)] +
∫

dq ρ(0) ln[g(0)]. (29)

However, then, the constancy of the exact S implies

S̄(t)− S̄(0) = −
∫

dq ρ̄(t) ln[ḡ(t)] +
∫

dq ρ(t) ln[g(t)]. (30)
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The constancy of ḡ and hence ln[ḡ] over the cells implies that
∫

dq ρ̄(t) ln[ḡ(t)] =
∫

dqρ(t) ln[ḡ(t)]
so that

S̄(t)− S̄(0) =
∫

dq ρ(t) ln
(

g(t)
ḡ(t)

)
=

∫
dq P(t) g(t) ln

(
g(t)
ḡ(t)

)
. (31)

Finally, it can be shown that
∫

dq P (ḡ− g) = 0 so we may add zero on the right hand side of the
previous equation, yielding

S̄(t)− S̄(0) =
∫

dq P(t)
[

g(t) ln
(

g(t)
ḡ(t)

)
+ ḡ(t)− g(t)

]
. (32)

The term in square brackets is (again using x ln(x/y) ≥ x− y) non-negative, so

ΔS̄ = S̄(t)− S̄(0) ≥ 0. (33)

That is, the coarse-grained (sub-quantum) entropy S increases from its initial value.
Let us illustrate the implied dynamical approach to equilibrium with a numerical simulation.

We follow [34,35] in considering a particle of mass m moving in a two-dimensional square box potential:
V(x, y) = 0 if 0 < x < L and 0 < y < L, and V = ∞ otherwise. The energy eigenstates can be labeled
with positive integers m, n with the energy eigenvalues given by

Em,n =
h̄2π2(m2 + n2)

2mL2 . (34)

We take the initial quantum state to be a superposition (with equal amplitudes but randomly
chosen phases) of the 6 lowest-lying energy eigenstates. The state Ψ(x, y, t) then evolves periodically
with period T = 4mL2/h̄π. At t = 0 the wave function intensity ρ(x, y) = |Ψ(x, y)|2 is as shown in
Figure 1.

Figure 1. Density plot of ρ(0) = |Ψ(0)|2. Please note that ρ evolves periodically with period T. Note
also that, for the particular non-equilibrium initial distribution P(0) = constant, g(0) = ρ(0)/P(0) =
ρ(0). So this same figure can be taken also as illustrating g(0) for this particular non-equilibrium
distribution. The corresponding g(t) for t = T, t = 2T, and t = −T are shown in subsequent figures.

As a concrete example of a non-equilibrium distribution, we will take the uniform distribution in
which P(x, y) is constant (inside the “box”, and zero outside):

P(x, y) =

{
1
L2 if 0 < x < L and 0 < y < L
0 otherwise

(35)
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Please note that the quantity g = ρ/P discussed above is simply proportional to ρ for
P = constant, so Figure 1 may also be understood as a graph of g(x, y, 0) for this particular
non-equilibrium distribution.

Valentini’s dynamical relaxation is perhaps best illustrated by considering the time-evolution
of an ensemble of particles whose initial positions are chosen randomly in accordance with the
non-equilibrium distribution P. The results of such a simulation, with an ensemble of 5000 particles,
are shown in Figure 2. One can literally see that the initial t = 0 distribution evolves steadily, over the
course of several periods of the background wave function dictating the particle trajectories via
Equation (6), from one that “looks uniform” to one that instead “looks |Ψ|2”. Remember here that
the wave function evolves in a periodic way, so ρ at each of the moments pictured is just the ρ shown
in Figure 1.

(a) t = 0 (b) t = 1T

(c) t = 3T (d) t = 9T

(e) t = 27T (f) t = 81T

Figure 2. Relaxation of a uniform distribution toward coarse-grained equilibrium

In this simulation, these 5000 particles appear |Ψ|2-distributed by (something of order) t = 10T or
maybe t = 100T. However, the truth, of course, is that really the distribution is only approaching the
P = ρ equilibrium in a coarse-grained sense; it is just that, for this particular system, the grain-size at
which the dis-equilibrium can be seen happens to be smaller than the typical inter-particle spacing by
t ≈ 10T.
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To illustrate this point, we can run another identical simulation, but with a much greater number
or particles. Figure 3 thus shows, in the left panel, the same thing as Figure 2’s frame (d)—that is,
an ensemble of initially-uniformly-distributed particles at t = 9T—but with 50,000 instead of 5000
particles in the ensemble. The right panel shows a zoomed-in portion of the box for an even larger
ensemble, making the fine-grained (dis-equilibrium) structure easily noticeable.

Figure 3. The left panel is the same as panel (d) of the previous figure, but for an ensemble of 50,000
initially-uniformly-distributed particles, allowing one to see some of the fine-grained structure in the
distribution. The right panel zooms in on the portion of the box highlighted by the gray box on the left,
for an ensemble of 200,000 particles, allowing even more fine-grained structure to be visible.

It is of course also possible to numerically track the evolution of P(x, y) through time. Compared
to tracking an ensemble of particle positions, doing this in detail is somewhat computationally intensive.
However, it gives a very clear sense of what is going on to see the evolution of an initially-constant
P over just a few periods. Actually, it is somewhat more convenient to consider g = ρ/P since,
as mentioned previously, the value of g is constant along particle trajectories. We can thus follow
the numerical strategy introduced by Valentini and Westman to create a detailed map of P(x, y, t) as
follows: consider a position X, Y where we want to know P(t); solve the equation of motion for the
trajectory, backwards in time, to find the t = 0 location X0, Y0 of a particle which arrives at X, Y at time
t; use the fact that g is constant along trajectories to assign

g(X, Y, t) = g(X0, Y0, 0) =
ρ(X0, Y0, 0)
P(X0, Y0, 0)

∼ ρ(X0, Y0, 0) (36)

since, for the particular non-equilibrium distribution we consider, P(X0, Y0, 0) is a constant.
To really see the fine-grained-stucture in P(t), one already needs to consider an N × N grid of

points X, Y, with N of order several thousand, after just a few periods (That is, already after just a few
periods, the grain-size of the structure in P is of order 10−3 L). So computationally, making a beautifully
detailed map of g is equivalent to running a simulation with something like 10 million particles. This is
all by way of explaining why it would be computationally prohibitive to continue making detailed
maps of g all the way out to, say, t = 81T. However, as I remarked above, one nevertheless gets a very
clear idea of what’s happening from looking at the evolution over just a few periods. This is illustrated
in Figure 4.
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(a) t = 0 (b) t = T

(c) t = 2T (d) t = 3T

Figure 4. The time-evolution of g = ρ/P, for an initially-uniform P. The evolution through each period
is like a “kneading” operation which results in the non-uniformities in g being systematically mixed
down to smaller and smaller length scales. Further time-evolution would eventually result in a map
whose ḡ was uniform.

Valentini characterizes the relaxation of P̄ toward ρ—i.e., the relaxation of ḡ to uniformity—as follows:

“The exact (fine-grained) density is given by [P = ρ/g]. Now, starting from an arbitrary
[g(q, 0)], the initial values of [g] are carried along the system trajectories in configuration
space. If the system is sufficiently complicated, the chaotic wandering of the trajectories
[Q(t)] will distribute the [g] values in an effectively random manner over the accessible
region of configuration space. On a coarse-grained level, P will then be indistinguishable
from [ρ = |Ψ|2]. Another (equivalent) picture sees the increase of subquantum entropy
as associated with the effectively random mixing of two ‘fluids’, with densities P and
[ρ], each of which obeys the same continuity equation, and is ‘stirred’ by the same
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velocity field [so that] the two ‘fluid’ densities... will be thoroughly mixed, making them
indistinguishable on a coarse-grained level”. [31]

To summarize, the illustrations in this section clearly demonstrate that Valentini’s notion of
dynamical relaxation to sub-quantum coarse-grained equilibrium happens in at least some systems.
In particular we have seen how an initially smooth g (recall Valentini’s “no initial micro-structure”
assumption) evolves toward a g with a very detailed, fine-grained structure which approaches perfect
uniformity on a coarse-grained level. This is exactly in accordance with Valentini’s demonstration (and
previous numerical simulations) and seems to add something quite relevant and substantial to our
quest to understand the Born rule in the context of the pilot-wave theory.

In particular, as we discussed earlier, the invocation of the Quantum Equilibrium Hypothesis
(QEH) at an initial time gives the explanation of Born rule statistics a somewhat circular appearance:
you in effect put the Born rule in at t = 0 only to get it back out again at a later time (corresponding,
say, to the moment when some measurement process is completed). What Valentini’s sub-quantum
H-theorem purports to show is that you do not need to postulate the QEH: a broader class of initial
distributions, with P 
= ρ, will relax towards P = ρ in a coarse-grained sense that is sufficient to
account for the appearance of Born rule statistics in actual, finite-resolution experiments.

4. Objections to Dynamical Relaxation

If it could be shown that any possible non-equilibrium initial distribution P(q, 0) would relax
toward coarse-grained equilibrium for any possible initial wave function Ψ(q, 0), that would of course
constitute a rigorous derivation of the Born rule for the pilot-wave theory. However, it should be
immediately clear that this is not possible.

For one thing, there certainly exist wave functions which generate particle trajectories that
are insufficiently complicated/chaotic to produce relaxation—e.g., trivially, stationary states for
which the velocity field is identically zero forever. For such a Ψ the distribution will stay constant,
P(q, t) = P(q, 0), and there can be no relaxation toward sub-quantum equilibrium. So at best the claim
can be that we might expect relaxation toward coarse-grained equilibrium for the kinds of wave
functions that might plausibly obtain in our world. There is, for example, some reason to think that
the wave function of our universe is not a stationary state.

However, even for such appropriately non-trivial wave functions, it cannot be the case that all
initial particle distributions relax monotonically toward equilibrium. This is clear from the time-reversal
symmetry of the theory. We illustrate here with simulations paralleling those shown in the previous
section, but now letting time run backwards from the initial t = 0.

Figure 5 shows the evolution of an ensemble of particles (with t = 0 positions randomly
chosen with probability distribution P(x, y, 0) = constant) backwards in time. It is clear that the
ensemble approaches coarse-grained equilibrium moving away from t = 0 in the negative temporal
direction, just as it does—recall Figure 1—in the positive temporal direction. Or, considering the
evolution from negative times to t = 0, as the images are arranged in the figure, one would say that
an ensemble of particles that appears to have an equilibrium distribution (and is certainly in equilibrium
in a coarse-grained sense) at one time may in fact evolve, at least for some considerable period of time,
toward a dramatically non-equilibrium (here, uniform!) distribution.

This possibility is of course familiar from classical statistical mechanics as well (recall Loschmidt)
and is not strictly speaking in conflict with Valentini’s sub-quantum H-theorem: the early-time
ensemble depicted, for example, in frame (a) of Figure 5 is in fact not a typical ensemble associated
with the equilibrium distribution P = ρ. Instead, it is a typical ensemble for a very different P—one
which is equivalent to ρ in a coarse-grained sense, but which in fact contains incredible “detailed
microstructure”. The flavor of this is conveyed by the image in Figure 6, which shows the distribution
g = ρ/P, not at t = −81T but at t = −T, which forward-evolves into g = ρ (i.e., into P = constant) at
t = 0 (The distribution g that would be required at even earlier times is qualitatively similar, but of
course with a considerably more fine-grained micro-structure). In any case, one can see that the initial
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distribution P for which the ensemble depicted in frame (a) of Figure 5 would be a typical example,
will fail to respect Valentini’s “no initial fine-grained micro-structure” assumption, P(q, 0) = P̄(q, 0).

(a) t = −81T (b) t = −27T

(c) t = −9T (d) t = −3T

(e) t = −1T (f) t = 0

Figure 5. Anti-relaxation of an apparently-equilibrium distribution out of equilibrium!

Callender has questioned whether this assumption of Valentini’s proof, that P = P̄ initially,
is any improvement over just assuming the quantum equilibrium hypothesis, namely, that P = ρ

initially: “In both cases we are assuming that the early configuration distribution had a rather special
profile” [27]. I think it would indeed be an improvement, at very least in the sense that it is a much
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weaker assumption: there are many possible “smooth” initial distributions satisfying P = P̄ which do
not correspond to coarse-grained equilibrium (P̄ = ρ).

Figure 6. This is the distribution for g = ρ/P that is required at t = −T in order to make g = ρ, i.e.,
to make P = constant, at t = 0. A very specific fine-grained micro-structure in P is required, at the
earlier time, to generate a smooth, easily-describable non-equilibrium distribution at a later time.

Another set of possible concerns about the dynamical relaxation approach involves the distinction
between continuous distributions P—whose relation, over time, to ρ is illustrated, for example,
in Figure 4—and ensembles of particles with definite positions, as illustrated, for example, in Figure 2.
It should be clear that if the quantum system we are studying is the universe as a whole—and the
pilot-wave theory is fundamentally a theory about this ultimate system—then ρ = |Ψ|2 (where Ψ is
the universal wave function) is in some sense a really-existing thing, but P, the probability distribution
over particle configurations Q of the universe as a whole, is not: what the pilot-wave theory posits
as existing in addition to the universal wave function Ψ(q, t) is just some definite configuration
Q(t) =

{
�X1(t), �X2(t), ..., �XN(t)

}
. There is no such additional thing as the probability distribution P

over such configurations.
Callender criticizes Valentini on something like these grounds, namely for failing to clearly

distinguish between the (effective) wave function ψ of an individual sub-system (within the universe)
and the wave function Ψ of the universe. In particular, Callender stresses that “what is really needed is
a justfication of” what, in our terminology, would be expressed as p = |ψ|2, i.e., a justfication for taking
the probability distribution p associated with an ensemble of sub-systems with identical effective wave
functions ψ to be |ψ|2. Callender states that universal quantum equilibrium, P = |Ψ|2, is not sufficient
for establishing what is really needed, namely, p = |ψ|2, and adds:

“Even if one proves that the universe as a whole is in quantum equilibrium, we really want
to prove that patterns inherent in subsystems of the universe are in quantum equilibrium.
Whether any [of Valentini’s results] survive the move to the proper understanding of
[p = ρ] is not clear”. [27]

I think Callender is on the right track about what is needed and is right to question whether
Valentini’s argument provides it. That said, I do not think Callender quite puts his finger on the
problem. If one could prove that “the universe as a whole is in quantum equilibrium”—P = |Ψ|2—I
think it would indeed follow that ensembles of sub-systems with identical effective wave functions
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would also be in quantum equilibrium—p = |ψ|2. Indeed, Valentini demonstrates this very thing in
Section 4 of [31].

The problem, though, is that it cannot be possible to prove that “the universe as a whole is in
quantum equilibrium” because the “P” in “P = |Ψ|2” does not and cannot refer to anything real.
That is, there is simply no such thing as the probability distribution P for particle configurations
of the universe as a whole, because there is just one universe. This point, raised as a criticism of
Valentini’s dynamical relaxation program, was made sharply by Dürr, Goldstein, and Zanghí: given
the assumption that the configuration Q of the universe is random with probability distribution |Ψ|2,

“you might well imagine that it follows that any variable of interest, e.g., X, has the ‘right’
distribution. However, even if this were so (and it is), it would be devoid of physical
significance! As Einstein has emphasized, ‘Nature as a whole can only be viewed as an
individual system, existing only once, and not as a collection of systems’.” [36]

Coming fully to grips with this does not immediately render Valentini’s analysis irrelevant, for we
can still attempt to understand the analysis as a description of ensembles of systems with identical
effective wave functions. However, it does lead to several further points which I think are problematic
for the relaxation approach to understanding Born rule statistics in the context of the pilot-wave theory.

Let’s start by straightening out the terminology a bit. Suppose the universe includes n sub-systems,
with coordinates x1, x2, ..., xn, and that the universal wave function has the form

Ψ = ψ(x1)ψ(x2) · · ·ψ(xn)Φ(y) + Ψ⊥ (37)

where y denotes the coordinates of the environment of our collection of sub-systems, and Ψ⊥ is
macroscopically disjoint from Φ(y). In the pilot-wave theory we of course also have definite particle
positions X1(t), X2(t), ..., Xn(t) and Y(t). If Y is in the support of Φ(y), then Ψ⊥ will be irrelevant to
the future motion of the particles and we may assign the effective wave function ψ to each of the
n sub-systems.

We can define a (really-existing, meaningful) empirical distribution for the ensemble by taking

p(x, t) =
1
n

n

∑
i=1

δ (x− Xi(t)) . (38)

Valentini pursues this line in [30] (p. 18) and notes that “In the limit of large n, [p(x, t)] may for
our purposes be replaced by a purely smooth function, again denoted just [p(x, t)], which in practical
circumstances will behave like a probability distribution.” The relaxation analysis is then intended to
show that the coarse-grained p̄ approaches the Born-rule distribution ρ = |ψ|2 for the sub-system.

Valentini acknowledges that

“[t]he very concept of a smooth distribution [p] is limited, being strictly valid only in the
purely theoretical limit of an infinite ensemble (n → ∞). This implies for example that in
a laboratory consisting of a finite number of atoms, the actual distribution (say of electron
positions) has the discrete form [of our (38), just above] so that one necessarily has some
disequilibrium [p 
= |ψ|2] on a fine-grained level”. [30]

He acknowledges, that is, that for realistic finite ensembles the approach to equilibrium can in
some sense only be approximate. This raises, for me, two concerns.

The first is that there would seem to be an additional, but unacknowledged, approximation
that is relevant: the sub-system (effective) wave functions ψ will only evolve according to their own
sub-system Schrödinger equations if the sub-systems are perfectly isolated from their environments.
However, again, for more realistic ensembles of similarly-prepared systems, the isolation will be
imperfect and hence the sub-system wave functions ψ for the individual ensemble members will not
even evolve the same way in time. On the one hand, this renders certain key aspects of Valentini’s
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analysis as either questionable or downright inapplicable. For example, if, after some evolution time,
the initially-identical effective wave functions for the individual ensemble members are no longer the
same, there will not even exist any particular ρ = |ψ|2 to which one might meaningfully compare
the distribution p̄! On the other hand, though, random variations in the evolution of the individual
ensemble members’ effective wave functions (arising from random variations in the precise way in
which each member is only imperfectly isolated from its environment) may constitute an additional
source of noise that could accelerate the dynamical relaxation toward Born-rule distributions, in some
appropriate sense. This issue deserves further study and attention.

However, there is a second and somewhat more fundamental worry associated with the fact that
real ensembles will always be finite so that the distribution function p will be given by Equation (38) and
hence not be a continuous function. The worry is not quite what Valentini acknowledges, namely that
the fine-grained structure of the distribution p (for any realistic finite ensemble of identically-prepared
sub-systems) implies “some disequilibrium ... on a fine-grained level”. Rather, the worry is that
the fine-grained structure in p will mean that p cannot possibly equal its coarse-grained partner p̄.
However, that p = p̄ at the initial time was one of the crucial assumptions of the theorem. So the worry
is that the theorem is thus rendered simply inapplicable to realistic finite ensembles, i.e., irrelevant to
goings-on in our universe.

In his 1991 paper, Valentini characterizes the “no fine-grained initial micro-structure” assumption
as follows:

“It is this assumption which introduces a distinction between past and future: Essentially,
it is assumed that there is no special ‘conspiracy’ in the initial conditions, which would
lead to ‘unlikely’ entropy-decreasing behaviour”. [31]

The basic problem that this leads us to seems to be the following: any specific initial condition for
the configuration of the particles in our ensemble will possess “fine-grained initial micro-structure”,
i.e., will be extremely ‘unlikely’—one might even say ‘conspiratorial’—just in the sense that, no matter
which smooth probability distribution p one regards the realized configuration as having been drawn
from, it will be one out of a continuously infinite set of possible such configurations, and hence
highly “unlikely”.

The real question is: what portion of the continuously infinite set of possible configurations
(each of them, considered alone, being extremely “unlikely”!) would lead to the troublesome
“entropy-decreasing behaviour”? Do these “bad” initial configurations constitute rare exceptions
to the typical behavior, or are the overwhelming majority of possible initial configurations of this “bad”
sort, or what?

It is true, for example, that many possible initial configurations (for the ensemble of 2-D
particle-in-a-box systems), drawn randomly from the probability distribution p = |ψ|2, will evolve into
different configurations that still nevertheless have the property of being typical exemplars of p = |ψ|2,
i.e., of looking like equilibrium ensembles. However, it is also true that there are initial configurations,
drawn randomly from the probability distribution p = |ψ|2, which “lead to... entropy-decreasing
behaviour”, i.e., which evolve into configurations that are extremely unusual, atypical exemplars
of p = |ψ|2, i.e., which do not look like equilibrium distributions at all. Figure 5 of course provides
a concrete example here.

Similarly, we have shown (by numerical simulation, see Figure 2) that many possible configurations,
drawn randomly from a “non-equilibrium” distribution such as p = constant, evolve into
configurations that appear to be in equilibrium, i.e., which have p̄ = |ψ|2. However, of course there
will also exist initial configurations for the ensemble, that could be drawn randomly from p = constant,
which do not evolve into something that looks equilibrated, but instead evolve into something that is
even further from quantum equilibrium than p = constant.

All of these behaviours are possible and are realized for some of the continuously infinite set
of possible configurations for the ensemble. To be genuinely convincing, then, an argument for
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“relaxation toward sub-quantum equilibrium” would need to establish that, in some appropriate sense,
most of these possible non-equilibrium configurations will relax toward coarse-grained equilibrium.
It would need to establish, in a word, that relaxation toward equilibrium is typical. I believe this is
actually true: establishing it is very closely-related to what Valentini has already done, and anyway it
is strongly reinforced by the numerical simulations we’ve used for illustrative purposes here and those
more serious versions done by Valentini and Westman and Towler et al. in [34,35].

However, reframing what is needed from a relaxation argument in this way—in terms of
typicality—also severely undercuts the need for a relaxation argument in the first place, in order
to understand the origin of the Born rule statistics in the pilot-wave theory. Understanding that point
is the subject of the following section.

5. The Argument from Typicality

J.S. Bell, in his 1981 essay “Quantum Mechanics for Cosmologists”, discusses the pilot-wave
theory and the explanation of Born rule statistics therein. He notes that “it is easy to construct in the
pilot-wave theory an ensemble of worlds which gives the [Born rule] exactly”. Given what we’ve
called equivariance, “it suffices to specify... that the initial configuration [Q(0)] is chosen at random
from an ensemble of configurations in which the distribution is” P = |Ψ(q, 0)|2 [37].

Bell then continues, echoing some of the concerns raised in the previous section:

“However, this question arises: what is the good of ... giving distributions over a hypothetical
ensemble (of worlds!) when we have only one world. The answer [... is that...] a single
configuration of the world will show statistical distributions over its different parts.
Suppose, for example, this world contains an actual ensemble of similar experimental
set-ups. [...I]t follows from the theory that the ‘typical’ world will approximately realize
quantum mechanical distributions over such approximately independent components. The
role of the hypothetical ensemble is precisely to permit definition of the word ‘typical’.”
[37]

The idea, then, is that there is no need to try to explain how quantum equilibrium statistics could
arise from some earlier out-of-equilibrium distribution; if the overwhelming majority of possible initial
configurations of the universe will exhibit Born rule statistics—if Born-rule statistics are typical—then
we should expect to see them and there is no further mystery to explain if we do.

We will give a brief rehearsal of the detailed argument, presented by Dürr, Goldstein, and Zanghí
in 1992 [38], below. However, first, to help set the idea (which is often mis-understood), we discuss a
couple of simple warm-up examples.

As a first example, suppose you pull a coin from your pocket and flip it 100 times. In addition,
suppose that the particular sequence that you see happens to include roughly equal numbers of
Heads and Tails (for example, 47 Heads and 53 Tails). How can you explain this fact? It would
normally be regarded as a sufficient explanation to simply note that, of all the 2100 possible sequences
you might conceivably have seen, almost all of them have “roughly equal numbers of Heads and
Tails” (Some concrete numbers: there are approximately 1029 100-flip sequences which have precisely
50 Heads, and about that same number again with 49, 48, and 47 Heads... whereas there is only a
single sequence which has zero Heads. More than 99% of the 2100 possible sequences have between 35
and 65 Heads). The property of having “roughly equal numbers of Heads and Tails”, that is, is typical
of 100-flip sequences. In addition, this means that, unless we have some specific relevant information
about the way the flips were conducted (e.g., the coin is unevenly weighted and therefore highly
biased towards Heads, or the “flips” were not really independent flips at all but were in some way
highly correlated) we should not be surprised by the observed results. We saw, in short, just the kind
of behavior that we should have expected to see, so there is nothing further to explain.

This same kind of reasoning is of course common and crucial in statistical mechanics. For example,
consider the distribution of velocities for the N individual molecules in a certain macroscopic sample of
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(say, monatomic ideal) gas. Every student of thermodynamics learns that we should expect to observe
the Maxwell velocity distribution

P(�v) d3v ∼ e−αv2
d3v (39)

(where α = m/2kBT), but what is the explanation for this? Again, the usual explanation is simply that
the overwhelming majority of states that the gas might conceivably be in, will exhibit this distribution.
Here is Boltzmann:

“... by far the largest number of possible velocity distributions have the characteristic
properties of the Maxwell distribution, and compared to these there are only a relatively
small number of possible distributions that deviate significantly from Maxwell’s”. [39]

Of course, unlike the case of the sequence of coin flips in which the total number of sequences
is finite, the number of distinct points in phase (or just velocity) space, consistent say with some
constraint on the total energy of the gas, is continuously infinite. Any statement about properties
exhibited by the “overwhelming majority” of the states thus presupposes a measure μ over the states.

The usual thing in the context of classical statistical mechanics is to take μ to be the restriction to
the energy surface of the Lebesque measure on phase space; this measure is “natural” in the sense that
it is invariant under the flow generated by the Hamiltonian equations of motion (Liouville’s theorem).
It is then straightforward to prove that the overwhelming number of points on the energy surface
exhibit the Maxwell velocity distribution. More formally, in the N → ∞ limit, the μ-measure of the set
of points for which the velocity distribution differs significantly from Equation (39), approaches zero.
See [40] for a more detailed and very clear discussion.

Please note that it would be very strange, having shown that the Maxwell distribution is typical
with respect to the measure μ, to worry that the specific choice of measure made any difference to the
velocity distribution one regards as typical. Any other measure μ′ that is absolutely continuous with μ

will, by definition, agree about the size of measure-0 and measure-1 sets. Of course, by hand-picking
a measure that is concentrated on special points in phase space, one could diagnose any distribution
one wants as “typical”. For example, consider the measure which is zero everywhere except at the
point in velocity space where all N particles have the same velocity, �v0:

μ′ = δ3(�v1 −�v0)δ
3(�v2 −�v0) · · · δ(�vN −�v0). (40)

It would then follow that μ′-most of the accessible phase space points exhibit the highly
non-Maxwellian velocity distribution

P(�v) d3v ∼ δ(�v−�v0) (41)

in which all particles have identical velocities �v0. However, such games are as transparently ridiculous
as they are possible. The idea is that any “reasonable” measure—any measure which is not specifically
hand-tailored to give special weight to phase space points not exhibiting the Maxwell distribution—will
agree with the “natural” measure about the Maxwell distribution being typical.

In the case of the pilot-wave theory, in which the state of the universe at a given moment t is
given by the universal wave function Ψ(q, t) and the particle configuration Q(t), the natural measure
of typicality is the one given by μ = |Ψ|2. The equivariance property discussed above means that,
although μ itself will be time-dependent (because Ψ is time-dependent), the form “μ = |Ψ|2” will
be timelessly true: μ(q, 0) = |Ψ(q, 0)|2 implies μ(q, t) = |Ψ(q, 0)|2 for all t. (The uniqueness of this
equivariant measure was established in [41].)

We may divide the universe into a sub-system of interest (with degrees of freedom x) and its
environment (with degrees of freedom y), so q = (x, y) and Q = (X, Y). It is then trivial to derive what
Dürr, Goldstein, and Zanghí call the “fundamental conditional probability formula”

μ(Xt ∈ dx|Yt) = |ψ(x, t)|2 dx (42)
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where

ψ(x, t) =
Ψ(x, Y(t), t)∫
|Ψ(x, Y(t), t)|2 dx

(43)

is the (normalized) conditional wave function (CWF) for the sub-system.
It is reasonable to think of the CWF as the wave function of the sub-system, in the context

of the pilot-wave theory, for at least two reasons: first, the guidance formula for the sub-system
configuration X can be written directly in terms of ψ(x); and second, the CWF will obey the obvious
sub-system Schrödinger equation when the sub-system is suitably decoupled from its environment.
(Note, however, that in general the CWF does not obey a simple sub-system Schrödinger equation,
but instead evolves in a more complicated way; this is a feature, not a bug, since the complicated
non-linear evolution in fact reproduces, in a precise and continuous way, the complicated non-linear
evolution that would be predicted, in the context of ordinary QM, by the ad hoc combination of
Schrödinger evolution and intermittent applications of the collapse postulate). In the simple case that
the full system wave function is a product,

Ψ(x, y) = ψ(x)φ(y), (44)

the CWF for the x sub-system coincides with ψ(x). One should thus appreciate that the CWF is
a generalization of the ordinary quantum mechanical wave function: the Bohmian CWF agrees with
the wave function that would be attributed to a system in ordinary QM in those situations where ordinary
QM would attribute any definite wave function at all to the sub-system; but the Bohmian CWF always
exists and provides a rigorous interpolation (consistent with the overall Bohmian dynamics for the
particles) between such times, even through preparations and measurements. Note also that, in the
situations where the effective wave function for a sub-system exists, it is given by the CWF, so we use
those interchangeably here.

To understand Dürr, Goldstein, and Zanghí’s main statistical result, let us consider again the
situation described in Section 3 in which the universal wave function has the structure given in
Equation (37). Suppose that Ψ⊥ and Φ have macroscopically disjoint y-supports and that Yt ∈ supp(Φ)

so that each of the n sub-systems has identical CWF ψ. It then follows from the fundamental conditional
probability formula that

μ(X1 ∈ dx1, X2 ∈ dx2, ..., Xn ∈ dxM|Y) = |ψ(x1)|2 · · · |ψ(xn)|2 dx1 · · · dxn. (45)

Thus, the configurations Xi of the particles composing the members of our ensemble of identically-
prepared sub-systems are independent, identically distributed random variables, with common
distribution |ψ(x)|2.

It is then essentially an immediate and standard application of the law of large numbers to infer
that, in the n → ∞ limit, the empirical distribution

pemp(x) =
1
n

n

∑
i=1

δ(x− Xi) (46)

is very close to ρ = |ψ|2 for μ-most initial configurations Q(0) (A slightly more precise statement
is that the measure of the “agreement set” for which ||pemp − ρ|| ≤ ε, for a suitable notion of || · ||,
approaches unity as n → ∞. Note also that, in addition to the “equal time analysis” we have sketched
here, Dürr, Goldstein, and Zanghí provide in addition an analysis of the statistics of measurements
performed on sub-systems across time; they show that, in this case as well, Born-rule statistics are
typical. See [38] for elaboration and details).

The argument is thus completely parallel to the standard statistical-mechanical explanation of the
Maxwell velocity distribution sketched above: using an appropriate natural measure over the space of
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possible states, it is possible to infer that the overwhelming majority of those states will realize a certain
statistical property—namely, that ensembles of sub-systems, each member of which is prepared with
(effective) wave function ψ, should exhibit Born-rule statistics p = |ψ|2. One should therefore expect
the positions of particles in identically-prepared quantum mechanical sub-systems to be Born-rule
distributed, according to the pilot-wave theory, for exactly the same reason that one should expect,
in the context of classical mechanics, to see a Maxwell velocity distribution: “... by far the largest
number of possible ... distributions have [this characteristic] distribution, and compared to these there
are only a relatively small number of possible distributions that deviate significantly from [it].”

There is thus no need, according to the proponents of the typicality program, to explain
how “quantum equilibrium” might have arisen, via relaxation, from some earlier non-equilibrium
distribution (and so whether, in particular, relaxation toward equilibrium is typical for non-equilibrium
distributions). If “by far the largest number of possible ... distributions” exhibit Born rule statistics,
then there is precisely the same motivation for expecting non-Born-rule distributions in, say, the early
universe as there is for expecting them today—namely, none.

6. Objections to the Typicality Argument

Proponents of the typicality argument insist that the measure μ be thought of (merely) as a measure
of typicality and not as a fully detailed probability distribution. They stress, that is, that in the argument
the only use to which μ is put is in assessing certain sets as having μ-measure of approximately unity
(or approximately zero) (See [42] for further discussion).

It must be admitted, though, that the distinction between regarding μ = |Ψ|2 as a typicality
measure, and regarding it instead as a full-fledged probability measure, is rather subtle and perhaps
has the air of a distinction without much of a difference (Valentini, for example, writes in a footnote
of [43]: “Note that if the word ‘typicality’ is replaced by ‘probability’, the result of Dürr et al. becomes
equivalent to the ‘nesting’ property proved by Valentini, which states that an equilibrium probability
for a many-body system implies equilibrium probabilities for extracted subsystems...”) (Indeed, such
skepticism about the importance, or meaningfulness, of the difference is perhaps supported by the
name Dürr, Goldstein, and Zanghí give to Equation (42)). The most common and important objection
to the claim that Born-rule statistics are typical (and hence not in need of some special explanation
involving, for example, dynamical relaxation toward equilibrium) is thus that the argument purporting
to establish this is circular: we only get Born-rule statistics out for subsystems, according to this
objection, because we assume Born-rule statistics apply to the universe as a whole.

In [43], for example, Valentini writes that the approach of Dürr et al.

“may be illustrated by the case of a universe consisting of an ensemble of n independent
subsystems (which could be complicated many-body systems, or perhaps just single
particles), each with wavefunction ψ0(x). Writing Ψuniv

0 = ψ0(x1)ψ0(x2) · · ·ψ0(xn) and
Xuniv

0 = (x1, x2, x3, ..., xn), a choice of Xuniv
0 determines – for large n – a distribution ρ0(x)

which may or may not equal |ψ0(x)|2 .

“Now it is true that, with respect to the measure |Ψuniv
0 |2, as n → ∞ almost all configurations

Xuniv
0 yield equilibrium ρ0 = |ψ0|2 for the subsystems. It might then be argued that, as n →

∞, disequilibrium configurations occupy a vanishingly small volume of configuration
space and are therefore intrinsically unlikely. However, for the above case, with respect
to the measure |Ψuniv

0 |4 almost all configurations Xuniv
0 correspond to the disequilibrium

distribution ρ0 = |ψ0|4. This has led to charges of circularity: that an equilibrium probability
density |Ψuniv

0 |2 is in effect being assumed for Xuniv
0 ; that the approach amounts to inserting

quantum noise into the initial conditions themselves...”

In [44], Jean Bricmont rehearses a closely related objection. He considers an ensemble of particles
in the ground state of a one-dimensional length-L “box” potential so that
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Ψ(x1, x2, ..., xN , t) = φ(x1, t)φ(x2, t) · · · φ(xN , t) (47)

where φ(x, t) =
√

2
L sin(πx/L)e−iE0t/h̄. Bricmont explains that

“because of the law of large numbers, the set of typical points [for which the statistical
distribution of positions in the ensemble approximately matches |φ|2)] will have
a |Ψ|2-measure close to 1, for N large. So, if one picks a microscopic configuration of
the universe Q that is typical relative to |Ψ|2, it will give rise... to an empirical distribution
satisfying Born’s statistical law...

“[Dürr, Goldstein, and Zanghí] claim that quantum equilibrium and therefore Born’s law
is actually very natural. However, for that last claim to be right, one needs to argue that
the measure with respect to which the configurations under discussion are typical is itself
‘natural’ (every configuration is typical with respect to at least one measure—the delta
measure concentrated on itself)”. [44]

Bricmont goes on to state that, for example, on Bayesian grounds, one might reasonably expect
a uniform distribution rather than the |φ|2-distribution which vanishes at the edges of the “box”.
The implication is that one has not really explained the |φ|2 distribution, but only showed that it follows
from a typicality measure that has been specifically selected to produce this very result:

“In fact the only ‘explanation’ of the fact that we obtain a |φ|2 distribution rather than
a uniform distribution is probably that God likes quantum equilibrium and Born’s law and
so put it there at the beginning of times.

“The upshot of this discussion is that quantum equilibrium, in Bohmian mechanics, should,
in my view, be presented as a postulate, independent of the other ones, rather than as
somehow being the only natural or reasonable choice. It is not a particularly unnatural
choice and it is true that quantum equilibrium is still far less mysterious than classical non
equilibrium at the origin of the universe... But one should not present it as more natural
than it is”. [44]

The objections here share the following common structure: when the universal wave function has
the structure of Equation (37), where there is an ensemble of n sub-systems with identical effective
wave functions ψ, it is true that μ-most configurations will display empirical statistics consistent with
the Born rule, p = |ψ|2, if the typicality measure is given by μ = |Ψ|2. But it is also true, for example,
that μ-most configurations will display (non-Born rule!) p = |ψ|4 statistics, if, instead, the typicality
measure is given by μ = |Ψ|4... and that μ-most configurations will display (differently non-Born rule!)
p = constant statistics if, instead, the typicality measure is given by μ = constant... and so on.

The basis for the feeling of circularity is clear: it seems that one simply gets, as the “typical”
statistics for ensembles, whatever one wants, and in particular the sub-system equivalent of whatever
one uses for the fundamental typicality measure μ: μ = |Ψ|2 gives p = |ψ|2, but μ = |Ψ|4 gives
p = |ψ|4, etc. Of course, the equivariance of the specific measure μ = |Ψ|2 may suggest that this
particular measure is dynamically privileged and hence in some sense “natural”. But, like other
“naturalness” arguments in physics, this may seem rather subjective and insufficiently substantial as
a foundation for a genuine explanation of Born rule statistics.

7. Discussion

The debate, between those who think that Born-rule statistics in the pilot-wave theory should
be explained by some kind of dynamical relaxation and those who think the Born-rule should be
derived by a typicality analysis, has raged for several decades in a rather sectarian way. My view
is that both perspectives contain valuable insights and both sides offer critiques of their opponents’
arguments which can sharpen our understanding of the truth. We should look to combine the insights
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emerging from both sides of the debate, and thereby aim to construct a single unified explanation of
the Born-rule, instead of feeling constrained to make a binary, either-or choice between them.

For example, I think it must be recognized that the dynamical relaxation perspective at
least tacitly relies on appeals to typicality. It is emphatically not the case that every initial
configuration, consistent with some particular out-of-equilibrium, non-Born-rule distribution,
will evolve monotonically toward coarse-grained equilibrium. See, e.g., Figure 5, which shows
an ensemble that is initially in coarse-grained equilibrium evolving through a sequence of increasingly
out-of (-coarse-grained)-equilibrium distributions. In addition, as discussed in Section 4, there is
not much comfort in the fact that dynamical relaxation has only been shown to occur for initial
distributions respecting the “no fine-grained micro-structure condition” which, strictly speaking, the
probability distributions for which the ensembles pictured in frames (a)–(e) of Figure 5 are typical
exemplars violate. There is no actually-existing universal “probability distribution” P(q). All that
exists (in addition to the wave function) is the actual configuration Q and its subsets, including finite
ensembles of similarly-prepared subsystems whose empirical distributions, given by Equation (38),
necessarily contain fine-grained micro-structure.

Moreover, such finite-ensemble empirical distributions simply do not allow any meaningful
statements about a hypothetical associated continuous probability distribution p(x). For example,
what does it even mean to say that the probability distribution p(x)—associated with the ensemble
depicted in frame (f) of Figure 2—has no fine-grained micro-structure, whereas the p(x) associated
with the ensemble depicted in frame (a) of Figure 5 does have fine-grained micro-structure? I think
such a claim is utterly empty in the final analysis. All one can say is that the two ensembles share
the same equilibrium, Born-rule coarse-grained distribution p̄(x) = |ψ(x)|2, but one of them has the
property that it stays Born-rule distributed (in the coarse-grained sense) whereas the other one (at least
for a while!) does not.

As discussed in Section 4, I think these considerations imply that, at most, the claim defended
by the dynamical relaxation program must be that relaxation toward coarse-grained equilibrium
(i.e., toward FAPP Born-rule statistics) is typical: not all configurations (that do not already exhibit
Born-rule statistics) will evolve into configurations that do exhibit Born-rule statistics, but the
overwhelming majority of them (in some appropriate sense) will.

The sorts of numerical simulations pioneered by Valentini and Westman (and which I have
reproduced here for illustrative purposes) strongly suggest that this modified dynamical relaxation
claim is true: evolution toward coarse-grained sub-quantum equilibrium really is typical, such that,
if one believes that the universe may have started in a (globally atypical) configuration for which
Born-rule statistics did not obtain, we should expect Born-rule statistics to emerge over time and
hence be observed today (As a concrete example in support of this claim, I ran the simulation depicted
in Figure 2, several times—with different initial positions randomly drawn from the distribution
p = constant—and it looks qualitatively the same every time). But the explicit recognition of the role of
typicality in that explanation should also remove most of the motivation for thinking the universe may
have started in some “out-of-equilibrium” initial state in the first place, such states representing, after
all, a vanishingly small fraction (...at least, if one uses the supposedly “natural” measure of typicality,
μ = |Ψ|2...) of those which could evolve into configurations consistent with what is observed today.

Note here the dramatic contrast with the case of thermodynamic equilibrium, for which there
is compelling observational evidence that the out-of-thermodynamic-equilibrium state we see today
did arise from an earlier state that was even further out-of-equilibrium. In the sub-quantum case
that we have been discussing in this paper, all observational evidence to date is consistent with the
(sub-) Quantum Equilibrium Hypothesis, and—contrary to claims made sometimes by Valentini (for
example, Valentini and Westman write in [34]: “a relaxation process from an earlier non-equilibrium
state.... leads naturally to the suggestion that quantum non-equilibrium may have existed in the early
Universe...”)—there is no compelling reason to think that today’s equilibrium arose from an earlier state
of disequilibrium. The idea that most non-equilibrium configurations evolve toward coarse-grained
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equilibrium (which is how we are suggesting Valentini’s claims should be understood, and which idea
we are willing to grant is probably true) does not imply that equilibrium is most likely to have arisen
from earlier disequilibrium. Just the opposite is true! Concretely, if one randomly chooses a large
number of equilibrium ensembles that look like frame (f) of Figure 2 and runs them all backwards in
time, very few will look like frame (a) of Figure 2 (or any other disequilibrium distribution) at t = 0;
the overwhelming majority will still look just like frame (f), i.e., will exhibit equilibrium, Born-rule
statistics at the initial time as well.

In any case, the melding of the typicality and dynamical relaxation perspectives seems to cast
a calming and clarifying light on the subject. Invoking typicality helps one understand exactly what
the dynamical relaxation argument purports to prove, and helps one more fairly assess how promising
it might be, for example, to search for violations of Born-rule statistics in relic particles from the
early universe.

In addition, conversely, the time-evolution that is the focus of the dynamical relaxation
approach—and which is so vividly portrayed in the numerical simulations of [34,35]—also helps
clarify the typicality argument in the face of the sorts of objections reviewed in Section 6. It is definitely
true that, as long as one simply considers a specific moment in time, the explanation of p = |ψ|2
by appeal to μ = |Ψ|2 has an unconvincing and circular character. But that single-moment-in-time
snapshot is really a thin caricature of the actual argument.

The real argument is that Born rule p(x, t) = |ψ(x, t)|2 statistics—across a range of nonzero times
t—arise for typical initial configurations X(0) if we measure typicality using μ = |Ψ(q, 0)|2. Note in
particular here that it is not the case that if one instead measured typicality using, say, the μ = constant
measure, one would get p(x, t) = constant! That is, once we move beyond the single-moment-in-time
caricature, it is simply not the case that the typical p(x) is the same function of ψ that the typicality
measure μ is as a function of Ψ.

Dürr, Goldstein, and Zanghí explain, for example, that one could infer the typicality of the
non-Born-rule statistics p(x, t) = |ψ(x, t)|4

“provided the sense [μ] of typicality were given, not by |Ψ|4 (which is not equivariant),
but by the density to which |Ψt|4 would backwards evolve as the time decreases from t
to THE INITIAL TIME 0. This distribution, this sense of typicality, would presumably be
extravagantly complicated and exceedingly artificial.

“More important, it would depend upon the time t under consideration, while equivariance
provides a notion of typicality that works for all t”. [38]

This is an extremely important point. With (non-trivial) time-evolution between the initial time
and the time at which one is interested in considering the statistical distribution, one does not simply
get out for p(x) what one puts in for μ. Note as well that what DGZ describe here as an “extravagantly
complicated and exceedingly artificial” typicality measure μ could also perhaps be described by saying
that μ has an implausibly fine-grained micro-structure.

I also find it illuminating to turn Dürr, Goldstein, and Zanghí’s point around and consider the sorts
of statistics one would diagnose as typical if one began with a more plausibly smooth (but non-|Ψ|2)
typicality measure, such as μ = constant or μ = |Ψ|4, over initial configurations. Assuming the
wave function of the universe has a non-trivial dynamics, such a μ would forward-evolve into
something “extravagantly complicated and exceedingly artificial” at later times t. Indeed, this is
precisely the sort of evolution we have illustrated in, for example, Figure 4: even for an extremely
simple (two-dimensional!) system, an initially uniform distribution evolves into something with an
incredible degree of fine-grained micro-structure in a very short period of time. This is what Valentini’s
relaxation argument predicts, and one thus expects that something qualitatively similar will happen
with the (evidently much more complicated!) evolution of the wave function of the entire universe,
such that (say) an initially-uniform μ will forward-evolve into something with an incredibly filimented,
fine-grained, non-uniform structure which will diagnose, as typical for ensembles of similarly-prepared
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sub-systems, a p(x, t) function with its own extravagantly complicated fine-grained structure... but
whose coarse-grained partner p̄(x, t) matches the Born rule distribution |ψ(x, t)|2.

Dürr, Goldstein, and Zanghí have shown that Born-rule statistics are to be expected from the
pilot-wave theory, if one assesses typicality using the “natural” equivariant measure, μ = |Ψ|2. What I
mean to be recommending here is that Valentini’s analysis, and the associated numerical simulations,
can be taken as suggesting that other, non-equivariant typicality measures (which are, at t = 0, in some
sense “reasonably smooth”, i.e., which contain no fine-grained micro-structure, i.e., which are not
extravagantly complicated and exceedingly artificial) will also end up diagnosing, as typical, Born-rule
statistics at later times. So to whatever extent one finds the typicality argument presented by DGZ
to be circular, or to rely too heavily on unconvincing “naturalness” type assumptions, one can rest
assured that Born-rule statistics are typical—i.e., that one should expect to see Born-rule statistics in
practice—not only according to that one special equivariant measure of typicality, but according to
virtually any “reasonable” measure of typicality.

That, of course, does not mean that Born rule statistics are absolutely guaranteed by the pilot-wave
theory’s dynamics. They aren’t. There are possible initial configurations of the universe—indeed,
there are an infinite number of them—that will, for example, give rise to perfect p = |ψ|4 statistics
today. But these are like the possible states for a box of gas molecules in which every molecule
has exactly the same velocity: the existence of such possible states should not undermine one’s
expectation to see a Maxwell velocity distribution. Similarly here: I think what the typicality analysis
together with Valentini’s relaxation argument and the associated numerical solutions show is that
any “reasonable”—smooth, simply-expressable, non-artificial—measure over initial configurations
will imply that we should expect to see Born-rule statistics. If that does not constitute a genuine statistical
explanation of the Born rule, from the dynamical first principles of the pilot-wave theory, I truly do not
know what would or could.
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Abstract: Bohmian mechanics, widely known within the field of the quantum foundations, has been
a quite useful resource for computational and interpretive purposes in a wide variety of practical
problems. Here, it is used to establish a comparative analysis at different levels of approximation
in the problem of the diffraction of helium atoms from a substrate consisting of a defect with axial
symmetry on top of a flat surface. The motivation behind this work is to determine which aspects of
one level survive in the next level of refinement and, therefore, to get a better idea of what we usually
denote as quantum-classical correspondence. To this end, first a quantum treatment of the problem is
performed with both an approximated hard-wall model and then with a realistic interaction potential
model. The interpretation and explanation of the features displayed by the corresponding diffraction
intensity patterns is then revisited with a series of trajectory-based approaches: Fermatian trajectories
(optical rays), Newtonian trajectories and Bohmian trajectories. As it is seen, while Fermatian and
Newtonian trajectories show some similarities, Bohmian trajectories behave quite differently due to
their implicit non-classicality.

Keywords: atom-surface scattering; bohmian mechanics; matter-wave optics; diffraction;
vortical dynamics

1. Introduction

In the last several decades, there has been a fruitful and beneficial transfer of the ideas involved in
David Bohm’s formulation of quantum mechanics [1–4] from the domain of the quantum foundations
to the arena of the applications [5–9]. The conceptual and mathematical background provided by
Bohmian mechanics [3,4,10–12] has become a resourceful tool to investigate quantum problems from
an alternative viewpoint regardless of the always ongoing hidden-variable debate. This includes both
fresh interpretations to (known and also new) quantum phenomena and novel implementations of
alternative numerical algorithms to tackle them [13]. The essential ingredients of Bohmian mechanics
have also inspired methodologies and descriptions aimed at providing effective trajectory-like
explanations of wave phenomena beyond the quantum realm [14]. For instance, Bohmian-like
trajectories have been synthesized from experimental data with light [15], while Bohmian-like
behaviors have been recreated in classical fluid-dynamics experiments [16–22].

Getting back to quantum mechanics, one of the advantages of Bohmian mechanics is, perhaps,
its capability to put on the same level quantum and classical analyses or descriptions of the same
physical phenomenon by virtue of the concept of trajectory, well defined in both contexts. Now, because
Bohmian trajectories are in compliance with quantum mechanics, they can be considered to be at a
descriptive level above classical trajectories. Thus, an interesting question that naturally arises is how
much or what kind of information is kept when passing from a descriptive level to the next one. This is
precisely the question addressed here. To this end, a realistic working system is considered, although
it is still simple enough to provide a clear answer to the question. Specifically, the phenomenon
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analyzed is the helium-atom diffraction from a carbon monoxide molecule (CO) adsorbed on a
platinum (111) single-crystal surface. This is a system that has been extensively studied in the literature
both experimentally and theoretically [23–31], even from a Bohmian viewpoint [32,33]. An appropriate
description and knowledge of the CO-Pt(111) interaction is important to the understanding of the
role of Pt as a catalyst of the electrochemical oxidation of the CO, with industrial and technological
applications (of course, an extensive literature on other analogous systems is also available). In order
to determine such an interaction, one of the experimental techniques employed is the He-atom
diffraction (or scattering) at low energies (typically energies are between 10 meV and 200 meV,
about three orders of magnitude below the range for low-energy electron diffraction). This is a rather
convenient tool to investigate and characterize surfaces at relatively low energies with neutral probes,
which provides valuable information about the surface electronic distribution without a damage of
the crystal—the atoms remain a few Ångstroms above the surface, in contrast to low-energy electron
diffraction, where electrons penetrate a few crystal layers, strongly interacting with the crystal atoms.

As is well-known, when a matter wave is diffracted by a crystal lattice, either by reflection
(the case of He atoms or low-energy electrons) or by transmission (the case of neutron diffraction or
high-energy electrons), the resulting spatial intensity distribution is characterized by a series of maxima
along the so-called Bragg directions. The lattice structure can be determined from these characteristic
patterns by means of a convenient modeling. Sometimes, however, these patterns have distortions due
to a break of the translational symmetry typical of a perfect lattice. This symmetry-breaking can be
induced by intrinsic thermal (lattice) atom vibrations (phonons) or by the presence of different types
of defects randomly distributed across the lattice [34], for instance, adsorbed particles (adsorbates).
In the case of a periodic surface, the presence of an adsorbate on top of it translates into a blurring of
the well-defined Bragg features and the appearance of broad intensity features. This diffuse scattering
effect [24] is analogous to the image distortion produced by a rough mirror—the larger the number
of CO adsorbates on the clean Pt surface, the larger the distortion with respect to neat Bragg-like
diffraction intensity peaks.

Instead of considering a large number of randomly distributed CO adsorbates, we are going to
focus on the effects produced by a single isolated CO adsorbate. Moreover, we shall not focus on
the quantitative description of the diffraction process itself, but on the analysis of how the features
associated with a given descriptive level manifest on the next level, which is assumed to be more
refined and, therefore, accurate. Accordingly, we will see that although such features are transferred
from the model characterizing one level to the model corresponding to the next level, it not always easy
to establish an unambiguous one-to-one correspondence. In simple terms, appealing to a biological
metaphor, it is like considering a body and its skeleton. The skeleton is the structure upon which the
body rests. However, although the body reveals some features of the skeleton (we can perceive the
position of some bones under our flesh), it is a much more complex super-structure. In particular,
here the problem considered is approached at three descriptive levels:

• The Fermatian level, which refers to the analysis of the problem assuming a bare hard-wall-like
(fully repulsive) model to describe the He-CO/Pt(111) interaction. Because the trajectories here
are of the type of sudden impact (free propagation except at the impact point on the substrate
wall, where the trajectory is deflected according to the usual law of reflection), they are going to
be straight-like rays, as in optics (this is why it is referred to as Fermatian).

• The Newtonian level, where the He-CO/Pt(111) interaction is modeled in terms of a potential
energy surface that smoothly changes from point to point. This model has a repulsive wall that
avoids He atoms to approach the substrate beyond a certain distance (for a given incidence
energy), and an attractive tail that accounts for van der Waals long-range attraction. The existence
of these two regions, repulsive and attractive, gives rise to an attractive channel around the CO
adsorbate and that continuous along the flat Pt surface, inducing the possibility of temporary
trapping for the He atoms.
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• The Bohmian level is the upper one and, to some extent, makes an important difference with the
previous models because here the trajectories are not only dependent on the interaction potential
model, but also on the particular shape displayed by the wave function at each point of the
configuration space at a given time (the “guiding” or “pilot” wave).

From a physical view point, we are going to focus on three different aspects or phenomena,
namely reflection symmetry interference, surface rainbows and ısurface trapping. As it will be seen, all
these aspects have a manifestation in the corresponding diffraction intensity patterns. Reflection
symmetry interference is the mechanism considered to explain the oscillations displayed by the intensity
pattern at large diffraction angles [24,26], and is based on the hypothesis that the diffracted wave
can be assumed to be constituted by two interfering waves. In terms of trajectories, as we shall
see, this means that there are pairs of homologous paths (either Fermatian or Newtonian), which,
when using semiclassical arguments in terms of the optical concept of paths difference, explain
the appearance of such type of interference [24,26]. Rainbow features arise as a consequence of
the local changes in the curvature of the interaction potential model [27,35], which give rise to
accumulations of classical trajectories along some privileged directions (rainbow deflection angles),
but that quantum-mechanically leave some uncertainties when we look at the corresponding diffraction
patterns [29,32]. Finally, surface trapping along the clean Pt surface arises for some deflections from the
adsorbate at grazing angles. This phenomenon takes place when, by virtue of the interaction with
the adsorbate, the He atoms lose too much energy along their perpendicular direction, transferring it
to their parallel degree of freedom (perpendicular and parallel are defined with respect to the clean
Pt surface). The energy associated with their perpendicular degree of freedom becomes negative,
while the parallel energy gets larger than the incident one (by conservation), which ends up with
the atom moving in the form of jumps along the surface until it encounters another adsorbate that,
by means of the reverse process, can be used to release the atom from the surface [36].

According to the above discussion, this work has been organized as follows. Details about the
interaction potential models considered to determine the different trajectory dynamics are provided
and discussed in Section 2. In this section, a brief discussion is also given concerning the numerical
approaches used to determine the calculations shown here. The diffraction intensity patterns for
both the hard-wall model and the realistic interaction potential are shown and discussed in Section 3.
Section 4 is devoted to the description and analysis of the different types of trajectories (Fermatian,
Newtonian and Bohmian), emphasizing the features that are both common to all approaches and also
their main differences. To conclude, a series of final remarks are summarized in Section 5.

2. Potential Model and Computational Details

Interaction potential models for systems like the one we are dealing with here are determined
from information extracted from experimental diffraction patterns. Thus, let us consider that, as it
is typically done, the intensity distribution in these patterns is specified in terms of the transfer of
He-atom momentum from the incidence direction to the direction parallel to the surface or, in brief,
parallel momentum transfer [24], i.e.,

ΔK = kd,x − ki,x = ki(sin θd − sin θi), (1)

where θd and θi are the diffraction and the incident angles, respectively, and ki =
√

2mEi/h̄ is the
incident wavenumber. Then, diffraction features in the large-angle region of the pattern (large parallel
momentum transfers) typically convey information about the repulsive part of the interaction, while the
attractive part has a more prominent influence on the small-angle region (low parallel momentum
transfers). From these potential models, it is possible to estimate the effective size of the adsorbed
particles [23,24] as well as the local curvature of the surface electron density, which additionally may
induce the presence and contribution of rainbow-like features [35,37] whenever the interaction potential
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consists of a short range repulsive region followed by a longer range attractive one (accounting for the
van der Waals interaction between the adsorbate-surface system and the impinging neutral atom).

The model considered here, proposed by Yinnon et al. [27], gathers the above mentioned features
and nicely fits the experimental data [27–29]. This potential model consists of two terms:

V(r) = VPt(111)(z) + VCO(r), (2)

where VPt(111)(z) and VCO(r) describe, respectively, the separate interaction of the He atom with the
clean Pt surface and the adsorbate. The functional form of these two potential functions are a Morse
potential for the He-Pt(111),

VPt(111)(z) = D
[
1− e−α(z−zm)

]2
− D, (3)

and a Lennard–Jones potential for the He-CO,

VCO(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (4)

with r =
√

x2 + y2 + z2. The reference system for the potential (2) is centered at the CO center of mass,
with D = 4.0 meV, α = 1.13 Å−1, zm = 1.22 Å and ε = 2.37 meV [28,29]. With this, z accounts for the
position of the He atom along the perpendicular direction with respect to the clean Pt surface, while
x and y describe its parallel motion. Because of the rotation symmetry around the axis x = y = 0
exhibited by the interaction potential (2), for an illustration, in the contour plot displayed in Figure 1a
only one half of the transverse section along the plane y = 0 is shown. In it, negative and positive
energy contours are denoted, respectively, with blue solid line and red dashed line (due to symmetry,
only a half of the potential is shown). On the right-hand side, panels (b)–(d) show different transverse
sections of the potential to better appreciate the effect of the local curvature along the z direction
at three different distances from x = 0 (for x = 0 Å, x = 3.31 Å and x = 6.35 Å, respectively),
which give an idea of the well-depth on top of the adsorbate (about 2.96 meV), at the intersection of
the adsorbate with the flat Pt surface (6.37 meV), and on top of the flat surface far from adsorbate
(4 meV), respectively.

The existence of an attractive well around the adsorbate and also along the surface is going to
induce temporary trapping both classically and quantum-mechanically—only the presence of another
neighboring adsorbate may help to remove such trapping. Since far from the influence region of the
adsorbate the He-Pt(111) interaction only depends on the z coordinate, the trapped motion will be
ruled by the well of the Morse function, being free along the x direction. The resulting motion is thus a
combination of jumps along the z direction with a uniform motion parallel to the Pt surface, with an
average speed larger than

√
2Ei/m, with Ei being the incident energy (notice that the energy along the

x direction has to be larger than along the z direction in order to achieve negative values along the
latter and, hence, trapping). Classically, if the energy along the z direction is given by

Ez =
p2

z
2m

+ VPt(111)(z), (5)

where Ez = Ei − Ex < 0 and m is the He-atom mass, it is easy to show that the turning points will be
located at

z± = zm −
1
α

ln

[
1±

√
1− |Ez|

D

]
. (6)

This motion is anharmonic, with frequency

ω =

√
2α2|Ez|

m
. (7)
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The length of each jump along the x direction can be easily estimated from Equation (7) according
to the relation

Δx =
px

m
τ =

2π

α

√
Ex

(Ex − Ei)
=

2π

α

√
(Ei − Ez)

|Ez|
, (8)

where px = mvx and τ = 2π/ω. As can be noticed, at the threshold Ex = Ei, the jump length becomes
infinity, i.e., the trajectories leave the adsorbate being and remaining parallel to the clean Pt surface.

Figure 1. (a) contour plot of the He-CO/Pt(111) interaction potential model (2) (see text for details).
The energy difference between consecutive repulsive/attractive contour levels (red dashed lines/blue
solid lines) is 10 meV/1 meV. The thick black solid line denotes the repulsive boundary for an
approximate hard-wall model set for an incidence energy of 10 meV (see text for details). In the
right-hand side panels, energy profiles along the z direction for: (b) x = 0 Å; (c) x = 3.31 Å and
(d) x = 6.35 Å. In these panels, the total interaction potential is denoted with black solid line, while red
dashed and blue dash-dotted lines refer to the Morse and Lennard–Jones contributions, respectively.

Quantum-mechanically, the trapped portions of the wave packet will somehow contain
information about the bound states of the Morse function, with eigenenergies given by [38]

En = h̄Ω
(

n +
1
2

) [
1− h̄Ω

4D

(
n +

1
2

)]
, (9)

with

Ω =

√
2α2D

m
(10)

being the harmonic frequency resulting from approximating the Morse potential to a
harmonic oscillator. From the condition to determine the total number of bound states, i.e.,
ΔEn′=n+1,n = En′ − En ≥ 0, it is found that, for the parameters here considered, there are only three
bound states, namely the ground state plus two excited ones: E0 = −2.53 meV, E1 = −0.60 meV
and E2 = −3× 10−3 meV. If we assume Ez = En, then we obtain Δ(0)

x ≈ 12 Å, Δ(1)
x ≈ 23 Å and

Δ(2)
x ≈ 320 Å, respectively, according to Equation (8).

The potential model (2) will be used to investigate the behavior of Newtonian and Bohmian
trajectories when the He atoms are influenced by it. For the Fermatian approach, we shall consider a
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rather crude approximation to this potential, which consists of substituting it by a purely repulsive
infinite barrier, which will be referred to as the (repulsive) hard-wall model. This barrier is an
approximation to the equipotential V(r) = 10 meV (black thick solid line in Figure 1a), so that
VHW(r) = ∞ for any position r such that V(r) ≥ 10 meV and zero everywhere else (i.e, for all r such
that V(r) < 10 meV). An optimal fit to this equipotential renders a radius a = 2.86 Å for the adsorbate
and a position zr = 0.28 Å of the clean Pt surface above the CO center of mass. Since the Bohmian
treatment of this model is not included here, it is worth mentioning a recent analysis of an analogous
system by Dubertrand et al. [39], where the authors consider the Bohmian description of quantum
diffraction by a half-flat surface (simplified by a half-line barrier), earlier considered by Prosser [40]
in the context of the solution of Maxwell’s equations to the problem of diffraction by a semi-infinite
conducting sheet [41].

One of the advantages of the model introduced in this section is that it can describe the presence
of a localized adsorbed particle on a surface (which can be regarded as a point-like defect [24]), but also
a row of adsorbates aligned, for instance, along the y-axis (a linear-like defect [23]). In the first case,
we have radial symmetry with respect to the z-axis, while the latter is characterized by axial symmetry,
along the y-axis. From the viewpoint of a trajectory-based description, there is no difference between
one case and the other, since what happens in one half of a transverse section also happens in any other
section (which can be reconstructed either by rotation symmetry around the z-axis or by translational
symmetry along the y-axis and/or mirror symmetry with respect to the yz plane). The difference
between both models relies on the way how the trajectories distribute spatially and therefore how
many of them lay within a certain solid angle, independently of whether the trajectories are classical
(Fermatian or Newtonian) or quantum-mechanical (Bohmian). Having said this, since we are interested
in comparing the behavior of different types of trajectories, from now on, the discussion will turn
around the two-dimensional description, which is analogous to consider an axial-symmetric system.

Regarding the conventions used here [42], the incidence angle, θi, for Fermatian and Newtonian
trajectories is defined as the angle subtended between the incident direction of a given trajectory and
the normal to the clean Pt surface. Dynamically speaking, this translates into an effective way of how
much momentum is provided initially to each direction, i.e.,

pi,x = pi sin θi =
√

2mEi sin θi,
pi,z = −pi cos θi = −

√
2mEi cos θi,

(11)

with pi = h̄ki =
√

2mEi. In particular, in the calculations presented and discussed below, we have
considered two values of the incident energy, namely Ei = 10 meV and 40 meV. In terms of the de
Broglie wavelength, λdB = h/

√
2mEi, with h being Planck’s constant, these energies correspond to

λdB = 1.43 Å and 0.72 Å, respectively. The relations (11) are also used for the quantum analysis,
where the incident wave function is launched with a momentum in compliance with these expressions.
The deflection (or outgoing) angle, θd, on the other hand, is defined as the angle subtended by the
normal and the deflection direction for the corresponding trajectory—in the case of wave-function
descriptions, this angle is going to be denoted as the diffraction angle —, although an analogous
definition in terms of the momentum with which the particle is deflected can also be used. Once the
incidence angle is established, depending on the initial position assigned to the trajectories, they will
behave in a way or another. To characterize the trajectories according to their initial positions, it is
common to refer them to the impact parameter, which in the present context is defined as the impact
position on the clean surface in absence of interaction. In periodic surfaces, the range for impact
parameters (b) is typically established in terms of the lattice parameter (the unit cell length) [42,43].
Here, because the presence of the adsorbate breaks the periodicity of the clean surface, we need to
redefine this range in an alternative and slightly different way. Specifically, this range is taken as a
portion of surface that covers the extension of the adsorbate and goes well inside the region where
the flat surface potential is already not influenced by the adsorbate attractive tail. With the potential
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function used here, this means is satisfied by impact parameters taken within the range [−10.6, 10.6] Å.
Accordingly, the initial positions are specified as

xi = b− zi tan θi,
zi = z0,

(12)

with b ∈ [−10.6, 10.6] Å, and where z0 = 10.27 Å has been chosen far from the surface, such that
V(r) ≈ 0 (the same holds for an incident wave function, whose probability density has to be far from
the influence region of the adsorbate).

With the above definitions, the computation of Fermatian trajectories is trivial, since we only
need to know their incidence direction and, from it, the point on the substrate (adsorbate or flat
surface) where they will feel the impact. At such a point, applying the law of reflection, we readily
obtain the deflection angle and therefore the deflected part of the trajectory. Fermatian trajectories
are just a pure geometric issue and, as it will be seen in next section, the corresponding quantum
calculations are just analytical, so they do not imply high computational demands. For Newtonian
trajectories, however, the computational task is more refined, since the action of the interaction
potential introduces important changes in the curvature of the trajectories when they are approaching
the substrate. Nevertheless, the computational demand is still low, since such trajectories can be readily
obtained by integrating Newton’s equations (actually, Hamilton’s equations) with a simple fourth-order
Runge–Kutta algorithm using the above momentum and position values, Equations (11) and (12),
respectively, as initial conditions.

The numerical computation of the wave-function evolution and the Bohmian trajectories is,
however, more subtle, since it implies the solution of a partial differential equation. In this case,
integration has been carried out by means of the second-order finite-difference algorithm [44], making
use of the fast Fourier transform to compute the kinetic part of the operator [45]. For the initial wave
function, we would like to simulate an incident nearly plane wave, which mimics a highly collimated
He-atom beam. Numerically, we can recreate this situation by considering a quasi-monochromatic
wave function or wave packet that covers the substrate well beyond the effective size of the adsorbate.
This can be done by linearly superimposing a large number of Gaussian wave packets, which in our
cases amounts to considering 250 Gaussian wave packets [46], where the spreading of each wave
packet is 0.84 Å along the x direction and 2.65 Å along the z direction. With these conditions, the wave
function reaches the surface with almost no increase of its size, which is launched from an average
position along the z direction 〈z〉0 = z0 = 10.27 Å and normal incidence conditions (again, for visual
clarity). In order to ensure an optimal overlapping along the x direction, the centers of the wave
packets are separated a distance of 0.21 Å. For simplicity both here and also with the hard-wall model,
the quantum calculations have been performed at normal incidence conditions (θi = 0◦), although this
does not diminish the generality of the results presented.

Regarding the computation of the Bohmian trajectories, they are synthesized on the fly from the
wave function. That is, the wave function is made to evolve for a small time interval dt, and then
the trajectories are propagated from their actual position to the new one with the phase information
provided by the updated wave function. The equation of motion that rules this behavior is the guidance
Equation (24) (see Section 4.3 for further details on this equation of motion). Since the value of the wave
function and its derivatives is known only on the knots of the numerical grid, the guidance equation
has to be solved with the aid of numerical interpolators, which render the values required at any other
point other than a grid knot with a reliable accuracy. With these values, the equation of motion is
solved by means of a Runge–Kutta algorithm, as in the case of Newtonian trajectories, although the
degree of accuracy required is higher, particularly due to the appearance of nodal structures. As for
the initial conditions, they have been chosen along lines parallel to the flat surface, at different constant
distances from the latter and taking the value 〈z〉0 = z0 as a reference. Specifically, three of these lines
have been taken above this value [z(0) > z0] and another three have been taken below [z(0) < z0], i.e.,
closer to the substrate (see Section 4.3 for further details).
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3. Wave-Function Approach

3.1. Diffraction from a Repulsive Hard-Wall Potential

In the case of the two-dimensional (axial-symmetric) version of the hard-wall model described
in Section 2, the diffracted wave far from the adsorbate can be obtained from the exact (analytical)
asymptotic solution to the problem of the diffraction from a cylinder [47],

Ψ = eiki ·r +
f (kd)√

r
eikdr = eiki,x x−ki,zz +

f (kd,x, kd,z)√
r

eikdr, (13)

with r → ∞, and where ki = (ki,x, ki,z) is the incidence wave vector (momentum) and kd = (kd,x, kd,z)

is an outgoing wave vector pointing along an arbitrary diffraction direction—the two wave vectors
are expressed in terms of their parallel and perpendicular components (ki,x and kd,x, and ki,z and kd,z,
respectively) on purpose. In this expression, the first term is the contribution from the direct wave
and the second term accounts for the diffraction caused by the defect itself (the minus sign in the first
contribution arises from the fact that the incidence direction is considered to be negative).

If instead of a cylinder we have a half of it on top of a flat surface, the solution (13) has to include
the effect of the reflection from the flat surface, i.e.,

Ψ = ei(ki,x x−ki,zz) − ei(ki,x x+ki,zz) +
f (kd,x, kd,z)√

r
eikdr, (14)

which has to satisfy the hard-wall boundary conditions

Ψ(x, z = zr) = Ψ(r = a) = 0.

The first two terms in (14) satisfy this condition when z = 0, as expected on the flat surface. On the
other hand, for the third term to satisfy these boundary conditions it is necessary that the diffraction
(or scattering) amplitude, f , is given by two contributions,

f (θi, θd) = fa(|θd − θi|)− fb(π − |θd + θi|), (15)

where the first term describes direct reflection from the adsorbate and the second, a double reflection
from the adsorbate and then the flat surface. Both amplitudes can be recast in terms of the difference
between the diffraction and incidence angles. In the first case, this can be readily seen; in the latter,
a similar result is obtained after assuming collisions with a full cylinder, because then the diffraction
angle is θ′d = π− θd. In addition, note that the symmetry displayed by Equation (15) for the specific case
θi = 0 is analogous to the antisymmetry condition arising in fermion-fermion collisions [48], where the
symmetrized amplitude for two fermions with 1/2-spin in a triplet state has the functional form

f−(θ) =
1√
2
[ f (θ)− f (π − θ)] . (16)

Analytically, in the short-wavelength limit (ka → ∞) and for a cylindrical defect, the diffraction
amplitudes in Equation (15) are of the form [47],

f (θ) = −
[

a sen θ/2
2

]1/2
e−2ika sen θ/2 +

e−iπ/4
√

2πk
(1 + cos θ)

sen θ
sen (ka sen θ). (17)

where the first term, known as the illuminated face term, accounts for the backward scattering of the
wave and the second one describes the Fraunhofer diffraction. The final analytical expression for the
diffraction amplitude f is obtained by considering the symmetrization condition (15) in these results.
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The diffraction intensity for the axial-symmetric, fully repulsive hard-wall model is shown in
Figure 2a as a function of the parallel momentum transfer (1), for Ei = 10 meV and normal incidence
(θi = 0◦). In the same figure, the intensities associated with the illuminated face term and the
Fraunhofer diffraction are also displayed separately (red dotted line and blue dashed line, respectively)
in order to get a better idea at a quantitative level of their respective contributions to the total pattern.
As it can be seen, for small momentum transfers (small diffraction angles), the leading term is the
Fraunhofer one, which decreases fast as the momentum transfer increases (as (ΔK)−2). On the contrary,
the illuminated-face term, together with its mirror image, becomes the leading contribution for large
momentum transfers (large diffraction angles). The type of oscillations generated by these two terms,
the illuminated-face one and its mirror image, give rise to the reflection symmetry phenomenon [24],
which explains why the diffraction pattern does not decay for large momentum transfers, as happens,
for instance, in simpler cases of diffraction by a wire or a slit. This behavior is observed regardless
of the incident energy, as can be noticed from the intensities displayed in Figure 2b for Ei = 40 meV
(and also normal incidence).

Figure 2. (a) Relative diffraction intensity (black solid line) produced by a radial hard-wall model for
incidence conditions θi = 0◦ and Ei = 10 meV. To compare with, the Fraunhofer and illuminated-face
intensities are also shown, which are denoted with red dashed line and blue dash-dotted line,
respectively; (b) As in panel (a), but for Ei = 40 meV.

3.2. Diffraction from the Potential Model (2)

The quantum treatment for the potential model (2) does not admit analytical solutions, as it is the
case of the hard-wall model of Section 3.1, which provides us with an asymptotic analytical solution of
the diffraction far from the interaction region. A way to tackle the problem is by using a numerical
wave-packet propagation method, as described in Section 2, which renders a description of the
diffraction phenomenon in real time, i.e., providing us with direct information on the time-evolution
of the He-atom wave function, of particular interest in the region where the interaction between the
He atom and the substrate is stronger. Hence, although we lose analyticity, we gain insight on the
dynamical process in the interaction region.

Accordingly, the evolution of the probability density as it approaches the adsorbate and then
gets diffracted is shown in Figure 3 at three different instants of its evolution for Ei = 10 meV and
normal incidence (taking advantage of the mirror symmetry with respect to x = 0 due to the normal
incidence, only a half is plotted for simplicity). In panel (a), we observe the appearance of circular
wavefronts (ripples) around the adsorbate due to the interference produced by the overlapping of the
part of the wave function that is still approaching the adsorbate with the part that is already being
diffracted. In panel (b), the whole of the wave function is interacting with the substrate (at about
1.5 ps). In this case, there are circular wavefronts around the adsorbate, as before, but also additional
plane wavefronts produced by an analogous interference process associated with the portion of the
flat Pt surface reached by the incident wave function. The superposition of the circular wavefronts
with the planar ones generates around the adsorbate a web of maxima (see inset for a more detailed
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picture), which gets weaker and blurred as we move far from the adsorbate. The periodicity of the web
of maxima is related to the incoming He-atom de Broglie wavelength, λdB = 1.43 Å, although with
some distortions due to the presence of the attractive region of the interaction. As the wave function
further evolves, we can observe a superposition of two contributions, as seen in panel (c). One of them
is the reflection of a nearly square function, which starts displaying the typical Fresnel or near-field
features of such functions when they arise from single slit diffraction. This contribution is precisely the
illuminated face term that we saw in Section 3.1. The other contribution, which distributes around
the adsorbate, is going to be related to the Fraunhofer diffraction and also to other features, such as
trapping of the wave along the attractive well near the Pt surface. Nonetheless, notice that the final
diffraction pattern, as in the case of the hard-wall model (see Equation (17)), is a superposition of the
two contributions (diffraction amplitudes), and not only the direct sum of their probabilities.

Figure 3. On the left-hand side, contour plots illustrating three different instants of the evolution of the
probability density near the surface for incidence conditions θi = 0◦ and Ei = 10 meV: (a) when the
density starts being influenced by the adsorbate; (b) when the density is totally interacting with the
substrate (i.e., with both the adsorbate and the flat Pt surface) and (c) when the density starts leaving
the substrate. In panel (d), on the right-hand side, plot of the probability density far from the influence
of the adsorbate (t = 11 ps). Arrows and capital letters denote different diffraction directions to be
identified in the intensity plot displayed in Figure 4a: Ai: directions identifying interference features
associated with the superposition of the circular and planar wavefronts, contributing to the central
maxima of the intensity pattern; Bi: associated with features arising from the reflection symmetry
interference phenomenon; C: surface trapping.

Asymptotically, far from the influence of the classical interaction, as shown in Figure 3d, it is
possible to observe traits related to the evolution of the three parts of the scattered wave, which can be
eventually associated with the peaks characterizing the corresponding intensity pattern (see Figure 4a).
Thus, interferences arising from the superposition of the circular and planar wavefronts give rise to the
central features of the intensity pattern (denoted with directions labeled with Ai in the plot). However,
there are also other types of peaks, which propagate along the directions denoted as Bi and, as will be
seen below, can be associated with the reflection symmetry interference phenomenon. Both types of
peaks, Ai and Bi, implicitly carry information about the classical rainbow (see Section 4.2) in a sort of
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global fashion, since this phenomenon does not manifest with a particular well-defined peak, in general.
On the other hand, it is also possible to observe the presence of trapping (C), which is related to the
lower part of the wave function that keeps moving close and parallel to the clean Pt surface.

Figure 4. (a) Relative diffraction intensity (black solid line) produced by an axial-symmetric potential
model based on (2) for incidence conditions θi = 0◦ and Ei = 10 meV. For comparison, the intensities
before (red dashed line) and after (black solid line) removing the plane-wave contribution (see text
for details) are both plotted; (b) the same as in panel (a), but for a fully repulsive model of the CO
adsorbate, obtained after removal of the attractive part of the Lennard–Jones function (4). To compare,
in panels (c,d), the same as in panels (a,b), respectively, but for Ei = 40 meV.

In order to quantify the effects produced by the diffraction process in the incoming wave,
we represent the diffracted wave function as a linear combination of plane waves,

Ψ(r, t) ∼
∫ S(ki,x, kd,x)√

kd,z
ei(kd,zz+kd,x x)dkd,x, (18)

where the elements S(ki,x, kd,x) provide the probability amplitudes associated with the change of
parallel momentum ΔK = kd,x − ki,x. These elements are determined by projecting the numerically
computed diffracted wave onto this expression,

S(ki,x, kd,x) ∼
∫ √

kd,ze−ikd ·rΨ(r, t)dr, (19)

from which the probability |S(ki,x, kd,x)|2 is obtained to detect atoms that have exchanged a given
amount ΔK of parallel momentum is obtained (i.e., the reflection coefficient). With periodic lattices,
this calculation is typically performed within a single unit cell; here, because of the lack of periodicity,
the calculation involves an artificial cell of about 53 Å, which covers a region large enough as to include
both the adsorbate and a good portion of the flat surface that is not influenced by artifacts related to
the adsorbate curvature—this is appropriate to capture isolated signatures of trapping (otherwise,
there could be some contamination from the wave scattered in other directions). This procedure,
however, has an inconvenience: the intensity pattern includes a rather high contribution from mirror
reflection from the flat Pt surface. In order to remove it, the incident plane wave, ranging from −∞ to
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∞, is decomposed as a linear superposition of two contributions, one contained within the integration
rangeR (φ) and another outside it (χ), i.e.,

Ψ0(r) = ∑
xi∈R

φi(r) + ∑
xi /∈R

χi(r) = ∑
xi∈R

[
φi(r)− χi(r)

]
+ ∑
∀ xi

χi(r), (20)

where the subscript i labels functions from a given basis set established on purpose to construct the
wave function. Because the χ waves essentially describe diffraction from the clean Pt surface, the last
term in this expression is going to be a contribution with the form of a δ-function along the incident
direction. Thus neglecting this contribution, if the diffraction process from the surface is altered, we
make a projection of the wave on the plane-wave basis set, and the S-matrix elements can be recast as

S(ki, kd) = SR(ki, kd)− SR0 (ki, kd), (21)

where SR0 (ki, kd) is the matrix element corresponding to the scattering of the wave by a flat unit cell.
The intensity to be compared with the experiment is thus obtained from the differential cross section
or differential reflection coefficient,

dR
dθd

∝ kd,z|S(ki, kd)|2. (22)

This intensity is displayed in Figure 4a as a function of the parallel momentum transferred (instead
of the deflection angle, θd) after the wave function has evolved for 5.5 ps after the maximum approach
to the surface. By this time, the action of the adsorbate interaction potential on the wave function is
already negligible. Comparing the solid line with the dashed line, we notice the effect of removing the
contribution from the plane wave. Accordingly, using (21) is analogous to “smoothing” the diffraction
pattern, where the probability distribution does not show well defined maxima because of the presence
of the plane-wave contribution. The clean oscillations that we observe (solid line) arise from the
interference between the circular wave fronts coming from the adsorbate and the plane wavefronts
coming from reflection from the flat Pt surface. This “interaction” is more prominent for small values of
ΔK, this being the reason why the pattern, before removing the plane-wave contribution, displays fast
oscillations. Such oscillations, however, get weaker and even meaningless as ΔK increases, because the
circular wavefronts become less affected by their overlapping with the flat outgoing wavefronts. This is
analogous to the behavior already observed with the hard-wall model, in Figure 2a: for small values of
ΔK, the dominant contribution was the Fraunhofer one, while, for larger values of ΔK, the leading one
was the illuminated-face contribution.

The intensity maxima in Figure 4a, though, do not totally correspond with those in Figure 2a,
even if their number is the same. In particular, notice that some of these maxima (A1 and A3) display
a kind of “wings”. In order to elucidate their origin, the same calculation has been repeated using a
repulsive model for the adsorbate, which consists of removing the attractive part of the Lennard–Jones
function (4). The results for this model are displayed in panel (b). Comparing both models, we find
that everything is essentially the same, except precisely for the presence of such “wings”. This result
is indeed close to the one displayed in Figure 2a for the hard-wall model, although the maxima are
wider, which can be associated with the presence of an attractive well around the substrate. In order to
determine whether it is an effect or not linked to the incidence energy, the same analysis was repeated
for Ei = 40 meV and normal incidence. From the classical calculations, we conclude that such “wings”
have to be associated with the presence of rainbows [35] (see Section 4.2), since this phenomenon
is linked to the local curvature of the interaction potential around the adsorbate. In this regard,
the attractive well around the adsorbate plays a key role, since its removal makes rainbow features to
disappear even though there is still an attractive region along the clean Pt surface. Actually, on a more
quantitative level, notice that, for instance, for Ei = 10 meV, the rainbow appears for ΔK ≈ 1.89 Å−1.
In Figure 4b, this value of ΔK is close to the maximum of the second lobe, which would lead to
a distortion of this maximum and the adjacent ones (where the traits A1 and A3 appear). In the
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case of Ei = 40 meV, there is a classical rainbow at ΔK ≈ 1.13 Å−1, which corresponds to the
maximum of the second lobe and, in consequence, this lobe essentially disappears in the attractive
model. Thus, the quantum manifestation of classical rainbow features does not necessarily mean a
contribution in terms of given maximum in the intensity pattern [28,29], but it can also be in terms
of “global” phenomenon that affects the whole pattern [35,49]. This has actually been a controversial
point in the literature when assigning the origin of the different diffraction maxima [27–29].

Finally, regardless of whether the interaction model considers an attractive or repulsive adsorbate,
and also independently of the value of the incident energy, we observe that the last lobe of the intensity
plots in Figure 4 gathers information of both grazing deflection and trapping. In panel (a), for instance,
this maximum has been label as B2 + C. According to Figure 3d, the maximum for B2 should appear
at ΔK ≈ 4.16 Å−1. On the other hand, in the same figure, for C, we should have a maximum parallel
transfer. However, the trapped probability is indeed oscillating inside the well while it moves along the
x direction, which makes the corresponding ΔK value to fluctuate. Thus, the probability amplitudes
related to B2 and C will display some interference, which is precisely what we observe in the last lobe
of all calculations presented in Figure 4.

4. Trajectory-Based Description

4.1. Fermatian Level

Although it is a rather crude approximation, the hard-wall model is quite insightful because
it allows for explaining and understanding on simple terms the reflection symmetry interference
phenomenon [23,24,27,47,50,51] as well as the conditions leading to trapping. As in geometric optics,
the key element is the interpretation of wave phenomena in terms of the phase difference arising from
two different but equivalent paths, where by “equivalent” we mean that both leave the surface with
the same deflection (outgoing) angle, even if their journeys close to the surface are quite different
(actually, it is this difference that generates the phase difference). These geometric rays are what we
call here Fermatian trajectories with the purpose to highlight such optical connotation and, as seen
below, in the particular problem we are dealing with here, there are always homologous pairs of such
trajectories. These pairs are formed by one trajectory that undergoes a single bounce from the substrate
before getting deflected and another trajectory that undergoes two bounces (one with the adsorbate
and another with the flat surface).

In Figure 5, there is a set of Fermatian trajectories, F , of particular interest: they are separatrices
that determine the boundaries for ensembles of Fermatian trajectories that display a particular
behavior, that is, all the Fermatian trajectories confined within two adjacent separatrices are going to
exhibit an analogous behavior. In general, it can be noticed that, for a given incidence angle (here,
θi = 20◦), trajectories may display either a single collision (regions denoted with light gray) or double
collisions (blue and purple regions, denoted with A, B and C) depending on their impact parameter.
The deflection can then be forward (trajectories represented with solid line) or backward (dashed line).
Moreover, there are also regions of geometric shadow (red region, denoted with S) that cannot be
reached by any trajectory, except for normal incidence (θi = 0◦). This region covers an area of length

� =
(1− cos θi)

cos θi

[
a− z0 tan θi/2

]
, (23)

which depends on θi, vanishing (� = 0) for θi = 0◦ and reaching its maximum extension (� = ∞) for
parallel incidence (θi = π/2).
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Figure 5. Separatrix Fermatian trajectories for the repulsive hard-wall model set for an incidence
energy Ei = 10 meV. For a better illustration of all possible cases, an incidence angle θi = 20◦ has been
chosen. Separatrices displaying forward/backward deflection are denoted with solid/dashed lines.
Separatrices delimiting regions leading to double scattering in the rear/front part of the adsorbate
(regions C-A/B) are denoted with red/blue color. Separatrices deflected perpendicularly to the flat
surface are denoted with green color. The shadow region S, which depends on the incidence angle,
cannot be reached by any trajectory (except for θi = 0◦, where this area goes to zero).

Each trajectory in Figure 5 carries a label, which helps to identify behavioral domains. We have
that any trajectory impinging on the substrate either to the left of Fα or to the right of Fβ will undergo
forward deflection; any other trajectory confined in between will be deflected backwards. Notice that
Fα and Fβ are the only two trajectories that are deflected along the normal, constituting themselves
a pair of homologous trajectories, with Fα displaying double collision (first with the flat surface
and then with the adsorbate) and Fβ displaying a single collision (with the adsorbate). As for the
other separatrices:

• Trajectories to the left of F1 or to the right of F7 only interact with the clean Pt surface and hence
their deflection and incidence angles are equal. These trajectories, plusF5 only contribute to mirror
reflection from the flat surface, only contributing the intensity for ΔK = 0, since θd = θi—hence,
this contribution will be more prominent as the range of impact parameters increases.

• Any trajectory between F1 and Fα is deflected in an angle that goes from θi to 0◦ as the impact
parameter increases. The same deflection angles are found for trajectories between Fβ and F5,
although here the trend is that the angle increases from 0◦ to θi as b increases. Here, we have two
sets of pairs of homologous trajectories: trajectories from the first set undergo double collisions
(first with the flat surface and then with the adsorbate) and trajectories from the latter only have a
single collision (with the flat surface). For any of these pairs, the angular distance between their
impact points on the adsorbate surface is π/2− θi, as can be seen in Figure 6a.

• There are also pairs of homologous trajectories with deflection angles between θi and π/2.
These are the trajectories confined between F5 and F6, with single collisions (with the adsorbate),
and between F6 and F7, with double collisions (first with the adsorbate and then with the flat
surface). This second set corresponds to trajectories impinging on the adsorbate within the sector
B. In this case, the angular distance between impact points is not a constant, but depends on the
deflection angle as π/2− θd. This distance gradually vanishes as both trajectories approachR6

and is maximum when the trajectories coincide with the separatricesR5 andR7. A representative
set is depicted in Figure 6b.

• Trajectories F2 and F4 are both deflected backwards along the incidence direction, i.e., θd = −θi.
Accordingly, trajectories between Fα and F2 are deflected between 0◦ and −θi after undergoing
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double collisions (first with the flat surface and then with the adsorbate), while trajectories
between F4 and Fβ (to the right of F4) undergo single collisions. The angular distance between
impact points of homologous pairs of trajectories is now π/2− θd, although not all trajectories
between F4 and Fβ have a correspondent between Fα and F2. This is because the flat surface
intersects the adsorbate surface at a distance z = zr above its center of mass instead of at z = 0.
Thus, instead of reaching a maximum deflection of −θi, we have θmax

d = −θi + (sin)−1(zr/a),
which is the deflection for the trajectory F′2. An illustrative pair of homologous trajectories of this
kind is displayed in Figure 6c.

• The trajectory F3 separates the sets of homologous trajectories that are backward deflected,
with the second collision taking place from the flat surface. One set is confined within trajectories
F2 and F3, with double collisions (first with the adsorbate and then with the flat surface), and the
other set, with single collisions, is delimited by F3 and F4 (trajectories to the left of F4). Unlike
the previous set of backward-scattered homologous pairs, here all trajectories are paired, with the
angular distance between their impact points being π/2− θd, as before. A representative pair is
displayed in Figure 6d.

Figure 6. In panels (a–d), pairs of homologous Fermatian trajectories with different deflection
angle θd: (a) forward deflection, with θi ≥ θd ≥ 0; (b) forward deflection, with π/2 ≥ θd ≥ θi;
(c) backward deflection, with −θi + δ ≤ θd ≤ 0, where δ = (sin)−1(zr/a) and (d) backward deflection,
−π/2 ≤ θd ≤ −θi. In panels (e,f), boundaries of the regions where any trajectory impinging on them
will display double collisions (see text for further details).

In general, independently of whether the above pairs of homologous Fermatian trajectories
describe situations of forward or backward scattering, and also regardless of the incidence angle,
double collisions arise whenever the impact on the adsorbate surface takes place between the point
where this surface intersects the flat Pt surface and the point at which any impinging trajectory is
deflected parallel to such a flat surface (at a given incidence). These conditions determine the regions
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labeled with A, B and C in Figure 5. This is seen with more detail in Figure 6e, where the neighboring
regions A and C are determined by the separatrices F1 and F3, and in Figure 6f for region B, delimited
by the separatrices F6 and F7. Although regions A and C are close to each other, the double collision
process is reversed when the impact parameter passes from the domain of one of them to the other.
Thus, we find that while in regions A and B the atom first collides with the adsorbate and then with
the flat surface, in the case of region C it is the opposite. The length of this latter region is nearly the
same as the one for the shadow region S, given by Equation (23), because of the symmetry between
the trajectories F1 and F7 On the other hand, regions A and B are defined, respectively, by the angular
sectors ΔθA = π/4− θi/2− (sin)−1(z0/a) and ΔθB = π/4− θi/2, which are both dependent on the
incidence angle.

Regarding trapping, although this simple potential function cannot lead to this phenomenon,
it is interesting to note that, to some extent, F3 and F7 can be considered as permanently trapped
trajectories, since they will keep evolving parallel to the surface (θd = ±π/2). This is, of course,
a rather weak case associated with a purely repulsive model, but still it is useful to understand in
simple terms the types of dynamics that can be expected from a more refined classical model, such as
the one specified by (2), concerning the presence of homologous pairs of trajectories (associated with
single and double collisions) as well as the appearance of trapping.

4.2. Newtonian Level

The hard-wall model constitutes a sort of crude approach to the system studied, appropriate to
explain some general features. However, a more realistic or refined model (closer to the experimental
system) is going to include additional features, such as the rainbow phenomenon, which have also
received much attention both experimentally [24,26] and theoretically [27–29], or the defect-mediated
diffraction resonance [27,36], a kind of trapping induced by the presence of adsorbates on surfaces.
These phenomena are associated to the particularities displayed by the potential model, such as the
depth of potential wells, the stiffness of the repulsive region or the range of its attractive region.
All these features are controlled by means of parameters that are found from best fit to the cross
sections (intensities) experimentally measured; the optimal values eventually provide us with valuable
information on the system analyze. In the particular case of the system discussed in this work,
such information has to do with the way how the CO is attached to Pt(111) surface, which can be later
used to better understand reactivity and diffusion properties.

The dynamics under the influence of the potential model (2) are illustrated in Figure 7a by means
of a set of trajectories with initial conditions uniformly covering a wide range of impact parameters.
Specifically, in this simulations b ∈ [−10.6, 10.6] Å, for Ei = 10 meV and θi = 20◦ (again, as in the
previous section, incidence out of the diagonal has also been chosen for these trajectories to stress
some particular aspects). The attractive long-range term from Lennard–Jones contribution plays an
important role here, since it is responsible for the permanent trapping (in this model) of He atoms along
the Pt surface. This term accounts for the van der Waals interaction mediating between the neutral
He atoms and the CO adsorbate, producing an effective transfer of energy from the perpendicular
direction to the parallel one, such that the energy along this latter direction becomes larger than
the incident energy to the expense of making negative the energy along the z direction. Of course,
surface trapping is not totally permanent, since the presence of other adsorbates (not considered
here, where we are working under single-adsorbate conditions) produces the opposite effect, that is,
a trapped atom, after colliding with another neighboring adsorbates, may acquire enough energy
along the z-direction (loosing it along the x direction) to escape from the surface.
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Figure 7. (a) Set of classical Newtonian trajectories for the interaction potential model (2) for an
incidence energy Ei = 10 meV. As in Figure 5, for a better illustration of all possible cases, also an
incidence angle θi = 20◦ has been chosen. Moreover, the incident part of the trajectories has been
represented with dashed line; (b) classical deflection function. While surface trapping gives rise to
two kind of discontinuous regions, rainbow features manifest as local maxima (1) and minima (2);
(c) Asymptotic-energy diagram. Here, trapping is detected through the two regions of the curve
below the threshold Ez = 0 meV, while rainbows manifest with two local minima (green squares;
for rainbow 2, see enlargement of region A in the inset). Orange circles denote conditions leading to
perpendicular deflection with respect to the flat surface.

A useful tool to systematize and analyze the different dynamical behaviors exhibited by the
trajectories of Figure 7a is the deflection function, i.e., the representation of the deflection angle
with which the He atoms asymptotically leave the substrate as a function of their impact parameter.
This function is represented in Figure 7b and clearly shows that it is characterized by two types of
regions. One of them is smooth and continuous, which means that the deflection angle increases or
decreases gradually. The local maxima and minima within this type of region denote the presence
of rainbows, i.e., deflection directions characterized by an extremely high intensity (leaving aside
mirror reflection from the flat surface). In the figure, we observe the presence of two of these rainbows
(denoted with the numbers 1 and 2), one of them nearly along the normal to the flat Pt surface.
The other type of region is seemingly random, which is a signature of trapping—this makes the
function in these regions to be time-dependent, since deflection will depend on the time at which it
is computed. Nonetheless, this behavior is not to be misinterpreted with presence of chaos that we
observe in analogous representations for He diffraction from corrugated surfaces [42]. The difference
is that, while, in those cases, this random-like region has a fractal structure [42]; here, it is very regular.
This can easily be seen by plotting more values of the impact parameter within this region. Then,
as this region of the deflection function becomes more dense, we will be able to better appreciate its
regularity and, therefore, the lack of an underlying chaotic dynamics.

To complement as well as to disambiguate the information provided the by deflection function,
particularly in the trapping regions, an alternative representation can be obtained if we focus far from
the adsorbate, where the system energy is separable, as mentioned above. Accordingly, unless there
is an extra energy exchange because of the presence of other defects, the He atom will keep constant
its energies along the x and the z directions (there is no coupling term between both degrees
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of freedom in the potential describing the flat Pt surface). This thus allows to consider energy
diagrams, where the energy left along the z degree of freedom is compared to the total available
energy, which coincides with the incident energy (Ei), and to the dissociation threshold (0 meV),
which determines the minimum energy for unbound motion. This plot is shown in Figure 7c for
Ei = 10 meV. In this representation, we first note that a large portion of impact parameters gives rise to
unbound motion, i.e., all the trajectories leave the Pt surface. Among these trajectories, those leaving
the surface at an angle equal to a rainbow angle produce a local minimum in the energy diagram
(green squares)—the absolute value of the rainbow angle can then be readily determined by means of
the simple relation cos θR =

√
ER

z /Ei —while maxima (orange circles) correspond to trajectories that
leave the surface perpendicularly (no energy along the x degree of freedom, although initially they all
started with some energy in it). On the other hand, we also find some impact parameter regions for
which the energy is negative. These regions correspond to conditions leading to trapping (oscillatory
bound motion parallel to the flat surface), which are in correspondence with the discontinuous regions
observed in the deflection function. Actually, from the energy diagram, we can determine with high
accuracy the precise impact parameters that, at a certain incidence, will give determine the ranges of
trapping. From the figure, we see that these limits are given by the intersection points of the energy
curve with the zero-energy condition.

As we have seen, the energy diagram and the deflection function, in general terms, provide
the same kind of information. Now, the energy diagram can be smartly used to determine pairs
of homologous Newtonian trajectories as follows. Consider a given value for Ez. All the impact
parameters that are obtained from the intersection of a horizontal line at the selected value of Ez with
the energy diagram will provide sets of pairs of homologous trajectories. Some illustrative pairs are
shown in Figure 8. In panel (a), for a selected energy such that E1 > Ez > 0, where E1 is the energy
(along the z direction) for rainbow 1, we find two pairs of trajectories, one back-scattered and another
forward-scattered. Although distinguishing between single and double collisions is not as simple as
with the hard-wall model, we still can perceive that within these two pairs of homologous trajectories
one of them undergoes a single collision (denoted with black color), while the other shows something
that could be related with a double collision (with blue color). If Ez is below zero, we can still have two
pairs of homologous trajectories, as seen in panel (b), although these trajectories exhibit permanent
trapping. For energies above E1 we can observe up to three or (for Ez > E2) four pairs of homologous
trajectories, with analogous behaviors. Actually, unlike the hard-wall model, here we notice that there
can be several pairs contributing to reflection symmetry interference, as happens in panels (c) and (d).

Finally, Figure 9 offers a comparison between the behavior displayed by a purely repulsive
adsorbate (closer to the hard-wall model) and the attractive adsorbate in terms of the corresponding
deflection functions for Ei = 10 meV and normal incidence. The main difference between both models
relies on a removal of the attractive term of the Lennard–Jones model. Notice that the repulsive
model lacks the two rainbow features for ΔKR = ±1.95 Å−1 (θR = ±26.50◦), although both models
keep nearly the same trapping rates, which has to do with the effective energy transfer from the
perpendicular to the parallel directions due to the adsorbate curvature, and not that much with the
presence of attractive basins around the adsorbate itself. Although not shown here, the same holds if
the energy is increased. For instance, for Ei = 40 meV and normal incidence, rainbows are observed
for ΔKR = ±1.21 Å−1 (θR = ±7.96◦) with the full potential model (2), but there is a complete absence
of them when the repulsive model is used instead.
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Figure 8. Pairs of homologous Newtonian trajectories with the same asymptotic value for their
energy along the z, obtained from the energy diagram of Figure 7c: (a) E1 > Ez > 0; (b) 0 > Ez;
(c) Ei cos2 θi > Ez > E1 and (d) E2 > Ez > Ei cos2 θi, where E1 and E2 are the energies (along
the z direction) corresponding to rainbows 1 and 2 (see Figure 7b,c), respectively, and Ei cos2 θi is
the incidence energy (also along the z direction), with Ei = 10 meV. Forward/backward deflected
trajectories are denoted with solid/dashed line. Trajectories undergoing single/double collision/s are
denoted with black/blue colors. All trajectories are started from a distance zi = 10.27 Å above the flat
Pt surface (beyond z ≈ 6.35 Å, the interaction potential model (2) is negligible; see Figure 1a).

Figure 9. Deflection function for a purely repulsive model of the CO adsorbate (black solid line),
obtained after removal of the attractive part of the Lennard–Jones function (4). Here, for simplicity,
the incidence conditions are θi = 0◦ and Ei = 10 meV. To compare with, the deflection function
corresponding to the full interaction potential model (2) is also represented (blue solid line), obtained
for the same incidence conditions.

4.3. Bohmian Level

In the literature there has always been a controversy concerning how the different diffraction
features observed in intensity patterns should be assigned in the case of the atom diffraction by
impurities on surfaces. In 1988, for instance, Yinnon et al. [27] suggested the use of the quantum
flux, J, as an interpretational tool to understand trapping processes in this type of systems. A vector
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representation of this field provides a reliable representation of how the Fraunhofer, rainbow and
trapping features arise, although is not unambiguous at all. This procedure was employed earlier
on in reactive scattering by Wyatt [52–54]. Although some dynamical information can be extracted
about the distribution and change of the flux, it is difficult to understand how the system eventually
evolves. The last step in our journey is precisely the use of Bohmian trajectories to get an idea of
what is going on this type of systems from at a fully quantum level and, beyond quantum flux based
analyses, to understand the dynamics by causally connecting a point on the initial state with another
point of the final state, following a well-defined trajectory in real time. This trajectory is obtained by
integration of the equation of motion [12,14]

ṙ =
J

ρ
=

h̄
2mi

(
Ψ∗∇Ψ−Ψ∇Ψ∗

ΨΨ∗

)
=
∇S
m

, (24)

often regarded as guidance equation. In this equation, formerly introduced by Bohm as a postulate [1,4],
ρ and J are respectively the probability density and the quantum flux [55]; the velocity field v = ṙ is
just the way how the probability density spreads through the configuration space in the form of a
flux or current density. Regarding S, it is the phase field, which describes the local variations of the
quantum phase and is typically obtained from the polar transformation of the wave function,

Ψ(r, t) =
√

ρ(r, t)eiS(r,t)/h̄. (25)

The Bohmian trajectories shown below are obtained taking into account the value of the wave
function at a given time (obtained by means of the propagator mentioned in Section 2), according to
the second expression for the velocity field in Equation (24).

The analysis in this section is performed by studying the behavior displayed by sets of Bohmian
trajectories with initial positions taken at a series of distances from the surface and uniformly
distributed along the parallel direction for each one of those distances. Unlike the procedure followed
in preceding sections, now the loss of translational symmetry caused by the presence of the isolated
adsorbate on the Pt surface does not allow for studying the dynamics considering impact parameters
only along the parallel direction for a given z value. This is the reason why different values of z are
considered. This enables a better way to assign the different parts of the incident wave with final
outgoing intensity peaks without ambiguity. These sets are displayed in Figures 10–12, with each set
being labeled with the corresponding initial condition along the z direction referred to the center of the
wave packet 〈z〉0 = 10.27 Å. According to these figures, quantum-mechanically the dynamics cannot
be understood in the same local terms as in classical mechanics, where trajectories did not display a
different behavior depending on their starting distance along the vertical direction with respect to the
adsorbate. In order to obtain a complete knowledge of the diffraction process, trajectories have to be
chosen from across the whole region covered by the initial wave function. Different regions will give
rise to different diffraction features, but also different sets of trajectories will be able to probe the surface
at a different level, being able to approach it very closely or, on the contrary, will bounce backwards far
away, without even having touched it physically. In this regard, one wonders whether, contrary to what
is commonly stated within the “Bohmian community”, the (Bohmian) trajectories can be considered
to reveal the “true” motion followed by the particles they are associated with—in the present case,
the motion of individual He atoms. This is a rather challenging question (as well as metaphysical),
which, to the author’s best knowledge, has not still been unambiguously answered, that is, with a
solid, irrefutable experimental proof. Therefore, taking on a pragmatic view, here Bohmian trajectories
are considered as hydrodynamic streamlines that allow us to investigate the flow dynamics of the
probability flux in configuration space and, therefore, to understand towards which directions atoms
are more likely redirected (deflected) after being scattered from the substrate (without providing
any particular information on how each individual atom really moves). Actually, to some extent,
this random view of the atomic motion is the idea behind the work that Bohm developed in 1954 in
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collaboration with Vigier [56] and, later on, in 1989 with Hiley [57], or the approach developed in 1966
by Nelson [58] (although this latter approach has nothing to do with Bohmian mechanics, it introduces
analogous stochastic concepts). In these examples, the quantum particle follows a random-like path as
a consequence of the action of a sub-quantum random medium; when motions are averaged, particle
statistics reproduce the results described by Schrödinger’s equation and Bohmian trajectories arise as
the averaged flow-lines associated with the solutions to this equation.

Figure 10. Set of Bohmian trajectories with initial positions uniformly distributed along the x direction
and fixed value along the z direction: zi = 〈z〉0 = 10.27 Å, which corresponds to the center of the
incident wave packet (t = 0) above the clean Pt surface (beyond z ≈ 6.35 Å, the interaction potential
model (2) is negligible; see Figure 1a). On the right-hand side, enlargement of the left plot near the
adsorbate to illustrate the dynamical behavior displayed by the trajectories close to the substrate surface.

Figure 11. Set of Bohmian trajectories with initial positions uniformly distributed along the x
direction and fixed value along the z direction: (a) z0 = 〈z〉0 − 3.18 Å; (b) z0 = 〈z〉0 − 2.12 Å and
(c) z0 = 〈z〉0 − 1.06 Å, where 〈z〉0 = 10.27 Å, which corresponds to the center of the incident wave

packet (t = 0) above the clean Pt surface (beyond z ≈ 6.35 Å, the interaction potential model (2) is
negligible; see Figure 1a). In the corresponding lower panels, enlargement of the upper plots near the
adsorbate to illustrate the dynamical behavior displayed by the trajectories close to the substrate surface.
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Figure 12. As in Figure 11, but considering: (a) z0 = 〈z〉0 + 1.06 Å; (b) z0 = 〈z〉0 + 2.12 Å and
(c) z0 = 〈z〉0 + 3.18 Å.

In Figures 11 and 12, sets of trajectories taken from below and from above the z-value selected in
Figure 10 are shown. In the three cases displayed in Figure 11, we notice that those trajectories that
start closer to the surface are going to contribute more importantly to the marginal portions of the
outgoing wave (Bi and C, as defined in Figure 3d). In sharp contrast, trajectories started in regions
far from the adsorbate (see Figure 12) will contribute to the peaks related to small ΔK (Ai). This can
be understood establishing a nice analogy with classical fluid dynamics and then introducing the
notion of quantum pressure introduced by Takabayashi [59]. Accordingly, when the wave function
is on the surface, we find that, while its lowest part is already bouncing backwards, the upper one is
still moving downwards (towards the surface). In this situation, in the analogy of the wave function
being associated with an ideal non-viscid and incompressible fluid, its upper part would be pushing
the lowest one and then generating a remarkable pressure on it (this effect would increase with the
incidence energy, although its duration would be shorter). This is something that cannot be seen
directly on a wave-function representation, but that has an interesting counterpart in the case of the
trajectories because we can see that those associated with the lowest part of the incident wave function
are then pushed (or make evident the push) against the surface, remaining there for a rather long time.
On the contrary, as the initial conditions are taken from upper regions of the initial wave function,
the pressure on them will be lower and hence will bounce backwards further away from the physical
surface. Thus, the evolution of these trajectories resembles in a closer way the behavior of classical
trajectories, while the trajectories below are somehow forced to propagate parallel to the surface and
escape by the borders of the wave.

The turbulent dynamics manifested by the trajectories close to the surface has to do with the web
of nodal lines characterizing the wave function when it is on the surface. In particular, it is interesting
that how sometimes the trajectories get trapped and whirl around some of these nodes, undergoing
a sort of transient vortical trapping [32,33], different from the temporary trapping of the trajectories
that will remain confined within the surface attractive well far from the adsorbate. The whirlpool
motion displayed by such trajectories has actually an interesting property, namely the associated
action is quantized, being an integer multiple (equal to the number of full loops) of a certain value.
This type of motion is a confirmation of the former results found by Yinnon et al. [27]. Actually, recently,
Efthymiopoulos et al. [60] formally determined the conditions under which such temporary nodal
regions in scattering problems will appear, which happens to be in the regions where the amplitudes
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(modulus) of the incoming and outgoing waves become equal. This boundary, where both values are
the same and that have important dynamical consequences, is what they called “separator”.

Regarding the reflection symmetry interference phenomenon, this time it is not as simple as in
the two previous cases because the trajectories obey the guiding rules imposed by the wave function
and not the direct action of the potential. In the case of the rainbow, however, there is a more evident
manifestation. Although Bohmian trajectories cannot cross one another at the same time, collectively
they show a sort of rainbow-like precession, which is more prominent in the case of the trajectories
shown in Figure 11: after the collision with the adsorbate, they start showing larger and larger
deflections until getting trapped, then the start precessing backwards until reaching a maximum angle,
and finally precess backwards again to smaller angles. In the case of the trajectories displayed in
Figure 12, the behavior is analogous, even if in this case there is no trapping and the effect is more
subtle. Thus, all the ensembles show a similar behavior, supporting the idea of the rainbow as being
a sort of “global” effect, which translates into the “wings” observed in the intensity pattern shown
in Figure 4.

5. Conclusions

In the last several years, Bohmian mechanics has been gaining ground as an appealing tool to deal
with very different problems out of the area of the quantum foundations, its traditional environment.
In such cases, the interest and relevance of Bohmian mechanics is emphasized by directly tackling
a given problem with it. In the current work, however, the motivation has been a bit different.
There are different trajectory-based approaches that have been or can be used to describe, analyze,
understand and explain quantum systems and phenomena, even if they have different degrees of
accuracy. The purpose here has been to establish an appropriate context to better understand the role
of Bohmian trajectories within all those formulations as well as the kind of information conveyed by
each one at its level of accuracy. To this end, we have considered a problem of interest out of the field of
the quantum foundations, specifically the diffraction of helium atoms by a nearly flat platinum surface
on top of which there is a carbon monoxide adsorbate. This is a problem that has been considered
in the literature due to its intrinsic practical applications, although here it has been chosen due to its
suitability to the purpose, since it is sufficiently simple to allow us its treatment at different levels.

Accordingly, the system has first been analyzed with a usual wave-function-based framework,
investigating the effects associated with two different He-CO/Pt(111) interaction potential models:

• Hard-wall model. This model is in the form of an impenetrable (fully repulsive) wall, where the
interaction is reduced to a sudden impact on the He atoms on the such a wall. The first model
allows an exact asymptotic analytical treatment, convenient to elucidate the main mechanism
observed in the diffraction pattern produced by single adsorbed particles on nearly flat surfaces,
namely reflection symmetry interference.

• Potential energy function. This interaction model is determined from fitting to the experimental
data and constitutes a refinement of the previous one in the sense that there is detailed information
on the intensity of the interaction between the incoming atom and the substrate at each point
(in this regard, the hard-wall model is just a crude approximation). Thus, in spite of its lack of
analyticity, unlike the hard-wall model, it provides us with a more realistic description of the
diffraction process in real time, rendering information on additional physics, such as rainbow
features or surface trapping.

Although at a different degree of accuracy, these two models provide us with explanation of
the features observed in the experimental diffraction patterns. The question is how to interpret
or understand these diffraction features or, in other words, to elucidate the physical mechanism
responsible for each of such features (reflection symmetry interference, rainbows, or surface trapping).
Typically, this is done by setting protocols based on quantum-classical correspondence, e.g., analyzing
the system by means of classical trajectories and then comparing the results rendered by both the
classical (trajectory) model and the quantum-mechanical (wave function) one.
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Bearing that in mind, as has been seen in the preceding sections, here we have tackled the issue at
three different levels:

• Fermatian level. This first level is the simplest one, based on computing what has been here
denoted as Fermatian trajectories, which are just the direct analog to optical rays reflected on a
hard wall in a medium with constant refractive index. According to this trajectory model:

– These trajectories have revealed that there are pairs of homologous trajectories, such that
one of the peers undergoes single scattering off the interaction potential, while the other
undergoes double scattering. The fact that a trajectory collides with the CO/Pt system at one
point (single collision) or at two different points (double collision) is a function of the impact
parameter. Accordingly, a simple mapping can be establish, which helps to easily localize
regions of impact parameters that are going to produce homologous pairs of trajectories.

– The mechanism of reflection symmetry interference is associated with these paired
trajectories, which is explained in the same way that we explain interference from two
coherent sources: interference maxima and minima arise depending on whether the
path difference between the two paths (or virtual rays) joining each source with a given
observation point on a distant screen is equal to an integer number of wavelengths or to half
an integer, respectively. Although these paths are nonphysical (they are just a mathematical
construct), they allow us to understand in simple terms the appearance of the alternating
structure of bright and dark interference fringes. In the present case, the path length arises
from the extra path length of the trajectory affected by the double collision with respect to
the homologous pair with single collision.

– In addition, it has also been seen that two specific trajectories are deflected parallel
to the surface, which can be interpreted as a mechanism precursor of the surface
trapping mechanism that appears in more refined models, such as the Newtonian and
the Bohmian ones.

• Newtonian level. On the next level, the Newtonian one, classical trajectories are obtained for
the realistic potential energy surface describing the interaction between the He atoms and the
substrate. In this case, it is not so simple to distinguish between single and double collisions,
because the deflection of the trajectories near the surface, where the interaction between the He
atoms and the CO/Pt surface is stronger, changes gradually very smoothly. However, we have
been able to extract a series of interesting conclusions:

– By means of an energy diagram (asymptotic energy along the z direction as a function of the
impact parameter), we been able to devise a method that allows to determine in a simple
fashion pairs of homologous (Newtonian) trajectories. This diagram is thus a suitable method
to determine a behavioral mapping of initial conditions (impact parameters) for a given
incidence direction (incident energy).

– Accordingly, also at this level, it is possible to find an underlying mechanism responsible
for the reflection symmetry interference found in the corresponding quantum intensity
patterns. Actually, interference patterns could be reconstructed in the same way as with
the Fermatian model, although in this case we would be dealing with a space-dependent
refractive index (the potential function) and the Newtonian trajectories would play the role of
Feynman’s paths. Nonetheless, although such a reconstruction is possible and the techniques
are well known, this does not mean that trajectories, Fermatian or Newtonian, contain any
information on the interference process; in both cases, they are only a tool to determine the
interference pattern.

– Regarding the trapping phenomenon, it has been found to be more prominent, with an
important amount of trajectories remaining trapped permanently along the surface. This is,
however, only a temporary feature, since it may disappear as son as the trapped atoms find
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another adsorbate. In such a case, the collisions with this adsorbate may provoke an effective
transfer of energy from the parallel to the normal direction, such that the will be able to
eventually leave the surface.

– Finally, due to the attractive well surrounding the adsorbate, we have also observed the
appearance of rainbow features, i.e., high accumulations of trajectories along particular
deflection directions. However, rather than contributing with a specific, localized feature
in the corresponding quantum intensity pattern, rainbows seem to manifest affecting them
globally, i.e., giving rise to features that appear at different places. This has been noticed by
computing exactly the same with an alternative repulsive adsorbate model, which lacks the
surrounding attractive well and therefore does not give rise to the formation of rainbows.

• Bohmian level. The upper level here considered is the Bohmian one, where things change
substantially if we note that the transition from the Fermatian level to the Newtonian one can
be seen as a refinement associated with having a more accurate description of the interaction
potential model, changing a hard wall by a “soft” wall. These are the main findings at this level:

– First of all, since Bohmian trajectories are associated with a particular wave function, there is
no freedom to choose a given set of initial conditions because depending on the positions
selected relative to the region covered by the initial wave function, the trajectories are going
to exhibit a different behavior. Thus, we have seen that while some of them are deflected
quite far from the physical surface (more intense interaction region), other trajectories move
just on top of it, displaying signatures of vorticality.

– To better understand that point, notice that Fermatian trajectories are only ruled by the
law of reflection, while Newtonian trajectories are ruled by correlations between the two
degrees of freedom, x and y, that can be locally established within the interaction region
(i.e., the region where the interaction potential is stronger, near the substrate). In the case of
Bohmian trajectories, the dynamics is not directly ruled by the interaction potential, but by
a wave field that is able to (non-classically) convey information from everywhere in the
configuration space (through its phase). This makes a substantial difference between classical
(Fermatian or Newtonian) and Bohmian trajectories, which may lead us to think that direct
comparisons or analogies must be taken with care. That is, nothing of what has been seen
at the previous levels remains at the upper one, since it is not possible to form pairs of
homologous trajectories.

– In this case, and contrary to the two previous models, the trajectories contain information
about the interference process and, therefore, can be used to determine the fringe structure
of the pattern by simply making statistics over them. If they are properly distributed across
the region of the configuration space covered by the initial probability density, they will
eventually distribute according to the final probability distribution by virtue of the continuity
equation that they satisfy.

– Regarding rainbow features, present in the Newtonian model and also, with a weak precursor,
in the Fermatian one, the only a similar behavior is observed, although it is difficult to
establish a unique correspondence with the phenomenon of the two previous models. In the
Bohmian case, taken the trajectories that start with the same value z0, it is seen that their final
positions show, for some range of x0 values, a certain “precession” as x0 increases. However,
it has not been possible to uniquely identify this phenomenon with the classical rainbow.
In the case of surface trapping, on the contrary, there same effect has been observed in the
three models (again, in the Fermatian model it is only a weak precursor).

– Finally, it has also been observed that, depending on how close or far a Bohmian trajectory is
started from the physical substrate surface, it will be able to reach this surface or just bounce
backwards quite far from it (from what we could call an effective nonphysical surface).
Actually, if the trajectories start close to the surface, they are influenced by the web of
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maxima developed (and sustained for some time) around the adsorbate, displaying a rich
vortical dynamics.

To conclude, we can say that, although there is no one-to-one correspondence between classical
and Bohmian trajectories, it is still possible to understand these two alternative descriptions in a
complementary way, with one being the skeleton upon which the other rests, at least at a formal level.
Classical trajectories have been and are used to understand in relatively simple terms why quantum
distributions are as they are, in a way analogous to how an optical path allows us to understand and
explain the appearance of wave phenomena, such as diffraction or interference. Bohmian trajectories
are synthesized from wave amplitudes (wave functions), so the same underlying scheme should also
be valid (i.e., using classical trajectories to understand why Bohmian trajectories evolve in the way they
do). At the same time, Bohmian trajectories offer a clear picture of the evolution of the quantum system
by monitoring the local evolution of the quantum flux, which provides some clues on dynamical
aspects that otherwise would remain hidden (e.g., the development and effects of vortical dynamics,
or the appearance of effective barriers).
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Abstract: The biggest and most lasting among David Bohm’s (1917–1992) many achievements
is to have proposed a picture of reality that explains the empirical rules of quantum mechanics.
This picture, known as pilot wave theory or Bohmian mechanics among other names, is still the
simplest and most convincing explanation available. According to this theory, electrons are point
particles in the literal sense and move along trajectories governed by Bohm’s equation of motion.
In this paper, I describe some more recent developments and extensions of Bohmian mechanics,
concerning in particular relativistic space-time and particle creation and annihilation.

Keywords: de Broglie–Bohm interpretation of quantum mechanics; pilot wave; interior-boundary
condition; ultraviolet divergence; quantum field theory

1. Introduction

In 1952, David Bohm [1] solved the biggest of all problems in quantum mechanics, which is
to provide an explanation of quantum mechanics. (For discussion of this problem see e.g., [2–5].)
His theory is known as Bohmian mechanics, pilot-wave theory, de Broglie–Bohm theory, or the
ontological interpretation. This theory makes a proposal for how our world might work that agrees
with all empirical observations of quantum mechanics. Unfortunately, it is widely under-appreciated.
It achieves something that was often (before and even after 1952) claimed impossible: To explain the
rules of quantum mechanics through a coherent picture of microscopic reality.

In the following, I briefly review Bohmian mechanics and then discuss some extensions of it that
were developed in recent years. For textbook-length introductions to Bohmian mechanics, see [4–7];
for a recent overview article, see [8].

1.1. Significance of Bohmian Mechanics

Bohmian mechanics is remarkably simple and elegant. In my humble opinion, some extension
of it is probably the true theory of quantum reality. Compared to Bohmian mechanics, orthodox
quantum mechanics appears rather incoherent. In fact, orthodox quantum mechanics appears like
the narrative of a dream whose logic does not make sense any more once you are awake although it
seemed completely natural while you were dreaming (e.g., [2,4]).

According to Bohmian mechanics, electrons and other elementary particles are particles in the
literal sense, i.e., they have a well-defined position Qj(t) ∈ R3 at all times t. They have trajectories.
These trajectories are governed by Bohm’s equation of motion (see below). In view of the widespread
claim that it was impossible to explain quantum mechanics, it seems remarkable that something as
simple as particle trajectories does the job. Thus, what went wrong in orthodox QM? Some variables
were left out of consideration: the particle positions!
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1.2. Laws of Bohmian Mechanics

According to non-relativistic Bohmian mechanics of N particles, the position Qj(t) of particle j in
Euclidean three-space moves according to Bohm’s equation of motion,

dQj

dt
=

h̄
mj

Im
ψ∗∇jψ

ψ∗ψ
(Q1, . . . , QN) (1)

for every j = 1, . . . , N. If some particles have spin, then ψ∗φ means the inner product in spin space.
The wave function ψ of the universe evolves according to the Schrödinger equation,

ih̄
∂ψ

∂t
= −∑

j

h̄2

2mj
∇2

j ψ + Vψ . (2)

The initial configuration Q(0) = (Q1(0), . . . , QN(0)) of the universe is random with
probability density

ρ = |ψ0|2 . (3)

(Actually, the point Q(0) need not be truly random; it suffices that Q(0) “looks typical” with respect
to the statistical properties of the ensuing history t �→ Q(t) [9], much like the number π is not truly
random but its decimal expansion looks like a typical sequence of digits.)

1.3. Properties of Bohmian Mechanics

It follows from Equations (1)–(3) that at any time t ∈ R, Q(t) is random with density ρt = |ψt|2
(“equivariance theorem” or “preservation of |ψ|2”). It follows further, by a theorem akin to the law of
large numbers, that subsystems of the universe with wave function ϕ will always have configurations
that look random with |ϕ|2 distribution [9]. This fact, known as “quantum equilibrium”, is the
root of the agreement between the empirical predictions of Bohmian mechanics and the rules of the
quantum formalism.

For an example of equivariance and quantum equilibrium, Figure 1 shows a selection of trajectories
for the double-slit experiment with roughly a |ϕ|2 distribution, where ϕ is a 1-particle wave function.
The equivariance theorem implies that the arrival places on the right (where one may put a screen)
are |ϕ|2 distributed; thus, more particles arrive where |ϕ|2 is larger. John Bell commented [10]:

“This idea seems to me so natural and simple, to resolve the wave-particle dilemma in such
a clear and ordinary way, that it is a great mystery to me that it was so generally ignored.”

Figure 1. Several possible trajectories for a Bohmian particle in a double-slit setup, coming from the
left. (Reprinted from [6], based on a figure in [11]).
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Bohmian mechanics is clearly non-local (i.e., involves faster-than-light influences) because,
according to Equation (1), the velocity of particle j depends on the simultaneous positions of all
other particles Q1, . . . , QN . Of course, Bell’s theorem [12] shows that every theory in agreement with
the empirical facts of quantum mechanics must be non-local.

Bohmian mechanics avoids the problematical idea that the world consists only of wave function.
It provides precision, clarity, and a clear ontology in space-time. It allows for an analysis of quantum
measurements, thus replacing the postulates of orthodox quantum mechanics by theorems.

2. Extension of Bohmian Mechanics to Particle Creation

Bohmian mechanics has been successfully extended to incorporate particle creation. In theories
with particle trajectories, particle creation and annihilation mean that trajectories can begin and end
(Figure 2). Perhaps the most plausible picture would have them begin and end on the trajectories of
other particles.

t

x

(a) (b)

t

x

Figure 2. Possible patterns of particle world lines in theories with particle creation and annihilation:
(a) a boson (dashed world line) is emitted by a fermion and absorbed by another; and (b) a boson
(dashed world line) decays into two fermions. (Reprinted from [13]).

Particle creation and annihilation come up particularly in quantum field theory (QFT); since we
want to connect them with particle trajectories, we make use of the particle-position representation
of QFTs, a representation used also independently of the Bohmian approach, for example in [14–16].
The state vector then is a vector in Fock space F ,

ψ ∈ F =
∞⊕

n=0
Hn , (4)

or perhaps in the tensor product of several Fock spaces. Here, the n-particle Hilbert space Hn (also
called the n-particle sector or simply n-sector of F ) is the symmetrized or anti-symmetrized n-th
tensor power of the 1-particle Hilbert space H1. The position representation of ψ ∈ F is a function on
the configuration space of a variable number of particles,

Q =
∞⋃

n=0
R3n , (5)

and |ψ|2 defines a probability distribution on Q. Here, R3n is called the n-sector of Q. (In fact, it is
often desirable to use unordered configurations {x1, . . . , xN} because, in nature, configurations are not
ordered. In Equation (5) and in the following, we use ordered configurations (x1, . . . , xN) because that
allows for easier notation.)
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2.1. Bell’s Jump Process (In Its Continuum Version)

Here is the natural extension of Bohmian mechanics to particle creation [13,17–21]; Bell [17]
considered this on a lattice, but it can be set up as well in the continuum [13,18,19], and we directly
consider this case. The configuration curve Q(t) will jump one sector up (respectively, down) whenever
a particle is created (respectively, annihilated) (see Figure 3).

(c) (d)

(a) (b)

Figure 3. The configuration space in Equation (5) of a variable number of particles; drawn are, for space
dimension d = 1, the first four sectors: (a) the zero-particle sector has a single element, the empty
configuration; (b) the one-particle sector is a copy of physical space; (c) the two-particle sector; and
(d) the three-particle sector. In addition, the configuration curve corresponding to Figure 2a is drawn;
it jumps at time t1 from the two-particle sector to the three-particle sector and at time t2 back. (Reprinted
from [13]).

According to (the continuum version of) Bell’s proposal, jumps (e.g., from the n-sector to the
n + 1-sector) occur in a stochastic way, with rates governed by a further law of the theory. This means
that, according to this theory, jumps occur spontaneously as an element of irreducible randomness
in nature; they are not pre-determined by any further variables (“hidden” or not). It was not the
point of Bohmian mechanics to restore determinism but to hypothesize what actually happens in the
microscopic reality; if the most convincing hypothesis turns out to be deterministic (as it does for fixed
particle number), then that is fine, if not, that is fine, too. Here, the randomness in the jumps is relevant
to ensuring that, after particle creation, the configuration is still |ψ|2 distributed.

Mathematically, (Q(t))t∈R forms a stochastic process, in fact a Markov jump process. Between
jumps, Bohm’s equation of motion applies. The law governing the jumps reads as follows: Given that
the present configuration Q(t) is q′ ∈ Q, the rate (i.e., probability per time) of jumping to a volume
element dq around q ∈ Q is

σψ(q′ → dq) =
max

{
0, 2

h̄ Im 〈ψ|q〉〈q|HI |q′〉〈q′|ψ〉
}

〈ψ|q′〉〈q′|ψ〉 dq . (6)

Here, HI is the interaction Hamiltonian as in H = H0 + HI with H0 the free Hamiltonian.
More generally, |q〉〈q| dq could be replaced by a PVM (projection-valued measure) or a POVM
(positive-operator-valued measure) P(dq) on Q (and |q′〉〈q′| by P(dq′), as factors of dq′ would cancel
out). Since HI usually links only to the next higher and lower sector, only jumps to the next higher or
lower sector are allowed by Equation (6).

The jump rate in Equation (6) is so designed as to entail an equivariance theorem [19]: that is,
if Q(0) is |ψ0|2 distributed (that is, abstractly speaking, 〈ψ0|P(·)|ψ0〉 distributed), then at every t ∈ R,
Q(t) is |ψt|2 distributed (that is, 〈ψt|P(·)|ψt〉 distributed).
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The jump rate Equation (6) can be thought of as an analog of Bohm’s equation of motion in
Equation (1) for jumps: for example, it involves quadratic expressions in ψ in both the numerator and
the denominator and leads to the equivariance of |ψ|2. The point of the jump law is to set up a process
Q(t) once a Hilbert space H , a state vector Ψ ∈ H , a (reasonable) Hamiltonian H, a configuration
space Q, and configuration operators P(dq) are given. Together with Bohm’s equation of motion in
Equation (1), the rate Equation (6) achieves this for Hamiltonians with ultraviolet cutoff, which brings
us to the problem of ultraviolet divergence.

2.2. An Ultraviolet Divergence Problem

For the sake of concreteness of our discussion, consider a simplified, non-relativistic model
QFT, in which x-particles can emit and absorb bosonic y-particles. Let us suppose that there is only
1 x-particle, and it is fixed at the origin, so H is the bosonic Fock space of the y-particles, and the
configuration space is given by Equation (5).

The naive, original expression for the Hamiltonian in the particle-position representation with
creation and annihilation of y-particles at the origin 0 reads

(Horigψ)(y1, ..., yn) = −
h̄2

2my

n

∑
j=1
∇2

yj
ψ(y1, ..., yn)

+ g
√

n + 1 ψ(y1, ..., yn, 0)

+
g√
n

n

∑
j=1

δ3(yj)ψ(y1, ..., ŷj, ..., yn) , (7)

where g is a real coupling constant (the charge of the x-particle), and ŷj means that yj is omitted.
Recall that ψ is a function on ∪∞

n=0R
3n, so ψ(y1, ..., yn) makes sense for any number n; note that

ψ(y1, ..., yn, 0) refers to the n + 1-sector of ψ ∈ H and ψ(y1, ..., ŷj, ..., yn) to the n− 1-sector. Roughly
speaking, the middle line of Equation (7) represents the annihilation of the n + 1-st y-particle at the
origin, while the last line represents the creation of a new y-particle at the origin, viz., with wave
function δ3.

Unfortunately, the Hamiltonian in Equation (7) is ultraviolet (UV) divergent and thus
mathematically ill defined. This means that the creation and annihilation terms in Horig, when
expressed in the momentum representation, involve an integral over k that diverges for large values of
|k|. The root of the problem is that, according to the last line of Equation (7), the wave function of a
newly created y-particle is a Dirac δ function, which has infinite energy and, what is worse, does not
even lie in the Hilbert space (which contains only square-integrable functions). Many QFTs suffer from
similar UV problems.

The UV problem can be circumvented by introducing an UV cut-off, i.e., by replacing the δ

function by a square-integrable approximation ϕ as in Figure 4. The cutoff corresponds to “smearing
out” the x-particle with “charge distribution” ϕ(·), and it leads to a well-defined Hamiltonian,
given explicitly by

(Hcutoffψ)(y1, ..., yn) = −
h̄2

2my

n

∑
j=1
∇2

yj
ψ(y1, ..., yn)

+ g
√

n + 1
∫
R3

d3y ϕ∗(y) ψ
(
y1, ..., yn, y

)
+

g√
n

n

∑
j=1

ϕ(yj) ψ
(
y1, ..., ŷj, ..., yn

)
. (8)

However, there is no empirical evidence that electrons have a nonzero radius; it is therefore
unknown which size or shape ϕ should have; a cutoff tends to break Lorentz invariance; and, as another
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implausible consequence of the cutoff, emission and absorption occur anywhere in the support of ϕ

around the x-particle, as depicted in Figure 5.

Figure 4. An example of a natural candidate for the cut-off function ϕ(·): a bump-shaped function that
is a smooth and square-integrable approximation to a Dirac δ function and vanishes outside a small
ball around the origin.

x

t

Figure 5. When using Hcutoff, the emission and absorption of a y-particle happens, according
to Equation (6), not exactly at the location of an x-particle, but at a separation that can be as large as the
radius of the support of ϕ. This does not happen with the alternative Hamiltonian defined by means of
interior-boundary conditions.

2.3. UV Problem Solved!

Recent work [22–25] has shown that this UV problem can be solved, at least in the non-relativistic
case, by means of interior-boundary conditions (IBCs): they allow the rigorous definition of a
Hamiltonian HIBC. In fact, for the specific Hamiltonian in Equation (7) with the x-particle fixed
at the origin, it was known before [26] that, for any sequence ϕn → δ3, there exist constants En ∈ R

such that Hcutoff − En possesses a limit H∞ as n → ∞, called the renormalized Hamiltonian and
independent of the choice of the sequence ϕn. It has been shown [23] that H∞ coincides with HIBC up
to addition of a constant (i.e., of a multiple of the identity). However, for the case of moving x-particles
in three space dimensions, it is not known how to obtain a renormalized Hamiltonian, and the IBC
approach has provided for the first time a mathematically well defined Hamiltonian [25].
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1−particle sector

x

x

y

2−particle sector

Figure 6. An interior-boundary condition is a relation between the values of ψ at two points: a point q
on the boundary (that is, where two particles collide, such as (x, x) in the two-particle sector) and a
point q′ in the interior of a lower sector (such as x).

Here is how this approach works [22,27–29]. An interior-boundary condition is a condition that
links two configurations connected by the creation or annihilation of a particle (see Figure 6). Abstractly
speaking, an IBC on a function ψ on a domain Q with boundary ∂Q is a condition of the form

ψ(q′) = (const.)ψ(q) , (9)

where q′ is a boundary point and q an interior point. In our case, the boundary configurations are
those in which a y-particle meets an x-particle. In the case of moving x-particles, such configurations
lie on diagonal surfaces in configuration space, as depicted in Figure 6; in the case of a fixed x-particle
at 0, they lie on the surfaces yk = 0 for any k = 1, 2, . . .. The corresponding interior configuration q is
the one with this y-particle removed, so q lies one sector lower than q′. For example, with an x-particle
at 0, the IBC is roughly of the form

ψ(y1, ..., yn, 0) =
g my

2πh̄2√n + 1
ψ(y1, ..., yn) . (10)

In fact, the precise formula is yet a little different. That is because |ψ|2 must diverge similar to
1/r2 as r = |y| → 0 to guarantee a non-vanishing flux of probability into the origin; in fact, the relevant
ψs can be expanded in the form

ψ(y1, ..., yn, y) = α(y1, ..., yn) r−1 + β(y1, ..., yn) r0 + o(r0) (11)

(r = |y|), and it is the leading coefficient α in this expansion that should appear on the left-hand side
of Equation (10). Thus, the IBC reads

lim
r↘0

rψ(y1, ..., yn, rω) =
g my

2πh̄2√n + 1
ψ(y1, ..., yn) (12)

for all unit vectors ω ∈ R3, |ω| = 1. (The limit r ↘ 0 means r → 0 with r > 0.)
The expression for the corresponding Hamiltonian HIBC then reads, with S2 = {ω ∈ R3 : |ω| = 1}

the unit sphere,

(HIBCψ)(y1, ..., yn) = −
h̄2

2my

n

∑
j=1
∇2

yj
ψ(y1, ..., yn)

+
g
√

n + 1
4π

∫
S2

d2ω lim
r↘0

∂

∂r

(
rψ(y1, ..., yn, rω)

)
+

g√
n

n

∑
j=1

δ3(yj)ψ(y1, ..., ŷj, ..., yn) . (13)

The term in the last line, involving the problematical δ function, actually gets canceled by the
term created when the Laplacian gets applied to the αr−1 term in Equation (11), which contributes
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a δ function; the constant prefactor in the IBC in Equation (10) or (12) is dictated by the goal of this
cancellation. The middle line extracts the next-to-leading coefficient β of Equation (11) from ψ in
the last variable yn+1. (As a consequence of the expansion of Equation (11), which is valid for ψ in
the domain of HIBC, the integrand is independent of ω, so that it is actually unnecessary to average
over ω.)

Here is the rigorous result about HIBC:

Theorem 1 ([23]). On a suitable dense domain DIBC of ψs in H of the form of Equation (11) satisfying the
IBC (12), HIBC is well defined, self-adjoint, and positive. In particular, there is no UV divergence.

Historically, IBCs were invented several times for various purposes [30–33], but only recently
considered for the UV problem [22,27]. Rigorous results about existence and self-adjointness of the
Hamiltonian were proved in [25] for moving x-particles in three dimensions, in [24] for moving
x-particles in two dimensions, and also in [24] for the Nelson model [16] in three dimensions.

2.4. Particle Trajectories

This is also a jump process associated to HIBC in Q analogous to Bell’s that is |ψt|2 distributed at
every time t [34]. In this process, the world lines of y-particles begin and end on those of the x-particles
(like in Figure 2a and unlike in Figure 5). We conjecture that this process is the limit of the continuum
Bell process governed by Equation (6) as ϕ → δ3.

Since the Hamiltonian is no longer of the form H0 + HI (particularly as the functions in the
domain of H0 do not satisfy the boundary condition), the jump rate Equation (6) does not immediately
apply. Nevertheless, the process can be defined as follows [34]. Between the jumps, the configuration
follows Bohm’s equation of motion in Q(n) = R3n. Every jump is either an absorption (to the next
lower sector) or an emission (to the next higher sector). The absorption events are deterministic
and occur when Q(t) ∈ Q(n) reaches yj = 0 for any j = 1, ..., n; in that moment, the configuration

jumps to (y1, ..., ŷj, ..., yn) ∈ Q(n−1). The emission of a new y-particle at 0 ∈ R3 occurs at a random
time t in a random direction ω (there is one trajectory starting there in each direction ω) with a rate
dictated by time reversal invariance, the Markov property, and the wish for equivariance [28,34]:
If Q(t) = y = (y1, ..., yn) ∈ Q(n), then with jump rate

σψ(y → y× 0d2ω) = lim
r↘0

max
{

0, h̄
m Im

[
r2ψ(y, rω)∗ ∂rψ(y, rω)

]}
|ψ(y)|2 d2ω (14)

it jumps to the solution of Bohm’s equation of motion in Q(n+1) beginning at

(y1, . . . , yj−1, 0ω, yj, . . . , yn) (15)

with 1 ≤ j ≤ n + 1. That is, the newly created y-particle at the origin gets inserted at the j-th position,
where j is chosen uniformly random (ψ is symmetric against permutation), and starts moving in
direction ω. By virtue of Equation (11), the right-hand side of Equation (14) is actually independent of
ω, so ω is random with uniform distribution.

3. Extension of Bohmian Mechanics to Relativistic Space-Time

3.1. The Time Foliation

A foliation is a slicing of space-time into hypersurfaces, that is, a family of non-intersecting
hypersurfaces whose union is space-time, as depicted in Figure 7. We will consider the possibility
that there is a preferred foliation of space-time into spacelike hypersurfaces (“time foliation” F ),
that is, that one foliation F plays a special dynamical role in nature, essentially defining a kind
of simultaneity at a distance. If the existence of a time foliation is granted, then there is a simple,
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convincing analog of Bohmian mechanics, BMF . For a single particle, a time foliation is unnecessary,
as Bohm found already in 1953 [35]. Bohm and Hiley [7] introduced the equation of motion of BMF

for flat foliations (i.e., parallel hyperplanes, i.e., Lorentz frames), Dürr et al. [36] for curved foliations,
and I contributed [37] a proof of equivariance for curved space-time. The surfaces belonging to F will
be called the time leaves.

Figure 7. Example of a spacelike foliation (i.e., slicing into spacelike hypersurfaces) of Minkowski
space-time in 1 + 1 dimensions.

Without a time foliation (i.e., a preferred foliation), no version of Bohmian mechanics is known
that would make predictions anywhere near quantum mechanics, and I have no hope that such a
version can be found in the future.

Sutherland [38,39] has made an attempt towards such a version; he has proposed a Bohm-like
equation of motion without a time foliation but involving retrocausation. While one may have
reservations about retrocausation, it would be of interest to know whether such a theory can be made
to work. At the present stage, Sutherland has formulated a proposal for trajectories of non-interacting
particles between measurements at times ti and t f ; for an assessment, one would need to formulate a
proposal that can be applied to the universe as a whole and that can also treat measurements as just
particular instances of motion and interaction of particles. I have considered a natural extension of
Sutherland’s equations to a universe with interaction and concluded that measurement outcomes, if
their records get erased before the final time of the universe, may have a probability distribution that
deviates very much from the one predicted by quantum mechanics and BMF . Thus, one would have
to come up with a better proposal for an interacting version.

Let me return to BMF . To grant a time foliation seems against the spirit of relativity. However, it is
a real possibility that our world is like that. It does not mean relativity would be irrelevant: After all,
there is still a metric gμν; the free Hamiltonian is still the Dirac operator (or whichever relativistic
operator is appropriate); formulas are still expressed with 4-vector indices (jμ, etc.); the statistics of
experimental outcomes are independent of F (see below); and superluminal signaling is impossible
in BMF . On the other hand, there exists also the vector nμ normal to the time foliation, and the
hypothesis of a time foliation provides a simple and straightforward explanation of the non-locality
required by Bell’s theorem.

A preferred foliation may be provided anyhow by the metric: If we take space-time to be curved
and have a big bang singularity (which seems realistic), then the simplest choice of F consists of
the level sets of the real-valued function T on space-time such that T(x) is the timelike distance of
x from the big bang; e.g., T(here–now) = 13.7 billion years (if what we call the big bang did involve
a singularity).
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Alternatively, F might be defined in terms of the quantum state vector ψ, F = F (ψ) [40], or F

might be determined by an evolution law (possibly involving ψ) from an initial time leaf.
Let us turn to the definition of the trajectories.

3.2. The Single-Particle Case

I begin with the simplest case, that of a single particle [35], which does not involve the time
foliation F . Let ψ : R4 → C4 be a solution of the Dirac equation

ih̄γμ∂μψ = mψ . (16)

The vector field
jμ = ψγμψ (17)

is called the probability current 4-vector field. It is formed in a covariant way (since ψ �→ ψ = ψ†γ0 is
a covariant operation, whereas ψ �→ ψ† is not); jμ is real, future timelike-or-lightlike, and divergence
free, ∂μ jμ = 0.

The Bohmian trajectories are the integral curves of the vector field jμ; put differently, the equation
of motion reads

dQμ

dτ
∝ jμ(Qν(τ)) , (18)

where τ can be proper time or, in fact, any curve parameter, and ∝ means “is proportional to”. In fact,
it suffices to prescribe dQμ/dτ only up to scalar factors (and to allow any curve parameter) because
that fixes the tangent (i.e., the direction) of the world line in space-time.

It then follows that the possible world lines are timelike-or-lightlike curves. On any spacelike
(Cauchy) hypersurface Σ0, we can choose an initial condition Qμ(τ = 0) ∈ Σ0, and a unique solution
curve Qμ(τ) exists for all times (except, technically speaking, for a set of measure zero of initial
conditions) [41]. Equivariance holds in the following sense: On a spacelike (Cauchy) hypersurface Σ,
the appropriate interpretation of “|ψ|2 distribution” is the distribution whose density relative to the
3-volume d3x defined by the 3-metric on Σ is jμnμ = ψn/ψ with nμ(x) the future unit normal vector to
Σ at x ∈ Σ and n/ = nμγμ. If the initial condition Qμ(τ = 0) is random with distribution |ψΣ0 |2 then
on every other Σ, the intersection point of the world line with Σ is random with distribution |ψΣ|2.
The evolution of ψ from Σ0 to Σ is unitary.

All I said remains true when an external electromagnetic field is added to the Dirac equation,
or when we consider a curved space-time.

3.3. Law of Motion for Many Particles

Here is the definition of BMF [36]. Consider N particles. Suppose that, for every Σ ∈ F , we have
a wave function ψΣ on ΣN . (The next section discusses how to obtain ψΣ from multi-time wave
functions.) For N timelike-or-lightlike world lines Q1, . . . , QN , the configuration on Σ consists of the
intersection point of each world line with Σ,

Q(Σ) = (Q1 ∩ Σ, . . . , QN ∩ Σ) (19)

The equation of motion is of the form (see Figure 8)

dQμ
k

dτ
∝ expression

[
ψ

(
Q(Σ)

)]
. (20)
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Specifically, for N Dirac particles, the wave function is of the form ψΣ : ΣN → (C4)⊗N for every
Σ ∈ F , and the equation of motion reads

dQμ
k

dτ
∝ jμ

k (Q(Σ)), (21)

where
jμ1...μN (x1, ..., xN) = ψ(x1, ..., xN)[γ

μ1 ⊗ · · · ⊗ γμN ]ψ(x1, ..., xN) , (22)

jμk
k (x1, ..., xN) = jμ1,...,μN (x1, ..., xN) nμ1(x1) · · · (k-th omitted) · · · nμN (xN) , (23)

and nμ(x) is the future unit normal vector to Σ at x ∈ Σ.

Figure 8. The equation of motion of BMF specifies the tangent direction of a world line by means of
the wave function evaluated at the configuration where all world lines intersect the same time leaf Σ.

The appropriate version of the |ψ|2 distribution (which we simply call |ψ|2) is the one with density

ρ(x1, ..., xN) = jμk (x1, ..., xN) nμ(xk) = ψ[n/(x1)⊗ · · · ⊗ n/(xN)]ψ (24)

relative to the volume d3x1, ..., d3xN defined by the metric gμν on Σ. (Actually, ρ is literally |ψ|2 if for
each xj we use the Lorentz frame tangent to Σ at xj.) It can be shown [36,37] that the |ψ|2 distribution
is equivariant, more precisely: If the initial configuration is |ψ|2-distributed, then the configuration
Q(Σ) is |ψΣ|2-distributed on every Σ ∈ F . Moreover:

Theorem 2 ([42]). If detectors are placed along any spacelike surface Σ (and if some reasonable assumptions
about the evolution of ψΣ are satisfied), then the joint distribution of detection events is |ψΣ|2.

That is, while undetected configurations Q(Σ′) may fail to be |ψΣ′ |2 distributed if Σ′ is not a time
leaf, the detected configuration is |ψΣ|2-distributed on every spacelike Σ. Consequently, F is invisible,
i.e., experimental results reveal no information about F . In fact, all empirical predictions of BMF

agree with the standard quantum formalism (and the empirical facts).
BMF is a very robust theory, as it works for arbitrary foliation F ; it works even if the time leaves

have kinks [43] (a case in which F violates a condition in the mathematicians’ definition of “foliation”);
it works even if the leaves of F overlap [44]; it can be combined with the stochastic jumps for particle
creation; it works also in curved space-time [37]; and it still works if space-time has singularities [45].

3.4. Multi-Time Wave Functions

A multi-time wave function φ(t1, x1, . . . , tN , xN) [46–49] is a natural relativistic generalization of
the N-particle wave function ψ(t, x1, . . . , xN) of non-relativistic quantum mechanics: It is a function of
N space-time points, and thus of N time variables. It is usually defined only on the set S of spacelike
configurations, i.e., of those N-tuples (x1, . . . , xN) ∈ R4N of space-time points xj = (tj, xj) ∈ R4
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for which any two xj, xk are spacelike separated or identical. φ is the covariant particle-position
representation of the state vector. The usual (single-time) wave function ψ is contained in φ by setting
all time variables equal,

ψ(t, x1, . . . , xN) = φ(t, x1, . . . , t, xN) . (25)

More generally, we can obtain for every spacelike hypersurface Σ a wave function ψΣ on ΣN by
simply setting

ψΣ(x1, . . . , xN) = φ(x1, . . . , xN) (26)

for all x1, . . . , xN ∈ Σ. This is the ψΣ that goes into Equations (20) and (21), and the theorem from [42]
reported in the previous subsection. Thus, the theorem is really a theorem about multi-time wave
functions. Since ψΣ is closely related to the Tomonaga-Schwinger [50,51] wave function, so is φ; at the
same time, φ is a simpler kind of mathematical object, as it is a function of only finitely many variables
(at least locally, when we consider Fock space).

The obvious choice (though not the only possible one [52]) of time evolution equations for φ is to
introduce an equation for each time variable,

ih̄
∂φ

∂tj
= Hjφ ∀j = 1, . . . , N. (27)

It follows that the single-time wave function ψ as in Equation (25) will evolve according to the
usual kind of Schrödinger equation

ih̄
∂ψ

∂t
= Hψ (28)

if and only if
N

∑
j=1

Hj = H (29)

at equal times, a relation relevant to guessing suitable multi-time Schrödinger equations in
Equation (27).

A big difference between multi-time and single-time Schrödinger equations is that for
Equation (27) to possess solutions for all initial conditions at 0 = t1 = t2 =, . . . ,= tN , the partial
Hamiltonians Hj must satisfy a consistency condition [47,48,53][

ih̄
∂

∂tj
− Hj, ih̄

∂

∂tk
− Hk

]
= 0 ∀j 
= k . (30)

If the Hj are time-independent, then the condition reduces to [Hj, Hk] = 0. These conditions
are trivially satisfied for non-interacting particles [15], but to implement interaction is a challenge;
for example, interaction potentials violate consistency [53,54]. However, it has been shown that
interaction can be consistently implemented [55], in particular in the form of zero-range interactions
(“δ potentials”) [56,57] and of interaction through emission and absorption of bosons [58,59].

The upshot is that the evolution of the wave function can be defined in a covariant way without
using the time foliation F , which then needs to be introduced for the trajectories. The evolution of the
wave function can directly be formulated in the particle-position representation, in fact with rather
simple equations [52,58].

4. Outlook and Concluding Remarks

Those who regard a theory with a preferred foliation as unacceptable may want to consider
relativistic collapse theories instead [60,61], which do not need a preferred foliation. I believe, however,
that we should take the possibility of a preferred foliation (depending perhaps on the space-time
metric and/or the wave function) seriously. Then, BMF seems to be the most plausible ontological
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theory of quantum mechanics in relativistic space-time, and I regard it as a fully satisfactory extension
of Bohmian mechanics to relativistic space-time. Particle creation and annihilation can be incorporated
into it in the same way as described in Section 2 for the non-relativistic case.

A goal for the future would be to formulate a version of quantum electrodynamics (QED) with
particle trajectories. The particle-position representation of the quantum state in QED was formulated
already by Landau and Peierls [14] in 1930, and it lends itself nicely to a multi-time formulation. Thus,
what are the obstacles? The main obstacle is that defining Bohmian trajectories for a photon requires
defining the probability current jμ, so we would need a formula for photons analogous to jμ = ψγμψ

for Dirac wave functions, but such a formula is not known to date except for plane waves (for which it
is jμ = |c|2kμ/h̄ whenever the energy-momentum tensor is Tμν = |c|2kμkν). Of course, this problem
concerns not only the Bohmian approach but every approach to QED, but it is of particular importance
in the Bohmian framework. Oppenheimer [62] argued in 1931 that jμ does not exist for photons; while
his argument is not completely compelling, it is by itself quite reasonable. However, since we can
measure probability distributions of photons in photon counters and interference experiments, I have
trouble imagining how jμ could fail to exist for photons. Thus, I tend to suspect that there is a formula
for jμ which we have not found yet.

Another problem for future research is whether the technique of interior-boundary conditions can
be applied to relativistic Hamiltonians. A further problem is how to deal in the Bohmian framework
with positrons, the Dirac sea, and states of negative energy. Some authors [63,64] have proposed to
take the Dirac sea literally as an infinity (or at least a very large number) of Bohmian particles. I am
inclined to take positrons literally as Bohmian particles, but various questions about this approach
remain open.

Let me conclude. While standard quantum mechanics is often unclear, standard quantum field
theory is often even less clear. However, the developments I have described provide reasons for
optimism that a clear version of serious QFTs (such as QED) can be obtained, and the Bohmian
approach of using particle trajectories is in my opinion the most promising candidate for getting
there. A fully satisfactory formulation of non-relativistic quantum mechanics is provided by Bohmian
mechanics, and I believe that we should try hard to reach a clear formulation of QED as well. Some
of the difficulties of QED are of a mathematical nature (such as the precise definition of the time
evolution of the quantum state), others of an ontological nature (what is actually there), and yet others
of an operational nature (such as how to compute the position probability distribution of photons for
arbitrary states). Some of the difficulties can often be circumvented or ignored, while the Bohmian
approach forces us to face them. I think that is ultimately an advantage.
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Abstract: In the quest for an understanding of nonlocality with respect to an appropriate ontology,
we propose a “cosmological solution“. We assume that from the beginning of the universe each
point in space has been the location of a scalar field representing a zero-point vacuum energy that
nonlocally vibrates at a vast range of different frequencies across the whole universe. A quantum,
then, is a nonequilibrium steady state in the form of a “bouncer“ coupled resonantly to one of those
(particle type dependent) frequencies, in remote analogy to the bouncing oil drops on an oscillating
oil bath as in Couder’s experiments. A major difference to the latter analogy is given by the nonlocal
nature of the vacuum oscillations. We show with the examples of double- and n-slit interference that the
assumed nonlocality of the distribution functions alone suffices to derive the de Broglie–Bohm guiding
equation for N particles with otherwise purely classical means. In our model, no influences from
configuration space are required, as everything can be described in 3-space. Importantly, the setting
up of an experimental arrangement limits and shapes the forward and osmotic contributions and is
described as vacuum landscaping.

Keywords: Schrödinger equation; de Broglie–Bohm theory; nonequilibrium thermodynamics;
zero-point field

PACS: 03.65.-w, 03.65.Ta, 05.40.-a, 05.70.Ln

1. Introduction: Quantum Mechanics without Wavefunctions

“Emergent Quantum Mechanics” stands for the idea that quantum mechanics is based on a more
encompassing deeper level theory. This counters the traditional belief, usually expressed in the
context of orthodox Copenhagen-type quantum mechanics, that quantum theory is an “ultimate”
theory whose main features will prevail for all time and will be applicable to all questions of physics.
Note, for example, that, even in more recent approaches to spacetime, the concept of an “emergent
spacetime” is introduced as a description even of space and time emerging from basic quantum
mechanical entities. This, of course, need not be so, considering the fact that there is “plenty of room at
the bottom,” i.e., as Feynman implied, between present-day resolutions and minimally possible times
and distances, which could in principle be way below resolutions reasonably argued about in present
times (i.e., on Planck scales).

One of the main attractive features of the de Broglie–Bohm interpretation of the quantum
mechanical formalism, and of Bohmian mechanics as well, lies in the possibility to extend its domain
into space and/or time resolutions where modified behaviors different from quantum mechanical ones
may be expected. In other words, there may be new physics involved that would require an explicitly
more encompassing theory than quantum mechanics, i.e., a deeper level theory. Our group’s approach,
which we pursued throughout the last 10 years, is characterized by the search for such a theory under
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the premise that even for nonrelativistic quantum mechanics, the Schrödinger equation cannot be
an appropriate starting point, since the wavefunction is still lacking a firm theoretical basis and its
meaning is generally not agreed upon.

For a similar reason, also the de Broglie–Bohm theory cannot be our starting point, as it is based on
the Schrödinger equation and the use of the wavefunction to begin with. Rather, we aim at an explicit
ansatz for a deeper level theory without wavefunctions, from which the Schrödinger equation, or the
de Broglie–Bohm guiding equation, can be derived. We firmly believe that we have accomplished this
and we can now proceed to study consequences of the approach beyond orthodox expectations.

Throughout recent years, apart from our own model, several approaches to a quantum mechanics
without wavefunctions have been proposed [1–5]. These refer to “many classical worlds” that provide
Bohm-type trajectories with certain repulsion effects. From our realistic point of view, the true
ontologies of these models, however, do not become apparent. So let us turn to our model. As every
physical theory is based on metaphysical assumptions, we must make clear what our assumptions are.
They are as follows.

We propose a “cosmological solution” in that the Big Bang, or any other model explaining the
apparent expansion of the universe, is essentially related to the vacuum energy (The latter may
constitute what is called the dark energy, but we do not need to specify this here). We assume that from
the beginning of the universe each point in space has been the location of a scalar field representing
a zero-point vacuum energy that vibrates at a vast range of different frequencies across the whole
universe. More specifically, we consider the universe as an energetically open system where the
vacuum energy not only drives expansion, but also each individual “particle” oscillation ω = E/h̄ in
the universe. In order to maintain a particular frequency, any such oscillator must be characterized by
a throughput of energy external to it. In this regard, we have time and again employed the analogy
of Couder’s experiments with bouncing oil drops on a vibrating bath [6–11]: The bouncer/particle is
always in resonant interaction with a relevant environment.

Our model, though also largely classical, has a very different ontology from the “many
classical worlds” one. We consider one “superclassical” world instead: a purely classical world plus
“cosmological nonlocality,” i.e., a nonlocal bath for every oscillator/particle due to the all-pervading
vacuum energy, which—mostly in the context of quantum mechanics—is called the zero-point
energy. Thus, it is the one classical world together with the fluctuating environment related to the
vacuum energy that enters our definition of a quantum as an emergent system. The latter consists of
a bouncer and an undulatory/wave-like nonlocal environment defined by proper boundary conditions
(As an aside we note that this is not related to de Broglie’s “nonlinear wave mechanics” [12], as there
the nonlinear wave, with the particle as soliton-like singularity, is considered as one ontic entity. In our
case, however, we speak of two separate, though synchronous elements: local oscillators and generally
nonlocal oscillating fields).

In previous work, we have shown how the Schrödinger equation can be derived from
a nonequilibrium sub-quantum dynamics [13–16], where in accordance with the model sketched above
the particle is considered as a steady state with a constant throughput of energy. This, then, leads to the
two-momentum approach to emergent quantum mechanics which shall be outlined in the next section.

2. The Two-Momenta Approach to Emergent Quantum Mechanics

We consider the empirical fact that each particle of nature is attributed an energy E = h̄ω as
one of the essential features of quantum systems (We have also presented a classical explanation for
this relation from our sub-quantum model [17], but do not need to use the details for our present
purposes). Oscillations, characterized by some typical angular frequency ω, are described as properties
of off-equilibrium steady-state systems. ”Particles” can then be assumed to be dissipative systems
maintained in a nonequilibrium steady-state by a permanent throughput of energy, or heat flow,
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respectively. The heat flow must be described by an external kinetic energy term. Then the energy of
the total system, i.e., of the particle and it’s thermal context, becomes

Etot = h̄ω +
(δp)2

2m
, (1)

where δp is an additional, fluctuating momentum component of the particle of mass m.
We assume that an effect of said thermal context is given by detection probability distributions,

which are wave-like in the particle’s surroundings. Thus, the detection probability density P(x, t) is
considered to coincide with a classical wave’s intensity I(x, t) = R2(x, t), with R(x, t) being the wave’s
real-valued amplitude

P(x, t) = R2(x, t) , with normalization
∫

P dnx = 1 . (2)

In [13], we combine some results of nonequilibrium thermodynamics with classical wave
mechanics. We propose that the many microscopic degrees of freedom associated with the hypothesized
sub-quantum medium can be recast into the emergent macroscopic properties of the wave-like behavior
on the quantum level. Thus, for the relevant description of the total system, one no longer needs the
full phase space information of all microscopic entities, but only the emergent particle coordinates.

For implementation, we model a particle as being surrounded by a heat bath, i.e., a reservoir that
is very large compared to the small dissipative system, such that that the momentum distribution in
this region is given by the usual Maxwell–Boltzmann distribution. This corresponds to a “thermostatic”
regulation of the reservoir’s temperature, which is equivalent to the statement that the energy lost
to the thermostat can be regarded as heat. Thus, one can formulate a proposition of emergence [13]
providing the equilibrium-type probability (density) ratio

P(x, t)
P(x, 0)

= e−
ΔQ(t)

kT , (3)

with k being Boltzmann’s constant, T the reservoir temperature, and ΔQ(t) the heat that is exchanged
between the particle and its environment.

Equations (1)–(3) are the only assumptions necessary to derive the Schrödinger equation from
(modern) classical mechanics. We need to employ only two additional well-known results. The first is
given by Boltzmann’s formula for the slow transformation of a periodic motion (with period τ = 2π/ω)
upon application of a heat transfer ΔQ. This is needed as we deal with an oscillator of angular frequency
ω in a heat bath Q, and a change in the vacuum surroundings of the oscillator will come as a heat
transfer ΔQ. The latter is responsible for a change δS of the action function S representing the effect
of the vacuum’s “zero-point” fluctuations. With the action function S =

∫
(Ekin −V) dt, the relation

between heat and action was first given by Boltzmann [18],

ΔQ(t) = 2ω[δS(t)− δS(0)] . (4)

Finally, the requirement that the average kinetic energy of the thermostat equals the average
kinetic energy of the oscillator is given, for each degree of freedom, by

kT
2

=
h̄ω

2
. (5)

Combining these two results, Equations (4) and (5), with Equation (3), one obtains

P(x, t) = P(x, 0)e−
2
h̄ [δS(x,t)−δS(x,0)] , (6)
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from which follows the expression for the momentum fluctuation δp of Equation (1) as

δp(x, t) = ∇(δS(x, t)) = − h̄
2
∇P(x, t)
P(x, t)

. (7)

This, then, provides the additional kinetic energy term for one particle as

δEkin =
1

2m
∇(δS) · ∇(δS) =

1
2m

(
h̄
2
∇P
P

)2
. (8)

Thus, writing down a classical action integral for j = N particles in m-dimensional space,
including this new term for each of them, yields (with external potential V)

A =
∫

L dmx dt =
∫

P

[
∂S
∂t

+
N

∑
j=1

1
2mj

∇jS · ∇jS +
N

∑
j=1

1
2mj

(
h̄
2
∇jP

P

)2

+ V

]
dmx dt (9)

where the probability density P = P(x1, x2, . . . , xN , t).
With the definition of forward and osmotic velocities, respectively,

vj :=
pj

mj
=
∇jS
mj

and uj :=
δpj

mj
= − h̄

2mj

∇jP
P

, (10)

one can rewrite Equation (9) as

A =
∫

L dmx dt =
∫

P

[
∂S
∂t

+ V +
N

∑
j=1

mj

2
v2

j +
N

∑
j=1

mj

2
u2

j

]
dmx dt . (11)

This can be considered as the basis for our approach with two momenta, i.e., the forward
momentum mv and the osmotic momentum mu, respectively. At first glance, the Lagrangian in
Equation (11) looks completely classical, with two kinetic energy terms per particle instead of one.
However, due to the particular nature of the osmotic momentum as given in Equation (10), nonlocal
influences are introduced: even at long distances away from the particle location, where the particle’s

contribution to P is practically negligibly small, the expression of the form
∇jP

P may be large and
affects immediately the whole fluctuating environment. This is why the osmotic variant of the kinetic
energy makes all the difference to the usual classical mechanics, or, in other words, is the basis for
quantum mechanics.

Introducing now the Madelung transformation

ψ = R e
i
h̄ S (12)

where R =
√

P as in Equation (2), one has, with bars denoting averages,

∣∣∣∣∇jψ

ψ

∣∣∣∣2

:=
∫

dmx dt
∣∣∣∣∇jψ

ψ

∣∣∣∣2

=

(
1
2
∇jP

P

)2

+

(∇jS
h̄

)2

, (13)

and one can rewrite Equation (9) as

A =
∫

L dmx dt =
∫

dmx dt

[
|ψ|2

(
∂S
∂t

+ V
)
+

N

∑
j=1

h̄2

2mj
|∇jψ|2

]
. (14)
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Thus, with the identity |ψ|2 ∂S
∂t = − ih̄

2 (ψ
∗ψ̇− ψ̇∗ψ), one obtains the familiar Lagrange density

L = − ih̄
2
(ψ∗ψ̇− ψ̇∗ψ) +

N

∑
j=1

h̄2

2mj
∇jψ · ∇jψ

∗ + Vψ∗ψ , (15)

from which by the usual procedures one arrives at the N-particle Schrödinger equation

ih̄
∂ψ

∂t
=

(
−

N

∑
j=1

h̄2

2mj
∇2

j + V

)
ψ . (16)

Note also that from Equation (9) one obtains upon variation in P the modified Hamilton–Jacobi
equation familiar from the de Broglie–Bohm interpretation, i.e.,

∂S
∂t

+
N

∑
j=1

(∇jS)2

2mj
+ V(x1, x2, . . . , xN , t) + U(x1, x2, . . . , xN , t) = 0 (17)

where U is known as the “quantum potential”

U(x1, x2, . . . , xN , t) =
N

∑
j=1

h̄2

4mj

[
1
2

(∇jP
P

)2

−
∇2

j P

P

]
= −

N

∑
j=1

h̄2

2mj

∇2
j R

R
. (18)

Moreover, with the definitions of uj in Equation (10) one can rewrite U as

U =
N

∑
j=1

[
mju

2
j

2
− h̄

2
(∇j · uj)

]
. (19)

However, as was already pointed out in [13], with the aid of Equations (4) and (6), uj can also be
written as

uj =
1

2ωjmj
∇jQ , (20)

which thus explicitly shows its dependence on the spatial behavior of the heat flow δQ. Insertion of
Equation (20) into Equation (19) then provides the thermodynamic formulation of the quantum
potential as

U =
N

∑
j=1

h̄2

4mj

⎡⎣1
2

(
∇jQ
h̄ωj

)2

−
∇2

j Q

h̄ωj

⎤⎦ . (21)

As in our model particles and fields are dynamically interlocked, it would be highly misleading
to picture the quantum potential in a manner similar to the classical scenario of particle plus field,
where the latter can be switched on and off like an ordinary potential. Contrariwise, in our case the
particle velocities/momenta must be considered as emergent. One can illustrate this with the situation
in double-slit interference (Figure 1). Considering an incoming beam of, say, electrons with wave
number k impinging on a wall with two slits, two beams with wave numbers kA and kB, respectively,
are created, which one may denote as “pre-determined” quantities, resulting also in pre-determined
velocities vα = 1

m h̄kα, α = A or B.
However, if one considers that the electrons are not moving in empty space, but in an undulatory

environment created by the ubiquitous zero-point field “filling” the whole experimental setup.
One has to combine all the velocities/momenta at a given point in space and time in order to
compute the resulting, or emergent, velocity/momentum field vi = 1

m h̄κi, i = 1 or 2 (Figure 1),
where i is a bookkeeping index not necessarily related to the particle coming from a particular slit [19].
The relevant contributions other than the particle’s forward momentum mv originate from the osmotic
momentum mu. The latter is well known from Nelson’s stochastic theory [20], but its identical form has

212



Entropy 2018, 20, 458

been derived by one of us from an assumed sub-quantum nonequilibrium thermodynamics [13,21] as it
was described above. As shall be shown in the next section, our model also provides an understanding
and deeper-level explanation of the microphysical, causal processes involved, i.e., of the guiding
law [22] of the de Broglie–Bohm theory.

α = 1
m� α

i =
1
m�κi

κ1

κ2

κ1

κ2

0

δ

κ1

κ2

κ1

κ2

ϕ = π

A
ϕA

A

B

ϕB
B

ϕ = 0

x

z

Figure 1. Scheme of interference at a double-slit. Considering an incoming beam of electrons with
wave number k impinging on a wall with two slits, two beams with wave numbers kA and kB,
respectively, are created, which one may denote as “pre-determined” velocities vα = 1

m h̄kα, α=A or B.
Taking into account the influences of the osmotic momentum field mu, one has to combine all the
velocities/momenta at a given point in space and time in order to compute the resulting, or emergent,
velocity/momentum field vi =

1
m h̄κi, i = 1 or 2. This, then, provides the correct intensity distributions

and average trajectories (lower plane).

3. Derivation of the De Broglie–Bohm Guiding Equation for N Particles

Consider at first one particle in an n-slit system. In quantum mechanics, as well as in our emergent
quantum mechanics approach, one can write down a formula for the total intensity distribution P
which is very similar to the classical formula. For the general case of n slits, it holds with phase
differences ϕii′ = ϕi − ϕi′ between the slits i, i′ that

P =
n

∑
i=1

(
Pi +

n

∑
i′=i+1

2RiRi′ cos ϕii′

)
(22)

where the phase differences are defined over the whole domain of the experimental setup. As in our
model, the “particle” is actually a bouncer in a fluctuating wave-like environment, i.e., analogously to
the bouncers of the Couder experiments, one does have some (e.g., Gaussian) distribution, with its
center following the Ehrenfest trajectory in the free case, but one also has a diffusion to the right and to
the left of the mean path, which is only due to that stochastic bouncing. Thus, the total velocity field
of our bouncer in its fluctuating environment is given by the sum of the forward velocity v and the
respective osmotic velocities uL and uR to the left and the right. As for any direction α the osmotic
velocity uα = h̄

2m
∇P
P does not necessarily fall off with the distance, one has long effective tails of the

distributions which contribute to the nonlocal nature of the interference phenomena [23]. In sum,
one has three distinct velocity (or current) channels per slit in an n-slit system.
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We have previously shown [19,24] how one can derive the Bohmian guidance formula from our
two-momentum approach. Introducing classical wave amplitudes R(wi) and generalized velocity
field vectors wi, which represent either a forward velocity v or an osmotic velocity u in the direction
transversal to v, we calculate the phase-dependent amplitude contributions of the total system’s wave
field projected on one channel’s amplitude R(wi) at the point (x, t) in the following way. We define
a relational intensity P(wi) as the local wave intensity P(wi) in each channel (i.e., wi), recalling that there
are 3 velocity channels per slit: uL, uR, and v. The sum of all relational intensities, then, is the total
intensity, i.e., the total probability density. In an n-slit system, we thus obtain for the relational
intensities and the corresponding currents, respectively, i.e., for each channel component i,

P(wi) = R(wi)ŵi ·
3n

∑
i′=1

ŵi′R(wi′) (23)

J(wi) = wiP(wi), i = 1, . . . , 3n (24)

with unit vectors ŵi and
cos ϕii′ := ŵi · ŵi′ . (25)

Consequently, the total intensity and current of our field read as

Ptot =
3n

∑
i=1

P(wi) =

(
3n

∑
i=1

ŵiR(wi)

)2

(26)

Jtot =
3n

∑
i=1

J(wi) =
3n

∑
i=1

wiP(wi), (27)

leading to the emergent total velocity

vtot =
Jtot

Ptot
=

3n

∑
i=1

wiP(wi)

3n

∑
i=1

P(wi)

, (28)

which represents the probability flux lines.
In [16,19], we have shown with the example of n = 2, i.e., a double-slit system, that Equation (28)

can equivalently be written in the form

vtot =
R2

1v1 + R2
2v2 + R1R2 (v1 + v2) cos ϕ + R1R2 (u1 − u2) sin ϕ

R2
1 + R2

2 + 2R1R2 cos ϕ
. (29)

The trajectories or streamlines, respectively, are obtained according to ẋ = vtot in the usual way
by integration. As we have first shown in [16], by re-inserting the expressions for forward and osmotic
velocities, respectively, i.e.,

vi =
∇Si
m

, ui = −
h̄
m
∇Ri
Ri

, (30)

one immediately identifies Equation (29) with the Bohmian guidance formula. Naturally, employing
the Madelung transformation for each slit α (α = 1 or 2),

ψα = RαeiSα/h̄, (31)
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so Pα = R2
α = |ψα|2 = ψ∗αψα, with ϕ = (S1 − S2)/h̄. Recalling the usual trigonometric identities such

as cos ϕ = 1
2

(
eiϕ + e−iϕ)

, one can rewrite the total average current immediately in the usual quantum
mechanical form as

Jtot = Ptotvtot

= (ψ1 + ψ2)
∗(ψ1 + ψ2)

1
2

[
1
m

(
−ih̄

∇(ψ1 + ψ2)

(ψ1 + ψ2)

)
+

1
m

(
ih̄
∇(ψ1 + ψ2)

∗

(ψ1 + ψ2)∗

)]
= − ih̄

2m
[Ψ∗∇Ψ−Ψ∇Ψ∗] =

1
m

Re {Ψ∗(−ih̄∇)Ψ}

(32)

where Ptot = |ψ1 + ψ2|2 =: |Ψ|2.
Equation (28) has been derived for one particle in an n-slit system. However, for the spinless

particles obeying the Schrödinger equation, it is easy to extend this derivation to the many-particle
case (As we do not yet have a relativistic model involving spin, our results for the many-particle case
cannot account for the difference in particle statistics, i.e., for fermions or bosons. This will be a task
for future work). Due to the purely additive terms in the expressions for the total current and total
probability density, respectively, also for N particles, Equations (26) and (27) become

Ptot,N =
N

∑
j=1

[
3n

∑
i=1

P(wi)

]
j

=
N

∑
j=1

⎡⎣(
3n

∑
i=1

ŵiR(wi)

)2
⎤⎦

j

(33)

Jtot,N =
N

∑
j=1

[
3n

∑
i=1

J(wi)

]
j

=
N

∑
j=1

[
3n

∑
i=1

wiP(wi)

]
j

. (34)

Analogously, Equation (28) becomes

vtot,N =
Jtot

Ptot
=

N

∑
j=1

[
3n

∑
i=1

wiP(wi)

]
j

N

∑
j=1

[
3n

∑
i=1

P(wi)

]
j

, (35)

where wi is dependent on the velocities (30) with different Si and Ri for every j. In quantum mechanical
terms the only difference now is that the currents’ nabla operators have to be applied at all of the
locations of the respective N particles, thus providing

Jtot (N) =
N

∑
j=1

1
mj

Re
{

Ψ∗ (t) (−ih̄∇j)Ψ (t)
}

(36)

where Ψ (t) now is the total N-particle wave function, whereas the flux lines are given by

vj (t) =
h̄

mj
Im
∇jΨ (t)

Ψ (t)
∀j = 1, ..., N. (37)

In sum, with our introduction of a relational intensity P(wi) for channels wi, which include
sub-quantum velocity fields, we obtain the guidance formula also for N-particle systems in real
3-dimensional space. The central ingredient for this to be possible is to consider the emergence of the
velocity field from the interplay of the totality of all of the system’s velocity channels.

In Figures 2 and 3, trajectories (flux lines) for two Gaussian slits are shown (from [16]).
These trajectories are in full accordance with those obtained from the Bohmian approach, as can
be seen by comparison with [25–27], for example.
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Figure 2. Classical computer simulation of the interference pattern: intensity distribution with
increasing intensity from white through yellow and orange, with trajectories (red) for two Gaussian
slits, and with large dispersion (evolution from bottom to top; vx,1 = vx,2 = 0). From [16].

Figure 3. Classical computer simulation of the interference pattern: intensity distribution with
increasing intensity from white through yellow and orange, with trajectories (red) for two Gaussian
slits, and with small dispersion (evolution from bottom to top; vx,1 = −vx,2). From [16].
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4. Vacuum Landscaping: Cause of Nonlocal Influences without Signaling

In the foregoing sections, we pointed out how nonlocality appears in our model. Particularly in
discussing Equations (9)–(11), it was shown that the form of the osmotic momentum

mu = − h̄
2
∇P
P

(38)

may be responsible for relevant influences. Moreover, if one assumes a particle at some position x in
space, and with a probability distribution P, the latter is a distribution around x with long tails across
the whole experimental setup, which may be very thin but still non-zero. Then, even at locations y

very remote from x, and although the probability distribution P pertaining to the far-away particle
might be minuscule, it still may become effective immediately through the zero-point field.

The physical reason for bringing in nonlocality is the assumed resonant coupling of the particle(s)
with fluctuations of the zero-point vacuum filling the whole experimental setup. Take, for example,
a typical “Gaussian slit.” We effectively describe P by a Gaussian with long non-zero tails throughout
the whole apparatus. As we have seen, in order to calculate on-screen distributions (i.e., total intensities)
of particles that went through an n-slit device one at a time, one only needs a two-momentum
description and a calculation that uses the totality of all relational intensities involving the relative
phases determined across the whole apparatus.

In general, we propose a resonant interaction of the bouncing “particle” with a relevant environment
(In a similar vein, Bohm [28] speaks of a “relatively independent subtotality” of the universe,
to account for the possible neglect of the “rest of the universe” in practical calculations). For idealized,
non-interacting particles, this relevant environment would be the whole universe and thus the idealized
prototype of the “cosmological solution” referred to in the introduction.

For any particle in any experimental setup, however, the relevant environment is defined by the
boundary conditions of the apparatus. Whereas the idealized one-particle scenario would constitute
an indefinite order of vibrations with respect to the particle oscillations potentially locking in, the very
building up of an experiment may represent a dynamical transition from this indefinite order to the
establishment of a definite order. The latter is characterized by the emergence of standing waves
between the boundaries of the apparatus (e.g., source and detector), to which the particle oscillations
lock in. Moreover, if an experimenter decides to change the boundary conditions (e.g., by altering the
probability landscape between source and detector), such a “switching” would establish yet another
definite order. The introduction or change of boundary conditions, which immediately affects the
probability landscape, and the forward and the osmotic fields, we term “vacuum landscaping.”

In other words, the change of boundary conditions of an experimental arrangement constitutes
the immediate transition from one cosmological solution in the relevant environment (i.e., within the
old boundary conditions) to another (i.e., the new ones). The “surfing” bouncer/particle simply locally
jumps from the old to the new standing wave solutions, respectively. This is a process that happens
locally for the particle, practically instantaneously (i.e., within a time span ∝ 1/ω), and nonlocally for
the standing waves, due to the very definition of the cosmological solutions. The vacuum landscape is
thus nonlocally changed without the propagation of “signals” in a communication theoretical sense
(It is exclusively the latter that must be prohibited in order to avoid causal loops leading to paradoxes.
See Walleczek and Grössing [29,30] for an extensive clarification of this issue).

We have, for example, discussed in some detail what happens in a double-slit experiment if
one starts with one slit only, and when the particle might pass it, one opens the second slit [23,31].
In accordance with Tollaksen et al. [32], we found that the opening of the second slit (i.e., a change in
boundary conditions) results in an uncontrollable shift in momentum on the particle passing the first
slit. Due to its uncontrollability (or, the “complete uncertainty” in [32]), this momentum shift cannot
be used for signaling. Still, it is necessary to a posteriori understand the final distributions on the screen,
which would be incorrect without acknowledging said momentum kick.
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Similarly, Aspect-type experiments of two-particle interferometry can be understood as alterations
of vacuum landscapes. Consider, for example, the case in two-particle interferometry, where Alice and
Bob each are equipped with an interfering device and receive one of the counter-propagating particles
from their common source. If Alice during the time-of-flight of the particles changes her device by
making with suitable mirrors one of the interferometer arms longer than the other, this constitutes
an immediate switching from one vacuum landscape to another, with the standing waves of the
zero-point field now reflecting the new experimental arrangement. In other words, the P-field has
been changed nonlocally throughout the experimental setup and therefore all relational intensities

P(wi) = R(wi)ŵi ·∑
i′

ŵi′R(wi′) (39)

involved. The latter represent the relative phase shifts δϕi,i′ = δ arccos ŵi · ŵi′ occurring due to the
switching, and this change is becoming manifest also in the total probability density

Ptot = ∑
i

P(wi) =

(
∑

i
ŵiR(wi)

)2

, (40)

with i running through all channels of both Alice and Bob. The quantum mechanical nonlocal
correlations thus appear without any propagation (e.g., from Alice to Bob), superluminal or other.
As implied by Gisin’s group [33], this violates a “principle of continuity” of propagating influences
from A to B, but its non-signaling character is still in accordance with relativity and the nonlocal
correlations of quantum mechanics. Practically instantaneous vacuum landscaping by Alice and/or
Bob thus ensures the full agreement with the quantum mechanical predictions without the need to
invoke (superluminal or other) signaling. Our model is, therefore, an example of nonlocal influencing
without signaling, which was recently shown to provide a viable option for realistic modeling of
nonlocal correlations [29,30].

5. Conclusions and Outlook

With our two-momentum approach to an emergent quantum mechanics we have shown that
one can in principle base the foundations of quantum mechanics on a deeper level that does not need
wavefunctions. Still, one can derive from this new starting point, which is largely rooted in classical
nonequilibrium thermodynamics, the usual nonrelativistic quantum mechanical formalism involving
wavefunctions, like the Schrödinger equation or the de Broglie–Bohm guiding law. With regard to the
latter, the big advantage of our approach is given by the fact that we avoid the troublesome influence
from configuration space on particles in real space, which Bohm himself has called “indigestible.”
Instead, in our model, the guiding equation is completely understandable in real coordinate space, and
actually a rather typical consequence of the fact that the total current is the sum of all particular currents,
and the total intensity, or probability density, respectively, is the sum of all relational intensities. As we
are working with Schrödinger (i.e., spinless) particles, accounting for differences in particle statistics is
still an open problem.

As shown, we can replicate quantum mechanical features exactly by subjecting classical particle
trajectories to diffusive processes caused by the presence of the zero point field, with the important
property that the probability densities involved extend, however feebly, over the whole setup
of an experiment. The model employs a two-momentum approach to the particle propagation,
i.e., forward and osmotic momenta. The form of the latter has been derived without any recurrence to
other approaches such as Nelson’s.

The one thing that is to be digested from our model is the fact that the relational intensities
are nonlocally defined, over the whole experimental arrangement (i.e., the “relevant environment”).
This lies at the bottom of our deeper-level ansatz, and it is the only difference to an otherwise completely
classical approach. We believe that this price is not too high, for we obtain a logical, realistic picture of
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quantum processes which is rather simple to arrive at. Nevertheless, in order to accept it, one needs to
radically reconsider what an “object” is. We believe that it is very much in the spirit of David Bohm’s
thinking to direct one’s attention away from a particle-centered view and consider an alternative option:
that the universe is to be taken as a totality, which, only under very specific and delicate experimental
arrangements, can be broken down to a laboratory-sized relevant environment, even if that laboratory
might stretch along interplanetary distances. In our approach, the setting up of an experimental
arrangement limits and shapes the forward and osmotic contributions and is described as vacuum
landscaping. Accordingly, any change of the boundary conditions can be the cause of nonlocal
influences throughout the whole setup, thus explaining, e.g., Aspect-type experiments. We argue that
these influences can in no way be used for signaling purposes in the communication theoretic sense,
and are therefore fully compatible with special relativity.

Accepting that the vacuum fluctuations throughout the universe, or at least within such
a laboratory, are a defining part of a quantum, amounts to seeing any object like an “elementary
particle” as nonlocally extended and, eventually, as exerting nonlocal influences on other particles.
For anyone who can digest this, quantum mechanics is no more mysterious than classical mechanics
or any other branch of physics.
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Abstract: Recently, the properties of bouncing oil droplets, also known as “walkers,” have attracted
much attention because they are thought to offer a gateway to a better understanding of quantum
behavior. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that
their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to
describe walker phenomenology in terms of de Broglie–Bohm dynamics and of a stochastic version
thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory,
à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem
for the relaxation to quantum equilibrium under Nelson-type dynamics. We then compare the onset
of equilibrium in the stochastic and the de Broglie–Bohm approaches and we propose some simple
experiments by which one can test the applicability of our theory to the context of bouncing oil
droplets. Finally, we compare our theory to actual observations of walker behavior in a 2D harmonic
potential well.

Keywords: bouncing oil droplets; stochastic quantum dynamics; de Broglie–Bohm theory; quantum
non-equilibrium; H-theorem; ergodicity

1. Introduction

“Walkers” are realized as oil droplets generated at the surface of a vibrating oil bath. As shown
by Couder and Fort [1–3], the vibration of the bath prevents the coalescence of the droplets with the
surface, allowing them to remain stable for very long times. Moreover, the trajectories of the walkers
are guided by an external wave [4,5] that they themselves generate at the surface of the oil bath.
From this point of view, walkers are reminiscent of wave-particle duality [2,6], and they seem to offer
deep analogies with de Broglie–Bohm particles [7]. Up until now, different aspects of walker dynamics
have been studied in a purely classical framework, typically in a hydrodynamical approach [3,5].
For instance, certain models address their deformations due to their bouncing off the surface of the
bath, in function of the density and viscosity of the oil and other parameters [5]. Other studies describe
the dynamics of the surface waves that the walkers generate during the bouncing process, and how
those waves in turn guide their trajectories. In these models, this complex behavior is characterized by
a memory time which relates the dynamics of the walker bouncing at time t to its successive bouncing
positions in the past [8,9]. The presence of such a memory effect establishes a first difference with
quantum mechanics. Normally, in quantum mechanics, it is assumed that all results of any possible
future measurements to be performed on a quantum system are encapsulated in its present quantum
state [10]: its wave function at the present time t.
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Droplets also transcend the most common interpretations of quantum theory which prohibit
any description of the system in terms of instantaneous, classical-like trajectories. Droplets and
their trajectories are visible with the naked eye at any time and standard interpretations of quantum
mechanics do not apply. This is why we believe that it is necessary and worthwhile to adapt realist
(causal) formalisms such as de Broglie–Bohm (dBB) dynamics [11,12] or a stochastic version thereof
à la Nelson [13] to explore the analogy with quantum systems. This is the main motivation of the
present paper.

Another difference between walker trajectories and quantum trajectories is that the quantum
description is intrinsically probabilistic and non-classical, while there exist regimes in which the
trajectory of the walkers is deterministic and classical (for example, when they bounce exactly in phase
with the bath, they can be shown to follow straight lines at constant velocity [14–17]). However, there
also exist regimes in which a Brownian motion is superimposed on their flow lines (e.g., above the
Faraday threshold), and other regimes where the trajectories appear to be chaotic [5]. In fact, in several
regimes, droplets appear to exhibit ergodic behavior. In practice, ergodicity has been established
on the basis of the following observations: if we prepare a walker at the surface of the liquid bath
(a corral, for instance), it will progressively explore each part of the surface, following an apparently
random motion [4]. If one then visualizes the statistics of the sojourn time of the walker in each of
these regions, a striking pattern emerges, bearing more than a simple resemblance to an interference
pattern [4,7]. It is this, again remarkable, manifestation of wave-particle duality that first attracted
our attention and which lies at the origin of this paper. The onset of quantum equilibrium in the
framework of dBB dynamics and in stochastic versions thereof is an important foundational issue
in itself, which has motivated numerous studies (see, e.g., [13,18–24] as well as [25] and references
therein). Several authors in the past have indeed tried to explain how the Born rule emerges from
individual trajectories, which is a highly non-trivial problem. In the case of dBB dynamics, it is easy to
show that in simple situations the relaxation to the Born statistical distribution does not occur at all, but
recent studies [26–31] show that in sufficiently complex situations (several modes of different energies
for instance) the system might exhibit mixing, which explains the onset of quantum equilibrium in
such cases. As we shall show in the present paper, in the case of Nelson-type dynamics, the quantum
Brownian motion imposed in such a model accelerates the relaxation to Born’s distribution, and in fact
ensures that relaxation to the Born rule will almost always occur (as we shall also show). In our view,
for the above reasons, de Broglie–Bohm and Nelson-type dynamics are good candidates for explaining
how wavelike statistics emerge after averaging a set of apparently chaotic and/or stochastic trajectories.

Briefly summarized, our main goal is to explain the emergence of aforementioned interference
patterns in the framework of the dynamical models of de Broglie–Bohm and of a stochastic version
thereof which is based on the models of Bohm-Vigier [18] and Bohm-Hiley [19] but which is formally
close to Nelson [13]. Both models are introduced in Section 2. Here, it is worth noting that thus far there
is no experimental evidence that droplets indeed follow de Broglie–Bohm and/or Nelson trajectories.
Our approach therefore differs radically from previous studies on droplets, in the sense that we impose
a quantum dynamics by brute force, whereas, until now, the attempt to illustrate how chaos may
underlie quantum stochasticity has been a pillar of the research on walkers/droplets. In fact, Nelson’s
original goal, in proposing his dynamics, was to derive an effective wave equation from the properties
of an underlying Brownian motion, as in classical statistical mechanics where a diffusion equation
is derived from microscopic properties of the atoms. There actually exists an impressive number of
attempts in that direction, as, e.g., stochastic electro-dynamics [5,32,33]. However, there exists (as
far as we know) no way to derive an effective Schrödinger equation from hydrodynamical models
of droplets.

By choosing exactly the opposite approach, i.e., by imposing quantum-like dynamics on the
droplets, we pursue three goals. The first one is to describe the onset of quantum equilibrium (and
ergodicity). A second objective is to formulate precise quantitative predictions regarding this relaxation
process, which can possibly be validated by future experiments. A third objective is to show, for the
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first time, that certain dBB trajectories present a deep structural resemblance with certain trajectories
that have been reported in the literature for droplets trapped in a harmonic potential.

A short discussion of the onset of equilibrium in de Broglie–Bohm dynamics and the importance
of coarse-graining is given in Section 3. In the case of our stochastic, Nelson-type dynamics, we derive
in Section 4 a new H-theorem showing the relaxation to quantum equilibrium, which does not rely on
coarse-graining and is valid at all scales. We pay particular attention to the ergodicity of trajectories
in the case of our stochastic dynamics (which mix properties of the de Broglie–Bohm dynamics with
Brownian motion). We apply these ideas to discuss ergodicity in the case of the stochastic treatment
of a particle trapped in a harmonic potential (Section 5) and to describe the dynamics of a droplet
trapped in a harmonic potential (Section 6). In this latter section (in Section 6.1), we also propose some
simple experiments by which one can test the applicability of a Nelson-type dynamics to the context
of bouncing oil droplets, and we briefly discuss the problems caused by the presence of zeros in the
interference pattern that is encoded in the statistics of the trajectories. In Section 7, we study a situation
during which the attractor of the probability distribution is no longer a static eigenstate of the (static)
Hamiltonian, and we compare the onset of equilibrium in the dBB and stochastic formalisms in that
special framework. In Section 8, we tackle the dynamics of droplets in a 2D harmonic potential through
a simple model where the pilot wave is treated as a dynamical object. This constitutes a preliminary
attempt, ultimately aimed at establishing a dynamics that would combine stochastic and/or dBB
dynamics with a feedback of the trajectory on the wave, which is a fundamental feature of droplet
phenomenology that has never been addressed in the framework of dBB or Nelson dynamics. The last
section is devoted to conclusions and open questions. A short overview of the numerical methods
used in the paper is given in the Appendix A.

2. dBB and Nelson Dynamics

2.1. The dBB Theory

In the following quick overview of the dBB theory we shall limit ourselves to the case of a
single particle. In the dBB theory, particle positions exist at all times and they are merely revealed by
position measurements, instead of “originating” with the measurement as the standard interpretation
of quantum mechanics would have it. The dynamics is described by a wave function which obeys the
Schrödinger equation:

ih̄
∂Ψ(x, t)

∂t
= − h̄2

2m
ΔΨ(x, t) + V(x, t)Ψ(x, t) (1)

where V(x, t) is an external potential and m the mass of the particle, as well as by a position x. In order
to reproduce the predictions of standard quantum mechanics, one must have that the positions are
distributed according to

P(x, t) = |Ψ(x, t)|2 (2)

where P(x, t) is the distribution of particle positions over an ensemble of trajectories. An ensemble
satisfying condition (2) is said to be in quantum equilibrium.

It is also commonly assumed that (2) is satisfied at some initial time. Therefore, in order to be at
(quantum) equilibrium for all t, the condition to enforce is

∂P(x, t)
∂t

=
∂|Ψ(x, t)|2

∂t
. (3)

As is well known, the probability density |Ψ(x, t)|2 satisfies the continuity equation

∂|Ψ(x, t)|2
∂t

+∇ · j(x, t) = 0 (4)
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where
j =

h̄
m

Im (Ψ∗∇Ψ ) , (5)

is the (probability) current describing the flow of the probability due to (1).
The probability density P , on the other hand, will satisfy a continuity equation

∂P
∂t

+∇ · (P v) = 0 (6)

where v is the velocity field for the particle. Therefore, Equation (3) will be satisfied if

v(x, t) =
j(x, t)
|Ψ(x, t)|2 . (7)

The expression (7) for the velocity field is of course not the only possible one: any solution of
the form

v′(x, t) = v(x, t) +
∇× f (x, t)
|Ψ(x, t)|2 , (8)

where f is a scalar function, will also give rise to Equation (3) (see [34] for more details).
Secondly, if one expresses the wave function in terms of its phase S(x, t) and modulus

R(x, t) =
√
|Ψ(x, t)|2 ,

Ψ(x, t) = R(x, t)ei S(x,t)/h̄, (9)

one finds that

j =
|Ψ(x, t)|2

m
∇S (10)

and that the velocity of the particle at time t is given by

dx(t)
dt

= v(x, t) =
1
m
∇S(x, t)

∣∣∣∣
x=x(t)

. (11)

Integrating the system given by Equation (11), we recover the dBB trajectory. From the above, it
should be clear that the dBB theory is deterministic. Any stochastic element only comes from our lack
of knowledge of the initial positions.

In the context of bouncing droplets, we shall view the external wave generated by the droplet
as being in one-to-one correspondence with the “pilot wave” Ψ, which guides the position of the
dBB particle.

2.2. A Simple Realization of de Broglie’s Quantum Thermostat—Nelson Dynamics

As mentioned in the introduction, the trajectories of walkers are often characterized by a
non-negligible stochastic (Brownian) component which sets them apart from the smooth dBB
trajectories. From this point of view, it seems worthwhile to try to model walkers dynamics in
terms of stochastic generalisations of dBB dynamics.

de Broglie himself, in fact, considered such generalizations of the deterministic dBB dynamics
(which he called the “quantum thermostat hypothesis”) to be highly welcome because they might
provide a physically sound picture of the hidden dynamics of static quantum states. For instance, if
we consider the position of an electron prepared in the ground state of a hydrogen atom, the dBB
dynamics predicts that its position will remain frozen at the same place throughout time, which is
counterintuitive to say the least. Adding a stochastic component to its velocity could, in principle,
explain why averaging the position of the electron over time is characterized by an exponentially
decreasing probability density function, in agreement with the Born rule (provided, of course, that
ergodicity is present in the problem in exactly the right proportion). A first proposal in this sense was
formulated by Bohm and Vigier in 1954 [18] which, later on, was made more precise by Bohm and
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Hiley [19], but stochastic derivations of Schrödinger’s equation by Nelson [13] (and others [32,33] in
the framework of stochastic electrodynamics) can also be considered to provide models of the quantum
thermostat. Quoting de Broglie: “...Finally, the particle’s motion is the combination of a regular motion
defined by the guidance formula, with a random motion of Brownian character... any particle, even isolated,
has to be imagined as in continuous “energetic contact” with a hidden medium, which constitutes a concealed
thermostat. This hypothesis was brought forward some fifteen years ago by Bohm and Vigier [18], who named
this invisible thermostat the “subquantum medium”... If a hidden sub-quantum medium is assumed, knowledge
of its nature would seem desirable...” (In [35] Ch.XI: On the necessary introduction of a random element
in the double solution theory. The hidden thermostat and the Brownian motion of the particle in
its wave.)

In this paper, we shall consider a particular model of the quantum thermostat in which, as in the
Bohm–Vigier model, a single spinless particle suspended in a Madelung fluid moves with the local
velocity of the resulting field, given by Equation (11), and is subjected to fluctuations coming from
the latter (cf. Figure 1). However, following Nelson, we shall model these fluctuations by means of a
particular stochastic process. To be precise: our model is formally the same as Nelson’s in that it relies
on the same stochastic process. However, in spirit, it is closer to the Bohm–Hiley model [19] in that
we do not assume to be at quantum equilibrium (an assumption which is fundamental to Nelson’s
theory, as was already pointed out by Bohm and Hiley [19]; see also [20] for a detailed presentation
and a comparison of both approaches).

Figure 1. A particle suspended in a Madelung fluid and subject to local fluctuations.

This stochastic process is defined on a probabilistic space Ω, characterized by a probability
distribution P(x, t) and obeying an Ito stochastic differential equation of the general form:

dx =

[
1
m
∇S + γ

]∣∣∣∣
x=x(t)

dt +
√

α dW(t) (12)

where α is the (constant) diffusion coefficient that characterizes the strength of the random part, and
dW(t) is a Wiener process in three dimensions. The function γ(x, t) in (12) is a systematic drift, the
so-called osmotic velocity, which we shall fix in the following way.

The conservation equation of the probability distribution (which we denote by P, in order to
stress the difference with the probability in the dBB dynamics which is denoted by P), can be written
as the Fokker–Planck equation:

∂P
∂t

= −∇ ·
(

P
m
∇S + γ P

)
+

α

2
ΔP. (13)
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If we now require that the quantum equilibrium P(q, t) = |Ψ(q, t)|2 be a solution of this
Fokker–Planck equation, we obtain from Equations (4), (10), and (13) that

∇ ·
(

γ |Ψ|2 − α

2
∇|Ψ|2

)
= 0, (14)

which is a constraint on the osmotic velocity. The simplest solution of this constraint is [36]

γ(x, t) =
α

2
∇|Ψ|2
|Ψ|2 . (15)

In the rest of the paper, we choose the osmotic drift velocity to be Equation (15), with α an a priori
free parameter, Nelson’s choice for α (α = h̄/m) being irrelevant if we apply this formalism to droplets.

In summary, our Nelson dynamics is fully defined by the following Ito equation

dx(t) =
[

1
m
∇S +

α

2
∇|Ψ|2
|Ψ|2

]∣∣∣∣
x=x(t)

dt +
√

αdW(t) (16)

where dWi(t) represents a Wiener process with

< dWi(t) > = 0 and < dWi(t)dWj(t′) > =
1
2

δij δ( t− t′ ), (17)

and by the Fokker–Planck equation for the associated probability distribution P(x, t)

∂P
∂t

=
α

2
ΔP−∇ ·

(
P
m
∇S +

α

2
P
|Ψ|2 ∇|Ψ|

2
)

, (18)

where Ψ(x, t) satisfies the Schrodinger equation:

ih̄
∂Ψ
∂t

= − h̄2

2m
ΔΨ + VΨ. (19)

At quantum equilibrium, i.e., when P(x, t) = |Ψ(x, t)|2, the diffusion velocity is balanced by the
osmotic term and the Bohm velocity is recovered, on average.

We shall now discuss the details of the relaxation towards quantum equilibrium, in the dBB and
stochastic formalisms.

3. Relaxation to Quantum Equilibrium in the de Broglie–Bohm Theory

In our presentation of the dBB theory for a single particle, in Section 2.1, we assumed that the
particle positions are initially distributed according to Born’s law

P(x, ti) = |Ψ(x, ti)|2 (20)

over an ensemble. The dynamics then ensure that the same relation will hold for any later time. This is
the assumption de Broglie and Bohm made in their original papers [11,12,37]. Although Bohm tried,
already in the 1950s (first on his own—see, e.g., [11] (Section 9)—and later with Vigier [18]), to relax this
assumption by modifying the dynamics, to many authors working today on the dBB theory it is still
an assumption which has to be made (the final objective of de Broglie, Bohm, Vigier, and Nelson–and
many other contributors to various realistic hidden variable interpretations in which quantum systems
are assumed to be localized in space at any time–was to rationalize wave-like statistics in terms of
individual trajectories; the same problem occurs in droplets phenomenology and, according to us,
admits no fully satisfying solution yet).

According to Valentini [21,38,39], however, there is no need to assume that the particle positions
are initially distributed according to Born’s law or to modify the dynamics. His claim is that an
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ensemble in which Born’s law is not satisfied (so-called quantum non-equilibrium) will evolve naturally
towards quantum equilibrium, provided that the wave function leads to sufficiently complex dynamics.
This relaxation process has to take place on a coarse-grained level and can only occur if the initial
distributions do not display any fine-grained micro structure.

Let us first explain the need for coarse-graining. Let us introduce the function f = P/|Ψ|2, as
in [26]. An important implication of (6) is that the function f is conserved along the dBB trajectories:

d f (x, t)
dt

≡ ∂ f (x, t)
∂t

+ ẋ ·∇ f (x, t) = 0. (21)

Hence we have that

P(x, t) =
P(xi, ti)

|Ψ(xi, ti)|2
|Ψ(x, t)|2 (22)

where xi is the initial position of the particle which leads to x, when evolving from ti to t according to
the dBB dynamics. If one assumes that P(xi, ti)/|Ψ(xi, ti)|2 
= 1, relaxation to quantum equilibrium
is clearly impossible, at least at the microscopic level. However, as argued by Valentini [21],
relaxation is possible at the coarse-grained level, provided the initial distribution does not display any
fine-grained microstructure.

The operational definition of the coarse-graining is as follows. We divide the domain of interest
A ⊂ Ω into small cubes of equal edge length ε (we call them coarse-graining cells, or CG cells for
short). These CG cells do not overlap and their union is equal to A. The coarse-grained densities,
which we denote by P(x, t) and |Ψ(x, t)|2, are then defined as

P(x, t) =
1
ε3

∫
CG cell!x

d3xP(x, t) (23)

|Ψ(x, t)|2 =
1
ε3

∫
CG cell!x

d3x|Ψ(x, t)|2 (24)

where the domain of integration is the CG cell containing x.
We can now discuss the second assumption: the lack of a fine-grained microstructure in the initial

distribution. Let us assume we have a non-equilibrium distribution P(x, ti) which relaxes to quantum
equilibrium at the coarse-grained level, under the dynamics generated by the wave function Ψ(x, t).
As the dBB theory is time-reversal invariant, in the time-reversed situation, under the dynamics
generated by Ψ∗(x,−t), we would have a distribution that moves away from quantum equilibrium.
Thus, it would seem that time-reversal invariance contradicts the possibility of relaxation to quantum
equilibrium. This conclusion is unwarranted, however: as the initial distribution P(x, ti) relaxes to
quantum equilibrium, it retains information on the original values of f (which are constant in time) and
thereby acquires a fine-grained microstructure, which means that at the final time t f , P(x, t f ) will differ
significantly from P(x, t f ). Therefore, in the time-reversed situation, the initial distribution would
exhibit a fine-grained microstructure, which is prohibited under our assumption, thereby breaking the
time-reversal invariance.

In order to quantify the difference between the distribution P(x, t) and the quantum equilibrium
condition |Ψ(x, t)|2 at the coarse-grained level, Valentini [21,38,39] introduced the entropy-like function

H(t) =
∫

Ω
d3x P ln

(
P/|Ψ|2

)
(25)

where P and |Ψ|2 as in Equations (23) and (24), for which he has shown the (quantum) H-theorem,

H(t) ≤ H(ti), (26)
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under the assumption of no fine-grained microstructure. It should be stressed, however, that this
is not necessarily a monotonic decay and therefore does not prove that quantum equilibrium will
always be reached. It merely indicates a tendency towards relaxation. The strongest support for
the idea of relaxation to quantum equilibrium comes from numerical simulations of the evolution of
non-equilibrium distributions for various quantum systems [26–31] (see [25] and references therein
for a review). The first numerical simulations were performed by Valentini and Westman [26] who
showed, in the case of a 2D box, that relaxation quickly takes place for a wave function which is a
superposition of the first 16 modes of energy (the superposition being equally weighted). It was also
hinted that the nodes of the wave function, with their associated vorticity, play a crucial role in the
relaxation process, as purveyors of chaos (or mixing) in the dynamics. This later claim was properly
understood in [40]. The dependence of the relaxation timescale on the coarse-graining length ε and on
the number of energy modes was studied in [28]. In [31], it was shown that quantum systems with a
low number of modes are likely to never fully relax, in which case H reaches a non-zero residue value.
However, such a scenario becomes unlikely as the number of modes increases.

According to the quantum non-equilibrium hypothesis, standard quantum mechanics is only one
facet of the pilot-wave theory, that of quantum equilibrium, leaving the possibility for new physics:
that of quantum non-equilibrium. One should assume of course that during our time we have only
had (or can only have) access to systems for which quantum equilibrium has already been reached.
But that does not mean that quantum non-equilibrium never existed in the early universe (which
could be inferred from the observation of the remnants of the early fractions of seconds of the universe,
just after the Big Bang [41]), or that some, yet undetetected, exotic quantum systems cannot still be in
quantum non-equilibrium today [42]. This is why droplets are appealing, because if their dynamics do
present analogies with dBB dynamics, their study will allow us to observe relaxation to (quantum)
equilibrium “in real time” in the lab with the naked eye, which is not possible with quantum systems
for which we have no direct access to individual trajectories.

4. An H-Theorem for Nelson Dynamics

Let us start by introducing an analog of Valentini’s entropy, Equation (25), for the probability
distribution P(x, t) associated with our Nelson dynamics, as defined by Equations (16–19):

HV(t) =
∫

Ω
d3x P ln

(
P
|Ψ|2

)
, (27)

which is a special instance of a relative entropy known as the Kullback–Leibler divergence [43].
We also define a second non-negative functional

L f (t) =
∫

Ω
d3x f (P− |Ψ|2) (28)

where

f (x, t) =
P(x, t)
|Ψ(x, t)|2 . (29)

Note that we always impose the boundary conditions |Ψ|2
∣∣
∂Ω = P

∣∣
∂Ω = 0 and f

∣∣
∂Ω = 1 so as to

avoid divergence of these integrals on the boundary of Ω.
It should be noted that the entropy of Equation (27) or the functional of Equation (28) we shall

use to quantify the relaxation to quantum equilibrium are very different from the entropies usually
considered in the context of classical H-theorems (like e.g., the Boltzmann entropy). One should bear
in mind, however, that quantum equilibrium is radically different from classical equilibrium [44] and
has no connection whatsoever with relaxation to quantum thermal equilibrium, for the simple reason
that the Born distribution of positions reached by an ensemble of trajectories à la Nelson or dBB is not
a thermal distribution.
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To understand why the functionals in Equations (27) and (28) are non-negative and why they are
zero if and only if (quantum) equilibrium is reached (that is to say when f = 1 everywhere in space), it
is important to note that the integrands of HV and L f satisfy the inequalities

(P− |Ψ|2) ≤ P ln
P
|Ψ|2 ≤

P
|Ψ|2 (P− |Ψ|2), (30)

for which any of the possible equalities only hold when P = |Ψ|2. (This is immediate from the trivial
inequality: ∀x > 0, (1− 1/x) ≤ ln x ≤ x− 1.)

Now, since both P(x, t) and |Ψ(x, t)|2 are probability distributions, i.e., since we have
∫

Ω Pdx =∫
Ω |Ψ|2dx = 1, it follows from (30) that whenever HV(t) and L f (t) are well-defined, they satisfy the

following inequalities:
0 ≤ HV(t) ≤ L f (t). (31)

Moreover, for the same reason, L f can be re-expressed as
∫

Ω d3x
[

f (P− |Ψ|2)− (P− |Ψ|2)
]
, the

integrand in which is non-negative due to Equation (30). Therefore, L f can only be zero if its integrand
is zero, i.e., if P = |Ψ|2 (if P, |Ψ|2, and f are sufficiently smooth, which is something we shall always
assume unless otherwise stated). Similarly [21], one also has that HV can only be zero when P = |Ψ|2
everywhere in Ω.

Let us now prove the relaxation to quantum equilibrium. Substituting P = f |Ψ|2 in the
Fokker–Planck Equation (18), and using Equations (4) and (10), it is easily verified that

|Ψ|2 ∂ f
∂t

=
α

2
∇ · (|Ψ|2∇ f )− |Ψ|

2

m
(∇ f )(∇S). (32)

Rewriting L f as

L f =
∫

Ω
d3x f ( f − 1)|Ψ|2, (33)

its behavior in time can be calculated using Equations (32), (4), and (10):

dL f

dt
=

∫
Ω

d3x
[
−∇ ·

( |Ψ|2
m

( f 2 − f )∇S
)
+

α

2
(2 f − 1)∇ · (|Ψ|2∇ f )

]
(34)

=
α

2

∫
Ω

d3x
[
∇ ·

[
(2 f − 1)|Ψ|2∇ f

]
− 2

(
∇ f

)2|Ψ|2
]

(35)

= − α
∫

Ω
d3x

(
∇ f

)2 |Ψ|2, (36)

which is of course strictly negative, for all t, as long as ∇ f and |Ψ|2 are not identically zero. Hence, if
|Ψ|2 is not zero throughout Ω, L f will decrease monotonically for as long as f is not (identically) equal
to 1 on Ω, and therefore necessarily converges to 0, a value it can only attain when f ≡ 1 or, equivalently,
when P ≡ |Ψ|2. We have thus established a strong H-theorem showing that, in the case of Nelson
dynamics, any probability distribution P necessarily converges to |Ψ|2, if the latter does not become
zero identically. Note that this excludes the case of a free particle for which limt→+∞ |Ψ(x, t)|2 = 0,

for all x, which means that
dL f
dt tends to zero even when f does not converge to 1.

A result, similar to the above, is also easily established for HV since L f dominates the latter, or
alternatively from the formula

dHV
dt

= −α

2

∫
Ω

d3x
(
∇ f

)2 |Ψ|2
f

. (37)

The above results show that (excluding the case of the free particle) Nelson dynamics, naturally,
exhibits relaxation towards quantum equilibrium and that it does so for general initial probability
distributions (at least, as long as the initial distribution is smooth enough). In this stochastic setting,
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there is therefore no need for any assumptions on the microstructure of the initial distributions, nor is
there any need for the coarse-grained hypothesis when deriving an H-theorem.

Note that these results also show that we have, in fact, convergence of the distribution P to
the quantum equilibrium distribution |Ψ|2 in the L1 norm. This is a consequence of the so-called
Csiszár-Kullback-Pinsker inequality [43]:

L1 ≤
√

2HV (38)

where
L1 =

∫
Ω

d3x
∣∣P− |Ψ|2∣∣. (39)

This generalizes the results by Petroni and Guerra [22,23] obtained in their study of the relaxation
towards quantum equilibrium in the framework of the Nelson dynamics of a single particle in a
harmonic potential. The L1 norm is also used by Efthymiopoulos et al. [25] in the context of the
dBB theory.

We shall illustrate these results by means of numerical simulations for the case of a ground state
for the 1D-harmonic oscillator in Section 5.4, for the case of the 2D-harmonic oscillator in Section 6.2,
and in the case of a coherent state in Section 7.1.

A last important remark concerns the influence of possible zeros in the equilibrium distribution
Ψ(x, t), which would give rise to singularities in the osmotic velocity terms in the Ito equation,
Equation (16), or in the Fokker–Planck equation, Equation (18) (or equivalently in Equation (32)), and
might make the functions HV and L f ill-defined. In Section 6.2, we discuss the case of the first excited
state of the 1D-harmonic oscillator, for which Ψ(x, t) has a node at x = 0. One could in fact imagine
studying higher excited states for which one has a finite number of nodes. In that case, the osmotic
velocity of Equation (15) will have simple poles at a finite number of positions in x. At the level of
the Ito equation, one would not expect a finite set of poles to cause any particular problems, not only
because the probability of hitting a pole exactly in the stochastic evolution is zero but also because the
osmotic term tends to move the particle away from the pole very quickly. Similarly, a finite number of
simple poles in the convection-diffusion equation, Equation (32), for f only influence the velocity field
in the convection term in a finite number of distinct places, and it is to be expected that this would
have the effect of actually enhancing the mixing of information in the system.

Moreover, it is also clear that simple nodes in Ψ(x, t) only give rise to (a finite number of)
logarithmic singularities in the integrand of HV and that the integral in Equation (27) therefore still
converges. The H-theorem for HV derived above is thus still valid, and an arbitrary distribution P
(sufficiently smooth) will still converge to quantum equilibrium, even in the presence of nodes for
Ψ(x, t). The same cannot be said, however, of the function L f , as simple zeros in Ψ(x, t) give rise to
double poles in the integrand and a possible divergence of the integral of Equation (28). Hence, at the
beginning of the evolution, for an arbitrary P, the function L f might take an infinitely large value (the
integrand only diverges when |Ψ|2 	 P, i.e., when it is positive) but as soon as convergence sets in
(which is guaranteed by the H-theorem for HV), the divergent parts in its integrand will be smoothed
out and the function L f will take finite values that converge to zero as time goes on. Of course, when
calculating these quantities for the results of numerical simulations, there is always some amount of
coarse-graining going on and genuine infinities never occur.

5. Relaxation to Quantum Equilibrium and Nelson Dynamics: The Static Case

In this section, in order to simplify the discussion, we will only consider the case of stationary
states Ψst(x) for the one dimensional Schrödinger equation, i.e., energy levels for which S = −E t and
which therefore have zero Bohm velocity (11): ∇S ≡ Sx = 0.
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5.1. Fokker–Planck Operator and a Formal Connection to a Schrödinger Equation

There exists a wide literature [45,46] concerning a particular method for studying the convergence
of solutions of the Fokker–Planck equation to a stationary one, which is only sporadically mentioned
in the literature devoted to Nelson dynamics [47]. This approach makes it possible to quantify
very precisely the speed of convergence to equilibrium, in terms of (negative) eigenvalues of the
Fokker–Planck operator. In order to show this, let us rewrite the Fokker–Planck Equation (18) in terms
of the Fokker–Planck operator L̂:

∂P
∂t

= L̂P =

[
−∂γ

∂x
− γ(x)

∂

∂x
+

α

2
∂2

∂x2

]
P (40)

where (15):

γ(x) = α

(
|Ψst|

)
x

|Ψst|
. (41)

Note that, due to the presence of the first derivative ∂
∂x , the L̂ operator is not Hermitian.

Now, in order to establish the H-theorem, we must prove that in the long-time limit this equation
tends to a stationary solution Pst = |Ψst|2. The key idea here is to transform the Fokker–Planck
equation to a simple diffusion equation through the transformation

P(x, t) =
√

Pst(x) g(x, t), (42)

under which the r.h.s. of Equation (40) reduces to

L̂ P =
√

Pst(x) Ĥst g(x, t) (43)

where Ĥst is now a Hermitian operator:

Ĥst =
α

2
∂2

∂x2 −
1
2

(
∂γ

∂x
+

γ2

α

)
. (44)

The function g(x, t) thus obeys a “Schrödinger-like” equation (though with imaginary time) with
an effective potential (Ĥst) that depends on γ(x):

∂g(x, t)
∂t

= Ĥst g(x, t). (45)

Note that the effective potential is exactly the Bohm-quantum potential defined by

QΨ = − h̄2

2 m
1
|Ψst|

∂2|Ψst|
∂x2 , (46)

which can be expressed in terms of the osmotic velocity (41) as

QΨ

m α
= −1

2

(
∂γ

∂x
+

γ2

α

)
. (47)

5.2. Superposition Ansatz

We can now represent the solution of Equation (45) as a superposition of discrete eigenvectors (all
orthogonal, as the operator Ĥst is Hermitian) and impose the superposition ansatz [48]:
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g(x, t) =
∞

∑
k=0

ak(t) gk(x). (48)

Equation (45) is separable and gives rise to the eigenvalue problem:

1
ak(t)

dak(t)
dt

=
1

gk(x)
Ĥst gk(x) = −λk. (49)

As a result, we have

g(x, t) =
∞

∑
k=0

ake−λkt gk(x) (50)

for a set of constants ak and where all the λk are real (asH is Hermitian), for eigenfunctions gk(x) that
satisfy the orthonormality conditions: ∫ ∞

−∞
dx gk(x)gl(x) = δk,l . (51)

Thus, we have the expression

P(x, t) =
∞

∑
k=0

ake−λkt
√

Pst(x) gk(x). (52)

By construction, the function
√

Pst(x) is an eigenstate of the effective Hamiltonian with energy 0.
We shall associate the label λ0 with this energy level.

In order to have a well defined probability distribution and to avoid any divergence in time, it is
clear that all eigenvalues −λk have to be negative, which requires Ψst to be the ground state of the
effective HamiltonianHst: just as in the case of the usual Schrödinger equation, the eigenvalues −λk in
Equation (49) are all negative only if Ψst(x) has no zeros (see also [49], Appendix 2, for an elementary
proof that all λk are indeed positive if Ψst(x) h as no zeros).

If Ψst(x) does have zeros, the osmotic velocity will have singularities. In [49] (Appendix 2), we
consider what happens in the case when Ψst(x) is an excited state of the harmonic oscillator and
we derive a formal solution in terms of the eigenvalues −λk, which are now not all negative, thus
revealing the appearance of instabilities for cases where the above formalism would still be valid.

5.3. One-Dimensional Oscillator and the Evolution of Gaussian Distributions for the Ground State

In [49] (Appendix 2), we discuss the application of the method of the effective Hamiltonian
outlined in Section 5.1 to this particular problem, and we derive a Green function for the associated
Fokker–Planck equation when Ψst is the ground state of the one-dimensional oscillator. This Green
function KP(x, x′, t) is defined through

P(x, t) =
∫ ∞

−∞
dx′ P(x′, 0)KP(x, x′, t) (53)

where the kernel KP is given by

KP(x, x′, t) =
(

a
π sinh(ω t)

) 1
2

eω(n+ 1
2 )t

×e
−a

sinh(ω t) [(x2+x′2) cosh(ω t)+(x2−x′2) sinh(ω t)−2 xx′]. (54)
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An important property of the Green function for this case is that, if |Ψ(x)|2 and P(x, 0) are
Gaussian, then P(x, t) will still be Gaussian (53). Let us define the ground state as

|Ψst|2 ≡ |Ψ(x)|2 =

√
2a
π

e−2 a x2
, (55)

for which we can then write

P(x, t) =

√
2b(t)

π
e−2 b(t) (x−〈x(t)〉 )2

. (56)

Injecting Equation (56) in the Fokker–Planck equation, Equation (40), gives a differential equation
for 〈x(t)〉,

d 〈x(t)〉
dt

= −2aα 〈x(t)〉 , (57)

which is readily solved as
〈x(t)〉 = 〈x0〉 e−2aα t, (58)

as well as an equation for b(t),

1
2b(t)

db(t)
dt

+ 2α (b(t)− a) = 0 (59)

with solution
b(t) =

a

1−
(

1− a
b0

)
e−4aα t

. (60)

From Equations (56) and (60), we can then calculate the width of the non-equilibrium Gaussian as

σ2
x(t) ≡

1
4b(t)

=
1
4a

[(
1− e−4aα t

)
+

a
b0

e−4aα t
]

= σ2
eq

(
1− e−4aα t

)
+ σ2

x(0) e−4aα t (61)

where σ2
eq represents the width 1/(4a) of the equilibrium distribution of Equation (55).

Clearly, 〈x〉 t→∞
= 〈x〉eq = 0 with a characteristic relaxation time inversely proportional to the

diffusion coefficient α. Moreover,

dσx(t)
dt

∝ 4aα
(
σ2

eq − σ2
x(0)

)
e−4aα t, (62)

which has the same sign as that of the difference (σeq − σx(0)). Hence, σx(t) converges monotonically
to the equilibrium value σeq, with a characteristic time inversely proportional to the diffusion coefficient
α, as can be seen in Figure 2.
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Figure 2. Simulations of 10,000 trajectories (calculated from the Ito equation, Equation (16), for the
ground state (Equation (55)) of the 1D harmonic oscillator), whose initial positions are normally
distributed, for 5 different choices of distribution width (for a = 0.5 and α = 1). We observe, in each
case, convergence to the equilibrium of Equation (55) as predicted by the theory.

5.4. Ergodicity in the Relaxation to Quantum Equilibrium for the Ground State of the Harmonic Oscillator

We have just shown how Gaussian initial distributions converge towards quantum equilibrium,
but one could also ask the same question for non-Gaussian initial distributions. Convergence is
guaranteed by the H-theorem of Section 4, but contrary to the Gaussian case, we have no clear
measure for the rate of convergence, except for the entropy-like functions HV (27) and L f (28), or
the L1 norm (39), defined in Section 4. The evolution, in time, of these three quantities is shown in
Figure 3, for the stochastic trajectories obtained from 20,000 uniformly distributed initial conditions.
The relaxation towards quantum equilibrium is clearly visible in all three quantities. As expected, the
convergence of HV is extremely fast. Note that, although initially very large, L f quickly matches L1,
up to numerical fluctuations.

Figure 3. Time evolution of HV , L f and the L1 norm, for a uniform initial probability distribution,
calculated from the Ito equation, Equation (16), for the ground state of the 1D harmonic oscillator.
Relaxation towards the distribution of the ground state |Ψst|2 of Equation (55) is clearly visible.
The simulation was performed for α = 1, a = 0.5, and Δt = 0.01, for 20,000 uniformly distributed
initial conditions.
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One important question concerning this relaxation process is of course that of possible ergodicity.
Since we want to study the ergodic properties of Nelson dynamics in a numerical way, we choose the
definition of ergodicity that is, in our approach, the easiest to test. Defining the time average ĥ of a
function h on Ω by the limit (if it exists),

ĥ = lim
t→+∞

1
t

∫ t

0
h
(
xt′

)
dt′ (63)

(where xt′ represents the position of a particle at time t′, as obtained form the Ito stochastic differential
equation, Equation (16), for an initial condition x) we say [50] that the corresponding stochastic
process is ergodic if the time average of any bounded function h on Ω is always independent of x.
Since for bounded h the time average is also invariant under shifts in time, we can say that we have
ergodicity if all time averages of such functions are in fact constants. The main reason for choosing
this particular definition is that it is well-suited to empirical testing, since it is of course sufficient to
establish constancy of the time averages for all indicator functions χA of arbitrary (measurable) sets
A ⊂ Ω, for the analogous property to ensue automatically for all bounded functions on Ω. Another
reason for choosing this particular definition is that it is also applicable to non-stationary stochastic
processes, as in the case of the coherent state of Section 7.

More precisely, we need to verify that

χ̂A = lim
t→+∞

1
t

∫ t

0
χA

(
xt′

)
dt′ (64)

is independent of both t and x, for any measurable A ⊂ Ω. Remember that one has of course that
χA

(
xt) = χ

φ−1
t A(x), where φ−1

t A = {x ∈ Ω | xt ∈ A}.
In the present case, i.e., that of the Nelson dynamics defined by the stationary (ground) state

of the 1D harmonic oscillator, it is clear that the distribution |Ψst|2 obtained from the ground state
eigenfunction Ψst is a stationary solution to the associated Fokker–Planck equation, Equation (18).
This distribution provides a natural invariant measure μ on Ω: dμ = |Ψst|2dx, for which

∫
Ω dμ = 1 and

μ(A) =
∫

A
|Ψst|2dx = μ(φ−1

t A), ∀t > 0, ∀A ∈ Ω. (65)

If a stationary stochastic process is ergodic, i.e., if for such a process all χ̂A are indeed constants,
the values of these constants are simply the measures of the subsets A [51]. Therefore, when one needs
to decide whether or not a stationary stochastic process is ergodic, it suffices to verify that χ̂A = μ(A),
for any A ∈ Ω.

The usual way to check this condition is to consider sampling time averages for a sufficiently
refined “binning” of Ω. Starting from a particular initial particle position x, we calculate the trajectory
xt that follows from the Ito stochastic equation, Equation (16), for a sufficiently long time t. As was
explained for the coarse-graining in Section 3, the configuration space Ω is subdivided into a large
number of non-overlapping cells or “bins” Ak (k = 1, . . . , Nb), each with the same volume Δx.
The trajectory xt′ (t′ ∈ [0, t]) is then sampled at regular intervals Δt, yielding N + 1 sample positions
xnΔt (n = 0, . . . , N), for N = t/Δt. We then define the sampling function ϕN,k

ϕN,k =
1
N

N

∑
n=0

χAk (xnΔt), (66)

which is a discretization of 1
t
∫ t

0 χA
(
xt′

)
dt′ in Equation (64) and which gives the frequency with which

the (sample of the) orbit visited the bin Ak. Hence, if in the limit N → +∞, for diminishing bin sizes
Δx and sampling steps Δt, the normalized distribution obtained from ϕN,k/Δx tends to a constant
distribution (and, in particular, does not depend on the initial positions x), then the stochastic process
is ergodic according to the above definition.

236



Entropy 2018, 20, 780

Moreover, since in that case χ̂Ak = μ(Ak), this normalized distribution must in fact coincide
with that for the invariant measure for the stationary process. For example, in the case at hand,
if the normalized distribution we obtain is indeed independent of the initial positions, then since
μ(Ak) = |Ψst(x)|2

∣∣
x=ξ

Δx for some point ξ ∈ Ak, we must have that for sufficiently large N

ϕN,k

Δx
≈ μ(Ak)

Δx
= |Ψst(x)|2

∣∣
x=ξ

, (67)

i.e., the empirical distribution obtained from this sampling time average must coincide with the
stationary quantum probability |Ψst|2. This is exactly what we obtain from our numerical simulations,
as can be seen from the histograms depicted in Figure 4. After a certain amount of time, the histograms
we obtain indeed converge to the equilibrium distribution, and this for arbitrary initial positions.
The convergence clearly improves if we increase the integration time, or if we diminish the spatial size
of the bins (while diminishing the sampling time step in order to keep the occupancy rate of each bin
high enough). Although purely numerical, we believe this offers conclusive proof for the ergodicity of
the Nelson dynamics associated with the ground state of the harmonic oscillator in one dimension.
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Figure 4. Histograms of the positions of a single particle, subject to Nelson dynamics for the ground
state of the 1D harmonic oscillator. The full (red) curve corresponds to the quantum probability |Ψst|2.
Here, a = 0.5, α = 1, and the total simulation time (t = 10,000) is sampled with Δt = 0.01. (a) The initial
particle position is x0 = 2.5, and the number of bins Nb = 100 (each with spatial size Δx = 0.0635);
(b) Same as (a) but with Nb = 50 and Δx = 0.1270; (c) Same as (a) but with t = 200; (d) Same as (a) but
for x0 = −0.85.

237



Entropy 2018, 20, 780

The same can be said, in fact, for the 2-dimensional oscillator which will be the main topic of
Section 6 (and even for the 2D corral as can be seen in [49]). Some results of a simulation of a single
trajectory under the Nelson dynamics for the ground state of this system are shown in Figure 5, in
which the red dot in the plot on the left-hand side indicates the (final) position of the particle at time t.
The probability distribution obtained by sampling the trajectory clearly decreases with the distance to
the origin along concentric circles.

(a) (b)

Figure 5. (a) A point-particle (the dot near the center) subject to the osmotic velocity field
−2aα (x(t), y(t)), due to the ground state of the 2D harmonic oscillator at time t; (b) Color plot
of the velocities along a trajectory for the evolution under Nelson dynamics, for the ground state of the
2D harmonic oscillator. The simulation (for a = 0.5 and α = 1) started from the initial position (−2, 1)
and was sampled up to t = 1000 with step Δt = 0.01.

6. Nelson Dynamics: A Phenomenological Dynamical Model for Walkers?

6.1. 2D Harmonic Oscillator

Experimentally, it has proven possible to study the dynamics of bouncing droplets under
the influence of an effective harmonic potential in two dimensions, thanks to a well-chosen
electro-magnetic configuration and magnetic droplets [52]. It is therefore interesting to compare
predictions that we, on our side, can make in the framework of Nelson dynamics, with actual
experimental observations of droplets dynamics (see [53] for a pioneering work very similar to ours in
the case of the double slit experiment). We think that an important comparison to make concerns the
convergence to equilibrium.

For example, if the initial distribution of positions projected along a reference axis, say X, fits
a mixture of the ground state and the nth Fock state (n = 1, 2 · · · ) (Appendix 2, [49]) for the 2D
harmonic oscillator (conveniently weighted in order to respect the ineluctable constraint of positivity),
our Nelson-like model predicts that the typical time of convergence to equilibrium will scale like the
inverse of the eigenvalue of the nth Fock state, i.e., as 1/n, which constitutes a very precise quantitative
prediction. This follows from Equation (52), when

√
Pst(x) is the Gaussian ground state of the 1D

harmonic oscillator and where the eigenfunctions gk are the energy eigenstates (Fock states) of the
harmonic oscillator (this, of course, because of the separability of the Schrödinger equation and of our
Nelson dynamics along X and Y in the case of an isotropic 2D oscillator).

A possible way to measure this characteristic time would be to record the projections along X of
trajectories that correspond to an equally spaced grid of initial positions, weighted so as to fit a mixture
of the ground state with the nth Fock state (n = 1, 2 · · · ), and to compare the histogram constructed in
this way at different times with theoretical predictions derived from Equation (52).
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Another precise quantitative (theoretical) prediction, which is even simpler to verify, is that if we
prepare a droplet many times at exactly the same initial position, the position obtained after averaging
over all trajectories will (1) decrease exponentially in time and (2) be characterized by a decay time
which scales like 1/aα, by virtue of the discussion in Section 5.3 and particularly Equation (58). It has
been suggested that droplet trajectories might be characterized by a quantum-like Zitterbewegung,
which can be seen in relativistic quantum dynamics as an intrinsic Brownian motion at the Compton
scale [54,55], and various proposals have been formulated in order to express the amplitude and
frequency of this Zitterbewegung [5,56] in terms of the parameters characterizing droplet dynamics
(these are, e.g., the viscosity of the fluid, the mass of the droplets, the ratio between the amplitude
of the vibrations imposed on the bath and the Faraday threshold, the oil temperature [5,57], and so
on). Exploring these analogies in depth lies beyond the scope of this paper, but the aforementioned
attempts ([56] in particular) pave the way for introducing a Brownian component in the description of
droplet trajectories.

6.2. Presence of Zeros in the Interference Pattern

One of our first motivations, when we decided to incorporate a Brownian component in the
dBB theory in order to simulate the dynamics of droplets, was the pioneering paper [4] reporting on
observations of a walker trapped in a spherical 2D cavity (corral), for which the histogram of positions
occupied over time by a single droplet trajectory faithfully reproduces the Bessel function J0 (this is
also related to the Green function of the Helmholtz equation, with a typical length equal to the Faraday
wave length of the vibrating bath over which droplets propagate [16]). These observations reveal, in
a telling way, the presence of a pilot-wave that guides the dynamics of the particles, and raise the
question of ergodicity.

If we try the approach we used for the 2D harmonic oscillator in the case of the corral (effectively
replacing the Gaussian ground state of the 2D harmonic oscillator by the zero order Bessel function),
we are immediately confronted with problems caused by the presence of zeros in the Bessel function.
In particular, the eigenvalues −λk of the Fokker–Planck operator in Equation (49) are not always
negative when zeros are present, which of course would menace the stability of the relaxation process.
However, as we already indicated in Section 4, although the effect of zeros of the pilot wave in our
Nelson dynamics is by no means trivial, there are several observations that indicate that this problem
is not crucial.

First of all, as mentioned in Section 4, the Wiener process makes it in principle possible to
“jump” over the zeros of the equilibrium distribution. This has actually been confirmed in numerical
simulations for the case of the 1D harmonic oscillator, where we imposed that the equilibrium
distribution Pst is the square modulus of the first excited (Fock) state ([49], Appendix 2A), with
the following amplitude:

Pst = |Ψst|2 = |Ψ1(x, t)|2 =

(
2a
π

) 1
2 (

a x2
)

e−2ax2
. (68)

Indeed, as can be clearly seen from Figure 6, the particle will, from time to time, jump over the
zero in the middle (with the same probability from left to right as in the opposite direction), in such
a way that finally the trajectory covers the full real axis, while the histogram of positions faithfully
reproduces the quantum prediction Pst = |Ψst|2 = |Ψ1(x, t)|2. This indicates that, even in the presence
of a zero in the equilibrium distribution, the relaxation process is still ergodic.
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Figure 6. Histogram of the positions in x of a single particle, in the case of the first Fock state given
by Equation (68). The full curve (red) corresponds to the quantum probability |Ψ1|2. Here, a = 0.5
and α = 1. The total simulation time t is t = 1000, and the sampling time step is Δt = 0.01. The initial
position is xi = 1, and the number of bins Nb = 75, each with width Δx = 0.08.

The relaxation of a uniform initial distribution to this quantum equilibrium is shown in Figure 7,
for the quantities HV , L f , and L1.

Figure 7. Evolution in time of HV (27), L f (28), and of the L1 (39) norm, for a uniform initial probability
distribution, showing the relaxation towards the distribution of the first excited state |Ψ1|2 (68).
The simulation was performed for α = 1, a = 0.5, and Δt = 0.01 and from 20,000 uniformly distributed
initial conditions.

A second indication that the problem posed by the presence of zeros is not so serious stems in
fact from the experimental observations. Indeed, if we study the observations reported in [4] for the
case of a corral, it is clear that the minima of the histogram expressing the distribution of positions of
the droplet are in fact not zeros. This, undoubtedly, is due to the presence of a non-negligible residual
background. Without this background, the droplet would never pass between regions separated by
zeros: due to the rotational symmetry of the corral, the zeros form circles centered at the origin and
the position histogram obtained from a trajectory would remain confined to a torus comprising the
initial position. This, however, is clearly not the case, which thus suggests the following strategy: to
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simulate Nelson dynamics with a static distribution Pst = |Ψst|2 given by the Bessel function J0 but
supplemented with a constant positive background ε:

dx(t) =
α

2
∇J0(r)2

J0(r)2 + ε
dt +

√
αdW(t). (69)

In this case, the singularities of the Fokker–Planck equation automatically disappear and, despite
the fact that we have no analytic expression for the solutions as in the case of the ground state of
the harmonic oscillator, we are able to numerically simulate Nelson dynamics without difficulty.
The results of these simulations are shown in Figure 8. The osmotic velocity in the Nelson dynamics
clearly tends to bring back the particle to regions where |Ψ|2 has extrema and the resemblance with
the plot on the left is striking. The fact that this result again does not depend on the choice of initial
condition strongly suggests that the relaxation process to quantum equilibrium is also ergodic in
this case.

(a) (b)

Figure 8. (a) The quantum probability associated to the Bessel function of the first kind J0; (b) Color
plot of the velocities reached along the trajectory for an evolution corresponding to (69). The initial
position was (1, 1), the simulation time t = 5000, and the sampling time step Δt = 0.005. We chose
α = 0.1 and ε = 0.2, and the size of the domain is L = 2. On the boundary we impose a harmonic field
force of the form −2aα r.

7. Relaxation to Quantum Equilibrium with dBB and Nelson Dynamics: The Non-Static Case

7.1. Nelson Dynamics and Asymptotic Coherent States

Up to now, we have developed analytic and numerical tools aimed at studying the onset of
equilibrium when the asymptotic equilibrium distribution is static. As the H-theorem of Section 4
is also valid for non-stationary processes, one of course expects relaxation to take place even if the
asymptotic state is not static, for instance, when it is a Gaussian distribution, the center of which
periodically oscillates at the classical frequency ω of the oscillator without deformation (typical for
coherent states). In fact, our numerical simulations show not only that equilibrium is reached even in
this case, but also that this relaxation is ergodic.

More precisely, we considered a wave function in the coherent state

Ψ(x, t) =
(

2a
π

) 1
4

e−a (x−x̄t)
2+i p̄t x

h̄ +iϕ(t) (70)
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where ϕ is a global phase containing the energy, and x̄t (p̄t) is the mean position (momentum) of a
classical oscillator at time t:

x̄t = x̄0 cos (ωt) and p̄t = −mx̄0 sin (ωt) , (71)

with ω = 2aα (α = h̄/m). For this ansatz we solved the Ito equation, Equation (16), numerically for a
collection of initial conditions.

As can be seen in Figure 9, the trajectories are affected by the stochastic evolution but keep
oscillating at the same period because of the deterministic part of the Ito process. Notice, however,
that the trajectories seem to be approaching classical trajectories that only differ from each other by a
simple shift. This can be explained as follows: at equilibrium (cf. Figure 10), the Brownian motion is
balanced by the osmotic velocity and the dBB velocity is recovered “on average.” Now, the center of
the Gaussian distribution moves at a classical velocity by virtue of Ehrenfest’s theorem; moreover, in
the present case, the dBB velocities can only depend on time and not on space as the envelope of a
coherent state moves without deformation. Hence, the dBB trajectories obtained at equilibrium are, in
fact, classical trajectories that only differ by a mere shift in space (the magnitude of which, however,
may change over time).

Figure 9. Numerical solutions of the Ito stochastic differential equation, Equation (16), corresponding
to the coherent state of Equation (70), for three different initial conditions. We used x̄0 = 1, a = 0.5,
and α = 1 and expressed the results in natural units.

Secondly, as can be clearly seen on Figure 10, even for a uniform initial probability distribution, the
convergence to the quantum equilibrium is remarkably fast and the converged distribution faithfully
follows the oscillating motion of the non-stationary equilibrium distribution. The remarkable speed of
the convergence to quantum equilibrium is corroborated by the decay of the functions HV and L f and
of the L1 norm shown in Figure 11.

Moreover, Figure 12 depicts the sampling time average (as defined in Section 5.4) of a single
trajectory for this non-stationary stochastic process. The convergence of the sampling distribution to a
static distribution Φ(x), described by the integral of |Ψ(x, t)|2 as given by Equation (70), over a period
of the oscillation

Φ(x) =
ω

2π

∫ 2π/ω

0
|Ψ(x, t)|2dt (72)

is striking. As the asymptotic distribution Φ(x) does not depend on the choice of initial condition, we
conclude that the relaxation to equilibrium for the non-stationary stochastic process associated with
Nelson dynamics for the coherent state (70) is ergodic (in the sense explained in Section 5.4).
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(a) t = 0 (b) t = 1.2 (c) t = 2.4

(d) t = 3.6 (e) t = 4.8 (f) t = 6

Figure 10. The time evolution of a non-equilibrium ensemble, illustrated with position histograms at six
different times ((a): t = 0, (b): t = 1.2, (c): t = 2.4, (d): t = 3.6, (e): t = 4.8, (f): t = 6). The continuous
curve is the squared modulus |Ψ|2 for the coherent state of Equation (70). As can be seen in (d–f), once
equilibrium is reached, the distribution clings to the coherent state and follows its oscillation faithfully.
The center of the wave packet moves between −2 and 2 with a period 2π. We started from a uniform
distribution of initial conditions and chose a = 0.5, α = 1, and x0 = 2. The sampling time step is
Δt = 0.01, and the number of bins is Nb = 50, each with width Δx = 0.0461.

Figure 11. Time evolution of HV (27), L f (28), and L1 (39), for a uniform initial probability
distribution, showing the relaxation towards the distribution |Ψ|2 of the coherent state of Equation (70).
The simulation was performed for α = 1, a = 0.5, and Δt = 0.01 and from 20,000 uniformly distributed
initial conditions.
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Figure 12. Histogram of the positions for a unique trajectory satisfying the Ito equation, Equation (16),
for Equation (70). The full curve corresponds to the integration of |Ψ|2 over one period. The center of
the wave packet moves between −2 and 2 with a period 2π. Here, a = 0.5 and α = 1. Total simulation
time t is t = 30, 000 and the sampling time step is Δt = 0.01. The initial position is xi = 1, and the
number of bins Nb = 100, each with width Δx = 0.1.

7.2. Onset of Equilibrium with a Dynamical Attractor in dBB Dynamics and Nelson Dynamics

If one wants to investigate the onset of equilibrium in dBB dynamics, one obviously has to consider
non-static asymptotic distributions since in static cases the dBB dynamics freezes the trajectories (as
the phase of the wave function is then position-independent). Even in the case of a coherent state
(see Section 7.1), the distribution of dBB positions would never reach equilibrium because it moves
as a whole (as the shape of a coherent state remains the same throughout time). In a sense, coherent
states behave as solitary waves. Moreover, the absence of zeros in the wave function might explain
why mixing does not occur. In Figure 13 we show the result of simulations of dBB trajectories in the
case of a 2D harmonic oscillator for a quantum state consisting of a superposition of equally weighted
products of states along X and Y, chosen among M energy (Fock) states ([49], Appendix 2A), with
randomly chosen initial phases θnx ,ny :

Ψ(x, y, t) =
1√
M

√
M−1

∑
nx=0

√
M−1

∑
ny=0

ei θnx ,ny−iω(nx+ny+1) t ψnx (x)ψny (y) . (73)

(a) (b) (c)

Figure 13. Plots showing three possible de Broglie–Bohm (dBB) trajectories for a single point particle
in the case of (73) with M = 22 = 4. Each plot (a–c) is associated with different initial random phases
(θnx ,ny with nx (ny) taking the values 0, 1) and different initial positions.
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We then compared the relaxation process for dBB with the quantum thermostat given by Nelson
dynamics for M = 42 = 16 energy states. The results are shown in Figure 14 in which HV (for the dBB
and for the Nelson dynamics) and L1 (for both the dBB and Nelson dynamics) are plotted at the (same)
coarse-grained level. We started from a uniform distribution of positions; we took α = 0.1. In both
cases, the position distributions P and P converge to |Ψ|2. Moreover, we recover an exponential
decay for HV , as already observed in [26], even in the absence of stochastic (Brownian) noise à la
Nelson. However, we observe that the convergence to equilibrium occurs faster in the presence of the
quantum thermostat.

(a) (b)

Figure 14. Plots of the evolution in time of the coarse-grained H-functions HV (a) and L1 (b) for
the Nelson and dBB dynamics. The full line corresponds to the dBB dynamics and the dashed line
corresponds to the quantum thermostat. We started from 10,000 initial positions uniformly distributed
in a box of size 10× 10; we chose a = 0.5, α = 0.1, and M = 42 = 16 energy states.

8. Dynamical Model for Droplets and Double Quantization of the 2-D Harmonic Oscillator

In this section we shall focus on the description of droplets dynamics as described in [9,52],
for a magnetized droplet moving in an isotropic 2-D harmonic potential. We shall show that dBB
dynamics allows us to reproduce some of the main features of the experimental observations. In [9,52],
it is reported that stable structures appear in the droplets dynamics whenever a double quantisation
condition is satisfied. The Hamiltonian of the isotropic 2-D harmonic oscillator being invariant under
rotations, we may indeed impose a double quantisation constraint, requiring that the energy states
of the 2D quantum harmonic oscillator are also eigenstates of the angular momentum. In polar
coordinates, these states (which are parameterized by two quantum numbers, the energy number n
and the magnetic number m) are expressed as follows [58]:

ψn,m (r, θ, t) =

√
a
π

k!
(k + |m| )! e−

ar2
2

(√
a r

)|m| L|m|k

[
a r2

]
e−iω(n+1)t+imθ (74)

where L|m|k are the generalized Laguerre polynomials and k = n−|m|
2 . Note that these solutions are

linear combinations of the product of Fock states in x and y.
A first experimental result reported in [9] is the following: trajectories are chaotic and nearly

unpredictable unless the spring constant of the harmonic potential takes quantized values that are
strongly reminiscent of energy quantization (under the condition that, during the experiment, the size
of the orbits is fixed once and for all). For quantized energies—in our case given by En = (n+ 1)h̄ω, for
some “effective” value of h̄ to be determined from actual experiments—stable orbits, to which one can
attribute yet another quantum number, appear, this time for the angular momentum, which is strongly
reminiscent of the magnetic number (the eigenvalue of the orbital momentum, perpendicular to the
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surface of the vessel, is given by the product of h̄ and m). In [9] it is shown, for instance, that for the
first excitation (n = 1, m = ±1) droplet orbits are circular or oval, turning clockwise or anti-clockwise
depending on the sign of m. At the second energy level (n = 2, m = −2, 0,+2), ovals appear again for
m = ±2 and lemniscates for an average value of the angular momentum <m> = 0. At the fourth
energy level (n = 4, m = −4,−2, 0, 2, 4), trefoils appear (for m = ±2).

We simulated dBB trajectories, always considering a superposition of one of the aforementioned
doubly quantized eigenstates ψn,m with the ground state:

Ψ (r, θ, t) = ξ0 e−iϕ0 ψ0,0 (r, θ, t) +
n

∑
j=0

ξ j+1 e−iϕj+1 ψn,−n+2j (r, θ, t) (75)

where ϕj and ξ j are real numbers with 0 < ξ0 	 ξ j 
=0. Computing the guidance relation of Equation (11)
for a single eigenstate (74), one ends up with a value for ∇S for which the trajectories are circles of
radius R around the origin, with tangential velocities proportional to m/R. In particular, the dynamics
is frozen when m = 0.

Mixing the wave function with the ground state, however, generates a periodic (in time)
component in the dBB velocity field, which turns circular orbits into ovals when ξ0 is small enough,
and eventually generates more complex structures, such as “rosaces” instead. We also tuned the energy
difference between the ground state and the excited states such that two timescales characterize the
dynamics. These are the “centrifugal” period, necessary for drawing a full circle around the origin,
which varies as m/R2, and the “Bohr” period which varies like T/(n + 1), where T is the classical
period of the oscillator. Tuning these parameters, we were able to simulate dBB trajectories very similar
to those reported in [9]. For instance, we found circles and ovals (see Figure 15a,b) for (n, m) = (1, 1)
and (n, m) = (2, 2). Note that the lemniscate cannot be obtained with a superposition of the ground
state and the (n, m) = (2, 0) state for which dBB velocities are necessarily purely radial, contrary to
the suggestion made in [9]. Instead, it should be generated with a superposition of the ground state
with (n, m) = (2,+2), (2,−2), and (2, 0) in which the weights of the m = +2 and −2 components are
slightly different (see Figure 15c). Figure 16 shows further detail of the evolution along this trajectory.
Tuning the energy, we were also able to generate a trefoil and a “rosace” (see Figure 17).

(a) n = 1, m = +1 (b) n = 2, m = +2 (c) n = 2, m = 0,±2

Figure 15. dBB trajectories obtained for a single point particle in a superposition of eigenstates (75).
Each plot is associated with a different combination (n, m), as indicated. In the (a,b) graphs, we
imposed a = 1 and, respectively, ω = 1, ξ0

ξ2
= 0.05 and ω = 0.5, ξ0

ξ3
= 0.05; for (c), we imposed

a = 3, ω = 0.5, ξ0
ξ3

= 0.0708, ξ0
ξ2

= 0.0456, and ξ0
ξ1

= 0.0773.
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(a) (b) (c)

Figure 16. Plots of three quantities associated to the lemniscate in Figure 15c. (a) shows the
Lz-component of the angular momentum, and the polar plots (b,c) show the probability density
|ψ|2 (b) and the θ-component of the probability current (5) along the trajectory (c).

(a) n = 4, m = +2 (b) n = 4, m = +2 (c) n = 4, m = +2

Figure 17. dBB trajectories obtained for a single point particle in a superposition of eigenstates (75).
Plots (a,b) correspond to ω = 0, 7 and ω = 1, respectively. Case (c) is obtained after multiplying the
amplitude of the (n, m) = (4, 2) state by a complex phase (e(0.3i)). We took a = 1 in all cases.

It is worth noting, however, that chaos is omnipresent in the dBB dynamics for this system, in
the sense that the trajectories exhibit an extreme sensitivity to the initial conditions, which explains
why these dBB orbits mimicking stable droplets orbits are in general unstable. For instance, Figure 18
shows intermittent transitions between an oval trajectory and a lemniscate (as has also been reported
in [9]), for a superposition of the ground state with the (n, m) = (2,+2), (2,−2), and (2, 0) states.
Preliminary results furthermore show that the trajectories are also unstable under Nelson dynamics,
i.e., in the presence of “noise,” whenever this noise (parameterized by α in (16)) exceeds a critical
value. Note that many experiments involving droplets are characterized by a lack of stability and
predictability. For instance, the appearance of interferences similar to those obtained in a double slit
experiment (see [49,59] for a description à la Nelson of the double slit experiment) has been attributed
to “air currents” in [60]. Therefore, although our approach might not explain every detail of the double
quantization reported in [9], it does reproduce many of its essential features, and we believe it would
be very interesting to deepen this analogy. For instance, having access to the empirical values of the
weights of the ground state, or of the effective values of h̄ and of the mass in the case of droplets [56],
would allow us to test our model in real detail.
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n = 2, m = 0,±2

Figure 18. dBB trajectories obtained for a single point particle in a superposition of eigenstates (75)
(with m = −2, 0, 2) showing intermittent transitions between two types of trajectories. The relevant
parameter values are ω = 0.2 , a = 1, ξ0

ξ3
= 0.0342, ξ0

ξ2
= 0.2547, and ξ0

ξ1
= 0.0505.

Another experiment, reported in [61], during which both the position of the droplet and the
excitation of the bath are monitored, and where a superposition between two distinct modes of the
bath is reported, could also provide more insight and might offer some means to test the validity of
our model: using exactly the same observation device, but this time in the case where the droplet
undergoes a 2-D isotropic potential, would allow one to check whether the modes of the bath are
similar to the (n, m) quantum modes which we associate with the quantized droplets trajectories.

9. Conclusions and Open Questions

In this paper we studied stochastic, Nelson-like dynamics and dBB dynamics, with the aim of
simulating the dynamics of droplets. The stochastic approach has the merit that it explicitly takes
into account the influence of noise on the dynamics [59,62]. In contrast to experiments where noise
is considered to be a parameter that should be minimized, here, noise is considered to be a relevant
parameter for the dynamics (see also [53]). For instance, as we have shown, it plays an essential role in
the relaxation towards equilibrium and in the ergodicity of the dynamics. In the dBB approach, on
the other hand, the main ingredient is the chaotic nature of the dynamics [25]. Both models thus shed
a different light on the dynamics and could possibly fit diverse sets of regimes in droplet dynamics.
Note that in the limit where the amplitude of the Brownian motion in our Nelson dynamics tends to
zero, the dynamics approaches dBB dynamics very closely. In sufficiently complex situations (e.g.,
when the mixing process due to the presence of zeros in the wave function becomes effective [26,40]),
we expect the relaxation to equilibrium to be accompanied by chaotic rather than stochastic dynamics,
as one has in Nelson dynamics (although Nelson dynamics with small but non-zero Brownian motion
is hard to distinguish from dBB dynamics, it has the advantage that relaxation is guaranteed to occur,
even in the absence of coarse graining and/or mixing).

Ultimately, experiments ought to indicate whether it is relevant, with respect to droplet
phenomenology, to formalize the dynamical influence of noise à la Nelson (and/or dBB) as we
did in the present paper. We have formulated several proposals in this sense in Sections 6.1 and 8.
As emphasized throughout the paper, however, our models should be seen as a first step in the
direction of a dynamical model, which remains to be formulated, combining Nelson’s stochastic
dynamics (and/or dBB dynamics) and memory effects. We think that the results of Section 8 show that
this is a promising program for future research.

Finally, it is worth recalling some of the problems that arose when first de Broglie and then Bohm
and Nelson developed their theories aimed at deriving quantum dynamics (statistics) as an emergent
property, i.e., resulting from an underlying “hidden” dynamics.
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The most severe problem is undoubtedly non-locality, which was recognized by Bohm [11,12]
to be an irreducible feature of dBB dynamics (see also [19,63] for similar conclusions concerning
Nelson-type dynamics). Today, under the influence of the work of John Bell [64] and his followers, it is
widely recognized that quantum theory is irreducibly non-local, which makes it particularly difficult
to mimic using classical models. Note that entanglement and non-locality (as well as decoherence,
which is the corollary of entanglement [65]) only appear if we consider more than one particle at a time,
which explains why we did not address these fundamental questions in the core of the paper, where
a single droplet is described. It would be interesting to enlarge our model such that the presence
of the environment can be taken into account. This would require incorporating the description of
open quantum systems, for which a generalization of Bohmian dynamics has been developed in the
past [66–69], but obviously this is beyond the scope of the present paper.

Another problem concerns the fact that the pilot wave is a complex function. This poses still
unresolved problems in the case of Nelson dynamics because Nelson’s diffusion process does not
make it possible [70,71] to fix the phase of the wave function unequivocally (see [72] for an interesting
proposal involving a multivalued wave function, also based on Zitterbewegung). In our approach,
which is mainly of quantum inspiration, complex wave functions and imaginary phases appear
spontaneously, but if we wish to scrutinize the link with the empirically observed modes at the surface
of oil baths [9,52,56,61], it will be important to interpret the exact meaning of this complex phase. In the
framework of his double solution program [73,74] de Broglie, and others, showed how to derive the
Schrödinger equation from a Klein–Gordon equation in the non-relativistic limit. This is only possible
provided the real wave bounces at an extremely high frequency (of the order of mc2/h). A similar
approach has been proposed in the context of droplets phenomenology in [75], where a complex
Schrödinger equation is derived from the Klein–Gordon equation along these lines. Although such
(interesting and promising) alternative studies of droplets solve the problem of the appearance of a
complex phase in a classical context, it is worth noting that the phenomenological results outlined
in Section 8, concerning the quantization of droplet orbits in the case of a harmonic potential [9,52],
cannot be explained simply in terms of excited modes of the oil bath, because in these experiments
only the droplet undergoes the harmonic potential, the oil bath being electromagnetically neutral.
This difficulty actually concerns any classical model in which droplet dynamics is formulated in terms
of classical modes of the bath only.

To conclude, in our view, the programs that aim at simulating droplet dynamics with quantum
tools or at describing the emergence of quantum dynamics based on droplet dynamics, are still largely
incomplete and raise challenging fundamental questions. This Pandora’s box is now open and it will
not be closed any time soon, but this is not something to be feared as it offers new and stimulating
perspectives for future research in the field.
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Appendix A. Numerical Simulations

Firstly, we discuss the case of the dBB dynamics. It is assumed that we have an analytical solution of the
Schrödinger equation Ψ(t, x). We want to compute the evolution of a given initial non-equilibrium density P(ti, x)

up to a final time t f and for intermediate time events (we denote all these events by tk, with t0 = ti and t f = tK).
In particular, we are interested in the coarse-grained non-equilibrium density

P(x, tk) =
1
ε3

∫
CG cell!x

d3xP(x, tk) , (A1)

which is defined in Equation (23).
Numerically, we replace that integral by a discrete sum over a finite set of points xl , which are uniformly

distributed over the CG cells. In order to obtain the value of each P(xl , tk) we use the Liouville relation

P(xl , tk)

|Ψ(xl , tk)|2
=

P(xl
i , ti)

|Ψ(xl
i , ti)|2

(A2)

where xl
i is the position of the particle, which, when evolved according to Equation (11) from ti up to tk, gives xl .

In order to obtain xl
i for each xl , we consider the time-reversed evolution with wave-function Ψ∗(−t, x) and

initial condition xl at time −tk. The position xl , if time evolved from −tk up to −ti according to Equation (11),
will give the position xl

i . As there is usually no analytical solution of Equation (11), we use a Runge–Kutta (RK)
algorithm [76] to obtain a numerical estimate of the position xl

i . In order to know if we can trust the result of
the RK algorithm, we perform two realizations of the algorithm with different choices of a so-called tolerance
parameter (the smaller the value of that tolerance parameter, the more precise the computation), say γ and 10−1γ.
If the distance between the two positions is less than some chosen value δ, the result of the last iteration of the
RK algorithm is trusted. Otherwise, we perform another iteration with 10−2γ and we compare it to the previous
realization of the RK algorithm. We repeat the procedure until the constraint on the distance between the two
successive results of the RK algorithm is satisfied, or until we reach some minimal value of the tolerance parameter.
In that case, the position xl is considered as a bad position and it is discarded from the numerical integration of
Equation (23). This method was used in [26].

That is one possible method but we could also adopt a more brute-force method: Randomly generate a set of
N initial positions according to P(ti, x) and let them evolve according to an Euler algorithm (that is, we divide
the time-interval in small time-steps of length Δt and we increment the position by v(t)Δt at each time step). We
record the positions of the N particles for each value of tk, we count the number of particles in each CG cell for
each time tk (say nCG), and we divide nCG by N in order to define P(x, tk). The first method turns out to be more
efficient in the case of the dBB dynamics but it is not applicable in the presence of stochastic terms.

In the case of Nelson dynamics, we used the Euler–Maruyama method for stochastic processes to
approximate the solution of the Ito equation, Equation (12). In the same way as Euler’s method, the time
T is divided into N small discrete time steps Δt. For each time ti, we generated a random variable normally
distributed ΔWi =

√
ΔtN (0, 1). The integration scheme has the form

xi+1 = xi + v(xi, i Δt)Δt +
√

α ΔWi. (A3)

We invite the reader interested in the details to consult [77]. The remaining question is how to choose the
time step Δt so that one can trust the result of the numerical simulations. One way to do this is the following.
We know that the Born distribution remains invariant under Nelson’s dynamics (equivariance). We therefore
start with some value for Δt and decrease it until the result of the numerical simulation confirms this theoretical
prediction. We then perform the numerical simulation for the non-equilibrium distribution with the value of Δt
thus obtained.
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Abstract: “Locality” is a fraught word, even within the restricted context of Bell’s theorem. As one of
us has argued elsewhere, that is partly because Bell himself used the word with different meanings
at different stages in his career. The original, weaker, meaning for locality was in his 1964 theorem:
that the choice of setting by one party could never affect the outcome of a measurement performed
by a distant second party. The epitome of a quantum theory violating this weak notion of locality
(and hence exhibiting a strong form of nonlocality) is Bohmian mechanics. Recently, a new approach
to quantum mechanics, inspired by Bohmian mechanics, has been proposed: Many Interacting
Worlds. While it is conceptually clear how the interaction between worlds can enable this strong
nonlocality, technical problems in the theory have thus far prevented a proof by simulation. Here we
report significant progress in tackling one of the most basic difficulties that needs to be overcome:
correctly modelling wavefunctions with nodes.

Keywords: Bell’s theorem; Bohmian mechanics; nonlocality; many interacting worlds; wavefunction nodes

1. Introduction

This paper is based loosely on the talk given by its final author at the 2017 Symposium on
Emergent Quantum Mechanics (EmQM17). That talk took as its principal inspiration the following
questions (from the list provided by the organisers to give focus to the meeting):

• Is the universe local or nonlocal?

• What is the future of scientific explanation? Is scientific metaphysics, e.g., the notions of reality,
causality, or physical influence, obsolete in mathematical accounts of the quantum world?

However, in view of the conference also being the David Bohm’s Centennial Symposium,
the speaker also briefly discussed some work relating to this question:

• What is David Bohm’s legacy for the future of quantum physics?

This paper also concerns these two broad topics, but in the opposite ratio to that in the
delivered talk. Section 2 of this paper addresses just the question “Is the universe local or nonlocal?”
by examining the historical meaning of the term “local”. (The second question listed above, which
was addressed in the talk, and in References [1–3], is not addressed here). That section expresses the
views of the invited contributor, not necessarily those of all the authors. Sections 3–6 concern Many
Interacting Worlds (MIW), an approach to quantum mechanics inspired by Bohm’s original hidden
variables theory [4,5], and which thus we hope will be part of the answer to the last question above.

Having introduced the MIW approach in Section 3, we turn in Section 4 to how it can give rise to
nonlocality; that is, how it can offer a positive answer to this (here abridged) focus question:
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• Are nonlocal connections—e.g., “action-at-a-distance”—fundamental elements in a radically new
conception of reality?

However, as Section 4 notes, there are still major difficulties faced in demonstrating these
connections in MIW simulations. Section 5 introduces a new MIW technique—a higher-order
interaction potential—to address one of these difficulties, namely, wavefunction nodes. Section 6
applies this idea to progress the MIW simulation of stable excited state nodes of a quantum particle in
one dimension. An alternative method to address the node problem is presented and simulated in
Appendix A. Section 7 concludes with a discussion of open challenges for MIW theorising.

2. Is the Universe Local or Nonlocal?

The answer to this EmQM17 focus question hinges, of course, on what one means by the term
“local” (assuming that “nonlocal” is simply its complement). Perhaps surprisingly, it seems [2,6] that
the word was not used in the context of interpreting EPR quantum correlations prior to the 1964 paper
of Bell [7]. In that paper, Bell proved his 1964 Bell’s theorem; to quote [7]:

In a theory in which parameters are added to quantum mechanics to determine the results
of individual measurements, without changing the statistical predictions, there must be
a mechanism whereby the setting of one measuring device can influence the reading of
another instrument, however remote.

In other words, some quantum phenomena are incompatible with the joint assumption of
predetermination (or causality; Bell used both terms) and locality (or separability; Bell used both
terms). In the above quote, it is the negation of locality that is characterised, in a way consistent with
Bell’s earlier definition of locality; to quote [7]:

It is the requirement of locality, or more precisely that the result of a measurement on one
system be unaffected by operations on a distant system with which it has interacted in the
past, that creates the essential difficulty.

Thus, Bell intended to be (somewhat) precise about what he meant by locality. Unfortunately he
did not give a general mathematical definition, nor did he define terms like “unaffected” or (in the
first quote and elsewhere) “influence”.

In the theorem he proves that the role “locality” plays is the following. The assumption of
predetermination means that an arbitrarily long time before any measurements are performed, there
existed in the world a collection of hidden variables, λ, that, together with the future measurement
settings, determines the future outcomes. Adding the “vital assumption [of locality]” implies that
the outcome A of one party (Alice, say) cannot depend on the settings b of a distant party (Bob, say),
but only by her own setting a. That is, in a theory θ with local predetermination of outcomes, there
exists a function, Aθ(a, λ) such that A = Aθ(a, λ), and likewise for Bob. From this, Bell was able to
derive his famous theorem, that there exist sets of measurement on entangled quantum systems whose
results cannot be explained by any such model. (Note that Bell made an implicit assumption in 1964,
related to freedom of choice, that P(λ|a, b) = P(λ). Here we follow Bell, as such an assumption is
certainly necessary [8].)

In the above formulation, “locality” has a precise meaning only in the context that
predetermination has already been assumed. This is fine for the purpose to which Bell puts it.
If one wanted to broaden the definition so that it applied independently of the assumption of
predetermination then, it has been argued [2,6,9,10], the natural reading of Bell’s verbal definition
would be as follows. An arbitrary theory contains initial variables λ, which may or may not be hidden,
and which may or may not be sufficient to determine all outcomes, and is described (in the limited
context we are considering) by theoretical probabilities Pθ(A, B|a, b, λ). The theory is local if there
exists a function Pθ(A|a, λ) such that

∀ b, Pθ(A|a, b, λ) = Pθ(A|a, λ). (1)
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and likewise for Bob.
Others have argued [11–14], to the contrary, that this definition does not fit with the other

use Bell makes of the concept of locality in his 1964 paper, which is the first paragraph of his
Section II. There Bell implies that, according to the EPR argument [15], locality plus perfect correlations
of outcomes implies predetermination. This shows, if nothing else, that Bell did think, in 1964,
that locality was an assumption that had meaning prior to the assumption of predetermination.
However, the obvious meaning, Equation (1), does not work in the EPR argument. Even one of Bell’s
most ardent admirers [13] was forced to admit this [14]:

It is simply not clear how to translate Bell’s words here (about locality) into a sharp
mathematical statement in terms of which the EPR argument might be rigorously rehearsed.
. . . [I]t must be admitted that Bell’s recapitulation of the EPR argument in this paragraph
leaves something to be desired.

Regardless, is there really a problem here? Bell does not say that he believes that locality plus
perfect correlations implies predetermination. He merely says, at the beginning of that paragraph,
“. . . the EPR argument is as follows” (my emphasis). In the preceding (opening) paragraph he is even
weaker: “The paradox of Einstein, Podolsky and Rosen was advanced as an argument . . . ” (my emphasis
again). In a follow up paper in 1971 [16], Bell is weaker still. He gives three motivations for the
assumption of predetermination (in a section entitled, unambiguously, “Motivations”). An EPR-style
argument is the third motivation; he does not claim any logical deduction from locality but merely
appeals to the intuition of the reader for the reasonableness of predetermination by hidden variables
(see Reference [6] for details). The 1969 paper of CHSH [17] seems actively skeptical of the EPR
argument, saying it “led them to infer that quantum mechanics is not a complete theory” (my emphasis).
It is thus clear that, at this time, the EPR argument was far from being regarded as a rigorous proof for
the necessity of hidden variables. (For a discussion of the extent to which the EPR argument is such
a proof, see Reference [18].)

The situation with regard to the EPR argument changed rapidly, at least in Bell’s mind, after
he formulated, in 1976 [19], a concept that does allow one to infer predetermination from perfect
correlations. This was the concept of “local causality”, stated most succinctly in a later paper [20]

A consequence . . . of “local causality” [is] the outcomes [in the two labs] having no
dependence on one another nor on the settings of the remote [measurement], but only on
the local [measurement settings] and on the past causes.

In the situation considered above, a theory is “locally causal” only if there exists a function
Pθ(A|a, λ) such that

∀ b, B, Pθ(A|a, B, b, λ) = Pθ(A|a, λ), (2)

and likewise for Bob. Note the appearance of B as a conditional variable on the left hand side, which
distinguishes this concept from “locality” in Equation (1). Moreover, this assumption obviates the
need to consider determinism at all—it leads directly to the Bell inequalities that quantum mechanics
violates. Thus, Bell gave what I have called [2] Bell’s second Bell’s theorem, in 1976 [19]:

Quantum mechanics. . . gives certain correlations which . . . cannot be [reproduced by] a
locally causal theory.

Bell clearly (and, I think [2,3], rightly) thought local causality to be a more natural concept than
locality as per Equation (1), as he never used the latter concept again. Regrettably, however, he did
not abandon the word “locality”. Rather, beginning even in 1976 [19], he sometimes used “local”
as short-hand for “locally causal”, and, a few years later, was apparently convinced that local causality
was the concept that he (and EPR) had always used [21] (for details, see [2]). However, at least in his
final word on the subject [20], Bell showed his preference unequivocally for the terminology “local
causality” over “locality”.

256



Entropy 2018, 20, 567

Thus we may return to the primary question posed above—Is the universe local or nonlocal? If by
“locality” one means “locally causal”, the concept Bell promoted for most of his career in quantum
foundations [22], then the answer (barring more exotic possibilities such as “superdeterminism” [20],
retrocausality [23], and the subjectivity of macroreality [24]) is that the universe is nonlocal; it violates
local causality. To avoid confusion, we might agree to say that the universe is Bell-nonlocal [2]. If, on
the other hand, one adopts the definition of “local” indicated by Bell’s 1964 paper and commonly
used in text books [25,26], then the answer is that we cannot say whether the universe is local or
nonlocal. Operational quantum mechanics satisfies this weaker sense of locality, simply because it
does not feature signalling faster than light, and denies the need for giving any account for quantum
correlations beyond an operational one. We can only say that the universe is nonlocal, in this strict
sense, if we make some other assumptions about its nature, such as determinism.

3. David Bohm’s Legacy: Permission to Theorise Radically New Conceptions of Reality

The most famous quantum theory which does make the assumption of determinism is of course
David Bohm’s [4,5]. Indeed, Bohm’s theory was an inspiration to Bell who summarised the result of
his 1964 paper in the introduction-cum-abstract as

[A] hidden variable interpretation of elementary quantum theory [4,5] has been explicitly
constructed. That particular interpretation has . . . a grossly nonlocal structure. This
is characteristic, according to the result to be proved here, of any such theory which
reproduces exactly the quantum mechanical predictions.

Why Bell considered Bohm’s interpretation to be “grossly nonlocal”, rather than nonlocal
simpliciter, is unclear. Perhaps it was because the theory is nonlocal even in situations where there is an
obvious local hidden variable theory, as in the EPR-correlations [15], or the EPR-Bohm correlations [27].

Unlike operational quantum mechanics, Bohm’s theory is a precise and universal physical theory.
Restricting to the case of interacting nonrelativistic scalar particles for simplicity of discussion, it takes
the universe to be described by a universal wavefunction Ψ(q), obeying Schrödinger’s equation, where
q is the vectorised list of the coordinates of all the particles. However, it also postulates a single point
in configuration space, x, which encodes the real positions of all these particles. This “marvellous
point” [28] or “world-particle” [29] has a deterministic equation of motion ẋ = vΨ(x) guided vicinally
by Ψ(q). (Note that “vicinal” is a synonym of “local” in the latter’s quotidian sense, introduced
here to avoid any possible confusion with “local” in the technical sense defined in Section 2.) Here,
“vicinal guiding” means that the world-particle’s velocity vΨ(x) depends on Ψ(q) and finitely many
derivatives, evaluated at q = x. However, vicinal in configuration space is not vicinal in 3D space—the
positions of Bohmian particles in one region of 3D space can affect the motion of an arbitrarily distant
particle if entanglement is present. Since it is the position of Bohmian particles that encodes what an
experimenter decides to measure, this gives rise to the ‘gross’ nonlocality of Bohmian mechanics which
Bell noted in 1964.

Bohm’s original proposal [4,5] actually used a second-order dynamical equation ẍ = avicinal(x)+ aΨ(x).
The 3D-vicinal acceleration avicinal(x) is given by Newton’s laws, involving inter-particle potentials
which drop off with 3D-distance. The nonlocal effects in Bohm’s theory arise from a separate,
3D-nonvicinal, quantum acceleration aΨ(x). Bohm’s publication of an explicitly nonlocal theory
seems to have made it acceptable for other physicists to publish realist approaches to quantum
mechanics in direct opposition to the Copenhagen interpretation. This included: de Broglie in 1956 [30],
reviving his unpublished idea from 30 years earlier which prefigured much of Bohm’s work and used
the first-order dynamics described earlier; and Everett in 1957 [31], introducing the relative state
interpretation, more popularly known as the many worlds interpretation.

Taking inspiration from both Bohm and Everett, two of us plus Deckert introduced in 2014 [29]
what we called the Many Interacting Worlds (MIW) approach to quantum mechanics. We suggested
that it might be possible to reproduce quantum phenomena without a universal wavefunction Ψ(q)
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(except to define initial conditions). In its place we postulated an enormous, but countable, ensemble
X =

{
xj : j

}
of points xj in configuration space (similar ideas have been proposed earlier by a number

of authors [32–35], but they considered a continuum of worlds, which, in our view, leads to some
of the same conceptual issues that Everett’s interpretation faces—see also [36]). Each point is a
world-particle, just as Bohmian mechanics postulates, and the dynamics is intended to reproduce a
deterministic Bohmian trajectory for each world-particle. However, the trajectory of a world-particle is
guided not by a wavefunction, but by the locations of nearby world-particles in configuration space:
ẍj = avicinal(x) + aMIW(Nj), where Nj ⊂ X is the set of world-particles in the vicinity (somehow
defined) of world-particle xj, and aMIW is some fixed (j-independent) function describing the
interaction of many worlds.

In the MIW approach, probabilities arise only because observers are ignorant of which world xj
they actually occupy, and so assign an equal weighting to all worlds compatible with the macroscopic
state of affairs they perceive, in accordance with Laplace’s principle. In a typical experiment, where the
outcome is indeterminate in operational quantum mechanics, the final configurations of the worlds in
the MIW approach can be grouped into different subsets, Xo ⊂ X of world-particles, still extremely large
in number, based on shared macroscopic properties corresponding to the different possible outcomes o.
In Everett’s approaches, these groups correspond to branches of the universal wavefunction, and one
has to argue that the square modulus of the coefficient of each branch somehow manifests as the
correct probability for the experimenter. In the MIW approach, the operational quantum probabilities
will be equal to the number of worlds in each group divided by the number of worlds at the start.

4. Nonlocality in the Many Interacting Worlds Approach

4.1. General Considerations

Just as Bohmian dynamics is vicinal in configuration space but gives rise to nonlocality in 3D
space, so too is the type of MIW dynamics just described. Indeed, it must be nonlocal because,
like Bohmian mechanics, it is deterministic. However, we can be more specific about how this
nonlocality, in Bell’s 1964 sense, arises in the MIW approach.

Consider a branch ΨE (in the Everettian sense) of the universal wavefunction Ψ. In the MIW
approach, such a branch will correspond to a subset XE ⊂ X of world-particles, still extremely large
in number, that are close together (on a macroscopic scale) in configuration space and mostly far
(on a macroscopic scale) from the rest of X. Thus, to a good approximation, this set of world-particles
will evolve autonomously, on the time scale of interest.

Now consider a particular world-particle, xj ∈ XE, and a particular part of the vector xj,
comprising a lower-dimensional vector bj, that contains the variables that encode the macroscopic
fact of the decision by an experimenter, Bob, about what experiment to perform. That is, the decision
is the same in every world under consideration here. However, there is no reason in the theory for
bj to be correlated with the other variables in xj, until the experiment is actually performed. Once it
is performed, the value of bj will have a direct (second-order in time) effect on the vicinal (in the
3D sense) variables in xj, say Bj. Then, in the MIW approach, the change in Bj will cause a change
(again second-order in time) in xk ∈ Nj (note that Nj is only a tiny subset of XE). Now say that in ΨE,
there is entanglement between the system corresponding to Bj, and a distant system corresponding
to some other observables Aj. Then the change in xk will be a change not just in Bk but also in Ak.
This is because the MIW acceleration function aMIW pays no heed to vicinality in the 3D sense—it cares
only about the fact that the worlds xk ∈ Nj are in the vicinity of the world xj in configuration space.
Finally, the same interaction will cause a (second-order in time) change in Aj, the distant observables
in the original world j, since for at least some of the xk ∈ Nj we will have xj ∈ Nk.

Thus it is clear in principle how the MIW approach can give rise to nonlocality in Bell’s 1964
sense, with Bob’s choice bj causing a change in the variables Aj, variables which correspond to the
outcome observed by Alice in her distant, perhaps even space-like separated, lab, all in the same world
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j. It might seem that Bob could use this to signal to Alice faster than light. However, that is not so, for
essentially the same reason that signal-locality is respected in Bohmian mechanics. Alice and Bob are
ignorant of which world j they inhabit. They know only the macroscopic configuration XE in which
their world must lie. A successful MIW theory would thus exhibit nonlocality at the hidden level of an
individual world, but not at the observable level, averaging over all the worlds in XE.

4.2. Simulations

Can we explicitly simulate this in our MIW approach, showing, for example, the violation of a Bell
inequality, or even just the EPR paradox, without signalling? Here we run up against the limitations in
the development of our approach.

In our 2014 paper [29], we introduced a toy MIW theory to describe a very simple universe,
comprising a single particle in 1D. We showed analytically that, in the limit of a large number of worlds,
it gave the correct ground state distribution for a harmonic oscillator, and the correct description for the
first and second moments of free particle evolution. We showed numerically that it could reproduce,
at least qualitatively, the double-slit interference phenomenon. Furthermore, we argued that it can
plausibly reproduce other generic quantum phenomena such as barrier tunnelling and reflection.

To demonstrate nonlocal correlations between measurements on distant quantum systems, we
obviously require more than one particle. One might think one would require particles to model
the measuring apparatuses as well as having at least two entangled particles. However, since the
position of a particle is reified in the MIW approach, similarly to Bohm’s theory [4,5], a particle can
always represent its own measured position (this differs from its momentum, as any measurement
of momentum will rely on the action of the quantum potential in Bohm’s theory, or the interworld
interaction potential in our approach). Moreover, if we consider a particle on a spring, with an
externally controllable spring constant k, then either its initial position or its initial momentum can be
encoded in position at a nominated time. This is because such evolution turns momentum information
into position information at time T/4 = (π/2)

√
m/k, and back into position information at time T/2.

(Alternatively, the same can be achieved even by free evolution with an externally controlled mass m,
an assumption which does not violate any of the MIW framework. By reducing the mass, the time
taken for the momentum to be encoded into the position can be made arbitrarily small; by increasing
the mass, the position remains as it was initially to an arbitrarily good approximation. Thus, either
position or momentum could be measured at a nominated time.) In this way, nonlocal correlations can
be explored with a world of just two 1D particles. This scenario could be used not only to demonstrate
the EPR paradox, but also Bell nonlocality, as proven by Bell himself in 1986 [37].

Recently, we have generalised MIW for a 2D particle, which is equivalent to two 1D particles, with
some numerical success [38]. However, that study was restricted to finding ground states—stationary
states with no nodes in the wavefunction. The same paper did consider finding the first excited states
for a 1D particle, but only for symmetric potentials for which the node at x = 0 can be put in by
hand. This restriction was necessary because, it is now clear, the toy MIW model of Reference [29]
cannot reproduce stationary excited states at all. More generally, it cannot be expected to quantitatively
reproduce dynamical quantum evolution in which nodes appear and disappear. In the proposal of
Bell [37], to violate a Bell inequality by free evolution of two entangled particles, the required initial
wavefunction has two nodes and can be expected to develop more during evolution. Thus, to study
nonlocality in the MIW approach we certainly need to go beyond the toy model of Reference [29].
Progress in this direction is the topic of the next two sections.

5. MIW Beyond the Toy Model

The MIW toy model, for a nonrelativistic 1D quantum particle of mass m moving in a potential
V(q), has N worlds each containing a 1D particle. Denoting the positions and momenta of these
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world-particles by X = (x1, x2, . . . , xN) and P = (p1, p2, . . . , pN), their motion is described in the toy
model by a Hamiltonian of the form [29]

H(X, P) =
N

∑
n=1

(
(pn)2

2m
+ V(xn)

)
+ Utoy(X). (3)

The first term is just the sum of N classical Hamiltonians, one for each world. It is the
second term, a potential energy responsible for interactions between the worlds, which accounts
for quantum phenomena:

Utoy(X) =
h̄2

8m

N

∑
n=1

(
1

xn+1 − xn
− 1

xn − xn−1

)2
. (4)

For evaluation purposes we formally define x0 := −∞ and xN+1 = ∞, and the ordering
x1 < x2 < · · · < xN has been assumed (this ordering is preserved under time-evolution, due to the
repulsive nature of the potential). The motion of each world-particle is determined by the usual
Hamiltonian equations of motion, i.e.,

ẋn =
∂H
∂pn

= m−1 pn, ṗn = − ∂H
∂xn

= −V′(xn)−
∂Utoy

∂xn
. (5)

Note that the interworld potential Utoy(X) vanishes in the classical limit h̄ = 0, and also for
the case N = 1. In either of these cases, each world evolves independently, according to Newton’s
laws. More generally, however, for h̄ 
= 0 and N > 1 the interworld potential Utoy(X) leads to forces
on each world that act to reproduce quantum phenomena such as Ehrenfest’s theorem, spreading
of wave packets, tunneling through a barrier, and interference effects [29]. For the case of a 1D
oscillator, V(q) = 1

2 mω2q2, it has further been shown, in the limit N → ∞, that the average energy
per world of the MIW ground state converges to the quantum groundstate energy 1

2 h̄ω [29], and that
the corresponding stationary distribution of worlds samples the usual quantum Gaussian probability
distribution [29,39].

The form of Utoy(X) in Equation (4) above is a sum of three-body terms, leading to a force
on the n-th world that depends on the positions of the two neighbouring worlds on either side.
However, while this form is sufficient to reproduce the quantum phenomena noted above, we have
found that it is too simple to model the behaviour of quantum wave functions with nodes.
Hence, as noted in the previous section, we must turn to more complex forms of the interworld
potential, involving interaction between greater numbers of neighbouring worlds.

Fortunately, there is a great deal of freedom in choosing this potential in the MIW approach. It is
possible this freedom could be curtailed via suitable physically-motivated axioms (such as, for example,
requiring Ehrenfest’s theorem to hold). Here, however, we take a nonaxiomatic approach, to show
how the interworld potential of the toy model can be straightforwardly generalised to allow direct
interactions between an arbitrary number of worlds, in a manner corresponding to greater accuracy
in approximation of the Bohmian acceleration. This greater accuracy supports a corresponding
expectation of being able to successfully model wave function nodes.

In particular, it was shown in section II.D of Reference [29] that a suitable general form for the
interworld potential in the 1D case is obtained by replacing Utoy(X) in the Hamiltonian (3) by

U(X) =
h̄2

8m

N

∑
n=1

(
P′n
Pn

)2

, (6)

where Pn and P′n are approximations to a probability density P(q) at q = xn, and where P(q)
corresponds to some smoothing of the empirical distribution of the world positions {x1, x2, . . . , xN}.
Equation (6) may be regarded as an approximation of the quantum potential in Bohm’s theory [4,5]
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(for which P(q) = |Ψ(q)|2), and hence is expected to reproduce quantum evolution more and more
closely as this approximation is improved. The toy model potential in Equation (4) is the simplest such
approximation [29].

To go to higher order approximations, we tried two different methods. The first we call the
rational smoothing method and the second the equivariance method. In rational smoothing we take
a systematic approach to approximate P(q) and its derivative by ratios of polynomials, where the
order of these polynomials determines the number of neighbours that each world directly interacts
with. This approach is developed in the next subsection, followed by an example. It will be applied to
the description of nodes in Section 6.2. rational smoothing is less computational resource-intensive
compared to the equivariance Method. The latter is discussed in Appendix A.

5.1. Constructing Generalised Interworld Potentials

If P(q) is some smooth probability density as above, which approximates the distribution of
world positions, {x1, x2, . . . , xN}, then the cumulative distribution C(x) :=

∫ x
−∞ dq P(q) must satisfy

(at least approximately)

C(xn) =
∫ xn

−∞
dq P(q) = un :=

n− 1
2

N
(7)

Thus, the area under P(q) is divided into N neighbourhoods, each containing one world and
having area 1/N. It will be assumed for simplicity that P(q) is nonzero almost everywhere, implying
that C(x) is strictly monotonic and hence invertible.

To systematically approximate the quantum force at xn to a given accuracy, we first define the
inverse of the cumulative distribution by y(u) := C−1(u). It follows immediately from Equation (7) that

xn = y(un). (8)

Further, differentiating u = C(y) with respect to y and using d/dy ≡ (1/y′)(d/du), gives
P(y) = 1/y′, P′(y) = −y′′/(y′)3, and hence that

P′(y)
P(y)

= − y′′

(y′)2 . (9)

Our aim is now to approximate this last expression by a function of the world positions, and then
substitute this approximation into the right hand side of Equation (6) to obtain a corresponding form
for the interworld potential U(X).

In particular, expanding y(un+c) in a Taylor series about y(un) gives the approximation

xn+c − xn = y(un+c)− y(un) ≈
L

∑
l=1

1
l!

( c
N

)l
y(l)n (10)

to accuracy O(1/NL), where y(l)n denotes the lth derivative of y(u) at u = un. The first L derivatives of
y can therefore be approximated to this accuracy by choosing a set of coefficients {αcl} such that

∑
c

αcl cl′ = l! δll′ , l, l′ = 1, 2, . . . , L. (11)

It is shown how to construct suitable {αcl} below. Equations (10) and (11) immediately yield
the approximations

y(l)n

Nl ≈ ∑
c

αcl (xn+c − xn), (12)

accurate to O(1/NL), for l = 1, 2, . . . , L. Finally, substitution into Equation (9) and hence into
Equation (6) gives the corresponding interworld potential,
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Uα,L(X) =
N

∑
n=1

Uα,L,n(X) =
h̄2

8m

N

∑
n=1

{
∑c αc2(xn+c − xn)

[∑c αc1(xn+c − xn)]
2

}2

. (13)

Note that this interworld potential is translation invariant, and scales as 1/λ2 under xn → λxn.
It follows that analogues of Ehrenfest’s theorem and wavepacket spreading hold for all such
potentials [29].

An advantage of Hamiltonian based methods is that we can use a symplectic numerical integrator
to make sure that the total energy is conserved [40]. The quantum force for the mth world-particle can
be calculated from Equations (5) and (13) as:

fm = −∂Uα,L(X)

∂xm
= −

N

∑
n=1

∂Uα,L,n(X)

∂xm
. (14)

5.2. Examples

To obtain an explicit example of the interworld potential in Equation (13), let M denote an L× C
matrix with coefficients Mlc = cl , and A denote the C× L matrix with coefficients αcl , where c ranges
over some set of C integers. Equation (11) can then be written in the matrix form

MA = Δ := diag[1!, 2!, . . . , L!]. (15)

The existence of a solution requires C ≥ L. Further, since the values of αc1 and αc2 are required
in Equation (13), one must have L ≥ 2. The corresponding solution is then A = M−1Δ, where M−1

denotes the inverse of M for C = L, and a pseudo-inverse of M for C > L.
It follows that the simplest interworld potential constructed in this way corresponds to C = L = 2.

Labelling the two values of c by c = ±1 corresponds, via Equation (12), to approximating the
derivatives of y(xn) via the values of the nearest neighbours xn±1. Ordering the values of c as −1, 1,
the corresponding coefficients {αcl} in Equation (13) are then given by

A = M−1Δ =

(
−1 1

1 1

)−1 (
1 0
0 2

)
=

(
−1/2 1

1/2 1

)
. (16)

Surprisingly, this is not actually equivalent to the toy model of Reference [29], even though it
involves the same number of neighbours in the potential.

The simplest higher-order interworld potential corresponds to C = L = 3, but odd values of C
necessarily introduce an unphysical left-right asymmetry, with each world being coupled to different
numbers of neighbouring worlds on either side via Uα,L,n(X). To preserve symmetry we therefore next
consider the case C = L = 4. Labelling the four values of c by c = ±1,±2, the derivatives of y(xn) in
Equation (12) can be calculated with values of the nearest and next nearest neighbours xn±1 and xn±2.
If we order the values of c as −2,−1, 1, 2, the coefficients {αcl} in Equation (13) are then given by

A = M−1Δ =

⎛⎜⎜⎜⎝
−2 −1 1 2

4 1 1 4
−8 −1 1 8
16 1 1 16

⎞⎟⎟⎟⎠
−1 ⎛⎜⎜⎜⎝

1 0 0 0
0 2 0 0
0 0 6 0
0 0 0 24

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
1/12 −1/12 −1/2 1
−2/3 4/3 1 −4
2/3 4/3 −1 −4
−1/12 −1/12 1/2 1

⎞⎟⎟⎟⎠ . (17)
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6. Numerical Results

To test our higher-order methods against the original toy model, we apply them to the problem of
finding the ground and the first excited state of a harmonic oscillator. It is the latter, containing a node,
where the toy model fails and it is necessary to use a higher-order interworld potential. In this section
we use dimensionless configuration coordinates

Xn :=
√

2mω/h̄ xn (18)

and dimensionless times
T := ωt/2π, (19)

where ω is the harmonic oscillator frequency.

6.1. Toy Model

Figure 1b shows the result of applying the toy model in Equations (3) and (4) to the ground state of
a harmonic oscillator, corresponding to V(q) = 1

2 mω2x2. In this test we distributed 50 world-particles

with xn determined by inverting Equation (7) for the groundstate probability density P(0)
t (q) (Figure 1a).

We then evolved these under the single-particle harmonic oscillator potential 1
2 mω2x2

n and the quantum
interworld potential. We see that as expected for a stationary quantum potential, the classical and
quantum forces cancel each other and the world-particles stay stationary. The slight oscillations for the
world-particles near the boundary is due to differences between the toy-model and Bohmian potentials
in areas with high curvature and low sampling. These differences imply an exact stationary state for
the MIW potential that has slightly different values for the xn for any finite value of N [29].

However, if we distribute world-particles based on the probability density of the first excited
state of a harmonic oscillator (Figure 2a) and apply the same model, the world-particles will not stay
stationary as expected (Figure 2b). We also implemented the nearest-neighbour interworld potential
defined by Equation (17), and found very similar behaviour to the original toy model. That is, it fails
to support stationary configurations corresponding to excited energy eigenstates.

Figure 1. (a) 50 world-particles (that is, 50 different worlds describing a single particle) are distributed
based on the probability density of the ground state of a harmonic oscillator. (b) Trajectories of the
50 world-particles. As expected, the classical and quantum forces approximately cancel each other and
the world-particles stay approximately stationary. The slight oscillations near the boundary are due to
approximation of the Bohmian potential by the toy-model potential.
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The unsuccessful simulation results in Figure 3 show that the problem of the nodes cannot be
fixed by increasing the sampling. In the case of a node, because the probability density is zero, there is
always a second order curve between the two world-particles adjacent to the node that can never be
correctly estimated by toy model approximation. This leads to a poor approximation of the Bohmian
force for the world-particles near the node and instead of staying stationary the world-particles move
towards the gap and fill the gap.

The general problem with areas of low probability density, and in particular in the region of
the node of the quantum state at x = 0 in Figure 2a, is that sampling is low and nearest-neighbour
approximations are not valid for calculating the quantum potential. If the probability is low but
non-zero, theoretically, we can increase the number of worlds until we reach a good sampling in those
areas. To test the simulation with higher sampling, we tried 5000 worlds. To reduce the simulation time,
we only focused on the 20 world-particles around the node (Figure 3a). To apply the correct boundary
condition for truncated area, we kept five world-particles near each boundary artificially fixed.

Figure 2. (a) 40 world-particles are distributed based on the probability density of the first excited state
of a harmonic oscillator. (b) Trajectories for the first excited state of a harmonic oscillator using the
potential in Equation (4). The world-particles do not stay stationary. Particularly those near the node
move towards the middle and fill the gap.

Figure 3. (a) 5000 world-particles are distributed based on the probability density of the first excited
state of a harmonic oscillator. Only 20 world-particles around the node in the middle are shown.
(b) Trajectories of the world-particles for the initial distribution in (a). To apply the correct boundary
condition, we kept five world-particles, near each boundary, fixed and simulated the dynamics of the
remaining 10 world-particles in the middle. time-steps are 10−8. Since the nearest neighbours of the
node do not stay near the starting point and move to the middle of the node after approximately 0.1 of
a period, we did not continue the simulation for a full period. (c) The same test as (b) with time-steps
of 10−9. Thus, the failure of the simulation is not an artefact of large time-steps.
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6.2. Higher Order Potential

To test a higher order approximation, we applied the rational smoothing model in Equation (13)
for the case L = 4 (equivalent to a 5-world interaction), to the first excited state of a harmonic oscillator
with 5000 worlds. This corresponds to the example in Equation (17).

In the first test we kept all the worlds artificially stationary except for the two worlds around the
node. Figure 4 shows that these two middle worlds stay stationary which means that the quantum
potential for those is well approximated.

Figure 4. Simulation of only two worlds adjacent to the node for the first excited state of a harmonic
oscillator. The initial positions were set by considering 5000 worlds in total to describe the excited state.
To apply the boundary condition, the rest of the world-particles were kept fixed. For the evolution,
rational smoothing with L = 4 (equivalent to 5-world approximation) is used. Time step is 10−9.
The two world-particles stay stationary as expected.

In the second test we tried the same scenario but this time simulated 10 worlds around the node
and kept the rest stationary. Figure 5 shows that the simulation was successful in the sense that
world-particles stayed close to the starting position and did not move towards the gap i.e., the low
density region, corresponding to a node of the associated excited state, is preserved by the interaction,
and the evolution is approximately stationary. The obvious difference compared to Figure 4 is the
oscillations around the starting point. The oscillations appear chaotic, as might be expected for a system
of nonlinearly coupled harmonic oscillators. These oscillations might also be due to the time step being
too long. We were not able to test this conjecture because the test in Figure 5 took a few days on our
desktop computer and, due to time constraints, we could not run it with smaller time steps.

We repeated the same test with 7-worlds approximation (L = 6). Figure 6 shows that this higher
order approximation decreases oscillation compared to the results in Figure 5. Hence, the simulation
of a wave function with nodes, which failed for the toy model (Figures 2 and 3), is seen to become
more and more accurately modelled in the MIW approach as the number of directly interacting worlds
is increased (Figures 5 and 6).

Similar convergence might also be possible with the equivariance Method presented in
Appendix A. However, the results of the simplest test, with a potential involving five interacting
worlds, were not as positive as those of the rational smoothing explored in this section. They are also
more numerically intensive, so we did not pursue it further.
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Figure 5. Simulation of 10 worlds (rather than two, as in Figure 4), five on either side of the node for
the first excited state of a harmonic oscillator. Other details are as in Figure 4.

Figure 6. Simulation of the first excited state of a harmonic oscillator with rational smoothing, L = 6,
(7-world approximation). Other details are as in Figure 5. The oscillations are much smaller than those
in the L = 4 approximation in Figure 5.

7. Conclusions

Bell’s theorem of 1964 showed that any deterministic interpretation of quantum mechanics must
be nonlocal (Section 2). Bohm’s theory of 1952 is the example par excellence of a nonlocal, deterministic
theory (Section 3). The theoretical approach we introduced in 2014—Many Interacting Worlds—is
also deterministic and, if it is to succeed in replicating Bohmian mechanics (and thus all quantum
phenomena), must be nonlocal (Section 4). It is conceptually clear how an interworld potential can
lead to nonlocality in Bell’s 1964 sense, and, perhaps surprisingly, this could in principle be simulated
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with a universe of only two particles, in 1D (one spatial dimension), if an externally controlled spatially
localized potential is allowed, as discussed in Section 4.

Unfortunately, this proof-of-principle simulation of Bell-nonlocality cannot be done using the toy
model for an interworld potential introduced in Reference [29]. The reason is that it cannot deal with
wavefunctions having nodes, and nodes are certainly necessary for modelling the entangled states
and measurements necessary for violating a Bell inequality [37]. When one prepares a distribution
of worlds, in one dimension, corresponding to a stable excited quantum state, the dynamics of
the toy model causes the gap between worlds where the node should collapse, and no stationary
configuration is reached. Dealing with nodes is a problem in many quantum simulation methods
based on Bohmian mechanics [41]. Nodes should not be a problem for interpretations involving a
continuum of worlds [32–35], as they are formulated to be exactly equivalent to quantum mechanics.
However, as remarked in Section 3, our view is that these interpretations do not solve the conceptual
problems of the Everettian many-worlds interpretation.

Here we showed that this problem of nodes in our discrete MIW approach may not be
fundamental, but rather may be a result of using a too simple form for the inter-world interaction
potential. By using a higher-order approximation to define our interworld potential from Bohm’s
quantum potential, we were able to show that a gap in the configuration of worlds, corresponding
to the node of the first excited harmonic oscillator energy eigenstate, can remain open for at least
a full harmonic oscillator period, and perhaps indefinitely. The world configurations were not exactly
stationary, but rather had high frequency irregular oscillations. However, by increasing the order of
the approximation, the size of the oscillations could be reduced.

Our simulations considered only the dynamics near the node, with more distant worlds artificially
held fixed. Whether the node would remain stable if all worlds were allowed to evolve according
to the MIW dynamics is an open question. In addition, our simulations were restricted to one
particle in 1D. The MIW approach has been successfully used to simulate one particle in 2D
(or, equivalently, two particles in 1D) [38,42] and 3D [42], but only to find the ground state configuration.
Combining these research directions to be able to simulate stable excited states for two particles in
1D, and beyond, is a challenge for future work. Finally, to realise a simulation of the Bell experiment
described in Section 4 would require simulating not just stationary nodes but also dynamical nodes,
that may appear and then disappear in an instant, which are notoriously difficult to deal with in
Bohmian-inspired numerical approaches [41]. Thus, much work remains to be done, but the positive
results reported here are encouraging.
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Abbreviations

The following abbreviations are used in this manuscript:

MIW Many Interacting Worlds
EPR Einstein, Podolsky, and Rosen
1D One (spatial) dimension
2D Two (spatial) dimensions
3D Three (spatial) dimensions

Appendix A. A Equivariance Method

Here we introduce an alternative higher order method to rational smoothing, motivated by the equivariance
property of Bohmian mechanics [11]. In particular, for a given configuration of worlds, {x1, x2, . . . , xn}, we
construct a smooth polynomial probability density, Pn(x), in the region of each world xn, and use this to
approximate the Bohmian potential. The coefficients of the polynomial are determined by requiring that area
under Pn(x) between xn and xn+1 is equal to the constant value 1/N for each world, analogously to Equation (7).
The accuracy of this equal-probability or “equivariance” method will increase with the degree of the polynomial.

Here we will illustrate the equivariance method for the case where Pn(x) is third-order, corresponding to
direct interactions between sets of five adjacent worlds. Thus,

Pn(x) = an + bnx + cnx2 + dnx3. (A1)

The equivariance method then requires that∫ xn+1

xn

Pn(x)dx = const. = N−1. (A2)

To determine the coefficients of Pn(x) in Equation (A1), we use four equations below based on the positions
of the five worlds, xn−2, xn−1, xn, xn+1 and xn+2:∫ xn−1

xn−2

Pn(x)dx = N−1 (A3)

∫ xn

xn−1

Pn(x)dx = N−1 (A4)∫ xn+1

xn

Pn(x)dx = N−1 (A5)∫ xn+2

xn+1

Pn(x)dx = N−1 (A6)

Substituting Pn(x) from Equation (A1) and evaluating the integrals we get

an (xn−1 − xn−2) + bn
1
2 (x2

n−1 − x2
n−2) + cn

1
3 (x3

n−1 − x3
n−2) + dn

1
4 (x4

n−1 − x4
n−2) = N−1

an (xn − xn−1) + bn
1
2 (x2

n − x2
n−1) + cn

1
3 (x3

n − x3
n−1) + dn

1
4 (x4

n − x4
n−1) = N−1

an (xn+1 − xn) + bn
1
2 (x2

n+1 − x2
n) + cn

1
3 (x3

n+1 − x3
n) + dn

1
4 (x4

n+1 − x4
n) = N−1
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If we define matrix Kn as
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we can rewrite Equation (A7) as

Kn

⎛⎜⎜⎜⎝
an
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dn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
N−1

N−1

N−1

N−1

⎞⎟⎟⎟⎠ . (A9)

Therefore: ⎛⎜⎜⎜⎝
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cn

dn

⎞⎟⎟⎟⎠ = K−1
n
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N−1

N−1

N−1

N−1
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We used Matlab to invert Kn and find coefficients an, bn, cn, and dn. The resulting equations were too lengthy to
include here. Substituting these coefficients into Equation (A1), we can find the probability.

To evaluate the quantum force, we use an interworld interaction potential of the form of Equation (6) and Pn

as in Equation (A1) (with an, bn, cn and dn taken from (A10)) to give

U =
h̄2

8m

N

∑
n=1

(
bn + 2cnxn + 3dnx2

n
an + bnxn + cnx2

n + dnx3
n

)2

. (A11)

This may be compared with the corresponding interaction potential Uα,L in Equation (13) obtained via
rational smoothing. The quantum force on each particle is evaluated similarly to Equation (14). We used Matlab
to evaluate the analytical derivatives of these terms for the simulation. The resulting equation is too lengthy to
include here (c. 360,000 characters for N = 5).

Figure A1 shows the result of applying the equivariance method to the first neighbours of the node in the
first excited state of a harmonic oscillator. It shows that these world-particles do not move into the gap from their
original position, but rather undergo some oscillatory motion. This is poorer behaviour than the corresponding
rational smoothing simulation shown in Figure 4. The simulations were also slower because of the complexity of
the analytical form of the force law, mentioned above. For these reasons we have not pursued this method further.

Figure A1. The first excited state of a harmonic oscillator is simulated using 5-world approximation in
equivariance Mmethod. Five-thousand worlds are used and only the two world-particles next to the
node are simulated. The rest are kept stationary, similar to Figure 4 for the rational smoothing case.
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Abstract: Since the discovery of Bell’s theorem, the physics community has come to take seriously the
possibility that the universe might contain physical processes which are spatially nonlocal, but there
has been no such revolution with regard to the possibility of temporally nonlocal processes. In this
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quantum foundations. We investigate the origins of the assumption, arguing that it has arisen for
historical and pragmatic reasons rather than good scientific ones, then explain why temporal locality
is in tension with relativity and review some recent results which cast doubt on its validity.
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1. Introduction

Since the discovery of Bell’s theorem [1], the physics community has broadly come to take
seriously the possibility that the universe might contain physical processes which are spatially nonlocal.
However, there has been no such revolution with regard to “temporal locality”, i.e., the assumption
that the probabilities attached to the outcomes of a measurement performed at a given time depend
only on the state of the world at that time. Indeed, temporal locality remains almost ubiquitous in the
way that scientists think about science and about what constitutes a reasonable scientific hypothesis.

An assumption so widespread and yet so infrequently justified is in serious danger of becoming
a dogma. While it is true that temporal locality has previously been recognised as problematic by
parts of the physics community, we argue that this recognition is not sufficiently widespread and that
the assumption is actively limiting progress in the field of quantum foundations. In this article, we
investigate the origins of this way of thinking about physics, arguing that it has become dominant
for historical and pragmatic reasons rather than good scientific ones. We then explain why temporal
locality is in tension with relativity, and review some recent results which cast doubt on the status of
temporal locality in modern physics.

2. Temporal Locality

2.1. Definition

In seeking to set out a definition of temporal locality, a natural starting point is the standard
mathematical definition of spatial locality [2,3]:

Definition 1. Spatial Locality: Suppose that two observers, Alice and Bob, perform measurements on a
shared physical system: Alice performs a measurement with setting a and obtains a measurement outcome A,
while Bob performs a measurement with measurement setting b and obtains a measurement outcome B. Let λ be
the joint state of the shared system prior to the two measurements. Then:

p(A, B|a, b, λ) = p(A|a, λ)p(A|b, λ)

We can straightforwardly apply this language to the temporal case:
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Definition 2. Temporal Locality: Suppose that two observers, Alice and Bob, perform measurements on a
shared physical system. At some time ta, Alice performs a measurement with measurement setting a and at some
time ta + δ she obtains a measurement outcome A; likewise, at some time tb, Bob performs a measurement with
measurement setting b and at some time tb + δ he obtains a measurement outcome B. Let λ(ta) be the state of
the world at time ta and let λ(tb) be the state of the world at time tb. Then:

p(A, B|a, b, λ(ta), λ(tb)) = p(A|a, λ(ta))p(A|b, λ(tb))

The central idea of this definition is that in a temporally local world there would be “no action
at a temporal distance”, i.e., all influences on a measurement outcome would be mediated by the
state of the world immediately prior to the measurement. Of course, the definition does not lead to
any specific theoretical constraints without some specification of what is included in “the state of
the world at time t”, but in this article we will not single out any unique way of characterising this
state: instead, we will set out a range of options, acknowledging that there are a number of related
concepts floating around in modern physics which might reasonably be subsumed under the heading
of temporal locality.

It is helpful to approach this range of possibilities by describing some different ways in which
physics might fail to be temporally nonlocal. First, a theory might fail to be temporally local by
postulating non-Markovian laws, meaning that the results of a measurement at a given time can
depend on facts about earlier times even if there is no record of those facts in the state of the world
immediately prior to the measurement. Note that this is possible only within a theory in which the
state of the world at time t, if such a thing exists, does not always contain complete information
about everything that has happened before t. Alternatively, a theory might fail to be temporally
local by being retrocausal, meaning that the results of measurements at a given time may depend in
part on information about the future. We reinforce that retrocausality does not immediately imply
temporal nonlocality: a retrocausal theory is temporally nonlocal only if it tells us that the result of a
measurement can depend on facts about the future even if there is no record of those facts in the state
of the world immediately prior to the measurement. Therefore this type of temporal nonlocality is
possible only within a theory in which the state of the world at time t, if such a thing exists, does not
always contain complete information about everything that happens after t—in particular, it must
not be the case that the state of the world immediately prior to the measurement already contains a
record of the future outcome of the measurement, as for example in theories which are deterministic in
the traditional sense, meaning that the state of the world at a given time determines everything that
happens at later times. Finally, a theory might fail to be temporally local by being atemporal, meaning
that the course of history is determined “all at once” by external, global laws of nature, in much the
same way as the rules of the game of sudoku apply to the whole grid at once rather than dictating
the entries column by column from left to right. In such a theory, the result of a measurement at
a given time may depend on global facts even if there is no record of those facts in the state of the
world immediately prior to the measurement, and thus an atemporal theory will usually be temporally
nonlocal, unless of course the theory tells us that the state of the world at time t always contains
complete information about the history of the entire universe. Each of these alternatives singles out a
different sense of temporal (non-)locality, and all three raise interesting possibilities for new ways of
thinking about physics.

2.2. Motivation

Although physicists are certainly aware that the assumption of temporal locality is problematic,
as a methodological principle it remains very widespread in the field. Although, presumably, some
physicists would fight to the death for temporal locality, it seems likely that many others retain it
simply because they regard it as a harmless simplification. However, we argue that the assumption is
by no means harmless: temporal locality is deeply woven into many of the key results on which our
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present understanding of the interpretation of quantum theory is founded, and unpicking it would
require a radical reinterpretation of the significance of those results.

In particular, much recent work in quantum foundations has been based within the “ontological
models” framework introduced by Spekkens in [4], where it is supposed that every system has a
single real “ontic state”, which determines the probabilities for the outcomes of any measurement
on that system. An ontological model thus consists of a space Λ of ontic states λ, a set of probability
distributions μP(λ) giving the probability that the system ends up in the state λ when we perform
the preparation procedure P, a set of response functions �ξM,O(λ) giving the probability that we
obtain outcome O when we perform measurement M on a system whose ontic state is λ, and a set
of column-stochastic matrices TX representing the way in which the ontic state is transformed when
some operation X is applied to the system. Note that talk of “ontic states” does not imply that we are
postulating the existence of hidden variables, because the “ontic state” could simply be the quantum
state [5]. It should also be reinforced that one can make use of the formalism of ontological models
without necessarily interpreting it as an attempt at a faithful representation of reality—Spekkens
himself prefers to regard it as a classification schema which enables us to give precise mathematical
definitions for concepts like contextuality [6]. Nonetheless, it seems to be the case that this formalism,
or something close to it, is often regarded as a description of reality, and indeed as the only possible
way of describing reality—for example, in [7], it is claimed that any model in which correlations are
not explained by appeal to ontic states should not really be regarded as a realist model at all.

The ubiquity of this method of analysis matters, because the ontological models framework is
explicitly temporally local. Not only that, temporal locality is the founding principle of the approach:
the entire project of constructing an ontological model is premised on the assumption that measurement
results must depend only on the information available in the ontic state at the time of the measurement.
Consequently, temporal locality is the keystone of a number of influential results parsed in the language
of ontological models, such as Spekkens’ generalized proofs of contextuality [4], the Colbeck–Renner
theorem [8], Hardy’s theorem [9], and the Pusey–Barrett–Rudolph (PBR) theorem [10].

As a case study, let us consider the PBR theorem, which states that no model in which the quantum
state is not an “element of reality” can reproduce all the quantitative predictions of quantum mechanics.
Now, the term “element of reality” is a reference to a definition set out by Harrigan and Spekkens [11],
but although this definition refers only to instantaneous facts, the proof of the PBR theorem depends
implicitly on assumptions not only about states at a given time, but about the persistence of those
states over time: PBR write that if there exists a set of four preparation procedures which all have
some probability of preparing the same ontic state, then when this state is prepared, “the measuring
device is uncertain which of the four possible preparation methods was used, and on these occasions it runs the
risk of giving an outcome that quantum theory predicts should occur with probability 0” [10]. This makes it
clear that the argument also requires the assumption that the outcome of the measurement can depend
on facts about the system’s preparation only via the mediation of an intervening state, so the PBR
theorem should really be glossed as follows: either the quantum state is ontological, or some quantum
measurement results must depend in a temporally nonlocal way on events at other times. In this
context, then, the assumption of temporal locality is decidedly non-trivial—for example, anyone who
wishes to push back against the ontological picture of quantum states should certainly be raising
questions about this assumption.

Moreoever, most mainstream interpretations of quantum mechanics, including the Everett
interpretation, spontaneous collapse models and the de Broglie Bohm approach, are prima facie
temporally local. (We do not mean to suggest that these models could not be phrased in a temporally
nonlocal way, nor even to assert that this has not already been done somewhere in the literature,
but it does seem to be the case that temporal nonlocality is not a central feature of any of these
interpretations). This suggests that fully embracing temporal nonlocality might open up untapped
possibilities for the interpretation of quantum theory, and hence the whole landscape of quantum
foundations becomes markedly different when temporal nonlocality is taken seriously.
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3. Origins

Given that temporal locality plays such a key role in our modern understanding of quantum
theory, it is important to understand the intellectual history of this idea. In this section, we argue
that a number of historical and psychological factors are likely to have contributed to its prominence;
indeed, temporal locality is, in a sense, built into the very structure of physics. Consider the long
tradition of presenting theories in terms of their kinematics (the space of physical states postulated by
the theory) and their dynamics (the set of laws by which these states evolve, according to the theory).
This distinction can be traced back at least to Newton, who may have been the first to make a clear
distinction between laws and initial conditions [12], and since Newton’s time the formulation has
become widespread: it is now almost mandatory to introduce a new physical theory by setting out
a space of physical states and a set of evolutionary laws [4]. However, a physical state is, almost
by definition, that which carries information from one time to another by means of its dynamical
evolution, and thus by employing this mode of presentation we are already very close to assuming
that information about one time can influence the results of measurements at other times only via a
mediating physical state, thus ruling out temporal nonlocality almost by fiat. Temporal locality is thus
very deeply ingrained in the way physicists are taught to think about physics.

There are also straightforward pragmatic reasons why temporal locality should have gained
such ascendancy in science. After all, we ourselves are local agents—if we wish to influence events
at a spatial or temporal distance we must do so via some spatiotemporally continuous process of
mediation—and the fact that these constraints are, for us, so immediate and insurmountable naturally
leads us to imagine that the laws of nature must be subject to similar constraints. The empirical results
of quantum mechanics, such as the violation of Bell’s inequality, have give us convincing reasons
to question the resulting attachment to spatial locality, but temporal nonlocality has not thus far been
subject to the same level of analysis and hence lives on in the ways we think and talk about quantum
mechanics. Furthermore, as scientists, our primary practical interest is in formulating laws which
enable us to predict the future given our knowledge of the present state of the world, and it is easy to
move from the fact that most of the laws proposed by physicists have this form to the conclusion that
the true underlying laws of nature must take the same form. However, it would be naive to suppose
that the true laws of nature look exactly like the type of laws that human agents are most interested in
formulating: as Wharton puts it: “There’s one last anthropocentric attitude that needs to go, the idea
that the computations we perform are the same computations performed by the universe”. Assuming
that our point of view is not central to the universe, it would be highly suspicious if the laws of nature
were to be arranged so conveniently for us.

It also seems likely that certain elements of temporal locality have their origin in the viewpoint
known in academic philosophy as “presentism”, which holds that the only things which are real
are the things which exist now [13–15]. A realist about science will clearly want to insist that
measurement results can depend only on things that are real, and hence a realist who subscribes
to presentism is compelled to believe that measurement results can depend only on facts about the
world immediately prior to the measurement. Presentism is a very old philosophical idea, appearing
in the writings of Aristotle and St. Augustine, and playing an important role in Buddhist philosphy,
although with the advent of special relativity it has gone somewhat out of vogue as an explicit
philosophical thesis: much has been written on the question of whether or not relativity makes
presentism untenable [16–19], but whether or not the two can be formally reconciled, they are certainly
in tension with one another. Nonetheless, although there are few modern physicists who would
self-describe as presentists, the intuitive picture of the present as somehow specially privileged remains
hard to shake, and it is likely that some element of this way of thinking contributes to the general
conviction that scientific theories should respect temporal locality.

We reinforce that although these historical and psychological observations go some way towards
explaining why our scientific theories tend to be temporally local, they do not offer any epistemic
justification for thinking that the world actually is temporally local. Of course, it may be the case
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that some epistemic justification can be provided, but if such a justification exists it is certainly not
commonly known and hence cannot be regarded as the main reason why our theories exhibit this
feature. This indicates that the prominence of temporal locality in our standard approaches to physics
may not be entirely rational and perhaps deserves greater scrutiny than it has thus far received.

The Pragmatic Argument

At this juncture, a defender of temporal locality might wish to suggest a different type of
justification, using pragmatic rather than epistemic arguments. In particular, one might worry that
if we accept that events at this moment may depend on events at any point in the past or future,
it will become very difficult to track all the variables which might be relevant to the outcome of an
experiment, and the whole scientific enterprise will be under threat. Indeed, similar objections were
raised by Einstein concerning spatial nonlocality [20]:

An essential aspect of this arrangement of things in physics is that they lay claim, at a certain
time, to an existence independent of one another, provided these objects “are situated in different
parts of space”. Unless one makes this kind of assumption about the independence of the existence
(the “being-thus”) of objects which are far apart from one another in space ... physical thinking in
the familiar sense would not be possible. It is also hard to see any way of formulating and testing the
laws of physics unless one makes a clear distinction of this kind.

However, despite Einstein’s concerns, it has not proven to be impossible to formulate a theory
which allows for spatial nonlocality, because the nonlocal relations between events are governed
by laws which enable us to identify regularities in patterns of dependence even between spatially
separated events. Likewise, in principle it would not be impossible to move forward with a theory
which allows for temporal nonlocality, provided that events at a time depend on events at other times
in some regular, formalisable way—indeed, we already have a way of tracking patterns of dependence
both temporally and spatially, since the quantum state gives a concise summary of all the information
about the history of a system which we know to be relevant to the results of future measurements
performed on that system. Therefore the assumption of temporal locality is not forced upon us by
practical considerations, and it behoves us to consider the possibility that an explicitly temporally
nonlocal theory might enable us to identify and track further regularities.

4. Relativity

In addition to these general concerns about epistemic rationality, there are also more specific
technical reasons to be sceptical about temporal locality. In particular, as we describe in this section,
temporal locality is in tension with both special and general relativity.

4.1. Special Relativity

The astute reader will already have noticed a problem with our definition of temporal locality:
special relativity tells us there is no unique, observer-independent fact about what constitutes the
state of the world at a given time [21], and hence the category “the state of the world at time t” is
not even well-defined. It is possible to dodge this problem if we are working with a theory which
is also spatially local, since the probabilities for the outcome at time t + δt of a measurement which
begins at a time t will then depend only on the state of the world at a fixed spacetime point, i.e., the
spatiotemporal location at which the measurement begins, which is well-defined even in a relativistic
context. However, the combination of spatial nonlocality, temporal locality and special relativity is
straightforwardly inconsistent, since an instance of spatial nonlocality becomes an instance of temporal
nonlocality under a change of reference frame.

This fact has consequences for many approaches to the interpretation of quantum mechanics. It is
the main stumbling block for the de Broglie–Bohm pilot wave interpretation of quantum mechanics,
which combines spatial nonlocality with temporal locality and consequently fails to be relativistically

276



Entropy 2018, 20, 41

covariant in its standard form [22]. Similarly, Tumulka recently put forward what was intended to
be a relativistically covariant version of the Ghirardi–Rimini–Weber (GRW) spontaneous collapse
model [23], based on Bell’s GRW flash ontology in which the point-like collapse events rather than
the quantum states are regarded as fundamental [24], but it was subsequently pointed out by Gisin
and Esfield that it is not possible to give a Lorentz invariant account of the temporal development of
the flashes, so this model is relativistically invariant only if “one limits oneself to considering possible
entire distributions of flashes, renouncing an account of the coming into being of the actual distribution
of the flashes” [25]. A theory with laws governing entire distributions of flashes, rather than the
temporal coming-into-being of the flashes, would be temporally nonlocal in the atemporal sense, and
hence it seems that a temporally nonlocal approach is more or less mandatory if one wishes to achieve
a Lorentz invariant version of the GRW flash ontology. A similar dilemma arises in the context of
causal set theory, which we will examine in detail in Section 6.2. We would conjecture that this point is
true more generally: to achieve relativistic covariance in an interpretation of quantum mechanics, it
will usually be the case that one has to abandon the notion of temporally local “coming-into-being.”
(The Everett interpretation might be raised as a counterexample, but since the evolution postulated by
the Everettian view takes place on configuration space rather than spacetime, it remains unclear what
one should say about temporal locality and “coming-into-being” in that theory).

4.2. General Relativity

This point is even clearer in General Relativity (GR), where a solution to the Einstein field
equations is not a state at a given time but rather an entire spacetime, a full history of a universe. It is
tempting in view of this fact to argue that general relativity forces us to take an atemporal, temporally
nonlocal viewpoint, but such a conclusion is not inevitable, because it has been shown that Einstein’s
equations are compatible with a well-posed initial value problem. We can split the Einstein equations
into a set of constraint equations (the equations for which both indices are spatial) and a set of evolution
equations (the equations for which one index is temporal); then, given a smooth three-manifold Σ
and a set of initial conditions on that manifold which satisfy the constraint equations, there exists
a unique globally hyperbolic solution to Einstein’s equations—obtained by evolving the conditions
on Σ forwards and/or backwards using the evolution equations—for which Σ is a Cauchy surface,
meaning that the conditions on this surface determine the future and past uniquely [26–28]. This
makes it possible to interpret general relativity as a temporally local theory with a kinematical state
space restricted to the set of states which satisfy the constraint equations and a dynamics given by the
evolution equations.

Of course, this reformulation will work in our actual universe only if the initial state of the
actual universe does indeed satisfy the constraint equations. Do we know that this is the case?
Arguably, yes—we know that on any hypersurface embedded in a spacetime which satisfies the
Einstein equations, the conditions on the hypersurface must satisfy the constraint equations [26–28],
so if we take it for granted that the universe as a whole satisfies the Einstein equations, then we
can conclude that the initial state of the universe must satisfy the constraint equations. Nonetheless,
something may be learned from considering the possibility of universes where the initial conditions do
not satisfy the constraint equations. A key feature of the initial value formulation is that the constraint
equations must be preserved under the evolution equations: if we vary the constraint equations while
keeping the evolution equations the same, then in general we will find that initial states belonging the
the kinematical state space will be taken to states outside the kinematical state space by dynamical
evolution. This means that dynamics and kinematics are not fully independent in the initial value
formulation of general relativity.

As Wharton points out [29], the traditional view of temporally local time evolution would have it
that the laws of nature really do work like an initial value problem: the universe is presented with
some initial state and must evolve it forward to produce a final state, just like a computer presented
with an initial value and programmed to predict some value at some later time. The computer is not
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allowed to refuse the given value on the grounds that this is not the type of problem it prefers to deal
with, and likewise, the dynamical laws of nature are not allowed to pick and choose the initial state on
which they operate. Thus, even though general relativity can be given an initial value formulation, it is
not at all clear that the traditional picture of temporally local time evolution can be maintained within
this formulation, and thus general relativity may fit more naturally within a temporally nonlocal
picture. (We pause here to note that general relativity is not the only theory in which a difficulty of
this kind arises; the set of allowed kinematical states in Maxwell’s electrodynamics is also subject to
constraint equations, about which, one presumes, similar arguments could be made. We do not regard
this as a weakness of our argument; indeed, it may be regarded as a further piece of evidence in favour
of the view that the laws of physics are in fact temporally nonlocal).

4.2.1. Objection: The Independence of Dynamics and Kinematics

One might object to the argument given in Section 4.2 on the grounds that the independence of
kinematics and dynamics on which the computational picture of the universe depends was never
really realised even in pre-relativistic physics—after all, in any reasonable theory, the set of kinematical
states must take a mathematical form such that the action of the dynamical laws is well-defined
on every state in the set, so kinematics and dynamics can never be wholly independent. Moreover,
the kinematics of a theory often makes ineliminable reference to dynamical quantities—witness the
appearance of velocities in the characterisation of Newtonian phase space [30,31]. To which we say,
first, so much the worse for the traditional view of time evolution! We will return to this theme in
Section 6.1; however, we will also note here that the dependence in general relativity is of a more
problematic kind. In Newtonian dynamics, a state belongs to the allowed kinematical set if and only if
the action of the dynamical laws is well-defined on that state. This is a simple mathematical feature
which can straightforwardly be regarded as a property of an individual state: it is, at least prima
facie, a temporally local property. On the other hand, in general relativity a state belongs to the allowed
kinematical set provided that it can be taken only into other members of the allowed kinematical set
under allowed dynamical evolutions. How is this set defined? Can we simply say that the actual initial
state of the world is chosen arbitrarily and the allowed kinematical set is then simply equal to the
maximal set of states into which this state can be taken by allowed dynamical evolutions? This would
restore the original picture in which the universe is presented with an initial state that it is not allowed
to refuse. However, such a move would be a reasonable only if it is the case that a generic initial state
will in this way give rise to an allowed kinematical set governed by a set of constraint equations which
are not only comparably simple (by some appropriate measure of simplicity) to the actual constraint
equations but which also can be unified with the actual dynamical equations in such a way as to
produce a GR-like theory which is comparably simple (by some appropriate measure of simplicity) to
the actual theory of GR; otherwise it would seem an implausible coincidence that we ended up with a
universe governed by the simple, elegant laws of general relativity from an arbitrarily selected initial
state. The argument thus hinges on a technical question whose answer is not presently known so for
now we will content ourselves with noting that the equations of general relativity were derived in large
part by appeal to the criterion of simplicity [32,33], and so it would seem quite surprising if there were
a multitude of equally simple theories which would split into two parts to give the same dynamical
equations but different constraint equations. If this move cannot be made, it seems as though the
“initial” state must have been singled out on the basis that it would give rise to a particularly simple
allowed kinematical set—which means that the choice of initial state actually depends on the state
of the universe later in its evolution, so temporal nonlocality seems to be sneaking in through the
back door.

4.2.2. Objection: Modality

One might also object to this argument of Section 4.2 on the grounds that there is something fishy
about the modal step. Indeed, the argument is superficially similar to a well-known argument due to
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Gödel, in which he argued that time cannot be absolute in general relativity because “the compatibility
with the laws of nature of worlds in which there is no distinguished absolute time ... throws some
light on the meaning of time also in the worlds in which an absolute time can be defined” [34].
This argument is regarded as problematic: in particular, the modal step has been challenged by
Earman, who pointed out that it is not clear that “absoluteness”, must be an essential property of time,
and therefore perhaps we should simply say that the status of time varies along with the distribution
of matter, so time is absolute in worlds where there is a distinguished absolute time and not absolute
in worlds where there can be no distinguished absolute time [35,36]. In the same way, one might object
to our appealing to worlds with different constraint equations but the same dynamical equations on
the grounds that perhaps the dynamical equation should be varied along with the allowed kinematical
set in such a way to ensure a suitably simple GR-like theory. However, the difficulty with the modal
step of Gödel’s argument stems precisely from the fact that in general relativity, spacetime and matter
are not independent and therefore it is not reasonable to expect that questions about the nature of
spacetime can be entirely divorced from facts about the constitution of matter in a particular universe;
by contrast, on the traditional conception of time evolution, kinematics and dynamics are supposed to
be independent, and therefore if this picture is correct it should be permissible to draw conclusions on
the basis of holding the dynamics constant and varying kinematics, as we have done here.

4.3. Objection: Spacetimes That Are Not Globally Hyperbolic

Finally, one might worry that since we have only discussed the Cauchy problem in globally
hyperbolic spacetimes, our argument might fail to go through if one allows the possibility of spacetimes
that are not globally hyperbolic. We will not consider this case in detail here, but it seems likely that
allowing spacetimes which are not globally hyperbolic would actually strengthen our argument. It is
known that some but not all spacetimes with closed timelike curves admit a well-posed initial value
problem, [37] yet a number of physicists have had the intuition that the laws of nature should not
allow the existence of closed timelike curves, and to achieve this within the initial value formulation
whilst not ruling out spacetimes which are not globally hyperbolic, it is necessary to place further
constraints on the initial conditions to ensure that no closed timelike curves can be produced under
the dynamical evolution [38]. Alternatively, one might want to allow closed timelike curves under
the stipulation that they must be self-consistent, meaning that they do not produce “grandfather
paradoxes” or comparable physical contradictions; and, again, this requires us to place constraints
on the initial conditions to ensure that the local initial state can be extended to be part of a global
solution which is well-defined throughout the non-singular regions of spacetime [38]. Either way, the
specification of the allowed initial conditions once again makes reference to what are most naturally
construed as global properties of an entire solution rather than temporally local properties of the initial
state, which seems to support the temporally nonlocal viewpoint.

5. Three Options for Temporal Nonlocality

In this section we return to the three types of temporal nonlocality that we identified in Section 2.1,
and review some relevant recent results.

5.1. Non-Markovian Laws

If the laws of nature do indeed prescribe a temporally local time evolution for the universe,
this evolution must have the Markov property—that is, it must be possible to determine the
probabilities for future evolution solely from the present state, without needing to know anything
about the history [39]. However, we have good reason to be cautious about the Markov property
in the context of quantum theories, because Montina has shown that any ontological Markovian
theory of quantum mechanics requires a number of variables which grows exponentially with the
physical size [40]. Montina concludes: “In order to avoid the exponential growth of the number of
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ontic variables, we have one possibility, to discard some hypotheses of the theorem. In our opinion,
the Markovian property is the only one sacrificable”.

Indeed, on reflection, it is clear that there is something rather strange about regarding quantum
mechanics as a Markov process. As a general rule, Markov processes lose information over time,
because details of the system’s history which fail to be recorded are subsequently no longer accessible.
However, the dynamics of unitary quantum mechanics is reversible, so if we take the quantum
formalism literally, we conclude that in the absence of measurement, information about the past is
never strictly lost—it just gets more and more spread out due to decoherence. Moreover much of this
information will end up being stored in global properties of highly entangled systems which cannot be
reduced to collections of properties of individual systems [41–43], so under the Markovian assumption
we are forced to say that the information ends up stored in a “state” which is nonetheless not the state
of any specific thing. However, if the formalism tells us that no information about the past is ever lost
(except possibly in a measurement process) and also that most of this information usually cannot be
attached to any single system or any particular physical location, then are we really saying anything
particularly meaningful when we assert that the information is nonetheless all stored in the present
state of the world? Under these circumstances, it is certainly more ontologically economically and
arguably also more natural to say simply that measurement results at the present time depend directly
on the history of the system, without any need for mediation via a nebulous state-like entity.

5.2. Retrocausality

Recently there has been renewed interest in “retrocausal” approaches to quantum theory [44–48],
including a striking result due to Leifer and Pusey [7], expanding on an argument by Price [44], which
demonstrates that if we insist on a certain kind of time-symmetry, quantum mechanics must allow
for retrocausality, i.e., we must say that an experimenter’s decision to choose a certain measurement
setting can influence the properties of particles in the past.

This increase in support for retrocausality is exciting in that it represents an attempt to move
away from standard paradigms for the laws of nature. However, the invocation of retrocausality may
also be a retrograde step, if the notion is employed as a way of salvaging temporal locality even in
the face of increasing evidence against it. To see this, we must disambiguate several different ways of
thinking about retrocausality. One important distinction is introduced in ref [47], where the author
distinguishes between theories which are retrocausal only in the sense of invoking “reverse causality”,
i.e., a simple global reversal of the direction of time, and retrocausal theories which allow causal
influences from both the past and the future. But for our purposes, it is important to make a second
distinction within this latter category, distinguishing between retrocausal theories which incorporate
both backwards and forwards causal mediation, and retrocausal theories in which the universe is
solved “all at once” without causal mediation in either direction. The first type of theory is perhaps best
exemplified by the two-state vector interpretation of quantum mechanics [49], where measurement
results at a given time still depend only on the state of the world at the time of the measurement,
but this state now includes a “forward-evolving” state carrying information into the future from the
past, and a “backward-evolving” state carrying information into the past from the future. This type
of retrocausality, as in ref [45], still depends crucially on mediating states which carry information
through time and thus such retrocausal theories look a lot like temporally local theories. However,
retrocausal theories of the “all at once” type are naturally interpreted as temporally nonlocal, since
although there is certainly a sense in which events in the future will have an influence on events in the
past within such models, this influence need not be mediated by a record of those future events in the
state of the world at the time of the measurement.

The distinction between these different ways of thinking about retrocausality is seldom made
explicit in the literature on the subject, and thus it is not always straightforward to deduce into which
camp various types of models are intended to fall. On the one hand, a number of recent models work
by imposing global constraints and solving a constraint satisfaction problem across time [46,47], which
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tends to suggest the atemporal picture. On the other hand, it is common to motivate these models
by arguing that retrocausality offers a means of salvaging spatial locality—the apparent nonlocality
of the Bell experiments is to be explained by invoking a spatially local causal influence mediated via
the future [44]—and this argument seems more at home within a picture in which influences from both
the past and the future are mediated via a temporally and spatially local state. Similarly, the arguments
of [7] are based on an assumption that Leifer and Pusey refer to as “λ-mediation”, which asserts that
any correlations between a preparation and a measurement made on a system should be mediated by
the ontic state of the system—by which, presumably, they mean the ontic state immediately prior to the
measurement. The term “ontic state” is deliberately used in a general way here so as to make the result
applicable to a wide range of theories, in much the same way as we refrained from specifying in detail
what constitutes “the state of the world at time t” in our definition of temporal locality, but it seems
clear that any reasonable precisification of these two notions would imply that the state of the world at
time t includes, at the least, all the ontic states of all systems which exist at time t (if and when such
ontic states exist), and therefore “λ-mediation” is essentially identical to the assumption of temporal
locality. Leifer and Pusey acknowledge that their mathematical formulation of λ-mediation cannot be
precisely correct for a theory which includes retrocausality, but they hope to replace it by something
salvaging the notion that measurement results depend only on the present ontic state, which they
regard as “a core feature of a realist theory”. Thus even within the retrocausality community the
intuitive picture of mediation via a temporally local ontic state appears to persist.

However, this type of temporally local retrocausality requires a very finely tuned balancing
act, because the backwards-evolving state must contain instructions which are compatible with the
instructions from the forwards-evolving state—for example, the backwards-evolving state cannot
enforce that a given particle must have some particular property if the forwards-evolving state
enforces that it must have some mutually exclusive property. Formally, this balance is maintained
because the future events which determine the backwards-evolving state are themselves determined
by the forwards-evolving state at that time, but once we acknowledge this we are implicitly moving
away from the picture of states evolving in fixed temporal directions and towards a kind of global
coordination across time. In this picture, the assumption of temporal locality begins to seem highly
artificial, and talk of a “backwards-evolving state” [49] or “influences that travel back in time” [7] look
like rhetorical devices designed to preserve the appearance of temporal locality in a theory whose
underlying structure is really temporally nonlocal.

We therefore suggest that the arguments of [7], along with other arguments that have been put
forward in favour of retrocausality in quantum mechanics [44,46], are best interepreted as pointing us
towards the atemporal type of temporal locality. Of course, this may be what has been intended by the
proponents of retrocausality all along; if so, it would likely work in their favour to make this position
clear. Indeed, it seems plausible that one major contribution to the reluctance of the wider physics
community to take retrocausal theories seriously results from an implicit awareness of the tension
that arises from attempting to balance information contained in forward and backward evolving
states, and thus a significant conceptual barrier would be removed by moving explicitly to temporally
nonlocal retrocausality.

5.3. Atemporal Laws

5.3.1. The Lagrangian Schema

The paradigm of temporal locality is closely linked to what Smolin has dubbed the “Newtonian
schema” [50], which is the assumption that “the universe is a computational mechanism that takes
some initial state as an input and generates future states as an output” [29]. Wharton points out
that even within classical physics, an alternative approach was available to us in the form of the
“Lagrangian schema”, in which an experimental situation is described by a Lagrangian, a scalar function
of various local parameters and their local derivative; the value of the Lagrangian for a given history is
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referred to as its “action”, and the classical action principle (an example of a “variational principle”)
requires us to obtain predictions by choosing a set of boundary conditions and then extremizing
the action [51]. For example, when the experimental situation under consideration is a ray of light
travelling some unknown path, the Lagrangian is equal to the time taken to travel a given path,
the boundary conditions are the initial and final positions of the ray of light, and thus we obtain
Fermat’s principle, which states that light will always take the path which minimizes the total time of
travel [51]. The two pictures can be related to one another via the Euler–Lagrange equations, which
allow us to obtain a set of dynamical equations of the Newtonian type from any Lagrangian.

Furthermore, there exists a Lagrangian-schema formulation of quantum physics—namely,
the path integral approach to quantum field theory, which generalizes the classical action principle
by requiring us to calculate the probability of an event as a sum over contributions from all possible
histories including that event; the contribution of a history is proportional to eiS/h̄, where S is the action
for the history, equal to the time integral of the Lagrangian along the history. Like classical Lagrangian
methods, the path integral formalism is a powerful calculational tool, and indeed, certain interpretative
approaches advocate treating path integrals as the fundamental object of the theory [52,53].

Since the action is a property of an entire history rather than a feature of moment-by-moment
temporal evolution, a naive interpretation of these Lagrangian-schema versions of our physical theories
leads naturally to a temporally nonlocal view, and in particular, to the atemporal variant of temporal
nonlocality. Of course, we cannot argue that the mere existence of the Lagrangian schema forces us
to adopt this atemporal view, as for simple mechanical systems, the extremization of the action is
both necessary and sufficient for the satisfaction of the Euler–Lagrange equations, and hence for such
systems the two pictures are exactly equivalent. Even in more complex systems, the extremization is
still always sufficient for the satisfaction of the Euler–Lagrange equations [54,55], so we can always
pass from the Lagrangian schema to the Newtonian schema. However, let us observe that it is by
no means inevitable that world should have been governed by laws of nature that admit these two
formulations: a set of dynamical equations can be derived as the Euler–Lagrange equations of a
variational principle if and only if, after transformation into a certain canonical form, the right-hand
sides of all the equations are derivable by differentiation from a single function H [54,56,57]. If nature
is really best described by something like the Newtonian schema, the fact that the actual laws of
nature are indeed so derivable is simply an inexplicable coincidence, whereas this property can easily
be explained if we postulate that the Lagrangian picture is in fact closer to reality and therefore all
dynamical laws are necessarily the Euler–Lagrange equations of some variational principle.

A more formal version of this argument must wait upon an answer to the complementary
question about the necessary and sufficient conditions under which “atemporal” laws of nature admit
a formulation in terms of temporally directed dynamical laws; we hope to address this technical
question in future work, but at present we must acknowledge the possibility that the answer will
make the Lagrangian schema seem equally in need of explanation, in which case the comparison
would yield no clear argument in favour of either approach. Nonetheless, it is sufficient for our
purposes here to note that there exists a well-developed atemporal alternative to the Newtonian
schema. Historically, the Lagrangian schema has been regarded as a mere mathematical tool, whereas
the Newtonian picture of states evolving forward in time is treated as an approximate description of
reality; however, there does not seem to be an obvious justification for this preference, other than a
preexisting prejudice in favour of temporal locality. If we look past this prejudice, there seem to be
good reasons to consider taking the Lagrangian schema seriously as a possible description of reality,
and if we do so, we must necessarily take atemporal variants of temporal nonlocality seriously as well.

5.3.2. New Models

The existence of the Lagrangian-schema formulations of both classical physics and quantum
field theory makes it reasonable to argue that our best physical theories, as they currently stand,
might be interpreted in a temporally nonlocal way. However, we can go further. Historically, the
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development of our physical theories has been constrained by the fact that research was by and large
conducted within the Newtonian schema, and there has always been an expectation that new theories
can be parsed in this framework—witness the great importance that was placed in the early history
of General Relativity on showing that it could be given an initial-value formulation [27]. Thus we
may well find that new avenues open up if we move to working directly on atemporal theories and
indeed allow ourselves to consider theories which may ultimately turn out not to be susceptible to a
Newtonian-schema formulation at all. Indeed, as noted in Section 5.2, a number of such models are
already under development [46–48]. These toy models demonstrate that atemporal models are capable
of reproducing in a natural way a number of prima facie puzzling features of quantum theory, such as
the close resemblance between quantum wavefunction collapse and Bayesian updating [48], and thus
provide motivation for further research into models of this kind.

6. Dynamics and Kinematics

We earlier identified the distinction between dynamics and kinematics as an important
contribution to the status of temporal locality in physics. In this section we review recent work on this
subject and discuss some resulting insights for the status of temporal locality in modern physics.

6.1. Spekkens on Dynamics vs. Kinematics

Spekkens has singled out the distinction between kinematics and dynamics as a potentially
problematic feature of our standard physical paradigms: in [58], he argues that when new experimental
data appears to falsify our existing theory, we can always choose freely whether to respond by
altering the kinematics or the dynamics, and he gives a number of illustrative examples. He thus
concludes that the distinction between kinematics and dynamics is doing no explanatory work in our
theories, and appeals to ontological parsimony to motivate his call for physicists to move past this
particular paradigm.

While we concur that the kinematics/dynamics split is problematic, we note that care must be
taken with this line of argument to avoid slipping into conventionalism about the whole of science.
Spekkens asserts that his approach “does not force us to operationalism”, because he advocates
only the rejection of distinctions which we can freely transform away without changing empirical
predictions, and which are therefore not doing explanatory work. However, as Quine has shown, it
can reasonably be argued that physical theories have empirical consequences only taken as a whole,
and that consequently we always have freedom to choose which element of a theory to change in
response to new empirical evidence, which would suggest that by Spekkens’ criterion no distinction
in any scientific theory is doing explanatory work [59,60]. Thus Spekkens’ line of argument would
seem to lead to the conclusion that we should simply give up on trying to formulate theories whose
ontologies are endowed with nontrivial structure, a conclusion which realists about science will surely
wish to avoid.

To do so, we must understand why Spekkens’ argument has particular relevance in the context
of the kinematical-dynamical distinction. In particular, let us reinforce that the distinction between
kinematics and dynamics is not simply an individual element of some specific theory; the fact that it
has become de rigueur to present new theories in this framework has made the kinematical-dynamical
split into a meta-principle which physicists educated in this tradition may well regard as a defining
feature of any meaningful scientific theory. By pointing out that the kinematical-dynamical distinction
is not forced on us by any empirical evidence, Spekkens demotes it from a meta-principle back to a
specific ontological hypothesis which should be subject to the same scrutiny and criticism as any other
ontological hypothesis. The argument can then be understood as follows: as realists we choose to
attach credence to certain ontologies, despite underdetermination by the empirical evidence, on the
grounds of theoretical virtues like simplicity and explanatory power, and the same sorts of assessments
should be applied to the distinction between kinematics and dynamics. Since theoretical distinctions
in general do not have empirical content in and of themselves, it is no good insisting on a distinction
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between kinematics and dynamics in advance of specifying a particular ontology: we must evaluate
the theoretical virtues of complete ontologies, some of which may incorporate such a split, others of
which may not.

For clarity, at this point, we must mention a different way of thinking about the kinematics/dynamics
distinction that has arisen through recent work on the philosophy of special relativity. In this tradition,
“what it means for a phenomenon to be kinematical ... is that it is nothing but a specific instance of
some generic feature of the world ... (and that) there is nothing more to learn from that particular
phenomenon, neither about the specific system in which it occurs nor about the generic feature it
instantiates”. In other words, the dynamics/kinematics distinction is regarded as a stipulation about
which things need to be explained and which things can be taken for granted. This is clearly quite a
different concept from the notion of kinematics and dynamics that we have thus far referred to in this
article, and to which Spekkens’ argument pertains. Certainly it presupposes much less—in particular,
such a distinction would still be perfectly meaningful within a theory which does not postulate a
space of states and a set of evolutionary laws, whereas the more traditional way of distinguishing
between kinematics and dynamics would be inapplicable in such a case. Nonetheless, we conjecture
that similar arguments can be made about this more general distinction. Brown points out that “the
distinction between kinematics and dynamics is not fundamental” and cites Pauli as making the
same point in 1921, and, again, once this point is accepted it seems unreasonable to demand that all
new theories must be presented in the framework of kinematics and dynamics: we may well find
it heuristically useful to employ such a distinction in any particular case, but the judgement of its
usefulness must be made in context, not in advance of the specification of a theory. We leave a more
detailed development of this line of argument to future work.

6.2. Example: Causal Set Theory

As an example of a theory in which the kinematics/dynamics distinction may be less useful,
consider the case of causal set theory, an approach to quantum gravity which holds that spacetime
is fundamentally discrete. The “state space” of this theory is the space of causal sets—that is, sets of
spacetime events with a partial order event defined over them. A causal set is, essentially, an entire
history of a universe, with time and space being emergent from the partial order between pointlike
events. However, it is not sufficient for the theory to simply specify this kinematical state space,
because without further restrictions we will find that the majority of causal sets do not give rise to any
low-dimensional emergent spacetime (a spacetime is said to emerge from a causal set iff it faithfully
approximates the causal set—that is, we can embed the causal set into the spacetime in such a way
that the causal relations are preserved (x lies before y in the partial order iff the embedding of x is in
the past lightcone of the embedding of y), and on average one element of the causal set is mapped
onto each Planck-sized volume of the spacetime, and the spacetime does not have structure at scales
below the mean spacing of the events) so we must add in some way of singling out the permissible
causal sets.

The standard way of doing this is to impose “dynamics”, such as the classical sequential growth
model in which elements are probabilistically added to the set one by one [61]. Proponents of causal
set theory like to advertise it as an advantage of their approach that this dynamics provides us with a
relativistically covariant notion of “becoming”, allowing us to rescue the notion of temporal becoming
and hence salvage our intuitive notion of time [62]. However, this claim cannot quite be taken at
face value, because we encounter a difficulty akin to Smart’s objection to the A-theory of time. Smart
famously pointed out that if time really passes, we ought to be able to specify the rate at which it passes,
which would require a second time-dimension with respect to which the passage of ordinary time can
be measured [63]; and likewise in causal set theory, talking about the growth of the causal set seems to
presuppose an external time dimension in which this growth can take place. The difficulty is all the
more pertinent since the founding principle of the theory is that spacetime supervenes on the causal
set [64] and thus proposing a dimension of time external to the causal set would seem to undermine
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the whole project. Rideout and Sorkin attempt to get around this by arguing that the birthing of
events should be regarded as “constituting” time rather than occurring in time [61], but this seems
like overkill: since spacetime supervenes on the causal set, a complete causal set already “constitutes”
time, without any need to add in a process of growth. Furthermore, to ensure that the growth process
satisfies general covariance, it is necessary to impose the requirement of discrete general covariance
on the dyamics, meaning that the probability of reaching a particular final causet is independent of
the path taken to reach that final causet—i.e., the probability does not depend on the order in which
the elemets of the causet were “birthed”. It is standard to interpret this by saying that there is no fact
of the matter about which path was taken—the choice of path is pure gauge [61]—but this makes it
implausible to regard the growth of the causal set as a real physical process, since probabilities are
ultimately attached to the causal sets themselves rather than to the transitions that occur during the
supposed growth [65,66]. Wütrick and Callender argue that these considerations simply show that
modern physics requires us to adopt a ‘novel and exotic’ notion of becoming in which we are generally
prohibited from saying which elements of the causal set exist at any stage of its growth [66]. However,
this novel notion of “becoming” is so far removed from our intuitive notion of becoming that it is
doubtful whether it can really be said to salvage our intuitive notion of time; moreoever, given that the
dynamics cannot be taken literally, there is prima facie no way in which the growth of the causal set
could even serve to explain why we have the subjective experience of becoming. The growth model,
in fact, does not seem to add anything to the theory in terms of explanatory power: insofar as the
dyamics succeeds in explaining why certain causal sets are permissible while others are not, and/or
why the world is constituted by one causal set rather than another, the real explanatory work is done
by the final probability distribution over causal sets rather than by the process of growth.

Thus it seems that all the growth picture is really doing is making causal set theory subjectively
more palatable by soothing our uneasiness about attaching probabilities to entire courses of history,
and, of course, allowing the causal set theorists to express their theory in the traditional framework of
‘kinematics vs. dynamics”. Thus, although it is possible to make a distinction between kinematics and
dynamics within causal set theory, in this particular case the distinction seems not to be very useful
and may in fact be holding us back from understanding the theory properly: perhaps the causal set
theorists would do better to embrace the global nature of their theory and explicitly attach probabilities
to entire causal sets, retaining the “growth” dynamics only as a calculational tool or perhaps even
getting rid of it entirely in favour of a different way of calculating the relevant probabilties.

We have singled out the causal set approach here because the awkwardness of attempting
to distinguish between kinematics and dynamics is particularly clear in this context, but we
would contend that similar points apply more generally. Theories should not be forced into the
kinematics-dynamics framework if they are not a natural fit for that framework: this practice
imposes an artifical form of temporal locality on theories which are not inherently temporally local
in their mathematical structure, which is likely to impede both understanding and also further
theoretical progress.

7. Temporal Bell Inequalities and Entanglement in Time

The stark differences between contemporary attitudes to spatial and temporal locality can largely
be traced back to the existence of Bell’s inequalities and the fact that quantum mechanics is known
to violate them [67], an experimentally verified fact which has led the physics community to at take
seriously the possibility that spatially nonlocal processes may exist. Of course, the implication is
not undisputed; although a number of experimental loopholes in Bell’s theorem have been closed
in recent years [68–70], there remain untested assumptions, such as the possibility that the choices
of measurement on the two sides of the apparatus are not truly independent [71]. Furthermore,
proponents of the Everett interpretation claim their approach can account for the Bell statistics in
a spatially local way, and antirealists can avoid spatial nonlocality simply by denying that there
exists any underlying process, local or otherwise, which accounts for the measurement statistics.
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However, each of these ways around the conclusion of the theorem requires us to accept a fairly
extreme proposition of one type or another, so it is fair to say that, conditional on a set of assumptions
which seem very plausible to many people, the violation of Bell’s inequality does indeed imply the
existence of spatial nonlocality.

Thus it is very natural to consider whether some analogous set of equations are violated in the
temporal case. The first point to be made is that the derivation of Bell’s theorem assumes both spatial
and temporal locality. If we relax the assumption of temporal locality, then we could say, for example,
that the result of the measurement may depend directly on the state of the system being measured at
times other than the time of measurement, including future times: as we noted above, the proponents of
retrocausality have used this possibility to explain the violation of the Clauser–Horne–Shimony–Holt
(CHSH) inequality via a local interaction which is mediated via the future [44]. Thus, it is not really fair
to say that we have better evidence for spatial nonlocality than temporal nonlocality: we have exactly
the same evidence for both. However, physicists have largely chosen to respond to this evidence by
discarding spatial locality and retaining temporal locality (or indeed by arguing that we can salvage
both), and therefore to have convincing evidence that points specifically to temporal locality, we would
need not just a temporal analogue of Bell’s inequalities, but a stronger result which shows that spatial
nonlocality is not enough to explain the empirical results of quantum mechanics: the quantum world
must be temporally nonlocal as well.

There exist several inequalities—mostly governing sequences of measurements performed on
a single quantum system—which have been referred to as “temporal Bell’s inequalities”, and we
will now consider whether any of them might be capable of providing the right sort of evidence.
First, it should be clear that in the context of repeated measurements on a single quantum system,
the assumption of temporal locality alone will not allow us to derive anything, since we can always
choose to retain temporal locality by assuming that the entire history of a system is recorded in its
present state. Thus, to obtain meaningful results, some further assumption p must be made, so we are
never going to obtain a result stronger than “if this inequality is violated, then either ¬p, or quantum
mechanics is not temporally local”. For this to provide a convincing argument in favour of temporal
locality, p would need to be an assumption so plausible that many people would be willing to abandon
temporal locality before abandoning p.

In the case of the Leggett–Garg inequalites, the additional assumption is “macrorealism”,
which is the claim that a macroscopic object is at any given time in a definite ontic state and it
is possible to determine which state it is in without changing the state or the subsequent system
dynamics. Macrorealism is a strong assumption—too strong, in fact, for our purposes, because the only
measurements referenced in the Leggett–Garg inequalities are measurements which reveal the definite
ontic state of the system at the time of the measurement. As noted in Section 5.2, it is reasonable to
assume that the state of the world at time t includes all the definite ontic states of all systems which
exist at time t, and thus by definition the measurements referenced in the Leggett–Garg inequalities
are only allowed to depend on the state of the world at the time of the measurement, which makes
temporal locality irrelevant: whether or not the world is temporally nonlocal in general, for this specific
type of measurement there is no freedom for the measurement result to depend on anything other
than the present state of the world. There exist later reformulations of the Leggett–Garg inequalities
which replace macrorealism with a weaker assumption, but most of these reformulations retain the
assumption of “operational eigenstate realism”, that is, the assumption that quantum systems are
necessarily in states in which the quantity being measured has a definite value which is revealed
deterministically by the measurement, and again this makes the assumption of temporal nonlocality
irrelevant [72]. A similar issue arises for the set of temporal Bell inequalities derived in [73], and used
to demonstrate the phenomenon of “entanglement in time”. Here the derivation depends on temporal
locality and also “realism”, defined as the assumption that measurement results are determined by
hidden properties that the particles carry prior to and independently of observation; one assumes
that the state of the world at the time of the measurement would be expected to includ these “hidden
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properties” and, thus under this assumption measurement results can depend only on the state of the
world at the time of the measurement, so the auxiliary assumption already implies temporal locality,
in the sense in which we have used the term.

Thus, if we are to derive a temporal Bell’s inequality has something to say about temporal locality
in particular, we should look for an assumption p which does not itself imply temporal locality.
A possible candidate is put forward in [74]: here, the derivation of the inequalities is based on the
assumption that the results of measurements on a system of dimension d should be simulable by
an ordered set of classical systems with no more than log2(d) bits of communication between any
consecutive pair of systems. It is helpful to split this assumption into two parts: first, the total amount
of information about its history that can be carried forward in time by a quantum state of fixed
dimension is upper bounded by log2(d) bits; and second, the result of a measurement on the system is
statistically independent of all information about its history which is not stored in its present state,
i.e., the measurements in question are temporally local. Ref. [74] use this assumption to derive a
bound on the minimum dimension of a system which can solve a certain sort of sequential problem,
and then show that the problem can be solved by quantum systems of dimension smaller than this
bound, indicating that quantum mechanics does not satisfy their assumption. This is exactly the kind
of result needed to provide an argument for temporal locality: if we find it sufficiently unpalatable to
postulate that quantum states may carry information greater than log2(d) forward in time, we will
have to conjecture instead that the later measurement results depend directly on earlier measurement
settings and outcomes without being mediated via information carried forward in the state, and thus
we may regard the violation of this inequality as a direct demonstration of temporal nonlocality at
work in quantum mechanics, in the same way that a Bell experiment is a direct demonstration of
spatial nonlocality at work in quantum mechanics. Admittedly, it may not be the case that there are
many people who find the bound log2(d) more intuitively plausible than temporal locality, but at least
the result seems to be of the right form.

The Problem of Records

It may seem that the existence of records of past measurement results must always stymie any
attempt to use the violation of some inequality to prove that the world must be both spatially and
temporally nonlocal, since even if we do make an assumption like that of [74] to the effect that a given
system can only carry a bounded amount of information forward in time, a proponent of temporal
locality could always claim that a given result depends on the record of a given measurement result
stored elsewhere in the present state of the world, rather than directly on the past events constituting
the measurement. After all, in practice such records are very difficult (perhaps impossible!) to erase,
and in any case, if a past measurement result could be permanently erased so that no record of it
existed in the state of the world at the time of the next measurement, then we would never be able to
observe the violation of the relevant inequality, since we could never have all the necessary results
available to be compared at the same time.

We suggest the best way of resolving this difficulty is to adopt a halfway position inspired by
our discussion in subsection “The Pragmatic Argument”. The problem that we are facing can be
understood as a particular instance of the general problem identified by Einstein: if spatial locality
is simply abandoned wholesale, it becomes impossible to identify and control all the factors which
might possibly influence the results of an experiment, and thus we lose the ability to draw meaningful
conclusions from experimental results. Therefore, as noted in subsection “The Pragmatic Argument”,
to make progress we must assume that there are limits on spatial nonlocality. The most straightforward
approach is to assume that the world is only as spatially nonlocal as quantum mechanics says it is,
because then, provided the system being measured is in a sufficiently pure state, we can justify the
assumption that the result of the measurement is independent both of records stored elsewhere in the
world and of the state of the observer’s brain. The resulting inequality will still be theory dependent,
but at the very least the violation of such an inequality, assuming we are not willing to abandon the
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assumption that quantum states of dimension d may only carry log2(d) bits of information forward
in time, would force us to say either that the world must be temporally nonlocal or it must be more
spatially nonlocal than quantum mechanics currently suggests.

An alternative would be to assume that we need only worry about spatial and/or temporal
entanglement when the systems concerned can be connected via some reasonably simple
spatiotemporal path, as for example in the case of two entangled particles which have interacted locally
at some point in their shared past. This would have the advantage of removing any dependence on
the present formalism of quantum mechanics, which may be desirable given that we do not know
how much of that formalism would survive the move to a temporally nonlocal context, but on the
other hand to make the criterion precise we would likely need a reasonably concrete proposal for an
alternative theory, and at present only toy models are available to us for this purpose.

8. Conclusions

There already exists a small body of interesting work examining the possibility of what might
be interpreted as temporally nonlocal approaches to quantum theory, although most of it has not yet
reached the mainstream. Wharton, advocating the view that “the universe (runs) not as a computer,
but as a global four-dimensional problem that (is) solved all at once” [29], has made progress with
retrocausal models [75–77]; the consistent histories approach offers an approach to formulating laws of
nature which constrain entire histories rather than moment-by-moment evolution [78,79], although
there are a number of significant conceptual difficulties to be resolved, not least the question of what the
probabilities prescribed by the theory are probabilities for [80]; and Ref. [81] puts forward a theoretical
model, in which “one particle at N times is ... equivalent to N (entangled) particles at one time”, which,
by emphasizing the parallel between spatial nonlocality and time-evolution, seems to lead naturally
to a temporally nonlocal view. Similarly, there exist interpretations of quantum mechanics whose
ontology consists entirely of pointlike events, such as the GRW flash ontology [23,24] or Kent’s solution
to the Lorentzian quantum reality problem [82], and one possible interpretation of these approaches
would be to say that they have done away with the need for an ontic state as the carrier of information
from the past to the future and hence should be regarded as temporally nonlocal.

This existing work is very promising, but we would argue that it does not go far enough. These
approaches have been postulated as part of the project of interpreting the existing framework of
quantum mechanics (and/or quantum field theory), and yet, once we accept that the universe may be
generically nonlocal across both time and space, it becomes at least plausible that quantum theory as
we know it is simply the local limit of a global theory which applies constraints across the whole of
space and time. This means there is scope to be more ambitious: temporal nonlocality may ultimately
point us not just to a new interpretation of quantum mechanics but to a new theory altogether.
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Abstract: Globally-constrained classical fields provide a unexplored framework for modeling
quantum phenomena, including apparent particle-like behavior. By allowing controllable constraints
on unknown past fields, these models are retrocausal but not retro-signaling, respecting the
conventional block universe viewpoint of classical spacetime. Several example models are developed
that resolve the most essential problems with using classical electromagnetic fields to explain
single-photon phenomena. These models share some similarities with Stochastic Electrodynamics,
but without the infinite background energy problem, and with a clear path to explaining entanglement
phenomena. Intriguingly, the average intermediate field intensities share a surprising connection
with quantum “weak values”, even in the single-photon limit. This new class of models is hoped
to guide further research into spacetime-based accounts of weak values, entanglement, and other
quantum phenomena.

Keywords: Retrocausation; weak values; Stochastic Electrodynamics

1. Introduction

In principle, retrocausal models of quantum phenomena offer the enticing possibility of replacing
the high-dimensional configuration space of quantum mechanics with ordinary spacetime, without
breaking Lorentz covariance or utilizing action-at-a-distance [1–6]. Any quantum model based entirely
on spacetime-localized parameters would obviously be much easier to reconcile with general relativity,
not to mention macroscopic classical observations. (In general, block-universe retrocausal models
can violate Bell-type inequalities because they contain hidden variables λ that are constrained by the
future measurement settings (a, b). These constraints can be mediated via continuous influence on
the particle worldlines, explicitly violating the independence assumption P(λ|a, b) = P(λ) utilized in
Bell-type no-go theorems.)

In practice, however, the most sophisticated spacetime-based retrocausal models to date only
apply to a pair of maximally entangled particles [3,7–9]. A recent retrocausal proposal from Sen [10]
is more likely to extend to more of quantum theory, but without a retrocausal mechanism it would
have to use calculations in configuration space, preparing whatever initial distribution is needed to
match the expected final measurement. Sutherland’s retrocausal Bohmian model [11] also uses some
calculations in configuration space. Given the difficulties in extending known retrocausal models to
more sophisticated situations, further development may require entirely new approaches.

One obvious way to change the character of existing retrocausal models is to replace the usual
particle ontology with a framework built upon spacetime-based fields. Every quantum “particle”,
after all, is thought to actually be an excitation of a quantum field, and every quantum field has
a corresponding classical field that could exist in ordinary spacetime. The classical Dirac field,
for example, is a Dirac-spinor-valued function of ordinary spacetime, and is arguably a far closer
analog to the electrons of quantum theory than a classical charged particle. This point is even more
obvious when it comes to photons, which have no classical particle analog at all, but of course have a
classical analog in the ordinary electromagnetic field.
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This paper will outline a new class of field-based retrocausal models. Field-based accounts of
particle phenomena are rare but not unprecedented, one example being the Bohmian account of
photons [12,13], using fields in configuration space. One disadvantage to field-based models is that
they are more complicated than particle models. However, if the reason that particle-based models
cannot be extended to more realistic situations is that particles are too simple, then moving to the
closer analog of classical fields might arguably be beneficial. Indeed, many quantum phenomena
(superposition, interference, importance of relative phases, etc.) have excellent analogs in classical
field behavior. In contrast, particles have essentially only one phenomenological advantage over fields:
localized position measurements. The class of models proposed here may contain a solution to this
problem, but the primary goal will be to set up a framework in which more detailed models can be
developed (and to show that this framework is consistent with some known experimental results).

Apart from being an inherently closer analog to standard quantum theory, retrocausal field models
have a few other interesting advantages to their particle counterparts. One intriguing development,
outlined in detail below, is an account of the average “weak values” [14,15] measured in actual
experiments, naturally emerging from the analysis of the intermediate field values. Another point of
interest is that the framework here bears similarities to Stochastic Electrodynamics (SED), but without
some of the conceptual difficulties encountered by that program (i.e., infinite background energy, and a
lack of a response to Bell’s theorem) [16,17]. Therefore, it seems hopeful that many of the successes of
SED might be applied to a further development of this framework.

The plan of this paper is to start with a conceptual framework, motivating and explaining the
general approach that will be utilized by the specific models. Section 3 then explores a simple example
model that illustrates the general approach, as well as demonstrating how discrete outcomes can still
be consistent with a field-based model. Section 4 then steps back to examine a large class of models,
calculating the many-run average predictions given a minimal set of assumptions. These averages
are then shown to essentially match the weak-value measurements. The results are then used to
motivate an improved model, as discussed in Section 5, followed by preliminary conclusions and
future research directions.

2. Conceptual Framework

Classical fields generally have Cauchy data on every spacelike hypersurface. Specifically,
for second order field equations, knowledge of the field and its time derivative everywhere at one
time is sufficient to calculate the field at all times. However, the uncertainty principle, applied in a
field framework, implies that knowledge of this Cauchy data can never be obtained: No matter how
precise a measurement, some components of the field can always elude detection. Therefore, it is
impossible to assert that either the preparation or the measurement of a field represents the precise
field configuration at that time. This point sheds serious doubt on the way that preparations are
normally treated as exact initial boundary conditions (and, in most retrocausal models, the way that
measurements are treated as exact final boundary conditions).

In accordance with this uncertainty, the field of Stochastic Electrodynamics (SED) explores the
possibility that in addition to measured electromagnetic (EM) field values, there exists an unknown
and unmeasured “classical zero-point” EM field that interacts with charges in the usual manner [16,17].
Starting from the assumption of relativistic covariance, a natural gaussian noise spectrum is derived,
fixing one free parameter to match the effective quantum zero-point spectrum of a half-photon per
EM field mode. Using classical physics, a remarkable range of quantum phenomena can be recovered
from this assumption. However, these SED successes come with two enormous problems. First, the
background spectrum diverges, implying an infinite stress energy tensor at every point in spacetime.
Such a field would clearly be in conflict with our best understanding of general relativity, even with
some additional ultraviolet cutoff. Second, there is no path to recovering all quantum phenomena via
locally interacting fields, because of Bell-inequality violations in entanglement experiments.
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Both of these problems have a potential resolution when using the Lagrangian Schema [3] familiar
from least-action principles in classical physics. Instead of treating a spacetime system as a computer
program that takes the past as an input and generates the future as an output, the Lagrangian Schema
utilizes both past and future constraints, solving for entire spacetime structures “all at once”. Unknown
past parameters (say, the initial angle of a ray of light constrained by Fermat’s principle of least time) are
the outputs of such a calculation, not inputs. Crucially, the action S that is utilized by these calculations
is a covariant scalar, and therefore provides path to a Lorentz covariant calculation of unknown field
parameters, different from the divergent spectrum considered by SED. The key idea is to keep the
action extremized as usual (δS = 0), while also imposing some additional constraint on the total action
of the system. One intriguing option is to quantize the action (S = nh), a successful strategy from the
“old” quantum theory that has not been pursued in a field context, and would motivate δS = 0 in the
first place. (Here, the action S is the usual functional of the fields throughout any given spacetime
subsystem, calculated by integrating the classical Lagrangian density over spacetime.)

Constraining the action does not merely ensure relativistic covariance. When complex macroscopic
systems are included in the spacetime subsystem (i.e., preparation and measurement devices), they will
obviously dominate the action, acting as enormous constraints on the microscopic fields, just as a
thermal reservoir acts as a constraint on a single atom. The behavior of microscopic fields would
therefore depend on what experimental apparatus is considered. Crucially, the action is an integral
over spacetime systems, not merely spatial systems. Therefore, the future settings and orientations of
measurement devices strongly influence the total action, and unknown microscopic fields at earlier
times will be effectively constrained by those future devices. Again, those earlier field values are
literally “outputs” of the full calculation, while the measurement settings are inputs.

Such models are correctly termed “retrocausal”. Given the usual block universe framework from
classical field theory and the interventionist definition of causation [18–21], any devices with free
external settings are “causes”, and any constrained parameters are “effects” (including field values at
spacetime locations before the settings are chosen). Such models are retrocausal but not retro-signaling,
because the future settings constrain unknown past field parameters, hidden by the uncertainty
principle. (These models are also forward-causal, because the preparation is another intervention.)
It is important not to view causation as a process—certainly not one “flowing” back-and-forth through
time—as this would violate the block universe perspective. Instead, such systems are consistently
solved “all-at-once”, as in action principles. Additional discussion of this topic can be found in [2,4,22].

The retrocausal character of these models immediately provides a potential resolution to both of
the problems with SED. Concerning the infinite-density zero point spectrum, SED assumes that all
possible field modes are required because one never knows which ones will be relevant in the future.
However, a retrocausal model is not “in the dark” about the future, because (in this case) the action is
an integral that includes the future. The total action might very well only be highly sensitive to a bare
few field modes. (Indeed, this is usually the case; consider an excited atom, waiting for a zero-point
field to trigger “spontaneous” emission. Here, only one particular EM mode is required to explain the
eventual emission of a photon, with the rest of the zero point field modes being irrelevant to a future
photon detector.) As is shown below, it is not difficult to envision action constraints where typically
only a few field modes need to be populated in the first place, resolving the problem of infinities
encountered by SED. Furthermore, it is well-known that retrocausal models can naturally resolve
Bell-inequality violations without action-at-a-distance, because the past hidden variables are naturally
correlated with the future measurement settings [4,23]. (Numerous proof-of-principle retrocausal
models of entanglement phenomena have been developed over the past decade [3,7–10].)

Unfortunately, solving for the exact action of even the simplest experiments is very hard.
The macroscopic nature of preparation and measurement that makes them so potent as boundary
constraints also makes them notoriously difficult to calculate exactly—especially when the relevant
changes in the action are on the order of Planck’s constant. Therefore, to initially consider such
models, this paper will assume that any constraint on the total action manifests itself as certain rules
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constraining how microscopic fields are allowed to interact with the macroscopic devices. (Presumably,
such rules would include quantization conditions, for example only allowing absorption of EM waves
in packets of energy h̄ω.) This assumption will allow us to focus on what is happening between devices
rather than in the devices themselves, setting aside those difficulties as a topic for future research.

This paper will proceed by simply exploring some possible higher-level interaction constraints
(guided by other general principles such as time-symmetry), and determining whether they might
plausibly lead to an accurate explanation of observed phenomena. At this level, the relativistic
covariance will not be obvious; after all, when considering intermediate EM fields in a laboratory
experiment, a special reference frame is determined by the macroscopic devices which constrain those
fields. However, it seems plausible that if some higher-level model matches known experiments then a
lower-level covariant account would eventually be acheivable, given that known experiments respect
relativistic covariance.

The following examples will be focused on simple problems, with much attention given to the
case where a single photon passes through a beamsplitter and is then measured on one path or the
other. This is precisely the case where field approaches are thought to fail entirely, and therefore the
most in need of careful analysis. In addition, bear in mind that these are representative examples
of an entire class of models, not one particular model. It is hoped that, by laying out this new class
of retrocausal models, one particular model will eventually emerge as a possible basis for a future
reformulation of quantum theory.

3. Constrained Classical Fields

3.1. Classical Photons

Ordinary electromagnetism provides a natural analog to a single photon: a finite-duration
electromagnetic wave with total energy h̄ω. Even in classical physics, all of the usual uncertainty
relations exist between the wave’s duration and its frequency ω; in the analysis below, we assume
long-duration EM waves that have a reasonably well-defined frequency, in some well-defined beam
such as the TEM00 gaussian mode of a narrow bandwidth laser. By normalizing the peak intensity
I of this wave so that a total energy of h̄ω corresponds to I = 1, one can define a “Classical Photon
Analog” (CPA).

Such CPAs are rarely considered, for the simple reason that they seem incompatible with the
simple experiment shown in Figure 1a. If such a CPA were incident upon a beamsplitter, some fraction
T of the energy would be transmitted and the remaining fraction R = 1 − T would be reflected.
This means that detectors A and B on these two paths would never see what actually happens, which is
a full h̄ω amount of energy on either A or B, with probabilities T and R, respectively. Indeed, this very
experiment is usually viewed as proof that classical EM is incorrect.

Notice that the analysis in the previous paragraph assumed that the initial conditions were exactly
known, which would violate the uncertainty principle. If unknown fields existed on top of the original
CPA, boosting its total energy to something larger than h̄ω, it would change the analysis. For example,
if the CPA resulted from a typical laser, the ultimate source of the photon could be traced back to
a spontaneous emission event, and (in SED-style theories) such “spontaneous” emission is actually
stimulated emission, due to unknown incident zero-point radiation. This unknown background would
then still be present, boosting the intensity of the CPA such that I>1. Furthermore, every beamsplitter
has a “dark” input port, from which any input radiation would also end up on the same two detectors,
A and B. In quantum electrodynamics, it is essential that one remember to put an input vacuum state
on such dark ports; the classical analog of this well-known procedure is to allow for possible unknown
EM wave inputs from this direction.

The uncertain field strengths apply to the outputs as well as the inputs, from both time-symmetry
and the uncertainty principle. Just because a CPA is measured on some detector A, it does not follow
that there is no additional EM wave energy that goes unmeasured. Just because nothing is measured
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on detector B does not mean that there is no EM wave energy there at all. If one were to insist on a
perfectly energy-free detector, one would violate the uncertainty principle.

I=1

I=R

I=TI 1 I T

R

1+I1

IB

1+IA+I1 +I1+ AA

IIB

I2

1+I1

1+IB

IA+I1 IIA

IIB

I2

(a)

(b)

(c)

Figure 1. (a) A classical photon analog encounters a beamsplitter, and is divided among two detectors,
in contradiction with observation. (b) A classical photon analog, boosted by some unknown peak
intensity I1, encounters the same beamsplitter. Another beam with unknown peak intensity I2 enters
the dark port. This is potentially consistent with a classical photon detection in only detector A (“Y"
for yes, “N" for no), so long as the output intensities IA and IB remain unobserved. (The wavefronts
have been replaced by dashed lines for clarity.) (c) The same inputs as in (b), but with outputs
consistent with classical photon detection in only detector B, where the output intensities IA and IB

again remain unobserved.

By adding these unknown input and output fields, Figure 1b demonstrates a classical beamsplitter
scenario that is consistent with an observation of one CPA on detector A. In this case, two incoming
beams, with peak intensities 1 + I1 and I2, interfere to produce two outgoing beams with peak
intensities 1 + IA and IB. The four unknown intensities are related by energy conservation, I1 + I2 =

IA + IB, where the exact relationship between these four parameters is determined by the unknown
phase difference between the incoming beams. Different intensities and phases could also result in
the detection of exactly one CPA on detector B, as shown in Figure 1c. These scenarios are allowed by
classical EM and consistent with observation, subject to known uncertainties in measuring field values,
pointing the way towards a classical account of “single-photon” experiments. This is also distinct
from prior field-based accounts of beamsplitter experiments [13]; here there is no need to non-locally
transfer field energy from one path to another.

Some potential objections should be addressed. One might claim that quantum theory does allow
certainty in the total energy of a photon, at the expense of timing and phase information. However, in
quantum field theory, one can only arrive at this conclusion after one has renormalized the zero-point
values of the electromagnetic field—the very motivation for I1 and I2 in the first place. (Furthermore,
when hunting for some more-classical formulation of quantum theory, one should not assume that the
original formulation is correct in every single detail.)

Another objection would be to point out the sheer implausibility of any appropriate beam I2.
Indeed, to interfere with the original CPA, it would have to come in with just the right frequency,
spatial mode, pulse shape, and polarization. However, this concern makes the error of thinking of
all past parameters as logical inputs. In the Lagrangian Schema, the logical inputs are the known
constraints at the beginning and end of the relevant system. The unknown parameters are logical
outputs of this Schema, just as the initial angle of the light ray in Fermat’s principle. The models below
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aim to generate the parameters of the incoming beam in I2, as constrained by the entire experiment.
In action principles, just because a parameter is coming into the system at the temporal beginning does
not mean that it is a logical input. In retrocausal models, these are the parameters that are the effects of
the constraints, not causes in their own right. (Such unknown background fields do not have external
settings by which they can be independently controlled, even in principle, and therefore they are not
causal interventions.)

Even if the classical field configurations depicted in Figure 1 are possible, it remains to explain why
the observed transmission shown in Figure 1b occurs with a probability T, while the observed reflection
shown in Figure 1c occurs with a probability R. To extract probabilities from such a formulation,
one obviously needs to assign probabilities to the unknown parameters, P(I1), P(I2), etc. However,
use of the Lagrangian Schema requires an important distinction, in that the probabilities an agent
would assign to the unknown fields would depend on that agent’s information about the experimental
geometry. In the absence of any information whatsoever, one would start with a “a priori probability
distribution” P0(I2)—effectively a Bayesian prior that would be (Bayesian) updated upon learning
about any experimental constraints. Any complete model would require both a probability distribution
P0 as well as rules for how the experimental geometry might further constrain the allowed field values.

Before giving an example model, one further problem should be noted. Even if one were
successful in postulating some prior distribution P0(I1) and P0(I2) that eventually recovered the correct
probabilities, this might very well break an important time symmetry. Specifically, the time-reverse of
this situation would instead depend on P0(IA) and P0(IB). For that matter, if both outgoing ports have
a wave with a peak intensity of at least I = 1, then the only parameters sensitive to which detector
fires are the unobserved intensities IA and IB. Both arguments encourage us to include a consideration
of the unknown outgoing intensities IA and IB in any model, not merely the unknown incoming fields.

3.2. Simple Model Example

The model considered in this section is meant to be an illustrative example of the class of
retrocausal models described above, illustrating that it is possible to get particle-like phenomena
from a field-based ontology, and also indicating a connection to some of the existing retrocausal
accounts of entanglement.

One way to resolve the time-symmetry issues noted above is to impose a model constraint
whereby the two unobserved incoming intensities I1 and I2 are always exactly equal to the unobserved
outgoing intensities IA and IB (either I1 = IA or I1 = IB). If this constraint is enforced, then assigning
a probability of P0(I1)P0(I2) to each diagram does not break any time symmetry, as this quantity
will always be equal to P0(IA)P0(IB). One simple rule that seems to work well in this case is the a
priori distribution

P0(IZ) = Q
1√
IZ

(where IZ > ε). (1)

Here, IZ is any of the allowed unobserved background intensities, Q is a normalization constant,
and ε is some vanishingly small minimum intensity to avoid the pole at IZ = 0. (While there may be
a formal need to normalize this expression, there is never a practical need; these prior probabilities
will be restricted by the experimental constraints before being utilized, and will have to be normalized
again.) The only additional rule to recover the appropriate probabilities is that I1 " ε. (This might be
motivated by the above analysis that laser photons would have to be triggered by background fields,
so the known incoming CPA would have to be accompanied by a non-vanishing unobserved field.)

To see how these model assumptions lead to the appropriate probabilities, first consider that it
is overwhelmingly probable that I2 ≈ ε. Thus, in this case, we can ignore the input on the dark port
of the beamsplitter. However, with only one non-vanishing input, there can be no interference, and
both outputs must have non-vanishing intensities. The only way it is possible for detector A to fire,
given the above constraints, is if I1 = IB = R/T in Figure 1b (such that I2 = IA = 0). The only way it
is possible for detector B to fire, in Figure 1c, is if I1 = IA = T/R.
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With this added information from the experimental geometry, one would update the prior
distribution P0(I1) by constraining the only allowed values of I1 to be R/T or T/R (and then
normalizing). The relative probabilities of these two cases is therefore

P(A)

P(B)
=

1√
R/T

P0(I2)

1√
T/R

P0(I2)
=

T
R

, (2)

yielding the appropriate ratio of possible outcomes.
Taking stock of this result, here are the assumptions of this example model:

• The a priori probability distribution on each unknown field intensity is given by Equation (1)—to
be updated for any given experiment.

• The unknown field values are further constrained to be equal as pairs, {I1, I2} = {IA, IB}.
• I1 is non-negligible because it accompanies a known “photon”.
• The probability of each diagram is given by P0(I1)P0(I2), or equivalently, P0(IA)P0(IB).

Note that it does not seem reasonable to assign the prior probability to the total incoming field
(1+ I1), because Equation (1) should refer to the probability given no further information, not even the
knowledge that there is an incoming photon’s worth of energy on that channel. (The known incoming
photon that defines this experiment is an addition to the a priori intensity, not a part of it.) Given these
assumptions, one finds the appropriate probabilities for a detected transmission as compared to a
detected reflection.

There are several other features of this example model. Given Equation (1), it should be obvious
that the total energy in most zero-point fields should be effectively zero, resolving the standard SED
problem of infinite zero-point energy. In addition, this model would work for any device that splits
a photon into two paths (such as a polarizing cube), because the only relevant parameters are the
classical transmission and reflection, T and R.

More importantly, this model allows one to recover the correct measurement probabilities for two
maximally entangled photons in essentially the same way as several existing retrocausal models in the
literature [3,7,8]. Consider two CPAs produced by parametric down-conversion in a nonlinear crystal,
with identical but unknown polarizations (a standard technique for generating entangled photons).
The three-wave mixing that classically describes the down-conversion process can be strongly driven
by the presence of background fields matching one of the two output modes, M1, even if there is no
background field on the other output mode, M2. (Given Equation (1), having essentially no background
field on one of these modes is overwhelmingly probable.) Thus, in this case, the polarization of M2
necessarily matches the polarization of the unknown background field on M1 (the field that strongly
drives the down-conversion process).

Now, assume both output photons are measured by polarizing cubes set at arbitrary polarization
angles, followed by detectors. With no extra background field on M2, the only way that M2 could
satisfy the above constraints at measurement would be if its polarization was already exactly aligned
(modulo π/2) with the angle of the future polarizing cube. (In that case, no background field would be
needed on that path; the bare CPA would fully arrive at one detector or the other.) However, we have
established that the polarization of M2 was selected by the background field on M1, so the background
field on M1 is also forced to align with the measurement angle on M2 (modulo π/2). In other words,
solving the whole experiment “all at once”, the polarization of both photons is effectively constrained
to match one of the two future measurement angles.

This is essentially what happens in several previously-published retrocausal models of maximally
entangled particles [3,7,8]. In these models, the properties of both particles (spin or polarization,
depending on the context) are constrained to be aligned with one of the two future settings.
The resulting probabilities are then entirely determined by the mis-matched particle, the one doesn’t
match the future settings. However, this is just a single-particle problem, and in this case the
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corresponding classical probabilties (R and T, given by Malus’s Law at the final polarizer) are enforced
by the above rules, matching experimental results for maximally entangled particles. The whole
picture almost looks as if the measurement on one photon has collapsed the other photon into that
same polarization, but in these models it was clear that the CPAs had the correct polarization all along,
due to future constraints on the appropriate hidden fields.

3.3. Discussion

The above model was presented as an illustrating example, demonstrating one way to resolve the
most obvious problems with classical photon analogs and SED-style approaches. Unfortunately, it does
not seem to extend to more complicated situations. For example, if one additional beamsplitter is
added, as in Figure 2, no obvious time-symmetric extension of the assumptions in the previous section
lead to the correct results. In this case, one of the two dark ports would have to have non-negligible
input fields. Performing this analysis, it is very difficult to invent any analogous rules that lead to the
correct distribution of probabilities on the three output detectors.

I2 I3

1+I1

Figure 2. A classical photon analog encounters two beamsplitters, and is divided among three detectors.
The CPA is boosted by some unknown peak intensity I1, and each beamsplitter’s dark port has an
additional incident field with unknown intensity.

In Section 5, we show that it is possible to resolve this problem, using different assumptions to
arrive at another model which works fine for multiple beamsplitters. However, before proceeding, it is
worth reviewing the most important accomplishment so far. We have shown that it is possible to give
a classical field account of an apparent single photon passing through a beamsplitter, matching known
observations. Such models are generally thought to be impossible (setting aside nonlocal options [13]).
Given that they are possible—if using the Lagrangian Schema—the next-level concern could be that
such models are simply implausible. For phenomena that look so much like particle behavior, such
classical-field-based models might seem to be essentially unmotivated.

The next section addresses this concern in two different ways. First, the experiments considered
in Section 4 are expanded to include clear wave-like behavior, by combining two beamsplitters into an
interferometer. Again, the input and output look like single particles, but now some essential wave
interference is clearly occurring in the middle. Second, the averaged and post-selected results of these
models can be compared with “weak values” that can be measured in actual experiments [14,15].
Notably, the results demonstrate a new connection between the average intermediate classical fields
and experimental weak values. This correspondence is known in the high-field case [24–28], but
here they are shown to apply even in the single-photon regime. Such a result will boost the
general plausibility of this classical-field-based approach, and will also motivate an improved model
for Section 5.
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4. Averaged Fields and Weak Values

Even without a particular retrocausal model, it is still possible to draw conclusions as to the
long-term averages predicted over many runs of the same experiment. The only assumption made
here will be that every relevant unknown field component for a given experiment (both inputs and
outputs) is treated the same as every other. In Figure 1, this would imply an equality between the
averaged values < I1>=< I2>=< IA >=< IB >, each defined to be the quantity IZ.

Not every model will lead to this assumption; indeed, the example model above does not, because
the the CPA-accompanying field I1 was treated differently from the dark port field I2. However,
for models which do not treat these fields differently, the averages converge onto parameters that
can actually be measured in the laboratory: weak values [14,15]. This intriguing correspondence is
arguably an independent motivation to pursue this style of retrocausal models.

4.1. Beamsplitter Analysis

Applying this average condition on the simple beamsplitter example of Figure 1b,c yields a phase
relationship between the incoming beams, in order to retain the proper outputs. If θ is the phase
difference between I1 and I2 before the beamsplitter, then taking into account the relative π/2 phase
shift caused by the beamsplitter itself, a simple calculation for Figure 1b reveals that

〈1 + IA〉 = IZ + T −
〈

2
√

RT(1 + I1)(I2) sin θ
〉

(3)

〈IB〉 = IZ + R +
〈

2
√

RT(1 + I1)(I2) sin θ
〉

. (4)

Given the above restrictions on the average values, this is only possible if there exists a non-zero
average correlation

C ≡
〈√

(1 + I1)(I2) sin θ

〉
(5)

between the inputs, such that C = −
√

R/4T. The same analysis applied to Figure 1c reveals that in
this case C =

√
T/4R. (This implies some inherent probability distribution P(I1, I2, θ) ∝ 1/|C| to yield

the correct distribution of outcomes, which will inform some of the model-building in the next section.)
In this case, there are no intermediate fields to analyze, as every mode is either an input or an output.
To discuss intermediate fields, we must go to a more complicated scenario.

4.2. Interferometer Analysis

Consider the simple interferometer shown in Figure 3. For these purposes, we assume it is aligned
such that the path length on the two arms is exactly equal. For further simplicity, the final beamsplitter
is assumed to be 50/50. Again, the global constraints imply that either Figure 3a or Figure 3b actually
happens. A calculation of the average intermediate value of Ix yields the same result as Equation (3),
while the average value of Iy is the same as Equation (4). For Figure 3a, further interference at the final
beamsplitter then yields, after some simplifying algebra,

〈1 + IA〉 = (0.5 +
√

RT) + IZ + (T − R)
〈√

(1 + I1)(I2) sin θ
〉

(6)

〈IB〉 = (0.5−
√

RT) + IZ − (T − R)
〈√

(1 + I1)(I2) sin θ
〉

. (7)

The first term on the right of these expressions is the outgoing classical field intensity one would
expect for a single CPA input, with no unknown fields. Because of our normalization, it is also the
expected probability of a single-photon detection on that arm. The second term is just the average
unknown field IZ, and the final term is a correction to this average that is non-zero if the incoming
unknown fields are correlated. Note that the quantity C defined in Equation (5) again appears in this
final term.
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Figure 3. (a) A classical photon analog, boosted by some unknown peak intensity I1, enters an
interferometer through a beamsplitter with transmission fraction T. An unknown field also enters from
the dark port. Both paths to the final 50/50 beamsplitter are the same length; the intermediate field
intensities on these paths are IX and IY . Here, detector A fires, leaving unmeasured output fields IA

and IB. (b) The same situation as (a), except here detector B fires.

To make this end result compatible with the condition that 〈1 + IA〉 = 1 + IZ, the correlation term
C must be constrained to be C=(0.5−

√
RT)/(T − R). For Figure 3b, with detector B firing, this term

must be C=−(0.5 +
√

RT)/(T − R). (As in the beamsplitter case, the quantity 1/|C| happens to be
proportional to the probability of the corresponding outcome, for allowed values of C.) Notice that as
the original beamsplitter approaches 50/50, the required value of C diverges for Figure 3b, but not for
Figure 3a. That is because this case corresponds to a perfectly tuned interferometer, where detector A
is certain to fire, but never B. (This analysis also goes through for an interferometer with an arbitrary
phase shift, and arbitrary final beamsplitter ratio; these results will be detailed in a future publication.)

In this interferometer, once the outcome is known, it is possible to use C to calculate the average
intensities < IX > and < IY > on the intermediate paths. For Figure 3a, some algebra yields:

〈IX〉 = IZ +
√

T√
T+
√

R
(8)

〈IY〉 = IZ +
√

R√
T+
√

R
. (9)

For Figure 3b, the corresponding average intermediate intensities are

〈IX〉 = IZ +
√

T√
T−
√

R
(10)

〈IY〉 = IZ −
√

R√
T−
√

R
. (11)

Remarkably, as we are about to see, the non-IZ portion of these calculated average intensities can
actually be measured in the laboratory.

4.3. Weak Values

When the final outcome of a quantum experiment is known, it is possible to elegantly calculate
the (averaged) result of a weak intermediate measurement via the real part of the “Weak Value”
equation [14]:

〈Q〉weak = Re
(
<Φ|Q|Ψ>

<Φ|Ψ>

)
. (12)
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Here, |Ψ> is the initial wavefunction evolved forward to the intermediate time of interest, |Φ>

is the final (measured) wavefunction evolved backward to the same time, and Q is the operator for
which one would like to calculate the expected weak value. (Note that weak values by themselves
are not retrocausal; post-selecting an outcome is not a causal intervention. However, if one takes
the backward-evolved wavefunction |Φ> to be an element of reality, as done by one of the authors
here [29], then one does have a retrocausal model—albeit in configuration space rather than spacetime.)
Equation (12) yields the correct answer in the limit that the measurement Q is sufficiently weak, so
that it does not appreciably affect the intermediate dynamics. The success of this equation has been
verified in the laboratory [26], but is subject to a variety of interpretations. For example, 〈Q〉weak can be
negative, seemingly making a classical interpretation impossible.

In the case of the interferometer, the intermediate weak values can be calculated by recalling that
it is the square root of the normalized intensity that maps to the wavefunction. (Of course, the standard
wavefunction knows nothing about IZ; only the prepared and detected photon are relevant in a
quantum context.) Taking into account the phase shift due to a reflection, the wavefunction between
the two beamsplitters is simply |Ψ> =

√
T|X>+ i

√
R|Y>, where |X>(|Y>) is the state of the photon

on the upper (lower) arm of the interferometer.
The intermediate value of |Φ> depends on whether the photon is measured by detector A or B.

The two possibilities are:

|ΦA> =
1√
2
(−i|X>+ |Y>) , (13)

|ΦB> =
1√
2
(|X>− i|Y>) . (14)

Notice that, in this case, the reflection off the beamsplitter is associated with a negative π/2 phase
shift, because we are evolving the final state in the opposite time direction.

These are easily inserted into Equation (12), where Q = |X><X| for a weak measurement of IX ,
and Q = |Y><Y| for a weak measurement of IY . (Given our normalization, probability maps to peak
intensity.) If the outcome is a detection on A, this yields

〈IX〉weak =
√

T√
T+
√

R
, (15)

〈IY〉weak =
√

R√
T+
√

R
. (16)

If instead the outcome is a detection on B, one finds

〈IX〉weak =
√

T√
T−
√

R
, (17)

〈IY〉weak =
−
√

R√
T−
√

R
. (18)

Except for the background average intensity IZ, these quantum weak values are precisely the
same intermediate intensities computed in the previous section.

The earlier results were framed in an essentially classical context, but these weak values come
from an inherently quantum calculation, with no clear interpretation. Some of the strangest features
of weak values are when one gets a negative probability/intensity, which seem to have no classical
analog whatsoever. For example, whenever detector B fires, either Equation (17) or Equation (18)
will be negative. (Recall that if T = R, then B never fires.) Nevertheless, a classical interpretation of
this negative weak value is still consistent with the earlier results of Equations (10) and (11), because
those cases also include an additional unknown intensity IZ. It is perfectly reasonable to have classical
destructive interference that would decrease the average value of IY to below that of IZ; after all, the
latter is just an unknown classical field.
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One objection here might be that for values of T ≈ R, the weak values of Equations (17) and (18)
could get arbitrarily large, such that IZ would have to be very large as well to maintain a positive
intensity for both Equations (10) and (11). However, consider that if IZ were not large enough, then
there would be no classical solution at all, in contradiction to the Lagrangian Schema assumptions
considered above (requiring a global solution to the entire problem). Furthermore, if the weak values
get very large, that is only because the outcome at B becomes very improbable, meaning that IZ
would rarely have to take a large value. As we show in the next section, there are reasonable a priori
distributions of IZ which would be consistent with this occasional restriction.

Such connections between uncertain classical fields and quantum weak values are certainly
intriguing, and also under current investigation by at least one other group [30]. However, while
it may be that the unknown-classical-field framework might help make some conceptual sense of
quantum weak values, the main point here is simply that these two perspectives are mutually consistent.
Specifically, the known experimental success of weak value predictions seems to equally support
the unknown-field formalism presented above. It remains to be seen whether (and why) these two
formalisms always seem to give compatible answers in every case, but this paper will set that question
aside for future research.

For the purposes of this introductory paper, the final task will be to consider whether the above
results indicate a more promising model of these experiments.

5. An Improved Model

Given the intriguing connection to weak values demonstrated in the previous section, it seems
worth trying to revise the example model from Section 3. In Section 4, the new assumption which led
to the successful result was that every unknown field component (I1, I2, IA, IB), should be treated on
an equal footing, not singling out I1 for accompanying a known photon. (Recall the average value
of each of these was assumed to be some identical parameter IZ.) Meanwhile, the central idea of
the model in Section 3 is that time-symmetry could be enforced by demanding an exact equivalence
between the two input fields (I1, I2) and the two output fields (IA, IB).

One obvious way to combine all these ideas is to instead demand an equivalence between all four
of these intensities—not on average, but on every run of the experiment. This might seem to be in
conflict with the weak value measurements, which are not the same on every run, but only converge
to the weak values after an experimental averaging. However, these measurements are necessarily
weak/noisy, so these results are inconclusive as to whether the underlying signal is constant or varying.
(Alternatively, one could consider a class of models that on average converge to the below model, but
this option will also be set aside for the purposes of this paper.)

With the very strict constraint that each of (I1, I2, IA, IB) are always equal to the same intensity IZ,
the only two free parameters are IZ and the relative initial phase θ (between the two incoming modes
1 + I1 and I2). In addition, θ and IZ must be correlated, depending on the experimental parameters,
in order to fulfill these constraints. For the case of the beamsplitter (Figure 1b,c), this amounts to
removing all the time-averages from the analysis of Section 4.1. This leads to the conditions

1√
I2
ZA + IZA

= − sin θ

√
4T
R

, (19)

1√
I2
ZB + IZB

= sin θ

√
4R
T

. (20)

Here, IZA is the value of IZ needed for an outcome on detector A (as in Figure 1b), and IZB is the
value of IZ needed for an outcome on detector B (as in Figure 1c). Both are functions of θ.

This model requires a priori probability distributions P0(IZ) and P′0(θ) (the prime is to distinguish
these two functions). The hope is that these distributions can then be restricted by the global constraints
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such that the correct outcome probabilities are recovered. To implement the above constraints, instead
of integrating over the two-dimensional space [IZ, θ], the correlations between IZ and θ essentially
make this a one-dimensional space, which can be calculated with a delta function:∫

P0(IZ)P′0(θ)δ(IZ − IZA)dIZdθ∫
P0(IZ)P′0(θ)δ(IZ − IZB)dIZdθ

=
P(outcome A)

P(outcome B)
. (21)

It is very hard to imagine any rule whereby P′0(θ) would not start out as a flat distribution—all
relative phases should be equally a priori likely. The earlier observation that the appropriate probability
was always proportional to 1/|C| (in both the beamsplitter and the interferometer geometries)
motivates the following guess for an a priori probability distribution for background fields:

P0(IZ) ∝
1√

I2
Z + IZ

, (22)

assuming the normalization where I = 1 corresponds to a single classical photon. This expression
diverges as IZ → 0, which is appropriate for avoiding the infinities of SED, although some cutoff would
be required to form a normalized distribution. (Again, it is unclear whether an a priori assessment
of relative likelihood would actually have to be normalized, given that in any experimental instance
there would only be some values of IZ which were possible, and only these probabilities would have
to be normalized.)

Inserting Equation (22) into Equation (21), along with a flat distribution for P′0(θ), the beamsplitter
conditions from Equations (19) and (20) yield∫ 2π

π − sin θ
√

4T/Rdθ∫ π
0 sin θ

√
4R/Tdθ

=
T
R

, (23)

as desired. Here, the limits on θ come from the range of possible solutions to Equations (19) and (20).
A similar successful result is found in the above case of the interferometer, because 1/|C| is again
proportional to the outcome probability. This model also works well for the previously-problematic
case of multiple beamsplitters shown in Figure 2. Now, because the incoming fields (I1, I2, I3) are all
equal, this essentially splits into two consecutive beamsplitter problems, and the probabilities of these
two beamsplitters combine in an ordinary manner.

Summarizing the assumptions behind this improved model:

• The unknown field values are constrained to all be equal: I1 = I2 = IA = IB.
• The apriori probability distribution on each unknown field intensity is given by Equation (22)—but

must be updated for any given experiment.
• The relative phase between the incoming fields is a priori completely unknown—but must be

updated for any given experiment.

However, there is still a conceptual difficulty in this new model, in that all considered incoming
field modes are constrained to be equal intensities, but we have left the unconsidered modes equal
to zero. (Meaning, the modes with the wrong frequencies, or coming in the wrong direction, etc.).
If literally all zero-point modes were non-zero, it would not only change the above calculations, but it
would run directly into the usual infinities of SED. Thus, if this improved model were to be further
developed, there would have to be some way to determine certain groups of background modes
that were linked together through the model assumptions, while other background modes could
be neglected.

This point is also essential if such a revised model is to apply to entangled particles. For two
down-converted photons with identical polarizations, each measured by a separate beamsplitter, there
are actually four relevant incoming field modes: the unknown intensity accompanying each photon,
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as well as the unknown intensity incident upon the dark port of each beamsplitter. If one sets all four
of these peak intensities to the same IZ, one does not recover the correct joint probabilities of the two
measurements. However, if two of these fields are (nearly) zero, as described in Section 3.2, then the
correct probabilities are recovered in the usual retrocausal manner (see Section 3.2 or [3,7,8]). Again, it
seems that there must be some way to parse the background modes into special groups.

The model in this section is meant to be an example starting point, not some final product.
Additional features and ideas that might prove useful for future model development will now be
addressed in the final section.

6. Summary and Future Directions

Retrocausal accounts of quantum phenomena have come a long way since the initial proposal by
Costa de Beauregard [31]. Notably, the number of retrocausal models in the literature has expanded
significantly in the past decade alone [3,7–11,22,32–40], but more ideas are clearly needed. The central
novelties in the class of models discussed here are: (1) using fields (exclusively) rather than particles;
and (2) introducing uncertainty to even the initial and final boundary constraints. Any retrocausal
model must have hidden variables (or else there is nothing for the future measurement choices to
constrain), but it has always proved convenient to segregate the known parameters from the unknown
parameters in a clear manner. Nature, however, may not respect such a convenience. In the case of
realistic measurements on fields, there is every reason to think that our best knowledge of the field
strength may not correspond to the actual value.

Although the models considered here obey classical field equations (in this case, classical
electromagnetism), they only make sense in terms of the Lagrangian Schema, where the entire
experiment is solved “all-at-once”. Only then does it make sense to consider incoming dark-port fields
(such as I2), because the global solution may require these incoming modes in order have a solution.
However, despite the presence of such fields at the beginning of the experiment (and, presumably,
before it even begins), they are not “inputs” in the conventional sense; they are literally outputs of the
retrocausal model.

The above models have demonstrated a number of features and consequences, most notably:

• Distributed classical fields can be consistent with particle-like detection events.
• There exist simple constraints and a priori field intensity distributions that yield the correct

probabilities for basic experimental geometries.
• Most unobserved field modes are expected to have zero intensity (unlike in SED).
• The usual retrocausal account for maximally entangled photons still seems to be available.
• The average intermediate field values, minus the unobserved background, is precisely equal to

the “weak value” predicted by quantum theory (in the cases considered so far).
• Negative weak values can have a classical interpretation, provided the unobserved background is

sufficiently large.

This seems to be a promising start, but there are many other research directions that might
be inspired by these models. For example, consider the motivation of action constraints, raised in
Section 2. If the total action is ultimately important, then any constraint or probability rule would have
to consider the contribution to the action of the microscopic intermediate fields. Even the simple case
of a CPA passing through a finite-thickness beamsplitter has a non-trivial action. (A single free-field
EM wave has a vanishing Lagrangian density at every point, but two crossing or interfering waves
generally do not). It certainly seems worth developing models that constrain not only the inputs and
outputs, but also these intermediate quantities (which would have the effect of further constraining
the inputs and outputs).

Another possibility is to make the incoming beams more realistic, introducing spatially-varying
noise, not just a single unknown parameter per beam. It is well-known that such spatial noise
introduces bright speckles into laser profiles, and in some ways these speckles are analogous to
detected photons—in terms of both probability distributions as well as their small spatial extent
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(compared to the full laser profile). A related point would be to introduce unknown matter fields,
say some zero-point equivalent of the classical Dirac field, which would introduce further uncertainty
and effective noise sources into the electromagnetic field. These research ideas, and other related
approaches, are wide open for exploration.

Certainly, there are also conceptual and technical problems that need to be addressed, if such
models are to be further developed. The largest unaddressed issue is how a global action constraint
applied to macroscopic measurement devices might lead to specific rules that constrain the microscopic
fields in a manner consistent with observation. (In general, two-time boundary constraints can be
shown to lead to intermediate particle-like behavior [41], but different global rules will lead to different
intermediate consequences.) The tension between a covariant action and the special frame of the
measurement devices also needs to be treated consistently. Another topic that is in particular need of
progress is an extension of retrocausal entanglement models to handle partially-entangled states, and
not merely the maximally-entangled Bell states.

Although the challenges remain significant, the above list of accomplishments arising from this
new class of models should give some hope that further accomplishments are possible. By branching
out from particle-based models to field-based models, novel research directions are clearly motivated.
The promise of such research, if successful, would be to supply a nearly-classical explanation for all
quantum phenomena: realistic fields as the solution to a global constraint problem in spacetime.
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Abstract: One of the basic assumptions underlying Bell’s theorem is the causal arrow of time, having
to do with temporal order rather than spatial separation. Nonetheless, the physical assumptions
regarding causality are seldom studied in this context, and often even go unmentioned, in stark
contrast with the many different possible locality conditions which have been studied and elaborated
upon. In the present work, some retrocausal toy-models which reproduce the predictions of quantum
mechanics for Bell-type correlations are reviewed. It is pointed out that a certain toy-model which
is ostensibly superdeterministic—based on denying the free-variable status of some of quantum
mechanics’ input parameters—actually contains within it a complete retrocausal toy-model. Occam’s
razor thus indicates that the superdeterministic point of view is superfluous. A challenge is to
generalize the retrocausal toy-models to a full theory—a reformulation of quantum mechanics—in
which the standard causal arrow of time would be replaced by a more lenient one: an arrow of time
applicable only to macroscopically-available information. In discussing such a reformulation, one
finds that many of the perplexing features of quantum mechanics could arise naturally, especially in
the context of stochastic theories.

Keywords: Bell’s theorem; the causal arrow of time; retrocausality; superdeterminism; toy-models

1. Introduction

Bell’s theorem is one of the most profound revelations of modern physics. In the Einstein–
Podolsky–Rosen article [1], and in Bell’s original proof [2], the discussion is based on notions of locality,
but in a later review [3] Bell clarified that the relevant requirement of locality, often called Bell-locality,
follows from the assumption of relativistic causality. The original “locality,” Bell stated, is in fact
simply an abbreviation of “local causality.” It is perhaps natural that the original papers, more than
the later reviews [3–5], were analyzed meticulously. Moreover, in all of Bell’s writings [6,7] and in the
overwhelming majority of the accompanying literature, the causal arrow of time is taken for granted,
rather than identified as a physical assumption.

What does this assumption mean? Many physicists accept Hume’s approach, which defines the
concepts of “cause” and “effect” so that a cause always precedes its effect. However, for mathematical
models of natural phenomena, it is also natural to take the inputs of a mathematical model as “causes”
and the outputs as “effects,” which corresponds to regarding the things we can control as causes
(see, e.g., [8]). In this context, assuming the causal arrow of time means simply that the model
accepts inputs from the past, such as initial conditions, and generates outputs that correspond to
later times. Similarly, in such models an external field at a time t affects only the values of variables
pertaining to later times. Many of the mathematical models used in physics are precisely of this
type, e.g., the standard application of Newton’s equations, with initial conditions taken as inputs,
or the description of quantum wavefunctions evolving according to Schroedinger’s equation between
measurements, with Born’s rule and the collapse postulate applied at the times of measurements.
However, some established mathematical models, such as the stationary-action principle of classical
mechanics, do not conform to this rule: at the mathematical level, they are in violation of the causal
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arrow [9] (to avoid confusion, we will use the terms “inputs” and outputs” rather than “causes” and
“effects,” whether or not a model obeys the causal arrow of time). A reasonable definition of the causal
arrow of time for a physical theory is that it is possible to formulate it in terms of a mathematical
model with inputs and outputs which conform to the causal arrow stated above.

For deterministic theories, modeled with differential equations, one can specify a concrete solution
by choosing as inputs either initial or final conditions (or a combination of both). One can then reserve
the identification of causes with inputs (and effects with outputs) only for models which conform
to the arrow of time, obtaining consistency with Hume’s approach. However, the situation is less
clear for stochastic theories, such as quantum mechanics (QM). In general, it is not guaranteed that a
mathematical model which does not conform to the causal arrow of time will have a reformulation
which does.

Bell’s writings indicate that, while he was interested in stochastic theories, he consistently accepted
Hume’s approach. For example, in [3], Bell contrasted local causality, which allows for stochastic
probabilities, with local determinism, taking for granted that at the mathematical level the past
affects the future rather than vice versa. Bell did often mention light cones, but did not pause to
explain why the past light cone of an event, rather than its future light cone, is where one may
find the inputs affecting it. When considering the possibility that relativistic causality could fail,
he discussed a preferred frame of reference in which the causal arrow would still hold [10]. Bell
applied relativistic causality to two separated particles which had originated together—the setup
of the Einstein–Podolsky–Rosen article—and derived the condition of Bell-locality. Subsequently,
many different notions of locality were identified, e.g., “parameter independence” vs. “outcome
independence.” In fact, a recent article lists no less than eight different statements/definitions of
locality [11] (see also [12]). Nonetheless, the logical argumentation requires that we should pay at least
as much attention to different definitions of causality as we pay to different notions of locality.

That the causal arrow of time is an essential assumption of Bell’s no-go theorem, and hence
should be called into question, is a point which was raised repeatedly in the literature [13–16]. When
considering theories or models which violate the standard arrow of time, the time-reversal symmetry
of microscopic physical theories is often used to argue that introducing any time-asymmetry should
be avoided altogether. In the present work, the possibility of introducing such an asymmetry into
the theory will be considered, with the aim of reproducing macroscopic phenomena. Specifically,
an asymmetric, low-entropy-in-the-past condition will be applied. A directionality of time is expected
to result from such asymmetry, but it need not be as strict as the standard causal arrow of time.

For this to work reasonably, one needs to distinguish between microscopic and macroscopic
degrees of freedom, and to have the information carried by the macroscopic degrees of freedom
constrained by an arrow of time. The microscopic degrees of freedom exhibit fluctuations which are
affected by inputs from the future, but any attempt at amplifying these fluctuations and bringing them
up to the macroscopic level must fail to produce any macroscopic information regarding the future
inputs. This corresponds well to known facts concerning quantum fluctuations, the impossibility of
using Bell-correlations for signaling, and the disturbance of a quantum system by measurement.

It thus appears that a most promising direction is to pursue retrocausal reformulations of
quantum mechanics (QM). Reformulations are powerful tools in advancing theoretical physics,
e.g., the Lagrangean and Hamiltonian reformulations of Newton’s equations played essential roles
in the development of QM. In fact, QM had two equivalent formulations to begin with—wave
mechanics and matrix mechanics—and some of the most important subsequent advances were
based on reformulations, as exemplified by path integrals. Additional examples include Bohmian
mechanics [17,18], which motivated Bell in his original research on no-go theorems [19], and its
stochastic version—diffusing particles guided by the quantum wavefunction, which was suggested
by Bohm himself [20] and further developed by others [21]. Improving our understanding of QM
appears to require such a radical retrocausal reformulation of the fundamental theory. This could have
ramifications in contexts such as quantum computation and/or quantum gravity.
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Notice that this approach is complementary to but quite distinct from the experimental approach,
which is by and large the main activity following from Bell’s theorem, e.g., [22]. The empirical adequacy
of QM has by now been abundantly supported but can never reach the certitude of a mathematical
theorem. The proven theorem states that the predictions of QM (i.e., the probabilities for the output
parameters, given the input parameters) cannot be reproduced by a model or theory conforming to
the condition of Bell-locality. Thus, our discussion will relate to models or theories which violate this
mathematical condition by allowing retrocausality. Questions regarding the real state of the system,
such as those which concerned Einstein [1], and which arise naturally when the theory is compared
with experimental procedures, do not arise in this context of model-construction. In particular, the issue
of counterfactual definiteness [23] is not relevant, because the discussion does not refer to the question
whether or not the real system has a definite property, but instead to the much simpler question of
whether or not the model or theory has a prediction for that property. The relationship between reality
and the parameters and predictions of the theory is adequately handled by standard QM (and its
interpretations), and need not be addressed when considering reformulations.

As a first step in this direction, it is appropriate to discuss retrocausal toy-models, i.e.,
mathematical models which reproduce the predictions of QM for the specific case considered in
Bell’s theorem. Two of the toy-models available will be reviewed. The first [16] was presented as a
mathematical formulation of the retrocausal ideas expressed, e.g., by Cramer [14]. The second [24] was
originally presented in a somewhat different context, associated with superdeterminism, i.e., the denial
of the free-variable status of the inputs of QM, which is generally associated with the free will of
the experimenters. It will be argued that while the latter model has a distinct technical advantage,
the former presentation is more relevant as a basis for a discussion of future scientific theories.

The two retrocausal toy-models discussed share the undesirable feature of QM known as the
measurement problem. On the other hand, they differ in that the “dynamics” in one is stochastic,
while it is deterministic in the other. Can they be generalized to encompass all quantum phenomena,
in a way which would allow an understanding of both nonlocality and quantum measurements? This
possibility will be qualitatively discussed, assuming the stochastic option for the dynamics. In this
context, it seems that many of the other mysterious aspects of QM, such as the exponentially large size
of the Hilbert space required to describe n particles, and the dynamics involving unitary evolution
punctuated by collapse, follow naturally. This discussion could be compared and contrasted with the
questions regarding the relative sizes of ontic and epistemic spaces in the context of the ontological
models framework, which is based on assuming strict causality. The difficulties that that framework
faces [25] serve as further motivation for considering the retrocausal alternative.

The discussion of toy-models is the subject of Section 2, the pathway towards a general retrocausal
reformulation of QM is discussed in Section 3, and conclusions are provided in Section 4.

2. Retrocausal Toy-Models

Bell’s theorem concerns entangled particles, e.g., pairs of distant photons with polarizations
entangled in a singlet state, as in some of the most remarkable early experiments [26] (originally, pairs
of spin-half particles were considered). The predictions of QM for polarization measurements on the
constituent photons of such a pair are given by the probabilities

pa,b(A, B) =
1
4
[1 + A B cos(2a− 2b)], (1)

where a and b are angles, defined modulo π, specifying the orientations of the beam-splitting polarizers
involved in the measurements, and A, B = ±1 represent the results of the measurements. A = 1
represents the first photon having a polarization along a, A = −1 represents a perpendicular
polarization, and the polarization of the second photon with respect to the orientation b is similarly
represented by B. In principle, even when one restricts QM to a description of the polarizations of
a pair of photons, one has an additional input variable c specifying how the photons are prepared,
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and thus determining the initial wavefunction. However, in the present work, we will only refer
to the singlet state, and thus c is a constant and can be dropped. The probabilities (1) are “local”
in the no-signaling sense, i.e., the marginal probabilities are independent of the remote inputs:
pa,b(A) ≡ ∑B pa,b(A, B) = 1

2 is independent of b, and similarly pa,b(B) is independent of a. However,
they are “nonlocal” in the sense of Bell, i.e., one cannot write pa,b(A, B) as a product of two separate
factors, pa,λ(A) and pb,λ(B), where λ is an additional parameter (or set of variables) describing the
“state” the particles had in the past, which is taken to be independent of the inputs a and b.

2.1. A Simplistic Toy-Model

The idea of retrocausality is to recognize this last restriction as a physical assumption—the causal
arrow of time—which may be inappropriate for a microscopic theory. If one allows λ to depend on a
and b, the difficulty is resolved, as demonstrated by the following simplistic model [16]:

pa,b(λ) =
1
4

[
δ(λ− a) + δ

(
λ− a− π

2

)
+ δ(λ− b) + δ

(
λ− b− π

2

)]
, (2)

where λ is an additional angle, defined modulo π, which represents the initial polarization of the
photons. In this model, the predictions for the polarization measurements follow from the standard
Malus’ law,

pa,λ(A) =

{
cos2(λ− a) A = 1

sin2(λ− a) A = −1
, (3)

and similarly for pb,λ(B). Combining these using

pa,b(A, B) =
∫

dλ pa,b(λ)pa,λ(A)pb,λ(B) (4)

reproduces the predictions of QM, Equation (1). A toy-model which approaches this simplistic one in
the appropriate limit ( γ → 0) is discussed in [27].

An attractive feature of this model is that one can consider what would happen if the value of
λ were measured at the source. In the experiments [26], the singlet pair of photons was emitted by
an atomic (J = 0)→ (J = 1)→ (J = 0) cascade. One can envision measuring the orientation of the
angular momentum of the atom during the brief time it is in the intermediate state of the cascade,
thereby inferring the initial polarization of the photons. In order to perform such a measurement,
one must specify the direction in which the angular momentum is measured, e.g., whether it is
a measurement of Ĵx or Ĵy (the results of this measurement and those of each one of the later
photon-polarization measurements would be correlated per the predictions of QM). Clearly, this
would constitute a “which path” measurement [28], and would disturb the system in a manner which
ruins the entanglement between the two photons.

2.2. Hall’s Toy-Model

According to (2), the variable λ carries much information regarding the values of a and b, or at
least one of them. It is of interest to note that this “flow of information from the future to the past”
is much more limited in other toy-models. A very efficient model, in this respect, was given in [24].
The variant of it pertaining to photons, rather than spin-half particles, is:

pa,b(λ) =
1
π

1 + ÁB́ cos(2a− 2b)
1 + ÁB́(1− z)

, (5)
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where Á = sign[cos(2a− 2λ)], B́ = sign[cos(2b− 2λ)] and z = 2
π |2a− 2b| are abbreviations (the

denominator never vanishes, because ÁB́ = 1 when z = 0 and ÁB́ = −1 when z = 2). This model is
deterministic in the sense that a and λ determine one possible value for A,

pa,λ(A) = δA,Á, (6)

and similarly for B and pb,λ(B). Again, using Equation (4) to combine Equations (5) and (6) trivially
reproduces the predictions of QM, Equation (1).

In the case of Equation (5), the “past” variable λ carries very little information on a and b, less
than 0.07 Bits [29]. This can justifiably be seen as a definite advantage over the simplistic model
of Equation (2). On the other hand, Refs. [24,29] can be criticized for not discussing retrocausality
explicitly (although its relevance was briefly acknowledged by the author in [30]). In fact, the possibility
that the variable λ depends on the inputs a and b, embodied in (5), is presented in [24] in a manner
that does not imply a violation of the causal arrow of time.

2.3. Criticism of the Superdeterministic Approach

How could this come about? As described in the introduction, Bell emphasized the locality
assumption, pa,b,λ(A, B) = pa,λ(A)pb,λ(B). In 1976 he was criticized by Shimony et al. [31] for not
emphasizing the measurement-independence assumption

pa,b(λ) = p(λ), (7)

as well. Bell replied that he had (belatedly) made explicit the assumption that a and b were free
variables, and that “this means that the values of such variables have implications only in their future
light cones” [32]. He also emphasized that his work should not be understood as a philosophical
discussion concerning the real world but as an analysis of the kinds of mathematical models or theories
which may be applicable. Obviously, the mathematical notion of free variables, which pertains to
such theories, is not specific to situations in which the past and/or the future are relevant. Thus,
the measurement-independence assumption relies on two separate assumptions:

(i) a and b are free variables;
(iI) The causal arrow of time, with λ associated with a time earlier than that of a and b.

The first implies that a and b are independent of λ, and the second that λ is independent of a and
b, giving a full justification of (7). However, saying that they are independent of each other might
be misleading, because the word “independent” is used here with different mathematical meanings.
In particular, mutual statistical independence is applicable only if the free-variable status of a and b is
revoked, and they are replaced by random variables.

If indeed a and b are treated as random variables, like λ, then the probability distribution pa,b(λ)

is replaced by a conditional probability, p(λ|a, b) (Bell’s notation, {λ|a, b}, could refer to either of
these). The measurement independence condition (7) then reads p(λ|a, b) = p(λ), and it no longer
follows from the arrow of time alone—a conditional dependence of λ on a and b could also arise from
a forwards-in-time dependence of a and/or b on λ, or from a common cause in the past. The latter is
indeed the possibility considered in [31], which describes a conspiracy involving a person who has
“concocted” a list of correlation data, an apparatus manufacturer, and the secretaries of two physicists
who are to perform the experiments. When the j-th measurement is to be performed, each of the
secretaries whispers the pre-listed setting to the corresponding physicist, who sets his apparatus
accordingly, and the result registered by each apparatus is pre-programmed to correspond to the
concocted list, rather than to an actual measurement. In this manner, any correlations can result,
including those of (1), with no violations of local causality, but this is achieved conspiratorially.

The agreement of empirical observations with QM, whether a and b are selected at random or
are determined by any other arrangement (say, a double-blind experimental procedure), provides
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strong evidence that it is appropriate to treat the orientations as free variables, and to avoid serious
discussion of the possibility that they could be predetermined. Indeed, it was argued from the
outset (in the concluding paragraphs of [31]) that the “enterprise of discovering the laws of nature”
by “scientific experimentation” necessarily involves the assumption that “hidden conspiracies of
this sort do not occur.” Accordingly, the purpose of the discussion was not to cast doubt on the
free-variable status of a and b, but merely to point out that a complete statement of Bell’s theorem must
include a reference to this status, assumption (i) above. Indeed, from that point on, Bell emphasized
that the proof of his theorem assumes this, and engaged in brief discussions of the possibility of
“superdeterministic” theories, in which there are no such free variables [4,5,32], concluding that even
in such cases pseudorandom variables which are “sufficiently free for the purpose at hand” should be
available. Subsequently, violations of measurement independence, Equation (7), were often perceived
as equivalent to violations of assumption (i), involving free variables or “free will,” and the similarly
critical assumption (ii), involving the arrow of time, very often remained unmentioned.

As described above, the model of Equations (5) and (6) is presented in [24] in this manner—the
violation of measurement independence is emphasized, the “free will” issue is discussed, and the role
of the causal arrow of time is not; neither are the unscientific/conspiratorial concern and the notion of
pseudorandom variables. In fact, in a more complete presentation of the model, the author finds it
necessary to add a variable μ associated with the overlap of the backwards lightcones of a and b, and
determining them (Section 5.1 of [29]). For an explicit version of the toy-model, it is suggested that μ

simply consists of the values of a and b, determining them in a decidedly artificial manner. In addition,
it was found necessary to invoke a correlation-does-not-imply- causation argument to explain how
the ostensibly retrocausal dependence in Equation (5) is consistent with causality. When considering
Equations (5) and (6) as a retrocausal rather than a free-variable-status-denying model, these additional
steps are superfluous. Thus, one may add Occam’s razor as a further argument to prefer the former
over the latter, i.e., to interpret violations of measurement independence as violations of (ii) rather
than of (i). The details given above are in the context of Refs. [24,29], but on the basis of the arguments
given, the Occam’s razor argument is expected to hold quite generally for superdeterministic models.
Nevertheless, such models are often regarded as the leading alternative to standard QM, by both
experimentalists (e.g., [33]) and leading theorists (e.g., [34]).

3. Toward a General Retrocausal Theory

Can the retrocausal toy-models discussed above be generalized to a full retrocausal theory of all
quantum phenomena, including a resolution of the measurement problem? The development of such
a theory would be revolutionary, as it would go beyond all previous developments in the foundations
of QM: path integrals [35], Bohmian mechanics [17,18], histories approaches (e.g., [36]), stochastic
mechanics [21], stochastic quantization [37], etc. In contemplating such a development, promoters
of retrocausation often advocate a fully time-reversal-symmetric approach [15]. However, to bring
microscopic theories in line with macroscopic phenomena, it is common in other contexts to break this
symmetry by invoking a low-entropy condition in the remote past. It is therefore of interest to consider
how a “fixed past” initial condition would affect different types of theories, as sketched in Figure 1
(see also [38]).

Consider a theoretical description of some degrees of freedom in spacetime, such as the modes
of an electromagnetic field, and consider an external perturbation (possibly an oscillating dipole)
which affects the dynamics of these degrees of freedom for a limited time, beginning at a time t1.
Furthermore, consider the possibility that the values of all the degrees of freedom described by the
theory are given at a time t0 in the past (if the dynamics is described by a second-order differential
equation in time, the time derivatives of these values are also considered here as given). For a theory
with deterministic dynamics, full specification of the field configuration at time t0 would determine the
field configuration for all times up to t1, at which the external perturbation is applied. However, if the
theory describing the dynamics of the fields is stochastic, this is no longer necessarily true and the
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probabilities for the fields at times before t1 may be retrocausally affected by the external perturbation.
In the case in which the dynamics allows for only small fluctuations around the classical behavior,
such as the quantum vacuum fluctuations around a zero-field solution, one may expect a weaker form
of causality to still hold.

Figure 1. Sketch of a spacetime region permeated by fluctuating fields, with an external perturbation
applied at times near t1, and with the field configuration at an early time, t0, fixed as initial conditions.
If the fields are described by a deterministic theory, the field configurations before t1 are unaffected by
the external perturbation; in contrast, for stochastic theories the probability distribution of the fields at
times between t0 and t1, indicated by the filled ovals, may depend on the perturbation. Nevertheless,
the firing rate of a “detector” placed at or near these ovals must not depend on the perturbation (or
else the no-signaling condition would be violated).

If the theory in question can also model the process of measurement, it must be capable of
describing the inner workings of a detector, which could be placed within the regions marked by the
open or the filled ovals in the sketch (times later than or earlier than t1, respectively). The detector
itself would consist of additional stochastic degrees of freedom and would presumably have an
initial condition corresponding to a metastable state. Fluctuating out of the metastable state would
correspond to a “click” in the detector, and the probability of such a fluctuation would depend on
the fluctuations on the field to which the detector is coupled. Dissipative aspects of the detector
could be modeled by coupling it to a “bath” of many “thermalized” degrees of freedom, subject to
appropriate initial conditions of their own, in analogy to the Caldeira–Leggett description of quantum
dissipation [39]. An “ideal” detector would correspond to the case for which the “click” is sufficiently
dissipative to be “irreversible,” so that coupling of further degrees of freedom to the detector would
allow for copying or “cloning” of the information regarding whether or not a “click” has occurred. This
would stand in contrast to the no-cloning condition which is expected to hold in general for stochastic
theories (see, e.g., [40]).

If the detector operates at times after t1 (the empty ovals), it is natural for the probability of
detection to depend on the details of the external perturbation. However, if the detector operates at
times earlier than t1, it is necessary to require that the corresponding probability is independent of the
external perturbation in order to avoid the possibility of signaling to the past. In other words, although
the fluctuating fields are subject to rules which allow for retrocausality, the external perturbation
and the detection events must be related in a manner which is subject to the causal arrow of time.
As this causal arrow applies only to the “macroscopically available” or “clone-able” information, and
does not affect the microscopic “hidden” degrees of freedom, it is perhaps appropriate to characterize
it as “lenient.” The fixed initial conditions are associated with low entropy, and therefore may be
expected to break the symmetry of the theory in just the manner required to meet such a lenient
causality requirement.

Note that we are here considering the possibility that an “agent” which is external to the theory
may control the inputs and may use the information provided by the measured outputs, and that such
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an agent is subject to the arrow of time as well. For example, the agent may decide whether or not to
apply the external perturbation according to whether or not a detection event has occurred at an earlier
time. Signaling into the past must thus indeed be strictly impossible, as it would allow construction of
causal loops—the well-known inconsistency arguments of the grandfather paradox (a.k.a. the bilking
argument). However, these arguments involve only the information accessible at the macroscopic
level, so they precisely allow the type of lenient causality described here, in which the microscopic
degrees of freedom are affected retrocausally [15].

A theory of this type, if developed, would provide a natural explanation for many of the
perplexing features of QM. The description above bears similarities to the analysis of quantum
measurement by environment-induced superselection, or einselection [41]. It would be natural
to supplement it by an alternative description which would represent only the macroscopically-
available information regarding a certain subset of the degrees of freedom up to a time t. As the
external perturbations applied at later times to these degrees of freedom are to be treated as unknown,
this mathematical description would have to represent a large number of possibilities, exponentially
large in the number of degrees of freedom involved. Furthermore, by definition it would have to
evolve in an information-preserving manner as t is changed, except for the moments at which there is
a change in the macroscopically-available information. This corresponds precisely to the evolution of
quantum wavefunctions, which form exponentially large Hilbert spaces, and exhibit unitary evolution
punctuated by “collapse” events (see also [42]).

For retrocuasal theories of the type considered here, it is expected that a direct generalization
of the deduction of the lenient causality condition would lead to the slightly stronger condition of
“information causality” [43]. This latter condition was put forward as a physical principle within an
axiomatic approach, i.e., with the hope that all of the features of QM could be deduced from it. This was
partly successful, as it was demonstrated that information causality implies Tsirelson’s bound [44],
a generalization of a Bell inequality which holds in the quantum realm. In this sense, it is expected that
time-asymmetric retrocausal theories of the type considered here would, through the mathematical
arguments of [43], provide an explanation for the fact that all quantum phenomena obey Tsirelson’s
inequality. Note that information causality is here to be deduced rather than assumed, and thus the fact
that not all aspects of QM can be generated by it does not lead to any objections in the present context.

4. Summary and Discussion

The present work, like several other presentations at the EmQM17 David Bohm centennial
conference [45–49], advocates the relaxation of the arrow-of-time assumption of Bell’s theorem. In the
first part, the role this assumption plays in the proof of the theorem was considered, and contrasted
with the free-variable assumption, which is associated with the free will of the experimenters. Concrete
toy-models which violate these assumptions were discussed. In the second part, an admittedly
speculative discussion of the possibility of developing a retrocausal reformulation of QM which would
describe all quantum phenomena in spacetime (rather than a Hilbert space), and would be free of the
measurement problem, was given.

In the proof of Bell’s theorem, the arrow-of-time assumption enters together with the free-variable
status of the measurement settings, leading to the mathematical condition of measurement
independence, Equation (7) above. Unfortunately, the arrow of time is usually taken for granted, rather
than identified as a physical assumption, and relaxation of the measurement-independence condition
is then associated with superdeterminism, i.e., denial of the free-variable status of the settings, rather
than with retrocausality.

It was pointed out from the outset that for superdeterminism to provide a resolution of the
difficulty exposed by Bell’s theorem, one must assume that the measurement settings are produced
in a conspiratorial manner, one which would undermine the scientific method [31]. In contrast,
accepting violations of the mathematical causal-arrow-of-time condition was necessary already in the
context of the stationary-action principle of classical mechanics. Thus, while both face the difficulty of
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overcoming the prejudices we have developed based on our experiences in the macroscopic world,
there is a clear preference for the latter over the former. Nevertheless, the superdeterministic approach
has received much attention recently, and several concrete examples of superdeterministic toy-models
have been put forward. This may be due to the argument concerning the grandfather paradox, but
such paradoxes are easily avoided if one takes retrocausality to affect only hidden variables [15], such
as the which-path variables of standard QM [28] (those whose measurement precludes the observation
of interference effects).

As a further argument against superdeterminism, one of the available toy-models [24] has been
considered, and it was shown that it consists of a complete retrocausal toy-model, to which additional
steps of argumentation have been added in order to transform it into a superdeterministic toy-model.
Occam’s razor thus rules against the superdeterministic approach and for the retrocausal interpretation
of such toy-models. When interpreted in this manner, this particular toy-model of Ref. [24] has
a distinct advantage over an earlier retrocausal toy-model [16], in that the microscopic degrees of
freedom carry a very limited amount of information into the past.

Developing a general retrocausal theory of quantum phenomena, one that would be free of the
measurement problem and not limited to the scope of a toy-model, is a grand challenge of quantum
foundations. Whereas it is appropriate to discuss fully time-symmetric theories in this context [15],
the possibility of breaking the symmetry by imposing fixed boundary conditions in the past was
considered above. A theory with fully fixed initial conditions and deterministic dynamical rules cannot
exhibit retrocausality of the type required by Bell’s theorem. In contrast, a theory with time-symmetric
stochastic dynamical rules would have its symmetry broken by the imposition of initial conditions,
in a manner which may lead to a “lenient” arrow of time of the type observed macroscopically—an
arrow of time applicable only to macroscopically available information.

Such a stochastic time-asymmetric approach is expected to enjoy two further advantages: (a)
Constructing the corresponding “epistemic” state of knowledge, i.e., a mathematical representation
for the macroscopically-available information up to a time t, would necessarily result in states which
are exponentially complex for many degrees of freedom. These states would “evolve” with t in an
information-preserving manner, except at the times of measurements, at which additional information
becomes available. The correspondence to the complexity of quantum wavefunctions and their
unitary/collapse evolution is clear. (b) The spatiotemporal “flow” of entropy/information in such
theories is expected to lead to the information causality condition, and thus to Tsirelson’s bound.

In closing, it is appropriate to quote from the concluding paragraph of Bell’s last review of his
theorem [5]:

The unlikelihood of finding a sharp answer to this question [the measurement problem]
reminds me of the relation of thermodynamics to fundamental theory. The more closely one
looks at the fundamental laws of physics the less one sees of the laws of thermodynamics.
The increase of entropy emerges only for large complicated systems, in an approximation
depending on “largeness” and “complexity.” Could it be that causal structure emerges only
in something like a “thermodynamic” approximation, where the notions “measurement”
and “external field” become legitimate approximations? Maybe that is part of the story, but
I do not think it can be all. Local commutativity does not for me have a thermodynamic air
about it. It is a challenge now to couple it with sharp internal concepts, rather than vague
external ones.

Developing a fundamental retrocausal stochastic theory may resolve the issue, as the condition
of local commutativity need only apply to the corresponding epistemic states, representing the
macroscopically-available information. It is expected that the process of mathematically constructing
such epistemic states would provide the “sharp internal concepts” required by Bell to meet
this challenge.
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Abstract: The concept of universal gravity-related irreversibility began in quantum cosmology.
The ultimate reason for universal irreversibility is thought to come from black holes close to the Planck
scale. Quantum state reductions, unrelated to gravity or relativity but related to measurement devices,
are completely different instances of irreversibilities. However, an intricate relationship between
Newton gravity and quantized matter might result in fundamental and spontaneous quantum
state reduction—in the non-relativistic Schrödinger–Newton context. The above two concepts of
fundamental irreversibility emerged and evolved with few or even no interactions. The purpose here
is to draw a parallel between the two approaches first, and to ask rather than answer the question:
can both the Planckian and the Schrödinger–Newton indeterminacies/irreversibilities be two faces of
the same universe. A related personal note of the author’s 1986 meeting with Aharonov and Bohm
is appended.

Keywords: fundamental irreversibility; space-time fluctuations; spontaneous state reduction

1. Introduction

Standard micro-dynamical equations, whether classical or quantum, are deterministic and
reversible. They can, nonetheless, encode various options of irreversibility even at the fundamental
level. Here, I am going to discuss two separate concepts of fundamental irreversibility, which are
quite certain to overlap in the long run. The first option concerns space-time (gravity); it is relativistic,
hallmarked by mainstream cosmologists and field theorists (including immortal ones). The second
option is rooted in the explicit irreversibility of von Neumann measurement in non-relativistic quantum
mechanics; its story is perhaps more diffusive than that of the first. The standard and linear story of
Planck scale irreversibility is recapitulated in Section 2. I choose a personal account for the parallel
story of the conjectured Newton-gravity-related non-relativistic irreversibility of macroscopic quantum
mechanics in Section 3. I stop both stories in the 1980s when the same structure of heuristic master
equations was proposed for the two options of fundamental irreversible dynamics—with different
interpretations and regimes of significance, of course. Towards their reconciliation, Section 4 offers
some thoughts and concludes in an open-ended fashion.

2. Irreversibility at Planck Scale

At the dawn of quantum-gravity research, Bronstein [1–3] discovered by heuristic calculations that
the precise structure of space-time, contrary to the precise structure of electromagnetism, is unattainable
if we rely on the quantized motion of test bodies. Subsequent decades raised stronger and famous
arguments concerning space-time blurriness, unpredictability, its role in universal loss of information,
of quantum coherence, and of microscopic reversibility in general. Wheeler [4] found that smooth
space-time changes into a foamy structure of topological fluctuations at the Planck scale. Bekenstein [5]
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gave the first exact quantitative proposal toward fundamental irreversibility, claiming that black holes
have entropy:

S =
kB

4�2
Pl
× (black hole surface area), (1)

where kB is Boltzmann’s constant; �Pl is the Planck length. This was confirmed by Hawking [6] who
showed that black holes do, indeed, emit the corresponding thermal radiation. A short time later,
he summarized the situation by stating the unpredictability of quantum-gravity at the Planck scale,
leading him to propose that quantum field theory is fundamentally irreversible [7]. Accordingly,
the unitary scattering operator Ŝ should be replaced by the more general superscattering operator $
acting on the initial density operator ρ̂in instead of the initial state vector:

ρ̂out = $ρ̂in 
= Ŝρ̂inŜ†. (2)

To resolve the detailed irreversible (non-unitary) dynamics beyond Hawking’s superscattering,
Ellis et al. [8] proposed a simple quantum-kinetic (master) equation, which Banks, Susskind and
Peskin [9] generalized as follows:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂]− 1

2h̄2

∫ ∫
[Q̂(x), [Q̂(y), ρ̂ ]]h(x− y)d3xd3y, (3)

where Ĥ is the Hamiltonian, Q̂(x) is a certain quantum field, and h(x − y) is a positive symmetric
kernel. The transparent structure allowed the authors to point out a substantial difficulty: non-conservation
of energy-momentum.

3. Irreversibility in the Schrödinger–Newton Context

In the early 1970s, being a student fascinated already by quantum theory, I missed a dynamical
formalism of the state vector collapse from it. If I were a student and aware of the related literature,
I would have read the phenomenological model by Bohm and Bub [10]. However, I was not aware of
it, and started to think on my own. If you open a textbook, you will read about the expansion of the
time-dependent state vector |t〉 in terms of the energy eigenstates |n〉 of eigenvalues En, respectively.
However, I wrote it with a little modification:

|t〉 = ∑
n

cn exp
(
− i

h̄
En(1 + δ)t

)
|n〉, (4)

because I observed that by allowing a small randomness δ of the time flow, the average density matrix
becomes gradually diagonal in the energy basis:

|t〉〈t| −→ ∑
n
|cn|2|n〉〈n|, (5)

exactly as if someone measured the energy. I made a prototype dynamical model of non-selective
von Neumann measurements. A question remained unanswered: where does randomness of time
come from? The hint should have come from the sadly forgotten Bronstein [1–3], but it came from
Károlyházy after he gave department seminars in 1973 on his earlier work [11] where he used a Planck
scale uncertainty of classical space-time and a very vague model of massive body’s state vector collapse
based upon it. Unfortunately, I had to do experimental particle physics for a decade.

Returning to theory, I showed [12] that the Newtonian limit of standard reversible semi-classical
gravity, the so-called Schrödinger–Newton equation [13], obtains sensible solitonic wave functions
for the massive (e.g., nano-) objects’ center-of-mass. This determined my approach, i.e., to put
non-relativistic flesh on the toy dynamics (4) and (5) of state vector reduction. The uncertainty δ

of time flow should come from the Newtonian limit of the metric tensor element g00, which is, in fact,
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the Newton potential φ. The unpredictability δφ of the Newton potential should depend on G and h̄,
but not on c. The choice was the following spatially correlated white-noise:

δφ(x, t)δφ(y, s) =
h̄G

|x− y| δ(t− s). (6)

The random part of the Newton potential couples to the mass density operator f̂ (x) via the
interaction

∫
φ(x, t) f̂ (x)d3x, yielding the following master equation for the density operator:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂]− G

2h̄

∫∫
[ f̂ (x), [ f̂ (y), ρ̂ ]]

1
|x− y|d

3xd3y. (7)

This dynamic is mimicking the (non-selective) von Neumann measurement of massive object’s
positions. It predicts the spontaneous reduction (decay) of Schrödinger cat states (see the same result
in [13] by Penrose).

Before journal publication [14], I showed this result to Yakir Aharonov (read Appendix A).
He warned me about the energy-momentum non-conservation. This came as a surprise to me as I had
not read [9].

4. Planck Scale or Schrödinger–Newton Context?

Irreversibility at the Planck scale seems plausible within standard physics because of evaporating
black holes (Section 2). Non-relativistic Schrödinger–Newton irreversibility (Section 3) is a conjecture,
although its derivation is not much more heuristic than that of Planckian’s. For both options, the same
structure of master equations was proposed to encode the irreversible dynamics of the density operator.
Planck scale irreversibilities from Equation (3) become significant for certain fundamental elementary
particles. Contrary to that, Equation (7) predicts irreversibility for massive non-relativistic objects
in the Schrödinger–Newton context. Whether the two underlying concepts are compatible at all is
unknown. Whether the Newtonian unpredictabilities/fluctuations are the non-relativistic limit of the
Planckian’s? That is difficult to answer.

Let me mention, nonetheless, two examples where relativistic phenomenologies, different from the
line of Section 2, turned out to reduce to the Schrödinger–Newton uncertainty (6) non-relativistically.
Unruh [15] proposed a possible uncertainty relation between the metric and Einstein tensors,
respectively. In the Newtonian limit, speed of light c cancels out and we are left with just the
white-noise uncertainties (6), as pointed out in [14]. Penrose discussed the fundamental conflict
between general relativity and quantization. To resolve it, heuristically at least, he also found the
necessity of space-time’s fundamental blurriness, guessed it non-relativistically and determined its
equivalent with expression (6) up to a factor of 2 (a discrepancy which has recently been resolved
by [16]).

Against questioning a possible transmutation of Planck scale uncertainties into the non-relativistic
Schrödinger–Newton regime, I have an elementary argument. Consider the Schrödinger-equation for
the center-of-mass of a big body such as M = 1 kg, with velocity 1 km/s which is fairly non-relativistic.
Calculate the de Broglie wave length: λ = (2πh̄/mv) = 4.16× 10−36 m. This is smaller than the Planck
length �Pl = 1.62× 10−35 m by about one order of magnitude. Since standard physics breaks down
anyway at the Planck scale, we can no longer trust in the Schrödinger equation for the motion of our
massive non-relativistic body. Planck scale space-time uncertainties have thus developed uncertainties
in the Schrödinger dynamics of non-relativistic massive bodies. So far so good. However, will c be
cancelled out so that we obtain the effective Schrödinger–Newton uncertainty (6) and (7) and the
corresponding spontaneous reduction for massive objects [13,14]?
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5. Concluding Remarks

Two independent theories of relativistic and non-relativistic fundamental irreversibility,
both related to the conflict between gravity and quantization, are in the scope of this work.
One was conceived and would be relevant in cosmology. The other one was born from the quantum
measurement problem and would modify the quantum mechanics of massive bodies even in the
lab. Their conceptions have been outlined in Sections 2 and 3, respectively, including their basics
without details and later developments. Such a restricted presentation sufficed to expose the issue
at the center of this work in Section 4: what is the relationship between the Planckian and the
Schrödinger–Newton unpredictability of our space-time? The question remains unanswered, but our
purpose has been to highlight it. In particular, we pointed out that Planckian unpredictability survives
non-relativistically—for massive macroscopic quantized degrees of freedom.
Funding: This research was funded by the Hungarian Scientific Research Fund grant number 124351 and the
EU COST Action grant number CA15220. Acknowledgments: The Fetzer Franklin Fund is acknowledged

for generously covering my costs to attend the Emergent Quantum Mechanics 2017 conference (26–28 October,
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Conflicts of Interest: The author declares no conflict of interests.

Appendix A

Figure A1. Author’s diary page, from 18 March 1986.

It was Asher Peres who asked Yakir to receive the unknown theorist from Hungary. Below is the translation
of my notes (Figure A1).

1110 Aharonov: His office and desk are almost empty, no personal library, no paper piles. He is at
most 50 or so. He sits behind the desk, smokes a long fat cigar, makes a phone call, and asks that I
take a seat.
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We await David Bohm, who I will also be introduced to. Until then, I can unfold my quantum-gravity
idée fix. David Bohm arrives. He is at least in his 60s, but could be 70. I am listening as Aharonov
explains the superstring to Bohm who is repeatedly asking questions. Finally, I also communicate
my layman’s views; Bohm’s criticism is also akin. Aharonov allows me to speak, but first tells Bohm
with hellish intensively what he could not have heard. Aharonov dislikes gravitational noise; he
prefers dynamics. However, at the end, my master equation and the pure state representation may
have caught him a bit. He understood everything very well, he spoke steadily, with real firmness and
organization.

He got two offprints (localization + orthog.)

Peres will send money for me.

1330 We say goodbye.

Left margin: Bohm looked at the master equation intently! Immediately, he also knew that decoherence

= reduction.
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Abstract: Identifying or constructing a fine-grained microscopic theory that will emerge under specific
conditions to a known macroscopic theory is always a formidable challenge. Thermodynamics
is perhaps one of the most powerful theories and best understood examples of emergence in
physical sciences, which can be used for understanding the characteristics and mechanisms of
emergent processes, both in terms of emergent structures and the emergent laws governing the
effective or collective variables. Viewing quantum mechanics as an emergent theory requires a better
understanding of all this. In this work we aim at a very modest goal, not quantum mechanics as
thermodynamics, not yet, but the thermodynamics of quantum systems, or quantum thermodynamics.
We will show why even with this minimal demand, there are many new issues which need be
addressed and new rules formulated. The thermodynamics of small quantum many-body systems
strongly coupled to a heat bath at low temperatures with non-Markovian behavior contains elements,
such as quantum coherence, correlations, entanglement and fluctuations, that are not well recognized
in traditional thermodynamics, built on large systems vanishingly weakly coupled to a non-dynamical
reservoir. For quantum thermodynamics at strong coupling, one needs to reexamine the meaning of
the thermodynamic functions, the viability of the thermodynamic relations and the validity of the
thermodynamic laws anew. After a brief motivation, this paper starts with a short overview of the
quantum formulation based on Gelin & Thoss and Seifert. We then provide a quantum formulation of
Jarzynski’s two representations. We show how to construct the operator thermodynamic potentials,
the expectation values of which provide the familiar thermodynamic variables. Constructing the
operator thermodynamic functions and verifying or modifying their relations is a necessary first
step in the establishment of a viable thermodynamics theory for quantum systems. We mention
noteworthy subtleties for quantum thermodynamics at strong coupling, such as in issues related to
energy and entropy, and possible ambiguities of their operator forms. We end by indicating some
fruitful pathways for further developments.

Keywords: quantum thermodynamics; strong coupling; operator thermodynamic functions

1. Quantum and Thermodynamics—Why?

Why is a paper on this subject matter appearing in this special issue of Entropy? The short
answer is the same reason why EmQM appears in this journal Entropy, which is generally considered
as treating topics in statistical mechanics: emergence. The long answer, serving as a justification
for our dwelling on quantum thermodynamics in the realm of emergent quantum mechanics, is as
follows. One way to see quantum mechanics as emergent is by analogy with hydrodynamics and
thermodynamics, probably the two best known emergent theories because we know exactly what the
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collective variables are (thermodynamic functions and relations), the laws they obey (the four laws),
how they are related to the basic constituents (molecular dynamics) and the mediating theory from
which we can derive both the fundamental and the emergent theories (kinetic theory).

In analogy to emergent gravity [1–5], one of the present authors has championed the thesis
of “general relativity as geometro-hydrodynamics” [6,7]. Since Verlinde’s “gravity is entropic force”
popularization of Jacobson’s “Einstein equation of state” thesis [8–10], gravity as thermodynamics
has caught a wider attention in the quantum gravity community. However, a new challenge arises.
The question one of us posed for enthusiasts of this theme is the following: Since both gravity and
thermodynamics are old subjects established centuries before the advent of quantum mechanics,
and both can make sense and stand alone at the classical level without quantum theory, well, what
exactly is quantum doing here?—What is the role of quantum in emergent gravity? Do we really need
quantum if we view “gravity as thermodynamics”?

1.1. Quantum in “Gravity as Thermodynamics”

This question, “Wither the Quantum?”, as Hu calls it, puts the spotlight on quantum, in how it
contributes to the emergent phenomena which gives us both gravity and thermodynamics. One answer
to this is to also consider quantum mechanics as emergent. For example, in the emergent theories
of Adler and ’t Hooft [11,12] probability theory, stochastic and statistical mechanics as a slate play a
pivotal role, just as they do for thermodynamics and hydrodynamics arising from molecular dynamics.
The same applies to emergent gravity: classical gravity captured by general relativity is an effective
theory emergent from some fundamental theories of the basic constituents of spacetime functioning at
the sub-Planckian scale. How these basic constituents interact, how their interaction strength varies
with energy, how at some specific scale(s) some set(s) of collective variables and the law(s) governing
them emerge, and in succession, leading to the physics at the lowest energy as we know it in today’s
universe is perhaps just as interesting as the manifestation of the relevant physics at the different scales
familiar to us—from molecules to atoms to nucleons to quarks and below. Putting aside gravity for
now in this investigation, we wish to see a deeper connection between micro and macro, quantum
and thermo.

1.2. David Bohm: Quantum in Classical Terms

Here, Bohm’s philosophical influence is evident. His pilot wave theory may not offer a better
description or explanation of quantum phenomena, but the view that quantum mechanics is not a
fundamental theory any more than a classical wave theory is, provides an inspiration for asking a
deeper layer of questions: If we view quantum theory functioning in the capacity as thermodynamics,
we should ask: What are the fundamental constituents, the laws governing them, and how quantum
mechanics emerges from the sub-structures and theories depicting them (Long before we get to this
point, many readers may have raised this objection: This is obviously nonsense: The second law
of thermodynamics ostensibly shows the effects of an arrow of time, while quantum mechanics
is time-reversal invariant. Well, if the mechanical processes which we can observe are in the
underdamped regime where the dissipative effects are not strong enough, they would appear to
obey time-reversal symmetry. This is not an outlandish explanation: For most physical systems,
in the open system perspective, quantum phenomena in the system appears within the decoherence
time which is many orders of magnitude shorter than the relaxation time, as is the case in many
well-controlled environments (e.g., cavity QED). Or, if the system is near a nonequilibrium critical
point. On this issue, cosmology, despite its seemingly remote bearing, may actually enter in a basic
way, in terms of the origin of the arrow of time, and the mere fact that nonequilibrium conditions
prevail in an expanding universe.).
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1.3. Quantum as Thermodynamics?

In quantum thermodynamics, we may not see much in terms of what fundamental theory
quantum mechanics emerges from (Adler and ’t Hooft may have their answers: trace dynamics
and cellular automaton, for instance, respectively), but even the juxtaposition or crossing of what is
traditionally considered as governing the two opposite ends in the macro/micro and classical/quantum
spectrum may reveal some deeper meaning in both. Macroscopic quantum phenomena is another such
arena. For example, in small quantum systems, at low temperatures, or when the system is strongly
coupled to its environment, is there a lower limit to the validity of the laws of thermodynamics, which
play such an important role in our understanding of the macro world? Under what conditions will
macroscopic entities show quantum phenomena? Is there an upper limit to quantum mechanics
governing the meso domain? Is there a limit to quantum commanding the macro world? The above
explains the philosophical issues which motivated us to take up a study of quantum thermodynamics.
We are also of the opinion that useful philosophical discourses of any subject matter should be based on
the hard-core scientific knowledge of that subject, down to all the nitty-gritty details of each important
topic that makes up that body of knowledge. Thus we start with the basic demands in the formulation
of quantum thermodynamics and try to meet them in a rigorous, no-nonsense way. The specific goal of
this paper is to define the operator thermodynamic quantities and spell out their relations for quantum
many-body systems in thermal equilibrium.

Quantum Thermodynamics

Quantum thermodynamics is a fast developing field, emergent from quantum many body physics
and nonequilibrium statistical mechanics. Simply, it is the study of the thermodynamic properties
of quantum many-body systems. Quantum now refers not just to the particle spin-statistics (boson
vs. fermion) aspects in traditional quantum statistical mechanics, but also includes in the present
era the quantum phase aspects, such as quantum coherence, quantum correlations, and quantum
entanglement, where quantum information enters. The new challenges arise from several directions
not falling under the assumptions of traditional classical thermodynamics: finding the quantum
properties of small systems, at zero or very low temperature, strongly coupled to an environment,
which could have non-ohmic spectral densities and colored noise, while the system evolves following
a non-Markovian dynamics (with memory).

1.4. This Work

In this paper we discuss the issues and the technical challenges encountered in the first stage in
the construction of a viable theory of quantum thermodynamics, where the system is strongly coupled
with a heat bath. We wish to present in a systematic way how to introduce the operator thermodynamic
functions and construct their relations. Here, we treat this problem in an equilibrium setting. There are
other ways to construct such a theory, such as pursued in the so-called “eigenvalue thermalization”
program [13–22], which treats the system and the environment as a closed system, or along the lines
expounded in the fluctuation theorems [23–25] where the system under an external drive is allowed
to evolve in a nonequilibrium albeit controlled manner [26,27], or in a fully nonequilibrium open
quantum system dynamics program (see, e.g., [28,29] and references therein).

2. Quantum Thermodynamics at Strong Coupling: Background

2.1. New Challenges in Quantum Thermodynamics

Small quantum many-body systems strongly coupled to a heat reservoir at low temperatures
are the new focuses of interest for quantum thermodynamics [30–32]. Under these hitherto
lesser explored conditions, one needs to re-examine the meaning of the thermodynamic functions,
the viability of the thermodynamic relations and the validity of the thermodynamic laws anew.
Traditional thermodynamics is built on large systems weakly coupled to a reservoir [33], and for
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quantum systems, only the spin-statistics aspect is studied, as in quantum statistical mechanics,
leaving the important factors of quantum coherence, correlations, entanglement and fluctuations as
new challenges for quantum thermodynamics. To see the difference strong coupling makes, we take
as an example the definition of heat, the energy transferred between the system and the reservoir,
for systems strongly coupled to a bath. Esposito et al. [34], for example, show that any heat definition
expressed as an energy change in the reservoir energy plus any fraction of the system-reservoir
interaction is not an exact differential when evaluated along reversible isothermal transformations,
except when that fraction is zero. Even in that latter case the reversible heat divided by temperature,
namely entropy, does not satisfy the third law of thermodynamics and diverges in the low temperature
limit. For quantum systems, as pointed out by Ankerhold and Pekola [35], in actual measurements,
especially for solid state structures, quantum correlations between system and reservoir may be
of relevance not only far from but also close to and in thermal equilibrium. Even in the weak
coupling regime, this heat flow is substantial at low temperatures and may become comparable to
typical predictions for the work based on conventional weak coupling approaches. It further depends
sensitively on the non-Markovian features of the reservoir. These observations exemplify the intricacies
involved in defining heat for strongly-coupled systems and added complexities for quantum systems,
especially at low temperatures.

This incertitude regarding heat translates to ambiguity in the definition of thermodynamic
functions and the thermodynamic relations. For example, it was shown [36–41] that the expressions
for the specific heat derived from the internal energies of a quantum-mechanical harmonic oscillator
bilinearly coupled to a harmonic bath calculated by two different approaches can have dramatically
different behavior in the low temperature regime. To illustrate this point, Gelin and Thoss [42]
compared these two approaches of calculating the internal energy of the system, which give identical
results if the system-bath coupling is negligible, but predict significantly differently for finite
system-bath coupling. In the first approach, the mean energy of the system given by the expectation
value of the system Hamiltonian is evaluated with respect to the total (system + bath) canonical
equilibrium distribution. The second approach is based on the partition function of the system,
Zs, which is postulated to be given as the ratio of the total (system + bath) and the bath partition
functions. Gelin and Thoss [42] introduce a bath-induced interaction operator Δ̂s, which would account
for the effects of finite system-bath coupling and analyze the two approaches for several different
systems including several quantum and classical point particles and nonlinear system bath coupling.
They found that Approach II leads to very different results from Approach I, their differences exist
already within classical mechanics, provided the system-bath interaction is not bilinear and/or the
system of interest consists of more than a single particle.

Similar ambiguity appears in the entropy of the quantum system in the same setup. In the first
approach, the von Neumann entropy is chosen to be the entropy of the system, while in the second
approach, the entropy is given by the derivative of the system’s free energy with respect to the inverse
temperature. Both definitions are equivalent in the limit of weak system-bath coupling. However,
at finite coupling strength, it has been noticed that [36,37,43,44] the von Neumann entropy may not
vanish when the bath temperature is close to zero, even for a simple quantum system that consists
of harmonic oscillators. This nonvanishing behavior of the von Neumann entropy is related to the
quantum entanglement between the system and the bath [45–48]. On the other hand, the entropy
defined in the second approach of the same system gives an expected vanishing result, consistent
with the physical picture described by [49]. These disparities between different choices of the same
thermodynamic function of the system can be traced to the degree in which the system-bath interaction
enters into or counted as the system.

In a small quantum system, quantum fluctuations of a physical observable of the system can grow
to the same order of magnitude as its average value. Thus a description of the thermodynamics of
such a system based on the mean value is insufficient. To include the effects of quantum fluctuations
of the thermodynamic variables, we need their corresponding quantum operators, from which we can
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calculate its higher moments. Likewise for quantities related to the quantum correlations and quantum
coherence of such a system. Constructing the operator form of a thermodynamic variable is nontrivial
and ambiguous at times. Take as an example the internal energy of the system. As is mentioned
earlier, it can be given either as the expectation value of the system’s Hamiltonian operator, or as the
partial derivative of the (effective) partition function of the system. In the former case, the operator
of the internal energy is already chosen but with arbitrariness, while in the latter case, as will be
discussed in Section 7.3, our capabilities of identifying the corresponding operator is limited by our
knowledge of the thermodynamic variables based on either its expectation or its classical counterpart.
Either way there exists non-uniqueness in the introduction of the thermodynamic operator form of the
system variables.

Even with a successful extraction and identification of the operator form from the expectation
value or the partial derivative of the system’s partition, such a thermodynamic operator for the reduced
system in general acts on the Hilbert space of the full composite (system + environment). This is not
always a desirable feature because most of the time we are interested in what happens to the system
under the influence of the environment, whose details are of no particular concern. A description of
the full composite does not easily translate to useful information about the system. Thus it is more
preferable to derive operators of the system which solely act on the Hilbert space of the system, without
reference to the environment. This is what we try to accomplish here; it is different from what has been
reported in the literature.

2.2. Goal and Findings of Present Work

In traditional weak coupling thermodynamics, knowing the thermodynamic potentials and their
relations enables one to construct a theory of thermodynamics. We believe they are also necessary
for the establishment of a theory of thermodynamics for quantum systems. The new challenge is
twofold: constructing operator thermodynamic potentials and treating quantum systems strong
coupled to their baths. This is our goal in this paper. We shall provide a quantum formulation
of Jarzynski’s [27] classical thermodynamics at strong coupling. In contrast to the study of the
nonequilibrium dynamics of an open quantum system (called ONEq in [29,50,51]), the combined
system + environment studied here is a closed system, called the composite, which is assumed to stay
in a global thermal state. In such a configuration, even though the interaction between the system
and the bath is non-negligible, the partition function of the composite can be defined. This facilitates
the introduction of thermodynamic potentials in a way similar to the traditional vanishing-coupling
thermodynamics. We will focus on thermodynamic functions such as internal energy, enthalpy, entropy,
and free energies, but exclude the consideration of heat and work in this paper, as quantum work is
not well understood and requires a separate treatment.

This paper is organized as follows: In Section 3, we give a quick summary of the familiar
thermodynamic relations, which we call traditional or weak-coupling thermodynamics, if only to
establish notations. We then consider interacting quantum systems with the help of the Hamiltonian
of mean force [52–58] and discuss some conceptual and technical difficulties we may face when the
coupling strength becomes strong. In Sections 4–6, we overview the equilibrium quantum formulations
of thermodynamics at strong coupling, based on Gelin & Thoss’ and Seifert’s work. In Section 7,
we present a equilibrium quantum formulation of Jarzynski’s thermodynamics in the “bare” and
“partial molar” representations, respectively in the same setting. We conclude in Section 8 with a short
summary, a brief discussion of two issues involved and a suggestion for further developments.

3. Thermodynamic Functions, Hamiltonian of Mean Force

We first summarize the familiar traditional thermodynamic relations, if only to establish notations.
We then consider interacting quantum systems with the help of the Hamiltonian of mean force
(Hamiltonian of mean force is a useful yet not indispensable concept for this purpose. It is
useful because in the same representation, the formal expressions associated with it resemble the
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counterparts in the traditional weak coupling thermodynamics). We outline two quantum formulations
of thermodynamic functions and relations; one based on Gelin and Thoss [42] and the other on
Seifert [26]. With the abundance of thermodynamic quantities, a word about notations is helpful:
quantum expectation values or classical ensemble averages are denoted by math calligraphic, quantum
operators associated with the variable O will carry an overhat Ô.

3.1. Traditional (Weak-Coupling) Equilibrium Thermodynamic Relations

The pre-conditions for the traditional weak-coupling thermodynamic theory to be well-defined
and operative for a classical or quantum system are very specific despite their wide ranging
applicability: (a) A system S of relatively few degrees of freedom is in contact with a thermal bath of
a large number or infinite degrees of freedom (We shall consider only heat but no particle transfer
here and thus the thermodynamics refers only to canonical, not grand canonical ensembles); (b) the
coupling between the system and the bath is vanishingly small; and (c) the system is eternally
in a thermal equilibrium state by proxy with the bath which is impervious to any change in the
system. In weak-coupling thermodynamics, the bath variables are not dynamical variables (Dynamical
variables are those which are determined consistently by the interplay between the system and the
bath through their coupled equations of motion); they only provide weak-coupling thermodynamic
parameters such as a temperature in canonical ensemble, or, in addition, a chemical potential, in grand
canonical ensemble.

The classical thermodynamic relations among the internal energy U , enthalpy H, Helmholtz free
energy F and Gibbs free energy G in conjunction with the temperature T, entropy S , pressure P and
volume V are well-known. From the first law, dU = T dS − P dV . With U = U (S ,V), we have

T =

(
∂U
∂S

)
V

, P = −
(

∂U
∂V

)
S

. (1)

By virtue of the differential form of the internal energy, the enthalpy H = U + PV obeys
dH = T dS + V dP. Since it is a function of the entropy and pressure, we can identify

T =

(
∂H
∂S

)
P

, V =

(
∂H
∂P

)
S

. (2)

Likewise, for the Helmholtz free energy F = U − TS , we have

dF = −S dT − P dV , whence , S = −
(

∂F
∂T

)
V

, P = −
(

∂F
∂V

)
T

, (3)

so the Helmholtz free energy is a function of the temperature and the volume, F = F (T,V). Finally,
the Gibbs free energy, defined by G = H− TS , obeys

dG = −S dT + V dP , whence , S = −
(

∂G
∂T

)
P

, V =

(
∂G
∂P

)
T

. (4)

Thus G = G(T, P). Many more relations can be derived from these three basic relations. These
relations are mutually compatible based on differential calculus.

Next we turn to the weak-coupling thermodynamics of quantum systems (Hereafter, we will
choose the units such that the Boltzmann constant kB = 1 and the reduced Planck constant h̄ = 1.
In addition, to distinguish them from strong-coupling thermodynamics, all quantities defined in the
context of traditional (weak-coupling) thermodynamics are identified with a subscript Θ). The state
of a quantum system in contact with a heat bath at temperature T = β−1 with vanishing coupling
is described by the density matrix ρ̂s = e−βĤs /ZΘ where ZΘ = Trs e−βĤs is the canonical partition
function. Here Ĥs is the Hamiltonian of the system and is assumed to be independent of the inverse
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temperature β = T−1. The notation Tr with a subscript s or b represents the sum over the states of the
system or the bath respectively. The density matrix ρ̂s is a time-independent Hermitian operator and is
normalized to unity, i.e., Trs ρ̂s = 1 to ensure unitarity.

The free energy FΘ of a quantum system in a canonical distribution is FΘ = −β−1 lnZΘ.
The quantum expectation value 〈Ĥs〉 is identified with the internal energy UΘ of the quantum system,
and can be found by

UΘ = 〈Ĥs〉 =
1
ZΘ

Trs
{

Ĥs e−βĤs
}
= − ∂

∂β
lnZΘ = FΘ + ∂βFΘ . (5)

If we define the entropy SΘ of the system by

SΘ = β2∂βFΘ , (6)

then it will be connected with the internal energy by the relation FΘ = UΘ − T SΘ. These two
expressions imply that the entropy of the quantum system can be expressed in terms of the density
matrix SΘ = −Trs

{
ρ̂s ln ρ̂s

}
, which is the von Neumann entropy. The von Neumann entropy plays an

important role in quantum information as a measure of quantum entanglement, and can be used to
measure the non-classical correlation in a pure-state system. (Beware of issues at zero temperature as
discussed in Section 6.) Here we note that both internal energy and the entropy of the system can be
equivalently defined in terms of the expectation values of the quantum operators, or as the derivative
of the free energy.

The heat capacity CΘ = ∂UΘ/∂T = −β2∂βUΘ is given by

CΘ = −2β2∂βFΘ − β3∂βFΘ = −β ∂βSΘ = β2
[
〈Ĥ2

s 〉 − 〈Ĥs〉2
]
≥ 0 . (7)

It is always semi-positive. Up to this point, under the vanishing system-bath coupling assumption,
all the quantum thermodynamic potentials and relations still resemble their classical counterparts.

3.2. Quantum System in a Heat Bath with Nonvanishing Coupling

In formulating the quantum thermodynamics at strong coupling, we immediately face some
conceptual and technical issues. At strong coupling, the interaction energy between the system and
the bath is not negligible, so the total energy cannot be simply divided as the sum of the energies of the
system and the bath. This introduces an ambiguity in the definition of, for example, internal energy.
We may have more than one way to distribute the interaction energy between the system and the bath.
The same ambiguity also arises in the other thermodynamic functions such as enthalpy and entropy,
thus affecting the relations among the thermodynamic functions. On the technical side, in the course of
formulating quantum thermodynamics, the non-commutative natures of the quantum operators make
formidable what used to be straightforward algebraic manipulations in the classical thermodynamics.

Let us illustrate the previous points by an example. Consider in general an interacting quantum
system C whose evolution is described by the Hamiltonian Ĥc = Ĥs + Ĥi + Ĥb, where Ĥs, Ĥb are the
Hamiltonians of the system S and the bath B, respectively and Ĥi accounts for the interaction between
them. Suppose initially the composite C = S + B is in a global thermal equilibrium state which is
stationary, and thus has reversible dynamics, described by the density matrix ρ̂c = e−βĤc /Zc at the
inverse temperature β−1. The quantity Zc = Trsb e−βĤc is the partition function of the composite for
the global thermal state.

In the case of vanishing coupling between the system and the bath, we may approximate the total
Hamiltonian Ĥc to the leading order by Ĥc # Ĥs + Ĥb. Since [Ĥs, Ĥb] = 0, we notice that

1
Zb

Trb e−βĤc # 1
Zb

Trb
{

e−βĤs e−βĤb
}
= e−βĤs , (8)
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with the partition function of the free bath being given by Zb = Trb e−βĤb . Equation (8) implies that
the reduced state ρ̂r = Trb ρ̂c, which is also stationary, will assume a canonical form

ρr =
e−βĤs

Zs
=

1
Zc

Trb e−βĤc , with Zs = Trs e−βĤs , (9)

that is, Zc # ZsZb in the limit of vanishing system-bath coupling. In addition, (9) ensures the proper
normalization condition Trs ρr = 1. Thus in the weak limit of the system-bath interaction, the reduced
density matrix of the interacting composite system in the global thermal state will take the canonical
form, hence it to some degree justifies the choice of the system state in the context of quantum
thermodynamics in the textbooks [59,60]. Hereafter we will denote the reduced density matrix of the
system by ρ̂s.

When the interaction between the system and the bath cannot be neglected, the righthand side
of (8) no longer holds. In addition, non-commutating nature among the operators Ĥs, Ĥi and Ĥb
prevents us from writing e−β(Ĥs+Ĥi+Ĥb) 
= e−β(Ĥs+Ĥb)e−βĤi , due to [Ĥs, Ĥi] 
= 0 and [Ĥb, Ĥi] 
= 0
in general. In fact, according to the Baker-Campbell-Haussdorff (BCH) formula, the previous
decomposition will have the form

e−β(Ĥs+Ĥb)e−βĤi = exp
{
−β(Ĥs + Ĥi + Ĥb) +

β2

2!
[
Ĥs + Ĥb, Ĥi

]
(10)

− β3

3!

(1
2

[[
Ĥs + Ĥb, Ĥi

]
, Ĥi

]
+

1
2

[
Ĥs + Ĥb,

[
Ĥs + Ĥb, Ĥi

]])
+ · · ·

}
.

The exponent on the righthand side typically contains an infinite number of terms. This makes
algebraic manipulation of the strongly interacting system rather complicated, in contrast to its classical
or quantum weak-coupling counterpart.

3.3. Hamiltonian of Mean Force

To account for non-vanishing interactions (in this paper, we apply the Hamiltonian of mean
force to a quantum system in the global thermal state setup without any time-dependent driving
force. See [53–55] for its use in nonequilibrium systems at strong coupling), one can introduce the
Hamiltonian of mean force H∗s for the system defined by [56–58]

e−βĤ∗s ≡ 1
Zb

Trb e−βĤc . (11)

It depends only on the system operator but has included all the influences from the bath. In the
limit Ĥi is negligible Ĥ∗s # Ĥs; otherwise, in general Ĥ∗s 
= Ĥs. The corresponding partition function
Z∗ is then given by Z∗ = Trs e−βĤ∗s = Z−1

b Trsb e−βĤc = Zc/Zb.
If one followed the procedure of traditional weak-coupling thermodynamics to define the free

energy as F = −β−1 lnZ , then the total free energy Fc of the composite system can be given by a
simple additive expression Fc = F∗ +Fb, with F∗ = −β−1 lnZ∗ and Fb = −β−1 lnZb. In addition,
one can write the reduced density matrix ρ̂s in a form similar to (9), with the replacement of Ĥs by Ĥ∗s ,

ρ̂s =
1
Zc

Trb e−βĤc =
e−βĤ∗s

Z∗ , (12)

in the hope that the conventional procedures of weak-coupling thermodynamics will follow. However,
in Section 7 or in [42], we see that at strong coupling even though we already have the (reduced)
density matrix and the free energy of the system, we can introduce two different sets of thermodynamic
potentials for the system. The thermodynamic potentials in each set are mathematically self-consistent,
but they are not compatible with their counterparts in the other set, in contrast to the weak coupling
limit, where both definitions are equivalent.
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Two earlier approaches to introduce the thermodynamic potentials in a strongly interacting
system had been proposed by Gelin and Thoss [42], and by Seifert [26]. We shall summarize the
approach I in Gelin and Thoss’ work below and present a more detailed quantum formulation of
Seifert’s approach following, both for a configuration that the composite is initially in a global thermal
state without any external force. A recent proposal by Jarzynski [27] for classical systems will be
formulated quantum-mechanically in the same setting in Section 7.

4. Quantum Formulation of Gelin and Thoss’ Thermodynamics at Strong Coupling

The first approach, based on Approach I of Gelin & Thoss [42], is rather intuitive, because their
definitions of the internal energy and the entropy are the familiar ones in traditional thermodynamics.
They define the internal energy Us of the (reduced) system by the quantum expectation value of
the system Hamiltonian operator alone, Us = Trs

{
ρ̂s Ĥs

}
, and choose the entropy to be the von

Neumann (vN) entropy Ss = SvN = −Trs
{

ρ̂s ln ρ̂s
}

. These are borrowed from the corresponding
definitions in weak-coupling thermodynamics.

They write the same reduced density matrix (9) in a slightly different representation to highlight
the difference from the weak-coupling thermodynamics case,

ρ̂s =
1
Zc

e−β(Ĥs+Δ̂s) = e−β(Ĥs+Δ̂s−Fc) , with Zc = Trs e−β(Ĥs+Δ̂s) = e−βFc (13)

where Δ̂s depends only on the system variables but includes all of the influence from the bath from
their interaction. Comparing this with (11), we note that Δ̂s is formally related to the Hamiltonian of
mean force by Δ̂s = Ĥ∗s − Ĥs + Fb. Finally, they let the partition function of the system take on the
value Zc, which is distinct from Z∗. Thus the corresponding free energy will be given by Fc which
contains all the contributions from the composite C.

Although in this approach the definitions of internal energy and entropy of the system are quite
intuitive, these two thermodynamic quantities do not enjoy simple relations with the partition function
Zc, as in (5). From (13), we can show (Here some discretion is advised in taking the derivative with
respect to β because in general an operator will not commute with its own derivative. See details in
Appendix A)

− ∂

∂β
lnZc = −

1
Zc

∂

∂β
Trs e−β(Ĥs+Δ̂s) = 〈Ĥs〉+ 〈Δ̂s〉+ β 〈∂βΔ̂s〉 
= Us , (14)

with the corresponding free energy Fc = Us + 〈Δ̂s〉+ β 〈∂βΔ̂s〉 − β ∂βFc. Here 〈· · · 〉 represents the
expectation value taken with respect to the density matrix ρ̂c of the composite. For a system operator
Ôs, this definition yields an expectation value equal to that with respect to the reduced density matrix
ρ̂s, namely,

〈Ôs〉s = Trs
{

ρ̂s Ôs
}
= Trsb

{
ρ̂c Ôs

}
= 〈Ôs〉 . (15)

Likewise, the von Neumann entropy SvN can be expressed in terms of the free energy Fc by

SvN = β2∂βFc − β2〈∂βΔ̂s〉 , (16)

which does not resemble the traditional form in (3). Additionally, we observe the entropy so defined is
not additive, that is,

SvN + Sb = −Trs
{

ρ̂s ln ρ̂s
}
− Trb

{
ρ̂s ln ρ̂b

}

= −Trsb

{
ρ̂c ln ρ̂c

}
= Sc . (17)

Here Sc and Sb are the von Neumann entropies of the composite and the free bath, respectively.
Note that the ρ̂b in this formulation is the density matrix of the free bath, not the reduced density matrix
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of the bath, namely, ρ̂b 
= Trs ρ̂c. The reduced density matrix of the bath will contain an additional
overlap with the system owing to their coupling.

When the internal energy of the system given by the expectation value of the system Hamiltonian
operator Ĥs, the specific heat Cs will take the form,

Cs = −β2∂β〈Ĥs〉 = −β ∂βSvN − β2
[
〈∂βΔ̂s〉 − ∂β〈Δ̂s〉

]
. (18)

In general 〈∂βΔ̂s〉 
= ∂β〈Δ̂s〉 since the reduced density matrix ρ̂s also has a temperature dependence.
We thus see in this case the heat capacity cannot be directly given as the derivative of the (von Neumann)
entropy with respect to β, as in (7).

In short, in this formulation, the thermodynamic potentials of the system are defined in a direct
and intuitive way. They introduce an operator Δ̂s to highlight the foreseen ambiguity when the system
is strongly coupled with the bath. Formally we see that Δ̂s = −β−1 ln Trb e−β(Ĥs+Ĥi+Ĥb) − Ĥs. In the
limit of weak coupling, Ĥi ≈ 0, the operator Δ̂s reduces to

Δ̂s ≈ −β−1 ln Trb e−β(Ĥs+Ĥb) − Ĥs = −β−1 lnZb . (19)

Hence in this limit, Δ̂s reduces to a c-number and plays the role of the free energy Fb of the free
bath. Observe Δ̂s ≈ Fb in the weak coupling limit annuls the expression in the square brackets in (18)
and restores the traditional relation (7) between the heat capacity and the entropy. However, even in
the weak coupling limit, the internal energy still cannot be given by (5). The disparity lies in the
identification of Zc as the partition function of the system. As is clearly seen from (14), in the weak
coupling limit, we have

− ∂

∂β
lnZc ≈ −

1
Zc

∂

∂β
Trs

{
e−βĤsZb

}
= 〈Ĥs〉s + 〈Ĥb〉b . (20)

This implies that Zc is not a good candidate for the partition function of the system. A more
suitable option would be Zc/Zb.

5. Quantum Formulation of Seifert’s Thermodynamics at Strong Coupling

If we literally follow (11) and identify Ĥ∗s as the effective Hamiltonian operator of the (reduced)
system, we will nominally interpret that the reduced system assumes a canonical distribution. Thus it
is natural to identify Z∗ as the partition function associated with the reduced state of the system.

Suppose we maintain the thermodynamic relations regardless of the coupling strength between
the system and the bath. From (5) to (6), we will arrive at expressions of the internal energy and
entropy of the system. This is essentially Seifert’s approach [26] to the thermodynamics at strong
coupling. Here we will present the quantum-mechanical version of it for a equilibrium configuration
without the external drive, that is, λ = 0 in Seifert’s notion.

First, from (11), we have the explicit form of the Hamiltonian of mean force Ĥ∗s

Ĥ∗s = −β−1 ln Trb

{
exp

[
−βĤs − βĤi − β

(
Ĥb −Fb

)]}
. (21)

This is the operator form of H(ξs, λ) in Equation (5) of [26]. Noting the non-commutative
characters of the operators. Since [Ĥs, Ĥi] 
= 0,

e−β(Ĥs+Ĥi+Ĥb) 
→ e−βĤs e−β(Ĥi+Ĥb) . (22)

If one prefers factoring out e−βĤs from e−β(Ĥs+Ĥi+Ĥb), one can use the Baker-Campbell-Haussdorff
formula, outlined in Appendix A, to expand out the operator products to a certain order commensurate
with a specified degree of accuracy.
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Second, it is readily seen that peq(ξs|λ= 0) in Equation (4) of [26] is the reduced density matrix ρ̂s

of the system (12). The (Helmholtz) free energy F in Seifert’s Equation (7) is exactly the free energy of
the reduced system F∗ in Section 3.3.

With these identifications, it is easier to find the rest of the physical quantities in Seifert’s strong
coupling thermodynamics for the equilibrium configuration. We now proceed to derive the entropy
and the internal energy, i.e., Equations (8) and (9) of [26], for quantum systems in his framework in the
equilibrium setting.

In general, an operator does not commute with its derivative, so taking the derivative of an
operator-valued function or performing integration by parts on an operator-valued function can
be nontrivial. Their subtleties are discussed in Appendix A, where we show that the derivative of
an operator function is in general realized by its Taylor’s expansion in a symmetrized form (A5).
However, when such a form appears in the trace, the cyclic property of the trace allow us to manipulate
the derivative of a operator-valued function as that of a c-number function thus sidestepping the
symmetrized ordering challenge. Hence from the thermodynamic relation (6), we have

Ss = −βF∗ + β Trs
{

ρ̂s
(

Ĥ∗s + β ∂β Ĥ∗s
)}

. (23)

Here we recall that even though the operators Ĥ∗s and ∂β Ĥ∗s in general do not commute, the trace
operation allowing for cyclic permutations of the operator products eases the difficulties in their
manipulation. Since (12) implies the operator identity βĤ∗s = βF∗ − ln ρ̂s, we can recast (23) to

Ss = Trs
{

ρ̂s
(
− ln ρs + β2∂β Ĥ∗s

)}
= SvN + β2〈∂βH∗s 〉 
= −Trs

{
ρ̂s ln ρ̂s

}
= SvN . (24)

This is the quantum counterpart of Seifert’s entropy, Equation (8) of [26]. This entropy is often
called the “thermodynamic” entropy in the literature. Note that it is not equal to the von Neumann
(“statistical”) entropy SvN of the system.

The internal energy can be given by the thermodynamic relation

Us = F∗ + β−1Ss . (25)

Thus from (23), we obtain,

Us = Trs
{

ρ̂s
(

Ĥ∗s + β ∂βĤ∗s
)}

= 〈Ĥ∗s 〉+ β 〈∂β Ĥ∗s 〉 
= 〈Ĥ∗s 〉 . (26)

This deviation results from the fact that Ĥ∗s , introduced in (11) may depend on β. When we
take this into consideration, we can verify that the internal energy can also be consistently given by
Equation (5)

− ∂

∂β
lnZ∗ = 1

Z∗ Trs

{(
Ĥ∗s + β ∂βĤ∗s

)
e−βĤ∗s

}
= Us . (27)

In fact, we can show, by recognizing Z∗ = Zc/Zb, that

Us = 〈Ĥs〉+
[
〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]

= 〈Ĥs〉 , (28)

with 〈Ĥb〉b ≡ Trb
{

ρ̂b Ĥb
}

, 〈Ĥb〉 ≡ Trsb
{

ρ̂c Ĥb
}

, and 〈Ĥs〉 ≡ Trsb
{

ρ̂c Ĥs
}

= 〈Ĥs〉s. Equation (28)
implies that the internal energy, defined by (27), accommodates more than mere 〈Ĥs〉s. The additional
pieces contain contributions from the bath and the interaction. In particular, when the coupling
between the system and the bath is not negligible, we have 〈Ĥb〉 
= 〈Ĥb〉b in general. As a matter of
fact, even the internal energy defined by the expectation value of the system Hamiltonian operator
in approach I of Gelin & Thoss’ work also encompasses influence from the bath because the reduced
density matrix ρ̂s includes all the effects of the bath on the system.
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Hitherto, we have encountered three possible definitions of internal energies, namely, 〈Ĥs〉, 〈Ĥ∗s 〉,
and Us. As can be clearly seen from (26) and (28), they essentially differ by the amount of the bath and
the interaction energy which are counted toward the system energy. This ambiguity arises from strong
coupling between the system and the bath. When the system-bath interaction is negligibly small,
we have 〈Ĥi〉 ≈ 0, and since in this limit, the full density matrix of the composite is approximately
given by the product of that of the system and the bath, we arrive at 〈Ĥb〉 ≈ 〈Ĥb〉b, and these three
energies become equivalent.

To explicate the physical content of 〈Ĥ∗s 〉, from (12) we can write 〈Ĥ∗s 〉 as

〈Ĥ∗s 〉 = −
1
β

Trs
{

ρ̂s ln ρ̂s
}
+F∗ = β−1SvN +F∗ , or F∗ = 〈Ĥ∗s 〉 − β−1 SvN . (29)

This offers an interesting comparison with (25), where F∗ = Us − β−1Ss. It may appear that
we can replace the pair (Us,Ss) by another pair (〈Ĥ∗s 〉,SvN), leaving F∗ unchanged, thus suggesting
an alternative definition of internal energy by 〈Ĥ∗s 〉 and that of entropy by SvN . However, in so
doing, the new energy and entropy will not satisfy a simple thermodynamic relation like (5) and (6).
This is a good sign, as it is an indication that certain internal consistency exists in the choice of the
thermodynamic variables.

We now investigate the differences between the two definitions of entropy. From (24), we obtain

T
(
Ss − SvN

)
= Trs

{
ρ̂s

(
β ∂β Ĥ∗s

)}
= β ∂β Trs

{
ρ̂s Ĥ∗s

}
− β Trs

{(
∂βρ̂s

)
Ĥ∗s

}
. (30)

The factor ∂βρ̂s can be written as ∂βρ̂s = 〈Ĥc〉 ρ̂s − Trb
{

ρ̂c Ĥc
}

with ∂βZc = −〈Ĥc〉 Zc.
We then obtain

T
(
Ss − SvN

)
= β ∂β〈Ĥ∗s 〉+ β

[
〈Ĥc Ĥ∗s 〉 − 〈Ĥc〉〈Ĥ∗s 〉

]
. (31)

Thus, part of the difference between the two entropies result from the correlation between the
full Hamiltonian Ĥc and the Hamiltonian of mean force Ĥ∗s . This correlation will disappear in the
vanishing coupling limit because there is no interaction to bridge the system and the bath. We also
note that in the same limit, 〈Ĥ∗s 〉 ≈ 〈Ĥs〉 becomes temperature-independent, and both definitions of
the entropy turn synonymous.

Since the von Neumann entropy SvN can be used as a measure of entanglement between the
system and the bath at zero temperature, we often introduce the quantum mutual information Isb to
quantify how they are correlated,

Isb = SvN + S′b − Sc ≥ 0 , (32)

where S′b is the von Neumann entropy associated with the reduced density matrix �̂b of the bath,
in contrast to Sb we have met earlier. This mutual information can be related to the quantum relative
entropy S(ρ̂c‖ρ̂s ⊗ �̂b) by

S(ρ̂c‖ρ̂s ⊗ �̂b) = Trsb

{
ρ̂c ln ρ̂c − ρ̂c ln ρ̂s ⊗ �̂b

}
= Isb , (33)

because �̂b = Trs ρ̂c. On the other hand, Equation (23) imply that the thermodynamic entropy Ss is
additive Ss + Sb = Sc, from which we find

Isb =
(
S′b − Sb

)
+

(
SvN − Ss

)
. (34)

This and (31) provide different perspectives on how the difference between the two system
entropies is related to the system-bath entanglement, and how the system-bath coupling has a role in
establishing such correlations.
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Following the definitions of the internal energy (27) and the entropy (23), the heat capacity of the
system still satisfies a familiar relation Cs = −β2 ∂βUs = β2 ∂2

β lnZ∗ = −β ∂βSs. Compared with (18),
with the help of (28), we clearly see their difference, caused by different definitions of internal energy,
is given by

−β2 ∂β

(
Us − 〈Ĥs〉

)
= −β2 ∂β

[
〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]
. (35)

6. Issues of These Two Approaches: Entropy and Internal Energy

Both equilibrium quantum formulations for thermodynamics at strong coupling are based on
plausible assumptions and are mathematically sound. In Approach I outlined in Section 4, one starts
with intuitive definitions of the thermodynamics quantities, inspired by traditional thermodynamics
for classical systems premised on vanishingly weak coupling between the system and the bath.
This leads to modifications in the thermodynamic relations of the relevant thermodynamics quantities.
In Approach II delineated in Section 5, one opts to maintain the familiar thermodynamic relations but
is compelled to deal with a rather obscure interpretation of the thermodynamic potentials. Although
both approaches in the vanishing system-bath coupling limit are compatible, as shown in Section 3.1,
they in general entail distinct definitions of the thermodynamic functions. This disparity is amplified
with strong system-bath coupling in the deep quantum regime, where quantum coherence plays an
increasingly significant role. Thus, even though both approaches possess the same correct classical
thermodynamic limit, they are not guaranteed to give unique physical results in the deep quantum
regime, even for simple quantum systems, which are areas for interesting further investigations.

To highlight the issues more explicitly, we can apply these two methods to a simple and completely
solvable model, namely, a Brownian oscillator linearly but strongly coupled with a large (or infinitely
large, as modeled by a scalar field) bath. We will see both approaches at some point, or others that
produce ambiguous or paradoxical results. We make a few observations in the following section.

6.1. Entropy

(1) It has been discussed in [36,43,44] that the von Neumann entropy SvN will not approach to zero
for the finite system-bath coupling in the limit of zero temperature, but the thermodynamic
entropy Ss, defined in Approach II, behaves nicely in the same limit.

(2) It has been shown [49] that if the composite is in a global thermal state, the discrete energy
spectrum of the undamped oscillator will become a continuous one with a unique ground level.
This supports physics described by the thermodynamic entropy Ss.

(3) It has been argued [44–46] that the entanglement between the system and the bath prevents
the von Neumann entropy from approaching zero at zero temperature. Without quantum
entanglement between the system and the bath, the lowest energy level of the composite system
will be given by the tensor product of the ground state of the unperturbed system and bath, that
is, a pure state. In this case, the von Neumann entropy will go to zero as expected, and this is
the scenario that occurred in traditional quantum/classical thermodynamics in the vanishing
system-bath coupling limit.

6.2. Internal Energy

• It has been discussed [37–40] that the internal energy defined in Approach II can lead to anomalous
behavior of the heat capacity in the low temperature limit. When the system, consisting of a
quantum oscillator [40] or a free particle [37–39] is coupled to a heat bath modeled by a large
number of quantum harmonic oscillators, the heat capacity of the system can become negative if
the temperature of the bath is sufficiently low. If the internal energy defined in Approach I is used
to compute the heat capacity, then it has been shown that the heat capacity remains positive for
all nonzero temperatures but vanishes in the zero bath temperature limit, for a system with one
harmonic oscillator [37], or a finite number of coupled harmonic oscillators [29]. This discrepancy
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may result from the fact that the internal energy defined in Approach II contains contributions
from the interaction and the bath Hamiltonian.

It seems to imply that in the low-temperature, strong coupling regime, it remains an open question
how to properly define the thermodynamic functions; being able to show the well-known behaviors in
the classical thermodynamic limit is a necessary but not sufficient condition.

7. Quantum Formulation of Jarzynski’s Strong Coupling Thermodynamics

We now provide a quantum formulation of Jarzynski’s classical results [27] but for composite
system C kept under thermal equilibrium. The Hamiltonian operator of the composite C = S + B is
assumed to take the form

Ĥc = Ĥs + Ĥi + Ĥb + J · Âb , (36)

Here in this paper, J will be some external, but constant c-number drive acting on the bath via a
bath operator Âb. It can be a constant pressure, as in Jarzynski’s classical formulation, and then Âb will
be an operator corresponding to Vb, conjugated to P. However, in general, Âb will be the operator of
the quantity conjugated to J. This analogy, though formal, provides an alternative route to introduce
the operator conjugated to J.

If the composite system is in thermal equilibrium at the temperature β−1, its state is described
by the density matrix operator ρ̂c = e−β Ĥc /Zc, where Zc = Trsb

{
e−β Ĥc

}
, a c-number, is the partition

function of the composite. For later convenience, we also define the corresponding quantities for the
bath B when it is coupled to the system S, ρ̂b = e−β (Ĥb+J·Âb)/Zb with the bath partition function
Zb = Trb

{
e−β (Ĥb+J·Âb)

}
. We introduce the Hamiltonian operator of mean force Ĥ∗s by

e−β Ĥ∗s ≡ 1
Zb

Trb

{
e−β Ĥc

}
, (37)

such that the reduced density matrix of the system S takes the form

ρ̂s ≡ Trb ρ̂c =
1
Zs

e−β Ĥ∗s , with Zs =
Zc

Zb
= Trs

{
e−β Ĥ∗s

}
. (38)

The quantity Zs can be viewed as an effective partition function of the system S. This is motivated
by the observation that, in the absence of coupling between S and B, or in the weak coupling limit, the
composite is additive so its partition function is the product of those of the subsystems, i.e., Zc = ZsZb.
The difference Ĥ∗s − Ĥs modifies the dynamics of the system S due to its interaction with the bath B.

In fact, by the construction, e−β H∗s , once sandwiched by the appropriate states of the system S and
expressed in the imaginary-time path integral formalism (for further details regarding the connection
with the influence action, please refer to [28,61,62]), is formally e−SCG , where SCG is the coarse-grained
effective action of the system S, wick-rotated to the imaginary time. Thus formally β(Ĥ∗s − Ĥs) is
equivalent to the influence action in the imaginary time formalism.

Similar to the classical formulations, we may have two different representations of the operator
Âs of the system.

7.1. “Bare” Representation

In the bare representation, we may define Âs = (Ĥ∗s − Ĥs)/J, and the internal energy operator Ûs

and the enthalpy operator Ĥs, respectively, by Ûs = Ĥs and Ĥs = Ĥ∗s , with expectation values given
by Us = Trs

{
ρ̂s Ûs

}
andHs = Trs

{
ρ̂s Ĥs

}
= Us + J · As, corresponding to the internal energy and the

enthalpy we are familiar with, respectively. Here As = Trs
{

ρ̂s Âs
}

. The entropy is chosen to be the
von Neumann entropy of the system

Ss = Trs
{

ρ̂s ln ρ̂s
}
= β

(
Hs − Gs

)
. (39)

337



Entropy 2018, 20, 423

The Gibbs free energy Gs is defined as Gs = −β−1 lnZs. These definitions are in exact parallel to
those in the classical formulation [27].

7.2. “Partial Molar” Representation

In contrast to the bare representation, we can alternatively define the operator Âs of the system
S that corresponds to Âb of the bath B by Âs = ∂

(
Ĥ∗s − Ĥs

)
/∂J = ∂Ĥ∗s /∂J. The last equality results

from the fact that Ĥs has no dependence on the external parameter J. Owing to the non-commutativity
of operators, the micro-physics interpretation of the operator Âs is not so transparent. We first focus
on its quantum expectation value As

As = Trs

{
ρ̂s Âs

}
=

1
Zs

Trs

{
e−β Ĥ∗s ∂Ĥ∗s

∂J

}
. (40)

As stressed earlier, since the operator does not commute with its derivative, care must be taken
when we move the derivative around in an operator expression. However, from (A7), we learn that
the righthand side of (40) can be identified as

Trs

{
e−β Ĥ∗s ∂Ĥ∗s

∂J

}
= −β−1 ∂

∂J
Trs

{
e−β Ĥ∗s

}
, (41)

and thus we have As = −β−1 ∂ lnZs/∂J. The advantage of this expression is that the observation of
Zs = Zc/Zb enables us to writeAs asAs = Ac−Ab, if we have defined the corresponding expectation
values for the composite C and the bath B by Ac = −β−1 ∂ lnZc/∂J and Ab = −β−1 ∂ lnZb/∂J.
In particular we can check that Ab indeed is the expectation value of the operator Âb, that is,
Ab = Trb

{
ρ̂b Âb

}
= Trsb

{
ρ̂b Âb

}
. The latter expression can nicely bridge with Ac for the composite,

Ac = Trsb
{

ρ̂ Âb
}

. Thus the expectation value A is additive. Its value for the combined systems is
equal to the sum of those of the subsystems, Ac = As +Ab. In fact, this additive property holds for
all the thermodynamics potentials introduced afterwards. This is a nice feature in Jarzynski’s partial
molar representation or in Seifert’s approach.

From this aspect, we can interpret As as the change of Ab due to the intervention of the system
S. For example, consider a photon gas inside a cavity box, one side of which is a movable classical
mirror and is exerted by a constant pressure. Assume originally the photon gas and the mirror are
in thermal equilibrium. In this cavity we now place a Brownian charged oscillator and maintain the
new composite system in thermal equilibrium at the same temperature and the same pressure (The
equilibration process in this example can be awfully complicated if we mind the subtleties regarding
whether the photon gas can ever reach thermal equilibrium in a cavity whose walls are perfectly
reflective and so on. For the present argument, we assume equilibration is possible and there is no
leakage of the photons). Then we should note that there is a minute change in the mean position of the
mirror before and after the Brownian charged oscillator is placed into the cavity. This change can also
be translated to an effective or dynamical size of the charged oscillator due to its interaction with the
photon gas, and thus is accounted for in As when J is identified as the constant pressure applied to
the wall.

From this example, it is tempting to identify J · Âs as some quantum work operator (its value
depends on the interaction between the system and the bath and when this interaction is switched on.
It is thus path-dependent in the parameter space of the coupling constant). Alternatively we may view
it or its expectation as some additional “energy content” of the system S due to its interaction with the
bath when the composite is acted upon by an external agent J, since Âs is related to Ĥ∗s − Ĥs [63,64].
Inspired by this observation and taking the hint from the definition of As, we introduce the enthalpy
of the system S by

Hs ≡ −
∂

∂β
lnZs = Hc −Hb , (42)
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where we have identified the enthalpies of the composite C = S + B and the bath B as
Hc = −∂ lnZc/∂β andHb = −∂ lnZb/∂β. We may rewrite them asHc = 〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉+ J · Ac

andHb = 〈Ĥb〉b + J · Ab. It implies that (1) the system enthalpy can be decomposed as

Hs = Hc −Hb =
[
〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉 − 〈Ĥb〉b

]
+ J · As , (43)

and (2) the internal energy Us of the system S can be consistently inferred as

Us = 〈Ĥs〉+ 〈Ĥi〉+
[
〈Ĥb〉 − 〈Ĥb〉b

]
. (44)

This is exactly the same internal energy obtained in Seifert’s approach in the equilibrium setting.
We can define the internal energy of the composite system and of the bath by Uc = 〈Ĥs〉+ 〈Ĥi〉+ 〈Ĥb〉
and Ub = 〈Ĥb〉b, and then we may conclude Us = Uc − Ub. Thus the internal energy Us also includes
contributions that naïvely we will not ordinarily attribute to the system, such as 〈Ĥb〉− 〈Ĥb〉b. Doing so
will complicate the physical connotation of the internal energy of the system.

Up to this moment, we essentially write the thermodynamic quantities by the quantum
expectation value and in terms of the partition functions. Thus it is appropriate to introduce the
Gibbs free energies of the composite C, the system S, and the bath B by Ga = −β−1 lnZa, where a = c,
s and b, and they obey the additive property of the Gibbs energy, Gc = Gs + Gb. Furthermore, in the
composite, we note that

β
(
Hc − Gc

)
= β2 ∂Gc

∂β
= −Trsb

{
ρ̂c ln ρ̂c

}
. (45)

From (45), we can consistently define the entropy S of the composite by Sc = β
(
Hc − Gc

)
and,

similarly, the entropy Sb of the bath:

Sb = β
(
Hb − Gb

)
= β2 ∂Gb

∂β
= −Trb

{
ρ̂b ln ρ̂b

}
. (46)

The additive property of the free energy and the enthalpy implies that the entropy Ss of the
system in this representation is also additive, Ss = Sc − Sb, and is given by

Ss = β
(
Hs − Gs

)
= β2 ∂Gs

∂β
= −Trsb

{
ρ̂c ln ρ̂c

}
+ Trb

{
ρ̂b ln ρ̂b

}

= −Trs

{
ρ̂s ln ρ̂s

}
, (47)

Note it is not equal to the von Neumann entropy, which is defined as the entropy of the system in
the “bare” representation.

7.3. Operator Forms of the Thermodynamic Functions

In trying to formulate a set of laws to describe the thermodynamics of a quantum system (even
the existence of such a theory, under certain appropriate conditions, is not a matter of presumption or
prescription, but by demonstration and proof) it would be most convenient if we could define operators
of the thermodynamic functions in such a way that the quantum expectation values of those operators
give the familiar expressions for the thermodynamic functions. As we see it, this is the paramount
challenge in the formal establishment of quantum thermodynamics as a viable theory. The laws of
thermodynamics have been understood in terms of the mean values of the relevant operator quantities.
For a system where the fluctuations of the thermodynamic functions become comparable to the
corresponding mean values, the thermodynamic laws governing the mean values need be supplanted
by laws governing their quantum fluctuations or higher order quantum correlations. A case in point
for classical systems where fluctuations are as important as the mean values is near the critical point of
the system. The truly quantum properties would impact on the quantum thermodynamics for small
quantum systems in the regimes of strong couplings to its environment, and at low temperatures,
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where quantum coherence effects take center stage. Having the operator forms of these thermodynamic
potentials allows us to calculate the higher-order quantum correlations of those quantities existent in
larger fluctuations.

In the following sections, we will attempt to identify the operator form of the thermodynamic
function for the reduced system.

7.3.1. Enthalpy and Energy Operators: Caution

In fact, we may deduce the operator form of the quantities introduced earlier. For example,
we may intuitively define the enthalpy operator Ĥ of the composite by Ĥc = Ĥs + Ĥi + Ĥb + J · Âb,
and then it is clear to see that the expectation valueHc is related to this operator byHc = Trsb

{
ρ̂c Ĥc

}
=

〈Ĥc〉. Likewise, the enthalpy operator Ĥb of the bath B can be defined by Ĥb = Ĥb + J · Âb, and its
expectation value givesHb = Trb

{
ρ̂b Ĥb

}
= 〈Ĥb〉b. Moreover, the internal energy operator Ûc of the

composite system and the expectation value can be chosen such that Ûc = Ĥs + Ĥi + Ĥb such that
Uc = Trsb

{
ρ̂c Ûc

}
= 〈Ûc〉. For the bath, the internal energy operator Ûb is, intuitively, Ûb = Ĥb with

expectation values Ub = Trb
{

ρ̂b Ûb
}
= 〈Ûb〉b that is consistent with the expressions of the internal

energy discussed earlier.
Despite their intuitively appealing appearances, these operator forms of the enthalpies and

internal energies are not very useful. Inadvertent use of them may result in errors. For example, we
cannot define the enthalpy operator of system S simply by the difference of Ĥc and Ĥb, since

Ĥs
?
= Ĥc − Ĥb = Ĥs + Ĥi . (48)

This result in (48) is nonsensical because (1) the righthand side still explicitly depends on the bath
degree of freedom; (2) we cannot take its trace with respect to the state of the system, ρ̂s; and thus (3)
the expectation value will not be Hs. This is because the operators defined this way act on Hilbert
spaces different from that of ρ̂s; Ĥc is an operator in the Hilbert space of the composite while Ĥb is an
operator in the Hilbert space of the bath. Neither operator acts exclusively in the Hilbert space of the
system. Thus, extreme care is needed when manipulating the operator forms of the thermodynamical
potentials. What one needs to do is to seek the local forms of these operators, i.e., operators which act
only on the Hilbert space of the system. This can be done in parallel to Jarzynski’s classical formulation.

7.3.2. System Enthalpy Operator: Approved

We first inspect the internal energy operator. Since the averaged internal energy of the composite
system is given by Uc = Trsb

{
e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)}
/Zc, we can rewrite the expressions inside the

trace into

Uc = Trs

{
ρ̂s Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]}
, (49)

in a way analogous to Jarzynksi’s classical formulation. Here we have used the fact that Zc = ZsZb
and the identity for the operator Ẑi

Ẑi ≡ e+β Ĥs Trb

{
e−β

(
Ĥs+Ĥi+Ĥb+J·Âb

)}
= Zb e+β Ĥs e−β Ĥ∗s , ⇔ e+β Ĥ∗s

Zb
= Ẑ−1

i e+β Ĥs .

If we define an internal energy operator Ûi by

Ûi = Ẑ−1
i Trb

[
e+β Ĥs e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]
= Z−1

b e+β Ĥ∗s Trb

[
e−β Ĥc

(
Ĥs + Ĥi + Ĥb

)]
, (50)
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then we obtain a new representation of Uc

Uc = Trs
{

ρ̂s Ûi
}

. (51)

Equation (50) is an operator expression of the internal energy of the composite system, on account
of the non-commutativity of the operators, but its expectation value is taken with respect to the
system’s density matrix ρ̂s. With the help of (A9), this is equivalent to Equation (28) of [26] in the J = 0
case. In addition, we note that Ẑi is an operator, not a c number. Since Trs ρ̂s = 1, we may define the
operator Ûs by

Ûs = Ûi − Ub , (52)

such that Trs
{

ρ̂s Ûs
}
= Trs

{
ρ̂s Ûi

}
− Trs

{
ρ̂s Ub

}
= Uc − Ub = Us. The advantage of (50), (52) is that,

unlike those introduced in the previous subsection, they are all operators in the Hilbert space of the
system S. Indeed, using the identity operator Îs in the Hilbert space of the system S we can also define
Ûb as Ûb = Ub Îs.

In the same fashion, we may rewrite Ac by

Ac = Trs

{
1
Z

Trs

[
e−β Ĥ Âb

]}
= Trs

{
ρ̂s Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥ Âb

]}
. (53)

Thus we can define
Âi = Ẑ−1

i Trb

[
e+β Ĥs e−β Ĥ Âb

]
, (54)

so that Ac = Trs
{

ρ̂s Âi
}

. We then can have a local form for the Âs given by Âs = Âi − Âb in close
resemblance to its classical expression in [27], if we re-define Âb as Âb = Ab Îs. The expectation value
of Âs is then given by Trs

{
ρ̂s Âs

}
= Trs

{
ρ̂s Âi

}
−Ab = Ac −Ab = As.

Now we proceed with constructing a local form of the enthalpy operator of the system. From (52)
and the definition of the operator Âs, we claim that the local form Ĥs is

Ĥs = Ûs + J · Âs . (55)

We can straightforwardly show that Trs
{

ρ̂s Ĥs
}

= Trs
{

ρ̂s Ûs
}
+ J · Trs

{
ρ̂s Âs

}
= Us + J · As.

Thus we have succeeded in constructing the operators that correspond to As, Us,Hs in forms local in
the Hilbert space of the system S. However, as can be seen from their expressions, their meanings are
not transparent a priori. They are determined a posteriori because we would like their expectation
values to take certain forms. This can pose a question about the uniqueness of these operators (A similar
issue is also raised in [58] for the classical formulation. However, in this context it is not clear whether
this ambiguity can be fixed by calculating the cumulants associated with these operators. If there exist
physical, measurable observables that correspond to the expectation values of the moments of these
operators, then one may entertain the possibility of using them to uniquely determine these operators.).
At least for a given reduced density matrix ρ̂s of the system, we can always attach a system operator
Λ̂s that satisfies Trs ρ̂sΛ̂s = 0 to the definitions of those local operators, that is, any system operator
that has a zero mean. The choice of Λ̂s may not be unique in the sense that in the basis {|n〉} that
diagonalizes ρ̂S, we can write Trs{ρ̂SΛ̂S} = 0 as

TrS{ρ̂SΛ̂S} = ∑
m,n
〈n|ρ̂S|m〉〈m|Λ̂S|n〉 = ∑

n

(
ρ̂S

)
nn

(
Λ̂S

)
nn = 0 . (56)

It says that the vectors that are respectively composed of the diagonal elements of ρ̂S and Λ̂S are
orthogonal, but it does not place any restriction on the off-diagonal elements of Λ̂S on this basis.
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8. Conclusions

8.1. Summary

In this paper we provide quantum formulations of equilibrium thermodynamic functions and their
relations for Jarzynski’s classical thermodynamics at strong coupling [27] without the consideration
of heat and work. The combined system + environment, called the composite, is assumed initially to
be in a global thermal state. In such a configuration, even though the interaction between the system
and the bath is non-negligible, the partition function of the composite is well defined. This facilitates
the introduction of thermodynamic potentials in a way similar to the traditional vanishing-coupling
thermodynamics. Such a configuration allows for the introduction of enthalpy by introducing an
external agent (keeping at constant pressure in Jarzynski’s case) acting on the conjugate bath operator.
The effect can be represented by an equivalent effect on the system, which then appears in the
expression of the enthalpy of the system. There are two ways to capture this effect, called the “bare”
and “partial molar” representations by Jarzynski. We have worked out a quantum formulation for
each of these two representations of Jarzynski’s classical thermodynamics. In addition, we attempt
to identify the operator forms of the thermodynamic functions, which can be potentially useful in
directly addressing the effects of quantum fluctuations on thermodynamics at strong coupling, where
the fluctuations can reach the same order of magnitude as the corresponding mean values.

8.2. Issues

We mention two outstanding issues of the two representations or approaches, namely, internal
energy and entropy of the system at strong coupling in the global thermal state. When the quantum
versions of these two approaches are applied to a small quantum system that strongly couples with a
low-temperature bath, some nonintuitive results have been reported in the literature [29,36–40,43,44].
If the von Neumann entropy is adopted as the system entropy, then when the system and the bath are
entangled, this entropy will not approach zero for a simple system such as a harmonic oscillator in
the zero temperature bath, contradicting the result in [49], where it has been shown that the ground
state of such a composite system is non-degenerate in general, thus implying vanishing entropy at
zero temperature. On the other hand, if the system’s internal energy is defined as the derivative
of the partition function of the system, the heat capacity derived therefrom can take on negative
values in the low temperature regime when the system consists of free particles or coupled harmonic
oscillators. This anomalous behavior, not seen when the internal energy defined as the expectation
value of the system Hamiltonian, may be traced to an excessive inclusion of the interaction and the
bath contributions, as shown in (44), in the definition of the internal energy of the system.

8.3. Further Developments

To complete a theory for equilibrium quantum thermodynamics, we need to include the
considerations of heat and work. For understanding quantum work, the physical meaning of
the operator Âs conjugate to J is a key issue. At the next level of investigation, reaching out to
nonequilibrium conditions, also at strong coupling, we posit that the operator Δ̂s, introduced by
Gelin and Thoss, and the Hamiltonian operator of mean force can be related to the influence action
or the coarse-grained effective action [28,61,62] of the system when they are sandwiched by the
states of the system and formulated in the finite temperature imaginary-time path integral method.
This and an earlier observation we made for the partition function point out a way to extend the
present equilibrium quantum thermodynamics at strong coupling for a closed system in a global
thermal state to a nonequilibrium setting, by employing the real-time closed-time-path formalism used
in [28,29,61,62]. This is the goal of our next paper in this series [65].
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Appendix A. Handling Operator Products in Quantum Thermodynamics

In deriving various thermodynamic relations in the context of quantum thermodynamics, we often come up
with expressions involving exponential of the sum of two operators, say λ̂ and μ̂. Unlike its c-number counterpart,
in general such an exponential cannot be written as a product of exponential of the respective operators, that is,

eλ̂+μ̂ ?
= eλ̂ eμ̂ , (A1)

because these two operators λ̂, μ̂ may not commute. From Baker-Campbell-Haussdorff formulas, the righthand
side of (A1) in fact is given by

eλ̂eμ̂ = exp
(

λ̂ + μ̂ +
1
2!

[
λ̂, μ̂

]
+

1
3!

{ 1
2

[[
λ̂, μ̂

]
, μ̂

]
+

1
2

[
λ̂,

[
λ̂, μ̂

]]}
+ · · ·

)
, (A2)

for any two operators λ̂, μ̂. However, in the special case that [λ̂, μ̂] = 0, the equality in (A1) indeed is valid. The
other useful expression in the Baker-Campbell-Hausdorff formulas is

eλ̂ μ̂ e−λ̂ = μ̂ +
[
λ̂, μ̂

]
+

1
2

[
λ̂,

[
λ̂, μ̂

]]
+ · · · . (A3)

This is particularly useful in deriving the unitary transformation of μ̂ by the operator eλ̂.
We also often come to a situation that we need to take a derivative of an exponential of the operator. This is

less straightforward than is expected due to the fact that the operator in the exponent may not commute with its
own derivative. For example, consider an operator Ô(χ) of the form Ô(χ) = α(χ) X̂ + β(χ) P̂, with α, β being
functions of χ, but the operators X̂, P̂ of the canonical variables have no explicit χ dependence. We immediately
see the trivial result [Ô(χ), Ô(χ)] = 0, but

[
Ô(χ), ∂χÔ(χ)

]
=

(
αβ̇ − α̇β

) [
X̂, P̂

]

= 0, where the overhead dot

represents the derivative with respect to χ. This introduces complications in taking the derivative of, say, e−Ô(χ)

with respect to χ. If we realize an operator function in terms of its Taylor’s expansion, then

e−Ô(χ) =
∞

∑
k=0

(−1)k

k!
Ôk(χ) . (A4)

Taking the derivative of (A4) with respective to χ yields

∂χe−Ô

= −
∞

∑
k=1

(−1)k−1

(k− 1)!

{
1
k

[(
∂χÔ

)
Ô · · · · · · Ô︸ ︷︷ ︸
(k−1) terms

+Ô
(
∂χÔ

)
Ô · · · · · · Ô︸ ︷︷ ︸
(k−2) terms

+ · · · · · ·+ Ô · · · · · · Ô︸ ︷︷ ︸
(k−1) terms

(
∂χÔ

)]}
(A5)

= −
[(

∂χÔ
)

e−Ô
]

sym
,

where we define the symmetrized product (Ô1Ô2 · · · Ôk)sym as a generalization of the anti-commutator by

(Ô1Ô2 · · · Ôk)sym =
1

# of perm. ∑
# of perm.

Ôσ1 Ôσ2 · · · Ôσk , (A6)

with σ being the permutations of 1, 2, · · · , k. Thus the expression, say, (∂β Ĥ∗s ) e−β Ĥ∗
s , and similar derivative

expressions will be understood in this manner as a symmetrized product of ∂β Ĥ∗s and the Taylor-expanded e−β Ĥ∗
s ,

shown in (A5).
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However, if the derivative like (A5) is taken within a trace, then the complicated expression (A5) will reduce
to a simple form

Tr
{

∂χe−Ô}
= −

∞

∑
k=1

(−1)k−1

(k− 1)!
Tr

{(
∂χÔ

)
Ôk−1

}
= −Tr

{(
∂χÔ

)
e−Ô

}
, (A7)

due to the cyclic property of the trace formula. Hence in general we have ∂χe−Ô = −
[(

∂λÔ
)

e−Ô]
sym, but its trace

gives

Tr
{

∂χe−Ô}
= −Tr

{[(
∂λÔ

)
e−Ô

]
sym

}
= −Tr

{(
∂χÔ

)
e−Ô}

, (A8)

as if the operator Ô is a c-number. Note here we have assumed the traces applied in (A7) and (A8) are not a partial
trace; otherwise the same symmetrization procedure is still needed.

A special case of (A7) is ∂χe−χ Ô, in which Ô has no explicit dependence on χ. Then it is straightforward to
perform the differentiation, and since [Ô, e−χ Ô] = 0, we obtain

∂χe−χ Ô = −Ô e−χ Ô . (A9)

Next we give an explicit application of (A7). In particular, we focus on the expression

− 1
Zc

∂

∂β
Trs e−β(Ĥs+Δ̂s) , with Zc = Trs e−β(Ĥs+Δ̂s) . (A10)

Carrying out the differentiation of (A10) gives

=
1
Zc

Trs

{(
Ĥs + Δ̂s + β ∂βΔ̂s

)
e−β(Ĥs+Δ̂s)

}
= 〈Ĥs〉+ 〈Δ̂s〉+ β 〈∂βΔ̂s〉 . (A11)

The first two terms after the first equal sign in (A11) is the consequence of (A9), while the third term results
from (A8) due to the trace.
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Abstract: In this paper, we review the concept of entropy in connection with the description of
quantum unstable systems. We revise the conventional definition of entropy due to Boltzmann and
extend it so as to include the presence of complex-energy states. After introducing a generalized
basis of states which includes resonances, and working with amplitudes instead of probabilities,
we found an expression for the entropy which exhibits real and imaginary components. We discuss
the meaning of the imaginary part of the entropy on the basis of the similarities existing between
thermal and time evolutions.

Keywords: entropy and time evolution; resonances in quantum systems; the Friedrichs model;
complex entropy

1. Introduction

The definition of entropy and its interpretation in terms of the evolution to equilibrium of
isolated systems was a crucial step in understanding the link between mechanical and thermal
features in classical mechanics [1]. The notion of probability applies, both in classical phase-space
as well as in quantum mechanics, and from this the connection between entropy and the number
of degrees of freedom of a system has been established [2]. The main difference between classical
and quantum mechanical counting of states is, of course, the existence of the exclusion principle (for
fermions) and other symmetry restrictions (both for fermions and bosons) imposed to quantum
states. In both cases, fermions and bosons, the definition of the probability assigned to a state
remains valid. This is not the case for states with complex energies, where the time evolution is
non-oscillatory. States with complex energy, such as the Gamow states [3], are well described in the
theory of scattering [4] and found as solutions of the analytical continuation of quantum relativistic
and non-relativistic equations [5]. Several problems arise in dealing with these states, particularly their
non-normalizability [6,7]. Most of these difficulties are removed with the use of amplitudes, which are
the solutions of the equations and/or with the corresponding propagators, instead of working with
their modulus. A suitable tool to work with Gamow states, in order to extract their thermodynamical
information, is the path integration. In performing the path-integration we shall be dealing with
amplitudes instead of probabilities, a concept which cannot be applied to states with complex energy.

In the present article, we are going to show that a comprehensive scheme leading to the definition
of entropy for resonances can be rigorously designed by adopting path integration techniques. We shall
discuss this method as well as its application to a model for resonances which is analytically solvable.

The paper is organized as follows. In Section 2 we revisit the conventional definition of
entropy and relate it to time dependent operations, such as time inversion and time displacement.

Entropy 2018, 20, 231; doi:10.3390/e20040231 www.mdpi.com/journal/entropy347
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Section 3 deals with the identification of resonances in quantum physical systems and illustrate
their time dependence. These properties are then shown to be found over solid mathematical basis;
e.g., we construct the decaying states in the framework of rigged Hilbert spaces [8]. Section 4 is devoted
to the notion of complex entropy and in Section 5 we investigate the possible connection between our
definition of complex entropy and the class of time operators [9]. Our final remarks and conclusions
are presented in Section 6.

2. Entropy and time Evolution

In the context of quantum mechanics in the Heisenberg picture, the time evolution of a system is
governed by its Hamiltonian. Each operator obeys the following equation of motion:

[H,O] = −ih̄Ȯ . (1)

In classical mechanics the commutator (1) is replaced by a Poisson bracket and the corresponding
time evolution is determined by the classical Hamilton–Jacobi equations. From a perspective other
than thermodynamics, the evolution of a system is determined by the extreme of its free energy.
For the moment we shall assume that the number of particles of the system is constant, this is why it
makes sense to refer to the Helmholtz free energy F = E− TS. In such a circumstance, the change of
the entropy S with respect to the energy, at constant temperature, is given by the equation

1
T

=
∂S
∂E

, (2)

where E is the mean value of the energy and T is the absolute temperature at which the extreme of the
free energy is reached (e.g., at the equilibrium). Though (2) seems to belong to a class of equations of
motion different from (1), the difference is only apparent, since both equations fix physical values at
equilibrium. Then, we may establish a correspondence between a class of operators and the entropy,
as the associated observable. We shall return to this point later.

It was Boltzmann who realized that the number of degrees of freedom of a classical system
is proportional to the logarithm of the number Ω of micro-states of the system, from where one
derives the relation between the number of degrees of freedom and the entropy, i.e., S = −k log Ω.
The way, in which the entropy evolves as a physical system approaches to the equilibrium, is given by
a celebrated theorem due to Boltzmann, the H-theorem [2]. The H-theorem states that if Pr(t) is the
probability that a system is in the state r at time t and if we define H := ∑r Pr(t) log Pr(t), where the
sum extends to all possible states of the system; then, dH/dt ≤ 0. The consequence is clear, since the
entropy is given by S = −kH, so that dS/dt ≥ 0. The entropy monotonically increases with time until
the system reaches the thermodynamic equilibrium.

The same time evolution is expressed by means of the quantum evolution operator e−itH , so that
if O is the operator representing a given quantum observable at time t = 0, the operator at time
t is given by O(t) = eitHOe−itH (Unless otherwise stated, we take h̄ = 1 everywhere in the text.).
Therefore, it should exist a direct connection between both descriptions of the evolution to equilibrium.
However, from the time dependence of the observables of a system, one cannot always extract the
direction of the evolution. The time reversal operation inverses the sense of time, so that it performs
the operation t �→ −t. In classical mechanics, this means that the time reversal operation reverses
momenta, velocities, etc, so that it reverses the velocities of the charges. This produces a change of the
sign in the magnetic field, while leaves invariant the electric field.

In quantum mechanics, the time reversal operation is represented by the action of an operator, T ,
on the space of wave functions. According to Wigner [10], time reversal is an operation such that the
following operations performed sequentially give the identity:

time displacement by t× time reversal × time displacement by t× time reversal .
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The above operations result on the identity if

time displacement by t× time reversal = time reversal× time displacement by − t .

This point of view implies that the time reversal operator T has to be anti-linear in the sense
that for any linear combination of states ψi and two complex numbers λi, i = 1, 2, T (λ1ψ1 + λ2ψ2) =

λ∗1 T (ψ1) + λ∗2 T (ψ2), where the star denotes complex conjugation. In fact, if ψ(x, t) is the wave
function for some quantum pure state at time t, we have that T ψ(x, t) = ψ∗(x,−t) [11]. In addition,
Wigner showed that in the construction of projective representations of the Poincaré group, extended
with time inversion and parity, four independent choices exist for the time reversal operator. One is the
just mentioned operator T and the other three require a doubling of the representation space [10,12].
From a conceptual point of view, we are faced to a difficult question, namely: If equilibrium appears
in a particular instant of the time evolution of a system and is governed by a Hamiltonian, which is
the operator that obeys Equation (1) and has the entropy given by the associated observable so that
Equation (2) is fulfilled? One may also think that equilibrium is just a manifestation of the violation of
the time-reversal symmetry, as shown by the behaviour of the entropy as a time dependent observable,
as follows from the H-theorem.

3. Resonances in Quantum Systems

As is well known, unstable quantum states are very frequent in Nature. They are characterized
by two parameters: ER and Γ, which are the real and imaginary parts of the energy, respectively.
The quantity Γ is the inverse of the state half-life. Usually, one may consider that unstable quantum
states are produced by the capture of a particle by a center of forces and its subsequent decay, a situation
which is conveniently described by quantum scattering. The process of capture is often ignored as one
is mainly concerned with the process of decay [5,8]. They are detected experimentally by the presence
of some scattering features, such as a sharp bump in the cross section or a sudden change in the value
of phase shifts. Due to this fact, unstable quantum states are usually called resonances. We shall use
this denomination hereafter.

After this characterization of resonances in the context of scattering theory, they can be identified
with poles in the analytic continuation of the S-matrix, provided that some smooth conditions be
satisfied [13]. If this analytic continuation is performed in the energy representation the S matrix
becomes a function of a complex energy defined on a two sheeted Riemann surface [13]. Resonances
appear as pairs of complex conjugate poles located on the second Riemann sheet at the points
zR = ER ± iΓ/2, where ER > 0 is the resonance energy and Γ > 0 the inverse of the half life,
as said before.

The description of a quantum scattering process requires of two Hamiltonians. One is the free
Hamiltonian H0 that gives the free evolution of states. The other is a total Hamiltonian H = H0 + V,
where V is the potential which produces the scattering. In the case of having resonances due to
scattering, the potential V determines the forces that produce the capture and the later decay of the
resonant particle.

A particularly interesting model for quantum resonances is the Friedrichs model [14–16]. In the
simplest formulation of the Friedrichs model a bound state interacts with an external field. As the result
of this interaction, the bound state becomes unstable and, therefore, it is interpreted as a resonance.
In the language of the Hamiltonian pair {H0, H}, we have that

H0 = ω0 a† a +
∫ ∞

0
ω b†

ω bω dω , V = λ
∫ ∞

0
f (ω)[a† bω + a b†

ω ] dω . (3)

We see that H0 is the sum of two terms. In the former, a† and a are, respectively, the creation and
annihilation of a bound state of energy ω0 > 0. The integral term in H0 is the simplest representation
of a field in the energy representation, where b†

ω and bω are, respectively, the creation and annihilation
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operators of a state in the continuum with energy ω > 0. Thus, H0 has a non-degenerated continuous
spectrum, [0, ∞), plus a discrete eigenvalue ω0 > 0 imbedded in the continuum. The potential V
intertwines discrete and continuous spectrum, where f (ω) is a regular function called the form factor
and λ a real coupling constant. When the interaction V is switched on, the bound state becomes a
resonance with complex energy given by

zR = ER − iΓ/2 . (4)

Observations on the resonance decay show that the decay rate is approximately given by e−tΓ/2.
Now, if any bound state is represented by a square integrable wave function, is this the same for
unstable quantum states (resonances)? Let us assume that a resonance state is represented by a vector
state ψ. The survival amplitude is defined as 〈ψ|e−itH |ψ〉 and the survival probability, P(t), as the
modulus square of the survival amplitude, i.e., P(t) = |〈ψ|e−itH |ψ〉|2. If ψ is to represent a resonance
state, we expect that P(t) ≈ e−tΓ for all values of t.

However, this is not the case. In general, one may prove that there exist states ψ for which P(t) is
approximately e−tΓ for most of observational values of time. These states may serve as resonance states.
However, simple theoretical considerations show that deviations from the exponential decay law must
exist for small and large values of time. These deviations are essential, i.e., they are a consequence
of quantum theory, in particular of the semi-boundedness of the Hamiltonian, and not the product
of noise or other interactions [17]. There exists some experimental evidence on the existence of such
deviations [18,19].

As a matter of fact, P(t) = |〈ψ|e−itH |ψ〉|2 shows a similar behaviour at very small times for all
scattering states ψ. A simple calculation shows that P′(0) = 0, where P′(t) is the derivative of P(t)
with respect to t. This has a subtle consequence known as the Zeno effect: sequential (repeated)
measurements of the decay probability at very short intervals of time may prevent a decaying system
to decay [20]. (This is the origin of the deviations of the purely exponential decay law for very short
times, since if P(t) = e−tΓ, then P′(0) = −Γ 
= 0.)

Nevertheless, a wide range of experiments on decaying systems show that the exponential decay
is a good approximation for most purposes. Then, the consideration of states that have a purely
exponential decay should be in order. These states can be rigorously constructed as eigenvectors, ψD,
of H with eigenvalue zR as in (4), HψD = zR ψD. Each of the eigenvectors ψD is called a decaying
Gamow vector and has the property that e−itHψD = e−iERt e−Γt/2ψD, i.e., it decays exponentially as
t �−→ ∞. Since ψD is an eigenvector of a self adjoint Hamiltonian with complex eigenvalue, then ψD

cannot belong to the Hilbert space where H is densely defined and self-adjoint. Instead, it belongs to
the dual Φ× of a rigged Hilbert space Φ ⊂ H ⊂ Φ×.

If a normalizable vector ψ is taken to represent a resonance state, one may write ψ = ψD + ψB,
where ψB accounts for the deviations from exponential law for very short and very large times [5,17].
Except for these two regimes of time, ψD is a good approximation for ψ. However, as ψD is not
normalizable in the usual sense, one finds methodological difficulties to define mean values of
observables on ψD [6,7]. These difficulties will re-emerge as one attempts to assign a value to the
entropy for quantum decaying systems.

4. Complex Entropy

It should be clearly stated that any quantum unstable system should obey the laws of
thermodynamics. The point is that a precise formulation of these laws for quantum decaying states
has not been formulated yet, up to our knowledge. Also, quantum statistical mechanics should extend
its scope so as to embrace these kind of systems.

Based on this idea, one may ask for a suitable definition of the entropy for quantum unstable
systems. At least three approaches have been proposed. A first approach was proposed by the Brussels
group, it relies on the construction of an entropy operator, defined as a monotonic function of the time
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operator [9,21], which can be rigorously defined from a mathematical point of view under reasonable
physical properties, see [22]. This way has not been fully explored yet.

A second approach was suggested by Kobayashi and Shimbori [23,24]. There the entropy for a
quantum unstable state, described by a pole of the form zR = ER − iΓ/2, is a sum of a contribution of the
entropy of the real part, ER, and a contribution from the imaginary part Γ, so that S = S(ER) + S(Γ) [24].
This keeps the entropy as a real function of the resonance pole. In fact, real and imaginary parts of
the complex resonance energy zR are treated as if they were two independent systems. In this picture,
decaying processes transfer entropy from S(Γ) to S = S(ER) and the rate of this transference depends on
time. Each part has its own temperature, which suggests a notion of complex temperature.

We advocate a third approach, which does not make use of the entropy operator and avoids any
possible reference to complex temperatures. Following a suggestion in [23], we assume that quantum
decaying states are in thermodynamic equilibrium, provided that the half life be sufficiently large,
or equivalently, that the imaginary part of its energy, Γ, be sufficiently small.

Then, in order to give a definition of the entropy for quantum unstable states, we need a universal
model of resonances for which mathematical operations could be performed as much as possible.
This is given by the Friedrichs model described in the previous section. In the Friedrichs model,
resonances are produced after the interaction of a discrete bound state with a continuum of states
with a much larger degeneracy, so that it may be taken as a good example of a situation amenable to a
statistical description based on the canonical ensemble representation, where the continuum is playing
the role of the environment interacting with the isolated discrete state. For simplicity, we may consider
a Friedrichs model with one resonance only, although more complicated models could be used for the
same purpose [16]. As is well known, the canonical entropy is given by the formula:

S = k
(

1− β
∂

∂β

)
log Z , (5)

where Z = Tr e−βH is the partition function corresponding to the total hamiltonian H and β = 1/(kT),
where T is the absolute temperature and k the Boltzmann constant.

In order to evaluate Z = Tr e−βH , it seems reasonable to use a generalized basis of vectors which
includes the Gamow state ψD. This is given by ψD and the so called generalized outgoing eigenvectors
of the total Hamiltonian {|ω+〉}, with H|ω+〉 = ω |ω+〉, for all ω ≥ 0. Then, the partition function
would have taken the following form:

Z = Tr e−βH = 〈ψD|e−βH |ψD〉+
∫ ∞

0
〈ω+|e−βH |ω+〉 dω . (6)

However, this formula is not computable, as brackets of the form 〈ψD|ψD〉 or 〈ω+|ω+〉 are not
well defined [7,16,25].

Then, we have to circumvent this problem by using a different technique based on the use of path
integrals to calculate partition functions as introduced by Feynman and Hibbs [26]. In our approach,
we have adopted path integration in order to write the partition function using a basis of coherent
states. Thus, we construct coherent states in the following form: creation, A†

IN, and annihilation, AOUT,
operators for the Gamow state ψD may be constructed for the second quantized Friedrichs model as
described in [16]. Then, for any complex number α, we define the coherent state |α〉 as:

|α〉 = exp[α A†
IN − α∗ AOUT] |0〉 , (7)
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where |0〉 is the vacuum state and the star denotes complex conjugation. Then, an evaluation of the
partition function, although somehow cumbersome, can be done. Details are given in [27–29]. We arrive
to the following result for the entropy of a Gamow state with complex energy zR = ER − iΓ/2:

S = k

[
1− ln

(
β

√
E2

R +
Γ2

4

)
− i arctan

(
Γ

2ER

)]
. (8)

The result for S is complex and this fact requires of some comments. Firstly, the method used
to obtain the above formula is a straightforward generalization of a similar method, which uses
path-integration and coherent states, developed to obtain an approximation to the entropy of the
harmonic oscillator [29] avoiding the use of probabilities. For the case of the harmonic oscillator it
yields S ≈ k(1− log(βh̄ω)). Note that this is exactly the result that we obtain in the limit Γ �→ 0
and ER = h̄ω. Secondly, since quantum resonances have complex energies with a different physical
interpretation of real and imaginary parts, it is not a surprise that the same situation arises for the
entropy. The resonance in the Friedrichs model is produced by the interaction of the bound state with
the external field that plays the role of an external bath [30]. With this idea in mind, one may interpret
the real part of (8) as the system entropy and its imaginary part as the entropy transferred from the
resonance to the external bath.

There is another approach, described in [29], which leads to a complex entropy for an unstable
quantum state. It is based on the fact that the total Hamiltonian has the form H = zR A†

IN AOUT, plus a
much smaller background term which is neglected. Then, by using the property that the trace is
invariant under cyclic permutations and formulas like

[H, A†
IN(τ)] =

∂

∂τ
A†

IN(τ) = zR A†
IN ; [H, AOUT(τ)] =

∂

∂τ
AOUT = −zR AOUT , (9)

and for operators of the form O(τ) = eτH O e−τH with τ = β, we obtain the desired result, of which (8)
could be considered as a reasonable approximation. Note that the definition for O(τ) has a great
similarity with the definition for the time evolution of an operator, as suggested before (see Section 2).

5. Time-Temperature Plane

Let us consider a quantum observable O and define O(τ) as in the previous section, right after
formula (9), where τ = β = 1/(kT), being T the absolute temperature. O(τ) denotes the thermal
evolution of the observable. On the other hand, if we consider the time evolution of the observable
O under a Hamiltonian H, we have that τ = −it. The transformation from the first to the second is
sometimes called the Wick rotation [1].

This suggests the possibility of a description of time evolution for non-equilibrium systems using
the dependence on both variables time and inverse temperature. The picture would be a complex
plane in which the real part is given by the inverse of the temperature and the imaginary part by
time. Similar notions have been applied to introduce dual-thermal degrees of freedom and close-path
integrals [31].

Time operators have been defined for different purposes and different contexts [32,33].
For instance, assume that H is a densely defined Hamiltonian on a given Hilbert spaceH. This system
has an internal time operator T if for any density operator ρ in a domain dense in the space of
Hilbert-Schmidt operators onH, we have that e−itH T eitH ρ = (T+ tI)ρ, for any t real, where I is the
identity. Not any Hamiltonian system may have an internal time operator [34].

One of the interesting aspects of time operators is the possibility of constructing Liapunov
quantum variables, i.e., variables monotonic on time. One may understand the role of such variables
as indicators of the approach to equilibrium for complex systems, particularly for a definition of
an entropy operator. Here, we refer to a construction proposed in [9] and valid for a large class of
situations. A necessary condition for the use of the procedure outlined in [9] is that the Hamiltonian be
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unbounded and have an absolutely continuous spectrum, usually the half line [0, ∞), if this condition
is fulfilled H is said to be semi-bounded.

The idea of a time operator emerges from the comparison between the position-momentum and
energy-time uncertainty relations. However, and due to the semi-boundedness of the Hamiltonian in
non-relativistic quantum mechanics, a commutation relation of the type [H,T] = iI cannot hold. In any
case, if the Hamiltonian is semi-bounded with absolutely continuous spectrum, its corresponding
Liouvillian L = H ⊗ I − I ⊗ H has a continuous spectrum that covers the whole real axis. In this case,
it may be possible to define a time operator T as the conjugate of the Liouvillian operator, [L,T] = −iI.
Note that these operators have to be defined on H⊗H, i.e., the space of Hilbert-Schmidt operators
onH.

If this were the case, one may define the entropy as some monotonic function of the time operator,
as done in [9], i.e., S = f (T). Attempts to define a time operator, and hence an entropy operator for
unstable decaying systems are on the course.

6. Final Remarks

In classical mechanics, the approach to equilibrium is a manifestation of the time reversal
symmetry breaking. This is formulated via the Boltzmann H theorem according to which the
entropy monotonically increases up to a critical point, usually a maximum, at equilibrium. In classical
electrodynamics, the retarded solutions of the Maxwell equations are privileged over the advanced
solutions, thus showing a time asymmetry.

In quantum mechanics, the decay of unstable systems such as quantum resonances gives a sense
of time reversal symmetry breaking. One finds a need for a proper formulation describing this situation
in a similar context as in classical mechanics, whenever possible. Then, it seems necessary to define
the notion of entropy for quantum decaying systems.

We have introduced an idea toward a proper definition of this entropy based on the use of Gamow
states as state vectors for resonances. However, a naive presentation using standard tools of quantum
mechanics yields to inconsistencies due to the ill definition of some formal averages. We have shown
that the use of path integration over coherent states, which have been constructed with the help of
creation and annihilation operators of Gamow vectors, gives a reasonable outcome. The resulting
entropy is complex, with an imaginary part which gives an account for the interactions of decaying
states with their surroundings.

We have discussed the formal similarities between thermal and time evolution of states.
Concerning quantum decaying states, we have introduced a representation, (9), that gives the thermal
evolution of the creation and annihilation operators for the Gamow states. These are differential
equations that admit the following solutions:

A†
IN(τ) = eτzR A†

IN , and AOUT(τ) = e−τzR AOUT . (10)

Identities (10) are useful in order to obtain an expression for the complex entropy valid for the
quantum unstable state created by A†

IN and annihilated by AOUT. Here, we choose τ = β = 1/(kT),
as given in [29]. In this case, and since the resonance energy ER is taken to be positive, the highest the
temperature, the smaller A†

IN(τ) and the larger AOUT(τ).
A completely different interpretation comes when τ = −it, i.e., when we consider the time

evolution of Gamow states. Now, A†
IN(t) = e−itER e−Γt/2 A†

IN and AOUT(t) = eitER eΓt/2 AOUT, so that
the creation operator for a Gamow state decays with time while the annihilation operator grows with
time. This is called the Wick rotation.

A future perspective could be a definition of the entropy operator as a function of the time
operator. This is defined on an algebras of observables where Gamow states play a role as functionals
over this algebra. A prototype of this algebraic model has been constructed [35] and the investigation
is on the course.
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Abstract: In this work, it is acknowledged that important attempts to devise an emergent quantum
(gravity) theory require space-time to be discretized at the Planck scale. It is therefore conjectured that
reality is identical to a sub-quantum dynamics of ontological micro-constituents that are connected
by a single interaction law. To arrive at a complex system-based toy-model identification of these
micro-constituents, two strategies are combined. First, by seeing gravity as an entropic phenomenon
and generalizing the dimensional reduction of the associated holographic principle, the universal
constants of free space are related to assumed attributes of the micro-constituents. Second, as the
effective field dynamics of the micro-constituents must eventually obey Einstein’s field equations,
a sub-quantum interaction law is derived from a solution of these equations. A Planck-scale origin
for thermodynamic black hole characteristics and novel views on entropic gravity theory result from
this approach, which eventually provides a different view on quantum gravity and its unification
with the fundamental forces.

Keywords: quantum ontology; sub-quantum dynamics; micro-constituents; emergent space-time;
emergent quantum gravity; entropic gravity; black hole thermodynamics

1. Introduction

Important attempts to devise an emergent quantum (gravity) theory require space-time to be
discretized at the Planck scale [1]. The identification of the discrete micro-constituents of space-time
is therefore one of the biggest research questions in present-day physics. Yet, if space-time is indeed
an effective field, emerging from the interaction of its micro-constituents only, then quantizing some
aspect of general relativity will not help us identify its fundamental degrees of freedom—by analogy,
we would arrive at a theory of phonons rather than a description of the underlying atoms of the
condensate [2–4]. For that reason, in correspondence with Oriti [5], in this work “we consider the
emergence of continuum space and time from the collective behavior of discrete, pre-geometric atoms
of quantum space, and (analogously consider) space-time as a kind of condensate”.

Yet, by viewing the conjectured pre-geometric atoms of quantum space as the ontological
micro-constituents of our emergent reality, its effective macro-dynamics, including space and time,
is expected to benefit from a complex (nonlinear) sub-quantum dynamical systems approach for
its appropriate understanding in terms of the fundamental degrees of freedom. According to
Ladyman et al. [6] “a complex system is an ensemble of many elements which are interacting in
a disordered way, resulting in robust organization and memory”. The necessary qualitative conditions,
although being not necessarily jointly sufficient, for the emergence of a complex dynamic that shows
spontaneous yet persistent ordering can be correspondingly defined as “numerosity” (an ensemble of
many fungible elements) and “interaction” (through direct nonlinear causality) [6].

This work hence attempts to provide a parsimonious complex systems approach, as a kind
of toy model, for identifying space-time’s ontological micro-constituents and their interaction, i.e.,

Entropy 2018, 20, 335; doi:10.3390/e20050335 www.mdpi.com/journal/entropy356



Entropy 2018, 20, 335

their sub-quantum dynamics. Motivated by Occam’s razor, it is here assumed that only one type
of such micro-constituents exists, and that a single interaction law connects them relationally [7].
This assumption entails that effective space-time, matter, gravity, and the other fundamental
forces should emerge from the interaction, through their fundamental degrees of freedom as
dynamical attributes, of the single-type micro-constituents. A number of analogue gravity models
or condensed matter approaches to quantum gravity already adopt this strategy, but typically lack
background-independence in their interactions [4,8]. This background-independence however is
required for interactions that induce (and thus precede) the emergence of any space-time that could
serve as a reference metric.

In order to arrive at a background-independent micro-constituent interaction (law) that reproduces
general relativity’s dynamical space-time (including gravity) in its effective field behavior, we adopt
and combine two strategies. First, motivated by the works of Jacobson [2], Padmanabhan [9], and
Verlinde [10] (or see Padmanabhan [11] for more recent progress), we will conceive of gravity as a
thermodynamic phenomenon or an emergent entropic force. These authors have demonstrated how
Einstein’s field equations can be considered to originate from space-time’s thermodynamic degrees of
freedom at a causal (black hole or holographic) horizon. In this work however, in order to identify the
micro-constituents of space-time and their relation with common physical quantities, the dimensional
reduction of the holographic principle as presented by ‘t Hooft [12] is generalized to non-holographic
reference surfaces. It is shown that the universal constants of free space can then be related to attributes
of the atoms of quantum space.

Second, a reverse-engineering argument, somewhat characteristic for complex dynamical systems
approaches and encouraged by Hu [13] for emergent quantum gravity research, is used to put forward
an approximation of the background-independent interaction law that connects the conjectured
single-type micro-constituents of space-time: as the emergent effective field dynamics of the
micro-constituents must eventually obey Einstein’s relativistic field equations [14], a micro-constituent
interaction law that yields the required diffeomorphism invariant field behavior can be obtained from
a solution of these equations. The resulting interaction law is however formulated within the emergent
relativistic space-time framework itself, and not in a fundamental pre-space-time framework. The
latter option is very much complicated by the involvement of some sort of “external time” that is tied to
the pre-space-time dynamics of the micro-theory [4]. This flaw seems familiar—and acceptable—when
looking at the analogous issue in perturbative string theory, see for instance Huggett and Vistarini [15].

Together, these two strategies thus allow identifying—in a first rudimentary way—the
micro-constituents of space-time and their basic interaction. The explicit constituent-based complex
systems approach presented in this work additionally allows deriving black hole thermodynamics
in a way that is believed to be more direct and intuitive than previous accounts [16–18] and
related aspects of entropic gravity, the latter even for non-holographic reference surfaces. Both
phenomena are reproduced in terms of space-time’s micro-constituents and the number of fundamental
(thermodynamic) degrees of freedom at their availability on the surface of reference. This complex toy
model of quantum reality is therefore anticipated to point the way towards a more mature emergent
theory of quantum gravity, while a generalization of the constituent-based origin of the gravitational
field finally hints at a unification of the fundamental forces.

2. Constituent Identification

We initiate our complex systems-based toy model of emergent reality with a rudimentary attempt
to identify space-time’s ontological micro-constituents. It is thereby assumed that only one type of
such micro-constituents exists, which entails that effective space-time, matter, gravity, and the other
fundamental forces should emerge from the interaction, through their attributes, of these single-type
micro-constituents only. This also entails that the universal constants of free space, like the speed of
light in vacuum c, the gravitational constant G, the (reduced) Planck constant h, and the Boltzmann
constant kB, are expected to be in some way all related to the attributes of the micro-constituents.
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A direct connection between the universal constants of free space and associated space-time constituent
properties is therefore derived in the following.

As space-time (curvature) and gravitational effects are unified by Einstein’s relativistic field
equations, it seems evident to first establish a relationship between the mass m or energy E enclosed
within a certain space-time volume V on the one hand and an invariable property (say G0) of each of
the nV individual space-time constituents within that volume on the other hand:

m ∝ nV G0. (1)

Let us denote this mass and energy defining attribute, G0, which should obviously be related to
the gravitational constant, as a micro-constituent’s “gravitational presence” (this choice is elucidated
later on). Yet, masses also experience their mutual full extent from a distance, i.e., without shared
knowledge of their respective nV . We must, therefore, relate the “information” about the amount of
micro-constituents within the volume V to some “information” on its surface A = ∂V, which is the
kind of dimensional reduction that was proposed by ‘t Hooft [12] in his holographic principle. This
principle is generalized to non-holographic surfaces here with the following premise: the amount
of micro-constituents nV contained within an enclosed space-time volume V is proportional to the
amount of micro-constituents nA that overlaps with the surface A = ∂V of that volume: nV ∝ nA. As a
result, one can rewrite Equation (1) as:

m ∝ nAG0. (2)

Relating the above to common physical quantities can be achieved by use of straightforward
dimensional analysis. By simply rearranging the unit dimensions of G one has:

m ∝
c3

G
Δt. (3)

By combination of Equations (2) and (3), and thereby taking Δt = tP to explicitly relate the
constituents to the Planck scale (and unit system), one can identify each mass as follows:

m ≡ nAG0tP (4)

with G0 ∝ c3/G from Equation (3). Equation (4) implies:

m0

E0

=

=

G0lP/c
G0lPc

(5)

so that we can write m = nAm0 and E = nAE0 with m0 and E0 the rather abstract unit mass and unit
energy that are associated with the exchange of a single space-time micro-constituent through the
surface A, respectively. In the following, nA is replaced by n, as always the micro-constituents on the
reference surface are intended.

Up to this point, our analysis has been limited to linear relationships in terms of the numbers of
micro-constituents. This changes when considering temperature T and entropy S that both depend on
a system’s thermodynamic degrees of freedom. Motivated by the entropic gravity argumentation from
Padmanabhan [9] and Verlinde [10] for holographic surfaces, yet keeping our non-holographic premise
and Equation (2) in mind, we here apply the equipartition theorem to the generalized reference surface
A (assuming that it also holds approximately for non-trivial energy distributions in quantum systems).
The equipartition theorem then states that the energy nE0 of V, because of its representation by the n
micro-constituents at the surface A of V, is equally distributed over all degrees of freedom N on A, or
E = nE0 = NkBT/2, which immediately results in:

T =
2nE0

NkB
. (6)
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The connection between temperature and entropy as conjugate thermodynamic variables through
T = ΔE/ΔS, which is discretized because of the finite-sized micro-constituents, moreover yields:

ΔS =
kBN

2
Δn
n

. (7)

By direct integration for constant N, i.e., over the reference surface A, Equation (7) becomes:

S =
kBN

2
ln(n) (8)

so that, on the Planck unit scale, SP = kB ln(2) bit or SP = kB nit (as required by definition) only
when n = N = 2. This entails that a surface enclosing a single Planck mass exchanges two
space-time micro-constituents with the outer environment during a single Planck time interval
or ∼1043 constituents over a second. The entropy associated with a single constituent occupying
one fundamental degree of freedom S (n = 1, N = 1) obviously equals zero, yet one can define
S0 = S (n = 2, N = 1) = kB/2 nit as a unit simplification, wherefrom, upon insertion into Equations (6)
and (8) respectively:

T =
n
N

E0

S0
=

n
N

T0 (9)

and
S = S0N ln(n). (10)

Comparison with the Boltzmann formula S = kB ln(Ω) shows that the number of microstates
Ω that corresponds with a given macrostate encompassing N surface degrees of freedom for n
micro-constituents is given by Ω = nN as one would expect.

By combining mP = 2G0lP/c with the Planck definitions of mass mP =
√

hc/G and length
lP =

√
hG/c3 [19], one obtains:

G = c3/2G0

h = 2G0l2
P

. (11)

As summarized in Table 1, the above allows translating the universal constants of free space
into four attributes of space-time’s micro-constituents and corresponding constituent units. Note
that products of constituent units of complementary variables, like time and energy or position and
momentum, immediately yield G0l2

P = h/2. This result suggests a direct connection between the
discreteness of the micro-constituents, forcing measurement outcomes to refer to an integer amount of
constituents, and the Heisenberg uncertainty relations [20].

Table 1. Translation (first column) of universal constants of free space into space-time constituent
attributes (second column) and its effect on the definition of basic units (third column).

Constants Translation Constituent Attributes Constituent Units

h = 2G0l2
P → lP Size l0 = lP

c → c Velocity t0 = tP = lP/c
G = c3/2G0 → G0 Gravitational presence m0 = G0lP/c = mP/2

kB = 2S0 → S0 Unit entropy S0 = SP/2 (T0 = TP)

3. Constituent Interaction

Inventing a valid constant translation and unit redefinition can be done in numerous ways
and is therefore not highly remarkable. The translation developed above however aims at getting
as close as possible to the very nature of reality by considering the attributes that are allocated to
individual micro-constituents of space-time as its basis. The next step in our search for a complex
theory of quantum gravity would then be to connect the constituent properties defined in Table 1 by an
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interaction law that yields an effective dynamics in agreement with present-day physics theories. From
a gravitational perspective, the emergent effective field dynamics must obey Einstein’s field equations
of general relativity [14]. Motivated by Hu [13], a relational micro-constituent interaction law that
yields diffeomorphism invariant fielding behavior, yet formulated within the emergent relativistic
space-time framework, can therefore be derived from a solution of these equations.

In the weak field approximation (neglecting the exact Schwarzschild solution to simplify the
discussion), where the metric tensor is defined as a small perturbation (	 1) on the Minkowski metric
due to a mass M, the line element ds at a distance R from M is given by [14]:

ds2 ≈
(

1− 2GM
c2R

)
c2dt2 −

(
1 +

2GM
c2R

)
dl2 (12)

with dl2 = dx2 + dy2 + dz2. As the micro-constituents move at the speed of light (see Table 1), the
effective space-time constituent speed, denoted as c′, is then given by ds = 0 or:

c′ ≡ dl
dt
≈ c

(
1− 2GM

c2R

)
. (13)

In constituent units, this becomes:

c′ ≈ c
(

1− lP
R

nM

)
≡ c(1− ρr) (14)

whereby ρr ≡ nMlP/R = nM/RP is defined as the “radial constituent density” i.e., the amount of
micro-constituents exchanged by M through the surface 4πR2 relative to the distance R from M in
units lP, which reflects gravity’s spherical isotropy.

Equation (14) shows that the constituent speed as measured in a non-inertial coordinate system at
distance R from M indeed decreases with declining R [21,22]. Stated differently, there exists an effective
index of refraction η ≈ (1− ρr)

−1 with ρr representing an effective local constituent density (field).
According to the same non-inertial coordinate system, the space-time constituents must therefore
undergo an acceleration a0 given by dc′/dt ≈ 2GM/R2 or dc′/dt ≈ c2lPnM/R2 in constituent units,
wherefrom:

a0 ≈
4πc2

lP

nM
N

(15)

provided that N = A/l2
P = 4πR2/l2

P = 4πR2
P here. This identity however has been derived by

Padmanabhan for any diffeomorphism invariant theory [23,24]. By the very conception of mass in
Equation (4), nM refers to the number of space-time constituents intersecting a spherical surface with
radius R, entailing that N must indeed equal the number of fundamental degrees of freedom on this
same surface in constituent units. Most importantly, Equation (15) translates the presence of a remote
massive object M into a local experience (and interaction) of gravitational presences at distance R from
M, i.e., into a function of the amount of micro-constituents nM relative to the number of degrees of
freedom N at their availability (also see next section). There is no reference to any prior geometry, or in
other words Equation (15) is a background-independent constituent interaction law.

Black hole thermodynamics follows straightforwardly [25]: A spherical surface with radius
RS enclosing a compound massive object M will have c′ → 0 when its radial constituent density
ρr = nMlP/RS → 1 according to Equation (14). This means that the escape velocity from M equals c at
RS = nMlP, which exactly matches the Schwarzschild radius RS = 2GM/c2 in constituent units. The
corresponding number of degrees of freedom of the spherical reference surface at RS is hence given by
NS = 4πR2

S/l2
P = 4πn2

M, entailing that ΔSBH = 2πkBnMΔnM from Equation (7). Integration yields

SBH = πkBn2
M =

kBNS
4

(16)
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in agreement with Hawking’s black hole entropy expression [26]. The Bekenstein–Hawking black hole
radiation temperature TBH can be determined most easily from Equation (9):

TBH =
nM
NS

T0 =
T0

4πnM
(17)

which is identical to the result obtained by inserting the constant translations proposed in the previous
section into the regular Bekenstein–Hawking expression [27,28]. This constituent-based origin for
thermodynamic black hole characteristics is however considered to be more direct and intuitive than
earlier accounts [16–18].

4. Entropic Gravity

Based predominantly on the works by Padmanabhan [9] and Verlinde [10], we attempt to relate
the previous outcomes back to the interpretation of gravity as an entropic force, yet generalized to
non-holographic reference surfaces. Adopting Verlinde’s classical approach first, consider the force
F induced by a mass M = nMm0 onto a mass m = nmm0 (and vice-versa) at distance R, which is
according to Newton’s law and in constituent units given by:

F =
G0l2

Pc
2R2 nmnM. (18)

This force induces an acceleration am on m of the size F/m or:

am =
2πc2

lP

nM
N

(19)

which differs from Equation (15) only by a factor of two, as one would expect for a calculation
that omits relativity’s temporal perturbation of the space-time metric [22]. Equation (19), however,
immediately reproduces the Unruh temperature expression upon insertion of Equation (6) [29].
This straightforward connection in constituent units again supports the idea to regard gravity as
a thermodynamic phenomenon or an emergent entropic force, as suggested before.

According to Verlinde, one can write the gravitational pull induced by M on m also as [10]:

F =

(
ΔE
ΔR

)
m
=

(
ΔE
ΔS

)
m

(
ΔS
ΔR

)
m

(20)

with immediately from Equation (6) for the reference surface temperature induced by m:(
ΔE
ΔS

)
m
=

2G0lPc
kB

nm

N
. (21)

Also according to Verlinde, the last factor in Equation (20), being the entropy variation ΔS at
the location of m that corresponds to a variation in the distance ΔR between the two masses, can be
considered from the Bekenstein conjecture [27]: The effective distance shift that is needed to add one
unit of entropy ΔS = kB to the holographic reference surface at m equals the Compton wavelength
h/mc = 2lP/nm wherefrom (with subscript B to denote the Bekenstein-based approach):(

ΔS
ΔR

)
B
=

kBnm

2lP
. (22)

However, inserting Equations (21) and (22) into Equation (20) only yields Equations (18) and
(19) apart from an unexplained factor 2πnM/nm or 4πnM/nm with respect to the general relativistic
Equation (15). Such dissimilarity, which must be due to the Bekenstein conjecture, has also been observed
by Verlinde in regular units [10]. Verlinde nevertheless uses his version of Equation (22) to relate the
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classical gravitational acceleration with a mass-induced entropy gradient. The same result (still by a
factor 2πnM/nm) is immediately obtained here by inserting the latter identity into Equation (19):

am,B =
4πc2

kBN
nM
nm

(
ΔS
ΔR

)
B

. (23)

For a general description that is not bound to a holographic scenario, Equation (8) instead of
the Bekenstein conjecture should be used as a starting point for determining the distance-dependent
entropy gradient that is induced by the mass M. In that case, with nM being independent of R:(

ΔS
ΔR

)
C
=

kB
2

8πR
l2
P

ln(nM) =
2S
R

(24)

whereby the subscript C stresses the constituent-based approach, so that:

am,C = πc2 nM
N

RP
S

(
ΔS
ΔR

)
C

(25)

One can immediately reproduce the results by Padmanabhan [9] and Verlinde [10] by insertion of
the Schwarzschild solutions RS = nMlP and SBH = πkBn2

M into Equations (24) and (25) respectively,
yielding (with subscript S for Schwarzschild):(

ΔS
ΔR

)
S
=

2SBH
RS

=
2πkBnM

lP
(26)

which indeed differs from Equation (22) by a factor 4πnM/nm as anticipated, and consequently for the
entropy-induced acceleration:

am,S =
c2

kBN

(
ΔS
ΔR

)
S
. (27)

The entropic interpretation of gravitational pull can however be simplified by definition of an
“informational constituent density” ρi = nM/N, which is like a temperature according to Equation (9),
as the amount of micro-constituents nM that is exchanged by M relative to the number of degrees of
freedom N at their availability on a spherical reference surface at distance R. Taking into account again
that N = 4πR2

P, the gradient of ρi as experienced by m is given by:

Δρi
ΔR

=
Δ

ΔR

(
nMl2

P
4πR2

)
= −2ρi

R
. (28)

Note the similarity with the entropic gradient in Equation (24). As a result, the gravitational
acceleration is very straightforwardly considered as being induced by an informational constituent
density gradient also in Equation (19):

am = −πc2RP
Δρi
ΔR

. (26)

For the relativistic space-time constituents interacting through Equation (15), this means that:

a0 ≈ −2πc2RP
Δρi
ΔR

= −c2 Δρr

ΔR
. (30)

corresponding elegantly with a gravitational potential ϕ = c2nM/RP.
The interpretation of entropic gravity by Padmanabhan [9] and Verlinde [10] in terms of a

temperature-induced entropy change on a holographic screen due to a mass m (the Bekenstein
conjecture), which causes an entropy gradient, which causes acceleration, is thus replaced here by an
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interpretation of gravitational pull in terms of micro-constituent density gradients: Each mass can
be experienced by a remote mass, due to the experience of an effective (informational) constituent
density gradient, which can be expressed as a temperature or entropy gradient, and which causes
an acceleration. Although technical differences are small, the latter interpretation is believed to
provide an improved conceptual understanding of emergent quantum gravity in terms of space-time’s
micro-constituents and the fundamental degrees of freedom at their availability. Further entropic
gravity generalizations by Padmanabhan [9] and Verlinde [10] still hold true, while a covariant
Lagrangian version has been provided by Hossenfelder [30]. Relating the micro-constituent-based
interpretation of entropic gravity as presented here to promising studies in entropic cosmology [31–35]
is subject of ongoing research.

5. Discussion

From the necessary conditions for the emergence of a complex dynamical system, it has been
conjectured that reality is identical to a sub-quantum dynamics of indistinguishable yet ontological
micro-constituents that are connected by a single interaction law. In order to arrive at a first toy-model
identification of these micro-constituents, two strategies have been combined. First, it is obvious
that masses, which can only consist of constituent collections, require a means to fully experience
each other from a distance, i.e., some kind of information about the presence and extent of each mass
must be remotely available. This kind of dimensional reduction of information has been achieved
from a micro-constituent-based generalization of the holographic principle within a thermodynamic
interpretation of gravity. The generalization allowed identifying Planck-scale constituent attributes
from the universal constants of free space, like G and h, that can be seen as unit conversion constants
as a result. Second, as the effective field dynamics of the constituents must eventually obey Einstein’s
field equations, a sub-quantum interaction law, although formulated within the emergent relativistic
space-time framework, has been derived from an approximate solution of these equations.

Generalizing the workings of the holographic principle to all reference surfaces, however, also
called for a corresponding generalization of the Bekenstein conjecture, which assesses the entropy
change at a black hole’s surface upon mass aggregation. This conjecture has been used to connect
the gravitational acceleration near a holographic surface to an entropy gradient by Padmanabhan [9]
and Verlinde [10]. In this work, however, relating the experience of a distant mass to the entropy
(gradient) has been achieved for non-holographic surfaces from the number of micro-constituents
that are distributed over the surfaces’ fundamental degrees of freedom. Taking a Schwarzschild
surface as reference immediately reproduced the holographic entropic gravity results and provided a
constituent-based origin for thermodynamic black hole characteristics. The interpretation of gravity
in terms of an effective constituent density gradient is believed to provide a more straightforward
understanding towards an emergent quantum gravity theory.

The general conclusion “that acceleration is related to an entropy gradient” [9] or a constituent
density gradient also calls for a more general interpretation of the fundamental forces. If reality is
indeed identical to a single type of space-time micro-constituents interacting through the proposed
law (or similar), than this assumption entails that not only effective space-time and gravity, but also
the other fundamental forces should emerge from the interaction of the micro-constituents. Unruh’s
argument that every acceleration induces a temperature was inverted by Padmanabhan [9] and
Verlinde [10] to state that gravitational acceleration or inertia is induced by a temperature-induced
entropy gradient, but can hence also be understood to be generally reversible, indicating that every
fundamental acceleration (or force) is induced by an effective constituent density gradient.

In line with the common interpretation of Einstein’s field equations, one could indeed imagine
that a composite body (i.e., a space-time constituent collection) experiencing no net force whatsoever
must be located within an isotropic space-time constituent density distribution, while every “force”
that disturbs the isotropy, as a “space-time curvature” effect on the surrounding micro-constituent
density distribution, is compensated for by a macroscopic acceleration, as effectively induced by a
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sub-quantum micro-constituent dynamics according to Equation (30), to a geodesic trajectory. This view
corresponds with the idea that according to general relativity gravity is not a force in the classical sense
as objects do not couple to the gravitational field; objects just exist and, if not differently constrained,
follow geodesic trajectories [36].

Differences between the Standard Model matter and force particles must in this view emerge
from different types of ‘clustering’ of the space-time micro-constituents, while no specific clustering
configuration seems to be required for the emergence of space-time and gravity. Note that
correspondingly every part of the universe can be attributed mass and energy, but not any other
Standard Model attribute that requires a specific constituent configuration. The strength gap between
the gravitational pull and the other fundamental forces that involve clustered space-time anisotropies
is therefore anticipated. In agreement with experiment, this gap however should narrow when the
number of background constituents increases up to a high-energy level where the constituent density
discrepancy becomes vague or disappears.

The biggest open question towards unification of the fundamental forces within this line of
research is then whether the interaction according to the law proposed in Equation (30) also allows for
different types of micro-constituent clustering behavior that yield Standard Model physics, or whether
other constituent attributes and interaction laws are required. Yet, for the accustomed probability
wave dynamics within quantum mechanics, one could expect that each constituent cluster shows an
internal micro-constituent dynamics that can be assessed by the use of wave characteristics, which are
merely descriptive choices in function of an observer’s Eigen-time. These descriptive choices could
be quantized in terms of a wavelike Gibbs ensemble probability density function for the cluster’s
micro-constituents. Thereby taking into account the finite extent lP of the constituents, one arrives
at a canonical quantization that relates to quantum mechanics’ probability density function. This
function is denoted “densité de présence” in French, wherefrom the (gravitational) “presence” attribute
specification in this work.
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Abstract: A trajectory-based representation for the quantum theory of the gravitational field is
formulated. This is achieved in terms of a covariant Generalized Lagrangian-Path (GLP) approach
which relies on a suitable statistical representation of Bohmian Lagrangian trajectories, referred to here
as GLP-representation. The result is established in the framework of the manifestly-covariant quantum
gravity theory (CQG-theory) proposed recently and the related CQG-wave equation advancing in
proper-time the quantum state associated with massive gravitons. Generally non-stationary analytical
solutions for the CQG-wave equation with non-vanishing cosmological constant are determined
in such a framework, which exhibit Gaussian-like probability densities that are non-dispersive in
proper-time. As a remarkable outcome of the theory achieved by implementing these analytical
solutions, the existence of an emergent gravity phenomenon is proven to hold. Accordingly, it is
shown that a mean-field background space-time metric tensor can be expressed in terms of a suitable
statistical average of stochastic fluctuations of the quantum gravitational field whose quantum-wave
dynamics is described by GLP trajectories.

Keywords: quantum mechanics; generalized Lagrangian paths; covariant quantum gravity; emergent
space-time; Gaussian-like solutions

PACS: 03.65.Ca; 03.65.Ta

1. Introduction

The search for a theory of quantum gravity that is consistent both with the principles of quantum
mechanics [1] as well as with the postulates of the classical Einstein theory of General Relativity
(GR) [2–4] has represented so far one of the most challenging and hard-to-solve conceptual problems
of mathematical and theoretical physics alike. The crucial issue is about the possibility of achieving in
the context of either classical or quantum relativistic theories, and in particular for a quantum theory
of gravity, a truly coordinate- (i.e., frame-) independent representation, namely which satisfies, besides
the general covariance principle, also the so-called principle of manifest covariance. In fact, although
the choice of special coordinate systems is always legitimate for all physical systems either discrete
or continuous, including in particular classical and quantum gravity, the intrinsic objective nature of
physical laws makes them frame-independent.

However, for these principles to actually apply, a background space-time picture must hold.
This means, more precisely, that a suitable classical curved space-time

{
Q4, ĝ

}
must exist with

respect to which both general covariance principle and principle of manifest covariance can be
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prescribed. As a consequence, when parameterized with respect to a coordinate system r ≡ {rμ}
the same space-time must be endowed with a well-defined (i.e., uniquely prescribed and hence
deterministic) symmetric metric tensor ĝ, represented equivalently in terms of its covariant ĝ ≡

{
ĝμν

}
and countervariant ĝ ≡ {ĝμν} forms , which is referred to in the following as the “background” field
tensor. In particular, Q4 can be identified with a time-oriented four dimensional Riemann space-time.
Thus, although the precise choice of the same background space-time itself remains in principle
arbitrary, as a consequence of the principle of manifest covariance it should always be possible to
represent all quantum observables (of the theory), including the corresponding quantum Hamiltonian
operator and quantum canonical variables/operators (see below), in 4-tensor form. This requires
to cast them exclusively as 4-tensor fields with respect to the group of local point transformations
(LPT group)

r ≡ {rμ} → r′ ≡
{

r′μ
}
= r′(r) (1)

mapping
{

Q4, ĝ
}

in itself [5].
In such a framework ĝ is considered as a classical (i.e., deterministic) tensor field, to be identified

as the metric tensor field of
{

Q4, ĝ
}

which—as such—determines the geometric properties of the same
space-time. This means more precisely that:

Prescription a: Its covariant and countervariant components, i.e., respectively, ĝμν and ĝμν , must
lower and raise tensor indices of arbitrary tensor fields and also prescribe the standard connections
(Christoffel symbols) appearing in the covariant derivatives.

Prescription b: It determines the Ricci tensor, the Ricci 4-scalar and the coupling contained in the
stress–energy tensor due to external sources, in the sequel, respectively, identified with the symbols
R̂μν ≡ Rμν(ĝ), R̂ ≡ R(ĝ) ≡ ĝαβR̂αβ and T̂μν = Tμν(ĝ).

Prescription c: Consequently, ĝ can be identified with a particular solution of the Einstein
field equations

R̂μν −
1
2

[
R̂− 2Λ

]
ĝμν =

8πG
c4 T̂μν, (2)

where as usual Λ denotes the cosmological constant.
Prescription d: ĝ determines uniquely the Riemann distance s, or proper-time, on the space-time{

Q4, ĝ
}

by means of the 4-scalar equation

ds2 = ĝμν(r, s)drμdrν. (3)

One notices that, in accordance with [5], here drμ ≡ drμ(s) and ds identify, respectively, the 4-tensor
displacement and its corresponding 4-scalar line-element (arc length), both evaluated along a suitable
worldline. For this purpose, the latter is identified with an arbitrary geodetics r(s) ≡ {rμ(s)}
belonging to

{
Q4, ĝ

}
that crosses an arbitrary 4-position rμ ≡ rμ

o , and hence fulfills the initial condition
rμ(so) = rμ

o , at some proper time so (which for definiteness can always be set so = 0). Consequently,
the definition of proper time remains unambiguous and unique also for arbitrary finite values of
s ∈ I (with I ≡ R the real axis), being identified with the arc length along the (unique) geodetics
r(s) ≡ {rμ(s)} joining rμ(so) = rμ

o with an arbitrary 4-position rμ
1 , i.e., such that rμ(s1) = rμ

1 for a
given s1 is assumed to exist. For example, the proper time can always be defined along an appropriate
observer geodetics.

Prescription e: One notices that in principle the background metric tensor might be taken of the
form ĝ(r, s) ≡

{
ĝμν(r, s)

}
, i.e., allowed to depend explicitly also on the proper time s. In the following,

however, we shall restrict the treatment to the customary case in which the background metric tensor
solution of the Einstein field equations is purely dependent only on the 4-position rμ, namely is of
the form

ĝ = ĝ (r) , (4)

which identifies a stationary metric tensor.
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Next, let us consider the prescription holding for the Lagrangian continuum coordinates
g ≡ {gμν} and the conjugate momentum operator π ≡ {πμν}, again both to be considered as 4-tensor
fields with respect to the group of local point transformations in Equation (1):

Prescription f: As a consequence of the stationarity assumption in Equation (4), for all sets
(r, s) ∈

{
Q4, ĝ

}
× I tensor decompositions of the form{

g(r, s) = ĝ(r) + δg(r, s),
π(r, s) = δπ(r, s),

(5)

will be assumed to hold for the quantum gravity theory, with δg(r, s) ≡
{

δgμν(r, s)
}

and
δπ(r, s) ≡

{
δπμν(r, s)

}
denoting the corresponding quantum fluctuations, represented by a coordinate

displacement field and momentum operator which by assumption may depend explicitly on the
variables (r, s).

A promising new scenario for quantum gravity fulfilling these requirements has recently been
established in [6–11]. This is realized by the theory of manifestly-covariant quantum gravity, denoted
as CQG-theory, which is based on the manifestly-covariant canonical quantization (g-quantization)
of the classical Hamiltonian state {g(r, s), π(r, s)}. It must be clarified that in the present treatment
the concept of manifest covariance means that CQG-theory is realized by a formulation in which all
classical and quantum Hamiltonian field variables or operators, including continuum coordinates,
conjugate momenta and Hamiltonian densities transform as 4-tensors, i.e., fulfill covariance tensor
transformation laws with respect to the group of local point transformations in Equation (1). Although a
manifestly-covariant theory of this type need not necessarily be unique, the involved notion of manifest
covariance given here is certainly unambiguously determined when the background space-time{

Q4, ĝ
}

is prescribed. On the other hand, an alternative route is also available. This is based on
the preliminary introduction of a non-canonical mapping in which the classical (and hence also the
quantum) Hamiltonian state {g(r, s), π(r, s)} is mapped by means of a diffeomorphism onto a suitable
set of non-canonical variables

{g(r, s), π(r, s)} ⇔ {η(r, s), χ(r, s)} , (6)

in which, however, η(r, s) ≡
{

ηαβ(r, s)
}

and χ(r, s) ≡
{

χαβ(r, s)
}

are not represented by 4-tensor
variables. When expressed in terms of the transformed variables {η(r, s), χ(r, s)} CQG-theory does
not lose obviously the property of covariance (its equations remain covariant with respect to the
LPT-group) although its variables (i.e., {η(r, s), χ(r, s)}) are not represented by 4-tensors. Such a
notion will be referred to as property of plain covariance of the theory. The distinction between the two
notions of covariance (manifest or plain) is, however, important. In fact manifest covariance represents
a stronger condition for the realization of a quantum theory of gravitational field with respect to
literature approaches which, instead, may or may not rely on weaker notions of covariance such as
that of plain covariance (see also subsequent discussion in Section 2).

As such, CQG-theory is endowed with a number of key features, since: A) it preserves the
background metric tensor ĝ(r) which is identified with a classical field tensor; B) it satisfies the
quantum unitarity principle, i.e., the quantum probability is conserved; C) it is constraint-free, in the
sense that the quantum Lagrangian variables g ≡ g(r, s) are identified with independent tensor fields;
D) it is non-perturbative so that the quantum fluctuations δg(r, s) and δπ(r, s) need not be regarded
as asymptotically “small” in some appropriate sense with respect to the background metric tensor
ĝ(r). Its foundations (for a detailed discussion see [9]) lie on the preliminary establishment of a
variational formulation of GR achieved in the context of a covariant DeDonder–Weyl-type approach
to continuum field-Hamiltonian dynamics [12–19] in which the background space-time

{
Q4, ĝ

}
is

considered prescribed [7,8].
In the following, we intend to shed further light on key aspects of the CQG-theory which are

intimately related with its consistent realization. These include in particular two crucial “tests of
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consistency” for CQG-theory which should actually be regarded as mandatory physical prerequisites
for any quantum theory of gravity fulfilling both the principles of general and manifest covariance.

The first one is that, although quantum corrections may in principle occur [7,8], it must be possible
to preserve the functional form of the Einstein field equations consistent with the so-called emergent
gravity picture. More precisely, the latter equations should follow uniquely from quantum theory itself
without performing the semiclassical continuum limit (namely obtained letting in particular �→ 0; see for
example [20] where the derivation of the Einstein field equation was discussed in the context of loop
quantum gravity). This property will be referred to here as ”first-type emergent-gravity paradigm”.

The second test of consistency, to be investigated here, refers instead to the validity of an
emergent-gravity picture also for the deterministic background metric tensor ĝ(r), in the sense that the
same ĝ(r) should be prescribed by means of a suitably-defined quantum/stochastic expectation value
of the quantum state. This property will be denoted here as “second-type emergent-gravity paradigm”.
A basic requirement needed for its verification is manifestly the determination of a suitable class of
particular solutions of the quantum wave-function, i.e., the CQG-wave equation for the quantum state
ψ(g, r, s) earlier pointed out in [10].

With this hindsight in mind, in the following Eulerian and Lagrangian representations are
preliminarily distinguished for the CQG-wave equation and its corresponding set of quantum
hydrodynamic equations (QHE). The latter are implied by the Madelung representation [21] of
the quantum wave function written in Eulerian form ψ ≡ ψ (g, r, s), namely distinguishing the
dependences in terms of the Lagrangian coordinates g ≡

{
gμν

}
and the parameters (r, s) as

ψ(g, r, s) =
√

ρ(g, r, s) exp
{

i
�

S(q)(g, r, s)
}

. (7)

Here, the real fields
{

ρ, S(q)
}
≡

{
ρ(g, r, s) = |ψ(g, r, s)|2 , S(q)(g, r, s)

}
identify the quantum

fluid 4-scalar fields written in Eulerian form, namely the quantum probability density function
(PDF) and the quantum phase-function. In particular, the intent of the investigation concerns the
introduction of a trajectory-based or Lagrangian representation of CQG-theory (see subsequent
Sections 4 and 5), to be distinguished from the Eulerian one (see Section 3) and referred to here as
Generalized Lagrangian-path approach to CQG-theory. This goal is obtained by means of an appropriate
parameterization of the corresponding set of quantum hydrodynamic equations, following in turn from
the CQG wave-equation and based on the Madelung representation recalled above (see Equation (7)).
More precisely, this concerns the investigation of:

• Goal #1: Explicit solutions of the CQG-quantum hydrodynamic equations satisfying suitable
physical requirements.

• Goal #2: The “emergent” character of the classical background space-time metric tensor ĝ(r),
to be determined in terms of quantum theory. Accordingly, the background metric tensor ĝ(r)
should be identified with a suitably-defined quantum expectation value of the quantum state, i.e.,
weighted in terms of the corresponding quantum probability density (PDF).

• Goal #3: The existence of either stationary or, more generally, non-stationary solutions with respect
to the proper-time s, i.e., explicitly dependent on s, for the quantum state ψ expressed via the
Madelung representation (see Equation (7)).

• Goal #4: The search of Gaussian-like or Gaussian realizations for the quantum PDF ρ.
• Goal #5: The search of separable solutions of the quantum Hamilton-Jacobi (H-J) equation in terms

of the quantum phase-function S(q) and the investigation of their qualitative properties and in
particular their asymptotic behavior for s → +∞.

For the tasks indicated above, in close similarity with non-relativistic quantum mechanics
(see [22,23]), two choices are in principle available. The first one is based on the introduction of
deterministic Lagrangian trajectories {g(s), s ∈ I}, or Lagrangian-Paths (LP), analogous to those
adopted in the context of the Bohmian representation of non-relativistic quantum mechanics [24–31].
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This provides a Bohmian interpretation (of CQG-theory) which is ontologically equivalent to
CQG-theory itself [32].

Hence, the tensor field δg(s) ≡ δgL(s) is uniquely determined by means of a map of the type

s → δgL(s) ≡ δgL(r(s), s), (8)

with r = r(s) denoting the parameterization in terms of geodetic curves associated with the classical
background field tensor ĝ(r) ≡ ĝ(r(s)) (see Prescription d above, [9] and related discussion in Section 4),
so that, in terms of gL(s) ≡ g(s), it follows that {g(s), s ∈ I} ≡ {gL(s) = ĝ(r(s)) + δgL(s), s ∈ I}.
The second choice, instead, and the one which is at the basis of the GLP trajectory-based approach
(or GLP-representation) adopted here, is achieved in terms of suitable stochastic, i.e., intrinsically
non-unique, Lagrangian trajectories which are referred to here as Generalized Lagrangian Paths (GLP).
Such a notion, which is inspired and extends to CQG-theory the analogous approach earlier developed
for non-relativistic quantum mechanics [22], is based on a suitable generalization of the concept of
LP (see Section 5 below). In such a context, each deterministic LP {g(s), s ∈ I} is replaced with a
continuous statistical ensemble of stochastic GLP trajectories {G(s), s ∈ I}. More precisely, introducing
in analogy with Equation (5) the tensor decomposition

G(s) = ĝ(r(s)) + δG(s), (9)

with δG(s) ≡
{

δGμν(r(s), s)
}

being a suitable tensor field denoted as GLP-displacement to be later
defined, each GLP trajectory

{G(s), s ∈ I} ≡ {ĝ(r(s)) + δG(s), s ∈ I} (10)

is parameterized in terms of the displacement field, to be considered as a stochastic field tensor,

Δg = δg(s)− δG(s), (11)

with Δg ≡
{

Δgμν

}
denoting a suitable constant second-order tensor field referred to here as stochastic

displacement field tensor. For definiteness, it is required that its covariant components at proper-times
s and so, Δgμν(s) = δgμν(s)− δGμν(s) and Δgμν(so) = δgμν(so)− δGμν(so), are prescribed so that for
all s, so ∈ I

Δgμν(s) = Δgμν(so). (12)

Then, this implies that its counter-variant components Δgμν(s) and Δgμν(so) can be equivalently
determined in terms of the prescribed field tensors ĝμν(r) ≡ ĝ(r(s)) or ĝμν(ro) ≡ ĝ(r(so)), so that one
also has necessarily for all s, so ∈ I that:

Δgμν(s) = Δgμν(so). (13)

Consequently, each GLP trajectory is actually represented by a configuration-space curve of the
type {G(s), s ∈ I} ≡ {ĝ(r(s)) + δg(s)− Δg, s ∈ I} , so that upon varying the stochastic displacement
field tensor Δg it actually defines a statistical ensemble of trajectories. In terms of them, i.e., by
parameterizing the CQG wave-function ψ(g, r, s) (or equivalently the corresponding quantum fluid
fields) in terms of the GLP-displacement δG(s) = δg(s)− Δg, the GLP-representation of CQG-theory
is then achieved. This amounts to introduce the composed mapping ψ(g, r, s) → ψ(G(s), Δg, ĝ, r, s),
where ψ(G(s), Δg, ĝ, r, s) denotes the GLP-parameterized quantum wave-function in which the dependence
in terms of the displacement tensor field Δg is explicitly allowed.

As shown in Section 5, the adoption of the GLP parameterization for CQG-theory actually leaves
unchanged the underlying axioms established in [10], thus providing a Lagrangian representation of
CQG-theory which is ontologically equivalent to CQG-theory itself. The remarkable new aspects of
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the GLP formalism, however, are that it will be shown: First, to determine a solution method for the
CGQ-wave equation, to be referred to here as GLP-approach, permitting the explicit construction of
physically-relevant particular realizations of the CGQ-quantum state ψ (s). Second, to realize quantum
solutions which are consistent with the emergent-gravity picture. In particular, for this purpose, the
background field tensor will be shown to be determined equivalently either in terms of quantum
expectation values or via a suitably-prescribed stochastic average of the quantum field tensor gμν.
This includes the determination of particular solutions of the CQG-wave equation which, consistent
with Goal #1, satisfy the following physical requirements:

• Requirement #1: the quantum wave-function ψ(s) is dynamically consistent, namely for which the
PDF ρ(g, r, s) ≡ |ψ(g, r, s)|2 associated with the quantum wave-function ψ(g, r, s) is globally
prescribed and summable in the quantum configuration space Ug in such a way that the
corresponding probability |ψ|2 d(g) is similarly globally conserved for arbitrary subsets of
the quantum configuration space Ug. As discussed below a prerequisite for meeting such a
requirement is the validity of suitable Heisenberg inequalities earlier determined in [11].

• Requirement #2: ψ(s) exhibits the explicit dependence in terms of a stochastic observable, so to
yield a so-called Stochastic-Variable Approach to quantum theory [22,33–35]. In the context
of CQG-theory this should be generally identified with a 4-tensor field depending on the physical
quantum observable gμν(r, s) and realizing a stochastic variable endowed with a stochastic
probability density, i.e., dependent on a suitable stochastic field. Such a stochastic field will be
identified in the following with the second-order real and observable stochastic displacement
field tensor Δg =

{
Δgμν

}
defined by Equation (11) which by assumption depends functionally

on gμν (and hence δgμν(r, s) too).
• Requirement #3: the PDF ρ is endowed with a Gaussian-like behavior and is non-dispersive in

character, namely in the sense of assuming that in the subset of the proper-time axis I in which
ψ is defined, its probability density |ψ|2 can be identified for all s ∈ I ≡ R with a Gaussian-like
PDF depending on Δg and ĝ, and thus by itself realizes a stochastic function. These particular
solutions of the CQG-wave equation are generally non-stationary and are required to preserve
their Gaussian-like character, and therefore to be non-dispersive, i.e., free of any spreading
behavior during the proper-time quantum dynamical evolution.

• Requirement #4: the quantum wave function holds for arbitrary realizations of the deterministic
background metric tensor ĝ(r) and in particular in the case of vacuum solutions of the Einstein
field equations.

Requirements #1–#4 are physically motivated. More precisely, the first one is needed to warrant the
validity of the quantum unitarity principle, i.e., the conservation of quantum probability. The second
requirement, instead, is instrumental for the present theory. In fact, as clarified below, the existence
of the stochastic tensor observable Δg(g) is mandatory for the development of a GLP-approach
in the context of CQG-theory. The third requirement is related to the issue about the physical
origin of the cosmological constant [36]. The existence of Gaussian-like solutions for the quantum
PDF ρ (s) is mandatory in order to establish the connection between the CQG-theory and the
Einstein field equations and to identify its precise quantum origin in terms of the Bohm vacuum
interaction [32,37,38]. Finally, Requirement #4 is intimately related to the principle of manifest
covariance and the deterministic character of the background metric tensor ĝ(r).

As a further remark, one notices that Requirements #2 and #3 are qualitatively similar to those set
at the basis of the GLP-approach developed for non-relativistic quantum mechanics. These led to the
identification and proof of existence of non-dispersive Gaussian-like, or even properly Gaussian,
particular solutions of the Schroedinger equation originally conjectured by Schrödinger himself
in 1926 [39]. It is therefore natural to conjecture that analogous properties should hold in the
context of the CQG-theory. As a remarkable conceptual outcome of the GLP theory, it is then
shown that the discovery of analytical solutions satisfying physical Requirements #1–#4 allows for the
investigation of theoretical aspects of the quantization of the gravitational field which go beyond the
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framework of so-called first-quantization, toward inclusion of second-quantization effects. This refers
to quantum interactions of the gravitational field with itself which are intrinsically proper-time
dependent contributions generated by the quantum wave dynamics retained in the solution of the
same background metric tensor. In particular, in this work the existence of an emergent gravity
phenomenon is displayed, which establishes a precise relationship between the background metric
tensor ĝμν and the quantum field gμν. In detail, it is shown that ĝμν can be represented as a mean-field
background space-time metric tensor provided by a statistical moment of the Gaussian (or more
generally Gaussian-like) PDF ρ. Hence, from the physical point of view ĝμν can be effectively
interpreted as arising from a statistical average of stochastic fluctuations of the quantum gravitational
field gμν whose quantum-wave dynamics is described by GLP trajectories.

In detail, the structure of the paper is as follows. First, a qualitative comparison between
CQG-theory and literature approaches to quantum gravity and its Bohmian formulation is proposed
in Section 2. The Eulerian representation of CQG-theory is then presented in Section 3. Subsequently,
the Lagrangian-path and Generalized Lagrangian-path representations are pointed out in Sections 4
and 5, together with their Bohmian, i.e., deterministic, and correspondingly stochastic interpretations.
Next, consistent with the axioms of CQG-theory, in Section 6, the establishment of the stochastic
probability density attached with the stochastic displacement field tensor Δg is achieved. This is shown
to be necessarily identified with the initial quantum PDF. In connection with such a prescription,
in the same section the problem is posed of the construction of generalized Gaussian particular
solutions for the quantum PDF ρ(g, r, s). Subsequently, in Section 7 the search of separable solutions
of the corresponding quantum H-J equation is investigated. As a result, asymptotic conditions are
investigated warranting the quantum phase function to be expressed in terms of polynomials of Δg.
Finally, in Section 8, the main conclusions of the paper are drawn, while Appendices A and B contain
mathematical details of the calculations.

2. Quantum Gravity Theories and Bohmian Formulation in Literature

This section is intended to provide a summary of the relevant conceptual features of CQG theory,
together with an exhaustive discussion of literature works dealing with quantum gravity theories
and corresponding Bohmian formulations. The aim of such a comparison with previous literature is
twofold. From one side, we intend pointing out the main differences and significant progresses of
CQG-theory from alternative approaches to quantum gravity. From the other side, we are interested
in stating which are the common aspects of the present approach with other quantum theories of the
gravitational field, and in which sense CQG-theory and the literature formulations discussed here
can be reconciled or regarded as complementary. A review of the mathematical foundations of CQG
theory and its Hamiltonian structure is treated separately in Section 3.

We start by noting that, according to [40] quantization methods, in both quantum mechanics
and quantum gravity, can be classified in two classes, denoted, respectively, as the canonical and the
covariant approaches. These differ in the way in which both the quantum state and the space-time are
treated. In fact, the canonical quantization approach is based, first on the preliminary introduction
of (3 + 1) or (2 + 2)-decompositions (or foliations [41–43]) for the representation of the space-time
and, second, on the adoption of a quantum state represented in terms of non-4-tensor continuum
fields. As such, by construction these theories are not covariant with respect to the LPT-group (1).
Nevertheless, they still may retain well-definite covariance properties with respect to appropriate
subgroups of local point transformations. For example, in the case of the (3 + 1)-decomposition
covariance is warranted with respect to arbitrary point transformations which preserve the same
foliation. In the covariant approaches, instead, typically all physical quantities including the quantum
state are represented exclusively by means of 4-tensor fields. so that the property of manifest covariance
remains fulfilled. Consequently, for these approaches, covariant quantization involves the assumption
of some sort of classical background space-time structure on which a quantum gravity theory is
constructed, for example identified with the flat Minkowski space-time. To realize such a strategy,
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however, it turns out that the quantum state is typically represented in terms of superabundant
variables. Thus, in such cases, covariant quantization may also require the treatment of suitable
constraint conditions.

Let us briefly analyze both approaches in more detail, considering first the canonical approach.
A choice of this type is exemplified by the one adopted by Dirac and based on the Dirac constrained
dynamics [44–48]. Dirac Hamiltonian approach to quantum gravity is not manifestly covariant,
in reference both to transformation properties with respect to local as well as non-local point
transformations (see discussion in [5]). In this picture in fact the field variable is identified with
the metric tensor gμν, but the corresponding “generalized velocity” is defined as gμν,0, namely with
respect to the “time” component of the 4-position. This choice necessarily violates the principle of
manifest covariance [7,8]. Consequently, in Dirac’s canonical theory, the canonical momentum remains
identified with the manifestly non-tensorial quantity π

μν
Dirac =

∂LEH
∂gμν,0

, where LEH is the Einstein-Hilbert
variational Lagrangian density.

The same kind of ingredients is at the basis of the approach developed by Arnowitt, Deser and
Misner (ADM theory, 1959–1962 [49]). In addition, in the ADM case, manifest covariance is lost because
of the adoption of Lagrangian and Hamiltonian variables which are not 4-tensors. In fact, ADM theory
is based on the introduction of a (3 + 1)-decomposition of space-time which, by construction, is
foliation dependent, in the sense that it relies on a peculiar choice of a family of GR frames for which
“time” and “space” transform separately, so that space-time is effectively split into the direct product
of a one-dimensional time and a three-dimensional space subsets, respectively [50]. A quantum
gravity theory constructed upon the ADM Hamiltonian formulation of gravitational field leads to
postulating a quantum wave equation of Wheeler-DeWitt type [51]. The latter one is expressed as
an evolution Schrödinger-like equation advancing the dynamics of the wave function with respect
to the coordinate-time t of the ADM foliation, which is not an invariant parameter. In addition,
in the absence of background space-time, the same equation carries a conceptual problem related
in principle to the definition of the same coordinate time, which is simultaneously the dynamical
parameter and a component of space-time which must be quantized by solving the wave equation.
This marks a point of difference with respect to CQG theory and CQG-wave equation (see Equation (16)
below), which represents a dynamical evolution equation with respect to an invariant (i.e., 4-scalar)
proper-time s defined on the prescribed background space-time, without introduction of any kind of
space-time foliation.

Another important approach is the one exemplified by the choice of so-called Ashtekar variables,
originally identified respectively with a suitable self-dual spinorial connection (the generalized
coordinates) and their conjugate momenta (see [52,53]). Ashtekar variables provide an alternative
canonical representation of General Relativity, and this choice is at the basis of the so-called “loop
representation of quantum general relativity” [54] usually referred to as “loop quantum gravity” (LQG)
and first introduced by Rovelli and Smolin during 1988–1990 [55,56] (see also [57]). Nevertheless, the
Ashtekar variables can also be shown to be by construction intrinsically manifestly non-tensorial in
character. The basic consequence is that also the canonical representation of Einstein field equations
based on these variables, as well as ultimately also LQG itself, violates the principle of manifest
covariance. In contrast, in the framework of CQG-theory the choice of Hamiltonian state and quantum
variables satisfies manifest covariance, whereby the dynamical variables are expressed by means
of 4-tensor quantities.

However, despite these considerations, it must be stressed that both the canonical approach
and CQG-theory can be regarded also complementary from a certain point of view, this because
they exhibit distinctive physical properties associated with two canonical Hamiltonian structures
underlying General Relativity itself. The corresponding Hamiltonian flows, however, are different,
being referred to an appropriate coordinate-time of space-time foliation in the canonical approach, and
to a suitable invariant proper-time in the present theory. Consequently, the physical interpretation of
quantum theories of General Relativity build upon these Hamiltonian structures remain distinctive.
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The CQG-theory in fact reveals the possible existence of a discrete spectrum of metric tensors having
non-vanishing momenta at quantum level, while canonical approaches deal with the quantum
discretization of single space-time hypersurfaces implied by space-time foliation.

Let us now consider the covariant approaches to quantum gravity [58–60]. In this case, the usual
strategy is to split the space-time metric tensor gμν in two parts according to the decomposition of the
type gμν = ημν + hμν, where ημν is the background metric tensor defining the space-time geometry
(usually identified with the flat background), and hμν is the dynamical field (deviation field) for which
quantization applies. From the conceptual point of view there are some similarities between the
literature covariant approaches and the manifestly-covariant quantum gravity theory adopted here.
The main points of contact are: (1) the adoption of 4-tensor variables, without invoking any space-time
foliation; (2) the implementation of a first-quantization approach, in the sense that there exists by
assumption a continuum classical background space-time with a geometric connotation, over which
the relevant quantum fields are dynamically evolving; and (3) the adoption of superabundant variables,
which in the two approaches are identified with the sets (ημν, hμν) and (ĝμν, gμν) respectively.

It is important nevertheless to emphasize the relevant differences existing with respect to
literature covariant approaches. First, CQG-theory is intrinsically non-perturbative in character,
so that the background metric tensor can be identified with an arbitrary continuum solution of the
Einstein equations (not necessarily the flat space-time), while a priori the canonical variable gμν is
not required to be necessarily a perturbation field. On the other hand, a decomposition of the type in
Equation (5) resembling the one invoked in covariant literature approaches can always be introduced
a posteriori for the implementation of appropriate analytical solution methods, like GLP theory
proposed here or the analytical evaluation of discrete-spectrum quantum solutions discussed in [10].
Second, the present theory is constructed starting from the DeDonder–Weyl manifestly-covariant
approach [12,13]. Consequently, CQG-theory is based on a variational formulation which relies on
the introduction of a synchronous variational principle for the Einstein equations first reported in [7].
This represents a unique feature of manifestly-covariant quantum gravity theory, since previous
literature is actually based on the adoption of asynchronous variational principles, i.e., in which the
invariant volume element is considered variational rather than prescribed. As shown in [7], it is
precisely the synchronous principle which allows the distinction between variational and extremal
(or prescribed) metric tensors, and the consequent introduction of non-vanishing canonical momenta.
The same feature has also made possible the formulation of manifestly-covariant classical Lagrangian,
Hamiltonian and Hamilton–Jacobi theories of General Relativity and the corresponding subsequent
manifestly-covariant quantum theory. Third, in CQG-theory superabundant unconstrained variables
are implemented, while the same covariant quantization holds with respect to a four dimensional
space-time, with no extra-dimensions being required for its prescription.

Finally, regarding covariant quantization, a further interesting comparison concerns the
Batalin-Vilkovisky formalism originally developed in [61–64]. This method is usually implemented
for the quantization of gauge field theories and topological field theories in Lagrangian
formulation [65–67], while the corresponding Hamiltonian formulation can be found in [61].
Further critical aspects of the Batalin-Vilkovisky formalism can be found for example in [68]. In the
case of the gravitational field it has been formerly applied in the context of perturbative quantum
gravity to treat constraints arising from initial metric decomposition (i.e., in reference with the so-called
gauge-fixing and ghost terms). Its basic features are the adoption of an asynchronous Lagrangian
variational principle of General Relativity [7], the use of superabundant canonical variables and the
consequent introduction of constraints. These features mark the main differences with CQG-theory,
which is non-perturbative, constraint-free and follows from the synchronous Lagrangian variational
principle defined in [7].

In view of these considerations, CQG-theory can be said to realize at the same time both a canonical
and a manifestly-covariant quantization method, in this way establishing a connection with former
canonical and covariant approaches. Nevertheless, a number of conceptual new features of the present
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theory depart in several ways from previous literature. This conclusion is supported by the analytical
results already established by CQG-theory and presented in [10,11], which concern the existence of
invariant discrete-energy spectrum for the quantum gravitational field, the graviton mass estimate
associated with a non-vanishing cosmological constant and the validity of Heisenberg inequalities.

Extending further these results, in the following a trajectory-based representation of CQG-theory
is developed, which permits the analytical construction of generally non-stationary solutions of the
CQG-wave equation. Previous efforts to construct Bohmian representations of canonical quantum
gravity and applications to cosmology have been pursued in the past literature. These are typically
based on the Wheeler–DeWitt quantum equation. Relevant progresses in this directions can be found
for example in [69–72], where conceptual features/differences characterizing the Bohmian approach to
quantum gravity (in terms of trajectories) with respect to previous customary approaches were clearly
stated. The GLP representation of CQG-theory proposed in the present paper shares the conceptual
advantages of adopting a Bohmian approach to quantum physics. On the other hand, it differs from
the mentioned literature in that it is built upon CQG-theory, which is manifestly covariant contrary
to the Wheeler–DeWitt equation, and more important because it has a stochastic character, namely
in the sense that single Bohmian trajectories are replaced by ensembles of stochastic trajectories with
prescribed probability density.

3. Eulerian Representation

In this section, the basic formalism of CQG-theory formulated in [9,10] is recalled. Starting point
of CQG-theory is the realization of the quantum-wave function which, for an arbitrary prescribed
background space-time

(
Q4, ĝ

)
, determines the CQG-quantum state. In analogy with non-relativistic

quantum mechanics, this can be first prescribed in the so-called Eulerian form. In this picture, the
state is assumed to to depend on two sets of independent variables, respectively, represented by
suitable configuration-space Lagrangian variables and, second, by the space-time coordinates and time.
In the present case these are identified with the continuum field variables (Lagrangian coordinates)
g ≡

{
gμν

}
and, respectively, by the 4-position r ≡ {rμ} and the background space-time proper-time s,

so that the wave function takes generally the form ψ ≡ ψ(g, r, s), where a possible explicit dependence
in terms of the background metric tensor ĝ is understood. Regarding the notations, first g =

{
gμν

}
spans the quantum configuration space Ug of the same wave-function, i.e., the set on which the
associated quantum PDF ρ(g, r, s) = |ψ(g, r, s)|2 is prescribed. Second, g =

{
gμν

}
is realized by means

of real symmetric tensors, so that Ug is a 10−dimensional real vector space, namely Ug ⊆ R10. Third,
in the whole time-axis I ≡ R, r ≡ {rμ} denotes the instantaneous 4-position of suitably-prescribed
space-time trajectories r = r(s), while the explicit s−dependence includes also the possible dependence
(of ψ) in terms of the corresponding tangent 4-vector, i.e., t(s) ≡ {tμ(s)} ≡ drμ(s)

ds . Here, d
ds identifies

the total covariant s-derivative operator

d
ds
≡ d

ds

∣∣∣∣
r
+

d
ds

∣∣∣∣
s

, (14)

with d
ds

∣∣∣
r
≡ ∂

∂s

∣∣∣
r

and d
ds

∣∣∣
s
≡ tα∇α being the covariant s-derivatives performed at constant r ≡ {rμ}

and constant s respectively.
A realization of the parameterization ψ ≡ ψ(g, r, s) is provided by the geodetics of the metric field

tensor ĝ ≡ ĝ(r), namely the integral curves of the initial-value problem [9,10]⎧⎪⎪⎪⎨⎪⎪⎪⎩
drμ(s)

ds = tμ(s),
Dtμ(s)

Ds = 0,
rμ(so) = rμ

o ,
tμ(so) = tμ

o ,

(15)
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with
(

rμ
o , tμ

o

)
denoting, respectively, arbitrary initial 4-position of

{
Q4, ĝ

}
and a corresponding

(arbitrary) tangent 4-vector, while the standard connections in the covariant derivative D
Ds are

prescribed again in terms the background metric tensor ĝ(r). Since each point rμ ≡ rμ(s) can be
crossed by infinite arbitrary geodetics having different tangent 4-vectors tμ ≡ tμ(s) it follows that
the wave-function parameterization ψ ≡ ψ(g, r, s) may generally depend explicitly on the choice
of the geodetics, i.e., on tμ too. In particular, ψ(g, r, s) will be assumed to contain the following
smooth dependences:

(1) Explicit g-dependence: ψ(g, r, s) is assumed to be a C(2), smoothly differentiable complex
function of the continuum Lagrangian variables g =

{
gμν

}
.

(2) Explicit and implicit s-dependences: ψ(g, r, s) may depend both explicitly and implicitly on s.
The implicit dependence occurs via r(s) and t(s) and therefore also in terms of the prescribed metric
tensor through its explicit spatial dependence ĝ(r). These s-dependences will all be assumed to realize
in terms of ψ(g, r, s) a C(1), smoothly differentiable function of s.

The next step is the identification of the quantum-wave equation which determines the CQG state
ψ(g, r, s). This task is achieved by means of the CQG-wave equation [10]. Written again in the Eulerian
form, the latter is realized by the initial-value problem{

i� ∂
∂s ψ(g, r, s) = [HR, ψ(g, r, s)] ≡ HRψ(g, r, s),

ψ(g, r(so) = ro, so) = ψo(g, ro),
(16)

where in the first equation the squared-brackets denote the quantum commutator in standard notation,
while the operator ∂

∂s appearing in the scalar Equation (16) in the Eulerian representation coincides
with ∂

∂s ≡ d
ds , being d

ds the total covariant s-derivative in Equation (14) again prescribed in terms
of the background metric tensor ĝ(r). Notice that the initial-value problem in Equation (16) can be
represented equivalently in terms of the initial quantum fluid fields{

ρ(g, r(so) = ro, so) = ρo(g, ro),

S(q)(g, r(so) = ro, so) = S(q)
o (g, ro).

(17)

As such, provided ψ(g, r, s) is suitably smooth the solution of Equation (16) is unique. Thus,
Equation (16) realizes a hyperbolic evolution equation, i.e., a first-order PDE with respect to the
proper time s. In the same equation HR denotes the quantum Hamiltonian operator characteristic
of CQG-theory, to be expressed in terms of the relevant quantum momentum operator, namely
π
(q)
μν = − ih̄

αL
∂

∂gμν . Here, the partial derivative is performed keeping constant all remaining variables
appearing in ψ(g, r, s), while L and α are, respectively, a suitably-defined 4-scalar scale-length and a
dimensional 4-scalar parameter related to the universal constant κ = c3

16πG (see again [10]). Then, the
quantum Hamiltonian operator HR takes the form

HR ≡ T(q)
R + V(g, r, s), (18)

with T(q)
R (x, ĝ) ≡ 1

2αL π
(q)
μν π(q)μν and V(g, r, s) being, respectively, the effective kinetic energy operator

and the effective potential energy⎧⎪⎨⎪⎩
V(g, r, s) ≡ σVo (g) + σVF (g, r, s) ,

Vo (g) ≡ αLh
[

gμνR̂μν − 2Λ
]

,

VF ≡ αL
k hLF (g, r, s) ,

(19)

with Vo (g) and VF (g, r, s) identifying the vacuum and external effective contributions to the effective
potential V(g, r, s). Here, the notation is given according to [10]. Thus, all hatted quantities are
evaluated with respect to the background metric tensor ĝ only while the multiplicative 4-scalar gauge
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function σ is taken to be σ = −1. In addition, V ≡ V(g, r, s) itself is determined up to an arbitrary
additive gauge transformation of the form V → V′ = V − d

ds F(g, r(s)s)
∣∣∣
g
, being F(g, r(s)s) a 4-scalar

function of the form
F(g, r(s)s) = gμνGμν(ĝ, r(s), s) + F1(ĝ, r(s), s), (20)

with Gμν(ĝ, r(s), s) and F1(ĝ, r(s), s) denoting, respectively, a 4-tensor and a 4-scalar smoothly
differential real gauge, i.e., arbitrary, functions. A characteristic element of CQG-theory is the quantity
h ≡ h(g) first introduced in [7]. The prescription of h(g) is obtained in terms of a polynomial function
of g ≡ ĝ + δg, with δg being an in principle arbitrary variational displacement so that according to the
same reference (see also [7]):

h(g) = 2− 1
4

(
ĝαβ + δgαβ

)
(ĝμν + δgμν) ĝαμ ĝβν. (21)

As a final remark, we notice that the Eulerian CQG-state defined by the complex function ψ(g, r, s)
can always be cast in the form of an exponential representation via the Madelung representation
recalled above. Elementary algebra [10,11] then shows that, based on the quantum-wave Equation (16),
the same quantum fluid fields necessarily fulfill the corresponding set of Eulerian CQG-quantum
hydrodynamic equations. In the Eulerian representation, upon identifying again d

ds with the total
covariant s−derivative operator in Equation (14), these are realized respectively by the continuity and
quantum Hamilton-Jacobi equations:⎧⎨⎩

dρ(g,r,s)
ds + ∂

∂gμν

(
ρ(g, r, s)Vμν(g, r, s)

)
= 0,

dS(q)(g,r,s)
ds + Hc(g, r, s) = 0,

(22)

which represent a set of evolution PDEs for the quantum fluid fields ρ(g, r, s) and S(q)(g, r, s). Notice
that, in the previous equations, Vμν(q, s) and Hc(g, r, s) denote, respectively, the tensor “velocity” field

Vμν(g, r, s) = 1
αL

∂S(q)(g,r,s)
∂gμν and the effective quantum Hamiltonian density

Hc(g, r, s) =
1

2αL
∂S(q)(g, r, s)

∂gμν

∂S(q)(g, r, s)
∂gμν

+ VQM(g, r, s) + V(g, r, s), (23)

with

T =
1

2αL
∂S(q)(g, r, s)

∂gμν

∂S(q)(g, r, s)
∂gμν

(24)

being the effective kinetic energy. In addition, V(g, r, s) and VQM(g, r, s) identify, respectively, the
effective potential density (19) and the Bohm effective quantum potential

VQM(g, r, s) ≡ − �2

8αL
∂ ln ρ(g, r, s)

∂gμν

∂ ln ρ(g, r, s)
∂gμν

− �2

4αL
∂2 ln ρ(g, r, s)

∂gμν∂gμν , (25)

or equivalently VQM(g, r, s) ≡ �2

8αL
∂ ln ρ(g,r,s)

∂gμν
∂ ln ρ(g,r,s)

∂gμν
− �2

4αL
∂2ρ(g,r,s)
ρ∂gμν∂gμν .

4. Lagrangian Path (Bohmian) Representation

It is well known that in the non-relativistic framework the Bohmian interpretation of
quantum mechanics provides the corresponding trajectory-based Lagrangian Path representation
(LP-representation) of the Schroedinger quantum-wave equation (see [73,74] for a review of the
topic). The intrinsic similarity with the CQG-wave equation suggests that an analogous Lagrangian
representation is possible also for the same equation, so that as a consequence, a “Bohmian”
trajectory-based interpretation can be achieved in the context of CQG-theory too. In both cases, in fact,
the Lagrangian representation is based on the introduction of a suitable family of configuration-space
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trajectories, or Lagrangian Paths (LP), which for each “point” of the appropriate quantum configuration
space are unique. In the context of CQG-theory, the LP-representation involves the introduction
for all s ∈ I of the correspondence (8), with δgμν ≡ δgLμν(s) ∈ Ug belonging to a suitable
curve {gL(s), ∀s ∈ I} of the configuration space Ug denoted as Lagrangian path. Consequently,
each LP is identified with a well-defined characteristics associated with the tensor velocity field
Vμν(g, r, s). For definiteness, based on the tensor decomposition (5), the LP-representation involves
parameterizing all quantum fields, and in particular the quantum state, in terms of gLμν(s) thus letting
ψ ≡ ψ(gLμν(s), r(s), s). As such, δgLμν(s) is constructed in such a way that its “tangent” coincides with
the local value of the tensor velocity field Vμν, namely so that they fulfill the initial-value problem{

D
Ds gLμν(s) = Vμν(gL(s), s),

gμν(so) = g(o)μν .
(26)

Here, D
Ds identifies the LP-derivative (or covariant s-derivative) realized by the operator

D
Ds

≡ d
ds

∣∣∣∣
δgLμν(s)

+ Vμν(gL(s), s)
∂

∂δgLμν
, (27)

where the two terms on the R.H.S. of Equation (27) identify respectively the covariant s-derivative
performed at constant δgLμν ≡ δgLμν(s), namely

d
ds

∣∣∣∣
δgLμν(s)

≡ D
Ds

∣∣∣∣
δgμν

=

[
∂

∂s

∣∣∣∣
r
+ tα∇α

]
δgLμν

, (28)

and the convective derivative performed with respect to the Lagrangian coordinates δgLμν(s) while
keeping constant ĝ(r) ≡

{
ĝμν(r(s))

}
. In view of Equation (5), Equation (26) can be written as{

D
Ds δgLμν(s) = Vμν(ĝ(r) + δgL(s), s),

δgLμν(so) = δg(o)μν .
(29)

Consequently, Equation (29) can be integrated to give

δgLμν(s) = δg(o)μν +

s∫
so

ds′Vμν(ĝ(r) + δgL(s′), s′), (30)

which determines the LP itself, namely the trajectory {gL(s), ∀s ∈ I} ≡
{gL(s) ≡ ĝ(r) + δgL(s), ∀s ∈ I}. However, if Hμν ≡ Hμν(ĝ(r)) denotes an arbitrary
smoothly-differentiable tensor function of ĝ(r), it is obvious that also the arbitrary additive
tensor quantity of the form D

Ds
[
δgLμν(s) + Hμν(ĝ(r))

]
satisfies identically Equation (29). Since

uniqueness of the solution δgLμν(s) given by Equation (30) is warranted by prescribing δg(o)μν ,
the mapping

gLμν(so) = g(o)μν ⇔ gLμν(s) (31)

identifies a classical dynamical system (CDS), i.e., a diffeomeorphism mutually mapping in each other
two arbitrary points gLμν(so) and gLμν(s) which belong to the same LP. Consequently, the Liouville
theorem warrants that the Jacobian determinant of the transformation (31) is

∣∣∣∣ ∂δgL(s)
∂δgL(so)

∣∣∣∣ = exp

⎧⎨⎩
s∫

so

ds′
∂Vμν(gL(s′), s′)

∂gLμν(s′)

⎫⎬⎭ . (32)
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The Lagrangian representation of CQG-theory is then achieved by means of the formal
replacement g → gL(s) to be made in the quantum wave-function, i.e., introducing in the
CQG-wave Equation (16) the LP-parameterization ψ = ψ(gL(s), s) and similarly for the quantum fluid
fields, namely {

ρ, S(q)
}
≡

{
ρ(gL(s), s), S(q)(gL(s), s)

}
. (33)

As a result, in terms of the tensor velocity field in the LP-representation, namely Vμν(gL(s), s) ≡
1

αL
∂S(q)(gL(s),r(s),s)

∂δgμν
L (s)

, the quantum hydrodynamic Equation (22) can be set at once in the corresponding

Lagrangian form. To obtain them one notices preliminarily that

D
Ds

S(q)(gL(s), s) ≡ d
ds

S(q)(gL(s), s) + Vμν(gL(s), s)
∂S(q)(gL(s), s)

∂gLμν(s)
, (34)

with D
Ds and d

ds identifying respectively the LP-derivative in Equation (27) and the total covariant
s-derivative operator in Equation (14). Consequently, the LP-representation of the quantum fluid
Equation (22) is given by the PDEs⎧⎨⎩

D
Ds ρ(gL(s), s) = −ρ(gL(s), s) ∂Vμν(gL(s),s)

∂gLμν(s)
,

D
Ds S(q)(gL(s), s) = Vμν(gL(s), s) ∂S(q)(gL(s),s)

∂gLμν(s)
− Hc(gL(s), s),

(35)

where Hc(gL(s), s) identifies the effective quantum Hamiltonian density in Equation (23) parameterized
in terms of gL(s). Thus, in particular, the continuity equation (first part of Equation (35)) can be formally
integrated to give the LP-parameterized integral continuity equation

ρ(gL(s), s) = ρ(gL(so), so) exp

⎧⎨⎩−
s∫

so

ds′
∂Vμν(gL(s′), s′)

∂gLμν(s′)

⎫⎬⎭ , (36)

with ρ(gL(so), so) ≡ ρ(gL(so), r(so) = ro, so) denoting the initial quantum PDF, namely

ρ(gL(so), r(so) = ro, so) = ρo(gL(so), ro). (37)

Together with Liouville theorem in Equation (32) this implies therefore the conservation laws

d(gL(s))ρ(gL(s), s) = d(gL(so))ρ(gL(so), so), (38)∫
Ug

d(gL(s))ρ(gL(s), s) =
∫

Ug

d(gL(so))ρ(gL(so), so) = 1, (39)

which warrant, consistent with the quantum unitarity principle, the conservation of the quantum
probability in Ug.

We conclude this section noting that from a mathematical viewpoint the Lagrangian formulation of
CQG-theory is actually realized solely by the LP-parameterized quantum hydrodynamic Equations (35).
Therefore, the Lagrangian and Eulerian quantum hydrodynamic equations are manifestly equivalent.
This suggests that a Bohmian interpretation of the Lagrangian-path representation of the CQG-theory is
in principle possible. However, just as in the case of the Schroedinger equation (see related discussion
in [22]), a basic difficulty of such an interpretations lies in the uniqueness feature, and consequently the
intrinsic deterministic character, of each LP. Such a property, in fact, appears potentially in contradiction
with the notion of quantum measurement holding in the context of CQG-theory and the validity of
Heisenberg inequalities [11].
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5. Generalized Lagrangian Path Representation

The considerations indicated above lead us to introduce the notion of Generalized Lagrangian
Path (GLP) and of the corresponding GLP-representation obtained in this way for the quantum
wave-function and quantum fluids fields. As anticipated above (see Introduction) this is achieved by
means of the introduction of a suitable set of intrinsically non-unique and stochastic trajectories, to be
referred to as generalized Lagrangian paths (GLPs), in terms of which the quantum wave-equation,
as well as the corresponding set of quantum fluid fields and quantum hydrodynamic equations,
can be parameterized. In the context of CQG-theory the mathematical problem of formulating its
GLP-representation involves the introduction for all s ∈ I of a suitable correspondence of the type

s → δGL(s), (40)

referred to as GLP-map. Then, upon invoking the tensor decomposition (Equation (9)), a GLP is the
curve {GL(s), ∀s ∈ I} of the quantum configuration space Ug which is defined by Equation (10) and
is realized by the ensemble of ”points” of Ug spanned by the tensor field GL(s) ≡ G(s) and obtained
varying s ∈ I. The underlying basic idea is therefore to replace a single LP, prescribed in terms of a
solution of the initial-value problem in Equation (26), with an infinite set of stochastic trajectories, each
one identified with a single GLP and characterized by a unique choice of a suitable stochastic tensor
Δg =

{
Δgμν

}
. This effectively involves introducing a parameter-dependent mapping of the type

{gL(s), ∀s ∈ I} → {GL(s), ∀s ∈ I} , (41)

whose realization depends on the prescription of Δg =
{

Δgμν

}
. Then, the GLP-map in Equation (41)

is realized by means of the following two requirements.

• GLP Requirement #1 - The first one is realized by prescribing δGLμν(s) in terms of the displacement
tensor δgLμν(s) which is determined according to Equation (5). This yields therefore the identity

GLμν(s) = ĝμν(r) + δgLμν(s)− Δgμν, (42)

with Δg denoting the stochastic displacement 4-tensor

Δg = g− GL(s) ≡ δg− δGL(s). (43)

Notice that, here, gμν = gLμν(s), and hence δgμν ≡ δgLμν(s). Consequently, it is understood that
Δg must be endowed with a suitable stochastic PDF to be suitably prescribed. In this regards,
taking Δg as an independent stochastic variable, it is natural to assume that the same PDF should
be a stationary and spatially uniform probability distribution, i.e., a function independent of
r, s as well as δgL(s), but still allowed to depend in principle on the prescribed metric tensor
ĝμν(r). More precisely, this means assuming the same PDF to be realized in terms of a smoothly
differentiable and strictly positive function of the form

f = f (Δg, ĝ) . (44)

Hence, the corresponding notion of stochastic average for an arbitrary smooth function X(Δg, r, s)
is prescribed in terms of the weighted integral

〈X(Δg, r, s)〉stoch ≡
∫

Ug

d(Δg)X(Δg, r, s) f (Δg, ĝ) , (45)

to be performed on the configuration space Ug. In particular, besides the prescription (44),
f (Δg, ĝ) should be prescribed so that the following stochastic averages are also fulfilled:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈1〉stoch ≡
∫

Ug

d(Δg) f (Δg, ĝ) = 1,〈
Δgμν

〉
stoch ≡

∫
Ug

d(Δg)Δgμν f (Δg, ĝ)) = ±ĝμν(r),

σ2
Δg ≡

〈
(Δg− 〈Δg〉stoch)

2
〉

stoch
≡∫

Ug

d(Δg) (Δg− 〈Δg〉stoch)
2 f (Δg, ĝ) = r2

th,

(46)

with (Δg− 〈Δg〉stoch)
2 ≡

[
Δgμν −

〈
Δgμν

〉
stoch

]
[Δgμν − 〈Δgμν〉stoch] and σΔg denoting the

standard deviation of Δg to be identified with the dimensionless 4-scalar parameter r2
th > 0.

Notice in addition that, here, for consistency with the same assumption in Equation (44), r2
th must

be assumed to be a non-vanishing constant, i.e., independent of both (r, s).
• GLP Requirement #2- The second one is obtained requiring that Δg =

{
Δgμν

}
is constant for all

s ∈ I and for an arbitrary Lagrangian Path, i.e., it is prescribed so that identically for all s, so ∈ I it
occurs that

Δgμν(s) = Δgμν(so). (47)

Notice that here D
Ds δgLμν(s) = D

Ds δGLμν(s) ≡ Vμν(GL(s), Δg, s)), with Vμν(GL(s), Δg, s) being the
tensor velocity field in the GLP-representation, namely

Vμν(GL(s), Δg, s) =
1

αL
∂S(q)(GL(s), Δg, s)

∂δgμν
L (s)

, (48)

while D
Ds is the Lagrangian derivative defined above (see Equation (27)). As a result, the constraint

condition (47) necessarily implies also that

D
Ds

Δgμν ≡
D
Ds

δgLμν(s)−
D
Ds

δGLμν(s) ≡ 0. (49)

As a consequence of Requirements #1 and #2, for all s ∈ I, the correspondence in Equation (40)
is uniquely established, in the sense that, for each determination of the stochastic displacement Δg,
GL(s, Δg) ≡ GL(s) belongs to a uniquely-prescribed curve {GL(s), ∀s ∈ I} , identifying a GLP which
spans the quantum configuration space Ug. More precisely, a generic GLP {GL(s), ∀s ∈ I} is identified
with the integral curve determined by the GLP-initial-value problem{

D
Ds δGLμν(s) = Vμν(GL(s), Δg, s),

δGLμν(so) = δg(o)μν − Δgμν.
(50)

In addition, here, the map GL(so) ⇔ GL(s) defines again a classical dynamical system with
Jacobian determinant

∣∣∣∣ ∂GL(s)
∂GL(so)

∣∣∣∣ = exp

⎧⎨⎩
s∫

so

ds′
∂Vμν(GL(s′) + Δg, s′)

∂gLμν(s′)

⎫⎬⎭ . (51)

The ensemble of integral curves {GL(s), ∀s ∈ I} obtained by varying Δg in Ug identifies therefore
an infinite set of GLP which are associated with the tensor velocity field Vμν(GL(s)+Δg, s). One notices,
however, that by construction,

Vμν(GL(s) + Δg, s) = Vμν(gL(s), s). (52)

Thus, the same infinite set of GLP is actually associated with the same local value of the tensor
velocity field Vμν(gL(s), s). Thus, in contrast with the LP defined above (in terms of Equation (26)),
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this means that the GLP which are associated with the local tensor velocity field Vμν(gL(s), s) are
non-unique (and actually infinite), each one being determined by Δg. Precisely because the same
trajectories are stochastic and hence non-unique, such a feature is in principle compatible with
the possible interpretation of the GLPs as physical quantum trajectories in the configurations space Ug.
Nevertheless, the prerequisite for making actually possible such an interpretation is, ultimately, the
ontological equivalence of the GLP-parameterization for the quantum state ψ with the “standard”
Eulerian representation of the same quantum wave-function. In other words, the adoption of the
GLP and in particular the prescription of the stochastic PDF f (Δg) associated with the same constant
stochastic displacement tensor Δg (see Equation (44)), should be possible leaving unchanged the
axioms of CQG-theory.

For definiteness, let us now pose the problem of introducing explicitly the parameterization of the
quantum fluid fields and the related GLP-representation of the QHE. In principle, this can simply be
obtained from the corresponding LP-parameterization indicated above noting that δg(s) = Δg+ δG(s).
However, in formal analogy with the GLP-approach to non-relativistic quantum mechanics earlier
indicated, a more general parameterization in terms of the stochastic displacement tensor field Δg,
to be referred in the sequel as GLP-parameterization, is possible. This involves assuming that the
CQG-wave function may be of the type

ψ = ψ(GL(s), Δg, s), (53)

i.e., to include also an explicit dependence in terms of Δg ≡
{

Δgμν

}
. Therefore, the corresponding

GLP-parameterization of the quantum fluid fields is taken of the form{
ρ, S(q)

}
(s)
≡

{
ρ(GL(s), Δg, s), S(q)(GL(s), Δg, s)

}
. (54)

Nevertheless, the quantum hydrodynamic Equation (22), when expressed in the
GLP-parameterization, remain formally analogous to those obtained in the LP-parameterization (see
Equation (35)), so that the same equations must determine the map{

ρ, S(q)
}
(so)

≡
{

ρo, S(q)
o

}
→

{
ρ, S(q)

}
(s)

, (55)

with
{

ρo, S(q)
o

}
being suitable initial quantum fluid fields. Hence, for consistency, these should be

again assumed of the form{
ρo, S(q)

o

}
≡

{
ρo(GL(so), Δg), S(q)

o (GL(so), Δg)
}

. (56)

In detail, in the GLP-representation the quantum hydrodynamic Equation (35) are now realized
by the PDEs {

D
Ds ρ(GL(s), Δg, s) = −ρ(GL(s), Δg, s) ∂Vμν(GL(s),Δg,s)

∂gLμν(s)
,

D
Ds S(q)(GL(s), Δg, s) = Kc(GL(s), Δg, s),

(57)

representing, respectively, the GLP-parameterized quantum continuity and H-J equations, where

Kc(GL(s), Δg, s) = Vμν(GL(s), Δg, s)
∂S(q)(GL(s, Δg), Δg, s)

∂gLμν(s)
− Hc(GL(s), Δg, s) (58)

and Hc(GL(s), Δg, s) identifies now the effective quantum Hamiltonian density in Equation (23)
expressed in terms of the GLP-parameterization. Thus, from Equation (23), it follows that

Hc(GL(s), Δg, s) = T(GL(s), Δg, s)−V(GL(s), Δg, s)−VQM(GL(s), Δg, s), (59)
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with T ≡ T(GL(s), Δg, s), V ≡ V(GL(s), Δg, s) and VQM ≡ VQM(GL(s), Δg, s) denoting now in terms of
the GLP-parameterization respectively the effective kinetic energy and classical potential density given
by Equations (24), (19) and the Bohm effective quantum potential in Equation (25). Thus, regarding
the representation of the effective potential energy V, and in particular its vacuum contribution
Vo ≡ Vo(GL(s), Δg, s) (see Equation (19)), to be used in the context of the GLP-approach, one notices
that the displacement 4-tensor δg entering the expression of the variational parameter in Equation (21)
remains non-unique. One notices that, due to its arbitrariness, the displacement 4-tensor can always be
identified with δg ≡ Δg, being Δg the stochastic constant displacement field tensor introduced above
(see Equation (11)), so that actually h(g) can be conveniently represented as

h(ĝ + Δg) = 2− 1
4

(
ĝαβ + Δgαβ

)
(ĝμν + Δgμν) ĝαμ ĝβν, (60)

while the vacuum effective potential becomes:

Vo(GL(s), Δg, s) ≡ σαLh(ĝ + Δg)
[(

ĝpq(s) + Δgpq
)

ĝpq(r)− 2
]

Λ. (61)

Useful implications of the GLP-representation in Equations (53)–(54) follow by inspection of the
GLP-quantum continuity equation (see first equation in Equation (57)) obtained above. The first one
follows by noting that the same equation implies also

D
Ds

ln ρ(GL(s), Δg, s) = −∂Vμν(GL(s), Δg, s)
∂gLμν(s)

, (62)

so that its formal integration generates the map ρ(GL(so), Δg, so) → ρ(GL(s), Δg, s), with
ρ(GL(s), Δg, s) denoting the proper-time evolved quantum PDF, namely

ρ(GL(s), Δg, s) = ρ(GL(so), Δg, so) exp

⎧⎨⎩−
s∫

so

ds′
∂Vμν(GL(s′), Δg, s′)

∂gLμν(s′)

⎫⎬⎭ . (63)

Notice that the integration on the R.H.S is performed along the GLP-trajectory {GL(s, Δg), ∀s ∈ I},
i.e., for a prescribed constant stochastic displacement 4-tensor Δg, while ρ(GL(so), Δg, so) identifies
the initial, and in principle still arbitrary, PDF. The second implication concerns the quantum H-J
equation itself. In fact, the formal solution in Equation (63) permits to cast it in terms of an (implicit)
equation for the GLP-parameterized quantum phase-function S(q)(GL(s), Δg, s) only. Consequently,
provided an explicit realization is reached for the GLP-trajectory {GL(s), ∀s ∈ I}, by solving the
initial-value problem (50), the same H-J equation should uniquely determine the corresponding
solution S(q)(GL(s), Δg, s) as a real function of Δg and s only. A notable feature worth to be stressed
here is about the prescription of the same initial PDF ρ(GL(so), Δg, so). This manifestly generally
differs from the one considered above in the case of the LP-parameterization (see Equation (37)),
where no explicit Δg−dependences was assumed. In fact, consistent with the GLP-parameterization
introduced above (see Equation (54)), this is now taken of the form (56). This means that it may include
in particular an admissible choice for the initial PDF provided by a probability density of the form

ρ(GL(so), Δg, so) = ρo(Δg + ĝ(ro)), (64)

with ρ(Δg + ĝ(ro)) to be determined as indicated below.

6. GLP Approach: Determination of the Stochastic PDF for Δg and of the Quantum PDF

The problem addressed in this section is twofold. First, it concerns the identification of the
stochastic probability density f (Δg, ĝμν) which is associated with the stochastic displacement tensor
field Δg ≡

{
Δgμν

}
and is consistent with the requirements indicated above, i.e., Equation (44), together
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with the aforementioned constraint conditions in Equation (46). Second, it deals with the prescription of
the CQG-probability density, in particular the initial one ρo, to be adopted in the GLP-parameterization,
see Equation (17) as well as Equations (54) and (64) above. In fact, both prescriptions should be actually
regarded as mandatory prerequisites for the consistency of the GLP-representation and its ontological
equivalence with the corresponding Eulerian representation of CQG-theory. In this section, we intend
to show that the two issues are actually intrinsically related.

In particular we aim to prove that the initial quantum PDF can be prescribed in such a way
that it coincides with a shifted Gaussian PDF, such a choice being consistent with the principle
of entropy maximization (PEM), i.e., determined so to maximize the initial Boltzmann–Shannon
entropy associated with the initial PDF. Consequently, the same initial PDF is shown to satisfy suitable
symmetry properties (see Proposition #1). Furthermore the problem is posed of the determination
of the quantum expectation values evaluated with respect to the GLP-parameterized quantum PDF.
As a result, for arbitrary observables which are identified with ordinary tensor functions, equivalent
representations of the GLP-quantum expectation values are pointed out (Proposition #2). A notable
related implication refers to the physical interpretation of CQG-theory arising in such a context which
is analogous to the so-called emergent gravity picture of quantum gravity. This follows by noting
that, by suitable prescription of the initial quantum PDF, the background metric tensor ĝ(r(s)) is
uniquely determined, at any arbitrary proper-time s, in terms of an appropriate expectation value of
the quantum PDF (see Proposition #3).

6.1. Prescription of the Stochastic PDF

The two topics indicated above actually have a unique solution. This follows at once provided the
axiomatic setting of CQG-theory is invoked. Let us consider, in fact, the problem of the determination
of f (Δg, ĝ). In the context of CQG-theory, as in the case of Quantum Mechanics (see related discussion
in [22]), the independent prescription of f (Δg, ĝ) potentially may amount to the introduction of an
additional axiom, thus possibly giving rise to additional conceptual difficulties related to the notions
of quantum measurement and quantum expectation values. To overcome this issue, while leaving
unaffected the axioms of CQG-theory earlier introduced in [10] and, at the same time, warranting the
ontological equivalence indicated above, the only possible choice for f (Δg, ĝ) is that it coincides with
the initial quantum PDF ρo. This means also, of course, that ρo must be necessarily of the type (64),
namely such that

f (Δg, ĝ) ≡ ρo(Δg± ĝ(ro)), (65)

and therefore fulfilling also the constraint conditions indicated above (see Equation (46)). Incidentally,
as explained below, from the conceptual viewpoint, this choice exhibits remarkable features.

6.2. The Initial Quantum PDF ρo and Its Invariance Property

The first one, as a specific application of the GLP formalism, concerns the prescription itself of
the initial quantum PDF. In fact, in validity of the identification in Equation (65), the constraints in
Equation (46) included in Requirement #1 indicated above actually uniquely prescribe the form of the
initial PDF ρo(Δg± ĝ(ro)). In fact, let us introduce for definiteness the Boltzmann-Shannon entropy
associated with the same PDF, which is provided by the functional

S(ρo(Δg + ĝ(ro))) = −
∫

Ug
d(Δg)ρo(Δg + ĝ(ro)) ln ρo(Δg + ĝ(ro)), (66)

with ρo(Δg, ĝμν(r)) ≡ f (Δg+ ĝμν(r)) being assumed to satisfy the same constraint equations indicated
above (i.e., Equation (46). Then, one can show that the PDF ρo(Δg + ĝ(ro)) which fulfills the
so-called Principle of Entropy Maximization (PEM, Jaynes 1957), namely maximizes S(ρo(Δg + ĝ(ro)))
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when subject to the same constraints, is unique. Straightforward algebra shows that in the whole
configuration domain Ug it coincides with the PDF

ρo(Δg± ĝ(ro)) =
1

π5r10
th

exp

{
− (Δg± ĝ(ro))

2

r2
th

}
≡ ρG(Δg± ĝ(ro)), (67)

with ρG(Δg± ĝ(ro)) denoting a shifted Gaussian PDF in which both r2
th and (Δg± ĝ(ro))

2 are 4-scalars,
and in particular r2

th is a constant independent of (r, s), while

(Δg± ĝ(ro))
2 ≡ (Δg± ĝ(ro))μν (Δg± ĝ(ro))

μν . (68)

Therefore, we conclude that the Gaussian PDF in Equation (67) realizes the most likely PDF, i.e.,
the one which, when subject to the constraints (46), maximizes the Boltzmann-Shannon entropy
S(ρo(Δg + ĝ(ro))) in Equation (66).

Let us now denote with

ρG(Δg± ĝ(r)) =
1

π5r10
th

exp

{
− (Δg± ĝ(r))2

r2
th

}
(69)

the Gaussian PDF in Equation (67) evaluated for a generic 4-position r(s) generally different from the
initial one ro ≡ r (so). Then, it is possible to show that a formal solution ρ(GL(s), Δg, s) of the quantum
continuity equation can more generally be taken of the form

ρ(GL(s), Δg, s) = ρG(Δg± ĝ(r)) exp

⎧⎨⎩−
s∫

so

ds′
∂Vμν(GL(s′), Δg, s′)

∂gLμν(s′)

⎫⎬⎭ . (70)

Let us display for this purpose an invariance property of the initial PDF. The following proposition
is proven to hold.

Proposition 1. Invariance of the Gaussian PDF ρG(Δg± ĝ(r))
The following two propositions hold:
P11) The Gaussian PDF ρG(Δg± ĝ(r)) prescribed by Equation (69) satisfies the invariance condition

D
Ds

ln ρG(Δg± ĝ(r)) = 0. (71)

P12) Equation (70) realizes a particular solution of the quantum continuity equation in Equation (57).

Proof. To prove the invariance property in Equation (71) in proposition P11, one first notices that
(Δg± ĝ(r))2 ≡ (Δg)2 ± 2Δgμν ĝμν(r) + 4, where{

(Δg(s))2 = (Δg(so))
2 ,

Δgμν(s)ĝμν(r) = Δgμν(so)ĝμν(r).
(72)

Consequently, it follows that identically D
Ds (Δg(s))2 ≡ 0, while due to the second equation in (72)

D
Ds

Δgμν(s)ĝμν(r) = Δgμν(so)
D
Ds

ĝμν(r), (73)

where one has that identically D
Ds ĝμν(r) ≡ 0. Hence, Equation (71) necessarily holds. This implies

in turn that Equation (70) is indeed a particular solution of the quantum continuity equation, as
can be easily verified by algebraic calculation after substitution in the same equation. This proves
Proposition P12.
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6.3. GLP-Quantum and Stochastic Expectation Values

The second implication of Equation (65) concerns the prescription of the quantum and stochastic
expectation values of arbitrary observables which are identified with ordinary tensor functions.

Indeed, first, since Δg ≡
{

Δgμν

}
is an observable, ρo(Δg) remains in turn an observable

too. Second, the quantum expectation values of quantum observables can be determined explicitly,
without performing a separate stochastic average. In fact, let us consider for definiteness a generic
observable which is represented by an ordinary s-dependent real function X(s) ≡ X(GL(s), Δg, s).
According to the GLP-representation its quantum expectation value is given by the configuration-space
weighted integral (hereon referred to as GLP-quantum expectation value):

〈X(s)〉 =
∫

Ug
d(δGL)ρ(GL, Δg, s)X(GL, Δg, s), (74)

where the integration is performed with respect to δGL ≡ δGL(s), keeping constant both δgLμν(s) and
the background metric tensor ĝ(r) ≡ ĝ(r(s)) in terms of ρ(GL, Δg, s) ≡ ρ(GL(s), Δg, s), the latter being
prescribed according to Equation (70). One can show that the following equivalent representations of
〈X(s)〉 hold.

Proposition 2. Equivalent representations of the GLP-quantum expectation value 〈X(s)〉
In validity of Proposition 1 and Equation (74), the following equivalent representations of the GLP-quantum

expectation value 〈X(s)〉 hold:
(1) First, 〈X(s)〉 can be expressed by means of the expectation value in terms of the initial quantum PDF.

This yields

〈X(s)〉 =
∫

Ug
d(δGL(so))ρG(Δg± ĝ(r))X(GL(s), Δg, s), (75)

where the integration is performed on the initial values of the tensor field δGL(so) instead of δGL(s). In the
same integral both δgLμν(s) and ĝ(r(s)) are again kept constant.

(2) Second, the same integral can also be equivalently performed in terms of the integration variable
Δg ≡

{
Δgμν

}
instead of the initial fields δGL(so), thus yielding

〈X(s)〉 =
∫

Ug
d(Δg)ρo(Δg± ĝ(ro))X(GL(s), Δg, s) ≡ 〈X(s), ĝ(ro)〉Δg , (76)

where 〈X(s), ĝ(ro)〉Δg identifies the stochastic average of X(GL(s), Δg, s), performed in terms of the stochastic
PDF ρo(Δg± ĝ(ro)) while again keeping constant δgLμν(s) and ĝ(r(s)).

3) Finally, the integral in Equation (76) can also be equivalently performed in terms of the integral

〈X(s)〉 =
∫

Ug
d(Δg)ρo(Δg± ĝ(r(s)))X(GL(s), Δg, s) ≡ 〈X(s), ĝ(r(s))〉Δg , (77)

where 〈X(s), ĝ(r(s))〉Δg identifies the stochastic average of X(GL(s), Δg, s), performed in terms of the stochastic
PDF ρo(Δg± ĝ(r)) while keeping constant δgLμν(s) and ĝ(r).

Proof. Consider first Equation (75). Its proof follows by noting that the integral in Equation (74) can
be equivalently represented in terms of the inverse mapping δGL(s)→ δGL(so). This implies, in fact,
the differential identity

d(δGL(s)) = d(δGL(so))

∣∣∣∣ ∂δGL(s)
∂δGL(so)

∣∣∣∣ , (78)

where, thanks to Liouville theorem the Jacobian determinant
∣∣∣ ∂δGL(s)

∂δGL(so)

∣∣∣ can be shown to be
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∣∣∣∣ ∂δGL(s)
∂δGL(so)

∣∣∣∣ = exp

⎧⎨⎩
s∫

so

ds′
∂Vμν(GL(s′), Δg, s′)

∂gLμν(s′)

⎫⎬⎭ . (79)

Next, by invoking the solution of the quantum continuity Equation (70), conservation of
probability warrants that

d(δGL)ρ(GL(s), Δg, s) = d(δGL(so))ρo(Δg± ĝ(r(s))), (80)

which in turn implies Equation (75). The proof of Equation (76) is obtained in a similar way by
noting that (see Equation (43)) Δgμν = δgLμν(so)− δGLμν(so) so that the same integral (75) can also
be equivalently performed in terms of the integration variable Δg ≡

{
Δgμν

}
while keeping constant

δgLμν(so) and ĝ(r). Hence, it follows that

d(δGL(so)) = d(Δg)
∣∣∣∣∂δGL(so)

∂Δg

∣∣∣∣ = d(Δg), (81)

since the Jacobian determinant
∣∣∣ ∂δGL(so)

∂Δg

∣∣∣ is by construction identically equal to 1. Hence, the differential
identity (80) necessarily holds, thus yielding also Equation (76). Finally, the proof of Equation (77)
follows from Equation (76) being an immediate consequence of Proposition 1.

6.4. Generalized Gaussian PDF and Emergent Gravity Interpretation

Let us examine the implications of the previous Propositions 1 and 2. The first one concerns the
determination of the proper-time evolved quantum PDF ρ(GL(s), Δg, s), to be based on Proposition 1
(see the conservation Equation (71)) and Equation (63). This is given by Equation (70). Notice that,
although ρG(Δg ± ĝ(r)) is a shifted Gaussian PDF, ρ(GL(s), Δg, s) is generally not so. Its precise
realization depends in fact on the quantum phase-function S(q)(GL(s), Δg, s), i.e., the corresponding
solution of the quantum H-J equation (in Equation (57)). As a result, the tensor velocity field
Vμν(GL(s), Δg, s) at this stage is still unknown, thus leaving still undetermined the precise functional
form of ρ(GL(s), Δg, s), so that in general the proper-time evolved PDF ρ(GL(s), Δg, s), in contrast to
the initial PDF, may be generally not Gaussian any more. For this reason, Equation (70) will be referred
to in the following as Generalized Gaussian PDF.

The second implication, which is also relevant for the physical interpretation of the GLP-approach,
concerns the following statement.

Proposition 3. Determination of ĝ(r) (Emergent gravity)

The generalized Gaussian PDF (70) for all r ∈
{

Q4, ĝ
}

admits for the stochastic displacement 4-tensor
Δgμν the following GLP-quantum/stochastic expectation value (in which both δgLμν(s) and ĝ(r(s)) are again
kept constant in the integration):

〈
Δgμν

〉
≡

〈
Δgμν

〉
Δg =

∫
Ug

d(Δg)ρG(Δg± ĝ(r))Δgμν = ∓ĝμν(r). (82)

Proof. The proof follows as an immediate consequence of Proposition 2 and in particular thanks to
Equation (77).

The consequence is that, in the whole space-time and for all proper-times s (i.e., for arbitrary
(r ≡ r(s), s)), the local value of the background metric tensor ĝ(r) is prescribed by means of the
GLP-quantum expectation value of the stochastic displacement 4-tensor Δgμν, i.e.,

〈
Δgμν

〉
, or

equivalently by means of the corresponding stochastic average
〈
Δgμν

〉
Δg evaluated in terms of the

stochastic PDF ρG(Δg ± ĝ(r)). In this regard one notices that for the validity of Proposition 3 the
initial PDF must be identified with the stochastic PDF f (Δg, ĝ), with the latter satisfying the constraint
conditions (46). This implies the existence of an emergent gravity phenomenon, in the sense that the
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background metric tensor ĝ(r) ≡ ĝ(r(s)) “emerges” from the quantum gravitational field gμν as the
quantum/stochastic expectation value of the stochastic quantum displacement tensor Δgμν which
characterizes the covariant GLP theory.

The conclusion provides a physical interpretation of CQG-theory. Indeed, consistent with
the second-type emergent-gravity paradigm referred to above (see Introduction), the background
space-time appears through a mean-field gravitational tensor as the result of a suitable ensemble
average of an underlying quantum/stochastic virtual space-time whose quantum-wave dynamics is
described by GLP trajectories. A notable aspect of the conclusion is, however, that the representation of
the proper-time evolved PDF provided by Equation (70) is of general character. In fact, Equation (82)
holds independent also of the precise prescription of the classical/quantum effective potential in
the quantum Hamiltonian operator. Therefore, the emergent-gravity interpretation of ĝ(r) is an intrinsic
characteristic feature of the GLP-representation developed here for CQG-theory, whereby the background
metric tensor ĝ(r) can be effectively interpreted as arising from the stochastic fluctuations of GLP
trajectories having a suitable stochastic probability distribution identified with a Gaussian or more
generally Gaussian-like PDF. It follows that ĝ(r) can be then obtained exactly as a statistical moment
in terms of weighted integral over the stochastic tensor Δgμν.

In this sense, the concept of emergent gravity proposed here has similarities with the analogous
one to be found in the literature, namely the conjecture that the geometrical properties of space-time
should reveal themselves as a mean field description of microscopic stochastic or quantum degrees of
freedom underlying the classical solution [75,76]. However, the physical context proposed here differs
from the customary one adopted in the literature, whereby according to the common emergent gravity
paradigm the Einstein field equations of gravity should have an emergent character in that, in validity of
suitable assumptions, they can be shown to arise from a thermodynamic approach to space-time [77,78].
Nevertheless, the explicit construction of particular solutions of the GLP-parameterized quantum
continuity and H-J equations indicated above (see Equation (57)) remains necessary and requires the
introduction of suitable representations both for the quantum phase-function S(q)(GL(s), Δg, s) and
the quantum effective potential V(GL(s), Δg, s) (see next Section).

7. GLP Approach: Polynomial Decomposition of the Quantum Phase Function

Based on these premises, we can now implement the GLP formalism and proceed constructing
particular solutions of the quantum H-J equation (see second part of Equation (57)). More precisely, the
goal here is to look for solutions of the quantum phase function expressed in the GLP-parameterization,
i.e., S(q)(GL(s), Δg, s), which are expressed by means of polynomial decompositions in terms of power
series of the stochastic tensor Δg. For definiteness, in the sequel the case is considered in which the
following pre-requisites apply:

(A) “Harmonic” polynomial decomposition of S(q)(GL(s), Δg, s), i.e., the same quantum-phase
function is expressed in terms of a second-degree polynomial of the form

S(q)(GL(s), Δg, s) =
aαβ

pq (s)
2

ΔgαβΔgpq + bαβ(s)Δgαβ + c(s), (83)

with aαβ
μν(s), bμν(s) and c(s) denoting, respectively, suitable real 4-tensors and a 4-scalar functions of s

to be determined in terms of the same H-J equation. As shown below, this implies that the effective
kinetic energy T(GL(s), Δg, s) defined by Equation (24) and the Bohm effective quantum potential
VQM(GL(s), Δg, s) prescribed according to Equation (25) are both realized by means of polynomials of
second degree in Δg.

(B) An analogous “Harmonic” polynomial decomposition holds for V(GL(s), Δg, s): namely, that
a polynomial representation of analogous type should apply also for the total quantum effective
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potential density appearing in the quantum H-J equation (see Equation (19)). The latter, to be generally
considered of the form V(GL(s), Δg, s), should therefore admit a polynomial representation of the type

V(GL(s), Δg, s) =
Aαβ

pq (s)
2

ΔgαβΔgpq + Bαβ(s)Δgαβ + C(s), (84)

where the tensor coefficients Aαβ
μν(s), Bμν(s) and C(s) are considered here functions of s alone to be

suitably determined.

7.1. Implications of the Polynomial Decomposition for S(q)(GL(s), Δg, s)

Let us investigate in detail the consequences of the prescription (83) set on the quantum
phase-function S(q)(GL(s), Δg, s). One notices, first, that this property permits to identify uniquely
the proper-time evolved quantum PDF in terms of a Gaussian PDF, which means that, apart
for a proper-time dependent factor, in such a case the PDF ρ(GL(s), Δg, s) becomes intrinsically
non-dispersive in character. In this regard the following statement holds.

Proposition 4. Determination of the Gaussian PDF ρ(GL(s), Δg, s)
In validity of the harmonic polynomial decomposition in Equation (83), the generalized Gaussian PDF in

Equation (70) takes the form of the Gaussian PDF

ρ(GL(s), Δg, s) ≡ ρG(Δg + ĝ(r)) exp

⎧⎨⎩−16
s∫

so

dsp2(s′)
a(s′)
αL

⎫⎬⎭ , (85)

where p(s′) and a(s′) are the 4-scalar functions respectively prescribed by Equation (A19) and Equation (A18)
in Appendix A.

Proof. The proof follows by noting that in this case the tensor velocity Vμν(GL(s), Δg, s) defined by
Equation (48) becomes explicitly

Vμν(GL(s), Δg, s) ≡ 1
αL

∂S(q)(GL(s), Δg, s)
∂gLμν(s)

=
aαβ

pq (s)
αL

∂Δgαβ

∂gLμν(s)
Δgpq +

1
αL

∂Δgαβ

∂gLμν(s)
bαβ(s). (86)

Consequently, the divergence of the tensor velocity ∂Vμν(Δg,s′)
∂gμν

L (s′)
, which enters the exponential

occurring on the R.H.S. of Equation (63), delivers

∂Vμν(Δg, s′)
∂gμν

L (s′)
=

1
αL

∂2S(q)(Δg, s′)
∂gμν

L (s′)∂gLμν(s′)
=

aαβ
pq (s)
αL

∂Δgαβ

∂gLμν(s′)
∂Δgpq

∂gμν
L (s′)

, (87)

where the evaluation of the fourth order tensor
∂Δgαβ

∂gLμν(s)
is reported in Appendix A (see, e.g.,

Equation (A2) together with Propositions (A1) and (A2)).
Hence, the previous equation implies in turn

∂Vμν(Δg, s)
∂gμν

L (s)
= p2(s)

aαβ
pq (s)
αL

δ
μν
αβδ

pq
μν ≡ 16p2(s)

a(s)
αL

, (88)

where the notation δ
μν
αβ ≡ δ

μ
α δν

β has been introduced. Consequently, the proper-time evolved quantum
PDF in Equation (70) takes the form of Equation (85).

Next, let us consider the evaluation of effective kinetic energy T(GL(s), Δg, s) defined by
Equation (24) and of the Bohm potential given by Equation (25). Regarding T(GL(s), Δg, s), thanks
again to Equation (83), direct evaluation delivers
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T(GL(s), Δg, s) =
p2(s)
2αL

[
aαβ

μν(s)aμν
pq (s)ΔgαβΔgpq + bμν(s)bμν(s) + 2aμν

αβ(s)bμν(s)Δgαβ
]

. (89)

Concerning instead the Bohm potential, one notices that, by invoking Proposition 4 (i.e.,
Equation (85)), the two source terms on the R.H.S. of Equation (25) become, respectively,

∂ ln ρ(GL(s), Δg, s)
∂gμν

L (s)
= − 2

r2
th

p(s)
(
Δgμν ± ĝμν(r)

)
, (90)

∂2 ln ρ(GL(s), Δg, s)
∂gLμν(s)∂gμν

L (s)
= − 8

r2
th

p2(s). (91)

Consequently, direct substitution in the same equation delivers for the Bohm potential
the representation:

VQM(GL(s), Δg, s) ≡ − �2

8αL

[
2

r2
th

p(s)
(
Δgμν ± ĝμν(r)

)] [
2

r2
th

p(s) (Δgμν ± ĝμν(r))

]

− �2

4αL

[
− 8

r2
th

p2(s)

]
, (92)

which can be equivalently written as

VQM(GL(s), Δg, s) ≡ −�2 p2(s)
2αLr4

th

(
ΔgμνΔgμν ± 2ĝμν(r)Δgμν + 4

)
+

2�2 p2(s)
αLr2

th
. (93)

7.2. Implications of the Polynomial Decomposition for V(GL(s), Δg, s)

That an explicit realization of the polynomial representation of the type in Equation (84) is actually
possible for the effective classical potential density V(GL(s), Δg, s) given by Equation (19) follows by
its definition. For definiteness, let us show how this task can be achieved for a specific realization, i.e.,
in the case of vacuum. The following proposition holds.

Proposition 5. Harmonic representation of the vacuum effective potential

The vacuum effective potential in Equation (19) in the harmonic polynomial representation in Equation (84)
takes the form

Vo(g + Δg) = 2σαLΛ + σαLΛ
[
−1

2
ΔgμνΔgμν − 1

2
Δgμν ĝμν(r)Δgαβ ĝαβ(r)

]
. (94)

Proof. In fact, from Equation (61), the vacuum effective potential Vo (ĝ + Δg) becomes

Vo(g + Δg) ≡ σαLΛ
[

2− 1
4

(
ĝμν(r) + Δgμν

)
(ĝμν(r) + Δgμν)

] [(
ĝpq(r) + Δgpq

)
ĝpq(r)− 2

]
. (95)

The harmonic representation is obtained dropping terms of order (Δg)3 or higher. When this is
done in the previous equation, Equation (94) is recovered at once.

The form of the source term in Equation (94) suggests to seek for the tensor coefficient aαβ
μν(s) in

Equation (83) a particular realization of the form

aαβ
pq (s) =

1
2

[
a(o)(s)δ

αβ
pq + a(1)(s)ĝpq(r)ĝαβ(r)

]
, (96)

390



Entropy 2018, 20, 205

so that upon invoking Equation (A18), namely letting aαβ
μν(s)δ

μν
αβ ≡ 4a(s), it follows a(s) =

1
2

[
a(o) + a(1)

]
. Consequently, one finds that the tensor coefficients aαβ

pq (s) in Equation (83) can also be
written as

aαβ
pq (s) =

1
2

[
2a(s)δαβ

pq + a(1)(s)
(

ĝpq(r)ĝαβ(r)− δ
αβ
pq

)]
. (97)

In addition, straightforward algebra yields the identities represented by Equations (A23)–(A29)
which are reported in Appendix B.

7.3. Construction of the GLP-Equations

We now pose the problem of the construction of the set of ODEs, which, in validity of the
Harmonic polynomial decompositions indicated above, determine a separable solution of the quantum
H-J equation in Equation (57), and are thus equivalent to the same equation. In the case of the vacuum
effective potential by equating all terms in the polynomial expansion, one obtains a set of ODEs for the
4-scalar coefficients a(o)(s), a(1)(s) and c(s) and the 4-tensor bαβ(s), here referred to as GLP-equations.
These are provided by the first-order ODEs:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
4

d
ds a(o)(s) =

p2(s)
8αL a2

(o)(s)−
�2

2αL
1

r4
th

p2(s) + 1
2 σαLΛ + G(o),

1
4

d
ds a(1)(s) =

p2(s)
8αL

(
4a2

(1)(s) + 2a(o)(s)a(1)(s)
)
+ 1

2 σαLΛ + G(1),
d
ds bαβ(s) =

p2(s)
2αL

[
bαβa(o)(s) + a(1)(s)ĝαβ(r)ĝμν(r)bμν(s)

]
,

d
ds c(s) = p2(s)

2αL bμν(s)bμν(s) + 2�2

αL
1

r2
th

p2(s) + Co(s),

(98)

where G(o), G(1) and Co(s) are in principle arbitrary 4-scalar gauge functions. These can be prescribed
in such a way that there exists a stationary null solution for the 4-scalar coefficient a(s) ≡ â(s), namely
such that for all s ∈ I, â(s) = 0, and hence identically for all s, so ∈ I,⎧⎪⎨⎪⎩

â(o)(s) ≡ â(o)(so),
â(1)(s) = â(1)(so),
â(1)(so) = −â(o)(so),

(99)

which realizes a particular stationary solution of Equation (98). This requires suitably-identifying the
gauge functions G(o) and G(1), which, for consistency with Equation (99), can always be prescribed in
such a way that ⎧⎨⎩ G(o) = − 1

8αL â2
(o)(so) +

�2

2αL
1

r4
th
− 1

2 σαLΛ,

G(1) = − 1
4αL â2

(o)(so)− 1
2 σαLΛ ≡ 0,

(100)

so that the first two parts of Equation (98) can be written explicitly as⎧⎨⎩
1
4

d
ds a(o)(s) =

1
8αL

[
p2(s)a2

(o)(s)− 2α2L2Λ
]
− �2

2αL
1

r4
th

[
p2(s)− 1

]
,

1
4

d
ds a(1)(s) =

p2(s)
8αL

(
4a2

(1)(s) + 2a(o)(s)a(1)(s)
)
− 1

2 αLΛ.
(101)

We finally notice that the previous equations can also be conveniently cast in dimensionless form.
Noting that [a] =

[
a(o)

]
=

[
a(1)

]
= [�] = [α], the dimensionless representation is obtained by means

of the dimensionless variables
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(o)(θ) =
a(o)(θ)

α ,
a(1)(θ) =

a(1)
α ,

bαβ(θ) =
bαβ(s)

α ,
c(θ) = c

α ,
θ = 2s

L ,
Λ = ΛL2 ∼= 9.408,

(102)

where Λ identifies in dimensionless units the experimental value of cosmological constant, here
evaluated in terms of the Compton Length L which corresponds to the graviton-mass estimate given
in [10]. Then, introducing the notations⎧⎪⎪⎨⎪⎪⎩

Y(θ) ≡
(

1 +
θ∫

θo

dθ′a(θ′)

)1/2

,

Z (θ) =
a(1)(θ)
Y(θ)2 ,

(103)

Equation (98) can be shown to be equivalent to the following set of ODEs for the coefficients a(θ)
and a(1)(θ): ⎧⎨⎩

d2

dθ2 Y(θ) = 3
16

Z2(θ)
Y(θ) −

3
16

Λ
Y(θ) +

�2

4α2r4
th

Y(θ)2−1
Y(θ)3 ,

d
dθ Z(θ) = Z2(θ)

Y(θ) −
1
2

Λ
Y(θ) ,

(104)

which admit the stationary solution {
a(s) = 0,

a2
(o)(s)− 1

2 Λ = 0.
(105)

7.4. Small-Amplitude Solutions: Conditions of Validity

Now, we look for small-amplitude solutions of Equation (104). For definiteness, let us introduce
the representations {

Y(θ) = Y(θo) + δY(θ),
Z(θ) = Z(θo) + δZ(θ),

(106)

with Y(θo) = 1, Z(θo) = a(1)(θo) = ±
√

1
2 Λ and δY(θ), δZ(θ) denoting displacements such that for

all θ ∈ I(+)
sθo ≡ [θo,+∞]

0 < δY(θ)	 1,

0 <

∣∣∣∣∣δZ(θ)/

√
1
2

Λ

∣∣∣∣∣ 	 1. (107)

These will be denoted as small-amplitude solutions. In this regard, the following proposition holds.

Proposition 6. Small-amplitude solutions of Equation (104)

For all s ∈ I(+)
so ≡ [so,+∞] Equation (104) admit small-amplitude solutions.

Proof. In fact, upon linearization, Equation (104) implies⎧⎪⎨⎪⎩
d2

dθ2 δY(θ) = 3
16

[
±2

√
1
2 ΛδZ− 1

2 ΛδY(θ)
]
+ 3

16 ΛδY(θ) + �2

4α2r4
th

2δY(θ),

d
dθ δZ(θ) = ±2

√
1
2 ΛδZ.

(108)
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The two equations deliver, respectively, the solutions⎧⎪⎪⎨⎪⎪⎩
δZ(θ) = δZ(θo) exp

{
±2

√
1
2 Λ(θ − θo)

}
,

δa(θ) = AδZ(θo) exp
{
±2

√
1
2 Λ(θ − θo)

}
,

(109)

with A denoting the constant coefficient

A =
3
4 Λ

1− 9
32 Λ− �2

2α2r4
th

. (110)

Consequently, Equation (109) implies also that

δa(1)(θ) = δZ(θ)
[

1 +
A
2

]
. (111)

Thus, we conclude that small-amplitude solutions of the GLP-equations in Equation (104)
indeed exist which depend exponentially on proper time, the exponential factor being of the form

exp
{
−2

√
1
2 Λ(θ − θo)

}
or exp

{
2
√

1
2 Λ(θ − θo)

}
, respectively. These are referred to, respectively, as

decay and blow-up small-amplitude solutions. In the two cases for θ − θo → +∞, these either decay
to the constant solution or diverge exponentially. Therefore, quantum stationary solutions can be
identified with asymptotic ones, i.e., as final states of decaying quantum solutions. Blow-up solutions,
however, for finite times θ − θo > 0 necessarily violate the ordering assumptions (107) and, as such,
Equations (109) and (111) are no longer applicable in such a case.

The investigation of the blow-up solutions requires therefore the proper consideration of the
set of GLP-equations in Equation (104). One can show, however, that, if the following asymptotic
orderings apply,

Y(θ) " 1, (112)∣∣∣∣∣Z(θ)/
√

1
2

Λ

∣∣∣∣∣ " 1, (113)

then, in such a case, the asymptotic limits must apply

lim
θ−θo→+∞

Y(θ) = +∞, (114)

lim
θ−θo→+∞

d
dθ

Y(θ) = 0. (115)

These imply in turn also the vanishing of the 4-scalar coefficient p(s) (see Appendix A) in the
proper-time limit s− so → +∞, i.e.,

lim
s−so→+∞

p(s) = 0. (116)

The implication of Equation (116) is however the violation in the same limit of the
Heisenberg inequality 〈(

Δg
(μ)(ν)

)2
〉 〈(

Δπμν

)2
〉

1
≥ h̄2

4
, (117)

pointed out in [11], with
〈(

Δg
(μ)(ν)

)2
〉

and
〈(

Δπμν

)2
〉

1
denoting respectively

393



Entropy 2018, 20, 205

〈(
Δπμν

)2
〉

1
=

h̄2

4

∫
Ug

d(g)ρ
∂ ln ρ

∂gμν

∂ ln ρ

∂g(μ)(ν)
, (118)〈(

Δgμν

)2
〉

=
∫

Ug
d(g)ρ

(
gμν − g̃μν

) (
g(μ)(ν) − g̃(μ)(ν)

)
=

1
10

r2
th. (119)

In fact, due to Equation (116), it follows that

lim
s−so→+∞

〈(
Δgμν

)2
〉
= 0. (120)

Instead, one can show that constant or small-amplitude decaying solutions satisfy the Heisenberg
inequality in Equation (117) and as such realize physically admissible quantum solutions. Such a
conclusion, therefore, rules out blow-up solutions from the class of physically-admissible solutions in
the same limit.

8. Conclusions

In this paper, the basic principles of a new trajectory-based approach to manifestly-covariant
quantum gravity (CQG) theory have been laid down. This provide new physical insight into
the nature and behavior of the manifestly-covariant quantum-wave equation and corresponding
equivalent set of quantum hydrodynamic equations that are realized by means of CQG-theory. For its
similarity with the analogous Generalized Lagrangian Path approach holding in non relativistic
quantum mechanics [22], this is referred to here as Generalized Lagrangian Path (GLP) approach (or
representation) of CQG-theory.

The GLP approach presented here has been shown to be ontologically equivalent to the ”standard”
formulation of CQG-theory based on the Eulerian CQG-wave equation. This occurs because, provided
the stochastic PDF f (Δg, ĝ) is identified with the Gaussian PDF ρG(Δg± ĝ(ro)) defined above (see
Equation (69)), it does not require any kind of addition/modification of the related fundamental
axioms established in [10]. This feature permits one to effectively reconcile the Eulerian and Lagrangian
descriptions of covariant quantum gravity, which are achieved respectively in terms of the Eulerian
and GLP representations of CQG-wave equation and of the quantum wave-function. Nevertheless, it
also provides a statistical generalization of the Bohmian interpretation of quantum gravity based on
the notion of unique, i.e., deterministic, configuration-space Lagrangian trajectories belonging to the
configuration space Ug spanned by the symmetric tensor field g ≡

{
gμν

}
. In fact, in the framework of

GLP-theory, each Bohmian trajectory is associated with an infinite ensemble of stochastic Lagrangian
trajectories associated with the stochastic tensor variable Δgμν. Thus, GLP trajectories replace the
customary deterministic Lagrangian trajectories (LPs) adopted in the original Bohmian approach, from
which they inherently differ for their stochastic character. Consequently, it is shown that it is possible
to replace each LP with a corresponding continuum set of stochastic GLP.

A further notable aspect of the GLP approach is, however, that it realizes at the same time
also a solution method for the CQG-wave equation and the corresponding equivalent quantum
hydrodynamic equations. This is obtained by means of the explicit parameterization of the same
equations (and of the quantum wave-function) in terms of the stochastic displacement tensor Δgμν

introduced here (see Equation (11)). As an application of the theory developed in this paper, the
problem of constructing Gaussian or Gaussian-like solutions of the CQG-wave equation has been
addressed. For this purpose, the case of vacuum fields, i.e., obtained in the absence of external
classical sources but with the inclusion of a non-vanishing cosmological constant, has been considered.
In this connection the explicit construction of solutions of the CQG-quantum hydrodynamic equations
has been carried out in which the GLP-parameterized quantum wave function ψ(GL(s), Δg, s) is
characterized by a globally-defined Gaussian-like or Gaussian PDF which satisfies identically the
corresponding quantum continuity equation. As a notable result, the validity of the emergent-gravity
picture has been demonstrated, referred to here as ”second-type emergent-gravity paradigm”. Accordingly,
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the background space-time metric tensor ĝμν(r) of CQG-theory has been identified in terms of a
suitable quantum/stochastic expectation value of the quantum state, i.e., weighted in terms of the
corresponding quantum PDF.

In addition, the problem of the construction of separable solutions of the quantum Hamilton-Jacobi
(H-J) equation has been posed which satisfy at the same time also the requirements that the
quantum wave function ψ(GL(s), Δg, s) is dynamically consistent, in the sense that the corresponding
(GLP-parameterized) quantum PDF ρ(GL(s), Δg, s) associated with the quantum wave-function is
globally conserved. The solution of the H-J equation has been based on the polynomial representations
of the quantum effective potential. In particular, separable solutions for the GLP-parameterized
quantum phase function S(GL(s), Δg, s) have been determined based on a harmonic (i.e., second
degree) polynomial expansion with respect to the stochastic displacement tensor Δgμν. The coefficients
of the same expansion have been shown to satisfy an equivalent set of first-order evolution ODEs,
denoted as GLP-equations. The same coefficients admit both stationary and non-stationary solutions
with respect to the dependence on the background proper-time s. Non-stationary solutions include,
in particular, the case of small-amplitude solutions which remain globally (i.e., for all s greater than
the initial proper-time so) suitably close to the stationary ones. These have been identified here with
particular solutions exponentially decaying (to the constant ones).

These conclusions show that particular solutions of the CQG-quantum wave-equation exist which
are characterized by Gaussian quantum PDF. Remarkably, the same solutions can be either stationary,
i.e., characterized by quantum wave-functions of the type ψ = ψ(GL(s), Δg), or non-stationary ones
ψ(GL(s), Δg, s), namely depending explicitly on the proper-time s. This scenario is promising for its
possible implications suggesting that the investigation of non-stationary solutions of the quantum
wave-function may be actually an important and challenging subject of future research in quantum
gravity, quantum cosmology and CQG-theory.
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Appendix A. Evaluation of p(s) and Differential Iden-Tities

In this appendix, the proof of Equation (85) in Proposition #4 and the determination of the 4-scalar
factor p(s) are explicitly pointed out in the following propositions.

Proposition A1. Determination of the tensor field
∂Δgαβ

∂gLμν(s′)

Given validity of the polynomial representation in Equation (83), the tensor field
∂Δgαβ

∂gLμν(s′)
takes the form

∂Δgμ′ν′

∂gLμν(s′)
= −

∂Δgμ′ν′

∂GLμν(s′)
, (A1)

with
∂Δgμ′ν′

∂gLμν(s′)
= δ

μ
μ′δ

ν
ν′ p(s), (A2)

and p(s) is the 4-scalar function determined by the integral equation
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p(s) =
1

1 +
∫ s

so
ds′ 1

αL a(s′)g(s′)
. (A3)

Here, a(s) ≡ 1
16 apq

αβ(s)δ
αβ
pq and apq

αβ(s) is the tensor introduced in the polynomial decomposition of the phase

function S(q) given by Equation (83).

Proof. One first notices that, provided the quantum phase function is of the form S(q) = S(q)(Δg, s′),
and noting that δg(o)Lμν = δG(o)

Lμν + Δgμν, then the LP-initial-value problem in Equation (30) delivers

δgLμν(s) = δg(o)Lμν +
∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)
∂gμν

L (s′)
, (A4)

or equivalently

δgLμν(s) = δG(o)
Lμν + Δgμν +

∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)
∂gμν

L (s′)
. (A5)

The last equation therefore implies also that the solution to the GLP-initial-value problem in
Equation (50) is similarly

δGLμν(s) = δgLμν(so)− Δgμν +
∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)
∂gμν

L (s′)
. (A6)

Then, differentiating Equation (A5) with respect to δgLμν(s) while keeping δGLμν(so) ≡ δG(o)
Lμν

constant, yields

δ
μ
μ′δ

ν
ν′ ≡

∂gLμ′ν′(s)
∂gLμν(s)

=
∂Δgμ′ν′

∂gLμν(s)
+

∂Δgαβ

∂gLμν(s)
∂

∂Δgαβ

∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)

∂gμ′ν′
L (s′)

, (A7)

where in the following we shall adopt the short notation δ
μν
μ′ν′ ≡ δ

μ
μ′δ

ν
ν′ and by construction

∂S(q)(Δg, s′)

∂Gμ′ν′
L (s′)

= −∂S(q)(Δg, s′)

∂gμ′ν′
L (s′)

, (A8)

and hence
∂Δgμ′ν′

∂Gμν
L (s)

= −
∂Δgμ′ν′

∂gμν
L (s)

. (A9)

Consequently, if one performs the differentiation of Equation (A6) with respect to GLμν(s) while

keeping δgLμν(so) ≡ δg(o)Lμν as constant, it follows equivalently that

δ
μ
μ′δ

ν
ν′ ≡

∂GLμ′ν′(s)
∂GLμν(s)

= −
∂Δgμ′ν′

∂GLμν(s)
−

∂Δgαβ

∂GLμν(s)
∂

∂Δgαβ

∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)

∂gμ′ν′
L (s′)

. (A10)

Therefore, from Equation (A7), denoting δ
μν
μ′ν′ ≡ δ

μ
μ′δ

ν
ν′ , it follows

δ
μ′ν′
μν =

∂Δgμ′ν′

∂gμν
L (s)

+
∂Δgαβ

∂gμν
L (s)

∂

∂Δgαβ

∫ s

so
ds′

1
αL

∂S(q)(Δg, s′)
∂gLμ′ν′(s′)

, (A11)

where due to the polynomial representation in Equation (83)
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∂S(q)(gL(s′), Δg, s′)
∂gLμ′ν′(s′)

=
∂Δgpq

∂gLμ′ν′(s′)

[
apq

p′q′(s
′)Δgp′q′ + bpq(s)

]
, (A12)

∂

∂Δgαβ

∂S(q)(gL(s′), Δg, s′)
∂gLμ′ν′(s′)

= aμν
αβ(s

′)
∂Δgμν

∂gLμ′ν′(s′)
. (A13)

As a result Equation (A11) delivers

δ
μ′ν′
μν =

∂Δgμ′ν′

∂gμν
L (s)

+
∂Δgαβ

∂gμν
L (s)

∫ s

so
ds′

apq
αβ(s

′)

αL
∂Δgpq

∂gLμ′ν′(s′)
, (A14)

thus implying validity of Equation (A2). In fact, thanks to Equation (A2), we can write the previous
equation as

δ
μ′ν′
μν = δ

μ′ν′
μν g (s) + δ

αβ
μν g (s)

∫ s

so
ds′

apq
αβ(s

′)

αL
δ

μ′ν′
pq g

(
s′

)
. (A15)

Then, defining

a
(
s′

)
δ

μ′ν′
μν ≡ δ

αβ
μν apq

αβ(s
′)δμ′ν′

pq (A16)

and substituting, after simplification we get that

g(s)
[

1 +
∫ s

so
ds′

1
αL

a(s′)g(s′)
]
= 1, (A17)

while straightforward algebra yields

a(s′) =
1
16

δ
αβ
μν apq

αβ(s
′)δμ′ν′

pq δ
μν
μ′ν′ ≡

1
16

apq
αβ(s

′)δαβ
pq . (A18)

Thus, provided 1 +
∫ s

so
ds′ 1

αL a(s′)g(s′) 
= 0, Equation (A3) follows.

Proposition A2. Determination of the 4-scalar function p(s)
In validity of Equation (A3), it follows that

|p(s)| = 1(
1 + 2

αL

s∫
so

ds′a(s′)

)1/2 . (A19)

Proof. In fact, if p(s) 
= 0, Equation (A17) implies

1 +
∫ s

so
ds′

1
αL

a(s′)g(s′) =
1

p(s)
. (A20)

Differentiating the same equation term by term with respect to s yields the ODE

1
αL

a(s)p(s) = − p′(s)
p2(s)

. (A21)

This can be solved noting that p(so) = 1. Thus, one finds

1

2p (s)2 −
1
2
=

1
αL

s∫
so

ds′a(s′), (A22)

whose solution is given by Equation (A19).
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Appendix B. Differential Identities for the Tensor Coefficients aαβ
pq(s)

In this appendix, the explicit calculations are reported for several useful identities invoked in
Section 7. First, one notices that, invoking Equation (96), it follows that

aαβ
μν(s)aμν

pq (s) =
1
4

[
a2
(o)(s)δ

αβ
pq +

(
4a2

(1)(s) + 2a(o)(s)a(1)(s)
)

ĝpq(s)ĝαβ(s)
]

, (A23)

and similarly
4a2

(1)(s) + 2a(o)(s)a(1)(s) = 2a2
(1)(s) + 4a(s)a(1)(s), (A24)

a2
(o)(s) + 4a2

(1)(s) + 2a(o)(s)a(1)(s) =

=
[

a(o)(s) + a(1)(s)
]2

+ 3a2
(1)(s) = 4a2(s) + 3a2

(1)(s). (A25)

The prescription in Equation (96) implies therefore:
(A) from Equation (84):

D
Ds

S(q)(Δg, s) =
1
4

ΔgαβΔgμν

[
d
ds

a(o)(s)δ
αβ
μν + ĝμν(r)ĝαβ(s)

d
ds

a(1)(s)
]

+Δgαβ d
ds

bαβ(s) +
d
ds

c(s); (A26)

(B) from Equation (89):

∂S(q)(GL(s), Δg, s)
∂gμν

L (s)
=

1
2

[
a(o)(s)δ

αβ
μν + a(1)(s)ĝμν(r)ĝαβ(r)

]
Δgαβ p(s) + bμν(s)p(s). (A27)

Hence, the quantum 4-tensor fluid velocity field can be represented as

Vμν =
1

2αL

[
a(o)(s)δ

αβ
μν + a(1)(s)ĝμν(r)ĝαβ(r)

]
Δgαβ p(s) +

1
αL

bμν(s)p(s), (A28)

with the first term on the R.H.S., linearly proportional to Δg, representing the stochastic part of the
quantum fluid velocity. Similarly one obtains that, in Equation (89), the following identities hold:⎧⎨⎩ aαβ

μν(s)aμν
pq (s) = 1

4

[
a2
(o)(s)δ

αβ
pq +

(
4a2

(1)(s) + 2a(o)(s)a(1)(s)
)

ĝpq(s)ĝαβ(s)
]

,

2aμν
αβ(s)bμν(s) =

[
a(o)(s)δ

αβ
μν + a(1)(s)ĝμν(r)ĝαβ(r)

]
bμν(s).

(A29)
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Abstract: A finite non-classical framework for qubit physics is described that challenges the
conclusion that the Bell Inequality has been shown to have been violated experimentally,
even approximately. This framework postulates the primacy of a fractal-like ‘invariant set’ geometry
IU in cosmological state space, on which the universe evolves deterministically and causally, and from
which space-time and the laws of physics in space-time are emergent. Consistent with the assumed
primacy of IU , a non-Euclidean (and hence non-classical) metric gp is defined in cosmological state
space. Here, p is a large but finite integer (whose inverse may reflect the weakness of gravity).
Points that do not lie on IU are necessarily gp-distant from points that do. gp is related to the
p-adic metric of number theory. Using number-theoretic properties of spherical triangles, the
Clauser-Horne-Shimony-Holt (CHSH) inequality, whose violation would rule out local realism,
is shown to be undefined in this framework. Moreover, the CHSH-like inequalities violated
experimentally are shown to be gp-distant from the CHSH inequality. This result fails in the singular
limit p = ∞, at which gp is Euclidean and the corresponding model classical. Although Invariant
Set Theory is deterministic and locally causal, it is not conspiratorial and does not compromise
experimenter free will. The relationship between Invariant Set Theory, Bohmian Theory, The Cellular
Automaton Interpretation of Quantum Theory and p-adic Quantum Theory is discussed.

Keywords: Bell theorem; fractal geometry; p-adic metric; singular limit; gravity; conspiracy; free will;
number theory; quantum potential

1. Introduction

Recent experiments (e.g., [1]) have seemingly put beyond doubt the conclusion that the
CHSH version

|Corr(0, 0) + Corr(1, 0) + Corr(0, 1)−Corr(1, 1)| ≤ 2 (1)

of the Bell Inequality is violated robustly for a range of experimental protocols and measurement
settings. As a result, it is very widely believed that physical theory cannot be based on Einsteinian
notions of realism and local causality (‘local realism’). Here, Corr(X, Y) denotes the correlation between
spin measurements performed by Alice and Bob on entangled particle pairs produced in the singlet
quantum state, where X = 0, 1 and Y = 0, 1 correspond to pairs of freely-chosen points on Alice and
Bob’s celestial spheres, respectively.

Of course, in the precise form as written, (1) has not been shown to have been violated
experimentally. In practice, the four correlations on the left-hand side of (1) are each estimated
from a separate sub-ensemble of particles with measurements performed at different times and/or
spatial locations. Hence, for example, the measurement orientation corresponding to Y = 0 for the first
sub-ensemble cannot correspond to precisely the same measurement orientation Y = 0 for the second
sub-ensemble; as a matter of principle, Bob cannot shield his apparatus from the effects of ubiquitous
gravitational waves associated for example with distant astrophysical events. Hence, as a matter of
principle, what is actually violated experimentally is not (1) but

|Corr(0, 0) + Corr(1, 0′) + Corr(0′, 1)−Corr(1′, 1′)| ≤ 2, (2)

Entropy 2018, 20, 356; doi:10.3390/e20050356 www.mdpi.com/journal/entropy402
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where, relative to the Euclidean metric of space-time, 0 ≈ 0′ and 1 ≈ 1′ for X and Y.
Could the difference between 0 ≈ 0’, 1 ≈ 1′ on the one hand, and 0 = 0′, 1 = 1′ on

the other, actually matter? More specifically, is there a plausible framework for physical theory
where (1) is the singular [2] rather than the smooth limit of (2) as 0′ → 0, 1′ → 1 and, therefore,
where (2) is in some sense physically distinct from (1), no matter how accurate are our finite-precision
experiments? Intuitively, it would seem not, as Bell [3] himself argued with a form of ‘epsilonic’
analysis. Indeed, common sense might suggest to even contemplate such a possibility would be to
entertain a theory that was not only grotesquely fine-tuned, but one that was inconsistent with the fact
that the experimental violation of (2) does not require any precision in setting the polariser orientations.

The purpose of this paper is to argue that, in this respect, we are being fooled by our intuition.
It is worthwhile beginning the discussion with a close analogy: the Penrose Impossible Triangle
(sometimes known as the tribar). The triangle seems impossible because we intuitively assume that
any two sides of the triangle necessarily become close at a common vertex. Relaxing this metric
assumption makes it possible to construct such Penrose Triangles in 3D physical space: it is the
projection into 2D of such a 3D structure that provides the illusion (but not the reality) of inconsistency.

The relevance of this example is to draw attention to the notion of distance. There is no doubt
that space-time has a locally Euclidean metric. However, should we assume such a metric for state
space? In conventional quantum theory based on complex Hilbert Space, this assumption is forced
on us. However, motivated by both nonlinear dynamical systems theory and p-adic number theory,
we outline in Section 2 a plausible and robust locally causal framework where the metric on state space
is explicitly not Euclidean. This framework arises from the ‘invariant set’ postulate [4–6] that a certain
fractal-like subset IU of cosmological state space is primal in the sense that the universe itself can be
considered a deterministic dynamical system evolving on IU , and moreover that space-time and the
laws of physics in space-time are emergent from the geometry of IU . Within ‘Invariant Set Theory’,
complex Hilbert states have finite frequentist probabilistic interpretations as incompletely defined
trajectory segments on IU , requiring squared amplitudes and complex phases take rational values.
By implication, complex Hilbert states with irrational squared amplitudes or irrational complex phases
have no status as probabilistically defined trajectory segments on IU and are therefore ’non-ontic’.
A key number theorem is introduced that establishes an incompatibility between rational angles and
rational cosines and which completely underpins the viability of the invariant set postulate as a realistic
causal basis for quantum physics. In Section 2, a metric gp (where p is a large integer) is introduced
on state space, which respects the fundamental primacy of IU and with respect to which ontic and
non-ontic Hilbert states are necessarily distant from one another.

After a warm-up discussion in Section 3 where the number theorem above is used to account for
the non-commutativity of spin observables in Invariant Set Theory, in Section 4 we discuss the Bell
Theorem. It is shown that the violation of (2) is generically robust to gp-small-amplitude perturbations.
However, the set of all inequalities encompassed by such perturbations does not and cannot include
the Bell inequality (1) itself, whose violation would be needed to rule out local realism [7]. As shown,
(1) is necessarily constructed from Hilbert states with irrational descriptors, i.e., non-ontic states not
lying on IU and therefore gp distant from the ontic states lying on IU . In this sense, (1) is neither
satisfied nor violated in Invariant Set Theory: it is simply undefined. This is not so much a loophole
as a gaping chasm in the Bell Theorem, allowing a new type of a locally causal theory as a candidate
descriptor of quantum physics (and hence, potentially, a novel approach to synthesise quantum
and gravitational physics). Invariant Set Theory has the added bonus that it is essentially a finite
theory, in contradistinction with quantum theory, where the role of the infinitesimal appears to be
foundational [8]. As discussed in Section 5, although deterministic, Invariant Set Theory is not
conspiratorial and respects experimenter free will. In Section 6, Invariant Set Theory is compared
with Bohmian Theory, ’tHooft’s Cellular Automaton Interpretation of Quantum Theory and p-Adic
Quantum Theory. Further discussion and analysis of the issues of robustness and local causality are
provided in Section 7.
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2. Invariant Set Theory

Results below summarise more detailed analysis given in [6]. As mentioned above, we posit some
primal compact fractal-like geometry IU in cosmological state space, on which the universe U as a
self-contained locally causal deterministic system evolves [4,5]. Figure 1 illustrates the local fractal
structure of IU . On the left is shown, at some (j− 1)th fractal iterate of IU , a single state-space trajectory
segment (‘history’) in some three-dimensional subspace of state space. At the jth iterate, this trajectory
segment comprises a helix of N " 0 fine-scale trajectories and an additional N + 1th trajectory (not
shown) at the centre of the helix. The winding frequency ω of a jth iterate helical segment is assumed
proportional to the energy E associated with the subsystem described by this subspace. In this sense,
the deBroglie relationship E = h̄ω reflects a key element of the invariant set postulate: that the laws of
physics in space-time are manifestations of the geometry of the more primal IU . At the (j + 1)th iterate
(not shown), the helical trajectory segments are themselves found to be helical. In general, a cross
section through a (j− 1)th trajectory segment comprises a Cantor set C comprising p = N + 1 iterated
disks (Figure 2).

Figure 1. A state-space trajectory segment, which appears to be a simple line on some coarse scale,
is in fact found to be, on magnification, a helix of trajectories. On further magnification, each of
these helical trajectory segments is itself a helix of trajectories, and so on. A cross section through the
original coarse-scale trajectory segment is a Cantor Set as illustrated below. At any particular level of
magnification (i.e., fractal iterate), the trajectory segments can be labelled a or �a according to the regime
to which they evolve.

Figure 2. A Cantor Set C, comprising p = 17 iterated disks: N = 16 iterated pieces around the edge
of a disk and 1 at the centre of a disk. Here, a single disk at the (j− 1)th fractal iteration comprises
17 jth-iterate disks, and each of these comprises 17 (j + 1)th-iterate disks. An element of C can be
represented by a sequence {φ1, φ2, φ3, . . .}, where φi/2π = n/N ∈ Q.

We will now suppose that, at any fractal iterate, the N helical trajectory segments in Figure 1 can
be labelled according to a process illustrated in Figure 3, associated with the divergence and nonlinear
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clustering of trajectories into two distinct state-space regimes or clusters labelled a and �a (the central
(N + 1)th trajectory is assumed to lie on the basin boundary and hence to evolve neither to a nor �a).
This divergence reflects the generic phenomenon of decoherence (essentially the butterfly effect) as the
sub-system interacts with its environment. These clusters correspond to the measurement eigenstates
of quantum theory.

Figure 3. Here, N = 16 classical state-space trajectories diverge into two distinct regimes labelled a
and �a. In this example, seven of the 16 evolve to the �a regime and the other nine evolve to the a regime.
In terms of the parameter θ described in the text, here cos θ = 1/8 ∈ Q.

Within this geometric framework, complex Hilbert vectors can be used to provide some
incomplete probabilistic description of reality. For example, consider the (j + 1)th iterate disks
inside a jth iterate disk and labelled φ2 in Figure 2. Suppose that N cos2(θ/2) of these (j + 1)th iterate
disks are labelled a, and that reality corresponds to one of the N disks and is therefore either labelled a
or �a. Then, as discussed in [6] in more detail and with φ = φ2, an incomplete representation of reality
can be given probabilistically by the complex Hilbert vector

cos
θ

2
|a〉+ eiφ sin

θ

2
|�a〉. (3)

In particular, it is necessary that φ/2π and cos2(θ/2) (and hence cos θ) are rational numbers.
By contrast, a putative Hilbert vector where cos θ /∈ Q or φ/2π /∈ Q cannot provide an incomplete
representation of any trajectory segment on IU and, therefore, in Invariant Set Theory, cannot
correspond to an ontic state. More general tensor-product Hilbert states can also be used to provide
incomplete representations of multi-variate properties of reality. Again, it is necessary that all squared
amplitudes are rational, and all complex phase angles are rational multiples of 2π [6].

A crucial number theorem that completely underpins this framework is the following:

Theorem 1. Let φ/π ∈ Q. Then, cos φ /∈ Q except when cos φ = 0,± 1
2 ,±1. [9,10]

Proof. Assume that 2 cos φ = a/b, where a, b ∈ Z have no common factors and b 
= 0.
Since 2 cos 2φ = (2 cos φ)2 − 2, then 2 cos 2φ = (a2 − 2b2)/b2. Now, a2 − 2b2 and b2 have no common
factors, since if p were a prime number dividing both, then p|b2 =⇒ p|b and p|(a2 − 2b2) =⇒ p|a,
a contradiction. Hence, if b 
= ±1, then the denominators in 2 cos φ, 2 cos 2φ, 2 cos 4φ, 2 cos 8φ . . .
get bigger without limit. On the other hand, if φ/π = m/n, where m, n ∈ Z have no common
factors, then the sequence (2 cos 2kφ)k∈N admits at most n values. Hence, we have a contradiction.
Hence, b = ±1 and cos φ = 0,± 1

2 ,±1.

We now define a metric gp that respects the primacy of IU where ontic states on IU and non-ontic
states off IU are necessarily distant from one another (no matter how close they may appear from
a Euclidean perspective). For all x ∈ C, y ∈ C and z /∈ C,
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• gp(x, y) is Euclidean,
• gp(x, y) ≤ 1,
• gp(x, z) = gp(y, z) = p.

Hence, if p " 1, we can say that z is gp-distant from both x and y. It is easily shown that gp

satisfies the axioms for a metric (e.g., the triangle inequality) on cosmological state space and that gp is
related to the p-adic metric of number theory [6].

3. The Sequential Stern-Gerlach Experiment

As a warm up to the Bell Theorem, we discuss in this Section one of the classic experiments
designed to introduce students to non-commutativity of spin observables in quantum theory (e.g., [11]).
Consider an ensemble of spin-1/2 particles prepared by the first of three Stern-Gerlach apparatuses
(Figure 4a) with spins oriented in the direction â in physical 3-space. The particles that are prepared
spin-up by this first apparatus pass through a second Stern-Gerlach apparatus oriented in the direction
b̂. The particles that are output along the spin-up channel of the second apparatus are then passed into
a third Stern-Gerlach apparatus oriented in the direction ĉ. The directions â, b̂ and ĉ correspond to
points A, B and C on the celestial sphere S2 (Figure 4b). Typically, the directions â, b̂ and ĉ are designed
to be coplanar, i.e. A, B and C lie on a great circle. However, this is impossible to achieve precisely: as a
matter of principle, one cannot shield the experiment from the distorting effects of gravitational waves.
Hence, as in Figure 4b, we assume that A, B and C are the vertices of some non-degenerate triangle
(ABC, where the angle γ is not equal to 180◦ precisely.

Figure 4. (a) a sequential Stern-Gerlach experiment where a particle is sent through three Stern-Gerlach
devices, A, B and C; (b) A, B and C shown as directions on the celestial sphere. Although to
experimental accuracy A, B and C may be coplanar, they are not coplanar precisely. In invariant
set theory, we demonstrate the non-commutativity of spin observables by number theory.

We now show that if a particle was measured by the apparatus in the order A-B-C, then it
could not have been measured in the order A-C-B. That is, the measurements in directions b̂ and ĉ

cannot be performed simultaneously. In Invariant Set Theory, this result is derived by number theory.
Consider a particle sent through the sequential Stern-Gerlach apparatus in the configuration A-B-C
and where the detector corresponding to either c or �c was triggered. Then, in Invariant Set Theory, we
require that all of cos θAB, cos θBC and γ must be rational for the experiment to lie on IU and hence
correspond to reality. We now ask the question: what would the outcome have been for that particle
had the configuration been A-C-B. For there to have been a definite outcome, we require, in addition,
that cos θAC ∈ Q. However, by the cosine rule for spherical triangles

cos θAC = cos θAB cos θBC + sin θAB sin θBC cos γ. (4)

The right-hand side is the sum of two terms. The first is rational since it is the product of two
terms each of which, by construction, is rational. The second is the product of three terms the last
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of which, cos γ, is irrational, except for the eight exceptions listed in the Theorem above. Since γ is
only approximately equal to 180◦, cos γ is irrational. Since θAB, θBC and γ are independent degrees
of freedom defining the triangle(ABC, there is no reason why sin θAB and sin θBC should conspire
with cos γ to make the product sin θAB sin θBC cos γ rational. Hence, cos θAC is the sum of a rational
and an irrational and is therefore irrational. Hence, for the particle where A-B-C was measured, the
counterfactual A-C-B is undefined and could not be an element of reality. Put another way, the state
U′ /∈ IU of the universe associated with the configuration A-C-B is gp distant from the state U ∈ IU
associated with configuration A-B-C.

We can of course envisage performing two separate sequential Stern-Gerlach experiments (one on
a Monday, the other on a Tuesday, say) where the order of the Stern-Gerlach apparatuses was A-B-C
and A-C-B, respectively. For Monday’s experiment, cos θAB and cos θBC are rational, and the angle
subtended at B is a rational multiple of 2π. For Tuesday’s experiment, cos θAC and cos θBC are rational,
and the angle subtended at C is a rational multiple of 2π. As before, this would be impossible if
the triangle (ABC was precisely the same on Monday and Tuesday. However, this will not be the
case—background space-time ripples are necessarily different on Tuesday compared with Monday.

One potential objection should be answered before moving on to the Bell Theorem.
In the discussion above, θ denoted a relative orientation in physical space, whereas in the discussion in
Section 2, θ was merely a parameter whose cosine gave the probability of one measurement outcome
rather than another. How is it that θ can now be interpreted as an orientation in physical space?
The answer relates to the existence of spinorial structure on C. To see this, the reader is directed to [6].

4. The Bell Inequality

Consider now the relationship between (1) and (2) from the perspective of Invariant Set Theory.
As above, let X = 0, 1, Y = 0, 1 denote four random points on the sphere, three of which (relevant to
the discussion below) are shown in Figure 5a. Let θXY denote the relative orientation between an X
point and a Y point. Recall that complex Hilbert states can represent uncertain trajectory segments on
IU providing squared amplitudes are rational. Hence, Corr(X, Y) = − cos θXY requires cos θXY ∈ Q.

Suppose Alice freely chooses X = 0 and Bob Y = 0 when measuring a particular entangled
particle pair. Then, it must be the case that cos θ00 ∈ Q. Could Alice and Bob have chosen X = 1 and
Y = 0 when measuring this same particle pair, given that they actually chose X = 0, Y = 0? In other
words, does the state U′ of the universe in which this counterfactual experiment takes place also lie on
IU? To answer the question in the affirmative, we additionally require cos θ10 ∈ Q. However, as with
the Stern-Gerlach analysis, applying the cosine rule for spherical triangles, we have

cos θ10 = cos θ00 cos αX + sin θ00 sin αX cos γ, (5)

where αX is the angular distance between X = 0 and X = 1. Now, it is always possible for Alice
to send the particle which she has just measured in the X = 0 direction, back into her measuring
apparatus to be again measured in the X = 1 direction. Hence, cos αX must be rational. Now, we also
require the angle γ to be a rational multiples of 2π. This would be so if the three points X = 0, 1 and
Y = 0 lay on a great circle exactly, so that γ = 180◦ precisely. However, as before, because of ubiquitous
unshieldable gravitational waves, this cannot be the case. Hence, cos θ01 is the sum of two terms,
the first a rational and the second the product of three independent terms, the last of which is irrational.
Being independent, these three terms cannot conspire to make their product rational. Hence, cos θ01 is
the sum of a rational and an irrational and must therefore be irrational. Hence, the state of the universe
U′ in which the counterfactual experiment takes place is not realistic and is gp-distant from worlds on
IU . Hence, the counterfactual question cannot be answered in the affirmative: Corr(1, 0) is undefined.
In general, it is never the case that all four correlations in (1) are definable on IU—the Bell inequality is
always undefined in Invariant Set Theory.
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Figure 5. (a) in general, it is impossible for all the cosines of the angular lengths of all three sides of
the spherical triangle to be rational, and the internal angles rational multiples of 2π. (b) what actually
occurs when (2) is tested experimentally. Here, the cosines of the angular lengths of all sides are rational.
In a precise sense, (b) is gp distant from (a).

An experimenter might ask how one could set up an experiment with sufficient care to ensure
that the corresponding Hilbert state descriptors were rational rather than irrational. The answer is that
the experimenter need take no care: if an experiment is performable, i.e., corresponds to some U ∈ IU ,
then by construction the descriptors must be rational. Physical perturbations (e.g., gravitational waves
in space-time) only introduce uncertainty in the values of the rational descriptors and not in the
fact that they are rational. Conversely, if the descriptor of a counterfactual state is irrational, then
no amount of noise that respects the primacy of IU can change it into an ontic state. This property
provides an attractive finitist feature that is missing in conventional physical theories based on R

or C and hence in theories that utilise the Euclidean state-space metric. Hence, in the real world of
experiments, both cos θ00 and cos θ10′ in (2) are necessarily and robustly rational (Figure 5b), consistent
with the fact that the individual sub-ensembles are measured at different times and/or locations,
and that unshieldable gravitational waves ensure that orientations are not precisely the same when
these different sub-ensembles are measured. Indeed, we can infer the existence of an effectively
infinite family of orientations where all of cos θ00, cos θ10′ , cos θ0′1, cos θ1′1′ in (2) are rational. However,
by construction, none of the orientations so generated includes those associated with (1), which is
therefore indeed the singular limit of and gp-distant from (2). Just as the paradox of the Penrose
‘impossible triangle’ is resolved by realising that the sides of the triangle are not necessarily close near
a vertex of the triangle, so too here. As discussed in [6], many of the familiar ‘paradoxes’ of quantum
theory can be interpreted realistically and causally with gp as the metric of state space.

5. Conspiracy and Free Will

As discussed, if the spins of an entangled particle pair are measured relative to X = 0, Y = 0,
then by construction the spins of this particular particle pair could not have been measured relative
to the directions X = 1 and X = 0, respectively. This is nothing to do with entanglement per se,
but is rather a manifestation of quantum complementarity (associated with the non-commutativity of
quantum observables). For example, as discussed in Section 3, if an experimenter performs a sequential
Stern-Gerlach experiment in the order A-B-C, then, as a matter of principle, an experiment could
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not have been performed on the same particle in the order A-C-B. That is to say, if the state U of the
universe associated with one experiment lies on IU , then the corresponding state U′ of the universe
associated with the other experiment does not lie on IU and is gp distant from states on IU .

This implies a violation of the principle of Measurement Independence (MI), usually framed in
terms of some probability density ρ(λ) of so-called ‘hidden-variables’ λ associated with the particles
in question. In particular, MI is violated if

ρ(λ) 
= ρ(λ|m), (6)

where m denotes some particular measurement, e.g., the A-B-C experiment or the X = 0, Y = 0
experiment. Another way of saying this is that the ‘hidden variables’ are contextual [12] and it is well
known that contextual hidden variables could provide a route to negating the Bell Theorem. However,
violation of MI is often seen as either implausibly conspiratorial [13] or inconsistent with experimenter
free will [14]. As discussed below, Invariant Set Theory is neither implausibly conspiratorial nor
inconsistent with experimenter free will.

It is important in the discussion below to recognise that, in Invariant Set Theory, the violation of
MI is not imposed by fiat. Rather, it is a consequence of the postulate that IU is a primal fractal-like
geometry on which states of the universe evolve.

5.1. Nullifying the Notion of Conspiracy

Consider a specific and pertinent example. Suppose, in a Bell experiment, the measuring
apparatuses are set according to the frequency ν of photons emitted by distant stars. If ν < ν0,
a reference frequency, suppose the X = 0, Y = 0 directions are chosen; if ν > ν0, then the X = 1, Y = 0
directions are chosen. Let Λ00 denote some sample space of hidden variables associated with the choice
X = 0, Y = 0 and so on. In Invariant Set Theory, if λ ∈ Λ00, then the outcome of measurements in the
X = 0, Y = 0 directions is well defined, but, by the discussion above, the outcome of measurements in
the X = 1, Y = 0 directions is undefined. Conversely, if λ ∈ Λ10, then the outcome of measurements
in the X = 1, Y = 0 directions is well defined, but the outcome of measurements in the X = 0, Y = 0
directions is undefined.

The notion of conspiracy arises because we have two seemingly independent pieces of information
that determine the type of measurement made: the frequency ν and the hidden variables λ. Since the
photon is emitted long before the entangled particles, and in a different part of the universe, one
could imagine that these quantities can be varied independently of one another. If this is so, then the
possibility that ν < ν0 but λ ∈ Λ10 leads to inconsistency since the latter combination is associated with
a state of the universe not lying on IU . Hence, there must be some unpalatable ‘conspiracy’ between ν

and λ, so the argument goes, to prevent such inconsistency.
However, this conclusion is incorrect. Firstly, a thousand years (say) before the experiment

is performed, the photon does not and cannot ‘know’ that its frequency (and not, say, bits from
a to-be-made sci-fi movie) will be the determinant of some future measurement settings. If the
experimenters decide what whimsical process (photons or movie bits) they will use to set the
measurement orientations at space-time event D, then the information needed to determine the
nature of this decision will be completely delocalised on spacelike hypersurfaces in the causal past
of D. Perturbing any one bit anywhere in the causal past of D could change the nature of this decision.
This is the butterfly effect, generic to nonlinear systems evolving on fractal attractors, and the stuff of
numerous sci-fi movies.

Similarly, it is incorrect to assume that the entangled particles ‘know’ whether their hidden
variables belong to Λ00 or Λ10. Consistent with both the quantum field-theoretic notion of a particle
as a field excitation, and the invariant set premise that the laws of physics in space-time derive from
a holistic geometry in state space, it is incorrect to think of λ as somehow internal and localised to
the particles being measured. Consider the following analogy. Babies (almost always) either belong
to the set Λmale or Λfemale of babies who are male or female at birth. Information that determines
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which of the two sets a particular baby belongs is internal to the baby. This type of analogy describes
classical hidden-variable theory (probe the particle to find its hidden variables and determine what
spin it will have when measured in a particular direction), but does not describe the situation here.
A more accurate analogy is this: at birth, all babies either belong to the set ΛL or Λ

�L
of humans that,

as adults, either fall in love or don’t. Information that determines to which of ΛL or Λ
�L

a particular baby
belongs is clearly not internal to the baby. In particular, if LB denotes the event where adult Bob falls
in love, then the information λ that determines that baby Bob belongs to ΛLB is (as above) completely
delocalised on spacelike hypersurfaces in the causal past of LB and hence cannot, in principle, be known
to baby Bob. Because λ is delocalised in this way, then when a counterfactual experiment is described
as an alternative experiment on the same particle, i.e., on the same λ, effectively we are describing
a hypothetical experiment where the measurement set up is changed, but the rest of the universe is
held fixed.

In short, there is no implausible conspiracy between the so-called hidden variables and determinants
of the processes which set the measurement observations. As discussed, information which determines
these supposedly independent quantities are in fact highly intertwined on spacelike hypersurfaces in
the causal past of the experiment.

5.2. Free Will and Inaccessible Determinism

The only way there can be a conflict between free will and determinism is if it was found to be
possible to compute the future algorithmically, faster than the universe actually evolves. If a computer
can predict my future actions reliably, then I am an automaton. Without this, determinism and free
will are completely compatible with one another. Is it possible to compute the future with some
faster-than-reality computational subset of the universe? No! If IU was a strict fractal, then it would
actually be non-computational [15,16]. However, if IU is some finite fractal-like limit cycle, it will
still have a property called computational irreducibility [17]: we cannot reliably predict which set of
measurement settings will be chosen with a computationally simpler approximation of the full system.
In particular, supressing just one bit of information on some initial spacelike hypersurface when
integrating forward in time can lead to a completely different choice of measurement setting. This is
again the butterfly effect and is generic for systems that evolve on fractal invariant sets in state space.
This property of computational irreducibility can be considered as implying an ‘inaccessible’ form
of determinism.

Sometimes the word ‘pre-destination’ is used as a synonym for determinism. For example,
in a deterministic world, it was already pre-destined at the time of the dinosaurs that Alice would
do this measurement and not that. For some, such pre-destination sounds implausible. What is
sometimes forgotten with this example is that the information that determines that Alice would do this
measurement and not that at the time of the dinosaurs is completely delocalised on the intersection
of some spacelike hypersurface at the time of the dinosaurs with the causal past of the event, where
Alice makes the measurement. That is to say, the information that determines Alice’s measurement
choice is completely inaccessible at the time of the dinosaurs: it is buried down at the Planck scale over
regions of space spanning hundreds of millions of light years. Changing just one bit on a Planck-scale
variable on this hypersurface could change what measurement Alice makes. For the third time, this is
the butterfly effect and generic for systems that evolve on fractal invariant sets. Is that problematic for
deterministic theories of physics?

Further discussion of the free-will issue is given in Section 7.

6. Relations to Other Approaches

In this section, we discuss the relationship between Invariant Set Theory and some other
approaches to quantum physics.
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6.1. Bohmian Theory

Since this paper was written as part of a celebration of the 100th birthday of David Bohm, it is
worth commenting on possible links to the de-Broglie/Bohm interpretation of quantum theory [18].
Both Bohmian theory and Invariant Set theory are deterministic. However, Bohmian theory is
necessarily non-local (i.e., not locally causal) whilst Invariant Set theory is not. The reason for this
difference hinges around differences between the quantum potential, a differentiable potential function
in configuration space, and IU a fractal geometric object in state space. In particular, because there
are no ‘holes’ in the quantum potential, Bohmian theory must be counterfactually complete and
hence satisfy MI (and can therefore only violate the Bell Theorem by being nonlocal). By contrast, as
discussed, the Invariant Set does generically have holes, is therefore not counterfactually complete,
and hence does not satisfy MI and therefore is not required to satisfy the Bell inequalities despite being
locally causal.

This raises the following tantalising possibility. Perhaps one should think of the Bohmian
quantum potential as a ‘coarse-grained’ approximation to the fractal geometric structure of state
space. As a simple illustration, it would be possible to mimic some aspects of the behaviour of the
state vector of the Lorenz ’63 system [19] by a stochastically forced motion in a double potential well.
Of course, the fractal structure of the attractor would be ‘smoothed out’ in such a potential-well system.
Thinking of the quantum potential as an approximation to some object in state space with rich geometric
number-theoretic structure may provide a direction in which to move Bohmian theory forward.

6.2. The Cellular Automaton Interpretation of Quantum Mechanics

In both Invariant Set Theory and the Cellular Automaton Interpretation of Quantum
Mechanics [20], it is concluded that quantum physics can be described by deterministic causal laws,
and where the Bell Theorem is negated through a failure of counterfactual incompleteness [20].
However, the reasons for rejecting counterfactual completeness are different in these two approaches.
The Cellular Automaton Interpretation rejects counterfactual definiteness by the assumption that the
cosmological initial conditions are somehow special, in the sense that counterfactual perturbations
to the initial conditions that would lead to the counterfactual measurements, are somehow excluded
from the theory. In common with contemporary physics, ’t Hooft separates the laws of physics from
the initial conditions, i.e., treats them as separate. Treating the initial conditions as special in this way
could be viewed as ad hoc, as well as being imprecise. What exactly is it about the initial conditions
that prevents these quantum counterfactuals?

By contrast, in Invariant Set Theory, the initial conditions and the laws of physics are not
independently specifiable items and that the Universe as a dynamical system evolves on the invariant
set. Hence, by constructions, the cosmological initial conditions must lie on the invariant set. That is to
say, there is no fundamental distinction between the laws of physics and the initial conditions in the
sense that there is in standard theory. It is the structure of the invariant set that leads to counterfactual
incompleteness i.e., where certain quantum counterfactual perturbations take a state lying on the
invariant set and take it off the invariant set. Ultimately, the structure that leads to this property is
number theoretic: that rational angles cannot have rational cosines, and vice versa.

6.3. p-Adic Quantum Theory

Over the years, there have been attempts to reformulate quantum theory, e.g., by replacing the
complex coefficients of Hilbert states with p-adic numbers (there is a p-adic correspondence) to the
complex numbers. A review of such approaches is given in [21]. One of the motivations for this
was the idea that space-time may have some fractal structure on the Planck scale. Drawing on this
work, Khrennikov [22] proposed a hidden-variable model where the probability distribution ρ(λ)

was defined on the p-adic numbers. Now, essentially because −1 = 1 + 2 + 4 . . . in 2-adic number
theory, this allows for negative probabilities, which, although very esoteric, also arose for different
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reasons in Dirac’s work on relativistic quantisation, and therefore have some basis in quantum physics.
Khrennikov argued that the existence of such negative probabilities could negate the Bell Theorem.

It is important to distance the present work from such p-adic quantum theory. Here, we
do not introduce p-adic numbers into Hilbert Space or (as a result) into probability distributions.
Fundamentally, Invariant Set Theory is a deterministic theory and not a probabilistic theory. A key
element of Invariant Set Theory is to reject the notion of the algebraically closed Hilbert Space as a
state space for quantum physics, irrespective of whether the Hilbert Space is closed on the reals, the
complexes or the p-adics. The reason for such rejection of this is ultimately so that physics can be
described finitely [6]. In Invariant Set Theory, probabilities are defined by elementary frequentism
and therefore are simply and intuitively rational numbers on the interval [0, 1]. In fact, in the work
presented in [6], maps on p-adic integers are defined to describe the deterministic laws that may
underpin quantum physics. This is where algebraic closure can be reinstated—not on the Hilbert
vectors or associated probabilities.

Indeed, the metric gp that plays such a central role in this paper, whilst motivated by the p-adic
metric and the fact that the set of p-adic integers is homeomorphic to Cantor sets, is not identical to it.
gp has the property that, if p is large, points which do not lie on IU are necessarily distant from points
that do lie on IU . This reflects the fact that the p-adic distance between p-adic numbers that are not
p-adic integers, and p-adic integers, is ≥ p.

This comparison with p-adic quantum theory raises an important point. A key motivation for
developing Invariant Set Theory (in addition to be able to describe physics finitely) was to make the Bell
Theorem understandable. If a particular formalism leads one to trade one type of incomprehensible
property (nonlocality) for another (negative probability), then, as far as the author is concerned, there is
no compelling reason to adopt such a formalism. As discussed further in the next Section, Invariant Set
Theory does not require any esoteric notions to explain the Bell Theorem (once one has embraced the
key fact that space-time and state-space can have very different metrics).

7. Discussion

A theoretical framework has been outlined that asserts that no physical experiment has or will
demonstrate that the Bell inequality (1) is violated—even approximately. In this framework, (1) is the
singular limit of the experimentally tested (2), (1) is undefined and (2) is not approximately equivalent
to (1). Key to this formulation, a non-Euclidean metric gp is introduced on state space. gp, related (but
not entirely equivalent) to the p-adic metric of number theory, respects the primacy of an assumed
fractal geometry IU on which the universe is assumed to evolve and from which the laws of physics
derive. Based on gp, we can make an ontological distinction between Hilbert vectors with rational
descriptors (rational squared amplitudes and rational complex phases) and irrational descriptors.
Based on this framework, it is claimed that experiments do not rule out Einsteinian determinism
and causality. Only in the singular classical limit at p = ∞ could experiments be used to rule out
local causality.

Making an ontological distinction between Hilbert vectors with rational and irrational descriptors
is likely to induce a sense of unease (indeed scepticism) amongst many readers; not least, the results
above may appear to be inconsistent with the experimental fact that the violation of Bell-like inequalities
is insensitive to the precise orientation of polarisers. To alleviate this sense of unease, consider the
function f (x) on [0, 1] such that f (x) = x2 if x is rational, and f (x) = 3 (say), otherwise. This function
is everywhere discontinuous and hence non-differentiable on the reals, and therefore f (x) could
hardly describe how experimental values vary smoothly with experimental parameter x. However,
consider a physical theory T that demands that states of reality (that is to say, states of systems that
can be probed by experiment or are otherwise amenable to observation) are only associated with
rational values x and that irrational only arise in T when considering hypothetical counterfactual
states that did not occur in reality. To have such a property, T would be a profoundly nonlinear
theory. Based on this, T has the property that f (x) is not only continuous but also (using the rational
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calculus) differentiable over the set of physically realistic values of x. Over a large number of parameter
values x, an experimenter might return the values f (x) = x2 + ε, where ε denoted some random
experimental error. The experiments would, by construction, never return the value f (x) = 3. As a
result, a theoretician (unaware of T) might construct a linear theory T′ on the reals where f (x) = x2

for all 0 ≤ x ≤ 1. Like T, T′ would describe the results of experiments well. Being linear, T′ would
be analytically and computationally tractable, making it a convenient tool in practice. However, T′

would incorrectly ascribe values to counterfactual states and this could lead to inconsistencies in
the interpretation of T′. Some might argue that since, by construction, such inconsistencies have
no implications for the real world of experimentation, one should ‘shut up and calculate’ with T′

and not waste time searching for the deeper theory T. However, the failure of T′ to describe the
nonlinear structure in T may have implications elsewhere, e.g., when trying to extend T′ to account for
phenomena beyond the experiments that have so far been conducted (see below).

However, unlike T′, T is an unrealistically fine-tuned theory [23,24], since rationals and irrationals
lie arbitrarily close to each other on the real line with respect to the standard Euclidean metric.
The notion that distances in physics should be necessarily described by the Euclidean metric is a
deeply held intuition, since almost the first thing we learn as babies is a sense of spatial awareness
(for the baby to get its hand close to a colourful toy, it has to learn to equate closeness with smallness
of Euclidean distance). However, here we are considering distances in state space, not in space time,
and where our intuitions may not apply. This raises the question about whether there is a state-space
metric where realistic and counterfactual states are actually distant from one another. The toy model
example here is too simple to allow such an alternate interpretation. However, using fractal geometry
we have shown that there is a model where such states are indeed distant from one another, thus
negating the fine-tuning argument.

As discussed in the Introduction, a rather beautiful example of how relying on intuition about
distance can lead to inconsistency is provided by the Penrose Impossible Triangle. We claim that
quantum theory (cf., T′) is similarly inconsistent, even though it is wonderfully accurate and
a convenient tool for analytic manipulation and computation. This inconsistency arises from the
use of the Euclidean metric forced on us by the assumption that state space is the algebraically closed
Hilbert Space. By weakening this assumption, allowing only Hilbert states with rational descriptors as
elements of physical reality, the inconsistencies associated with the Bell and other no-go theorems [6],
disappear. The key conclusion we can draw from this discussion is that, in Invariant Set Theory, there
is no contradiction with the fact that the violations of (2) are insensitive to polariser orientation.

Let us now discuss a related issue. Let us fix the orientation of Bob’s measuring device and
ask whether, according to Invariant Set Theory, this in any way constrains Alice in orienting her
measuring device. If Alice was somehow constrained, she would not only not be a free agent, she
would somehow be remotely under the influence of Bob—clearly unacceptable in any theoretical
framework purporting to reinstate the notion of Einsteinian local realism. The answer is that, for all
practical purposes, Alice is under no such constraint. What ‘for all practical purposes’ means is that
within any neighbourhood of Alice’s celestial sphere, no matter how small, there exist orientations
which Alice is free to choose from, providing p is sufficiently big. That is to say, the set of orientations
from which Alice can choose is as dense as one likes, providing p is big enough. Colloquially, we
can indeed say that Alice can set her measuring apparatus as she pleases—she is a free agent in any
practical sense of the phrase. Nevertheless, whatever the size of p, Invariant Set Theory requires
that the cosine of the relative orientation between Alice and Bob’s measuring apparatuses must be
rational. For large p, this is an utter irrelevance in the design of a Bell experiment. However, it is
crucially important in the interpretation of a Bell experiment, since, as discussed, the counterfactual
states needed to establish (1) will inevitably lie off IU and are therefore gp distant from the states
measured by experiment. In conclusion, in making the statement that the orientation of Bob’s polariser
does not influence Alice’s choice of polariser orientation, the contrast between the Euclidean metric of
space-time and the metric gp of state space becomes crucial.
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The author believes that the ongoing failure to synthesise quantum and gravitational physics
satisfactorily arises from the fact that quantum theory is inimical to the local realism of general relativity,
and a synthesis between these two areas of physics will require a nonlinear theory of quantum physics,
less like T′ and more like T. As such, in the analysis above, it is plausible that p−1 defines the
gravitational coupling constant (and so the largeness of p reflects the weakness of gravity). Indeed,
the fact that gravitational waves provide an in principle unshieldable source of noise to ensure that
rational angles can never have rational cosines (a central theorem to this paper) may be evidence of a
deep link to the phenomenon of gravity, with experimental consequences for the dark universe and for
quantum gravity. These more speculative notions have been developed elsewhere [25].
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Abstract: The article describes an interpretation of the mathematical formalism of standard
quantum mechanics in terms of relations. In particular, the wave function ψ(x) is interpreted
as a complex-valued relation between an entity (often called “particle”) and a second entity x (often
called “spatial point”). Such complex-valued relations can also be formulated for classical physical
systems. Entanglement is interpreted as a relation between two entities (particles or properties
of particles). Such relations define the concept of “being next to each other”, which implies that
entangled entities are close to each other, even though they might appear to be far away with respect
to a classical background space. However, when space is also considered to be a network of relations
(of which the classical background space is a large-scale continuum limit), such nearest neighbor
configurations are possible. The measurement problem is discussed from the perspective of this
interpretation. It should be emphasized that this interpretation is not meant to be a serious attempt
to describe the ontology of our world, but its purpose is to make it obvious that, besides Bohmian
mechanics, presumably many other ontological interpretations of quantum theory exist.

Keywords: relational space; relational interpretation of quantum mechanics; measurement problem;
non-locality

1. Introduction

Bohmian mechanics [1] became a refuge for scientists and philosophers of science in search
of an interpretation of quantum theory, which offers a consistent ontology (for an introduction to
Bohmian mechanics, see e.g., [2–4]). Its experimentally verifiable predictions agree with standard
quantum mechanics almost by construction, but its ontology is based on degrees of freedom which,
again by construction, are not directly accessible to experiments. There are other models that can offer
an ontology, like the so-called collapse models of Ghirardi, Rimini and Weber [5,6] (for relativistic
extensions see, e.g., [7]); however, these models predict a deviation from quantum mechanics for
mesoscopic systems, for which the influence of collapse centers cannot be neglected. Similar models by
Karolyhazy [8] and Penrose [9,10] attribute the physical collapse of the wave function to an influence
of gravity, which effectively leads to similar deviations from quantum theory as the collapse models.
Sooner or later, we should be able to decide by experiment whether or not these collapse models
are correct. However, any experimental disagreement with Bohmian mechanics would also be a
disagreement with standard quantum theory (at least for those observables for which measurable
expectation values can be calculated in quantum theory).

David Bohm himself did not consider his model of quantum theory as the ontology of the world,
but he emphasized on several occasions that this model is about ontology [11]. (Similar remarks can also
be found in the first chapter of [12].) He proved that an ontological formulation of quantum theory
is possible, despite so-called “no-go”-theorems by von Neumann [13] and others. The price which
Bohmian mechanics has to pay is a non-local ‘influenciability’, not associated with energy or physical
information (in the sense that this influenciabilty can be used to transmit signals), and the introduction
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of unobservable degrees of freedom. Whether or not non-local influenciability exists also for other
interpretations of quantum theory is a matter of debate, however, as Bohmian mechanics defines an
ontology, this influenciability has an ontological basis, in contrast, e.g., to interpretations of quantum
theory, where quantum states represent our knowledge about the world (an example is QBism; for a
review, see [14]; for criticism, see [15]).

Bohmian mechanics is based on an ontology that is close to classical Newtonian mechanics in
the sense that there exist particles that propagate along well-defined trajectories, and, in addition,
there exist fields (the so-called guidance fields or pilot waves), which can be derived from the solutions
of Schrödinger’s equation and which play a similar role as potentials in classical physics.

In this article, I will outline an interpretation of the quantum formalism which differs in essential
ways from Bohmian mechanics: there are no particles that follow trajectories, but there are entities
that have relations to spatial points, and a change of these relations leads to the impression of motion.
Like Bohmian mechanics, this ontology is based on an unchanged quantum formalism, and, therefore,
leads to the same predictions as quantum theory proper. However, I should emphasize that this
difference in interpretations refers to Bohmian mechanics in its standard form (like, e.g., in [2,3]),
not necessarily to the implicate order, which, according to the later ideas of Bohm, may underlie both
quantum theory and relativity.

At first sight, some parts of this ontological model may look very artificial and seem far from
being “natural”. However, the message is not to sell this as the “right” ontology. The message is
that, apart from Bohmian mechanics, other ontological interpretations of quantum theory are possible
(I am convinced that there are many more models that “do the job”) and that, therefore, none of these
interpretations can claim to be the ontological interpretation of quantum theory.

Many details of this ontology have not been worked out completely, but it should be obvious
that this is possible in principle (often in many different ways). Again, this is because my aim is
not to propose a complete model but because I want to convince the reader that such models are
possible. Some “mechanisms” have been copied from neural network theory, which is one of my
research fields, but I am convinced that almost any field (engineering, biology, psychology, sociology,
maybe even chemical networks, fluid dynamics, complex systems theory, electronics, etc.) can give
rise to the mechanisms needed to fill the gaps between the general concepts and concrete realizations.
For me, the lesson is twofold: (1) we shouldn’t give up until we find a really “natural” and maybe
even “beautiful” interpretation, (2) until then we can stick to the cooking recipe of quantum mechanics
in the firm knowledge that ontological interpretations do exist.

The next section contains a very brief summary of the ingredients of Bohmian mechanics as
compared to the relational model of this article. Most of the rest can be considered an elaboration on
these ingredients. In Section 3, I will introduce the notion of a relational space and a relational location.
In this section, I will also describe the necessary generalizations that are needed to apply this picture
to quantum theory. Section 4 describes this relational framework for one-particle quantum mechanics,
while, in Section 5, I will extend this formalism to many-particle quantum systems. Section 6 indicates
what a generalization to quantum field theory may look like. A brief summary concludes this article.

Finally, I would like to mention that there exists a “relational interpretation of quantum theory”,
mainly due to Carlo Rovelli [16]. There may be parallels, but, according to my understanding of
Rovelli’s theory, at least the starting points are different. The notion of “relational” in Rovelli’s
interpretation refers more to what is observed in relation to an observer. In the interpretation given
here, “relational” refers to objective, observer independent relations between certain entities. In order
to distinguish my relational interpretation of quantum mechanics from Rovelli’s interpretation, I will
sometimes refer to my interpretation as the “micro-relational interpretation”. Some of the ideas
presented in this article have been published earlier (see [17–19]) but are presented from slightly
different perspectives. In particular, this article includes more explicit examples from every-day life
or classical physics (like neural networks) that exhibit similar relational structures. This includes
examples for complex relations, entanglement and “collapse”.
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2. Bohmian Mechanics and the Microrelational Interpretation in a Nutshell

This section is a brief summary of the essential features of Bohmian mechanics on the one hand
and the microrelational interpretation on the other. The aim is to emphasize the differences in both
ontologies. Furthermore, it is minimalistic in the sense that I list the necessary features of both
ontologies in order to agree with standard quantum theory.

In Bohmian mechanics, the wave function ψ(x) and the particle haven an ontological character.
The wave function satisfies Schrödinger’s equation. The particle is guided by the field and its trajectory
x(t) is such that the probability density of finding the particle at a particular location x is proportional
to |ψ(x)|2. Bohmian mechanics specifies an equation of motion for this trajectory in terms of the wave
function and it can be shown that, for these dynamics, the probability requirement holds (at least for
quite general initial conditions). However, this particular equation of motion, which is deterministic
and can be derived from a polar decomposition of the wave function, is not the only possibility to
satisfy the probability requirement.

For multi-particle systems, the wave function is defined over configuration space. The trajectory
of several particles becomes the trajectory of a single point in configuration space. In this way,
entanglement is automatically built into the model.

In the microrelational interpretation, particles exist as entities that can have relations to other
entities. In particular, they do not (for a given moment in time) have a fixed location in space, but their
“location” is specified by a complex-valued relation, which is defined by the wave function ψ(x).
This wave function also satisfies Schrödinger’s equation. Particles don’t move, but their relations to
spatial entities change. Probing the relation of a particle with a particular point x (or volume in space)
induces an “all-or-nothing” change: with a probability (density) proportional to |ψ(x)|2, the relation
becomes 1 (the particle “is” at this particular point or in that volume); or it becomes zero for this point.
This behavior may sound artificial, but, in Section 4.5, I discuss an every-day example that exhibits
similar properties.

The microrelational interpretation doesn’t need space (or space-time) to be relational, but defining
also relations between spatial entities and letting the topological and metrical properties of space
become large scale features of this relational space makes the whole picture more coherent.

Entanglement is interpreted as a relation between two particles such that the relations of one
particle to spatial entities depend on the relations of the other particle to spatial entities. This leads
to three different types of relations: relations among spatial entities (leading to, say, Euclidean
space), relations between particles and spatial entities (they are defined by the wave function),
and relations among particles (which lead to entanglement). Whether these three types of relations
are fundamentally different (or just different manifestations of the same type of fundamental relation)
is left open. The interpretation of entanglement as a ‘nearest neighbor’ relation makes it possible
to keep locality (in a sense defined in Section 5.3), which in my opinion is a charming feature of a
relational interpretation.

One tentative idea is that the relations underlying entanglement are the most fundamental
ones (these relations may not be the same as the entanglement relations used in standard quantum
mechanics, but relations that allow the two entities to share certain information such that in
measurements quantum correlations are observed). The two other relations are then effective large
scale limits of this fundamental relation.

The whole approach is not to be understood as a fully worked out theory or model but rather
as a “program”. The idea is not to fill out the details—I am convinced that this can be done in many
different ways. The question is whether there are fundamental or logical limitations that would make
such a program impossible. If not, many ontological interpretations of quantum theory may coexist
and (unless we are able to probe space or space-time at the fundamental level) are indistinguishable
with respect to their experimental predictions.
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3. Relational Entities

Starting from a mathematical definition of “relation”, I first introduce the notion of a relational
space. This concept was favored by many philosophers of science, amongst others by Descartes [20] and
Leibniz [21]. It is the antipode to the notion of an absolute space that is viewed like a “stage” for matter
and which was favored, amongst others, by Newton. Finally, I discuss the notion of “being somewhere”
with respect to a relational space, and I will extend this notion to complex-valued relations.

3.1. Mathematical Relations

Mathematically, a relation E on a set V is a subset of V ×V. We can represent V by a set of points
and the relations E by (directed) lines. Any relation can be represented by a (directed) graph. If the
relation E is symmetric (i.e., (a, b) ∈ E ⇒ (b, a) ∈ E for all a, b ∈ V), it can be represented by an
undirected graph (Figure 1). Any relation can be expressed by its adjacency matrix:

Axy =

{
1, if (y, x) ∈ E,
0, otherwise.

(1)

In the following, I will exclude reflexive relations, i.e., the diagonal elements of the adjacency
matrix are zero. This leaves us with 2V(V−1)/2 different undirected relational sets or 2V(V−1)

directed sets.
In Figure 1, all elements are uniquely specified by these relations. For example, such a specification

could be:

• One node has four neighbors.
• One node has two neighbors.
• One node has only one neighbor, which has three neighbors.
• One node has only one neighbor, which has four neighbors.
• One node has three neighbors of which one has one neighbor.
• One node has three neighbors of which one has two neighbors.

Actually, this is the smallest non-trivial (having more than one node) connected (each node can be
connected to each other node by a path along existing lines) undirected relational set for which this is
possible. The requirement for this being possible is that the graph has no symmetry. This means that
there exists no permutation of vertices that leaves the graph unchanged. In other words, there exists no
permutation matrix acting on the elements of V that commutes with A. The probability for a random
graph having a symmetry, i.e., that some of its elements are not uniquely identifiable by the relational
properties of the graph, gets smaller with an increasing number of vertices.

� �
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Figure 1. A set with six points and undirected relations. In this case, the relations allow a unique
identification of the elements.

3.2. Relational Space

A relational space is defined as a set V of elements, which will be called spatial points, and an
undirected relation E, which defines a “nearest neighbor” relation for spatial points. “Nearest neighbor”
is not to be understood as “next to each other in an already existing space”. Well-known examples of
relational spaces are “co-authorship networks” in a scientific community (two scientists being “nearest
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neighbors” if they are co-authors of a scientific article), semantic networks (two words being related if
they are listed as synonyms in a dictionary), protein networks in organisms (e.g., two proteins being
related if a chemical reaction in this organism involves both proteins), etc. (for more examples and the
statistical properties of such networks, see, e.g., [22]).

While in general such relational spaces are called networks, I will use the term “space” if this
network is meant to be a model of the underlying structure of our three-dimensional space. In addition,
even though I will refer to the elements of this space as “spatial points”, the notion of a point should
not be taken literally because, in a network, the shape of an object is defined by its relations. In addition,
the representation of relational spaces by undirected graphs, for which the spatial points are depicted
as nodes (often in a plane) with lines connecting these nodes, serves merely as an illustration of the
relations. The location of these nodes as points in a plane has no intrinsic meaning whatsoever.

There are several ways to define a distance between the elements of a relational set. One possibility
is the “length of the shortest connecting path”, i.e., the minimal number of nearest neighbor steps which
are needed to connect the two points. This is often called the mathematical distance. Another possibility
is the “propagator distance” [23,24] that is motivated by physical arguments (the propagation of
particles in a scaling limit) and involves statistical sums over all paths connecting two points. Once a
distance has been defined for any two points, the dimension d of a point a ∈ V is defined by the relation
Vol(a) ∝ r(a)d, where Vol(a) is the number of nodes within a distance of r(a) from a point a. If this
dimension is independent of the point a, we call it the dimension of the graph. The concept of a scalar
curvature can be defined by deviations from this formula (in [25], geometrical concepts have been
investigated in more detail for such relational spaces). Of course, these concepts are only meaningful
for very large graphs (ideally for V → ∞). We assume that such a relational space—almost flat and
of dimension three—is given. The extension of this concept to relational space-time sets—so-called
causal sets, for which the elements are events—will be discussed in Section 6.

3.3. “To Be” in a Relational Space

Having discussed the notion of a relational space, I now discuss the meaning of “Where is an
object?” In a relational space, the location of a spatial point is given by the set of relations it has
to all other spatial points. However, when we want to specify the location of a non-spatial object
(e.g., an entity which we might associate with a charged particle, i.e., an entity which is different from
a spatial point), we have more options. In particular, the type of relations that this entity has with
spatial entities will, at least in general, be different from the type of relations between spatial entities.

In an absolute space, the location of an object is defined by x(t), i.e., by specifying the spatial
point x at which an object is at this particular moment. In a relational space, the location of an
object is defined by a field χ(x, t) (x ∈ V), indicating the relations of this object to the spatial points
(see Figure 2). For an undirected mathematical relation, this field only assumes two values, 0 and 1,
depending on whether or not the relation exists, while, for a directed mathematical relation, this field
can be considered as having two binary components specifying the “in”- and “out”-relations.
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Figure 2. The location of an object p in a relational structure is defined by the spatial points to
which it is related. Equivalently, one can specify this relation by the characteristic function of this
set of spatial points. If the relations of the object to ‘space’ are directed, we can specify it by two
characteristic functions.
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In a relational space, it is also possible that an entity can be “in two different spatial regions
simultaneously” (for an example, see Figure 3).

�
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p

x y

Figure 3. In a relational framework, a particle can be at two locations simultaneously. In the given
example, the object p “is” at the points x and y simultaneously.

More general, if an object p has relations to many spatial points that are distributed over a region
with large distances, we may say that this object is non-local.

3.4. Complex Valued Relations

Up to now, I have considered “yes-or-no”- relations, defined by binary functions χ : V ×V →
{0, 1}. For the corresponding graphs, a line between two points is either present or not. However,
one can generalize this concept by attributing weights or distances or other quantities to lines. In this
way, one arrives at the notion of a network. (For me, a network is a graph with additional structures;
however, not all authors make this distinction.)

In quantum mechanics, the state of a particle at a particular moment t can be characterized by its
wave function ψ(x, t), which is a complex-valued field over space. In the next section, I will distinguish
between the relations among spatial points and the relations between some entity (“particle”) and
spatial points. For the latter, the relations are defined by the wave function. However, here I only want
to emphasize that, in general, complex-valued relations are also possible.

The following examples of networks, in which the relations between nodes can be generalized
from a binary value (being there or being absent) to complex values, just serves as an illustration
that networks with complex-valued relations exist. In most of the examples, a link between two
nodes is used for an exchange of information (in the broadest sense) or activity between the nodes.
This information or activity can be coded as a complex number for at least two reasons: either because
there is a flow in both directions, from node x to node y and vice versa, or because the activity has an
amplitude and a phase. From classical wave models, it is well known that these two possibilities are
not completely independent.

As a first example, consider a network of computer servers (this example will be extended in
Section 4.5). In this case, two servers are said to be “related”, if there exists a direct connection
from one of the servers to the other. For a particular server p inside such a network, we can define
a complex-valued, time-dependent relational structure by a function ψp(q; t) : V → C (where V
now denotes the set of computers), which characterizes the information exchanged between server p
and another server q. As such, a function exists for all servers in the network, and we end up with
ψ(p, q; t) ≡ ψp(q; t) : V ×V → C.

Another example of networks in which the relations between the constituents can be described by
a complex-valued function are electric circuits with resistors, capacities and/or coils—the “relations”
between nodes being the currents.

A different type of network, which I will sometimes use as an example, are neural networks
(for an introduction to neural networks, see, e.g., [26]). One can define several types of complex-valued
relations in such networks:

• In a neural network, the directed link between two nodes (which in this case are referred to as
neurons) has a weight (the synaptic weight) which determines the transmission intensity of a
signal. Negative weights indicate inhibitory influences. As the network is directed, the connection
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between two nodes is specified by two real-valued weights that can be combined into a complex
number. These weights change over time as a result of learning.

• In so-called spiking neural networks, the signal consists of a firing rate (the number of spikes per
unit of time) that is transmitted from one neuron to another. The time scales on which these firing
rates change are much shorter than the time scales for changes in the synaptic weights, so that the
synaptic weights can roughly be considered as constant. The connections (the synapses) between
neurons are directed, but it often happens that connections exist in both directions. In addition,
firing can occur in a synchronized way between clusters of neurons or asynchronous. Thus, the
relative phases in spiking neurons can be important.

• On large scales (averaging over several hundreds of neurons), the activity in neural networks
is sometimes described by a complex field (see, e.g., [27,28]). Together with David Bohm(!),
the famous neuroscientist Karl Pribram developed a quantum field theoretic approach to
consciousness [29], which was related to Bohm’s ideas of an implicate and explicate order [30].

4. One-Particle Quantum Mechanics

We know that quantum mechanics, based on Schrödinger’s equation, is only a non-relativistic
limit of a theory that is considered to be more fundamental: quantum field theory. In Section 6, I will
indicate how quantum field theory might be formulated in a relational setting. In this section, however,
mainly for didactical purposes, I indicate how a relational re-interpretation of quantum mechanics
might lead to an ontology of quantum theory.

4.1. The Generalized Relational Structure of “Location”

As we have seen in the previous section, in a relational framework, the position of an object is
defined by the spatial points to which it is related. One of the consequences is that an object can be
“at several spatial points simultaneously” (see Figure 3). Exactly this feature is one of the conundrums
in the standard formulation of quantum mechanics. The wave function ψ(x) of a particle does not
mark a particular point of space as the position of that particle, but it defines a whole region of space
in which the particle, if measured, can be found. According to the general interpretation of quantum
mechanics (not Bohmian mechanics), this uncertainty in the position of a particle is not due to a lack
of knowledge but intrinsic. An object like an electron “presents” itself as a particle, when a proper
measurement is performed.

There are many ways to combine a discrete model of space(-time) with quantum mechanics (a by
far not complete selection of approaches can be found in [31,32]). In the following, I will describe just
one possible model (more details can be found in [17–19]). In this model, the connection between wave
mechanics and a relational model is made by generalizing the concept of a relation.

In principle, the relational structure among spatial points can be anything which in a large-scale
limit gives rise to the topological and geometrical properties of our three-dimensional space. However,
for simplicity, I still assume the relational structure among spatial points as represented by an
undirected graph, i.e., for two spatial points x and y, a connection is either present or absent. Even this
simple structure can in principle yield the desired large-scale limit.

In the micro-relational interpretation, the relations between an object (“particle”) and the set of
spatial points will be generalized from a binary function to a complex-valued function ψ : V → C,
and this complex function is the wave function of this object. Again, the micro-structure is not
necessarily fixed: the requirement is that, in a large-scale limit, the relational structure between objects
and spatial points yields the wave function; however, for simplicity, I assume that the micro-relations
already have the complex values of the wave function. That such complex-valued relations can occur
even in classical systems has been indicated in the last section.

I want to emphasize that, in the framework discussed here, the relational description of a single
particle does not require a new mathematical formalism as compared to standard quantum theory
(apart from the discretizations of space and time—and even these are not required). It is simply a
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different interpretation of the usual concept of a wave function (this will also hold for many-particle
systems). In this re-interpretation, the absolute value of ψ(x), i.e., p(x) = |ψ(x)|2, should still give the
probability(density) for finding a particle in a particular location when a measurement is performed.
The changes with respect to the standard interpretation of quantum mechanics are minor: instead of
speaking of a “probability amplitude” ψ(x), I refer to this function as a complex-valued relation.
When this relation is probed by a measurement, it changes according to a “winner takes it all” manner
(the “collapse” of the wave function). I will come back to these points in Section 4.4.

4.2. The Dynamics of Relations

For a relational structure between an object (particle) p and spatial points, one can define the
dynamics as follows. First of all, as we are considering a discretized space, we also discretize time and
formulate the dynamics in terms of an iterative mapping which defines ψp(x, t + 1), the ψp-function
at time-step t + 1, as a linear function of ψp(x, t). (I use the notation ψp(x) to indicate that this is the
wave function of an entity p.) A natural candidate for such a dynamics is the following equation:

ψp(x, t + 1) = ψp(x, t) + ε

(
α

(
∑
y

Axyψp(y, t)

)
+ βV(x)ψp(x, t)

)
. (2)

The second term on the right-hand side (proportional to a constant ε) corresponds to the change
of the generalized relation ψp(x, t). There are two contributions: the first one describes the propagation
of the relation from one spatial point to a neighbored point (expressed by the adjacency matrix Axy),
the second one describes an additional change of the relation due to a local potential. This second term
may also depend on the valency or degree dx of point x, i.e., the number of points it is related to. It is
not hard to see that, under very general conditions, such an equation becomes a Schrödinger-type
equation in a continuum limit. Notice in this context that, for undirected graphs, the matrix D− A
(where D is a diagonal matrix—the so-called degree matrix—with Dxx = dx) is the graph Laplacian,
i.e., the discretized analogue of the Laplace operator (see, e.g., [33]).

This specifies the dynamics of the relations of an object to the network of spatial points.
However, how do relations change in general, e.g., how does the adjacency matrix Axy of spatial
points change? (Changes in the purely spatial relations imply changes in the geometrical properties
of space, i.e., they may become relevant if we include gravity.) At this stage, I introduce a locality
requirement: If x and y are not related at time t (i.e., (x, y) /∈ E), they can only become related at time
t + 1 if there exists a point z such that (x, z) ∈ E and (y, z) ∈ E at time t (see Figure 4). This locality
requirement is not mandatory, but it is quite satisfying from a philosophical point of view. As we will
see later (Section 5.3), quantum correlations become local in this picture.
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Figure 4. Propagation of relations: only via the intermediate step (b) can the additional relation in
(c) be created from the relational space (a).

One may add further requirements, e.g., that an existing relation (x, y) ∈ E at time t can only be
removed at time t + 1, if there exists a point z such that either (x, z) or (y, z) have changed their status
as a relation from t− 1 to t. This “deletion” of relations may become relevant in the context of the
measurement problem (see Section 4.4).
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4.3. The Double-Slit Experiment and “Sum over Histories”

For many scientists, the double-slit experiment is “the only mystery” of quantum mechanics
(see, e.g., [34]). This may be arguable (in particular in view of the “mystic” effects related to
entanglement), but the double-slit experiment has always been one of the paradigms of quantum
theory. Therefore, it might be of interest to see how the double-slit phenomenon is explained in the
relational setting (see Figure 5).
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double slit

path 1
source

path 2

screen

Figure 5. In the double-slit experiment, the total amplitude can be obtained by assuming that aparticle
propagates along path 1 AND path 2. In the micro-relational interpretation, the relations of a particle
propagate along path 1 and path 2.

The interference pattern is easily explained by assuming a wave ψ(x) to propagate through the
slits. The two parts of the wave behind the slits interfere and the intensity on the screen is obtained
by the absolute square of the sum of these two parts. In a particle picture, Feynman’s “summation
over paths” can be interpreted as: a particle propagates along path 1 with an amplitude ψ1 associated
with this path, and it also propagates along path 2 with an amplitude ψ2 associated with this process.
The absolute square of the sum of these two amplitudes yields the probability of finding the particle at
a particular spot on the screen.

In the micro-relational interpretation, we can re-interpret the “summation over paths” in
the following way: the entity p (the particle) has relations that propagate along path 1 and
it also has relations that propagate along path 2 (compare Figure 3). The absolute square
of the sum of these (complex-valued) relations yields the probability of finding the particle
at a particular spot on the screen.

More generally, we can re-interpret Feynman’s “summation over paths”-representation for the
propagator of a particle as “a relation propagates along path 1 AND a relation propagates along path
2 AND ...”. This seems to be much less weird than “the particle propagates along path 1 AND it
propagates along path 2 AND it propagates along path 3 ...”.

4.4. Measurements

With respect to measurements, two fundamental concepts of quantum theory have to be explained:
(1) probabilities are given by the absolute square of the scalar products of vectors that represent states,
and (2) quantum states “collapse” into a new state (depending on the outcome of a measurement)
as the result of a measurement. The first concept is known as Born’s rule, the second is sometimes
called the “collapse” postulate. With respect to Born’s rule, we are mainly interested in probabilities for
finding an entity at a spatial point (or in a spatial region), i.e., in probabilities proportional to |ψp(x)|2.

Of course, we can simply postulate a mechanism which respects these two rules. Nobody will
deny that it is easy to program a computer (essentially a classical system) to calculate probabilities
from the absolute squares of complex functions and to update these complex functions according to
the collapse postulate. However, I would like to include some examples of classical systems in which
similar rules can be found.
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In oscillating systems like the harmonic oscillator or simple waves, energies and intensities are
given by the square of an amplitude. This also holds for alternating currents and voltages (the energy
and electrical power being proportional to the product of these two). However, also in other processes,
we encounter this relation: for instance, in diffusion processes or Brownian motion, the probability
of finding a particle in a distance d from the origin of propagation is proportional to d2. Thus, if a
process is triggered by this particle (or by an intensity exceeding a given threshold) and if the ‘relations’
correspond to inverse distances, this process is triggered with a probability proportional to the square
of these relations.

In addition, the collapse postulate is not completely unknown in classical physics: in some neural
networks (e.g., in so-called Kohonen networks, see, e.g., [35]) the first neuron, which starts to fire as
the result of an integrated input, sends inhibitory signals to all other neurons such that these will
not fire. This mechanism—the first firing neuron inhibiting all other neurons—is sometimes called the
“winner-takes-it-all” principle.

4.5. An “Every-Day” Example for Measurements and the Collapse

Instead of elaborating on possible realizations of the measurement process, I describe an every-day
example which at first sight seems to have nothing to do with quantum theory. I hope that, in the
end, the relationships will become obvious. This example relates to an example that has already been
mentioned in Section 3.4.

You book a flight. What you get is an e-ticket. The essential information on that e-ticket is your
name and the e-ticket number. Of course, it also tells you the flight number, the date and time of
departure, the duration and additional information about your flight. What you need before you can
enter the plane is a boarding-pass, which assigns to you your seat in the plane. The information that
transforms your e-ticket into a boarding-pass is stored in some server at the airport or the airline.

Before things get too complicated, I consider a simplified system (which comes close to the
situation a few years ago). There is a single server that has the information about your e-ticket.
Distributed over the airport are several counters with printers (Figure 6). When you go to one of the
counters and present your e-ticket number, you will get your boarding-pass.

. . .
server

printer

�
�

��

�
�

��

������
�
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�

Figure 6. A server connected to a periphery of counters with printers is a model for a measurement
in a relational system. A boarding pass exists only virtually as a program instruction in the server.
Only when an e-ticket number is presented at a counter—this is the measurement—does the boarding
pass become reality at the printer of this counter.

This boarding pass exists only once. You cannot go to a second counter and get a second boarding
pass (you might get a second print-out, but it will be for the same seat number in the plane; in this
sense, you can never get a second pass). In addition, when you go to a counter you never get “half
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a boarding-pass”, or part of a boarding pass, and, for the rest, you have to go to a different counter.
Its an all or nothing situation, and the “all” can only happen once.

In order to make the situation more similar to quantum theory, let us assume a fictitious world
in which you will get your boarding-pass at a particular counter only with a certain probability. If at
one counter you do not get it, you have to try a different counter, and again you will get it only with a
certain probability. The server decides probabilistically at which counter you will get the boarding pass,
but it will set this probability to zero for a counter where you already unsuccessfully tried to get your
boarding-pass (and it will renormalize the probabilities for the other counters). Eventually, you will
get your boarding-pass at one of the counters.

The similarity to quantum theory should now be obvious: the boarding-pass is an entity that exists
only “virtually” before it becomes reality as the result of a measurement. The measurement consists of
the presentation of your E-ticket at one of the many counters. Before you make this “measurement”,
the boarding-pass existed as a “potentia” (a virtual entity) at all counters simultaneously while,
upon making the measurement, it becomes reality at only one of the counters. The counters represent
certain locations where the boarding-pass can become reality. They correspond to the (discretized)
spatial points.

Of course, you could come to the airport with your family and maybe many friends and present
the e-ticket number at all possible counters simultaneously. Only at one of the counters will one of the
members of your group get the boarding-pass.

5. Many-Particle Systems and Entanglement

5.1. General Remarks

Many-particle systems are a general problem for ontological theories. The many-particle wave
function is defined in configuration space, i.e., in a 3N-dimensional space. Thus, in contrast to electric
and magnetic fields or the metric field of space-time, which also “guide” particles, this field does
not have an ontology in ordinary space. This feature is often used as an argument against Bohmian
mechanics. The counter-argument is that, for a system of N interacting particles, the potential in
Newtonian mechanics is also defined in configuration space, and the corresponding force acting
on one particle may depend on the positions of all other particles. Factorization only occurs for
external potentials or forces acting on single particles and being independent of the positions of the
other particles.

Before I elaborate further on this subject, I take up the example of the last Section 4.5. A server at
an airport can not only handle a single boarding-pass but thousands of e-tickets and boarding-passes
simultaneously. If you have made a booking for two persons, you can instruct the server to hand
over both boarding-passes at the same counter. Such correlations among the probabilities, at which
counters the boarding passes “come into reality”, resemble entanglement correlations. As long as there
is an information exchange within the server, entanglement correlations are no miracle. Even if there
are several servers handling the boarding passes at an airport, there is no miracle if the information is
shared by these servers, i.e., if there is an information exchange between them.

This example can be taken as a hint that entanglement correlations are the result of an immediate
exchange between entities. These entities have to be directly related to each other. In other words,
a relation between two entities can exhibit itself as an entanglement between these entities.

5.2. Relations for Two-Particle Systems

The simplest way to extend the one-particle picture to a two particle picture is to add two elements
to the set of spatial points V, so that the set of elements now is {p1, p2} ∪V (see Figure 7).
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Figure 7. (left) two objects in a relational structure. Each object has its own set of relations to the
spatial points. The relations factorize; (right) there can also be a direct relation between the two objects.
This may lead to entanglement.

The generalization of this construction to several particles is straightforward. For n particles,
the relational space consists of the elements Vn = {p1, ..., pn} ∪V and a generalized relation is a subset
of Vn ×Vn. In Figure 7, the relations are undirected, but, depending on the nature of these relations,
some of them may also be directed.

We now have encountered three types of relations (see Figure 8):

1. Relations between spatial entities: these are considered to be non-directed and give rise, on a
large scale, to the geometry of space.

2. Relations between “particles” and spatial entities: these relations maybe directed and give rise,
on a large scale, to the wave function.

3. Relations between “particles”: These relations are present if the particles are entangled. They allow
for a direct information transfer between particles and characterize the form of entanglement.

When we compare this picture (e.g., Figure 7 or Figure 8) with our metaphor of servers and
counters (or printers), the counters correspond to the spatial points where, in certain measurements,
particles (boarding-passes) can be found. The algorithm that is stored in the server and which upon the
presentation of the e-ticket sends the printing command to the periphery corresponds to the “virtual”
entity before a measurement. The server (or the net of servers) just handles these virtual “many-particle
algorithms”. Relations between particles, i.e., entanglement, can be compared with certain constraints
between the different algorithms, and relations between particles and spatial points can be compared
with connections between servers and printers (allowing for a selective output of the boarding pass
at exactly one of the printers). In our metaphor, we do not take into account direct relations between
printers. Such relations would define a spatial “neighborhood” and eventually give rise to a topology
and a geometry on the set of printers.
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Figure 8. When there are several objects (in this case two), we have three different types of relations:
(1) relations among spatial points, (2) relations between “particles” and spatial points, and (3) relations
between the “particles”.

There is an interesting point here: if entangled entities can exchange information, what mechanism
restricts the degree of entanglement correlations to the Tsirelson bound [36] (see, e.g., [37–39])?
There is no reason why correlations between systems that can exchange information are subject to a
constraint that is much below the maximum possible correlation (Popescu–Rohrlich (PR) boxes [40]
have maximum correlations), and it is easy to construct classical machines for which the correlations
assume this PR-bound (see [41]). Of course, if the information exchanged is tailored according to
the quantum formalism, this bound will be respected. However, it remains a general question why
quantum correlations are subject to this bound.
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5.3. Local or Non-Local, That Is the Question

One of the more speculative consequences of a relational space and, in particular, relational
locations of objects in such a space, is the possibility of an ostensible superluminal propagation of
influences (changes in relations) in the sense that actually this propagation of influences is subject to
a locality principle (see Section 4.2), but, for an observer, it may look like an immediate, non-local
influence or change of relations.

Of course, much depends on how we measure distances between the elements of relational sets.
As already mentioned, apart from the simple mathematical concept of distance (number of links for
the shortest path connecting two elements), one may use a propagator distance, which involves a
summation over all paths connecting two elements. In [17,18], I have dealt with the consequences of
such definitions.

Here, I would like to emphasize a slightly different point of view. Let us assume that distances
in space are determined exclusively by the spatial relations and that these relations remain constant
(e.g., consider a three-dimensional hypercubic lattice). Now, consider the situation of Figure 8:
two entangled particles, each having relations to spatial points in regions that might be far away
from each other. However, due to entanglement, these particles are directly related and can therefore
“communicate” almost instantly. Two objects, which are entangled, are “nearest neighbors” and
never far away from each other in the sense of relations. (There is a a similarity to the ideas
behind the so-called ER = EPR conjecture of Maldacena and Susskind [42]: Two particles which
are entangled (EPR, Einstein–Podolsky–Rosen entanglement, [43]) are connected by an Einstein–Rosen
(ER) wormhole.)

There is a curious observation that supports this general idea: entanglement is always built-up
locally; however, it can be destroyed non-locally. In order for two distant objects to be entangled,
they either were directly (locally) involved in an interaction in the past (e.g., they were created in
a decay process) or one of them interacted locally with a particle that already was entangled with
the other (entanglement swapping). Both are local processes according to the definition given in
Section 4.2. However, if two distant particles are entangled, this entanglement relation can be “broken”
(they become separated) by a local interaction (e.g., a measurement) performed at only one of the
particles. This asymmetry with respect to entanglement creation and entanglement destruction is
nicely explained in the relational structure.

Violations of Bell’s inequalities are sometimes taken as a proof that any ontological model of
quantum theory has to be non-local. Only seldom is it explicitly stated that this conclusion is based
on a classical (non-quantum) picture of space-time, e.g., a Minkowski space-time as a background.
The ER = EPR conjecture as well as the micro-relational interpretation circumvent this assumption.

6. Relational Space-Time—Relational Events

The previous sections assumed a relational space and a relational notion of “location” for an
object in such a space. In this section, I will briefly sketch a relational structure of space-time.

When dealing with space-time, the relevant “objects” (the elements of space-time) are events.
If space-time is considered as “absolute” (e.g., Minkowski space-time), the events are located at
particular space-time points. In a relational picture, the locations of events (space-time points) are
defined by their relations to other events.

One starting point may be the model of causal sets (see, e.g., [44,45] and Figure 9, left). In this
case, all relations are assumed to be time-like or light-like (depending on the details of the formalism).
There are no space-like relations. The causal structure of space-time is built into the relational structure.
I will assume such a relational structure for the space-time events that make up “empty space”,
i.e., which in a large-scale limit approaches a Minkowski space or any other vacuum solution of
Einstein’s equations.
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Figure 9. (left) the events making up the canvas of “space-time” are endowed with a causal structure;
(right) a physical, object-related event can be related to the events of “space-time” in three different
ways: It can be causally influenced by events in its past, it can influence events in its future and there
may be “space-like” relations to events that are in the causal complement. The distinction between
“space-like” events and time-like or light-like events depend on the real and imaginary parts of causal
Green’s functions.

With respect to the relations of an event like the emission of a photon by an electron, i.e., an event
which involves entities like particles, I will choose a different structure. Having a quantum field
theory in mind, I define space-like and time-like (including light-like) relations for object-related
events (see Figure 9, right). The distinction between space-like and time-like relations will be that
space-like relations are real-valued while time-like relations are complex-valued. The reason behind
this definition is that, in quantum field theory, Green’s functions have real and imaginary parts for
time-like separated points but only real parts for space-like separated points; and the relations that I
associate to an event are defined by the Green’s functions.

Without going into details, I just consider the simple process of Coulomb scattering of two
electrons in the lowest approximation (Figure 10). Two elementary events—the emission of a photon
of one electron and the absorption of the photon of the other electron—constitute this process. Usually,
the asymptotic states are characterized by their momenta, but, for simplicity, I consider the process as
determined by four external events x1, x2, x3, x4 that correspond to two initial states of the electrons
and two final states of the electrons, respectively. Suppressing all indices referring to the spin of the
electrons and the polarization of the photons as well as factors of π and other normalization factors etc.,
the amplitude for this process can formally be expressed as

A(x1, x2, x3, x4) ∝
∫

dy4
1

∫
dy4

2 S(x1, y1)S(x2, y2)G(y1, y2)S(y1, x3)S(y2, x4) . (3)

Here, S(x, y) denotes the electron propagator (from space-time point x to space-time point y)
and G(y1, y2) the propagator of the exchanged (virtual) photon. In general, the contributions from
these propagators are complex functions. Each propagator defines a generalized relation between the
event (say y1) and other events (in this case y2, x1 and x3). The fact that we have to integrate over
the “location” y1 of this event indicates that this event does not happen at a particular point, but,
in principle, everywhere in space-time. At least, this is the usual interpretation of this integration:
we have to sum over all histories, i.e., all positions for these events. In the mircro-relational picture,
this integration is interpreted as a “sum” over all relations which one event, say “emission of a
photon”, has to all the other events of the space-time canvas. (Actually, as the exchange propagator for
the photon between event y1 and y2 will not be on mass-shell, emission of a photon and absorption of a
photon cannot be distinguished and should rather be interpreted as ‘interaction with a virtual photon’).
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Figure 10. The lowest order approximation of a Coulomb scattering of two electrons by an exchange
of a (virtual) photon. The points xi are kept fixed while one has to integrate over all possible positions
of the intermediate events at y1 and y2.

Thus, in the micro-relational interpretation, events do not have a particular location, but they
have relations to all other events, space-time events and object-related events. The amplitude for a
particular process in quantum field theory is just the remainder of the sum over all these relations.
(For more details, see [18,19].)

7. Conclusions

I have argued that the concept of “locality” receives a completely different meaning when the
positions or locations of entities (objects or events) are defined in a relational sense as compared to an
absolute space or space-time. In particular, many counter-intuitive aspects of quantum theory appear
less weird from this perspective. A relational space or space-time as well as a relational structure
between particles might also be a way to circumvent the constraints given by Bell-type inequalities:
the “elements of reality” and the requirement of locality are no-longer mutually exclusive.

I should add as a final remark that the ontological interpretation presented in this article is not
necessarily opposed to Bohmian mechanics, at least not in the sense David Bohm interpreted his theory
(see, e.g., [12]). The implicate order (or the structure underlying quantum theory and the theory of
relativity) could be relational and the ideals outlined in this article may, in a large-scale continuum
limit, lead to Bohmian mechanics.
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Abstract: The present work is concerned with the study of a generalized Langevin equation and its
link to the physical theories of statistical mechanics and scale relativity. It is demonstrated that the
form of the coefficients of the Langevin equation depends critically on the assumption of continuity
of the reconstructed trajectory. This in turn demands for the fluctuations of the diffusion term to be
discontinuous in time. This paper further investigates the connection between the scale-relativistic
and stochastic mechanics approaches, respectively, with the study of the Burgers equation, which
in this case appears as a stochastic geodesic equation for the drift. By further demanding time
reversibility of the drift, the Langevin equation can also describe equivalent quantum-mechanical
systems in a path-wise manner. The resulting statistical description obeys the Fokker–Planck
equation of the probability density of the differential system, which can be readily estimated from
simulations of the random paths. Based on the Fokker–Planck formalism, a new derivation of the
transient probability densities is presented. Finally, stochastic simulations are compared to the
theoretical results.

Keywords: stochastic differential equations; Monte Carlo simulations; Burgers equation; Langevin
equation; fractional velocity

PACS: 02.30.Jr, 02.30.Uu, 02.50.Ga, 02.70.Uu

MSC: 60J65, 76R50, 65R20

1. Introduction

The Langevin equation was introduced in order to describe the motion of a test particle subjected
to a fluctuating force and a viscous drag [1]. Its formulation was later generalized to encompass also
other types of systems. The Langevin equation is also fundamental for the stochastic interpretation
of Quantum Mechanics (QM) [2] and it also appears, in the form of a geodesic equation, in the scale
relativity theory (SR) developed by Nottale [3]. The equation represents a substantial theoretical
innovation because it was in fact the first stochastic differential equation. The formal theory of
stochastic differential equations was developed much later by the works of Itô and Stratonovich
(see, for example, [4] for introduction).

In contrast to the picture of diffusion as an uncorrelated random walk, the theory of dynamical
systems makes it possible to treat diffusion as a deterministic dynamical process. There the Langevin
dynamics can be also driven by chaotic but deterministic processes [5–7]. Emergence of diffusive
behavior and Markovian evolution was also addressed by Gillespie [8]. The recent study of
Tyran-Kaminska demonstrates that simple diffusion processes can emerge as weak limits of piecewise
continuous processes constructed within a totally deterministic framework [7]. This is a finding which
lends credence to the widely used techniques of Monte Carlo simulations using pseudo-random
number generators.
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A different way of looking at the Langevin equation is to specify a fractal driving process instead of
the stochastic Wiener process. Examples can be given by the studies of deterministic diffusion, where
generalized Takagi functions appear [9,10]. Using this approach, both fractal and linear behaviours of
the diffusion coefficients can be demonstrated. Together, the studies mentioned so far demonstrate a
fundamental interplay between emergent stochasticity, chaotic dynamics and fractality, which governs
transport phenomena.

The term generalized Langevin equation is typically used in the physics literature to describe
the system’s memory effects conveyed by non-Markovian color noises [11]. The present paper
will generalize the Langevin equation in a different way. The Markovian character of the driving
signal will be preserved, but the signal will be assumed to have some properties, leading to fractal
behaviour—notably a suitably dense set of points where its Hölder exponent is fractional. Furthermore,
the linearity restriction of drift term will be relaxed and instead the drift will be assumed to be a
smooth function of position and time.

Interpretations of quantum mechanics are drawing a reemerging attention in the light of the
centennial anniversary of David Bohm. Part of the present work was presented as a poster at the
Emergent Quantum Mechanics 2017 conference in London. Results of the present work have been
derived using the machinery of stochastic mechanics. On the other hand, the paper does not make
strong foundational claims; instead, it is concerned with some questions about the mathematical
foundations of the scale relativity theory, its link to stochastic mechanics and the theory of the Burgers
equation. To the author’s knowledge, such a link to the Burgers equation was not recognized before.

The Burgers equation was initially formulated by Bateman while modeling the weakly viscous
liquid motion [12]. It can be derived from the full Navier–Stokes equations under some simplifying
assumptions. It was later studied extensively by Burgers as a cartoon model of turbulence [13].
Presently, the number of applications of the Burgers equation is very diverse. It has been used to
model physical systems, such as surface perturbations, acoustic waves, electromagnetic waves, density
waves, or traffic (see, for example, [14]). The stochastic representation of the Burgers equation can
be traced back to the seminal works of Busnello et al. [15,16]. Later, Constantin and Iyer derived a
probabilistic representation of the deterministic three-dimensional Navier–Stokes equations [17,18].
The result presented here complements the findings of these authors as incompressibility, and hence
the harmonicity of the drift, in the Burgers equation is not required.

The paper starts by briefly presenting stochastic mechanics and scale relativity. Section 2
demonstrates a general result about stochastic representations of Hölder-continuous signals leading
to the Langevin equation. Section 3 introduces Nelson’s characterization of a stochastic process.
Section 4 introduces the complex representation of the drift in stochastic mechanics and scale
relativity. Section 5 establishes the connection with the Burgers equation. Based on the Fokker–Planck
formalism, a new derivation of the transient probability densities is presented. Section 6 discusses the
Burgers equation as a geodesic-type of equation. The Cole–Hopf transformations are discussed as
solution techniques for the Burgers equation in Section 7. Moreover, it is demonstrated how complex
Cole–Hopf transformations map the complex Burgers equation, derived in a variational setting, to
the free Schroedinger equation. Finally, in Section 8, numerical simulations are compared with the
theoretical results.

1.1. Stochastic Mechanics (SM)

In the 1930s, certain similarities between the equations of classical statistical mechanics and the
Schrödinger equation were discovered. These findings led to the stochastic interpretation of quantum
mechanics. In stochastic mechanics, quantum phenomena are described in terms of diffusions instead
of wave functions. The main equation of motion is in fact the Langevin equation. The formal equations
of stochastic mechanics were formulated at first by Fényes [19] and Weizel [20] and later taken up
by Nelson [2]. Following this interpretation, the trajectories of the configuration, described by a
Markov stochastic process, are regarded as physically real. Nelson’s original formulation employed a
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stochastic version of the Newton’s law and time reversibility of the process. Interestingly, the form of
the stochastic acceleration had to be postulated.

A Lagrangian formulation of stochastic mechanics was achieved by Pavon in complex form [21].
However, the given presentation is far from intuitive. In his treatment, the stochastic Lagrangian is the
classical Lagrangian evaluated on a complex-valued velocity field in place of the real-valued classical
velocity, while the dynamics is given by a complex-valued stochastic differential equation, similar
to the treatment of Nottale. The Lagrangian problem was formulated as a constrained optimization
problem, where the dynamics acted as the constraint.

1.2. Scale Relativity Theory (SR)

The scale relativity theory extends the principle of relativity also to resolution scales [3,22,23].
The main tenet of the theory is that there is no preferred scale of description of the physical reality.
Therefore, a physical phenomenon must be described simultaneously at all admissible scales. While
this is consistent with calculus for differentiable signals, the situation changes if non-differentiable
models, such as Brownian motion or Mandelbrot’s multiplicative cascades [24], are addressed.
For these cases, the scale of observation (or resolution) is present irreducibly in the local description
of a phenomenon. This led Nottale to postulate the fractality of the underlying mathematical
variety (i.e., a pseudo-manifold) describing the observables. It should be noted that, in Nottale’s
approach, only finite differences are admissible. The scale relativistic approach results in corrections of
Hamiltonian mechanics that arise due to the non-differentiability of trajectories, which are treated as
virtual paths. Nottale introduces a complex operator that he calls the scale derivative, which acts as a
pseudo-derivative (see Section 4 for details).Using this tool, Nottale gives an informal derivation of the
Schrödinger equation from the classical Newtonian equation of dynamics, via a quantization procedure
that follows from an extension of Einstein’s relativity principle called the scale relativity principle.

2. Stochastic Representation of Trajectories

If one considers the Brownian particle as a subsystem and the surrounding particles as an
infinite dimensional thermal reservoir, the Langevin equation precisely models the situation where
the subsystem suitably interacts with the thermal reservoir. The type of the effective random force
can be identified with a Wiener process, which has continuous but non-differentiable paths almost
everywhere. Mathematical descriptions of strongly nonlinear phenomena necessitate the relaxation of
the global assumption of differentiability. In contrast, classical physics assumes global smoothness of
the signals and continuity of their first two derivatives. Therefore, non-smooth phenomena, such as
fractals slip through its conceptual net. This argument can be further elaborated as follows. Consider
the measurement of a trajectory in time x(t). Non-differentiability can occur in three scenarios:

1. divergence of the velocity, that is divergence of the difference quotient,
2. oscillatory singularity or
3. difference between forward and backward velocities.

While for scenarios (1) and (2) the velocities (i.e., derivatives) can not be defined mathematically,
scenario (3) requires dropping only the assumption of continuity of the resulting velocity. That is,
x′+(t) 
= x′−(t) at the point of non-differentiability t. A simple example of such behavior is the signal
x(t) = |t| around the origin t = 0. While scenario (2) is excluded by the scale relativity theory, scenario
(1) leads to scale dependence of the difference quotient. Examples of fractal functions, such as the
mathematical Brownian motion paths, are typically of divergent length. This at best can be viewed
as a mathematical idealization since in this case the work for moving a particle along its trajectory
must be infinite. On the other hand, non-differentiability does not need to occur “everywhere” (i.e.,
with full Lebesgue measure) on a trajectory. In this case, the trajectory can be almost everywhere
differentiable except on a certain dense set of points. Examples of these are the singular functions,
such as the Salem-de Rham’s functions [25] or the well known Cantor’s function. Singular functions
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have finite lengths, therefore the exerted displacement work is also finite. This makes them promising
candidates for conceptualization of non-smooth phenomena in physics.

The relationship between Nelson’s and Nottale’s approaches can be established in a formal way.
For clarity of the argument, we focus on the one-dimensional case. First, let’s establish the concept
of stochastic embedding of a signal. In the following, we assume that the deterministic signal
(i.e., trajectory) will be represented by an equivalence class of stochastic paths having the same
expectation as the given deterministic signal. Mathematical notation and preliminaries for the
subsequent treatment are presented in Appendix A. A possibly non-differentiable continuous trajectory
is represented by a continuous Markov stochastic process evaluated in the virtual space of paths
as follows:

Definition 1 (Markov Stochastic Embedding). Consider a bounded deterministic signal x(t) on the compact
interval T ⊆ R representing time. Define the stochastic embedding Sρ in the probability space (T⊗Ω,F , ρ),
where ρ is the probability density, as the isomorphism

Sρ : T ⊗R �→ (T ⊗Ω,F , ρ),

Sρ : (t, x(t)) �→ X(t, ω), X ∈ T ⊗Ω,

under the constraint
Eω X(t, ω) = x(t),

where the random variables sampled at different times t are independent and identically distributed (i. i. d.) and
F is a σ-algebra.

Note: the ω-index will be skipped from the notation wherever convenient for clarity. In addition,
Xt and X(t) will be used interchangeably. Deterministic signals are denoted by the lower case, while the
stochastic by upper case letters.

The above definition implicitly assumes that Xt ∈ L1(T ⊗Ω,F , ρ) and Eω X(t, ω) < ∞.
The name of the embedding is justified by the following Lemma:

Lemma 1. The stochastic process under the above definition has the Markov property.

Proof. By construction for fixed t, δ ∈ F

Eω Xt = x(t), Eω Xt+δ = x(t + δ).

The conditional expectation is

Eω (Xt+δ|Xt) =
∫

Ω
ξ

ρ(ξ, Xt)

ρ(Xt)
dξ,

where ξ ≡ Xt+δ is used for notational convenience. However, by independence of the variables
ρ(Xt+δ, Xt) = ρ(Xt+δ)ρ(Xt). Therefore, Eω Xt+δ = Eω (Xt+δ|Xt). Since δ can be either positive or
negative, the claim follows.

Consider the nonlinear problem, where the phase-space trajectory of a system is represented by a
Hölder function x(t) (see Appendix A, Definition A2) and t is a real-valued parameter, for example
time or curve length. Let us suppose that the continuous temporal evolution of a differential system
can be represented by a generalization of the Langevin equation of the form

dx(t) = a(x, t)dt + B(x, t)dtβ, β < 1, (1)
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where a(x, t) and B are bounded and measurable functions of the co-ordinates and furthermore a(x, t)
is continuous in both x and t. That is, for all ε, such that 0 ≤ ε ≤ dt

Δ+
ε [x] (t) = x(t + ε)− x(t) = a(x, t)ε + B(x, t)εβ + O (ε) .

This can be recognized as the Hölder growth condition of order β, since a(x, t)ε is an O (ε) term.
The fractional exponent β is treated as a free parameter with value to be determined later.

The type of admissible functions coupled to the fractional exponent depends critically on the
assumption of continuity of the reconstructed trajectory. This in turn demands for the fluctuations of
the fractional term to be discontinuous. The proof technique is introduced in [26], while the argument
is similar to the one presented by Gillespie [8].

Without loss of generality, set a = 0. Let xt+ε = xt + B(xt, t) + O
(
εβ

)
and |Δεx| ≤ Kεβ. Fix the

interval [t, t + ε] and choose a partition of points P = {tk = t + ε k/N}

xtk = xtk−1 + B(xtk−1 , tk−1) (ε/N)β + O
(
(ε/N)β

)
.

Therefore, by induction

Δεx = xt+ε − xt =
1

Nβ

N−1

∑
k=0

B(xtk , tk)ε
β + O

(
N1−βεβ

)
.

If we suppose that B is continuous in x, implying also continuity in t, after taking supremum limit
on both sides

lim sup
ε→0

Δεx
εβ

= N1−βB(xt, t) = B(xt, t).

Therefore, either β = 1 (which is forbidden by hypothesis) or else B = 0 so that B(x, t) must
oscillate from point to point if β < 1. Then, let’s denote the set χβ := {B(xt, t) 
= 0}.

The argument demonstrates that so-defined set is totally disconnected in the topology of the
real line [26]. This allows for the choice of the algebra F , since we can demand that Ω ⊆ χβ has for
elements the semi-open intervals [τi, τj), τi,j ∈ χβ. Furthermore, the initial system in Equation (1) is

equivalent to the finite existence of the fractional velocity B(x, t) = υ
β
+x(τi) 
= 0, since the differential

system can be recognized as fractional Taylor series [26]. In other words, the events in the probability
space are the observations of non-vanishing values of the fractional velocity of the signal.

From now on, let Pτ ≡ P ⊆ F . Without loss of generality, suppose that O
(

N1−βεβ
)
≤ 1.

The stochastic representation xt �→ (Xt(ω), ρ) is such that

E
ΔεX
εβ

− Oε =
1

Nβ

N−1

∑
k=0

E B(Xtk , tk), ∀N.

Therefore, we demand that B(Xt, t) is F -measurable and L 2(Ω, T) as a technical condition.
By the Hölder condition, |xtk − xtk−1 | ≤ Kkεβ for some set of constants Kk. Then, by transfer,

|E B(Xtk , tk)−E B(Xtk−1 , tk−1)| ≤ Kkεβ.

Therefore, E B(Xtk , tk) exists and is bounded. By the same argument,

E (ΔεX)2 ≤ Kk
kε2β.
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Then, we proceed by induction. Let Ks = supi K2
i from the above partition:

(Δεx)2 =
N−1

∑
i,j=0

ΔixΔjx =
N−1

∑
i=0

Δix2 + 2
N−1

∑
i<j

ΔixΔjx ≤ 3Ks ε2βN1−2β.

Therefore, for the embedded variable,

E (ΔεX)2 = E
N−1

∑
i,j=0

ΔiXΔjX = E
N−1

∑
i=0

ΔiX2 + 2E
N−1

∑
i<j

ΔiXΔjX ≤ 3Ks ε2βN1−2β.

Since ΔiXΔjX are independent by Lemma 1, EΔiXΔjX = EΔiXEΔjX ≤ Ks. Therefore,
Var[ΔεX] ≤ 3Ks ε2βN1−2β.

The argument can be specialized to β = 1/2 where Var[ΔεX] ≤ Ks ε2β. Therefore, the variance
exists ∀N and the Central Limit Theorem holds. Since by Lemma 1 the process is Markovian, it must
follow that in limit N → ∞ the random process is Wiener.

Now suppose that a 
= 0. Then, since a(x) is continuous of bounded variation (BVC,
see Appendix A), then a.e.,

Ea(X, t) = Ea(x + Z, t) = E(a(x, t) + a′xZ + O (Z)) = a(x, t), Z = Xt − xt

and
Ea(X, t)2 = a(x, t)2 + a′x

2
σ2, σ2 = EZ2,

with σ2 existing by the previous argument. Therefore, Var[ΔεX] ≤ 3Ks ε2βN1−2β − a(x, t)2ε2 ≤
3Ks ε2βN1−2β by the same argument as in the previous case. Therefore, for β = 1/2, the limit of the
random process is Wiener.

Let us denote the limit Wiener process by Wt. Using the stationarity and self-similarity of the
increments Δ+

ε Wt =
√

ε N(0, 1), where N(0, 1) is a standard Gaussian random variable. Therefore,
for β = 1/2, the velocity can be regularized to a finite value if we take the expectation. That is,

υ
β
+EWt = 0,

since Δ+
ε EWt = 0. However,

υ
β
+ E|Wt| =

∞∫
0

√
2
π

e−z2/2dz = 1 .

The estimate holds a.s. since P(Wt = 0) = 0, where P denotes probability.
Finally, there is a function b(X, t), such that b(X, t)ξ = B(X, t), ξ ∼ N(0, 1). This follows directly

from the axiom of choice, since we can always choose ξ = 1. Therefore, the last equation can be treated
as a definition of b(X, t).

In summary, the following theorem can be formulated:

Theorem 1 (Gaussian stochastic embedding). Suppose that x(t) is β-differentiable of order β = 1/2 in the
interval T = [t, t + ε] and

dx(t) = a(x, t)dt + B(x, t)dtβ

for 0 < dt ≤ ε, where a(x, t) is continuous in both x and t and B(x, t) ∈ L 2(Ω, T) is bounded but
discontinuous. Furthermore, let χβ be the set of change (Definition A6) of f [T].

Then, x(t) can be embedded in a probability space (T ⊗Ω,F , ρ), such that

1. Ω ⊆ χβ,
2. Xt has i. i. d. Gaussian increments,
3. EXt = x(t) and
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4. υ
β
+E (|Xt||Xt = x) = υ

β
+|x(t)| = |b(x, t)| hold almost sure.

Furthermore, the stochastic differential equation

dXt = a(Xt, t)dt + b(Xt, t)dWt

holds a.s. In the last equation, Wt is a standard Wiener process and

b(X, t)ξ := B(X, t), ξ ∼ N(0, 1).

Such embedding can be also called a consistent stochastic embedding. This theorem allows for
Nelson’s characterization of the Langevin diffusion process.

3. Nelson’s Characterization

The Langevin equation can describe equivalent quantum-mechanical systems in a path-wise
manner. These are the so-called conservative diffusions of Carlen [27]. The existence of so-conceived
QM particle paths was proven under certain reasonable conditions [27]. Starting from the generalized
Langevin equation, the argument can be specialized to a Wiener driving process, which can be handled
using the apparatus of Itô calculus. Consider the stochastic differential equation with continuous drift
and diffusion coefficients

dXt = a(X, t)dt + b(X, t)dWt,

where a(X, t) and b(X, t) are smooth functions of the co-ordinates and dWt are the increments of a
Wiener process dWdt ∼ N(0, dt) adapted to the past filtration Ft>0 – i.e., starting from the initial state.

Let EXt = x(t). Following Nelson [2], the forward and backward and drift, respectively diffusion
coefficients, can be identified as the averaged velocities [28]:

a = lim
dt→0

E

(
Xt+dt − Xt

dt

∣∣∣∣ Xt = x
)
=

d
dt
(x− b

√
dt), (2)

|b| = lim
dt→0

E

( |Xt+dt − Xt|√
dt

∣∣∣∣ Xt = x
)
= υ1/2

+ |x|. (3)

The evolution of the density of the process can be computed from the forward
Fokker–Planck equation

∂

∂t
ρ +

∂

∂x
(aρ)− 1

2
∂2

∂x2

(
b2ρ

)
= 0, (4)

which can be recognized as a conservation law for the probability current j:

∂

∂t
ρ +

∂

∂x
j = 0, j := aρ− 1

2
∂

∂x
b2ρ.

Under the finite energy technical condition, there is a backwards process with the same
transition density

dXt = â(X, t)dt + b(X, t)dŴt,

which is adapted to the future filtration Ft<T – i.e., starting from the final state. This leads to the
anticipative (i.e., anti-Itô or anticipative) stochastic integrals. This process has Fokker–Planck equation

∂

∂t
ρ +

∂

∂x
(âρ) +

1
2

∂2

∂x2

(
b2ρ

)
= 0. (5)
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Then, it follows that the Nelson’s osmotic velocity can be defined from

a− â = b2 ∂

∂x
log b2ρ + φ(t),

where φ(t) is an arbitrary C 1 function of time as u := 1
2 (a− â) and the current velocity as

v :=
1
2
(a + â)

so that a continuity equation holds for the density

∂

∂t
ρ +

∂

∂x
vρ = 0.

Furthermore, Pavon [21] has established that the entropy production over the whole space is

H′(t) := − d
dt

∫
R

ρ log ρ dx3 = − 2
b2E uv.

Thus, for a Markov diffusion process,

E
1
b2

∫ r

s
uv dt =

1
2
(H(s)− H(r))

for a constant b.

4. The Complex Velocity Operator in SR and SM Theories

Scale relativity treats velocity only as a difference quotient. This is a necessity due to the assumed
non-differentiability of the trajectories. Non-differentiability leads to introduction of two velocity
fields—forward and backward, depending on the direction of differentiation in time. These fields
are assumed to be finite for small values of the time step dt but they diverge to infinity in the limit
dt → 0 in a standard analysis setting. Therefore, such velocity fields can be defined only up to a finite
resolution underlying the physical phenomenon under study. The velocity fields are assumed to admit
representation of the form of a sum of a “classical part” plus a correction of a resolution-dependent
and diverging fractal part. The classical part corresponds to the absolutely continuous part of the
trajectory, while the fractal part corresponds to the singular and possibly oscillatory parts. Since, at the
level of physical description, there is no way to favor the forward rather than the backward velocity,
the description should incorporate them on equal grounds, i.e., forming a bivariate vector field R⊗R

v+ :=
Δ+

dtx
dt

⊗ v+ :=
Δ−dtx

dt
.

This bivariate vector field is represented by a complex-valued vector field [29] as v = V − iU ∈
R 3 with components given by U := 1

2 (v+ + v−) , V := 1
2 (v+ − v−) , where V is interpreted as the

“classical” velocity and U is a new quasi-velocity quantity (i.e., the osmotic velocity in the terminology
of Nelson). Under these assumptions, Nottale introduces a complexified material derivative, which is
a pseudo-differential operator acting on scalar functions as

DF = ∂tF + (v · ∇) F− iσ2∇2F,

where σ is a constant, quantifying the effect of changing the resolution scale.
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Stochastic mechanics allows for a similar treatment of the complex of forward and backward
diffusions. The drift, resp. diffusion coefficients can be further embedded in a complex space as
proposed by Pavon [21]:

a ⊗ â �→ V := v− iu,

Xt+dt ⊗ Xt−dt �→ dX =
1
2
(Xt+dt + Xt−dt)− i

1
2
(Xt+dt − Xt−dt) ,

so that the diffusion process becomes complex. It follows that

dX = Vdt +
1− i

2
b dWt +

1 + i
2

b̂ dŴt.

In the case when b = b̂,

dX = Vdt +
1− i

2
b
(
dWt + idŴt

)
= Vdt +

e−
iπ
4√
2

b
(
dWt + idŴt

)
.

Therefore, we can designate a new complex stochastic variable

Zt :=
dWt + idŴt√

2
.

Because of its double adaptation, Zt retains its local martingale properties: that is, EZt = 0. In this
case, notably Var Zt = 0, but E|Zt|2 = 1, so that finally,

dX = Vdt +
√
−ib dZt.

Therefore, a formal Itô differential can be introduced in exactly the same way

dF =
∂

∂t
F + dX ∂

∂x
F +

1
2

[
dX 2

] ∂2

∂x2 F (6)

with quadratic variation
[
dX 2] = −ib2dt. Therefore, in components,

dF =

(
∂

∂t
F + V ∂F

∂x
− ib2

2
∂2

∂x2 F
)

dt +
√
−ib

∂F
∂x

dZt, (7)

which generalize to

dF =

(
∂tF + (V · ∇) F− ib2

2
∇2F

)
dt +

√
−ib (dZt · ∇) F

in three dimensions [28]. It is apparent that both theories share an identical algebraical structure, while
SM can be considered as a stochastic representation of SR.

Remark 1. Conceptually, the forward process can be interpreted as a prediction, while the backward process can
be interpreted as a retrodiction.

Note that, in the complex formulation of Pavon, the real part of the driving process Zt corresponds to the
forward (i.e., adapted to the past) process, while the imaginary part corresponds to the backward (i.e., adapted
to the future) process. This is of course one of infinitely many choices, since the complex factor in the diffusion
coefficient is a root of unity and hence represents a rotation in the complex plane.
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The martingale property of the complex Wiener process conceptually means that the knowledge of the
past and future of the process do not bias the outcome at the present time (i.e., at measurement). Note that the
mapping is invertible since

Xt+dt = Re (dX ) + Im (dX ) , | Xt−dt = Re (dX )− Im (dX ) .

From these formulas, it is apparent that the real part, or respectively the imaginary part of the resulting
process do not have separate meanings, as they mix the predictive process with the retrodictive process.
To illustrate the point, suppose that F = Fr + iFi and a = ar + iai and the original process dX is transformed
as F(X ). Then, a straightforward calculation gives

Re(dF) =
(

∂Fr

∂t
+ ar

∂

∂x
Fr − ai

∂

∂x
Fi +

b2

2
∂2

∂x2 Fi

)
dt

+
b√
2

(
dWt

(
∂

∂x
Fr +

∂

∂x
Fi

)
+ dŴt

(
∂

∂x
Fr− ∂

∂x
Fi

))
, (8)

Im(dF) =
(

∂Fi
∂t

+ ar
∂

∂x
Fr + ai

∂

∂x
Fi +

b2

2
∂2

∂x2 Fr

)
dt

− b√
2

(
dWt

(
∂

∂x
Fr −

∂

∂x
Fi

)
− dŴt

(
∂

∂x
Fr +

∂

∂x
Fi

))
. (9)

5. The Real Stochastic Geodesic Equations

The appearance of the Wiener process entails the application of the fundamental Itô Lemma for
the forward (i.e., adapted to the past, plus sign) or the backward processes (i.e., adapted to the future,
minus sign), respectively. In differential notation, it reads

dF(X) = dX
∂

∂x
F±

[
dX2]

2
∂2

∂x2 F, (10)

where
[
dX2] = b2dt is the quadratic variation of the process. It can be seen that in this case the

(forward) differential operator d acts as a material derivative.
The term geodesic will be interpreted as a solution of a variational problem [30,31]. A brief

treatment is given in Appendix B. By application of Itô’s Lemma, the forward geodesic equation can
be obtained as:

∂

∂t
a + a

∂

∂x
a +

b2

2
.

∂2

∂x2 a = 0. (11)

This can be recognized as a Burgers equation with negative kinematic viscosity for the drift
field [13].

The backward geodesic equation follows from the application of the Itô’s lemma for the
anticipative process

∂

∂t
a′ + a′

∂

∂x
a′ − b2

2
∂2

∂x2 a′ = 0 (12)

This can be recognized as a Burgers equation with positive kinematic viscosity for the drift field.
The solution of the Burgers equation is well known and can be given by the convolution integrals

(Equation (44)) for the case of positive viscosity [13]. The case about the negative viscosity can not
be easily solved using Fourier transform. Therefore, a different solution technique will be pursued.
Time-varying solutions will be constructed from topological deformations of the stationary solutions.

In QM applications, b = h̄/2m. Normalization b = 1 will be assumed further in most cases to
simplify calculations.
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5.1. Path-Wise Separable Solutions

In the first instance, one can solve the geodesic equation by supposing separability. By making
the ansatz a(x, t) = f (x)g(t), we arrive at the equation:

f ′′(x)
2 f (x)

+ g(t) f ′(x) +
g′(t)
g(t)

= 0.

This has the unique solution

a(x, t) =
x + x0

t + T
. (13)

The resulting Itô equation can be formulated as

dX =
X + x0

t + T
dt + dWt.

The stochastic differential equation for the drift is therefore

da =
1

t + T
dWt,

which can be integrated exactly in Itô’s sense as

a(t) = a0 +

t∫
0

dWs

s + T
, a0 =

x0

T
. (14)

Therefore,

X(t) =
x0

T
(t + T) + (t + T)

t∫
0

dWs

T + s
, (15)

where T is the stopping time. Therefore, an exact numerical quadrature can be performed (Figure 1 )

(A) (B)

Figure 1. Virtual trajectories of the separable process. (A) virtual trajectories; (B) empirical vs.
theoretical density. (A) exact simulation of separable process is compared with the Euler–Maruyama
algorithm. E—Exact simulation, E–M—Euler–Maruyama simulation; An offset is added to the exact
solution for appreciation. Time is given in arbitrary units; (B) the empirical transition density is
estimated from n = log2(Ns N) bins. Pearson’s correlation is given as an inset—r = 0.9976.
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The corresponding density can be obtained from the Fokker–Planck equation

∂

∂t
ρ +

∂

∂x

(
ρ x

t + T

)
− 1

2
∂2

∂x2 ρ = 0

with solution

ρ(x, t) =
1√

2π (T + t)
exp

(
x2

2(t + T)

)
. (16)

It should be noted that, under time reversion, we arrive at the same solution, which however
leads to a different Fokker–Planck equation

∂

∂t
ρ +

∂

∂x

(
ρ x

t− T

)
+

1
2

∂2

∂x2 ρ = 0

with solution

ρ(x, t) =
1√

2π (T − t)
exp

(
− x2

2(t− T)

)
,

which can be recognized as a Brownian bridge. The entropy of this density can be calculated as

H(t) =
log 2π (t− T) + 1

2
.

5.2. Stationary Drift Fields

For time-homogeneous diffusion, the geodesic equation can be brought into the form

1
2

∂

∂x

(
a2 +

∂

∂x
a
)
= 0,

which can be integrated once to give

a2 +
∂

∂x
a = −E.

The integration constant E can be identified with the energy. The resulting first order ordinary
differential equation (ODE) can be solved as

a(x) = −
√

E tan
(√

E x + c
)

, E > 0, (17)

a(x) =
1

x + c
, E = 0. (18)

The solution for E > 0 was identified by Herman [32]. By translation, invariance of the coordinates,
c = 0 is admissible. This observation will be used further for the transient solution. The link between
the two solutions can be established as follows. Note that

a(x) =
√

E cot
√

E x

is also a solution. Then,

lim
E→0

√
E cot

√
E x =

1
x

,

which is the second solution.
The expectation of the trajectory can be obtained by solving the ODE

dx
dt

= −
√

E tan
√

E x
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so that

√
E x(t) = arcsin e−Et+c, (19)

√
E x(t) = arccos e−Et+c. (20)

In accordance with so-developed theory for c = 0,

υ1/2
+ x(t = 0) = ± lim

h→0+
E

2
√

h e−Eh
√

1− e−2Eh
= ±

√
2E.

Furthermore, for E = 0,
dx
dt

= ± 1
x

so that in the same way
x(t) = c±

√
2t.

The backward geodesic equation

1
2

∂

∂x

(
a2 − ∂

∂x
a
)
= 0

by the same method leads to

a(x) = −
√

E tanh
(√

E x + c
)

, E > 0, (21)

a(x) = − 1
x + c

, E = 0. (22)

5.3. Stationary Density Solutions

The stationary density ρ(y) is a solution of the Fokker–Planck (i.e., forward Kolmogorov)
equations parametrized by E:

1
2

∂2

∂y2 ρ
(

y2 + 1
)2

= 0, E > 0, (23)

1
2

∂2

∂y2 ρ y4 = 0, E = 0. (24)

The case E > 0 leads to

∂

∂x
tan(x)ρ +

1
2

∂2

∂x2 ρ = 0 (25)

with stationary solution
ρ = cos2

√
Ex,

which can be valid on a bounded domain. The entropy of this solution in the domain
[−π/(2

√
E), π/(2

√
E)] can be calculated as

H =
π log 4

2
− π

2
.

The case E = 0 leads to

∂

∂x
ρ

x
− 1

2
∂2

∂x2 ρ = 0 (26)
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with a stationary solution
ρ = |x|,

which can be valid on a bounded domain.

5.4. Transient Drift Fields

The solution of the Burgers equation is well known and can be given by the convolution integrals
(Equation (44)) for the case of positive viscosity [13]. The case of negative viscosity emerging here is
more challenging and it will be solved by a deformation of the stationary solution, so that in limit the
stationary solution is recovered:

lim
t→∞

a(t, x) = a(x), E > 0.

The solution is sought in the form (neglecting scale factors)

a(t, x) = − sin x
cos x + f (t),

which results in a linear ODE for the unknown function f (t):

2 f ′(t) + f (t)

2 (cos x + f (t))2 sin x = 0.

By variation of the parameters, the solution for a(t, x) is given as

a(t, x) = −
√

E
sin
√

Ex

cos
√

Ex + ke−
Et
2

, (27)

where the constant E represents an energy scale and k is an arbitrary constant. We can assume
normalization, for example k = ±

√
E, such that a(t, π

2E ) = ±1. Plots are presented in Figure 2.

(A) (B)

Figure 2. Time-varying drift fields for E = 1, k = 1. (A) forward drift; (B) backward drift.

The transformed Itô drift equation for k = 1 reads

da(t, x) = −E
e−Et/2 cos

√
Ex + 1(

e−Et/2 + cos
√

Ex
)2 dWt = −

√
E

e−Et/2 cos
√

Ex + 1(
e−Et/2 + cos

√
Ex

)2 dWE t.
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It can be further noticed that rescaling in a pair of new variables x′ =
√

Ex, t′ = Et leaves
the ratio

z =
x2

t
=

x′2

t′

invariant so that z becomes a similarity variable.
Furthermore, a formal forward Kolmogorov equation can be written in the y = a(t, x) variable

with E = 1 as

∂

∂t
ρ− 1

2
∂2

∂y2

ρet
(

cos (x) + e
t
2

)2

(
e

t
2 cos (x) + 1

)4 = 0, x = ± arcsin

⎛⎝ e−
t
2 y

(√
(et − 1) y2 + et − 1

)
y2 + 1

⎞⎠ ,

however its solution is challenging due to its mixed nonlinearity and will not be attempted here.
Nevertheless, the analysis presented so far assures that asymptotically ρ can be obtained as a solution
of the stationary equation.

The backward geodesic equation leads to the following solution :

a(t, x)′ = −
√

E
sinh

√
Ex

cosh
√

Ex + ke−
Et
2

. (28)

5.5. Asymptotic Density Solutions

The forward drift itself a ≡ y (symbol changed) obeys the transformed stochastic
differential equations

E > 0 : dy =
√

E
(

y2 + 1
)

dWt =
(

y2 + 1
)

dWE t, (29)

E = 0 : dy = y2 dWt. (30)

The density ρ is a solution of the forward Kolmogorov equations parametrized by E:

∂

∂E t
ρ =

1
2

∂2

∂y2 ρ
(

y2 + 1
)2

, E 
= 0, (31)

∂

∂t
ρ =

1
2

∂2

∂y2 ρ y4, E = 0. (32)

The solutions can be obtained using the Laplace transform Ls f (t) �→ f̂ (s). In this way, the partial
differential equation can be transformed into an ODE for the Laplace variable:

−1
2

∂2

∂y2 ρ̂y4 + ρ̂ s = ρ(0, y), (33)

−1
2

∂2

∂y2 ρ̂
(

y2 + 1
)2

+ ρ̂ s = ρ(0, y). (34)

To obtain the Green’s function, we take homogeneous initial conditions a.e. The solutions in the
time domain can be obtained by the inverse Laplace transformation:

ρ̂(s, y) =
Ae−

√
2 s
y

√
s y3

L−1
s−−→ ρ(t, y) =

A√
t y3

e
− 1

2 t y2 , (35)

ρ̂(s, y) =
e−
√

2s/E−1 arctan(y)

(y2 + 1)
3
2

L−1
s−−→ ρ(t, y) =

e−
arctan2 y−(Et)2

2E t

√
π Et

√
(y2 + 1)

3 . (36)
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In the position space, the solution can be obtained using Grisanov’s theorem [4]:

ρ(t, x) =
|x|√

t
exp

(
− x2

2 t

)
, (37)

ρ(t, x) =
| cos (

√
E x)|√

πE t
exp

(
Et
2
− x2

2t

)
. (38)

The second equation is not acceptable from a physical point of view since lim
t→∞

ρ(t, x) diverges.

In the same way for the backward drift,

E > 0 : dy =
√

E
(

y2 − 1
)

dWt =
(

y2 − 1
)

dWE t, (39)

E = 0 : dy = y2 dWt, (40)

∂

∂E t
ρ =

1
2

∂2

∂y2 ρ
(

y2 − 1
)2

, E 
= 0, (41)

with solutions

ρ(t, y) =
1

√
π Et

√
(y2 − 1)

3 exp

(
−arctanh2 y + (Et)2

2E t

)
in the drift space and in position space

ρ(t, x) =
cosh (

√
E x)√

πE t
exp

(
− x2

2t
− Et

2

)
,

respectively. This is acceptable from a physical point of view since lim
t→∞

ρ(t, x) = 0, which is a correct

asymptotic behavior.

6. The Complex Stochastic Geodesic Equations

The complexification removes the restriction of positive definiteness of the E parameter so that
the substitution t �→ ±Et becomes admissible by an appropriate cut along the complex plane.

In a similar way, for the complex case, we have

dXt = −i
√

E tanh
√

EXt dt +
√
−i dZt,

which, under substitution, y = tanh x leads to

dy =
√
−i
√

E
(

y2 − 1
)

dZt,

By the same methods as used above, the asymptotic density for the drift variable can be
obtained as

ρ(t, y) = Re
1

√
πt (y2 − 1)

3
2

exp

(
iEt
2
− iarctanh2 y

2Et

)
.

For the resulting density in the position space, it can be calculated that

ρ(t, x) = Re
i cosh (

√
Ex)√

πEt
exp

(
iEt
2
− ix2

2t

)
. (42)
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In a similar way, for the other solution,

dX = i
√

E tan
√

EXdt +
√
−i dZt,

which under substitution y = tan
√

Ex leads to the drift equation

dy =
√
−i
√

E(1 + y2) dZt.

The drift density can be readily obtained as

ρ(t, y) =
1

√
πt (y2 + 1)

3
2

exp
(
− iEt

2
− iarctan2 y

2Et

)
.

In the position space, the density is of the form

ρ(t, x) = Re
| cos (

√
Ex)|√

πEt
exp

(
− ix2

2t
− iEt

2

)
. (43)

In either case, the densities asymptotically approach zero.

7. Real-Valued and Complex Cole–Hopf Transformations

The Burgers equation can be linearized by the Cole–Hopf transformation [33,34]. This mapping
transforms the nonlinear Burgers equation into the linear heat conduction equation in the
following way. Let

u =
∂

∂x
log a.

Substitution into Equation (11) leads to

1
2 u2

(
u

∂3u
∂x3 + 2u

∂2u
∂t∂x

− ∂u
∂x

∂2u
∂x2 − 2

∂u
∂t

∂u
∂x

)
= 0.

This can be recognized as
∂

∂x
1
u

(
∂

∂t
u +

1
2

∂2

∂x2 u
)
= 0,

which is equivalent to a solution of the equation

∂

∂t
u +

1
2

∂2

∂x2 u = 0.

It should be noted that if instead of the forward development (i.e., prediction) one takes the
backward development (i.e., retrodiction), the usual form of the Burgers equation is recovered.
This corresponds to the anticipative Wiener process, which is subject to the anticipative Itô
calculus [17,35]:

∂

∂t
â + â

∂

∂x
â− 1

2
∂2

∂x2 â = 0.

In this case, the usual general solution can be revealed

φ0(x) = exp
(

1
2ν

∫ x

0
â0(u)du

)
, (44)

â(x, t) =
∂

∂x
log

1
2
√

πνt

∫ ∞

−∞
φ0(u)e−

(x−u)2
4νt du =

∫ ∞
−∞

x−u
t φ0(u)e−

(x−u)2
4νt du∫ ∞

−∞ φ0(u)e−
(x−u)2

4νt du
, (45)
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where ν = 1/2 is the viscosity coefficient.
In the complex case, starting from the generalized Itô differential, the complex velocity

field becomes

dV =

(
∂

∂t
V + V ∂

∂x
V − ib2

2
∂2

∂x2V
)

dt +
√
−ib

∂

∂x
V dZt.

The geodesic equation reads
E dV = 0.

Therefore, by the martingale property, this is equivalent to

∂

∂t
V + V ∂

∂x
V − ib2

2
∂2

∂x2V = 0,

which can be recognized as a generalized Burgers equation with imaginary kinematic viscosity
coefficient. Applying the complex Cole–Hopf transformation as [36]

V = −i
∂

∂x
log U, −π < arg U < π

and specializing to b = 1 leads to

−
U

(
∂3

∂x3 U
)
−

(
∂

∂x U
) (

∂2

∂x2 U
)
− 2i

(
∂
∂t U

) (
∂

∂x U
)
+ 2iU

(
∂2

∂t∂x U
)

2U2 = 0,

which can be recognized as a gradient

− ∂

∂x
1
U

(
i

∂

∂t
U +

1
2

∂2

∂x2 U
)
= 0.

The last equation is equivalent to the solution of the free Schrödinger equation. On the other hand,
the diffusion part is simply

−
√

i
(

∂2

∂x2 log U
)

dZt = −
√

i
(

∂

∂x
1
U

∂

∂x
U

)
since −i

√
−i = −

√
i.

This corresponds with the arguments given in [37] that the coefficient of the stochastic noise should
be purely imaginary. Calculations can be reproduced in the computer algebra system Maxima [38].

8. Numerical Results

The different types of solutions of the stochastic geodesic equation were simulated using the
Euler–Maruyama algorithm. Simulations were performed in Matlab. An example of a simulation
script is given in Appendix C.

8.1. Exact Simulations

The exact simulations of the separable process were compared to simulations computed by the
Euler–Maruyama algorithm. Achieved correlation was 1.0 while the mean squared error was on
the order of 1× 10−8.The comparison is presented in Figure 1. The empirical transition density was
computed from Ns = 1000 simulations and correlated to the graph of Equation (16). The theoretical
density was computed from Equation (16) for stopping time T = 10. Achieved correlation was 0.9976.
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8.2. Free Diffusion

The normalized asymptotic transient density of the free particle distribution can be recognized as
the Rayleigh’s distribution (Figure 3)

R(x, t) =
|x|
2t

e−
x2
2 t .

(A) (B)

Figure 3. Simulations of free particles virtual trajectories. (A) virtual trajectories: free particles; (B)
empirical vs. theoretical density. Simulations are based on N = 10, 000 points in Ns = 1000 simulations.
(A,B) width of potential well is 2L = 100 units. The empirical pdf is estimated from n = log2(Ns N)

bins. Pearson’s correlations are given as inset—r = 0.9883. Norming of the free particle transient results
in Rayleigh density.

8.3. Particle in a Box

The third simulated case comprised a freely diffusing particle in a square potential well of size 2L.
The approach was based on Hermann [32]. Individual trajectories were simulated according to the
fundamental equation using the scheme of Euler–Maruyama:

xn+1 = xn − 2DΔt
πn
L

tan
(

πn
L

xn − π
n + 1

2

)
+
√

2DΔt ΔWn,

where ΔWn ∼ N(0, 1).
Restarting boundary conditions were used for the simulations to avoid distortions of the

distribution. That is, if a simulated particle crossed the boundaries its position was reset to its
original position.

The initial particle positions were sampled from a uniform distribution between −L and L.
The theoretical density for the particle in a box case is given by

ρs(x) =
2
L

sin2
(

nπ

(
x
L
+

1
2

))
.

Results are based on N = 10000 points in Ns = 1000 simulations.
The empirical pdf is estimated from n = log(Ns N)2 bins. Pearson’s correlations are given as

insets: B – r = 0.9939, D – r = 0.9871. For both cases, the numerical precision correlates excellently with
the analytical solutions (Figure 4).

451



Entropy 2018, 20, 492

(A) (B)

(C) (D)

Figure 4. Simulations of particles in a box for two quantum numbers. (A) virtual trajectories: particle
in a box, n = 2; (B) empirical vs. theoretical density; (C) test particles in a box, n = 8; (D) empirical vs.
theoretical density. (A,B) width of potential well is 2L = 100 units.

9. Discussion

This work was motivated in part by the premise that inherently nonlinear phenomena need
development of novel mathematical tools for their description. The relaxation of the differentiability
assumption opens new avenues in describing physical phenomena, as demonstrated by SM
and SR, but also challenges existing mathematical methods, which are developed for smooth
signals [2,3]. While this description can be achieved also by fractional differ–integrals, or by multi-scale
approaches [39], the present work focused on a local description. The reason for this choice is that
locality provides a direct way of physical interpretation of the obtained results. In this regard,
Hölderian functions can be used as building blocks of such strongly nonlinear models, which give rise
to singular [24,40] or non-differentiable models.

The second motivation of the present work was to investigate the potential of stochastic methods
for simulations of quantum-mechanical and convection-diffusive systems. While the usual presentation
of the stochastic mechanics typically used the Schrödinger equation as a solution device and paths were
constructed from solutions of the Schrödinger equation, this is not necessary. McClendon and Rabitz
simulated several quantum systems using the differential equations of Nelson’s stochastic quantization
as a starting point [41]. In the framework of scale relativity, Herman [32] and later Al Rashid et al. [42]
simulated QM particle in a box using the Langevin equations. Later, Al-Rashid et al. [43] simulated
the quantum harmonic oscillator extending Herman’s approach. The approach presented here can
be used as an alternative to numerical solutions of the Schrödinger equation. In this scenario,
the density of the solution can be sampled from Monte Carlo simulations as demonstrated. Presented
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numerical approaches can be used, for example, for simulations of nanoparticles or quantum dots,
which are mesoscopic objects and are expected to have properties intermediate between macroscopic
and quantum systems [44]. This can be of interest, for example in sedimentation studies, where
Langevin dynamics was proposed [45]. In principle, presented results can be extended towards
asynchronous simulations using the Gillespie’s algorithm [8]. This can be achieved using time steps
distributed exponentially.

Obtained results can be also discussed in view of the fluctuation-dissipation relationships.
The fluctuation-dissipation theorem relates the linear response relaxation of a system from a
non-equilibrium state to the properties of fluctuations in equilibrium. This is an exact result in
the case of the Ornstein–Uhlembeck process, where the drift term is linear. The geodesic treatment
in the present work provides a different relationship between the drift and a(x, t) and diffusivity
b(x, t). In the small perturbation regime around the equilibrium the geodesic process xeq(t) can be
approximated by an Ornstein–Uhlembeck process for the fluctuation term (ξ = δx(t)), therefore an
appropriate fluctuation-dissipation theorem can be formulated assuming that equipartition also holds.

A fact that is not fully addressed by both stochastic mechanics and scale relativity is why do
the theories work only for (box) fractal dimension 2 of the paths. While Nottale gives an heuristic
argument and claims that the prescription of a Wiener process may be generalized, he does not proceed
to rigorously develop the argument. On the other hand, the stochastic mechanics fixes from the start
the Wiener process as a driving noise. While this may look plausible in view of the traditions in the
treatment of Brownian motion, it is a choice that should be justified as nowadays anomalous types of
diffusion dynamics are also recognized and systematically investigated (overview in [46]). The answer
to this question can be given more easily by an approach inspired by Nottale and is partially given by
the argument given by Gillepsie [8]. The original argument in [8] contains an explicit assumption of
existence of the second moment of the distribution, which amounts to assuming Hölder continuity of
order 1/2 as demonstrated here in Theorem 1. The theorem also corresponds to the result established
for fractal interpolation computed via a chaos game where the limit random distribution has been
identified with the Gaussian distribution [47,48].

While in SR particle ’trajectories’ are considered to be only virtual, SM and the original formulation
of Bohm’s quantum mechanics treat them as physically real. It is noteworthy that recently Flack and
Hiley [49] demonstrated that that a Bohm ’trajectory’ is the average of an ensemble of actual individual
stochastic Feynman paths. This is in line with the treatment of the problem by the stochastic mechanics
and scale relativity and promotes the view that Bohm’s quantum mechanics is a mean field theory of
the stochastic mechanics.
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Appendix A. Notations, General Definitions and Properties of Fractional Velocity

Definition A1 (Asymptotic O notation). The notation O (xα) is interpreted as the convention that

lim
x→0

O (xα)

xα
= 0

for α > 0. The notation Ox will be interpreted to indicate a Cauchy-null sequence with no particular power dependence of x.

Definition A2. We say that f is of (point-wise) Hölder class H β if for a given x there exist two positive constants C, δ ∈ R

that for an arbitrary y ∈ Dom[ f ] and given |x− y| ≤ δ fulfill the inequality | f (x)− f (y)| ≤ C|x− y|β, where | · | denotes
the norm of the argument.
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Definition A3. Define the parametrized difference operators acting on a function f (x) as

Δ±ε [ f ] (x) := sgn(ε) ( f (x + ε)− f (x)) .

The first one we refer to as forward difference operator, the second one we refer to as backward difference operator.

Definition A4. Define Fractional Variation operators of order 0 ≤ β ≤ 1 as

υ
β
ε± [ f ] (x) :=

Δ±ε [ f ] (x)
|ε|β . (A1)

This section follows the presentation given recently in [50].

Definition A5 (Fractional order velocity). Define the fractional velocity of fractional order β as the limit

υ
β
± f (x) := lim

ε→0

Δ±ε [ f ](x)
|ε|β , (A2)

where 0 < β ≤ 1 are real parameters and f (x) is real-valued function. A function for which at least one of υ
β
± f (x) exists

finitely will be called β-differentiable at the point x.

In the above definition, we do not require upfront equality of left and right β-velocities. This amounts to not
demanding continuity of the β-velocities in advance. Instead, continuity is a property, which is fulfilled under
certain conditions.

Definition A6. The set of points where the fractional velocity exists finitely and υ
β
± f (x) 
= 0 will be denoted as the set of

change χ
β
±( f ) :=

{
x : υ

β
± f (x) 
= 0

}
.

Since the set of change χα
+( f ) is totally disconnected [26], some of the useful properties of ordinary

derivatives, notably the continuity and the semi-group composition property, are lost.

Definition A7. β-Regularized derivative of a function is defined as:

d β±

dx
f (x) := lim

ε→0

Δ±ε [ f ](x)− υ
β
+ f (x) εβ

ε
.

We will require as usual that the forward and backward regularized derivatives be equal for a uniformly continuous
function.

In this section, we assume that the functions are BVC in the neighborhood of the point of interest. Under this
assumption, we have

• Product rule

υ
β
+[ f g] (x) = υ

β
+ f (x) g(x) + υ

β
+g (x) f (x) + [ f , g]+β (x),

υ
β
−[ f g] (x) = υ

β
− f (x) g(x) + υ

β
−g (x) f (x)− [ f , g]−β (x),

• Quotient rule

υ
β
+[ f /g] (x) =

υ
β
+ f (x) g(x)− υ

β
+g (x) f (x)− [ f , g]+β

g2(x)
,

υ
β
−[ f /g] (x) =

υ
β
− f (x) g(x)− υ

β
−g (x) f (x) + [ f , g]−β

g2(x)
,

where
[ f , g]±β (x) := lim

ε→0
υ

γ
ε± [ f ] (x) υ

β−γ
ε± [g] (x) ,

wherever [ f , g]±β (x) 
= 0.
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For compositions of functions,

• f ∈ H β and g ∈ C 1

υ
β
+ f ◦ g (x) = υ

β
+ f (g)

(
g′(x)

)β ,

υ
β
− f ◦ g (x) = υ

β
− f (g)

(
g′(x)

)β ,

• f ∈ C 1 and g ∈ H β

υ
β
+ f ◦ g (x) = f ′(g) υ

β
+g (x) ,

υ
β
− f ◦ g (x) = f ′(g) υ

β
−g (x) .

Basic evaluation formula [51]:

υ
β
± f (x) =

1
β

lim
ε→0

ε1−β f ′(x± ε).

Derivative regularization [52]:
Let f (t, w) ∈ C2 be composition with w(x), a 1/q-differentiable function at x, then

d±

dx
f (x, w) =

∂ f
∂x

+
d±

dx
w(x) · ∂ f

∂w
± 1

q!
[wq]± · ∂q f

∂wq , (A3)

where
[wq]± =

(
υ

1/q
± w (x)

)q

is the fractal q-adic (co-)variation.

Appendix B. The Stochastic Variation Problem

The study of stochastic Lagrangian variational principles has been motivated initially by quantum mechanics
and optimal control problems. This section gives only a sketch for the treatment of the problem. The reader is
directed to [21,30,31] for more details. In the simplest form, this is the minimization of the regularized functional
assuming a constant diffusion coefficient b

Sα(t0, T) := lim
N→∞

E

(
(PN)

t=T

∑
t=t0

1
2
(ΔXk)

2

Δtk
− σ

(
α− 1

2

)
b2

∣∣∣∣∣ Xk = x(αtk + (1− α)tk+1)

)

for the partition PN and σ = sign
(

α− 1
2

)
.

Thus, suppose that α = 1. Then, the increments can be interpreted as Itô integrals so that by the Itô isometry
since finite summation and integration commute

E

(
1

2Δtk
(ΔXk)

2 − 1
2

b2
∣∣∣∣ Xk = x(tk)

)
=

1
2Δtk

(∫ tk+1

tk

ads
)2

+
1

Δtk

(∫ tk+1

tk

ads
)
E

(∫ tk+1

tk

bdw
)
+

1
2Δtk

E

(∫ tk+1

tk

bdw
)2
− 1

2
b2 =

1
2Δtk

(∫ tk+1

tk

ads
)2

+
1

2Δtk

∫ tk+1

tk

b2ds− 1
2

b2 = a
∫ tk+1

tk

ads + O (Δtk) .

Therefore, Sα(t0, T) is minimal if the drift vanishes on PN . Suppose that Xt is varied by a small smooth
function λφ(t, x), where the smallness is controlled by λ, then the Itô lemma should be applied so that
E(dδXt|F ) = 0 on the difference process δXt = λφ(t, x)dt + bdWt. Therefore,

E (dφ|F ) = λdt
(

∂

∂t
φ + φ

∂

∂x
φ +

b2

2
∂2

∂x2 φ

)
= 0 (A4)
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should hold. The same calculation can be performed for α = 0 if the Itô integral is replaced by the anticipative Itô
integral. In this case, σ = −1 and the integration is reversed

E

(
1

2Δtk
(ΔXk)

2 +
1
2

b2
∣∣∣∣ Xk = x(tk+1)

)
=

1
2Δtk

(∫ tk

tk+1

ads
)2

+
1

Δtk

(∫ tk

tk+1

ads
)
E

(∫ tk

tk+1

bdw
)
+

1
2Δtk

E

(∫ tk

tk+1

bdw
)2

+
1
2

b2 =

1
2Δtk

(∫ tk

tk+1

ads
)2

+
1

2Δtk

∫ tk

tk+1

b2ds +
1
2

b2 = a
∫ tk+1

tk

ads + O (Δtk) .

In this case, the backward Itô formula also applies as

E (dφ|F ) = λdt
(

∂

∂t
φ + φ

∂

∂x
φ− b2

2
∂2

∂x2 φ

)
= 0. (A5)

Remark A1. The treatment of Pavon [21] uses the symmetrized functional S = S0 + S1 together with a constraint on
anti-symmetrized functional S0 − S1 in the present notation.

Appendix C. Matlab Simulation Code

Listing 1: Exact simulation Matlab code.

1c l e a r a l l ;
2c l o s e a l l ;
3

4% Choose s u i t a b l y small time step
5dt = 1/2^10;
6s t = s q r t ( dt ) ;
7s i g =1;
8% Stopping time
9T=10;

10

11t = 0 : dt : T−dt ; % time vector
12% Set i n i t i a l condi t ion
13rand ( ’ s t a t e ’ , 2 0 0 ) ; % net random seed
14nsim =1000; % number of s imulat ions
15N =length ( t ) ;
16% populate random vector
17r = randn (N, nsim ) ;
18

19% seed i n i t i a l condi t ions
20x0 = T∗ ( rand ( nsim , 1 ) −0.5) /2;
21

22%% SDE
23% Euler− Maruyama
24%
25y = zeros (N, nsim ) ;
26y ( 1 , : ) = x0 ’ ;
27f o r i = 1 :N−1
28y ( i + 1 , : ) = y ( i , : ) + dt∗y ( i , : ) . / ( t ( i ) +T ) + s t ∗ r ( i , : ) ;
29end
30

31%%%%%%%%%
32% Exact s imluat ion
33%
34tau=t ’+T ;
35w= zeros (N, nsim ) ;
36z= zeros (N, nsim ) ;
37f o r i =1 : nsim
38z= r ( : , i ) ./ tau ;
39w( : , i ) = tau . ∗ ( cumsum( z ) ∗ s t ) ;
40w( : , i ) =[ x0 ( i ) ; w( 1 : end−1, i ) +x0 ( i ) ∗ tau ( 1 : end−1)/T ] ;
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41end
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Abstract: This paper reviews results about discrete physics and non-commutative worlds and
explores further the structure and consequences of constraints linking classical calculus and discrete
calculus formulated via commutators. In particular, we review how the formalism of generalized
non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister
equation, relationships with general relativity follow from a second order constraint. It is remarkable
that a second order constraint, based on interlacing the commutative and non-commutative worlds,
leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.
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1. Introduction

Aspects of gauge theory, Hamiltonian mechanics, relativity and quantum mechanics arise
naturally in the mathematics of a non-commutative framework for calculus and differential geometry.
In this paper, we give a review of our previous results about discrete physics and non-commutative
worlds and an introduction to recent work of the author and Anthony Deakin [1]. In examining
the foundations of that work, we find new points of view and clarity of proofs as expressed in the
later sections of this paper. A key feature of the present paper is a new and concise derivation of the
second constraint in Section 4 and a detailed derivation of the related Kilmister equation in Section 5.
In Section 6, we determine the third constraint by similar means. At this time, physics associated with
the higher order constraints are not known.

We begin by examining discrete dynamical systems. In our exposition, the simplest discrete
system corresponds to the square root of minus one, seen as an oscillation between one and minus
one. This way, thinking about i as an iterant is explained below. By starting with a discrete time series
of positions, one has immediately a non-commutativity of observations, since the measurement of
velocity involves the tick of the clock and the measurement of position does not demand the tick of the
clock. Commutators that arise from discrete observation suggest a non-commutative calculus, and this
calculus leads to a generalization of standard advanced calculus in terms of a non-commutative
world. In a non-commutative world, all derivatives are represented by commutators. We review how
non-commutative worlds are related to quantum physics and classical physics and review our version
of the Feynman-Dyson derivation of the formalism of electromagnetic gauge theory. The rest of the
paper then investigates algebraic constraints that bind the commutative and non-commutative worlds.
These constraints are demands that time derivatives behave in the non-commutative world analogous
to their counterparts in standard advanced calculus. It is one constraint of this type that gives rise
to our version of the Feynman-Dyson derivation of electromagnetic formalism. The standard first
order constraint requires a quadratic Hamiltonian and so begins a story showing how classical physics
arises mathematically from the constraints. The second order constraint turns out, remarkably, to be
equivalent to a tensor equation at the pole of canonical coordinates in a relativistic framework. We
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call this tensor equation the Kilmister equation and it is studied in Section 5 and in our paper with
Deakin [1].

Section 2 is a self-contained version of the concepts in this paper, starting with the
non-commutativity of discrete measurements, the introduction of time-shifting operators and the
square root of minus one seen as a discrete oscillation, a clock. We proceed from there and analyze the
position of the square root of minus one in relation to discrete systems and quantum mechanics. We end
this section by fitting together these observations into the structure of the Heisenberg commutator

[p, q] = ih̄.

Section 3 is a review of the context of non-commutative worlds with discussion of the
Feynman-Dyson derivation. This section generalizes the concepts in Section 2 and places them
in the wider context of non-commutative worlds. The key to this generalization is our method of
embedding discrete calculus in the non-commutative context. Section 4 discusses constraints on
non-commutative worlds that are imposed by asking for correspondences between forms of classical
differentiation and the derivatives represented by commutators in a correpondent non-commutative
world. This discussion of constraints parallels work of Tony Deakin [2,3] and is continued in joint
work of the author and Deakin [1]. At the level of the second constraint we encounter issues related
to general relativity and find that, at the pole of a canonical system of coordinates, the second order
constraint is equivalent to the Kilmister equation

Kab = ge f (Rab;e f +
2
3

RaeR f b) = 0,

where a, b, e, f = 1, 2, . . . , 4 and R is the curvature tensor corresponding to the metric gab on spacetime.
Section 5 gives a derivation of the Kilmister equation and its relation to the second order constraint,
following the original observations of Kilmister [4]. In the present paper, we give a proof that the
second order constraint is equivalent to the Kilmister equation. One can regard the Kilmister equation
Kab = 0 as a higher order replacement for the vacuum Einstein equation Rab = 0 (the vanishing of the
Ricci tensor). In [1], this approach to modifying general relativity, and some of its consequences are
explored in detail.

Section 5 continues the constraints discussion in Section 4, showing how to generalize to
higher-order constraints and obtains a commutator formula for the third order constraint. Appendix A
is a very condensed review of the relationship of the Bianchi identity in differential geometry and the
Einstein equations for general relativity. We then observe that every derivation in a non-commutative
world comes equipped with its own Bianchi identity. This observation suggests another way to
investigate general relativity in the non-commutative context.

2. Time Series and Discrete Physics

Consider elementary discrete physics in one dimension. Consider a time series of positions

x(t) : t = 0, Δt, 2Δt, 3Δt, . . .

We can define the velocity v(t) by the formula

v(t) = (x(t + Δt)− x(t))/Δt = Dx(t),

where D denotes this discrete derivative. In order to obtain v(t), we need at least one tick Δt of the
discrete clock. We define a time-shift operator to handle the fact that once we have observed v(t),
the time has moved up by one tick.
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We adjust the discrete derivative. We shall add an operator J that in this context accomplishes
the time shift:

x(t)J = Jx(t + Δt).

We then redefine the derivative to include this shift:

Dx(t) = J(x(t + Δt)− x(t))/Δt.

This readjustment of the derivative rewrites it so that the temporal properties of successive
observations are handled automatically.

Discrete observations do not commute. Let A and B denote quantities that we wish to observe
in the discrete system. Let AB denote the result of first observing B and then observing A. The result
of this definition is that a successive observation of the form x(Dx) is distinct from an observation
of the form (Dx)x. In the first case, we first observe the velocity at time t, and then x is measured at
t + Δt. In the second case, we measure x at t and then measure the velocity.

We measure the difference between these two results by taking a commutator

[A, B] = AB− BA

and we get the following computations where we write Δx = x(t + Δt)− x(t),

x(Dx) = x(t)J(x(t + Δt)− x(t))/Δt = Jx(t + Δt)(x(t + Δt)− x(t))/Δt,

(Dx)x = J(x(t + Δt)− x(t))x(t)/Δt,

[x, Dx] = x(Dx)− (Dx)x = (J/Δt)(x(t + Δt)− x(t))2 = J(Δx)2/Δt.

This final result is worth recording:

[x, Dx] = J(Δx)2/Δt.

From this result, we see that the commutator of x andDx will be constant if (Δx)2/Δt = k is a
constant. For a given time-step, this means that

(Δx)2 = kΔt

so that
Δx = ±

√
(kΔt).

This is a Brownian process with diffusion constant equal to k.
Thus, we arrive at the result that any discrete process viewed in this framework of discrete

observation has the basic commutator

[x, Dx] = J(Δx)2/Δt,

generalizing a Brownian process and containing the factor (Δx)2/Δt that corresponds to the classical
diffusion constant. It is worth noting that the adjusment that we have made to the discrete derivative
makes it into a commutator as follows:

Dx(t) = J(x(t + Δt)− x(t))/Δt = (x(t)J − Jx(t))/Δt = [x(t), J]/Δt.

By replacing discrete derivatives by commutators, we can express discrete physics in many
variables in a context of non-commutative algebra. We enter this generalization in the next section of
the paper.
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A simplest and fundamental instance of these ideas is seen in the structure of i =
√
−1. We

view i as an iterant [5–11], a discrete elementary dynamical system repeating in time the values
{. . . ,−1,+1,−1,+1, . . . }. One can think of this system as resulting from the attempt to solve i2 = −1
in the form i = −1/i. Then, one iterates the transformation x −→ −1/x and finds the oscillation from
a starting value of +1 or −1. In this sense, i is identical in concept to a primordial time. Furthermore, the
algebraic structure of the complex numbers emerges from two conjugate views of this discrete series as
[−1,+1] and [+1,−1]. We introduce a temporal shift operator η such that η[−1,+1] = [+1,−1]η and
η2 = 1 (sufficient to this purpose). Then, we can define i = [−1,+1]η, endowing it with one view of
the discrete oscillation and the sensitivity to shift the clock when interacting with itself or with another
operator. Note that if e = [−1,+1] and we take [a, b][c, d] = [ab, cd] and −[a, b] = [−a,−b], then

e2 = η2 = 1

and
eη + ηe = 0.

Hence, with
i = eη,

we have
i2 = eηeη = −e2η2 = −1.

Here we see i emerge in the non-commutative context of the Clifford algebra generated by e and η,
and we see that, in this way, i becomes inextricably identified with elemental time, and so the physical
substitution of it for t (Wick rotation) becomes, in this epistemology, an act of recognition of the nature
of time. One does not have an increment of time all alone as in classical t. One has it, a combination
of an interval and the elemental dynamic that is time. With this understanding, we can return to the
commutator for a discrete process and use iΔt for the temporal increment.

We found that discrete observation led to the commutator equation

[x, Dx] = J(Δx)2/Δt,

which we will simplify to
[q, p/m] = (Δx)2/Δt,

taking q for the position x and p/m for velocity, the time derivative of position and ignoring the time
shifting operator on the right-hand side of the equation.

Understanding that Δt should be replaced by iΔt, and that, by comparison with the physics of a
process at the Planck scale, one can take

(Δx)2/Δt = h̄/m,

we have
[q, p/m] = (Δx)2/iΔt = −ih̄/m,

whence
[p, q] = ih̄,

and we have arrived at Heisenberg’s fundamental relationship between position and momentum.
This mode of arrival is predicated on the recognition that iΔt represents an interactive interval of time.
In the notion of time, there is an inherent clock and an inherent shift of phase that enables a synchrony,
a precise dynamic beneath the apparent dynamic of the observed process. Once this substitution is
made, once the imaginary value is placed in the temporal circuit, the patterns of quantum mechanics
appear. In this way, quantum mechanics can be seen to emerge from the discrete.

463



Entropy 2018, 20, 483

3. Review of Non-Commutative Worlds

Now, we begin a general introduction to non-commutative worlds and to a non-commutative
discrete calculus. Our approach begins in an algebraic framework that naturally contains the formalism
of the calculus, but not its notions of limits or constructions of spaces with specific locations, points and
trajectories. Many patterns of physical law fit well into such an abstract framework. In this viewpoint,
one dispenses with continuum spacetime and replaces it by algebraic structure. Behind that structure,
space stands ready to be constructed, by discrete derivatives and patterns of steps, or by starting with
a discrete pattern in the form of a diagram, a network, a lattice, a knot, or a simplicial complex, and
elaborating that structure until the specificity of spatio-temporal locations appear.

Poisson brackets allow one to connect classical notions of location with the non-commutative
algebra used herein. Below the level of the Poisson brackets is a treatment of processes and operators
as though they were variables in the same context as the variables in the classical calculus. In different
degrees, one lets go of the notion of classical variables and yet retains their form, as one makes a descent
into the discrete. The discrete world of non-commutative operators is a world linked to our familiar
world of continuous and commutative variables. This linkage is traditionally exploited in quantum
mechanics to make the transition from the classical to the quantum. One can make the journey in
the other direction, from the discrete and non-commutative to the “classical” and commutative, but
that journey requires powers of invention and ingenuity that are the subject of this exploration. It is
our conviction that the world is basically simple. To find simplicity in the complex requires special
attention and care.

In starting from a discrete point of view, one thinks of a sequence of states of the world
S, S′, S′′, S′′′, . . . , where S′ denotes the state succeeding S in discrete time. It is natural to suppose that
there is some measure of difference DS(n) = S(n+1) − S(n), and some way that states S and T might be
combined to form a new state ST. We can thus think of world-states as operators in a non-commutative
algebra with a temoporal derivative DS = S′ − S. At this bare level of the formalism, the derivative
does not satisfy the Leibniz rule. In fact, it is easy to verify that D(ST) = D(S)T + S′D(T). Remarkably,
the Leibniz rule, and hence the formalisms of Newtonian calculus can be restored with the addition of
one more operator J. In this instance, J is a temporal shift operator with the property that SJ = JS′ for
any state S. We then see that, if∇S = JD(S) = J(S′ − S), then∇(ST) = ∇(S)T + S∇(T) for any states
S and T. In fact, ∇(S) = JS′ − JS = SJ − JS = [S, J], so that this adjusted derivative is a commutator
in the general calculus of states. This, in a nutshell, is our approach to non-commutative worlds.
We begin with a very general framework that is a non-numerical calculus of states and operators. It is
then fascinating and a topic of research to see how physics and mathematics fit into the frameworks so
constructed.

Constructions are performed in a Lie algebra A. One may take A to be a specific matrix Lie
algebra, or abstract Lie algebra. If A is taken to be an abstract Lie algebra, then it is convenient to use
the universal enveloping algebra so that the Lie product can be expressed as a commutator. In making
general constructions of operators satisfying certain relations, it is understood that one can always
begin with free algebra and make a quotient algebra where the relations are satisfied.

On A, a variant of calculus is built by defining derivations as commutators (or more generally as
Lie products). For a fixed N in A, one defines

∇N : A −→ A

by the formula
∇N F = [F, N] = FN − NF.

∇N is a derivation satisfying the Leibniz rule.

∇N(FG) = ∇N(F)G + F∇N(G).
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Discrete Derivatives are Replaced by Commutators. There is a lot of motivation for replacing
derivatives by commutators. If f (x) denotes (say) a function of a real variable x, and f̃ (x) = f (x + h)
for a fixed increment h, define the discrete derivative D f by the formula D f = ( f̃ − f )/h, and find that
the Leibniz rule is not satisfied. One has the basic formula for the discrete derivative of a product:

D( f g) = D( f )g + f̃ D(g).

Correct this deviation from the Leibniz rule by introducing a new non-commutative operator J
with the property that

f J = J f̃ .

Define a new discrete derivative in an extended non-commutative algebra by the formula

∇( f ) = JD( f ).

It follows at once that

∇( f g) = JD( f )g + J f̃ D(g) = JD( f )g + f JD(g) = ∇( f )g + f∇(g).

Note that
∇( f ) = (J f̃ − J f )/h = ( f J − J f )/h = [ f , J/h].

In the extended algebra, discrete derivatives are represented by commutators, and satisfy the
Leibniz rule. One can regard discrete calculus as a subset of non-commutative calculus based on
commutators.

Advanced Calculus and Hamiltonian Mechanics or Quantum Mechanics in a

Non-Commutative World. In A, there are as many derivations as there are elements of the
algebra, and these derivations behave quite wildly with respect to one another. If one takes the concept
of curvature as the non-commutation of derivations, then A is a highly curved world indeed. Within A,
one can build a tame world of derivations that mimics the behaviour of flat coordinates in Euclidean
space. The description of the structure of A with respect to these flat coordinates contains many of the
equations and patterns of mathematical physics.

The flat coordinates Qi satisfy the equations below with the Pj chosen to represent differentiation
with respect to Qj:

[Qi, Qj] = 0,

[Pi, Pj] = 0,

[Qi, Pj] = δij.

Here δij is the Kronecker delta, equal to 1 when i = j and equal to 0 otherwise. Derivatives are
represented by commutators:

∂iF = ∂F/∂Qi = [F, Pi],

∂̂iF = ∂F/∂Pi = [Qi, F].

Our choice of commutators guarantees that the derivative of a variable with respect to itself is
one and that the derivative of a variable with respect to a distinct variable is zero. Furthermore, the
commuting of the variables with one another guarantees that mixed partial derivatives are independent
of the order of differentiation. This is a flat non-commutative world.

Temporal derivative is represented by commutation with a special (Hamiltonian) element H of
the algebra:

dF/dt = [F, H].
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(For quantum mechanics, take ih̄dA/dt = [A, H].) These non-commutative coordinates are the simplest
flat set of coordinates for description of temporal phenomena in a non-commutative world.

Hamilton’s Equations are Part of the Mathematical Structure of Non-Commutative

Advanced Calculus.

dPi/dt = [Pi, H] = −[H, Pi] = −∂H/∂Qi,

dQi/dt = [Qi, H] = ∂H/∂Pi.

These are exactly Hamilton’s equations of motion. The pattern of Hamilton’s equations is built
into the system.

The Simplest Time Series Leads to the Diffusion Constant and Heisenberg’s

Commuator. Consider a time series {Q, Q′, Q′′, . . . } with commuting scalar values. Let

Q̇ = ∇Q = JDQ = J(Q′ −Q)/τ,

where τ is an elementary time step (If Q denotes a times series value at time t, then Q′ denotes the
value of the series at time t + τ.). The shift operator J is defined by the equation QJ = JQ′ where this
refers to any point in the time series so that Q(n) J = JQ(n+1) for any non-negative integer n. Moving J
across a variable from left to right corresponds to one tick of the clock. This discrete, non-commutative
time derivative satisfies the Leibniz rule.

This derivative ∇ also fits a significant pattern of discrete observation. Consider the act of
observing Q at a given time and the act of observing (or obtaining) DQ at a given time. Since Q and
Q′ are ingredients in computing (Q′ −Q)/τ, the numerical value associated with DQ, it is necessary
to let the clock tick once.

Thus, if one first observe Q and then obtains DQ, the result is different (for the Q measurement)
if one first obtains DQ, and then observes Q. In the second case, one finds the value Q′ instead of the
value Q, due to the tick of the clock.

1. Let Q̇Q denote the sequence: observe Q, then obtain Q̇.
2. Let QQ̇ denote the sequence: obtain Q̇, then observe Q.

The commutator [Q, Q̇] expresses the difference between these two orders of discrete measurement.
In the simplest case, where the elements of the time series are commuting scalars, one has

[Q, Q̇] = QQ̇− Q̇Q = J(Q′ −Q)2/τ.

Thus, one can interpret the equation

[Q, Q̇] = Jk

(k a constant scalar) as
(Q′ −Q)2/τ = k.

This means that the process is a walk with spatial step

Δ = ±
√

kτ,

where k is a constant. In other words, one has the equation

k = Δ2/τ.

This is the diffusion constant for a Brownian walk. A walk with spatial step size Δ and time step τ

will satisfy the commutator equation above exactly when the square of the spatial step divided by the
time step remains constant. This shows that the diffusion constant of a Brownian process is a structural
property of that process, independent of considerations of probability and continuum limits.
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Thus, we can write (ignoring the timeshift operator J)

[Q, Q̇] = (ΔQ)2/τ.

If we work with physics at the Planck scale, then we can take τ as the Planck time and ΔQ as the
Planck length. Then,

(ΔQ)2/τ = h̄/m,

where m is the Planck mass. However, we shall also Wick rotate the time from τ to iτ justifying iτ on
the principle (described above) that τ should be multiplied by i to bring time into coincidence with an
elemental time that is both a temporal operator (i) and a value (t). With this, we obtain

[Q, Q̇] = −ih̄/m

or
[mQ̇, Q] = ih̄,

and, taking P = mQ̇, we have finally
[P, Q] = ih̄.

Heisenberg’s commutator for quantum mechanics is seen in the nexus of discrete physics and
imaginary time.

Schroedinger’s Equation is Discrete. Here is how the Heisenberg form of Schroedinger’s
equation fits in this context. Let J = (1− i

h̄ HΔt). Then, ∇ψ = [ψ, J/Δt], and we calculate

∇ψ =
1

Δt
[ψJ − Jψ]

= ψ[(1− i
h̄

HΔt)/Δt]− [(1− i
h̄

HΔt)/Δt]ψ = − i
h̄
[ψ, H].

Thus,

∇ψ = − i
h̄
[ψ, H].

This is exactly the form of the Heisenberg equation.
Another way to think about this operator J = (1− i

h̄ HΔt) is as an approximation to e−
i
h̄ HΔt. We

can then see our discrete model behaving exactly in the framework of a calculus using square zero
infinitesimals [12]. Let us recall the bare bones of this model for calculus. We utilize an algebraic entity
denoted here by dt such that (dt)2 = 0 and an extended real number system

R� = {a + bdt},

where it is understood that a and b are standard real numbers and that a + bdt = a′ + b′dt if and only
if a = a′ and b = b′. It is given that dt > 0 and dt < r for any positive real number r. We multipy by
assuming distributivity and using the nilpotence of dt. Thus,

(a + bdt)(e + f dt) = ae + (a f + be)dt.

The special infinitesimal dt is not invertible, but, for those functions that have a well-defined
extension to R�, we can define the derivative by the formula

F(t + dt) = F(t) + Ḟ(t)dt.
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In the case of the exponential function, we have

er+sdt = er(1 + sdt)

as the definition of this extension of the exponential function. The reader should note that this means that

esdt = 1 + sdt

and that this is exactly the result obtained by substitution into the power series

ex = 1 + x + x2/2! + x3/3! + . . .

and using the nilpotency of the dt. Thus, we find that ea(t+dt) = eat(1+ adt) = eat + aeatdt and therefore
the derivative of eat with respect to t is aeat, as expected. In the same vein,

eidt = 1 + idt

and
eidt = cos(dt) + isin(dt),

from which we conclude that
cos(dt) = 1

and
sin(dt) = 0.

With this rapid course in infinitesimal calculus, we return to time shifter J.

In the nilpotent infinitesimal calculus, we have

J = (1− i
h̄

Hdt) = e−
i
h̄ Hdt

and
J−1 = (1 +

i
h̄

Hdt) = e+
i
h̄ Hdt.

Note that we can formally multiply (1− i
h̄ Hdt)(1 + i

h̄ Hdt) and obtain 1 since (dt)2 = 0. We
continue to think of dt as a discrete increment, even though it is infinitesimal. Our time-shift formula is

Jψ(t + dt) = ψ(t)J

or, equivalently,
ψ(t + dt) = J−1ψ(t)J.

With this in mind, we calculate and find:

ψ(t + dt) = (1 +
i
h̄

Hdt)ψ(t)(1− i
h̄

Hdt) = (ψ(t) +
i
h̄

dtHψ(t))(1− i
h̄

dtH)

= ψ(t) +
i
h̄

dt(Hψ(t)− ψ(t)H) = ψ(t)− i
h̄
[ψ, H]dt.

Thus,

ψ(t + dt) = ψ(t)− i
h̄
[ψ, H]dt
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from which we conclude that
ψ̇ = − i

h̄
[ψ, H],

arriving again at the Heisenberg version of Schroedinger’s equation in the context of nilpotent calculus.

Dynamical Equations Generalize Gauge Theory and Curvature. One can take the general
dynamical equation in the form

dQi/dt = Gi,

where {G1, . . . ,Gd} is a collection of elements of A. Write Gi relative to the flat coordinates via
Gi = Pi − Ai. This is a definition of Ai and ∂F/∂Qi = [F, Pi]. The formalism of gauge theory appears
naturally. In particular, if

∇i(F) = [F,Gi],

then one has the curvature
[∇i,∇j]F = [Rij, F]

and
Rij = ∂i Aj − ∂j Ai + [Ai, Aj].

This is the well-known formula for the curvature of a gauge connection. Aspects of geometry
arise naturally in this context, including the Levi-Civita connection (which is seen as a consequence of
the Jacobi identity in an appropriate non-commutative world).

One can consider the consequences of the commutator [Qi, Q̇j] = gij, deriving that

Q̈r = Gr + FrsQ̇s + ΓrstQ̇sQ̇t,

where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and Γrst is the Levi-Civita
connection associated with gij. This decompositon of the acceleration is uniquely determined by the
given framework [13–15].

Non-Commutative Electromagnetism and Gauge Theory. One can use this context to revisit the
Feynman-Dyson derivation [16,17] of electromagnetism from commutator equations, showing that
most of the derivation is independent of any choice of commutators, but highly dependent upon the
choice of definitions of the derivatives involved. Without any assumptions about initial commutator
equations, but taking the right (in some sense simplest) definitions of the derivatives one obtains a
significant generalization of the result of Feynman-Dyson. We give this derivation in [18] and in [13–15]
using diagrammatic algebra to clarify the structure. In this section, we use X to denote the position
vector rather than Q, as above, and the partial derivatives {∂1, ∂2, ∂3} are each covariant derivatives
represented by commutators with Ẋ1, Ẋ2, Ẋ2, respectively.

Theorem 1. With the appropriate [see below] definitions of the operators, and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3, B = Ẋ× Ẋ and E = ∂tẊ, one has

1. Ẍ = E + Ẋ× B,
2. ∇ • B = 0,
3. ∂tB +∇× E = B× B,
4. ∂tE−∇× B = (∂2

t −∇2)Ẋ.

The key to the proof of this Theorem is the definition of the time derivative. This definition is
as follows:

∂tF = Ḟ− Σi Ẋi∂i(F) = Ḟ− Σi Ẋi[F, Ẋi]
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for all elements or vectors of elements F. The definition creates a distinction between space and time in
the non-commutative world. It can be regarded as an articulation of one extra constraint of the first
order in the sense that we describe in the next section, Section 4, of this paper.

A calculation reveals that
Ẍ = ∂tẊ + Ẋ× (Ẋ× Ẋ).

This suggests taking E = ∂tẊ as the electric field, and B = Ẋ× Ẋ as the magnetic field so that the
Lorentz force law

Ẍ = E + Ẋ× B

is satisfied.
This result can be applied to produce many discrete models of the Theorem. These models show

that, just as the commutator [X, Ẋ] = Jk describes Brownian motion in one dimension, a generalization
of electromagnetism describes the interaction of triples of time series in three dimensions.

Taking ∂tF = Ḟ− Σi Ẋi∂i(F) = Ḟ− Σi Ẋi[F, Ẋi] as a definition of the partial derivative with respect
to time is a natural move in this context because there is no time variable t in this non-commutative world.
A formal move of this kind, matching a pattern from the commutative world to the mathematics of the
non-commuative world, is the theme of the next section of this paper. In that section, we consider the
well known way to associate an operator to a product of commutative variables by taking a sum over
all permutations of products of the operators corresponding to the individual variables. This provides
a way to associate operator expressions with expressions in the commuative algebra, and hence to
let a classical world correspond or map to a non-commutative world. To bind these worlds more
closely, we can ask that the formulas for taking derivatives in the commutative world should have
symmetrized operator product correspondences in the non-commutative world. In Sections 4 and 5, we
show how the resulting constraints are related to having a quadratic Hamiltonian (first order constraint)
and to having a version of general relativity [1–3] (second order constraint). Such constraints can be
carried to all orders of derivatives, but the algebra of such constraints is, at the present time, in a very
primitive state. We discuss some of the complexities of the constraint algebra in Section 6 of this paper.

Remark 1. While there is a large literature on non-commutative geometry, emanating from the idea of replacing
a space by its ring of functions, work discussed herein is not written in that tradition. Non-commutative
geometry does occur here, in the sense of geometry occuring in the context of non-commutative algebra.
Derivations are represented by commutators. There are relationships between the present work and the traditional
non-commutative geometry, but that is a subject for further exploration. In no way is this paper intended to be
an introduction to that subject. The present summary is based on [13,14,18–26] and the references cited therein.

The following references in relation to non-commutative calculus are useful in comparing with
the present approach [27–30]. Much of the present work is the fruit of a long series of discussions
with Pierre Noyes, Clive Kilmister and Anthony Deakin. The paper [31] also works with minimal
coupling for the Feynman-Dyson derivation. The first remark about the minimal coupling occurs in
the original paper by Dyson [16], in the context of Poisson brackets. The paper [32] is worth reading as
a companion to Dyson. It is the purpose of this summary to indicate how non-commutative calculus
can be used in foundations.

4. Constraints—Classical Physics and General Relativity

The program here is to investigate restrictions in a non-commutative world that are imposed
by asking for a specific correspondence between classical variables acting in the usual context of
continuum calculus, and non-commutative operators corresponding to these classical variables.
By asking for the simplest constraints, we find the need for a quadratic Hamiltonian and a remarkable
relationship with Einstein’s equations for general relativity [2,3]. There is a hierarchy of constraints
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of which we only analyze the first two levels. An appendix to this paper indicates a direction for
exploring the algebra of the higher constraints.

If, for example, we let x and y be classical variables and X and Y the corresponding
non-commutative operators, then we ask that xn correspond to Xn and that yn correspond to Yn

for positive integers n. We further ask that linear combinations of classical variables correspond to
linear combinations of the corresponding operators. These restrictions tell us what happens to products.
For example, we have classically that (x + y)2 = x2 + 2xy + y2. This, in turn, must correspond to
(X + Y)2 = X2 + XY + YX + Y2. From this, it follows that 2xy corresponds to XY + YX. Hence, xy
corresponds to

{XY} = (XY + YX)/2.

By a similar calculation, if x1, x2, . . . , xn are classical variables, then the product x1x2 . . . xn

correspondst to
{X1X2 . . . Xn} = (1/n!)Σσ∈Sn Xσ1 Xσ2 . . . Xσn ,

where Sn denotes all permutations of 1, 2, . . . , n. Note that we use curly brackets for these symmetrizers
and square brackets for commutators as in [A, B] = AB− BA.

We can formulate constraints in the non-commutative world by asking for a correspondence
between familiar differentiation formulas in continuum calculus and the corresponding formulas in
the non-commutative calculus, where all derivatives are expressed via commutators. We will detail
how this constraint algebra works in the first few cases. Exploration of these constraints has been
pioneered by Anthony Deakin [2,3,33]. The author of this paper and Tony Deakin have written a paper
on the consequences of these contraints in the interface among classical and quantum mechanics and
relativity [1].

Recall that the temporal derivative in a non-commutative world is represented by commutator
with an operator H that can be intrepreted as the Hamiltonian operator in certain contexts.

Θ̇ = [Θ, H].

For this discussion, we shall take a collection Q1, Q2, . . . , Qn of operators to represent spatial
coordinates q1, q2, . . . , qn. The Qi commute with one another, and the derivatives with respect to Qi are
represented by operators Pi so that

∂Θ/∂Qi = Θi = [Θ, Pi].

We also write
∂Θ/∂Pi = Θi = [Qi, Θ].

Note that if Θ had indices of its own, then we would use a comma to separate indices indicating a
derivative from the given indices. Thus,

∂Fa/∂Qi = [Fa, Qi] = Fa,i.

We assume that [Qi, Pj] = δij and that the Pj commute with one another (so that mixed partial
derivatives with respect to the Qi are independent of order of differentiation).
Note that

Q̇i = [Qi, H] = Hi.

It will be convenient for us to write Hi in place of Q̇i in the calculations to follow.
The First Constraint. The first constraint is the equation

Θ̇ = {Q̇iΘi} = {HiΘi}.
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This equation expresses the symmetrized version of the usual calculus formula θ̇ = q̇iθi. It is
worth noting that the first constraint is satisfied by the quadratic Hamiltonian

H =
1
4
(gijPiPj + PiPjgij),

where gij = gji and the gij commute with the Qk. One can show that a quadratic Hamiltonian is
necessary for the first order constaint to be satisfied [1,3,13,14]. The fact that the quadratic Hamiltonian
is equivalent to the first constraint shows how the constraints bind properties of classical physics
(in this case Hamiltonian mechanics) to the non-commutative world.

The Second Constraint. The second constraint is the symmetrized analog of the second
temporal derivative:

Θ̈ = {ḢiΘi}+ {Hi HjΘij}.

However, by differentiating the first constraint, we have

Θ̈ = {ḢiΘi}+ {Hi{HjΘij}}.

Thus, the second constraint is equivalent to the equation

{Hi{HjΘij}} = {Hi HjΘij}.

We now reformulate this version of the constraint in the following theorem.

Theorem 2. The second constraint in the form {Hi{HjΘij}} = {Hi HjΘij} is equivalent to the equation

[[Θij, Hj], Hi] = 0.

Proof. We can shortcut the calculations involved in proving this Theorem by looking at the properties
of symbols A, B, C such that AB = BA, ACB = BCA. Formally these mimic the behaviour of
A = Hi, B = Hj, C = Θij in the expressions Hi HjΘij and HiΘijHj since Θij = Θji, and the Einstein
summation convention is in place. Then,

{A{BC}} = 1
4
(A(BC + CB) + (BC + CB)A) =

1
4
(ABC + ACB + BCA + CBA),

{ABC} = 1
6
(ABC + ACB + BAC + BCA + CAB + CBA).

Thus,

{ABC} − {A{BC}} =
1
12

(−ABC− ACB + 2BAC− BCA + 2CAB− CBA)

=
1
12

(ABC− 2ACB + CAB)

=
1
12

(ABC− 2BCA + CBA)

=
1
12

(A(BC− CB) + (CB− BC)A)

=
1
12

(A[B, C]− [B, C]A)

=
1
12

[A, [B, C]].
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Thus, the second constraint is equivalent to the equation

[Hi, [Hj, Θij]] = 0.

This in turn is equivalent to the equation

[[Θij, Hj], Hi] = 0,

completing the proof of the Theorem.

Remark 2. If we define
∇i(Θ) = [Θ, Hi] = [Θ, Q̇i],

then this is the natural covariant derivative that was described in our discussion of non-commutative
electromagnetism in Section 3 of this paper. Thus, the second order constraint is

∇i(∇j(Θij) = 0.

A Relationship with General Relativity. We choose a non-commutative metric representative
gij in the non-commutative world with an inverse gij so that gij = gji, gij = gji, and gikgkj = δi

j. We can

use the quadratic Hamiltonian H = 1
4 (gijPiPj + PiPjgij) as previously discussed, but we simplify the

calculations below by taking H = 1
2 (gijPiPj). No essential difference ensues in the results. We assume

that the gij commute with the coordinate representatives Qk so that [gij, Qk] = 0 for all choices of i, j, k
and similarly for the gij. We take Pi and Qj as described at the beginning of this section. It is then an
easy calculation to verify that

[Qi, Q̇j] = gij.

More generally, we have the

Lemma 1. ∇i(Θ) = [Θ, Q̇i] = gij[Θ, Pj] = gijΘj for an arbitrary element Θ in the non-commutative world
algebra that commutes with the gij.

Proof.

∇i(Θ) = [Θ, Q̇i] = [Θ, [Qi, H]] = [Θ, [Qi,
1
2
(gabPaPb)]] =

1
2

gab[Θ, [Qi, PaPb]].

Note that

[Qi, PaPb] = QiPaPb − PaPbQi = QiPaPb − PaQiPb + PaQiPb − PaPbQi

= [Qi, Pa]Pb + Pa[Qi, Pb] = δiaPb + Paδib.

Therefore,

∇i(Θ) =
1
2

gab[Θ, δiaPb + Paδib] =
1
2

gib[Θ, Pb] +
1
2

gai[Θ, Pa] = gijΘj.

This completes the proof of the Lemma.

Remark 3. By similar algebra it can be verified that Θ̇ = {Q̇iΘi} for all Θ such that Θ and Θk commute with
all gij. Thus such Θ satisfy the first constraint.

As we have seen in this section, the second order constraint is

∇i(∇j(Θij) = 0.
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Using the explicit form of the covariant derivative derived in the previous paragraph, we have

∇i(∇j(Θij) = ∇i(gjkΘijk) = gil(gjkΘijk)l .

With Θ = gab, the second constraint becomes the equation

gil(gjkgab,ijk)l = 0.

We call this equation the specialized second order constraint. Kilmister observed in correspondence
with Deakin [4] that this last equation is, at the pole of canonical coordinates, equivalent to a fourth
order version of Einstein’s field equation for vacuum general relativity:

Kab = ge f (Rab;e f +
2
3

RaeR f b) = 0,

where a, b, e, f = 1, 2, . . . n and R is the curvature tensor corresponding to the metric gab. This equation
has been studied by Deakin in [2,3,33] and by Deakin and Kauffman in [1]. It remains to be seen what
the full consequences for general relativity are in relation to this formulation, and it remains to be seen
what the further consequences of higher order constraints will be. The algebra of the higher order
constraints is under investigation at this time.

5. The Kilmister Equation

In this section, we derive the Kilmister equation

Kab = ge f (Rab;e f +
2
3

RaeR f b) = 0,

where a, b, e, f = 1, 2, . . . , 4 and R is the curvature tensor corresponding to the metric gab. The derivation
is based on explicating these tensors at the origin (pole) of canonical geodesic coordinates for spacetime
with respect to the given metric. See Eddington [34] (p. 79) for a detailed explanation of canonical
coordinates. We will show that Kilmister’s equation is, at the pole, equivalent to the specialized second
order constraint equation

ge f (gcdgab,cde) f = 0

as explained in Section 4 of this paper. This is a remarkable coincidence of structure and suggests
that the Kilmister equation should be investigated in the context of general relativity and cosmology.
Deakin and Kauffman have begun this investigation in [1]. In this section, we give a complete
derivation of the Kilmister equation based on the symmetries of the curvature and connection tensors.
More work is needed to understand the relationship between this derivation and the structure of the
second order constraint as described in the previous section of this paper.

Calculus in this section is classical continuum calculus. We use the standard notation

F, a = ∂F/∂xa,

where x denotes a point in 4-dimensional spacetime with x4 the temporal coordinate. We use F; a for
the corresponding covariant derivative, which will be made explicit in the calculations below.

In order to perform Kilmister’s derivation, we need to recall properties of the canonical coordinates
and the basic symmetries of the Riemann tensor. For the present section, we will refer to formal
properties of the Riemann tensor and Levi-Civita connection as we need them. See the Appendix A for
more details or Dirac’s book on general relativity [35] for specifics about these tensors.
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Eddingtion observes that, in geodesic coordinates for four-dimensional spacetime, we may assume
that the components Γa

bc of the Levi-Civita connection

Γa
bc =

gak

2
(gkb,c + gkc,b − gbc,k)

vanish at that pole. Note that, in general, Γa
bc = Γa

cb. Eddington further observes that one can assume,
without constraining the curvature tensor, that

Γa
bc,d + Γa

cd,b + Γa
db,c = 0

at the pole. Since the general formula for the Riemann tensor is

Ra
bcd = Γa

bd,c − Γa
bc,d + Γk

bdΓa
kc + Γk

bcΓa
kd.

We know that at the pole
Ra

bcd = Γa
bd,c − Γa

bc,d.

The general symmetries of the Riemann tensor that we use are:

1. Rabcd = Rcdab = Rdcba,
2. Rabcd = −Rbacd = −Rabdc.

Lemma 2. At the pole of the canonical coordinates, Γa
bc,d = 1

3 (Ra
bdc + Ra

cdb).

Proof. At the pole,
Γa

bc,d + Γa
cd,b + Γa

db,c = 0

and at the pole
Ra

bcd = Γa
bd,c − Γa

bc,d.

Thus,
Ra

bcd = Γa
bd,c + Γa

cd,b + Γa
db,c = 2Γa

bd,c + Γa
cd,b.

Hence, we have
Ra

bcd = 2Γa
bd,c + Γa

cd,b

and
Ra

cbd = 2Γa
cd,b + Γa

bd,c.

Therefore,
2Ra

cbd − Ra
bcd = 4Γa

cd,b + 2Γa
bd,c − 2Γa

bd,c − Γa
cd,b = 3Γa

cd,b.

However, at the pole (and more generally),

Ra
bcd + Ra

cdb + Ra
dbc = Γa

bd,c − Γa
bc,d + Γa

cb,d − Γa
cd,b + Γa

dc,b − Γa
db,c = 0.

Therefore,

3Γa
cd,b = 2Ra

cbd − Ra
bcd

= 2Ra
cbd + Ra

cdb + Ra
dbc

= Ra
cbd + Ra

dbc

since Ra
cbd + Ra

cdb = 0 by anti-symmetry in the indices b and d. Thus, we have shown that

Γa
bc,d =

1
3
(Ra

bdc + Ra
cdb).
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This completes the proof of the Lemma.

Lemma 3. At the pole of the canonical coordinates,

gab,cd =
1
3
(Rcbad + Rcabd).

Proof. It is generally true that
gab,c = gpbΓp

ac + gapΓp
bc.

Thus, at the pole,

gab,cd = gpbΓp
ac,d + gapΓp

bc,d

= gpb[
1
3
(Rp

adc + Rp
cda)] + gap[

1
3
(Rp

bdc + Rp
cdb)]

=
1
3
(Rbadc + Rbcda + Rabdc + Racdb)

=
1
3
(Rcbad + Rcabd)

(using the symmetries of the Riemann tensor). This completes the proof of the Lemma.

Definition 1. Recall the definition of the Ricci Tensor:

Rab = gijRiabj = Rj
abj.

Note that
Rab = gcdRcabd = gcdRdbac = Rba,

proving the symmetry of the Ricci Tensor.

Remark 4. Since it is generally true that

gab,c = gpbΓp
ac + gapΓp

bc,

we know that at the pole
gab,c = 0,

since the Christoffel symbols vanish at the pole. Note that it follows from this vanishing result that

gab
,c = 0

at the pole. Higher derivatives may not be zero, as in the above Lemma.

Lemma 4. At the pole of the canonical coordinates,

gcdgab,cd =
2
3

Rab.

Proof. By the previous Lemma,

gcdgab,cd =
1
3
(gcdRcbad + gcdRcabd) =

1
3
(Rba + Rab) =

2
3

Rab.

This completes the proof of the Lemma.
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Now we are ready to obtain the Kilmister equation. For this, we need to invoke the covariant
derivative, Rab;e, designated by a semi-colon, not a comma, and the basic formula

Rab,e = Rab;e + Γp
aeRpb + Γp

beRap.

From this, it follows that, at the pole,

Rab,e f = (Rab;e + Γp
aeRpb + Γp

beRap), f

= Rab;e f + Γp
ae, f Rpb + Γp

be, f Rap.

Note that the other terms in this covariant derivative involve the Christoffel symbols and these
vanish at the pole. Thus, we have

Rab,e f = Rab;e f + Γp
ae, f Rpb + Γp

be, f Rap

= Rab;e f +
1
3
(Rp

a f eRpb + Rp
e f aRpb + Rp

b f eRap + Rp
e f bRap).

Hence,

ge f Rab,e f = ge f Rab;e f +
1
3
(ge f Rp

a f eRpb + ge f Rp
e f aRpb + ge f Rp

b f eRap + ge f Rp
e f bRap)

= ge f Rab;e f +
1
3
(0 + ge f Rp

e f aRpb + 0 + ge f Rp
e f bRap)

= ge f Rab;e f +
1
3
(Rp

a Rpb + Rp
b Rap)

= ge f Rab;e f +
1
3
(ge f RaeR f b + ge f RebRa f )

= ge f Rab;e f +
2
3
(ge f RaeR f b).

Thus, we have shown

Theorem 3. At the pole of the canonical coordinates,

ge f Rab,e f = Kab = ge f (Rab;e f +
2
3

RaeR f b)

and
ge f Rab,e f =

3
2

ge f (gcdgab,cd)e f .

Proof. This result follows from the discussion above and the fact at the pole of the
canonical coordinates,

gcdgab,cd =
2
3

Rab.

Remark 5. Thus, we have shown that

2
3

Kab = ge f (gcdgab,cd)e f

= ge f (gcd
,e gab,cd) f + ge f (gcdgab,cde) f = ge f (gcdgab,cde) f ,

since gcd
,e = 0. Thus, we have proved:
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Theorem 4. Let
Kab = ge f (Rab;e f +

2
3

RaeR f b).

Then,
2
3

Kab = ge f (gcdgab,cde) f .

Thus, the Kilmister equation Kab = 0 is equivalent to the second order constraint articulated in Section 4
of the present paper.

This completes our description of Clive Kilmister’s remarkable derivation of the relationship
of the second order constraint with general relativity. All these considerations are motivation for
considering the Kilmister tensor equation Kab = 0 as a refined version of the vacuum equations for
general relativity. In [1], we explore some of the consequences of the Kilmister equation. The exact
relationship of the constraint equation and the Kilmister equation remains mysterious. More work
needs to be done in this domain and in exploring the relationship of non-commutative worlds and the
tensor geometry of classical spacetime.

6. On the Algebra of Constraints

We have the usual advanced calculus formula θ̇ = q̇iθi. We shall define hj = q̇i so that we can
write θ̇ = hiθi. We can then calculate successive derivatives with θ(n) denoting the n-th temporal
derivative of θ :

θ(1) = hiθi,

θ(2) = hi(1)θi + hihjθij,

θ(3) = hi(2)θi + 3hi(1)hjθij + hihjhkθijk.

The equality of mixed partial derivatives in these calculations makes it evident that one can use
a formalism that hides all the superscripts and subscripts (i, j, k, . . . ). In that simplified formalism,
we can write

θ(1) = hθ,

θ(2) = h(1)θ + h2θ,

θ(3) = h(2)θ + 3h(1)hθ + h3θ,

θ(4) = h4θ + 6h2θh(1) + 3θh(1)2 + 4hθh(2) + θh(3).

Each successive row is obtained from the previous row by applying the identity θ(1) = hθ in
conjunction with the product rule for the derivative.

This procedure can be automated so that one can obtain the formulas for higher order derivatives
as far as one desires. These can then be converted into the non-commutative constraint algebra and
the consequences examined. Further analysis of this kind will be done in a sequel to this paper.

The interested reader may enjoy seeing how this formalism can be carried out. Below we illustrate
a calculation using MathematicaTM (Wolfram, Champaign, Illinois, US), where the program already
knows how to formally differentiate using the product rule and so only needs to be told that θ(1) = hθ.
This is said in the equation T′[x] = H[x]T[x] where T[x] stands for θ and H[x] stands for h with x a
dummy variable for the differentiation. Here D[T[x], x] denotes the derivative of T[x] with respect to
x, as does T′[x].

In the calculation below, we have indicated five levels of derivatives. The structure of the
coefficients in this recursion is interesting and complex territory. For example, the coefficients of
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H[x]nT[x]H′[x] = hnθh′ are the triangular numbers {1, 3, 6, 10, 15, 21, . . . }, but the next series are the
coefficients of H[x]nT[x]H′[x]2 = hnθh′2, and these form the series

{1, 3, 15, 45, 105, 210, 378, 630, 990, 1485, 2145, . . . }.

This series is eventually constant after four discrete differentiations. This is the next simplest series
that occurs in this structure after the triangular numbers. To penetrate the full algebra of constraints,
we need to understand the structure of these derivatives and their corresponding non-commutative
symmetrizations:

T′[x]:=H[x]T[x]T′[x]:=H[x]T[x]T′[x]:=H[x]T[x]

D[T[x], x]D[T[x], x]D[T[x], x]
D[D[T[x], x], x]D[D[T[x], x], x]D[D[T[x], x], x]
D[D[D[T[x], x], x], x]D[D[D[T[x], x], x], x]D[D[D[T[x], x], x], x]
D[D[D[D[T[x], x], x], x], x]D[D[D[D[T[x], x], x], x], x]D[D[D[D[T[x], x], x], x], x]
D[D[D[D[D[T[x], x], x], x], x], x]D[D[D[D[D[T[x], x], x], x], x], x]D[D[D[D[D[T[x], x], x], x], x], x]
H[x]T[x]

H[x]2T[x] + T[x]H′[x]

H[x]3T[x] + 3H[x]T[x]H′[x] + T[x]H′′[x]

H[x]4T[x] + 6H[x]2T[x]H′[x] + 3T[x]H′[x]2 + 4H[x]T[x]H′′[x] + T[x]H(3)[x]

H[x]5T[x] + 10H[x]3T[x]H′[x] + 15H[x]T[x]H′[x]2 + 10H[x]2T[x]H′′[x] + 10T[x]H′[x]H′′[x] +

5H[x]T[x]H(3)[x] + T[x]H(4)[x]

Algebra of Constraints

In this section, we work with the hidden index conventions described before in the paper. In this
form, the classical versions of the first two constraint equations are

1. θ̇ = θh,
2. θ̈ = θh2 + θḣ.

In order to obtain the non-commutative versions of these equations, we replace h by H and θ

by Θ where the capitalized versions are non-commuting operators. The first and second constraints
then become

1. {Θ̇} = {ΘH} = 1
2 (ΘH + HΘ),

2. {Θ̈} = {ΘH2}+ {ΘḢ} = 1
3 (ΘH2 + HΘH + H2Θ) + 1

2 (ΘḢ + ḢΘ).

Proposition 1. The Second Constraint is equivalent to the commutator equation

[[Θ, H], H] = 0.

Proof. We identify
{Θ̇}• = {Θ̈}

and
{Θ̇}• = {{ΘH}H}+ {ΘḢ}.

Thus, we need
{ΘH2} = {{ΘH}H}.
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The explicit formula for {{ΘH}H} is

{{ΘH}H} = 1
2
({ΘH}H + H{ΘH}) = 1

4
(θHH + HΘH + HΘH + HHΘ).

Thus, we require that

1
3
(ΘH2 + HΘH + H2Θ) =

1
4
(θHH + HΘH + HΘH + HHΘ),

which is equivalent to
ΘH2 + H2Θ− 2HΘH = 0.

We then note that

[[Θ, H], H] = (ΘH − HΘ)H − H(ΘH − HΘ) = ΘH2 + H2Θ− 2HΘH.

Thus, the final form of the second constraint is the equation

[[Θ, H], H] = 0.

The Third Constraint. We now go on to an analysis of the third constraint. The third constraint
consists in the two equations

1. {...
Θ} = {ΘH3}+ 3{ΘHḢ}+ {ΘḦ},

2. {...
Θ} = {Θ̈}•, where

{Θ̈}• = {{ΘH}H2}+ 2{ΘHḢ}+ {{ΘH}Ḣ}+ {ΘḦ}.

Proposition 2. The Third Constraint is equivalent to the commutator equation

[H2, [H, Θ]] = [Ḣ, [H, Θ]]− 2[H, [Ḣ, Θ]].

Proof. We demand that {...
Θ} = {Θ̈}• and this becomes the longer equation

{ΘH3}+ 3{ΘHḢ}+ {ΘḦ} = {{ΘH}H2}+ 2{ΘHḢ}+ {{ΘH}Ḣ}+ {ΘḦ}.

This is equivalent to the equation

{ΘH3}+ {ΘHḢ} = {{ΘH}H2}+ {{ΘH}Ḣ}.

This, in turn, is equivalent to

{ΘH3} − {{ΘH}H2} = {{ΘH}Ḣ} − {ΘHḢ}.

This is equivalent to

(1/4)(H3Θ + H2ΘH + HΘH2 + ΘH3)− (1/6)(H2(HΘ + ΘH) + H(HΘ + ΘH)H + (HΘ + ΘH)H2)

= (1/2)(Ḣ(1/2)(HΘ + ΘH) + (1/2)(HΘ + ΘH)Ḣ)− (1/6)(ḢHΘ + ḢΘH + HḢΘ + HΘḢ

+ΘHḢ + ΘḢH).
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This is equivalent to

3(H3Θ + H2ΘH + HΘH2 + ΘH3)− 2(H3Θ + 2H2ΘH + 2HΘH2 + ΘH3)

= 3(ḢHΘ + ḢΘH + HΘḢ + ΘHḢ)− 2(ḢHΘ + ḢΘH + HḢΘ + HΘḢ + ΘHḢ + ΘḢH).

This is equivalent to
H3Θ− H2ΘH − HΘH2 + ΘH3

= (ḢHΘ + ḢΘH + HΘḢ + ΘHḢ)− 2(HḢΘ + ΘḢH).

The reader can now easily verify that

[H2, [H, Θ]] = H3Θ− H2ΘH − HΘH2 + ΘH3

and that

[Ḣ, [H, Θ]]− 2[H, [Ḣ, Θ]] = (ḢHΘ + ḢΘH + HΘḢ + ΘHḢ)− 2(HḢΘ + ΘḢH).

Thus, we have proved that the third constraint equations are equivalent to the
commutator equation

[H2, [H, Θ]] = [Ḣ, [H, Θ]]− 2[H, [Ḣ, Θ]].

This completes the proof of the Proposition.

Each successive constraint involves the explicit formula for the higher derivatives of Θ coupled
with the extra constraint that

{Θ(n)}• = {Θ(n+1)}.

We conjecture that each constraint can be expressed as a commutator equation in terms of Θ,
H and the derivatives of H, analogous to the formulas that we have found for the first three constraints.
This project will continue with a deeper algebraic study of the constraints and their physical meanings.
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Appendix A. Einstein’s Equations and the Bianchi Identity

The purpose of this section is to show how the Bianchi identity (see below for its definition) appears in the
context of non-commutative worlds. The Bianchi identity is a crucial mathematical ingredient in general relativity.
We shall begin with a quick review of the mathematical structure of general relativity (see for example [36]) and
then turn to the context of non-commutative worlds.

The basic tensor in Einstein’s theory of general relativity is

Gab = Rab − 1
2

Rgab,

where Rab is the Ricci tensor and R the scalar curvature. The Ricci tensor and the scalar curvature are both
obtained by contraction from the Riemann curvature tensor Ra

bcd with Rab = Rc
abc, Rab = gaigbjRij, and R = gijRij.

Because the Einstein tensor Gab has vanishing divergence, it is a prime candidate to be proportional to the energy
momentum tensor Tμν. The Einstein field equations are

Rμν − 1
2

Rgμν = κTμν.
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The reader may wish to recall that the Riemann tensor is obtained from the commutator of a covariant
derivative ∇k, associated with the Levi-Civita connection Γi

jk = (Γk)
i
j (built from the space-time metric gij). One

has
λa:b = ∇bλa = ∂bλa − Γd

abλd

or
λ:b = ∇bλ = ∂bλ− Γbλ

for a vector field λ. With
Rij = [∇i,∇j] = ∂jΓi − ∂iΓj + [Γi, Γj],

one has
Ra

bcd = (Rcd)
a
b.

Here, Rcd is not the Ricci tensor. It is the Riemann tensor with two internal indices hidden from sight.
One way to understand the mathematical source of the Einstein tensor, and the vanishing of its divergence,

is to see it as a contraction of the Bianchi identity for the Riemann tensor. The Bianchi identity states

Ra
bcd:e + Ra

bde:c + Ra
bec:d = 0,

where the index after the colon indicates the covariant derivative. Note also that this can be written in the form

(Rcd:e)
a
b + (Rde:c)

a
b + (Rec:d)

a
b = 0.

The Bianchi identity is a consequence of local properties of the Levi-Civita connection and consequent
symmetries of the Riemann tensor. One relevant symmetry of the Riemann tensor is the equation Ra

bcd = −Ra
bdc.

We will not give a classical derivation of the Bianchi identity here, but it is instructive to see how its
contraction leads to the Einstein tensor. To this end, note that we can contract the Bianchi identity to

Ra
bca:e + Ra

bae:c + Ra
bec:a = 0,

which, in the light of the above definition of the Ricci tensor and the symmetries of the Riemann tensor, is the
same as

Rbc:e − Rbe:c + Ra
bec:a = 0.

Contract this tensor equation once more to obtain

Rbc:b − Rbb:c + Ra
bbc:a = 0,

and raise indices
Rb

c:b − R:c + Rab
bc:a = 0.

Further symmetry gives
Rab

bc:a = Rba
cb:a = Ra

c:a = Rb
c:b.

Hence, we have
2Rb

c:b − R:c = 0,

which is equivalent to the equation

(Rb
c −

1
2

Rδb
c ):b = Gb

c:b = 0.

From this, we conclude that Gbc
:b = 0. The Einstein tensor has appeared on the stage with vanishing

divergence, courtesy of the Bianchi identity!
Bianchi Identity and Jacobi Identity. Now lets turn to the context of non-commutative worlds. We have

infinitely many possible convariant derivatives, all of the form

F:a = ∇aF = [F, Na]

for some Na elements in the non-commutative world. Choose any such covariant derivative. Then, as in the
introduction to this paper, we have the curvature

Rij = [Ni, Nj]
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that represents the commutator of the covariant derivative with itself in the sense that
[∇i,∇j]F = [[Ni, Nj], F]. Note that Rij is not a Ricci tensor, but rather the indication of the external structure of
the curvature without any particular choice of linear representation (as is given in the classical case as described
above). We then have the Jacobi identity

[[Na, Nb], Nc] + [[Nc, Na], Nb] + [[Nb, Nc], Na] = 0.

Writing the Jacobi identity in terms of curvature and covariant differention, we have

Rab:c + Rca:b + Rbc:a.

Thus, in a non-commutative world, every covariant derivative satisfies its own Bianchi identity. This gives
an impetus to study general relativity in non-commutative worlds by looking for covariant derivatives that satisfy
the symmetries of the Riemann tensor and link with a metric in an appropriate way. We have only begun this
aspect of the investigation. The point of this section has been to show the intimate relationship between the
Bianchi idenity and the Jacobi identity that is revealed in the context of non-commutative worlds.
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Abstract: The Montevideo interpretation of quantum mechanics, which consists of supplementing
environmental decoherence with fundamental limitations in measurement stemming from gravity,
has been described in several publications. However, some of them appeared before the full picture
provided by the interpretation was developed. As such, it can be difficult to get a good understanding
via the published literature. Here, we summarize it in a self-contained brief presentation including
all its principal elements.

Keywords: quantum mechanics; decoherence; interpretations

1. Introduction: The Measurement Problem

Although quantum mechanics is a well-defined theory in terms of providing unambiguous
experimental predictions that can be tested, several physicists and philosophers of science find its
presentation to be unsatisfactory. At the center of the controversy is the well-known measurement
problem. In the quantum theory, states evolve unitarily, unless a measurement takes place. During
a measurement, the state suffers a reduction that is not described by a unitary operator. In traditional
formulations, this non-unitary evolution is postulated. Such an approach makes the theory complete
from a calculational point of view. However, one is left with an odd formulation: a theory that
claims our world is quantum in nature, yet its own definition requires referring to a classical world,
as measurements are supposed to take place when the system under study interacts with a classical
measurement device.

More recently, a more careful inspection of how the interaction with a measurement device takes
place has led to a potential solution to the problem. In the decoherence program (for a review and
references, see [1,2]), the interaction with a measurement device and, more generally, an environment
with a large number of degrees of freedom, leads the quantum system to behave almost as if a reduction
had taken place. Essentially, the large number of degrees of freedom of the measurement device and
environment “smother” the quantum behavior of the system under study. The evolution of the
combined system plus measurement device plus environment is unitary, and everything is ruled by
quantum mechanics. However, if one concentrates on the wavefunction of the system under study
only, tracing out the environmental degrees of freedom, the evolution appears to be non-unitary and
very close to a reduction.

The decoherence program, suitably supplemented by an ontology like the many worlds one, has not
convinced everyone (see for instance [3,4]) that it provides a complete solution to the measurement
problem. Objections can be summarized in two main points:

1. Since the evolution of the system plus environment plus measuring device is unitary,
it could happen that the quantum coherence of the system being studied could be recovered.
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Model calculations show that such “revivals” could happen, but they would take a long
time for most realistic measuring devices. However, it is therefore clear that the picture that
emerges is slightly different from the traditional formulation where one can never dial back
a reduction. A possible answer is that for most real experimental situations, one would have
to wait longer than the age of the universe. Related to this is the point of when exactly does
the measurement take place? Since all quantum states throughout the evolution are unitarily
equivalent, what distinguishes the moment when the measurement takes place? Some have put
this as: “in this picture nothing ever happens”. A possible response is that after a certain amount
of time, the state of the system is indistinguishable from the result of a reduction “for all practical
purposes” (FAPP) [5]. However, from a conceptual point of view, the formulation of a theory
should not rely on practical aspects. One could imagine that future scientists could perhaps
find more accurate ways of measuring things and be able to distinguish what today is “FAPP”
indistinguishable from a reduction.

A related point is that one can define global observables for the system plus measuring device
plus environment [3,6]. The expectation value for one of these observables takes different values
if a collapse takes place or not. That could allow in principle to distinguish the FAPP picture
of decoherence from a real collapse. From the FAPP perspective, the answer is that these types
of observables are very difficult to measure, since this requires measuring the many degrees of
freedom of the environment. However, the mere possibility of measuring these observables is not
consistent with a realistic description. This point has recently been highlighted by Frauchiger and
Renner [7], who show that quantum mechanics is inconsistent with single world interpretations.

2. The “and/or” problem [8]: Even though the interaction with the environment creates a reduced
density matrix for the system that has an approximate diagonal form, as all quantum states,
the density matrix still represents a superposition of coexisting alternatives. Why is one to
interpret it as exclusive alternatives with given probabilities? When is one to transition from an
improper to a proper mixture, in d’Espagnat’s terminology [3].

The Montevideo interpretation [9] seeks to address these two criticisms. In the spirit of the
decoherence program, it examines more finely what is happening in a measurement and how
the theory is being formulated. It also brings into play the role of gravity in physics. It may be
surprising that gravity has something to do with the formulation of quantum mechanics as one
can imagine many systems where quantum effects are very important, but gravity seems to play
no role. However, if one believes in the unity of physics, it should not be surprising that at some
level, one needs to include all of physics to make certain situations work. More importantly,
gravity brings to bear on physics important limitations on what can be done. Non-gravitational
physics allows one to consider in principle arbitrarily large amounts of energy in a confined
region, which is clearly not feasible physically if one includes gravity. This in particular places
limitations on the accuracy with which we can measure any physical quantity [10,11]. Gravity
also imposes limitations on our notions of space and time, which are absolute in non-gravitational
physics. In particular, one has to construct measurements of space and time using real physical
(and in this context, really quantum) objects, as no externally-defined space-time is pre-existent.
This forces subtle changes in how theories are formulated. In particular, unitary theories do not
appear to behave entirely unitarily since the notion of unitary evolution is defined with respect to
a perfect classical time that cannot be approximated with arbitrary accuracy by a real (quantum)
clock [12,13]. Notice that the role of gravity in this approach is different than in Penrose’s [14].
Here, the emphasis is on limitations to clocks due to the intrinsically relational nature of time
in gravity, whereas in Penrose’s differences in time in different places is what is the basis of
the mechanism.

These two new elements that the consideration of gravity brings to bear on physics will be key in
addressing the two objections to decoherence that we outlined above. Since the evolution of systems
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is not perfectly unitary, it will not help to revive coherence in quantum systems to wait. Far from
seeing coherence restored, it will be progressively further lost. The limitations on measurement will
impose fundamental constraints on future physicists in developing means of distinguishing the
quantum states produced by decoherence from those produced by a reduction. It will also make it
impossible to measure global observables that may tell us if a reduction took place or not. Notice that
this is not FAPP: the limitations are fundamental. It is the theories of physics that tell us that the
states produced by decoherence are indistinguishable from those produced by a reduction. There is
therefore a natural definition of when “something happens”. A measurement takes place when
the state produced by decoherence is indistinguishable from a reduction according to the laws of
physics [15]. No invocation of an external observer is needed. Measurements (more generally events)
will be plentiful and happening all the time around the universe as quantum systems interact with
the environment irrespective of whether or not an experimenter or measuring device is present.
The resulting quantum theory can therefore be formulated on purely quantum terms, without invoking
a classical world. It also naturally leads to a new ontology consisting of quantum systems, states and
events, all objectively defined, in terms of which to build the world. One could ask: Were systems,
states and events not already present in the Copenhagen interpretation? Could we not have used them
already to build the world? Not entirely, since the definition of event used there required the existence
of a classical external world to begin with. It therefore cannot be logically used to base the world on.

In this short review, we would like to outline some results supporting the above point of view.
In the next section, we discuss how to use real clocks to describe physical systems where no external
time is available. We will show that the evolution of the states presents a fundamental loss of coherence.
Notice that we are not modifying quantum mechanics, just pointing out that we cannot entirely access
the underlying usual unitary theory when we describe it in terms of real clocks (and measuring rods for
space if one is studying quantum field theories). In the following section, we discuss how fundamental
limitations of measurement prevent us from distinguishing a state produced by a reduction and a state
produced by decoherence. Obviously, given the complexities of the decoherence process, we cannot
show in general that this is the case. We will present a modification of a model of decoherence presented
by Zurek [16] to analyze this type of situation to exhibit the point we are making. The next section
discusses some philosophical implications of having a realist interpretation of quantum mechanics like
the one proposed. We end with a summary.

2. Quantum Mechanics without an External Time

When one considers a system without external time, like when one studies cosmology, or model
systems like a set of particles with fixed angular and linear momentum assuming no knowledge of
external clocks (see [17] for references), one finds that the Hamiltonian does not generate evolution,
but becomes a constraint that can be written generically as H = 0. One is left with what is called
a “frozen formalism” (see [18,19] and the references therein). The values of the canonical coordinates at
a given time q(t), p(t) are not observable, since one does not have access to t. Physical quantities have
to have vanishing Poisson brackets with the constraint; they are what is known as “Dirac observables”,
and the canonical coordinates are not. The resulting picture is very different from usual physics, and it
is difficult to extract physical predictions from it since the observables are all constants of the motion,
as they have vanishing Poisson brackets with the Hamiltonian. People have proposed several possible
solutions to deal with the situation, although no general consensus on a solution exists. We will not
summarize all proposals here, in part because we will not need most of them and for reasons of space.
We will focus on two proposals that, when combined, we claim provide a satisfactory solution to
how to treat systems without external time when combined with each other. For other approaches,
the review by Kuchař is very complete [19].

The first proposal we call “evolving Dirac observables”. It has appeared in various guises over the
years, but it has been emphasized by Rovelli [20]. The idea is to consider Dirac observables that depend
on a parameter O(t). These are true Dirac observables, they have vanishing Poisson brackets with the
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constraint, but their value is not well defined till one specifies the value of a parameter. Notice that t is
just a parameter; it does not have to have any connection with “time”. The definition requires that
when the parameter takes the value of one of the canonical variables, the Dirac observable takes the
value of another canonical variable, for example, Q(t = q1) = q2. This in part justifies why it is a Dirac
observable. Neither q1 nor q2 can be observed since we do not have an external time, but the value
q2 takes when q1 takes a given value is a relation that can be defined without referring to an external
time, i.e., it is invariant information. As an example, let us consider the relativistic particle in one
dimension. We parameterize it, including the energy as one of the canonical variables, p0. One then
has a constraint φ = p2

0 − p2 −m2. One can easily construct two independent Dirac observables: p and
X ≡ q− p q0/

√
p2 + m2 and verify that they have vanishing Poisson brackets with the constraint.

An evolving constant of the motion could be,

Q (t, qa, pa) = X +
p√

p2 + m2
t, (1)

and one would have that when the parameter takes the value q0, the evolving constant
Q

(
t = q0, qa, pa

)
= q takes the value of one of the canonical variables. Therefore, one now has

an evolution for the system, the one in terms of the parameter t. However, problems arise when one
tries to quantize things. There, variables like q1 become quantum operators, but the parameter remains
unquantized. How does one therefore make sense of t = q1 at the quantum level when the left member
is a classical quantity and the right a quantum operator (particularly when the quantum operator is
not a Dirac observable and therefore not defined on the physical space of states of the theory)?

The second approach was proposed by Page and Wootters [21]. They advocate quantizing systems
without time by promoting all canonical variables to quantum operators. Then, one chooses one as
a “clock” and asks relational questions between the other canonical variables and the clock. Conditional
probabilities are well defined quantum mechanically. Therefore, without invoking a classical external
clock, one chooses a physical variable as a clock, and to study the evolution of probabilities, one asks
relational questions: what is the expectation value of variable q2 when variable q1 (which we chose
as clock) takes the value 3:30 p.m.? Again, because relational information does not require the use of
external clocks, it has an invariant character, and one can ask physical questions about it. However,
trouble arises when one actually tries to compute the conditional probabilities. Quantum probabilities
require computing expectation values with quantum states. In these theories, since we argued that
the Hamiltonian is a constraint H = 0, at a quantum level, one must have Ĥ|Ψ〉 = 0; only states that
are annihilated by the constraint are permissible. However, such a space of states is not invariant
under multiplication by one of the canonical, variables, i.e., Ĥq1|Ψ〉 
= 0. Therefore, one cannot
compute the expectation values required to compute the conditional probabilities. One can try to force
a calculation pretending that one remains in the space, but then one gets incorrect results. Studies of
model systems of a few particles have shown that one does not get the right results for the propagators,
for example [19].

Our proposal [13] is to combine the two approaches we have just outlined: one computes
conditional probabilities of evolving constants of the motion. Therefore, one chooses an evolving
constant of the motion that will be the “clock”, T(t), and then, one chooses a variable one wishes to
study O(t) and computes,

P (O ∈ [O0 − Δ1, O0 + Δ1]|T ∈ [T0 − Δ2, T0 + Δ2]) = limτ→∞

∫ τ
−τ dtTr

(
P

Δ1
O0

(t)PΔ2
T0

(t)ρPΔ2
T0

(t)
)

∫ τ
−τ dtTr

(
PΔ2

T0
(t)ρ

) , (2)

where we are computing the conditional probability that the variable O takes a value within a range
of width 2Δ1 around the value O0 when the clock variable takes a value within a range of width 2Δ2

around the value T0 (we are assuming the variables to have continuous spectra, hence the need to ask
about ranges of values) on a quantum state described by the density matrix ρ. The quantity PΔ1

O0
is the
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projector on the eigenspace associated with the eigenvalue O0 of the operator Ô and similarly for PΔ2
T0

.
Notice that the expression does not require assigning a value to the classical parameter t, since it is
integrated over all possible values.

We have shown [13] using a model system of two free particles where we use one of them
as the “clock” that this expression, provided one makes judicious assumptions about the clock,
indeed reproduces to leading order the correct usual propagator, not having the problems of the Page
and Wootters’ proposal.

The above expression in terms of conditional probabilities may look unfamiliar. It is better to
rewrite it in terms of an effective density matrix. Then, it looks exactly like the ordinary definition of
probability in quantum mechanics,

P (O0|T0) =
Tr

(
PΔ1

O0
(0) ρeff (T0)

)
Tr (ρeff (T0))

, (3)

where on the left-hand side, we shortened the notation omitting mention of the intervals, but they are
still there. The effective density matrix is defined as,

ρeff (T) =
∫ ∞

−∞
dtUs (t) ρsU†

s (t)Pt (T) , (4)

where we have assumed that the density matrix of the total system is a direct product of that of the
subsystem we use as clock ρcl and that of the subsystem under study ρs, and a similar assumption
holds for their evolution operators U. The probability,

Pt (T) =
Tr

(
PΔ2

T0
(0)Ucl (t) ρclU†

cl (t)
)

∫ ∞
−∞ dtTr

(
PΔ2

T0
(t) ρcl

) , (5)

is an unobservable quantity since it represents the probability that the variable T̂ take a given value
when the unobservable parameter is t.

The introduction of the effective density matrix clearly illustrates what happens when one
describes ordinary quantum mechanics in terms of a clock variable that is a real observable,
not a classical parameter. Examining Equation (4), we see in the right-hand side the ordinary density
matrix evolving unitarily as a function of the unobservable parameter t. If the probability Pt (T) were a
Dirac delta, then the effective density matrix would also evolve unitarily. That would mean that the real
clock variable is tracking the unobservable parameter t perfectly. However, no physical variable can do
that, so there will always be a dispersion, and the probability Pt (T) will have non-vanishing support
over a range of T. What this is telling us is that the effective density matrix for the system at a time T
will correspond to a superposition of density matrices at different values of the unobservable parameter
t. The resulting evolution is therefore non-unitary. We see clearly the origin of the non-unitarity:
the real clock variable cannot keep track of the unitary evolution of quantum mechanics.

In fact, if we assume that the clock variable tracks the unobservable parameter almost perfectly
by writing:

Pt (T) = δ(t− T) + b(T)δ”(t− T) + . . . , (6)

(a term proportional to δ(t− T)′ only adds an unobservable shift), one can show that the evolution
implied by (4) is generated by a modified Schrödinger equation,

− ih̄
∂ρ

∂T
=

[
Ĥ, ρ

]
+ σ(T)

[
Ĥ,

[
Ĥ, ρ

]]
+ . . . , (7)

where σ(T) = db(T)/dT is the rate of spread of the probability Pt (T) and ρ = ρeff(T).
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Therefore, we clearly see that when describing quantum mechanics in terms of a real clock variable
associated with a quantum observable rather than with a classical parameter, the system loses unitarity,
and it is progressively worse the longer one waits.

The existence of the effect we are discussing is not controversial. In fact, one can make it as large as
one wishes simply choosing a bad clock. Bonifacio et al. [22–24] have reinterpreted certain experiments
with Rabi oscillations as being described with an inaccurate clock, and indeed, experimentally, one sees
the loss of coherence described above. More recently, it has been demonstrated with entangled photons,
as well [25].

However, the question still remains: can this effect be made arbitrarily small by a choice of the
clock variable? If one takes into account gravity, the answer is negative. Using non-gravitational
quantum physics, Salecker and Wigner [10,11] examined the question of how accurate a clock can
be. The answer is that the uncertainty in the measurement of time is proportional to the square root
of the length of time one desires to measure and inversely proportional to the square root of the
mass of the clock. Therefore, to make a clock more accurate, one needs to make it more massive.
However, if one takes gravity into account, there clearly is a limitation as to how massive a clock
can be: at some point, it turns into a black hole. Several phenomenological models of this were
proposed by various authors, and they all agree that the ultimate accuracy of a clock goes as some
fractional power of the time to be measured times a fractional power of Planck’s time [26–30]. Different
arguments lead to slightly different powers, but the result is always that the longer one wishes to
measure time, the more inaccurate the clocks become. For instance, in the phenomenological model of
Ng and Van Dam [26–30], one has that δT ∼ T1/3T2/3

Planck. Substituting that in the modified Schrödinger
equation, its solution can be found in closed form, in an energy eigenbasis,

ρ(T)nm = ρnm(0) exp (−iωnmT) exp
(
−ω2

nmT4/3
PlanckT2/3

)
, (8)

where ωnm is the Bohr frequency between the two energy eigenstates n and m. We see that the
off-diagonal terms of the density matrix die off exponentially. Pure states evolve into mixed states.

3. Completing Decoherence: The Montevideo Interpretation

3.1. Decoherence with Clocks Based on Physical Variables

In this section, we would like to analyze how the use of a physical clock in the description of
quantum mechanics we introduced in the last section, combined with other limitations in measurement,
will help address the objections to environmental decoherence as a solution to the measurement
problem. We start by illustrating the idea of decoherence (and the objections) using a well-known
model of environmental decoherence due to Zurek [16], possibly one of the simplest models one can
consider that still captures the complexities involved.

3.1.1. Zurek’s Model

It consists of a spin one half system representing the microscopic system plus the measuring
device, with a two-dimensional Hilbert space {|+〉, |−〉}. It interacts with an “environment” given by
a bath of many similar two-state “atoms”, each with a two-dimensional Hilbert space {|+〉k, |−〉k}.
If there is no interaction with the environment, the two spin states may be taken to have the same
energy; we choose it to be zero, and all the atoms also are chosen with zero energy. The interaction
Hamiltonian is given by:

Hint = h̄ ∑
k

(
gkσz ⊗ σk

z ⊗j 
=k Ij

)
. (9)

σz is a Pauli matrix acting on the state of the system. It has eigenvalues +1 for the spin eigenvector
|+〉 and −1 for |−〉. The operators σk

z are similar, but acting on the state of the k-th atom. Ij denotes
the identity matrix acting on atom j, and gk is the coupling constant. It has dimensions of frequency
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and characterizes the coupling energy of one of the spins k with the system. The model can be thought
physically as providing a representation of a photon propagating in a polarization analyzer.

Through the interaction, the initial state, which we can take as,

|Ψ(0)〉 = (a|+〉+ b|−〉)
N

∏
k=1
⊗ [αk|+〉k + βk|−〉k] , (10)

with a, b, αk and βk complex constants, evolved using the Schrödinger equation, becomes,

|Ψ(t)〉 = a|+〉
N

∏
k=1
⊗ [αk exp (igkt) |+〉k + βk exp (−igkt) |−〉k] (11)

+b|−〉
N

∏
k=1
⊗ [αk exp (−igkt) |+〉k + βk exp (igkt) |−〉k] .

From it, one can construct a density matrix for the system plus environment, and tracing out the
environmental degrees of freedom, one gets a reduced density matrix for the system,

ρc(t) = |a|2|+〉〈+|+ |b|2|−〉〈−|+ z(t)ab∗|+〉〈−|+ z∗(t)a∗b|−〉〈+|, (12)

where:

z(t) =
N

∏
k=1

[
cos (2gkt) + i

(
|αk|2 − |βk|2

)
sin (2gkt)

]
. (13)

The complex valued function of time z(t) determines the values of the off-diagonal elements. If it
vanishes, the reduced density matrix could be considered a “proper mixture” representing several
outcomes with their corresponding probabilities.

We claim that with the modified evolution we discussed in the previous section, the usual
objections to decoherence do not apply. Recall which are the usual objections:

1. The quantum coherence is still there. Although a quantum system interacting with an environment
with many degrees of freedom will very likely give the appearance that the initial quantum
coherence of the system is lost (the density matrix of the measurement device is almost diagonal),
the information about the original superposition could be recovered for instance carrying out a
measurement that includes the environment. The fact that such measurements are hard to carry
out in practice does not prevent the issue from existing as a conceptual problem.

2. The “and/or problem”: Since the density matrix has been obtained by tracing over the
environment, it represents an improper, not proper, mixture: looking at Equation (12), there is no
way to select (even in some conceptual sense) one of the components of the density matrix versus
the others.

Let us discuss now the problem of revivals. In the model, the function z(t) does not die
off asymptotically, but is multi-periodic; after a very long time, the off-diagonal terms become
large. Whatever definiteness of the values of the preferred quantity we had won by the end of
the measurement interaction turns out in the very long run to have been but a temporary victory.
This is called the problem of revivals (or “recurrence of coherence”, or “recoherence”). This illustrates
that the quantum coherence persists, it was just transferred to the environment and could be measured
using global observables.

3.1.2. A More Realistic Model and Real Clocks

To analyze the effects of limitations of measurement and the use of real clocks in detail, we will
need to consider a more realistic model of spinning particles [31]; the previous model is too simple to
capture the effect of the use of real clocks. Although this model is “almost realistic”, it has the property
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that the system, environment and measurement apparatus are all under control, as one would need
to measure a global observable, for instance. It consists of a spin S in a cavity with a magnetic field
pointing in the z direction. A stream of N “environmental” spins flows sideways into the cavity and
eventually exits it, and the interactions last a finite time determined by the time spent in the cavity.
The flow of particles that represents the environment is sufficiently diluted such that we can ignore
interactions among themselves.

The interaction Hamiltonian for the k-th spin of the environment is,

Ĥk = ĤB
k + Ĥint

k , (14)

with,
ĤB

k = γ1BŜz ⊗ Îk + γ2BÎ ⊗ Sk
z, (15)

and:
Ĥint

k = fk

(
ŜxŜk

x + ŜyŜk
y + ŜzŜk

z

)
, (16)

where fk are the coupling constants between the spin and each of the particles of the environment,
γ1 and γ2 are the magnetic moments of the central and environment spins, respectively, and the Ŝ are
spin operators.

For the complete system, one can define an observable considered by d’Espagnat [3]. It has
the property that its expectation value is different depending on if the state has suffered a quantum
collapse or not. It definition is,

M̂ ≡ Ŝx ⊗
N

∏
k

Ŝk
x. (17)

One has that 〈M̂〉collapse = 0, whereas,

〈ψ|M|ψ〉 = ab∗
N

∏
k
[αkβ∗k + α∗k βk] e−2iΩkτ + a∗b

N

∏
k
[αkβ∗k + α∗k βk] e2iΩkτ 
= 0, (18)

with Ωk ≡
√

4 f 2
k + B2(γ1 − γ2)2 and τ is the time of flight of the environmental spins through the

chamber. One can therefore determine experimentally if a collapse or not took place measuring
this observable.

However, if one considers the corrections to the evolution resulting from the use of physical
variables as clocks as we discussed in the previous section, one has that,

〈M̂〉 = ab∗e−i2NΩTe−4NB2(γ1−γ2)
2θ ∏N

k

[
αkβ∗k e−16B2γ1γ2θ + α∗k βk

]
+ba∗ei2NΩTe−4NB2(γ1−γ2)

2θ ∏N
k

[
αkβ∗k + α∗k βke−16B2γ1γ2θ

]
,

(19)

where Ω ≡ B(γ1 − γ2), θ ≡ 3
2 T4/3

P τ2/3, τ is the time of flight of the environment spins within the
chamber and T is the length of the experiment.

There exists a series of conditions for the experiment to be feasible that imply certain inequalities,

(a) 1 < f τ =
μγ1γ2

h̄
τ

d3 , (20)

(b) Δx ∼
√

h̄T
m

, (21)

(c) f 	 |B(γ1 − γ2)|, (22)

(d) 〈M̂〉 ∼ exp
(
−6NB2(γ1 − γ2)

2T4/3
Planckτ2/3

)
, (23)
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with f the interaction energy between spins, which was assumed constant through the cell, μ the
permeability of the vacuum, d the impact parameter of the spins of the environment, m their mass
and Δx the spatial extent of the environment particles.

Condition (a) makes the coupling of the spins strong enough for decoherence to occur; (b) is to
prevent the particles of the environment from dispersing too much and therefore making us unable to
find them within the detectors at the end of the experiment; (c) is the condition for decoherence to be
in the z basis, as was mentioned; (d) is an estimation of the the expectation value of the observable
when the effect of the real clock is taken into account. For details of the derivation of these conditions,
see our previous paper [32].

Therefore, the expectation value is exponentially damped, and it becomes more and more difficult
to distinguish it from the vanishing value one has in a collapse situation. A similar analysis allows one to
show that revivals are also prevented by the modified evolution. When the multi-periodic functions in
the coherences tend to take again the original value after a Poincaré time of recurrence, the exponential
decay for sufficiently large systems completely hides the revival under the noise amplitude.

Thus, the difficulties found in testing macroscopic superpositions in a measurement process are
enhanced by the corrections resulting from the use of physical clocks.

3.2. Why the Solution Is Not FAPP

Although temporal decoherence involves exponentials and the troublesome terms of decoherence
become exponentially small, how does this observation help to solve the problem of outcomes? In what
follows, we will provide a criterion for the occurrence of events based on the notion of undecidability.

When one takes into account the way that time enters in generally covariant systems including
the quantum fluctuations of the clock, the evolution of the total system (system plus measurement
apparatus plus environment) becomes indistinguishable from the collapse. This is also true for revivals
and the observation of the coherences of the reduced density matrix of the system plus the measuring
device. We call such a situation “undecidability”. We are going to show that undecidability is not only
for all practical purposes (FAPP), but fundamental.

From the previous discussion, one can gather that as one considers environments with a larger
number of degrees of freedom and as longer time measurements are considered, distinguishing
between collapse and unitary evolution becomes harder. However, is this enough to be a
fundamental claim?

Starting from (19) and using the approximations (20)–(23), one can show [32] that,

〈M̂〉 ∼ exp
(
−6NB2(γ1 − γ2)

2T4/3
Planckτ2/3

)
≡ e−K. (24)

with

K " N5T4/3
Planckh̄20/3

m4(γ1γ2)8/3μ8/3 . (25)

Is it possible to build a very large ensemble allowing one to distinguish this value from zero?
Brukner and Kofler [33] have recently proposed that from a very general quantum mechanical

analysis together with bounds from special and general relativity, there is a fundamental uncertainty in
the measurements of angles even if one uses a measuring device of the size of the observable Universe.

Δθ � lP
R

, (26)

where lP ≡
√

h̄G/c3 ≈ 10−35m. If we take the radius of the observable universe as a characteristic
length, R ≈ 1027m, we reach a fundamental bound on the measurement of the angle,

Δθ ≥ 10−62. (27)
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To distinguish 〈M〉 from zero, one needs to take into account that the observable will have
an error that depends on Δθ (since for instance Ŝx and Ŝy will get mixed). If the error is larger than
〈M〉, there is no way of distinguishing collapse from a unitary evolution for fundamental, not practical
reasons. Therefore, the solution is not FAPP.

The expectation value of the observable is [32],

〈M̂Δθ〉 � e−K ± (Δθ)2N + 〈E(Δθ)〉. (28)

with:

K " N5T4/3
Planckh̄20/3

m4(γ1γ2)8/3μ8/3 . (29)

Therefore, for,

N >

⎛⎜⎝2 ln
(

R
�P

) (
m (γ1γ2)

4
)2/3

μ8/3

T4/3h̄20/3

⎞⎟⎠
1/4

m (γ1γ2)
2 ∼ 107, (30)

it becomes undecidable whether collapse has occurred or not. That means that no measurement of any
quantity, even in principle, can ascertain whether the evolution equation failed to hold. Notice that the
above discussion was restricted to a given experiment. Our present knowledge of quantum gravity
and the complexities of the decoherence process in general does not allow us to prove undecidability
for an arbitrary experimental setup. Even models slightly more elaborate than the one presented here
can be quite challenging to analyze. A different model, involving the interaction of a spin with bosons,
has also been analyzed with similar results [34].

This model exhibits the difficulties of trying to obtain generic results concerning decoherence.
Notice that expression (30) depends on the magnetic moments of the spins γ1,2. If they were very large,
decoherence would not take place. One would be in the presence of a macroscopic system exhibiting
quantum behavior. One does not expect such systems to exist, at least in the terms described in the
model, but the model does not rule them out.

3.3. The Problem of Outcomes, Also Known as the Issue of Macro-Objectification

The problem of macro-objectification of properties may be described according to Ghirardi
as follows: how, when and under what conditions do definite macroscopic properties emerge
(in accordance with our daily experience) for systems that, when all is said and done, we have
no good reasons for thinking they are fundamentally different from the micro-systems from which
they are composed?

We think that undecidability provides an answer to this problem. We will claim that events
occur when a system suffers an interaction with an environment such that one cannot distinguish
by any physical means if a unitary evolution or a reduction of the total system, including the
environment, took place. This provides a criterion for the production of events, as we had anticipated.
In addition, we postulate (we call this the ontological postulate in [15]) that when an event
occurs, the system chooses randomly (constrained by their respective probability values) one of
the various possible outcomes. Having an objective criterion for the production of events based on
undecidability answers the objections raised by [7] since the observer and the “super observer” now
have consistent descriptions.

Philosopher Jeremy Butterfield, who has written an assessment of the Montevideo interpretation [35],
has observed that up to now, we have only provided precise examples of undecidability for spinning
particles. In that sense, he considers that the fundamental loss of coherence due to the use of quantum
clocks and to the quantum gravitational effects should be used in the context of a many worlds
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interpretation because it helps to answer some of the long-held obstructions to the combination of the
decoherence program with the many worlds approach.

After a detailed analysis, we do not believe that conclusion is inescapable. Let us assume the
worse case scenario: that there are no further quantum gravitational limitations for the measurements
of other variables as the ones obtained for the spin by Kofler and Bruckner (even though there have
been many proposals to alter uncertainty relations; see the references in [36]). However, given the
fact that the distinction between a unitary evolution that includes quantum time measurements or
a quantum reduction would require an exponentially growing number of individual measurements
in order to have the required statistics for distinguishing a non-vanishing exponentially small mean
value from zero, limitations referring to the existence of a finite number of physical resources in a finite
observable Universe would be enough to ensure undecidability. Obviously, further investigations are
needed, but in a sense, this is the fate of all studies involving decoherence; it is just not possible to
develop general proofs given the complexities involved.

4. Some Philosophical Implications

If the fundamental nature of the world is quantum mechanical and we adopt an interpretation
that provides an objective criterion for the occurrence of events, we are led to an ontology of objects
and events. The interpretation here considered makes reference to primitive concepts like systems,
states, events and the properties that characterize them. Although these concepts are not new and are
usually considered in quantum mechanics, one can assign them a unambiguous meaning only if one
has an interpretation of the theory. For example, events could not be used as the basis of a realistic
ontology without a general criterion for the production of events that is independent of measurements
and observers.

On the other hand, the concepts of state and system only acquire ontological value when the
events also have acquired it, since they are both defined through the production of events. Based on
this ontology, objects and events can be considered the building blocks of reality. Objects will be
represented in the quantum formalism by systems in certain states and are characterized by their
dispositions to produce events under certain conditions. In the new interpretation, events are the
actual entities. Concrete reality accessible to our senses is constituted by events localized in space-time.
As Whitehead [37] recognized: “the event is the ultimate unit of natural occurrence”. Events come
with associated properties. Events and properties in quantum theory are represented by mathematical
entities called projectors. Quantum mechanics provides probabilities for the occurrence of events and
their properties. When an event happens, like in the case of the dot on the photographic plate in the
double-slit experiment, typically many properties are actualized. For instance, the dot may be darker
on one side than the other, or may have one of many possible shapes.

Take for instance the hydrogen atom. It is a quantum system composed by a proton and an electron.
A particular hydrogen atom is a system in a given state; it is an example of what we call an object,
and it has a precise disposition to produce events. Russell in The Analysis of Matter [38], asserts that
“the enduring thing or object of common sense and the old physics must be interpreted as a world-line,
a causally related sequence of events, and that it is events and not substances that we perceive”.
He thus distinguishes events as basic particulars from objects as derived, constructed particulars.
We disagree with this point of view because it ignores the role of the physical states. He adds: “Bits of
matter are not among the bricks out of which the world is built. The bricks are events and bits of matter
are portions of the structure to which we find it convenient to give separate attention”. This is not the
picture provided by quantum mechanics. An independent notion of object is required: one can even
have event-less objects in quantum mechanics. For instance, when not measured, the hydrogen atom
is an object according to the definition above even though it is not producing an event. The resulting
ontology is such that objects and events are independent concepts; they are not derived one from
the other.
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This is only a sketch of philosophical issues raised by the new interpretation. We have a more
complete discussion in [39].

5. Summary

We have presented an easy to follow guide to the Montevideo interpretation. Readers interested
in an axiomatic formulation should consult our previous paper [15]. All the bibliography can be
found in [9].

To summarize, the use of real physical variables to measure time implies a modification to how one
writes the equations of quantum mechanics. The resulting picture has a fundamental mechanism for
loss of coherence. When environmental decoherence is supplemented with this mechanism and taking
into account fundamental limitations in measurement, a picture emerges where there is an objective,
observer independent notion for when an event takes place. The resulting interpretation of quantum
mechanics, which we call the Montevideo interpretation, is formulated entirely in terms of quantum
concepts, without the need to invoke a classical world. We have been able to complete this picture for
a simple realistic model of decoherence involving spins. Studies of more elaborate models are needed
to further corroborate the picture.
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Abstract: Matter-wave near-field interference can imprint a nano-scale fringe pattern onto a molecular
beam, which allows observing its shifts in the presence of even very small external forces. Here
we demonstrate quantum interference of the pre-vitamin 7-dehydrocholesterol and discuss the
conceptual challenges of magnetic deflectometry in a near-field interferometer as a tool to explore
photochemical processes within molecules whose center of mass is quantum delocalized.

Keywords: molecule interference; matter-waves; metrology; magnetic deflectometry; photochemistry

1. Quantum Interference of Organic Molecules

In quantum mechanics we attribute both wave and particle properties to the basic entities of the
theory, and following Louis de Broglie [1] we associate an oscillatory phenomenon of wavelength
λdB = h/mv to the center-of-mass motion of any particle of mass m and velocity v, even if it has a rich
internal structure and exhibits internal excitations. This can be proven in a very intuitive way using
matter-wave diffraction [2,3], in analogy to Young’s famous double slit experiment. In realizations
with complex molecules the de Broglie wavelength is typically of the order of a few picometers while
the molecular wave function can be delocalized by more than 105 λdB, and hundreds or thousand
times the size of the particle. At the same time a single, complex molecule can be composed of
hundreds or even a thousand atoms, and each atom itself is composed of dozens of nuclei and
electrons. This physical picture is complemented by acknowledging the presence of hundreds of
vibrational modes and excited rotational states. At molecular temperatures around 500 K most of
these modes are excited, leading to molecular rotation frequencies around Ω # 2π × 109 rad/s
and structural or conformational changes on the sub-nanosecond time scale. The molecules can
thus be prepared in superpositions of position and momentum even though we can assign classical
attributes such as internal temperatures, polarizabilities, dipole moments, magnetic susceptibilities
and so forth to them. This philosophical aspect of macromolecular interferometry has very practical
applications in metrology for the measurement of electronic, optical, and even magnetic molecular
properties. Earlier work has shown that such parameters can be readily measured both in classical
beam experiments [4,5] and in Talbot-Lau deflectometry [6–8]. Here, we propose that the de Broglie
interference can also be a promising tool for photochemistry. The optically induced change of molecular
geometry is often well-understood in solution, but little explored in the gas phase. We are interested
in how such atomic rearrangements influence magnetic properties and study this for the example
of 7-dehydrocholesterol (7-DHC) where isomerization causes a ring opening and a change of the
particle’s magnetic susceptibility. We describe successful matter-wave interference with 7-DHC and a
thought experiment that exploits the fact that modifications of the magnetic susceptibility will be seen
as a relative shift of the de Broglie interference fringe pattern in an external magnetic field.

Entropy 2018, 20, 516; doi:10.3390/e20070516 www.mdpi.com/journal/entropy498



Entropy 2018, 20, 516

2. The Quantum Wave Nature of 7-Dehydrocholesterol

Matter-wave physics with complex molecules is most conveniently realized using a near-field
interferometer [9], for instance the Kapitza–Dirac–Talbot–Lau setup (KDTLI, see Figure 1), which is the
basis here for our discussion [10]. This device is appealing for high-mass quantum experiments [10–12]
since it is rugged, compact, and compatible with spatially incoherent particle sources. It has been
used for demonstrating the quantum wave nature of organic molecules [13] even with masses beyond
10,000 amu [14] and as a tool for metrology [15,16]. Here we explore its potential for tracking optically
induced changes in magnetic susceptibility.

Figure 1. Sketch of Kapitza–Dirac–Talbot–Lau (KDTLI) interferometry, including the proposed
extensions for magnetic deflectometry. The molecules evaporate to form a molecular beam in high
vacuum. The molecular beam velocity is selected by its free-fall parabola using three horizontal
slits. The molecular v-distribution can be recorded by chopping the beam in a pseudorandom
sequence and measuring its arrival time at the quadrupole mass detector. The KDTLI comprises two
nanofabricated absorptive masks, G1 and G3, and one optical phase grating G2. A tailored magnetic
field (Halbach magnet) can exert a homogeneous force onto the molecules and deflect the molecular
beam in proportion to the particles’ magnetic susceptibility. If the molecules exhibit a permanent
magnetic dipole moment, the interference fringes will broaden, and contrast will be reduced.

The 7-DHC beam is prepared by sublimating molecules from a ceramic crucible at a maximal
temperature of 460 K. Several delimiters shape a molecular beam of approximately 1 mm width and
200 μm height. They also select a well-defined velocity distribution f (vz) from an almost thermal initial
beam. At the end of the setup, the molecules are ionized by electron impact and the ions are separated
and counted by a quadrupole mass spectrometer. A mechanical chopper with a pseudo-random slit
sequence imprints a time code onto the molecular beam and allows resolving its time-of-flight and
velocity with a selectivity up to 1% [17].

The interferometer consists of three gratings, all with a period of d = 266 nm and positioned at
equal distance L = 0.105 m to one another. The first grating G1 is a periodic slit array in a 160 nm
thick membrane of SiNx. Each slit is nominally 110 nm wide and the confinement of the molecular
wavefunction in any slit suffices to expand its coherence function by several orders of magnitude
further downstream. The center-of-mass wave function of wavelength λdB diffracted at each slit of
width s thus obtains a spatial coherence Wc # 2λdBL/s, which grows with distance to the source,
such that the center-of-mass coherence function spreads over the extension of at least two slits when
arriving at the second grating. The standing light wave G2 is obtained by retro-reflecting a 532 nm
laser beam at a plane mirror. In the antinodes of the grating the light shifts the phase of the transmitted
matter-wave mainly by the optical dipole potential, but the full quantum model includes absorption of
photons as well [17]. At the center of the Gaussian laser beam, this phase depends on the power P and
the vertical beam waist wx of the laser, as well as on the molecular optical polarizability α (532 nm),
and the forward velocity of the molecule vz. The coherent evolution of the molecules in phase-space
leads to the formation of a molecular density pattern of period d = 266 nm, which can be sampled by
the mechanical mask G3. This pattern forms periodically along the beam line and consecutive patterns
are separated by the Talbot length LT = d2/λdB [18]. Tracing the number of transmitted molecules as
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a function of the position of G3, one finds a nearly sinusoidal fringe pattern, as shown in Figure 2a
with a visibility V = (Smax − Smin)/(Smax + Smin), where Smax and Smin are the maximal and minimal
count rates.

  
(a) (b) 

Figure 2. (a) Matter-wave interference of 7-dehydrocholestorol with a molecular beam velocity
vmean = 212 ± 78 m/s (FWHM). The dots show the molecular count rate at the respective position
of the third grating, and the continuous line is a sinusoidal fit to the data exhibiting a fringe contrast
of 23.1 ± 1.5%. The grey shaded area indicates the dark counts of the detector; (b) The interference
contrast varies with the laser power in the diffraction grating G2, following the line shape of the
quantum model. We compared the achieved fringe contrast to the theoretical maximum by calibration
measurements with the well characterized fullerene C60 and found a reduction of 10%, which we
attribute to grating misalignment. This is still well compatible with fringe-assisted molecule metrology.

In our experiments, 7-DHC had a mean de Broglie wavelength of λdB # 4.9 pm and showed a
maximal fringe contrast of about V = 23%. Earlier experiments have shown that understanding such
molecular density patterns requires quantum mechanics [3,10–12,19]. We confirm this here, by tracing
the interference contrast as a function of the diffracting laser power (Figure 2b). While a fringe pattern
could be mistaken as a classical Moiré shadow, the detailed dependence of the fringe visibility V(P)
on the diffracting laser power can only be reproduced by quantum theory [18]. The quantum model
assumes that the molecular wave function is delocalized over at least two nodes of the standing light
wave, that is 200 times the molecular diameter, which has triggered philosophical discussions on the
interpretation of quantum mechanics and the reality of the “position” of objects that we would see with
1 nm diameter in surface probe microscopy [20]. However, independent of this important question at
the heart of physics, the predicted nanoscale molecular density pattern that arises as a consequence
of quantum interference is an experimental fact, as shown in Figure 2a. And it is this nanoruler that
we can use to extract even information about intra-molecular properties. Moiré deflectometers have
been successfully used in the past to measure small forces on atoms [21] and they are interesting for
advanced anti-matter experiments [22]. However, when aiming at higher force sensitivity and using
smaller fringe periods such devices automatically become matter-wave interferometers which require
quantum physics for a correct description.

3. Photo-Switching

Photoactive molecules are interesting candidates for optically addressable memories, switches in
organic electronics, and molecular motors [23]. Diarylethenes [24], fulgides [25], and spiropyrans [26]
are common representatives. In solution, they are known to undergo photoisomerization associated
with a ring opening or closure. Such photoisomerization is also known for resveratrol [27]
and 7-dehydrocholestorol [28]. While most studies have been performed in solution, molecular
beam experiments can shed light on the molecular excited state dynamics in a solvent-free
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environment. Photoisomerization in the gas phase has been demonstrated for spiropyran using
electron-diffraction [29]. Here, we want to lay out a new perspective.

In Figure 3 we show 7-dehydrocholesterol (7-DHC) as a prototypical molecule of biological
relevance. It plays a vital role in the human metabolism and transforms into vitamin D3 via one
photo-induced and one thermal isomerization process. The barrier for the required ring-opening is
sufficiently high for the molecule to persist in closed-ring form, even when heated to 500 K.

Figure 3. The photoisomerization (1) from 7-dehydrocholesterol (7-DHC, molecular weight MW = 384
amu) to previtamin D3 is well understood in solution, but little studied in the gas phase. This is also
true for the spontaneous isomerization (2) from previtamin D3 to vitamin D3 (cholecalciferol).

When 7-DHC absorbs light in the wavelength range of 260–310 nm it can undergo
photoisomerization, as shown in Figure 3 [30]. We assume the absorption cross section in solution
σabs # 2× 10−17 cm2 to be also a good approximation for molecules in the gas phase at T = 450 K.
Recent experiments with photo-cleavable peptides showed that ultraviolet (UV) absorption cross
sections of molecules in this complexity range can be comparable in the gas phase and in solution [31].
When a v = 100 m/s fast 7-DHC molecule traverses a gaussian laser beam of power P and waist
w0 = 0.3 mm it will absorb on average n = 2P

πw0
λ
hc

σabs
v photons. The average n = 1 is reached for

λ = 266 nm and P = 40 W. Single pass frequency doubling of a green solid state lasers can reliably
generate ultraviolet light of P = 1 W and a power enhancement of 50–80 is conceivable in low finesse
UV cavities, even in high vacuum where UV optics often suffer from outgassing [32]. Also, commercial
high-power nanosecond lasers can produce up to 30 W average power at 266 nm and even 200 W at
355 nm, with repetition rates of 100 kHz. This is sufficient to ensure that all molecules interact with the
laser beam. Positioned before the first grating, one or even two photoisomerization processes can be
completed before the molecules enter the interferometer region. The following considerations focus
on the feasibility of detecting such state changes via an interferometric monitoring of a change in
molecular magnetism.

4. Magnetic Manifestations of Molecular Photoisomerization in the Gas Phase

Since the days of Stern and Gerlach, when magnetic deflection was used to demonstrate
the discreteness of spin orientations [33], beam deflection experiments have become the basis for
measuring atomic hyperfine structure [34], the realization of atomic clocks [35], or for studies of cluster
magnetism [36,37]. The permanent magnetic moment of radicals has also been used to slow and cool
beams of small molecules [38,39]. The magnetic manipulation of complex molecules is much harder to
achieve, since their total orbital or spin angular momentum either vanishes or is too small in relation to
the molecular mass. Here, we explore, whether the high force and position sensitivity of matter-wave
fringes can provide additional information about the magnetic properties of molecules, which can also
be a signature for photoisomerization processes.
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To understand the different contributions to molecular magnetism, we invoke second order
perturbation theory to distinguish the possible responses of a molecule to an external B-field [40,41].
This quantifies the energy shift of a molecule with vanishing total spin as

ΔEn = μBB〈n|Λ|n〉+ e2

8me
B2

〈
n

∣∣∣∣∣∑k

(
x2

k + y2
k

)∣∣∣∣∣n
〉
+ μ2

BB2 ∑
n′ 
=n

|〈n|Λ|n′〉|2
En − En′

. (1)

Here n designates the electronic quantum number, Λ the quantum number of the projected
angular orbital momentum, μB Bohr’s magneton, and B the modulus of the magnetic flux density. The
mass and coordinates of the electrons are me, xk and yk. The magnetic susceptibility χmag is the second
derivative of the energy shift with respect to the magnetic field strength H, with (H + M)μ0 = B, and
μ0 = 4π × 10−7 N/A2 the vacuum permeability:

χmag =
1

μ0V
∂2ΔEn

∂H2 . (2)

The first term in Equation (1) represents the Langevin paramagnetic response for a particle with
finite total angular momentum J. The magnetic moment μJ interacts with the flux density B and
experiences an orientation-dependent force F = − ∇ (μJ B), which will pull an aligned magnetic
dipole towards the field maximum and push the anti-aligned particle away. A thermal beam of
molecules with random orientations of their figure and rotation axes will therefore be broadened,
when exposed to a B-field gradient. In matter-wave interferometry, this broadening will reduce the
interference fringe contrast. This resembles the observations for electric dipole moments in electric
fields [8,42,43]. In the gas phase first order paramagnetism will always dominate over all other
magnetic effects, unless the magnetic dipole moment vanishes. In the following we focus on those
molecules, with J = 0 in the ground state.

The second term of Equation (1) represents the diamagnetic contribution. A diamagnetic molecule
of susceptibility χdia responds to an external B-field like a particle of polarizability α in an electric field.
However, while an electric field induces and aligns a dipole moment such as to attract it to higher
fields, according to Fel = α(E∇)E, the induced magnetic moment will be expelled from regions of
higher magnetic field strength with a force described by

Fdia = −β(B∇) B (3)

with = χdia
mol μ−1

0 N−1
A , χdia

mol the molar diamagnetic susceptibility and NA the Avogadro number. The
experiment will be sensitive to the orientational average of the magnetic polarizability, since the
molecules will arrive with an isotropic distribution of initial orientations and rotation axes, and their
rotation rate is fast compared to the transit time through the magnet.

The third term of Equation (1) is the second order contribution to paramagnetism, the van Vleck
paramagnetism. The van Vleck force is often comparable in magnitude to the diamagnetic component
but pointing in the opposite direction.

Finally, in molecules we must also account for nuclear spins of different isotopes: Natural
hydrocarbons contain 13C with an abundance of 1.1%. In natural fullerene for instance, 48% of all C60

molecules hold at least one nuclear spin and 10% even exactly two. In 7-DHC, still 26% of all molecules
hold at least one nuclear spin. Since 13C has a nuclear spin of 1

2 and a nuclear magnetic moment of
μC13 = +0.7μN the nuclear response will be about two thousand times weaker than that of a single
unpaired electron, but nuclear paramagnetism can actually be comparable to electron diamagnetism
or van Vleck paramagnetism and must not be ignored for J = 0.

We set the scene by estimating the B-field configuration that is required to shift the interference
pattern by 1/10 of the full interference fringe; i.e., by ≈26 nm. A constant force is achieved in a field of
constant (B∇)Bx. The fringe deflection Δx depends on the molecular mass and velocity, the length L1
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of the magnet and the distance L2 of its closest edge to G2, as well as on the total interferometer length
L through the geometry factor K =

(
L2

1/2− L1L2 + L1L
)
:

Δx = K
β

mv2 (B∇)Bx (4)

We estimate the effect for isotopically pure 12C60 fullerenes whose magnetic response represents
a lower limit to most of the interesting aromatic molecules. The molar magnetic susceptibility of
C60 has been measured to be χC60 = −1.08× 10−9 m3·mol−1 [44]. This translates into a molecular
magnetic polarizability of βC60 = 1.4× 10−27 Am4·V−1·s−1. For L = 0.2 m, L1 = 0.04 m, L2 = 0.04 m,
v = 100 m/s, m = 720 amu, and K = 0.003, the interference fringe can be shifted by about 25 nm for
(B∇)Bx = 70 T2·m−1. If a field of that order of magnitude can be prepared, the fringe shift can still be
resolved, the interferometer can still be sensitive to χC60. The case of fullerene C60 gives a conservative
limit, since the deflection depends on the magnetic polarizability-to-mass ratio β/m. For example, the
fully aromatic molecule benzene C6H6 exhibits five times greater β/m.

While a full quantum chemical assessment of the magnetic properties of 7-DHC exceeds the scope
of this work, we expect the ring opening to induce magnetic susceptibility changes to be at least on the
order of the effect estimated here. Since the fringe shift grows linearly with the interferometer length
and quadratically with the length of the magnet, future long-baseline interferometers will be ten times
more sensitive, at least, and certainly allow measuring even such tiny magnetic susceptibilities.

5. Design of the Required Magnetic Structures

Such a high (B∇)B field can be realized using a modified Halbach cylinder, as shown in
Figure 4, which we have simulated using the finite element package COMSOL 4.0 multiphysics
simulation package (COMSOL AB, Stockholm, Sweden). The arrangement of permanent magnets
from neodymium-iron-boron alloy, with a remanent magnetization of 1.3 T and a coercitive field
strength of 100 kA/m, can guide the field lines inside the cylinder and generate the required field.
Figure 4b shows that one can realize a region with (B∇)Bx = 70 T2/m that is homogeneous within 2%
of its peak value across an area of 1000 × 200 μm2; i.e., across the full molecular beam profile inside a
KDTL interferometer.

 
(a) (b) 

Figure 4. Finite element simulation of the modified Halbach cylinder. (a) Magnetic flux: the arrows
show the direction of magnetization of the individual segments; (b) magnetic force field: the deflection
of a molecular beam is proportional to (B∇)Bx. The diameter of the magnet is 55 mm with an inner
bore of 16 mm. The white rectangle indicates the location of the molecular beam, where the force is
constant within 2%.
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6. Discussion

Our experimental data demonstrate that complex, thermal biomolecules can show quantum
interference and be delocalized by a few hundred times their own size. We have also seen that the
free-flying molecular nanostructure is a sensitive ruler to measure interference fringe displacements,
which can quantify internal molecular properties in the presence of external perturbations. Here we
have focused on the role of magnetic fields and showed that even very small magnetic contributions
can become accessible in matter-wave assisted deflectometry.

This can open an entire new range of experiments with photo-isomerization groups in spiropyrans,
fulgids, and diarylethenes. Spiropyran, for instance, isomerizes to blue merocyanin upon absorption of
a UV-photon around 365 nm and the reaction can even be reversed by irradiation with visible light [45].
See Figure 5.

 

Figure 5. Spiropyran can isomerize to merocyanine upon absorption of a UV photon. This opens
one ring which we expect to significantly change the magnetic susceptibility. In contrast to the case
of 7-DHC, the process changes the electric dipole moment here by a large factor, from 7 Debye for
spiropyran [46] to between 20–50 Debye for merocyanine [26]. Such huge changes will be easily
detectable in interferometric electric deflectometry [8].

Merocyanine is zwitterionic with a large electric dipole moment [26] and the isomerization should
also be readily detected in interference-assisted electric deflectometry. Thus, a combination of electric
and magnetic deflectometry will give insights into the molecular dynamics in the gas phase. Since
spiropyrans can thermally isomerize to merocyanine above room temperature [45], optical switching
experiments will be best performed with internally cold molecules [47]. The scheme can be generalized
to a wide class of molecular systems.
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Abstract: The history of photons in a nested Mach–Zehnder interferometer with an inserted Dove
prism is analyzed. It is argued that the Dove prism does not change the past of the photon. Alonso and
Jordan correctly point out that an experiment by Danan et al. demonstrating the past of the photon
in a nested interferometer will show different results when the Dove prism is inserted. The reason,
however, is not that the past is changed, but that the experimental demonstration becomes incorrect.
The explanation of a signal from the place in which the photon was (almost) not present is given.
Bohmian trajectory of the photon is specified.

Keywords: past of the photon; Mach–Zehnder interferometer; Dove prism; photon trajectory

1. Introduction

This work describes peculiar behaviour of photons in the modification of the experiment of
Danan et al. [1] proposed by Alonso and Jordan (AJ) [2]. In the Danan et al. experiment, photons were
asked where exactly they have been inside a nested interferometer tuned in a particular way. The AJ
modification makes photons to tell that they have been in a place in which, according to the narrative
of the two-state vector formalism (TSVF) [3], they could not have been. Note that this work is only
slightly related to the results presented by one of the authors (L.V.) at “Emergent Quantum Mechanics”
that have been already published [4,5].

Textbooks of quantum mechanics teach us that we are not supposed to ask where the photons
passing through an interferometer were. Wheeler [6] introduced the delayed choice experiment in
an attempt to analyze this question. Vaidman [3] suggested a different approach. He proposed
a definition according to which a quantum particle was where it left a trace and showed that the
past of the particle can be easily seen in the framework of the TSVF [7] as regions of the overlap
of the forward and backward evolving quantum states. Vaidman, together with his collaborators,
performed an experiment demonstrating a surprising trace of the photons in nested interferometers [1]
(see Figure 1). These results became the topic of a very large controversy [8–46].

Entropy 2018, 20, 538; doi:10.3390/e20070538 www.mdpi.com/journal/entropy507
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Figure 1. Nested Mach–Zehnder interferometer with inner interferometer tuned to destructive
interference towards F. Although our ‘common sense’ suggests that the only possible path for the
photon detected in D is path C, the trace was found also inside the inner interferometer supporting the
TSVF proposal according to which the particle was present in the places where forward (red continuous
line) and backward (green dashed line) evolving wavefunctions overlap. The latter is demonstrated by
the results of the measurement by Danan et al. [1].

2. Alonso and Jordan Modified Interferometer

Here we analyze, in our view, the most interesting objection which was made by Alonso and
Jordan [2]. They suggested inserting a Dove prism inside one of the arms of the inner interferometer
(see Figure 2). They asked: “Can a Dove prism change the past of a single photon?”. Their analysis of
this modified experiment was correct. Although the formalism suggested that the past of the photon
remains the same as in the original experiment, i.e., the photon was present near mirrors C, A, B but
not near mirrors E and F, the experiment should show, in addition to frequencies fC, fA, fB, also the
frequency fE. This is in contradiction with the fact that the photons, according to Vaidman, were not
present near mirror E.

Figure 2. Nested Mach–Zehnder interferometer with a Dove prism inside the inner interferometer
as suggested by Alonso and Jordan [2]. The region of the overlap of the forward and the backward
evolving states remains the same, but predicted results of an experiment similar to [1] include a signal
from mirror E where the photon was not supposed to be.
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The experiment of Danan et al. was not a direct measurement of the trace left by the photons.
The reason is that such direct measurement is very difficult, as it requires collecting data about the
trace conditioned on detection of the photon by a particular detector. In the actual experiment, instead
of measuring the trace on the external system (as in a recent experiment [47]), the trace was ‘written’
on the photons themselves, on the degree of freedom of their transverse motion. Observing this degree
of freedom of post-selected particle replaced the coincidence counting in the experimental setup.
Although indirect, the experiment [1] was correct. A local trace created at mirrors was read later on
the quad-cell detector. We argue that introducing a Dove prism [2] spoils the experiment, making the
signal at the quad-cell detector no longer a faithful representation of the trace created at mirror E.

Although the signal in the Danan et al. experiment was appearing as a particular frequency in
the output of the quad-cell detector, the frequency was not an actual trace written on each photon.
Wiggling with different frequencies was a trick that allowed in a single run to see records made at
different mirrors. (It also improved significantly the signal-to-noise ratio, since noise had no preference
for the frequencies of the wiggling mirrors.) The physical signal in the Danan et al. experiment
(Figure 1) originated from the shift of the beam direction at a mirror. It corresponded to the transversal
kick in the momentum δpx . This momentum shift translated into a position shift of the beam, which was
read in the quad-cell detector. The property which allowed to observe the trace was that the change δpx

in the transversal momentum had no change when the beam evolved towards port D from all mirrors
and through all possible paths.

This is no longer the case when the Dove prism is introduced (Figure 2). For mirrors A and C,
it is still true, since the modes do not pass through the Dove prism. For mirror B, there is a difference
in that the Dove prism flips the sign of the signal. However, since we measure just the size of the
signal, this change is not observable, and the peak at frequency fB correctly signifies the presence of
the photon in B. The only problem occurs with the mirror E. The beam from E reaches the detector
through A and through B. The shifts are in opposite directions, so the reading position of the beam
on the detector does not tell us what the shift of the transversal momentum in E was. Therefore,
we should not rely on the result of the experiment with the setup of the Danan et al. experiment when
the Dove prism is present.

Note that a simple modification will restore the results of the Danan et al. experiment even with
the presence of the Dove prism. If the wiggling of mirrors is made such that the beam is shifted in the
direction perpendicular to the plane of the interferometer, the Dove prism will not cause flipping of
the direction of the shift and the peak at fE will disappear.

3. The Trace Analysis

We have explained that the AJ modification of the Danan et al. experiment is not a legitimate
experiment for measuring the presence (according the local trace definition) of the particle near
mirror E. Still it is of interest to understand how a strong signal with frequency fE is obtained in
this modification. For this, we need a more detailed analysis of traces in the nested Mach–Zehnder
interferometer (MZI) experiments.

We consider, for simplicity, an experiment in which only one particular mirror changes its angle
at every run. The shift of the beam direction created at the mirror, characterized by the transversal
momentum kick δpx, leads to the shift of the beam position on the detector. This creates the signal:
the difference in the current of the upper and the lower cells of the detector.

Let χ0 be the original mode of the photons without shifts. The photons in a shifted beam will then
be in a superposition of the original mode χ0 and a mode χ⊥, orthogonal to χ0:

|χ′〉 = 1√
1 + ε2

(|χ0〉+ ε|χ⊥〉) . (1)
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For small signals which appeared in the Danan et al. experiment, the momentum kick is
proportional to the relative amplitude ε of the orthogonal mode [48]:

δpx = 2εRe [〈χ0|px|χ⊥〉] +O(ε2). (2)

Note that, for a Gaussian beam (which is a good approximation of the beam in the experiment),
higher order contributions do not appear [48].

What is important for our analysis is that χ0 is symmetric with respect to the center of the beam
in the transverse direction, while χ⊥, which can be approximated as a difference between two slightly
shifted Gaussians, is an antisymmetric mode. Indeed, in momentum representation, we have

χ0 # N0 e−
p2

x+p2
y

2Δ2 , χ⊥ # N⊥ pxe−
p2

x+p2
y

2Δ2 , (3)

where Δ is the momentum uncertainty of the Gaussian beam, andN0,N⊥ are the normalization constants.
In the Danan et al. experiment (Figure 1), the trace of the photon was read as the shift of the beam

on the detector. This shift is proportional to the strength of the trace quantified by the value of the
relative amplitude ε of the orthogonal component. The original mode χ0 and the orthogonal mode χ⊥
evolve towards port D from all mirrors and through all possible paths in an identical manner, so the
position shift on the detector faithfully represents a locally created trace.

This is no longer the case when the Dove prism is introduced (Figure 2). For mirror B, there is
a difference: mode χ0 is unaffected by the presence of the prism, while mode χ⊥ flips the sign. The shift
on the detector changes its direction. This change, however, is not observable in the experiment,
since the frequency spectrum is sensitive only to the size of the signal. The observable difference
appears for mirror E. There are two paths from E to the output port D, one passing through mirror A
and another passing through mirror B. The original symmetric mode χ0 would reach D undisturbed
both on path A and on path B, while the orthogonal mode χ⊥ would reach D undisturbed on path A
but with a flipped sign on path B. When combined, there exists a phase difference π between path A
and path B, which leads to destructive interference of the original symmetric mode and constructive
interference of the orthogonal antisymmetric mode at the output port towards mirror F. As a result,
out of the modes of the light reflected by the mirror E, only the mode χ⊥ reaches D.

If we send the photon only in path A, and do not move mirror A, only mode χ0 reaches the detector.
Adding a small rotation of mirror A will lead to appearance of mode χ⊥ with relative amplitude ε.
If, instead, in an undisturbed interferometer, we send the photon only in path E, and nothing will
reach the detector. A small rotation of mirror E will lead to appearance of mode χ⊥ on the detector
and only mode χ⊥. This mode by itself does not lead to a shift of the center of the beam on the detector.
In the experiment, the photon is in a superposition of two states, one coming from path C and the
other from path E. From path C, we get mode χ0 with the same amplitude as it comes from path A.
It is the interference of mode χ0 coming through C and mode χ⊥ coming through F on the surface of
the detector that yields the shift of the center of the beam. The resultant shift is larger than the shift
created by the same rotation of mirror A because, first, the intensity in E is twice the intensity in A so
the amplitude of the mode χ⊥ created at E is larger than the amplitude of χ⊥ created at A, and, second,
the amplitude is not reduced at the second beam splitter of the inner interfereometer as it happens for
the mode created at A, due to the constructive interference of χ⊥ mode in the inner interferometer
with the Dove prism. This explains the larger signal observed at fE.

4. Do the Photons Have Any Presence in E?

Our analysis above shows that the experiment with the Dove prism does not contradict Vaidman’s
proposal [3] demonstrated in the Danan et al. experiment, and explains using standard quantum
mechanics the appearance of the signal at frequency fE. Thus, it provides a satisfactory reply to Alonso
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and Jordan. However, it will also be of interest to explain the predicted results of Danan’s setup with
the Dove prism using Vaidman’s approach.

Let us quote the Danan et al. Letter [1]:

“The photons themselves tell us where they have been. And the story they tell is surprising.
The photons do not always follow continuous trajectories. Some of them have been inside
the nested interferometer (otherwise, they could not have known the frequencies fA, fB),
but they never entered and never left the nested interferometer, since otherwise they could
not avoid the imprints of frequencies fE and fF of mirrors E and F leading photons into
and out of the interferometer.”

With the Dove prism present, however, we do get frequency fE. How can it happen if the photons
were not in E as we argued here? Let us analyse the situation, in which only mirror E changes its angle
by a small amount leading to the superposition (1) of the modes of the photon.

We start by repeating the analysis of the setup without the Dove prism in the framework of the
TSVF [7]. After passing the mirror E, at time t1, the forward evolving state is (see Figure 2)

|Ψ〉t1 =

√
2

3(1 + ε2)
|E〉 (|χ0〉+ ε|χ⊥〉) +

1√
3
|C〉|χ0〉, (4)

where we split which path and the mode degrees of freedom of the photon. The forward evolving
state, at time t2, in the middle of the interferometer is then

|Ψ〉t2 =
1√

3(1 + ε2)
(|A〉+ i|B〉) (|χ0〉+ ε|χ⊥〉) +

1√
3
|C〉|χ0〉. (5)

Since in the experiment we use photon degrees of freedom for the measurement, we do not
postselect on a particular state but rather on a space of states corresponding to all modes reaching
detector D. Thus, strictly speaking, there is no definite backwards evolving state. However, we can
use a standard ‘trick’ [4], in which we consider a hypothetical additional verification measurement of
the mode state after the postselection on the path D. We verify that the state which we calculate will
surely be there, and this verification measurement, together with the path post-selection, defines the
backward evolving state.

The wave packets from A and B destructively interfere toward F even when mirror E is slightly
rotated, so the only mode reaching D is coming from C, which is χ0. Therefore, the backward evolving
state starts from 〈D|〈χ0|, which in the middle of the interferometer turns into

〈Φ|t2 =
1√
3
(〈A| − i〈B|+ 〈C|) 〈χ0|. (6)

There is here destructive interference of the backward evolving quantum state toward E, so,
at time t1, the backward evolving state is

〈Φ|t1 =
(
√

2〈G|+ 〈C|)〈χ0|√
3

. (7)

Thus, the weak value of the projection operator PE = |E〉〈E| at E is

(PE)w =
〈Φ|PE|Ψ〉t1

〈Φ|Ψ〉t1

= 0. (8)

Therefore, at time t1 the photons have no presence in E, not even a “small” presence.
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With the Dove prism inside, this is no longer the case. Instead of (5), we obtain

|Ψ′〉t2 =
1√

3(1 + ε2)
[(|A〉+ i|B〉)|χ0〉+ ε(|A〉 − i|B〉)|χ⊥〉)] +

1√
3
|C〉|χ0〉. (9)

The wave packets from A and B destructively interfere towards F for mode χ0, while the mode
χ⊥ interferes constructively towards F. As a result, the backward evolving state (given the proper
hypothetical measurement) starts approximately as

1√
1 + 2ε2

〈D|(〈χ0|+
√

2ε〈χ⊥|). (10)

Evolving it backwards until time t1, we obtain approximately:

〈Φ′|t1 =
1√

3(1 + 2ε2)
[(
√

2〈G|+ 〈C|)〈χ0|+
√

2ε(〈C|+
√

2〈E|)〈χ⊥|]. (11)

The Dove prism does not change the forward evolving state at t1, so, even with the Dove prism,
the state is still given by (4). Calculating now the weak value of projection on E yields

(PE)w =
〈Φ′|PE|Ψ〉t1

〈Φ′|Ψ〉t1

# 2
√

2ε2. (12)

The photon in the experiment with the Dove prism and the tilted mirror E does have some
presence in E. Thus, there is no clear paradox in obtaining the frequency fE that was present only in E
in the framework of the TSVF.

One might wonder why there is no signal at fF similar to that at fE in spite of the apparent
symmetry of the experiment in the time symmetric TSVF. When the mirror F is tilted instead of mirror
E, inserting the Dove prism spoils the destructive interference of the backward evolving wave function
towards E similarly to spoiling interference toward F by tilting mirror E. However, more careful
analysis shows that the symmetry is not complete. Titling mirror E also changes the effective backward
evolving state, while tilting mirror F does not change the forward evolving state. See details in the
next section.

5. Quantifying the Presence of Photons

The explanation of the peak at the frequency fE which we wish to provide is that the photon has
a small presence there, but the experimental records imprinted on the pre- and postselected photon
reaching the detector are strong, so the size of the peak is similar to that of frequencies fC, fB, and fA,
where the photon presence is strong, but the record is weak. However, the second order in ε for the
presence of the photon in E looks too small for this to be the case. In more detail, for mirrors A, B,
and C, the presence of the photon is of order 1 while the strength of the record is of size ε. For mirror
E, on the other hand, the presence characterized by the weak value of projection operator (12) is
apparently only of size ε2. The size of the record of an interaction is characterized by the created
relative amplitude of the orthogonal component (see [48]). In our case, the record created at E which
reaches the detector D is represented by the orthogonal component |χ⊥〉 and it is the only component
reaching the detector, since the symmetric component |χ0〉 is ‘filtered out’ by the inner interferometer.
Thus, we can say that the size of the record created at E which reaches the detector is of order 1.
This naive consideration tells us that the peak at fE should be of order ε2 while other peaks are of
order ε, in contradiction with predicted results of the experiment which show that the peaks are of the
same order.

It is true that the weak effects which depend only on the presence of the photon in E, such as the
momentum transferred to the mirror E by the photon, are proportional to (PE)w, but the presence of
a particle is defined according to all local traces it leaves (see Section 6 of [3]). In our case, the weak value
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of the projection operator PE is not the correct parameter to quantify the presence of the particle. It is so
when the pre- and post-selection is on spatial degrees of freedom only (see [48]). Here, however, due to
the postselection on a subspace, effectively, we are required to consider an associated postselection
on a particular mode, along with the well defined preselected mode. Let us define an operator O
which connects between the mode |χ0〉 and the mode |χ⊥〉, possessing the eigenvalues ±1 for the
states |±〉 = (|χ0〉 ± |χ⊥〉) /

√
2. For the experiment without the Dove prism, the weak value of local

variable OPE still vanishes, but when the Dove prism is present, we have

(OPE)w =
〈Φ′|OPE|Ψ〉t1

〈Φ′|Ψ〉t1

# 2
√

2ε. (13)

Therefore, the presence in E is found to be of the order ε rather than ε2, which is obtained when
we naively quantify the presence by (PE)w. This explains why we obtain the signal from mirror E of
the same order as from other mirrors.

The weak value of local operator of order ε explains the signal, but, according to the definition
of the full presence of photon in a particular place, we require an order 1 weak value of some local
variable. In view of this, we have only ‘secondary presence’ [10] of the photon in E in the present case.

Now, when mirror E is tilted, we get (OPF)w # 2ε, indicating that the presence of the photon is
of order ε also at mirror F. Nonetheless, we do not get the peak at fF similar to that at fE by tilting
mirror F as well as E. The reason for this is that the record of the interaction reaching the detector
from the tilting mirror F is of order ε and not of the order 1 as for the signal from mirror E. Note that,
when only mirror F is tilted, we have (OPF)w = 0.

We have shown that the results of the interference experiment with a nested interferometer and
a Dove prism inside it can be explained in the framework of the recently proposed approach [3]. We get
signals from mirrors A, B, and C because the photon presence there is of order 1 and the trace recorded
on the photon itself is of order ε. A similar signal is obtained from mirror E where the presence of the
photon is of the order ε, but recorded trace is of order 1.

The signal in E should disappear if the mirror will be wiggled in the perpendicular direction.
If only this mirror is wiggled and everything else is not, then there will be exactly zero presence at
E. If all mirrors are wiggled as in the experiment [1], then the presence will be of order of ε, but the
record will also be of order ε, so the signal will be too small to observe. It will be of interest to perform
a nested Mach–Zehnder interferometer experiment with wiggling mirrors and the Dove prism to
demonstrate these effects.

6. Bohmian Trajectory

Before concluding, let us analyse this nested interferometer in the framework of the Bohmian
interpretation of quantum mechanics [49]. While Bohr preached to not ask where the particle
inside the interferometer was, Wheeler suggested a ‘common sense’ proposal based on classical
intuition. While we have suggested relying on the weak trace that the particle leaves using the
TSVF, Bohm has a proposal for a deterministic theory which associates a unique trajectory for every
particle. In a particular case of nested interferometer which we consider, with or without Dove prism,
the particle detected in D has a well defined trajectory (see Figure 3). Note that it corrects an erroneous
trajectory in Figure 2 of [50]. The simplest way to understand why Bohmian trajectory must be as
shown is the observation that Bohmian trajectories do not cross [51]. The probability to reach detector
D is only 1/9, while the probability to be in path A is 1/3. Thus, every Bohmian trajectory which
reaches D had to pass through A.
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Figure 3. Nested Mach–Zehnder interferometer tuned to destructive interference towards F when
a single photon is detected in D. The dashed line represents a common sense proposal by Wheeler,
the thick gray line describes the past according to Vaidman’s proposal as places where the particle
leaves a weak trace, the continuous line represents the Bohmian trajectory.

Bohmian trajectories are entities beyond the standard quantum theory. One of us (L.V.) had
the privilege to spend a day of discussions with David Bohm (Charlestone, SC, 1989). I remember
telling him what I liked in his theory: a consistent deterministic theory of everything, a candidate for
a final theory. However, he completely dismissed this approach. For him, it was nonsense to look for
a final theory. He explained to me that his theory is just another step in an infinite search for a better
understanding of nature. He was certain that quantum theory is not the last word, and for finding
a deeper and more precise theory, quantum theory has to be reformulated. His theory was a counter
example to the widespread belief generated by the von Neumann no-go theorem that it would be
impossible to extend quantum mechanics consistently by adding hidden variables. Indeed, it opened
new horizons for research.

7. Conclusions

Unless a quantum particle is described by a well localized wave packet, the standard quantum
theory cannot tell us where the particle was. Vaidman [3] proposed the definition of where a quantum
particle was according to the local trace it left: the particle was in a place where the trace is of the order
of the trace a single localized particle would leave. In the Danan et al. experiment, photons told us
where they have been (according to the trace definition) in a specially tuned nested interferometer.
The AJ modification of this experiment, i.e., placing a Dove prism in one of the arms of the inner
interferometer did not change significantly the past of the photons, but photons told a different story:
they were also near mirror E in spite of the fact that, according to Vaidman’s narrative, they were not
present there. We conclude that the photons were lying about their presence in E, in the sense that,
although the trace they left there was much smaller than the trace that a localized photon would leave,
the signal provided by the photons was large as if they had fully been present in E.

How could the photons produce the signal with frequency fE which was larger than any other
signal? In the original and the modified experiments, local traces were not observed. Instead, locally
created traces were ‘written’ on the transversal degree of freedom of the photon itself. In the original
experiment, the transversal degree of freedom was not distorted until it reached the detector, so these
local traces were faithfully read by the detector. In the modified experiment, the Dove prism influenced
the transversal degree of freedom spoiling the faithful readout of local traces by the detector. In fact,
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AJ mentioned such an interpretation in [2] as one of the options: “one possible response to this result
is that we have improperly read off the past of the photon by letting it suffer further interactions with
the environment before reading the weak trace after it was written, so our weak measurement was
a bad one for inferring the past of the photon.”

Apart from the explanation of the experimental results by the presence of the particle defined
through the weak trace, Danan et al. presented a simpler argument of the presence of the photon in A,
B and C. The detected photons had to be there because they brought to the detector information which
was only there. However, the same should hold for the modified experiment: the particles had to be
in E because they brought information about fE that was present only in E. Sections 4 and 5 explain
how it happens in spite of the fact that the trace left by the particles at E was very small. It was small,
but not exactly zero, as in the original experiment when only mirror E was wiggling. The Dove prism
did change the past of the photons a little.

Introducing a Dove prism not only spoiled faithful transmission of the transverse degree of
freedom of the photon to the detector, it also made the inner interferometer extremely sensitive for
the misalignment of the input beam. The strength of the signal in the experiment was proportional to
the relative amount of the orthogonal component created by local interaction. This component was
the asymmetric mode with which the Dove prism passed in full through the inner interferometer,
while the reference, the symmetric mode, did not pass at all due to the destructive interference. This
explains how a small presence of the photons in E caused a strong signal with frequency fE.

Note that the Bohmian trajectory did pass through E. However, it also passed through F,
although no frequency fF was observed. It is well known, starting from ‘surrealistic trajectories’ [51],
that we cannot view quantum particles as acting locally in their Bohmian positions (see also [52]).

We have observed that introducing the Dove prism into an inner interferometer of the Danan
et al. experiment creates a tiny presence of the photons in E. However, we argue that from this we
should not tell that the Dove prism changes the past of a photon in the nested interferometer proposed
in [3]. In fact, the origin of the presence of the photons can be found in the disturbance of the mirror E.
The weak value of any local operator at E is strictly zero in an ideal interferometer where no mirror is
tilted, even if the Dove prism is there.
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18. Bartkiewicz, K.; C̆ernoch, A.; Javůrek, D.; Lemr, K.; Soubusta, J.; Svozilík, J. One-state vector formalism for the
evolution of a quantum state through nested Mach–Zehnder interferometers. Phys. Rev. A 2015, 91, 012103.
[CrossRef]

19. Vaidman, L. Comment on ‘One-state vector formalism for the evolution of a quantum state through nested
Mach–Zehnder interferometers’. Phys. Rev. A 2016, 93, 036103. [CrossRef]
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21. Bartkiewicz, K.; C̆ernoch, A.; Javůrek, D.; Lemr, K.; Soubusta, J.; Svozilík, J. Measuring evolution of a photon
in an interferometer with spectrally resolved modes. Phys. Rev. A 2016, 94, 052106.

22. Hashmi, F.; Li, F.; Zhu, S.-Y.; Zubairy, M. Two-state vector formalism and quantum interference. J. Phys. A
Math. Theor. 2016, 49, 345302. [CrossRef]

23. Vaidman, L. Comment on ‘Two-state vector formalism and quantum interference’. J. Phys. A Math. Theor.
2018, 51, 068002. [CrossRef]

24. Hashmi, F.; Li, F.; Zhu, S.-Y.; Zubairy, M. Reply to the comment on ‘Two-state vector formalism and quantum
interference’. J. Phys. A Math. Theor. 2018, 51, 068001. [CrossRef]

25. Wu, Z.-Q.; Cao, H.; Huang, J.-H.; Hu, L.; Xu, X.-X.; Zhang, H.-L.; Zhu, S.-Y. Tracing the trajectory of photons
through Fourier spectrum. Opt. Exp. 2015, 23, 10032–10039. [CrossRef] [PubMed]

26. Griffiths, R. Particle path through a nested Mach–Zehnder interferometer. Phys. Rev. A 2016, 94, 032115.
[CrossRef]

27. Vaidman, L. Comment on “Particle path through a nested Mach–Zehnder interferometer”. Phys. Rev. A
2017, 95, 066101. [CrossRef]

28. Griffiths, R. Reply to “Comment on ‘Particle path through a nested Mach–Zehnder interferometer’”.
Phys. Rev. A 2017, 95, 066102. [CrossRef]

29. Svensson, B. Non-representative Quantum Mechanical Weak Values. Found. Phys. 2015, 45, 1645–1656.
[CrossRef]

30. Ben-Israel, A.; Vaidman, L. Comment on ‘Non-representative Quantum Mechanical Weak Values’.
Found. Phys. 2017, 47, 467–470. [CrossRef]

31. Svensson, B. Response to Comment on ‘Non-representative Quantum Mechanical Weak Values’. Found. Phys.
2017, 47, 1258–1260. [CrossRef]

516



Entropy 2018, 20, 538

32. Zho, Z.-Q.; Liu, X.; Kedem, Y.; Cui, J.-M.; Li, Z.-F.; Hua, Y.-L.; Li, C.-F.; Guo, G.-C. Experimental observation
of anomalous trajectories of single photons. Phys. Rev. A 2017, 95, 042121. [CrossRef]

33. Sokolovski, D. Asking photons where they have been in plain language. Phys. Lett. 2017, A381, 227–232.
[CrossRef]

34. Vaidman, L. A Comment on “Asking photons where they have been in plain language”. arXiv 2017,
arXiv:1703.03615.

35. Nikolaev, G. Paradox of photons disconnected trajectories being located by means of “weak measurements”
in the nested Mach–Zehnder interferometer. JETP Lett. 2017, 105, 152–157. [CrossRef]

36. Vaidman, L. A comment on “Paradox of photons disconnected trajectories being located by means of
‘weak measurements’ in the nested Mach–Zehnder interferometer”. JETP Lett. 2017, 105, 473–474. [CrossRef]

37. Nikolaev, G. Response to the comment on “Paradox of photons disconnected trajectories being located by
means of ‘weak measurements’ in the nested Mach–Zehnder interferometer”. JETP Lett. 2017, 105, 475.
[CrossRef]

38. Duprey, Q.; Matzkin, A. Null weak values and the past of a quantum particle. Phys. Rev. A 2017, 95, 032110.
[CrossRef]

39. Sokolovski, D. Comment on “Null weak values and the past of a quantum particle”. Phys. Rev. A
2018, 97, 046102. [CrossRef]

40. Duprey, Q.; Matzkin, A. Reply to Comment on “Null weak values and the past of a quantum particle”.
Phys. Rev. A 2018, 97, 046103. [CrossRef]

41. Englert, B.; Horia, K.; Dai, J.; Len, Y.; Ng, H. Past of a quantum particle revisited. Phys. Rev. A 2017, 96, 022126.
[CrossRef]

42. Peleg, U.; Vaidman, L. Comment on “Past of a quantum particle revisited”. arXiv 2018, arXiv:1805.12171.
43. Bernardo, B.; Canabarro, A.; Azevedo, S. How a single particle simultaneously modifies the physical reality

of two distant others: A quantum nonlocality and weak value study. Sci. Rep. 2017, 7, 39767. [CrossRef]
[PubMed]

44. Paneru, D.; Cohen, E. Past of a particle in an entangled state. Int. J. Quantum Inf. 2017, 15, 1740019. [CrossRef]
45. Aharonov, Y.; Cohen, E.; Landau, A.; Elitzur, A. The Case of the Disappearing (and Re-Appearing) Particle.

Sci. Rep. 2017, 7, 531. [CrossRef] [PubMed]
46. Geppert-Kleinrath, H.; Denkmayr, T.; Sponar, S.; Lemmel, H.; Jenke, T.; Hasegawa, Y. Multifold paths of

neutrons in the three-beam interferometer detected by a tiny energy kick. Phys. Rev. A 2018, 97, 052111.
[CrossRef]

47. Hallaji, M.; Feizpour, A.; Dmochowski, G.; Sinclair, J.; Steinberg, A.M. Weak-value amplification of the
nonlinear effect of a single photon. Nat. Phys. 2017, 13, 540–544. [CrossRef]

48. Dziewior, J.; Knips, L.; Farfurnik, D.; Senkalla, K.; Benshalom, N.; Efroni, J.; Meinecke, J.; Bar-Ad, S.;
Weinfurter, H.; Vaidman, L. Universality property of local weak interactions and its application for
interferometric alignment. arXiv 2018, arXiv:1804.05400.

49. Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. I, II. Phys. Rev.
1952, 85, 166. [CrossRef]

50. Vaidman, L. Surrealistic trajectories. In Quantum Paths: Festschrift in Honor of Berge Englert on His 60th
Birthday; Ng, H.K., Han, R., Eds.; Worlds Scientific: Hackensack, NJ, USA, 2015; pp. 182–186.

51. Englert, B.G.; Scully, M.O.; Sussmann, G.; Walther, H. Surrealistic Bohm trajectories. Z. Naturforsch. A 1992,
47, 1175–1186. [CrossRef]

52. Naaman-Marom, G.; Erez, N.; Vaidman, L. Position Measurements in the de Broglie-Bohm Interpretation of
Quantum Mechanics. Ann. Phys. 2012, 327, 2522–2542. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

517



entropy

Article

A Method for Measuring the Weak Value of Spin for
Metastable Atoms

Robert Flack *,†, Vincenzo Monachello †, Basil Hiley † and Peter Barker †

Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT, UK;
vincenzo.monachello.14@ucl.ac.uk (V.M.); b.hiley@bbk.ac.uk (B.H.); p.barker@ucl.ac.uk (P.B.)
* Correspondence: r.flack@ucl.ac.uk; Tel.: +44-207-679-3425
† These authors contributed equally to this work.

Received: 27 April 2018; Accepted: 27 July 2018; Published: 30 July 2018

Abstract: A method for measuring the weak value of spin for atoms is proposed using a variant
of the original Stern–Gerlach apparatus. A full simulation of an experiment for observing the real
part of the weak value using the impulsive approximation has been carried out. Our predictions
show a displacement of the beam of helium atoms in the metastable 23S1 state, Δw, that is within
the resolution of conventional microchannel plate detectors indicating that this type of experiment
is feasible. Our analysis also determines the experimental parameters that will give an accurate
determination of the weak value of spin. Preliminary experimental results are shown for helium,
neon and argon in the 23S1 and 3P2 metastable states, respectively.

Keywords: weak measurement; transition probability amplitude; atomic metastable states

1. Introduction

The notion of a weak value introduced by Aharonov, Albert and Vaidman [1,2] has generated
wide interest by, not only providing a new possibility of understanding quantum phenomena, but
also by generating new experiments to explore deeper aspects of quantum processes. Although
Aharonov et al. [1] specifically applied their ideas to spin, Wiseman [3] and Leavens [4] have shown
that when applied to the momentum operator, the weak value of the momentum becomes the local
momentum used in the Bohm approach [5]. Flack and Hiley [6] have shown that the weak value of the
momentum has a close connection with Schwinger’s notion of a transition amplitude [7], a notion that
Feynman [8] used to introduce the concept of a path integral. Thus, these ideas open up new ways of
thinking about and exploring many puzzling questions that lie at the heart of quantum physics.

Already, Kocsis et al. [9] have carried out a two-slit experiment using single photons to measure the
weak value of the transverse momentum, which they then used to construct a series of momentum flow
lines that they interpreted as ‘photon trajectories’. Unfortunately, such an interpretation immediately
presents a difficulty in that, whereas particles with non-zero rest mass can be localised in the classical
limit producing a classical trajectory [10], photons with zero rest mass have no such limit, calling in to
question the meaning of a photon trajectory. In spite of this, Flack and Hiley [11] have shown that the
flow lines arise from the new concept of a weak Poynting vector.

In a later paper, Mahler et al. [12] extended the earlier results of Kocsis et al. [9] and demonstrated
the existence of non-locality in entangled states in an entirely new way. Unfortunately, in the
same paper, they argued that the results can be used to support the Bohm mechanics [5]. However,
the Bohm approach is based on the non-relativistic Schrödinger equation and does not apply to the
electromagnetic field. A test for the Bohm model in this case requires a generalisation of the Bohm
approach to field theory. Indeed, such an extension was first outlined by Bohm [13] himself and
later extended by Bohm, Hiley and Kaloyerou [14], Holland [15] and Kaloyerou [16]. It was on this
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basis that Flack and Hiley [11] showed that by introducing a new notion of the weak value of the
Poynting vector, the flow lines could be understood in terms of momentum flow.

To test the original Bohm approach, one must use non-relativistic atoms. This paper is concerned
with the development of an experiment to measure such weak values, confining our attention to
spin (an attempt to measure weak values of momentum was being carried out by Morley, Edmunds
and Barker [17] using argon atoms and will not be discussed further in this paper). As far as we
know at the time of writing, the only measurements of weak values of spin have been performed on
neutrons [18]. No experiments have used atoms. Not only is this of interest in its own right, but it will
enable us to experimentally verify the predictions of the Bohm, Schiller and Tiomno [19,20] model
of spin. In this model, the spin vector is well defined in terms of Euler angles, which appear in the
expression for the weak value and can therefore be measured. A series of recent results related to
this model have been presented by Hiley and Van Reeth [21], who show that the spin does not ‘jump’
immediately into an eigenstate. Instead, the spin vector rotates, taking a finite, but measurable time
to reach the eigenstate, as originally shown by Dewdney et al. [22–24] and Holland [15]. The paper
by Hiley and Van Reeth also shows that it is possible to use the weak value to observe this rotation.
Hence, it is important to design an experiment to show whether the spin rotates or ‘jumps’.

The preliminary outline of this experiment was first presented in a conference [25]. For the benefit
of the reader, we have reproduced the two key Figures 1 and 2 from this paper. In order to carry
out such an experiment, it must be realised that the displacements needed to detect these effects are
extremely small. It is therefore important to understand which parameters are critical in limiting the
resolution of the changes expected. This paper focuses the discussion on these requirements. To this
end, we report on simulations that explore how our apparatus will function. Here, we concentrate on
the strong stage (see Figure 2), and to ensure that the apparatus is functioning correctly, we present
experimental results involving Stern–Gerlach displacements of various metastable gas species and our
ability to efficiently spin select the atomic beam.

Figure 1. Schematic view of the experimental technique [25]. Helium atoms in the mS = +1 metastable
state enter from the left, with spin vector angle θ. The atoms pass through the weak and strong S-G
magnets before reaching the detector. The displacement due to the weak interaction is Δw, which is a
function of the chosen pre-selected spin state. For simplicity, the mS = 0 spin state is not shown.

Figure 2. The pulsed helium gas enters from the left. Preparation of the metastable atoms occurs in
the first two chambers. In the next chamber, the hexapole magnet (HM) pre-selects the mS = +1 state,
which moves onto the weak stage (WS), which is comprised of the magnet, and then on to the strong
stage (SS) involving the magnet. Finally, the atoms are detected using a micro-channel plate detector
(MCP). This figure is reproduced from [25].
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2. Details of the Experimental Apparatus to Determine Weak Values of Spin

2.1. Overview

There are three stages involved in producing the weak value of the spin. Firstly, the atoms are
pre-selected in a desired spin state with the spin axis set at a pre-selected angle θ in the x-z plane;
see Figure 1. The atoms then propagate through a weak interaction stage, which, in our case, is
comprised of two parallel, current-carrying wires producing an S-G -type field gradient that is very
small along the z-axis. This stage should not be thought of as constituting a ‘measurement’; it simply
introduces a unitary Schrödinger interaction, which produces a small phase change in the wave
function carrying information about the weak value.

The final stage involves the actual measurement, using a second conventional S-G magnet, with
its strong inhomogeneous magnetic field aligned along the x-axis. Note the axes of the weak and
strong stage magnets are at right angles to each other. The field of the strong stage magnet must be
large enough to clearly separate the spin eigenstates on this axis. It is this separation that enables us to
detect the small phase shift, Δw, induced by the weak stage, as shown in Figure 1. Since the shift Δw is
small, we must identify and adjust the relevant experimental parameters to maximise the shift. One of
the purposes of this paper is to discuss this optimisation.

2.2. Stern–Gerlach Simulation Using the Impulse Approximation

The simulation is divided into three parts: the initial conditions, the application of the interaction
Hamiltonian in the weak stage using the impulsive approximation [26] and, finally, the action of the
strong Stern–Gerlach magnet. This approximation neglects the free evolution of the atoms inside the
weak magnet, since this produces negligible effects. The analysis follows the scheme outlined in [27],
but in our case, we are using spin-one rather than spin-half particles.

2.3. Initial Conditions

Metastable helium atoms in the 23S1 state are initially prepared as a pulsed beam and are described
by the normalised Gaussian wave packet at time t = 0:

ψ(z, 0) =
1(

2πσ2
) 1

4
exp

(
− z2

4σ2

)
, (1)

where σ is the width in position space. The width of the atomic beam is set by passing it through an
orifice/skimmer at the entrance of the weak stage. We parametrise the spinor in terms of polar angles
θ and φ in the following form [28],

ξi(θ, φ, 0) =

⎡⎢⎢⎣
1
2 (1 + sin(θ))e−iφ

1√
2

cos(θ)
1
2 (1− sin(θ))eiφ

⎤⎥⎥⎦ =

⎡⎢⎣ c+
c0

c−

⎤⎥⎦ . (2)

The initial orientation of the spin vector angle θ can be seen in Figure 1, where the azimuthal angle
φ (not shown) is the corresponding angle in the x-y plane. We set φ = 0 and only consider variations
of the angle θ. Therefore, the initial wave function prior to entering the weak stage is:

Ψi(z, 0) = ψ(z, 0)ξi(θ). (3)

2.4. Theory of the Weak Stage Process

The atoms then traverse the weak stage magnet, where the wave function evolves under the
interaction Hamiltonian, weakly coupling the spin to the centre-of-mass wave function. The interaction
Hamiltonian is given by:
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HI = μ (ŝ.B) , (4)

where μ is the magnetic moment, ŝ is the spin vector and B the magnetic field. If Δt is the time that the
atom spends in the weak field, the wave function as it leaves the weak stage is:

Ψf(z, Δt) = ξ†
f exp

(
−i

μΔt ∂B
∂z zŝz

h̄

)
ψ(z, 0)ξi(θ) (5)

where we have used the dominant term in the interaction Hamiltonian Bz =
∂B
∂z z [29].

2.5. Extracting the Weak Value of Spin

The exponential (phase shift) in Equation (5) can be Taylor expanded:

Ψf(z, Δt) = 〈Sf|

⎡⎣1− i
μΔt ∂B

∂z zŝz

h̄
− 1

2

(
μΔt ∂B

∂z zŝz

h̄

)2

+ ...

⎤⎦ |Si〉ψ(z, 0), (6)

where for convenience, we have written |Si〉 for ξi and 〈Sf| for ξ†
f . Hence:

Ψf(z, Δt) =

⎡⎣〈Sf|Si〉 − i
μΔt ∂B

∂z z
h̄

〈Sf|ŝz|Si〉 −
1
2

(
μΔt ∂B

∂z z
h̄

)2

〈Sf|ŝ2
z |Si〉+ ...

⎤⎦ ψ(z, 0). (7)

In order to neglect higher order terms in Equation (7), the following inequalities must hold for
n ≥ 2 [27,29], ∣∣∣∣∣∣

(
μΔt ∂B

∂z z
h̄

)n

〈Sf|ŝn
z |Si〉

∣∣∣∣∣∣ <<
∣∣〈Sf|Si〉

∣∣ (8)

and: ∣∣∣∣∣∣
(

μΔt ∂B
∂z z

h̄

)n

〈Sf|ŝn
z |Si〉

∣∣∣∣∣∣ <<

∣∣∣∣∣
(

μΔt ∂B
∂z z

h̄

)
〈Sf|ŝz|Si〉

∣∣∣∣∣ . (9)

In this case, Equation (7) can be expanded to first order:

Ψf(z, Δt) =

(
〈Sf|Si〉 − i

μΔt ∂B
∂z z

h̄
〈Sf|ŝz|Si〉

)
ψ(z, 0), (10)

and the transition probability amplitude 〈Sf|Si〉 can be factored out:

Ψf(z, Δt) = 〈Sf|Si〉
(

1− i
μΔt ∂B

∂z z
h̄

〈Sf|ŝz|Si〉
〈Sf|Si〉

)
ψ(z, 0). (11)

Note that the weak value of the spin, W = 〈Sf|ŝz |Si〉
〈Sf| Si〉 is in general a complex number with real and

imaginary parts. In this case, we are only considering the real part, WRe, which becomes,

Ψf(z, Δt) = 〈Sf|Si〉
(

1− i
μΔt ∂B

∂z z
h̄

WRe

)
ψ(z, 0). (12)

Using the post-selected state, ξ†
f = [1/2, 1/

√
2, 1/2], the real part of the weak value becomes,

WRe = tan
(

θ

2

)
. (13)
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In order to cast Equation (12) into an exponential form, the following inequality must be met,

L =

∣∣∣∣∣μΔt ∂B
∂z z

h̄
WRe

∣∣∣∣∣ << 1 (14)

where L << 1 is a limit to be determined [27,29].
As the spread along the z-axis is related experimentally to the width of the atomic beam in

question [27], z can be replaced by σ; therefore, the inequality becomes,

L =

∣∣∣∣∣μΔt ∂B
∂z σ

h̄
tan

(
θ

2

)∣∣∣∣∣ << 1. (15)

The final wave function after the Gaussian wave packet has traversed both the weak and strong
magnets is,

Ψf(z, Δt) = 〈Sf|Si〉 exp

(
−i

μΔt ∂B
∂z z

h̄
tan

(
θ

2

))
ψ(z, 0). (16)

In this experiment, the real part of the weak value of spin will be measured by setting φ = 0 and
varying the angle θ between zero and π.

2.6. Free Evolution of the Gaussian Wave Packet at the Detector

After the strong stage, the problem is treated as the free evolution of a Gaussian wave packet
by solving the Pauli equation using well-known methods [26]. The probability density can now
be computed, giving the form of the wave function as seen by the detector:

|ΨD(z, t)|2 = |〈Sf| Si〉 |2
⎡⎣2πσ2

(
1 +

h̄2t2

4m2σ4

)⎤⎦− 1
2

exp

⎡⎢⎣ − (z + utWRe)
2

2σ2
(

1 + h̄2t2

4m2σ4

)
⎤⎥⎦ , (17)

where t is the time of flight from the exit of the strong magnet to the detector. The mean of the
post-selected wave function shifts by the value Δw = (utWRe) =

(
μ
m

∂B
∂z Δt

)
t tan

(
θ
2

)
, where u is the

transverse velocity of the helium atoms. This is in contrast to the standard S-G experiment, where the
shift is only ut.

As the pre- and post-selected spin states approach orthogonality, θ tends to π and Δw increases,
but the transition probability decreases. This reduces the number of post-selected events of interest,
leading to the need for longer experimental runs. Again, it is important to understand that this effect
only arises when the phase shift acquired at the first stage is sufficiently small; see Equation (15).
The centre-of-mass wave function is displaced, but its overall shape is maintained after exiting the
weak stage.

2.7. The Limit and Its Validity

In the literature, the real part of the weak value is given as tan (θ/2). This functional dependence
is for an ideal case when the limit in Equation (15) is equal to, or smaller than, an optimal value,
which we will call Lo. For this experiment, it is crucial to know Lo in order to successfully measure the
well-known tan (θ/2) dependence. If L exceeds Lo, then this will not give the weak value tan (θ/2)
because higher order terms begin to dominate. In our case, Lo can be determined by analysing two
Gaussian wave packets, one describing the first order approximation given by Equation (17) and the
other the exact case when no approximation is used, derived from Equation (5).

Lo is calculated by increasing the inhomogeneous magnetic field in the weak stage only,
thus increasing the limit shown in Equation (15); all other variables are held constant. Figure 3
illustrates the behaviour of the two Gaussians. For small values of L, the two curves strongly overlap;
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the point just before the two wave packets deviate is the optimal limit, Lo. Beyond, Lo the first order
approximation continues to move to the left, while the full order approximation slowly reverts to that
of a standard S-G measurement. Note: this optimal limit is only valid if θ > π/2.

Figure 3. A series of plots showing how the displacement, Δw, of the Gaussian wave packet is
constrained by various limits. The red curve is the first order approximation, which is dominated by
tan(θ/2). The blue curve is the exact treatment of the system taking into account all higher order terms.
The red and blue curves coincide when the limit L = Lo = 0.37; this is the maximum limit for which
the first order approximation holds.

By finding this limit, Lo = 0.37, experimental parameters can be tailored in order to maximise the
atomic beam’s displacement due to the weak stage. This is important as certain values of θ produce
shifts, which are on the limit of the resolution of our detector. By adjusting experimental parameters in
order to meet this limit, displacements for the θ values that would have previously caused an issue
can be resolved. As the optimal limit is now fixed, we can rearrange the wave packet deviation ΔW
with respect to this fixed limit.

Δw =
μ ∂B

∂z (Δt)t
m

tan
(

θ

2

)
=

h̄t
σm

Lo. (18)

This shows that the maximum deviation of the wave packet depends on t and σ. By changing θ

and adjusting other experimental parameters so that L = Lo, for all values of θ > π/2, we will measure
the same displacement, a maximal displacement, and from this, the functional dependence tan(θ/2)
can be observed. This is important if we are measuring θ as outlined in Hiley and Van Reeth [21].
Using parameters from our proposed experiment, of which the most important are the atomic velocity
of the beam, 1717 m/s, the free flight distance, 2.4 m, the optimal limit, Lo = 0.37, and the width of
the beam, σ = 0.5μm, our expected displacement, Δw, is of the order of 20μm.

3. Method for the Weak Measurement of Spin for Atomic Systems: Experimental Realisation

3.1. Schematic Lay-Out of the Apparatus

A schematic diagram showing the various stages of the measurement is shown in Figure 2.
The first step is to produce a beam of metastable helium in the 23S1 triplet state. Helium gas
at high pressure enters the apparatus from the left and is pulsed into the chamber using an
electromagnetic valve, producing a pulsed supersonic beam. The atomic beam is excited using an
electron-seeded discharge. Here, the atoms collide with a stream of energetic electrons in a 300 V/cm
electric field [30]. The excited gas then passes through a 2 mm-diameter skimmer and travels between
two electrically-charged plates to remove the unwanted ionised atoms and free electrons.
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The next step is to select a single spin state, in our case the mS = +1 state. To do this,
we use a hexapole magnet, which focuses this state on to the weak stage magnet (see Figure 2).
During this process, the atoms in the mS = −1 state are defocused. The mS = 0, 21S0 singlet state and
photons are left untouched, but can be removed from the beam by placing a needle across the centre of
the magnet. After the beam exits the hexapole magnet, but before it enters the weak stage, it passes
through a 50-μm slit; its rotation about the y-axis, sets the spin vector angle θ. The pre-selected atomic
beam is then passed through a final slit, setting the beam width as required in the limit. The beam
width at this point of the process is 0.5 μm before entering the weak stage (see Figure 1).

Upon exiting the weak stage, the atomic beam enters the strong stage. Subsequently, the atoms
propagate freely onto a detector that consists of two micro-channel plates in a chevron configuration,
coupled to a phosphor screen and CCD camera, enabling a resolution of 5 μm using centroiding
techniques. The measured deflection, Δw, will be proportional to the weak value of the atomic spin.

3.2. Experimental Data Confirming the Correct Functioning of the Last (Post-Selection) Stage

We check that each stage of the experiment is functioning correctly. Having successfully produced
and controlled the metastable helium atoms, we test the functioning of the last stage i.e., the final
strong S-G measurement. Here, it is important to ensure that the displacement produced by the
strong S-G magnet, for each angular momentum eigenstate, is large enough to be easily resolved.
To ensure this, we have used a permanent S-G magnet of length 100 mm. The magnet assembly
consists of N38-, N40- and N50-grade Nd-Fe-B magnets, arranged in such a way as to produce
a constant field gradient, dB/dx, of 100 T/m over a length of 70 mm (see Figure 4). The force,
Fx = −μx dB/dx, experienced by an atom in this field is proportional to the magnetic moment of the
atom, μx = −gJμBmJ , where:

gJ =
3
2
+

S (S + 1)− L (L + 1)
2J (J + 1)

(19)

is the Landé g-factor [31].

Figure 4. The S-G magnet showing the various grades/shapes of the Nd-Fe-B magnets in the setup in
order to achieve a constant field gradient, dB/dx, of 100 T/m.

To carry out this test, we have chosen to the use metastable helium (He*), neon (Ne*) and
argon (Ar*). For example, He* has a magnetic moment of μ = ±2μB, while other noble gases,
such as Ne* and Ar*, have magnetic moments of μ = ±3μB,± 3

2 μB and 0, depending on the atoms’,
mJ , state. While He* is in a pure spin state, the other two have a combination of spin and orbital
angular momentum.

Experimental S-G distributions for He*, Ne* and Ar* have been measured after first travelling
through a collimation region consisting of a 100-μm and 10-μm slit separated by 306.5 mm, producing
an atomic beam with an angular divergence of 0.36 mrad. The atoms then travel approximately 2 m
before hitting the detector.

Figure 5 shows the results, confirming that the spin eigenstates for all the gases are
sufficiently resolved, giving a displacement of 7.8 mm, for He*, between the mS = ±1 and mS = 0
eigenstates, and 10 and 10.4 mm for Ne* and Ar*, respectively, between the mJ = ±2 and mJ = 0
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eigenstates. For all systems, the m = 0 state, centred at 0 mm, is unaffected by the magnetic field gradient.
The observed separations between the states agree with the theoretical predictions, confirming that the
strong stage is working correctly.

Figure 5. Distribution of three metastable species along the x-axis as they travel through a strong
S-G magnet and are detected via an MCP detector. From top to bottom, metastable helium (He*) in
the 23S1 triplet state with mS = ±1, 0, metastable neon (Ne*) and argon (Ar*) in the 3P2 state with
mJ = ±2,±1, 0. The states are clearly delineated, indicating that they would be good candidates for
measuring weak values of angular momentum. The central peak contribution is larger for all cases due
to the double contribution from the m = 0 state and photons.

We have chosen to use metastable helium in the 23S1 state as our preferred atom as this gives
several advantages:

1. Its magnetic dipole moment, μ, has a magnitude of two Bohr magnetons μ = ±2μB [30,32], which
allows for sufficient displacement between its three spin eigenstates at the detector.

2. It has a lifetime of approximately 8000 s [33], being unable to decay via electric dipole transitions
and the Pauli exclusion principle, i.e., its decay is doubly forbidden. This lifetime is clearly large
enough for the atoms to pass through all the stages of the apparatus before decaying. Furthermore,
this allows scope for increasing the flight distance with no depreciable effects.

3. Metastable helium atoms have an internal energy of 19.6 eV, the highest of any metastable noble
gas species. Upon collision with any surface, it will easily ionise, and the emitted electron is
observed with higher efficiency at the microchannel plate (MCP) detector.

All of these characteristics combine to enhance the overall signal strength and sensitivity of
the experiment.

3.3. The Functioning of the Hexapole Stage

The hexapole magnet contains an array of M = 12 segmented nickel-plated N42H-grade
permanent magnets, and the array has an ID of 11 mm, an OD of 40 mm and is 60 mm long.
The magnetisation direction for each segment is rotated by 120◦ with respect to the last. The hexapole
magnet is shown in Figure 6, with each individual segment located in a 316LN SShousing.
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Figure 6. Manufactured hexapole magnet showing the M = 12, N42H-grade permanent magnets.

The magnetic field experienced by an atom in a permanent multipole magnet (produced from M
segmented pieces) is detailed by Halbach [34] and is shown below:

B(r) = Brem

(
r
r1

)n−1 n
n− 1

[
1−

(
r1

r2

)n−1
]

cosn
(

επ

M

) sin
(

nεπ
M

)
nπ
M

, (20)

where r =
√

x2 + z2 is the atom’s radial distance from the magnet’s centre. The inner and outer
boundaries of the magnet are r1 and r2, respectively; Brem is the magnetic remanence of the 12
segmented N42H pieces; and for a hexapole magnet, n = 3.

The atomic beam is collimated before entering the hexapole magnet by a 5-mm pin hole at its
entrance and the 2-mm skimmer, which was located shortly after the supersonic expansion. The two
orifices in this collimation region are separated by 440 mm.

A hexapole magnet utilising these parameters produces a focal point, for He*, which is located
approximately 365 mm from the exit of the magnet; see Figure 7. This magnet is also used to reduce
the angular divergence of the beam before it passes through our final collimation slit, 1 μm, in order to
minimise scattering and maximise flux through the slit region.

Figure 7. Simulation of a He* beam travelling through the designed hexapole magnet; the dashed red
lines signify the ms = −1 defocused state, while the blue solid lines signify the ms = +1 focused state.

Shortly after leaving this hexapole field, the beam then traverses the strong S-G magnet,
producing a well-defined separation of the mS = +1 state with complete removal of the mS = −1 state,
as seen in Figure 8. As can be seen from this figure, the experiment now produces a highly-efficient
spin-selected atomic beam, which is required for part of the pre-selection phase of the experiment.
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Figure 8. Distribution of the mS = +1 and mS = 0 spin states of the system along the x-axis. When a
He* beam travels through a permanent hexapole magnet, the mS = −1 spin state is defocused and lost
to the magnet and the vacuum chamber walls. Note: the width of the atom beam is larger here due to
the removal of the collimation region before the S-G magnet for test purposes.

4. Conclusions

The experiment described in this paper is designed to measure the real part of the weak value of
spin for an atomic system. A full simulation of the process has been carried out giving a prediction of
the magnitude of the displacement, Δw. A limit, Lo, has been determined defining the range over which
the first order approximation holds. Furthermore, we have analysed and optimised the experimental
parameters to achieve the largest possible displacement.

We have now been able to sufficiently resolve the spin eigenstates for He* in the x-basis, showing
that our post-selection region is working as intended. The ability to excite other noble gas species to
metastable levels, and sufficiently resolve their angular momentum eigenstates, allows for flexibility
in future experiments. Likewise, part of the pre-selection stage is operational, producing a highly
spin-selected He* beam with the ability to remove the mS = 0 and singlet state atoms easily and
efficiently from the beam line.

The polarisation mechanics are still to be implemented, allowing us to precisely select the spin
vector orientation of the atomic beam, θ. With this, the pre-selection stage is complete. The weak stage
S-G magnet has been built and will shortly be introduced into the system. These two extra components
complete the main regions of theory and will enable the weak value of spin for He* to be measured.

Using the parameters of our experiment, a shift, Δw, of the order of 20μm is predicted, which is
within our experimental resolution. There is also scope to increase Δw by cooling the atomic beam,
thus reducing the velocity of the atoms and by reducing the width of the beam before the weak stage.
These refinements can increase Δw to 20–40 μm. Our experiment is designed to vary the angle θ and
thereby show its relationship with Δw, i.e., tan(θ/2). This means that the weak value can be used to
measure the angle θ when it is initially unknown. It is this feature that will enable us to track the
change of orientation of the spin vector as outlined in Hiley and Van Reeth [21].
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