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Preface 
 
 

 If there was any doubt at the turn of the twentieth century, by the turn of 
the twenty-first, it was a foregone conclusion: when it comes to revealing the 
true nature of reality, common experience is deceptive. On reflection, that’s 
not particularly surprising. As our forebears gathered in forests and hunted on 
the savannas, an ability to calculate the quantum behavior of electrons or 
determine the cosmological implications of black holes would have provided 
little in the way of survival advantage. But an edge was surely offered by 
having a larger brain, and as our intellectual faculties grew, so, too, did our 
capacity to probe our surroundings more deeply. Some of our species built 
equipment to extend the reach of our senses; others became facile with a 
systematic method for detecting and expressing pattern—mathematics. With 
these tools, we began to peer behind everyday appearances. 
 What we’ve found has already required sweeping changes to our picture 
of the cosmos. Through physical insight and mathematical rigor, guided and 
confirmed by experimentation and observation, we’ve established that space, 
time, matter, and energy engage a behavioral repertoire unlike anything any of 
us have ever directly witnessed. And now, penetrating analyses of these and 
related discoveries are leading us to what may be the next upheaval in 
understanding: the possibility that our universe is not the only universe. The 
Hidden Reality explores this possibility. 
 In writing The Hidden Reality, I’ve presumed no expertise in physics or 
mathematics on the part of the reader. Instead, as in my previous books, I’ve 
used metaphor and analogy, interspersed with historical episodes, to give a 
broadly accessible account of some of the strangest and, should they prove 
correct, most revealing insights of modern physics. Many of the concepts 
covered require the reader to abandon comfortable modes of thought and to 
embrace unanticipated realms of reality. It’s a journey that’s all the more 
exciting, and understandable, for the scientific twists and turns that have 
blazed the trail. I’ve judiciously chosen from these to fill out a landscape of 
ideas that peak by valley stretches from the everyday to the wholly unfamiliar. 



 A difference in approach from my previous books is that I’ve not 
included preliminary chapters that systematically develop background material, 
such as special and general relativity and quantum mechanics. Instead, for the 
most part, I introduce elements from those subjects only on an “as needed” 
basis; when I find in various places that a somewhat fuller development is 
necessary to keep the book self-contained, I warn the more experienced reader 
and indicate which sections he or she may safely skip. 
 By contrast, the last pages of various chapters segue to a more in-depth 
treatment of the material, which some readers may find challenging. As we 
enter those sections, I offer the less experienced reader a brief summary and 
the option to jump ahead without loss of continuity. Nevertheless, I’d 
encourage everyone to read as far into these sections as interest and patience 
allow. While the descriptions are more involved, the material is written for a 
broad audience and so continues to have as its only prerequisite the will to 
persevere. 
 In this regard, the notes are different. The novice reader can skip them 
entirely; the more experienced reader will find in the notes clarifications or 
extensions that I consider important but deem too burdensome for inclusion in 
the chapters themselves. Many of the notes are meant for readers with some 
formal training in mathematics or physics. 
 While writing The Hidden Reality, I’ve benefited from critical comments 
and feedback offered by a number of friends, colleagues, and family members 
who read some or all of the book’s chapters. I’d like to especially thank David 
Albert, Tracy Day, Richard Easther, Rita Greene, Simon Judes, Daniel Kabat, 
David Kagan, Paul Kaiser, Raphael Kasper, Juan Maldacena, Katinka Matson, 
Maulik Parikh, Marcus Poessel, Michael Popowits, and Ken Vineberg. It is 
always a joy to work with my editor at Knopf, Marty Asher, and I thank 
Andrew Carlson for his expert shepherding of the book through the final stages 
of production. Jason Severs’s wonderful illustrations greatly enhance the 
presentation, and I thank him for both his talent and his patience. It is also a 
pleasure to offer thanks to my literary agents, Katinka Matson and John 
Brockman. 
 In developing my approach to the material I cover in this book, I’ve 
benefited from a great many conversations with numerous colleagues. In 
addition to those already mentioned, I’d like to especially thank Raphael 



Bousso, Robert Brandenberger, Frederik Denef, Jacques Distler, Michael 
Douglas, Lam Hui, Lawrence Krauss, Janna Levin, Andrei Linde, Seth Lloyd, 
Barry Loewer, Saul Perlmutter, Jürgen Schmidhuber, Steve Shenker, Paul 
Steinhardt, Andrew Strominger, Leonard Susskind, Max Tegmark, Henry Tye, 
Curmrun Vafa, David Wallace, Erick Weinberg, and Shing-Tung Yau. 
 I started writing my first general-level science book, The Elegant 
Universe, in the summer of 1996. In the fifteen years since, I’ve enjoyed an 
unexpected and fruitful interplay between the focus of my technical research 
and the topics that my books cover. I thank my students and colleagues at 
Columbia University for creating a vibrant research environment, the 
Department of Energy for funding my scientific research, and also the late 
Pentti Kouri for his generous support of my research center at Columbia, the 
Institute for Strings, Cosmology, and Astroparticle Physics. 
 Finally, I thank Tracy, Alec, and Sophia for making this the best of all 
possible universes. 
 
 
  



CHAPTER 1 
 
 
The Bounds of Reality 
 
 
On Parallel Worlds 
 
 
 If, when I was growing up, my room had been adorned with only a single 
mirror, my childhood daydreams might have been very different. But it had 
two. And each morning when I opened the closet to get my clothes, the one 
built into its door aligned with the one on the wall, creating a seemingly 
endless series of reflections of anything situated between them. It was 
mesmerizing. I delighted in seeing image after image populating the parallel 
glass planes, extending back as far as the eye could discern. All the reflections 
seemed to move in unison—but that, I knew, was a mere limitation of human 
perception; at a young age I had learned of light’s finite speed. So in my 
mind’s eye, I would watch the light’s round-trip journeys. The bob of my head, 
the sweep of my arm silently echoed between the mirrors, each reflected image 
nudging the next. Sometimes I would imagine an irreverent me way down the 
line who refused to fall into place, disrupting the steady progression and 
creating a new reality that informed the ones that followed. During lulls at 
school, I would sometimes think about the light I had shed that morning, still 
endlessly bouncing between the mirrors, and I’d join one of my reflected 
selves, entering an imaginary parallel world constructed of light and driven by 
fantasy. 
 To be sure, reflected images don’t have minds of their own. But these 
youthful flights of fancy, with their imagined parallel realities, resonate with 
an increasingly prominent theme in modern science—the possibility of worlds 
lying beyond the one we know. This book is an exploration of such 
possibilities, a considered journey through the science of parallel universes. 
 



Universe and Universes 
 
 
 There was a time when “universe” meant “all there is.” Everything. The 
whole shebang. The notion of more than one universe, more than one 
everything, would seemingly be a contradiction in terms. Yet a range of 
theoretical developments has gradually qualified the interpretation of 
“universe.” The word’s meaning now depends on context. Sometimes 
“universe” still connotes absolutely everything. Sometimes it refers only to 
those parts of everything that someone such as you or I could, in principle, 
have access to. Sometimes it’s applied to separate realms, ones that are partly 
or fully, temporarily or permanently, inaccessible to us; in this sense, the word 
relegates our universe to membership in a large, perhaps infinitely large, 
collection. 
 With its hegemony diminished, “universe” has given way to other terms 
that capture the wider canvas on which the totality of reality may be painted. 
Parallel worlds or parallel universes or multiple universes or alternate 
universes or the metaverse, megaverse, or multiverse—they’re all synonymous 
and they’re all among the words used to embrace not just our universe but a 
spectrum of others that may be out there. 
 You’ll notice that the terms are somewhat vague. What exactly 
constitutes a world or a universe? What criteria distinguish realms that are 
distinct parts of a single universe from those classified as universes of their 
own? Perhaps someday our understanding of multiple universes will mature 
sufficiently for us to have precise answers to these questions. For now, we’ll 
avoid wrestling with abstract definitions by adopting the approach famously 
applied by Justice Potter Stewart to define pornography. While the U.S. 
Supreme Court struggled to delineate a standard, Stewart declared, “I know it 
when I see it.” 
 In the end, labeling one realm or another a parallel universe is merely a 
question of language. What matters, what’s at the heart of the subject, is 
whether there exist realms that challenge convention by suggesting that what 
we’ve long thought to be the universe is only one component of a far grander, 
perhaps far stranger, and mostly hidden, reality. 
 



Varieties of Parallel Universes 
 
 
 A striking fact (it’s in part what propelled me to write this book) is that 
many of the major developments in fundamental theoretical physics—
relativistic physics, quantum physics, cosmological physics, unified physics, 
computational physics—have led us to consider one or another variety of 
parallel universe. Indeed, the chapters that follow trace a narrative arc through 
nine variations on the multiverse theme. Each envisions our universe as part of 
an unexpectedly larger whole, but the complexion of that whole and the nature 
of the member universes differ sharply among them. In some, the parallel 
universes are separated from us by enormous stretches of space or time; in 
others, they’re hovering millimeters away; in others still, the very notion of 
their location proves parochial, devoid of meaning. A similar range of 
possibility is manifest in the laws governing the parallel universes. In some, 
the laws are the same as in ours; in others, they appear different but have a 
shared heritage; in others still, the laws are of a form and structure unlike 
anything we’ve ever encountered. It’s at once humbling and stirring to imagine 
just how expansive reality may be. 
 Some of the earliest scientific forays into parallel worlds were initiated in 
the 1950s by researchers puzzling over aspects of quantum mechanics, a 
theory developed to explain phenomena taking place in the microscopic realm 
of atoms and subatomic particles. Quantum mechanics broke the mold of the 
previous framework, classical mechanics, by establishing that the predictions 
of science are necessarily probabilistic. We can predict the odds of attaining 
one outcome, we can predict the odds of another, but we generally can’t 
predict which will actually happen. This well-known departure from hundreds 
of years of scientific thought is surprising enough. But there’s a more 
confounding aspect of quantum theory that receives less attention. After 
decades of closely studying quantum mechanics, and after having accumulated 
a wealth of data confirming its probabilistic predictions, no one has been able 
to explain why only one of the many possible outcomes in any given situation 
actually happens. When we do experiments, when we examine the world, we 
all agree that we encounter a single definite reality. Yet, more than a century 
after the quantum revolution began, there is no consensus among the world’s 



physicists as to how this basic fact is compatible with the theory’s 
mathematical expression. 
 Over the years, this substantial gap in understanding has inspired many 
creative proposals, but the most startling was among the first. Maybe, that 
early suggestion went, the familiar notion that any given experiment has one 
and only one outcome is flawed. The mathematics underlying quantum 
mechanics—or at least, one perspective on the math—suggests that all 
possible outcomes happen, each inhabiting its own separate universe. If a 
quantum calculation predicts that a particle might be here, or it might be there, 
then in one universe it is here, and in another it is there. And in each such 
universe, there’s a copy of you witnessing one or the other outcome, 
thinking—incorrectly—that your reality is the only reality. When you realize 
that quantum mechanics underlies all physical processes, from the fusing of 
atoms in the sun to the neural firings that constitutes the stuff of thought, the 
far-reaching implications of the proposal become apparent. It says that there’s 
no such thing as a road untraveled. Yet each such road—each reality—is 
hidden from all others. 
 This tantalizing Many Worlds approach to quantum mechanics has 
attracted much interest in recent decades. But investigations have shown that 
it’s a subtle and thorny framework (as we will discuss in Chapter 8); so, even 
today, after more than half a century of vetting, the proposal remains 
controversial. Some quantum practitioners argue that it has already been 
proved correct, while others claim just as assuredly that the mathematical 
underpinnings don’t hold together. 
 Such scientific uncertainty notwithstanding, this early version of parallel 
universes resonated with themes of separate lands or alternative histories that 
were being explored in literature, television, and film, creative forays that 
continue today. (My favorites since childhood include The Wizard of Oz, It’s a 
Wonderful Life, the Star Trek episode “The City on the Edge of Forever,” the 
Borges story “The Garden of Forking Paths,” and, more recently, Sliding 
Doors and Run Lola Run.) Collectively, these and many other works of 
popular culture have helped integrate the concept of parallel realities into the 
zeitgeist and are responsible for fueling much public fascination with the topic. 
But quantum mechanics is only one of numerous ways that a conception of 



parallel universes emerges from modern physics. In fact, it won’t be the first 
I’ll discuss. 
 In Chapter 2, I’ll begin with a different route to parallel universes, 
perhaps the simplest route of all. We’ll see that if space extends infinitely 
far—a proposition that is consistent with all observations and that is part of the 
cosmological model favored by many physicists and astronomers—then there 
must be realms out there (likely way out there) where copies of you and me 
and everything else are enjoying alternate versions of the reality we experience 
here. Chapter 3 will journey deeper into cosmology: the inflationary theory, an 
approach that posits an enormous burst of superfast spatial expansion during 
the universe’s earliest moments, generates its own version of parallel worlds. 
If inflation is correct, as the most refined astronomical observations suggest, 
the burst that created our region of space may not have been unique. Instead, 
right now, inflationary expansion in distant realms may be spawning universe 
upon universe and may continue to do so for all eternity. What’s more, each of 
these ballooning universes has its own infinite spatial expanse, and hence 
contains infinitely many of the parallel worlds encountered in Chapter 2. 
 In Chapter 4, our trek turns to string theory. After a brief review of the 
basics, I’ll provide a status report on this approach to unifying all of nature’s 
laws. With that overview, in Chapters 5 and 6 we’ll explore recent 
developments in string theory that suggest three new kinds of parallel 
universes. One is string theory’s braneworld scenario, which posits that our 
universe is one of potentially numerous “slabs” floating in a higher-
dimensional space, much like a slice of bread within a grander cosmic loaf.1 If 
we’re lucky, it’s an approach that may provide an observable signature at the 
Large Hadron Collider in Geneva, Switzerland, in the not too distant future. A 
second variety emerges from braneworlds that slam into one another, wiping 
away all they contain and initiating a new, fiery big bang–like beginning in 
each. As if two giant hands were clapping, this could happen over and over—
branes might collide, bounce apart, attract each other gravitationally, and then 
collide again, a cyclic process generating universes that are parallel not in 
space but in time. The third scenario is the string theory “landscape,” founded 
on the enormous number of possible shapes and sizes for the theory’s required 
extra spatial dimensions. We’ll see that, when joined with the Inflationary 



Multiverse, the string landscape suggests a vast collection of universes in 
which every possible form for the extra dimensions is realized. 
 In Chapter 6, we’ll focus on how these considerations illuminate one of 
the most surprising observational results of the last century: space appears to 
be filled with a uniform diffuse energy, which may well be a version of 
Einstein’s infamous cosmological constant. This observation has inspired 
much of the recent research on parallel universes, and it’s responsible for one 
of the most heated debates in decades on the nature of acceptable scientific 
explanations. Chapter 7 extends this theme by asking, more generally, whether 
consideration of universes beyond our own can be rightly understood as a 
branch of science. Can we test these ideas? If we invoke them to solve 
outstanding problems, have we made progress, or have we merely swept the 
problems under a conveniently inaccessible cosmic rug? I’ve sought to lay 
bare the essentials of the clashing perspectives, while also emphasizing my 
own view that, under certain specific conditions, parallel universes fall 
unequivocally within the purview of science. 
 Quantum mechanics, with its Many Worlds version of parallel universes, 
is the subject of Chapter 8. I’ll briefly remind you of the essential features of 
quantum mechanics, then focus on its most formidable problem: how to extract 
definite outcomes from a theory whose basic paradigm allows for mutually 
contradictory realities to coexist in an amorphous, but mathematically precise, 
probabilistic haze. I’ll carefully lead you through the reasoning that, in seeking 
an answer, proposes anchoring quantum reality in its own profusion of parallel 
worlds. 
 Chapter 9 takes us yet further into quantum reality, leading to what I 
consider the strangest version of all parallel universe proposals. It’s a proposal 
that emerged gradually over thirty years of theoretical studies on the quantum 
properties of black holes. The work culminated in the last decade, with a 
stunning result from string theory, and it suggests, remarkably, that all we 
experience is nothing but a holographic projection of processes taking place on 
some distant surface that surrounds us. You can pinch yourself, and what you 
feel will be real, but it mirrors a parallel process taking place in a different, 
distant reality. 
 Finally, in Chapter 10 the yet more fanciful possibility of artificial 
universes takes center stage. The question of whether the laws of physics give 



us the capacity to create new universes will be our first order of business. 
We’ll then turn to universes created not with hardware but with software—
universes that might be simulated on a superadvanced computer—and 
investigate whether we can be confident that we’re not now living in 
someone’s or something else’s simulation. This will lead to the most 
unrestrained parallel universe proposal, originating in the philosophical 
community: that every possible universe is realized somewhere in what’s 
surely the grandest of all multiverses. The discussion naturally unfolds into an 
inquiry about the role mathematics has in unraveling the mysteries of science 
and, ultimately, our ability, or lack thereof, to gain an ever-deeper 
understanding of reality. 
 
The Cosmic Order 
 
 
 The subject of parallel universes is highly speculative. No experiment or 
observation has established that any version of the idea is realized in nature. So 
my point in writing this book is not to convince you that we’re part of a 
multiverse. I’m not convinced—and, speaking generally, no one should be 
convinced—of anything not supported by hard data. That said, I find it both 
curious and compelling that numerous developments in physics, if followed 
sufficiently far, bump into some variation on the parallel-universe theme. It’s 
not that physicists are standing ready, multiverse nets in their hands, seeking to 
snare any passing theory that might be slotted, however awkwardly, into a 
parallel-universe paradigm. Rather, all of the parallel-universe proposals that 
we will take seriously emerge unbidden from the mathematics of theories 
developed to explain conventional data and observations. 
 My intention, then, is to lay out clearly and concisely the intellectual 
steps and the chain of theoretical insights that have led physicists, from a range 
of perspectives, to consider the possibility that ours is one of many universes. I 
want you to get a sense of how modern scientific investigations—not 
untethered fantasies like the catoptric musings of my boyhood—naturally 
suggest this astounding possibility. I want to show you how certain otherwise 
confounding observations can become eminently understandable within one or 
another parallel-universe framework; at the same time, I’ll describe the critical 



unresolved questions that have, as yet, kept this explanatory approach from 
being fully realized. My aim is that when you leave this book, your sense of 
what might be—your perspective on how the boundaries of reality may one 
day be redrawn by scientific developments now under way—will be far more 
rich and vivid. 
 Some people recoil at the notion of parallel worlds; as they see it, if we 
are part of a multiverse, our place and importance in the cosmos are 
marginalized. My take is different. I don’t find merit in measuring significance 
by our relative abundance. Rather, what’s gratifying about being human, 
what’s exciting about being part of the scientific enterprise, is our ability to use 
analytical thought to bridge vast distances, journeying to outer and inner space 
and, if some of the ideas we’ll encounter in this book prove correct, perhaps 
even beyond our universe. For me, it is the depth of our understanding, 
acquired from our lonely vantage point in the inky black stillness of a cold and 
forbidding cosmos, that reverberates across the expanse of reality and marks 
our arrival. 
 
 
  



CHAPTER 2 
 
 
Endless Doppelgängers 
 
 
The Quilted Multiverse 
 
 
 If you were to head out into the cosmos, traveling ever farther, would you 
find that space goes on indefinitely, or that it abruptly ends? Or, perhaps, 
would you ultimately circle back to your starting point, like Sir Francis Drake 
when he circumnavigated the earth? Both possibilities—a cosmos that 
stretches infinitely far, and one that is huge but finite—are compatible with all 
our observations, and over the past few decades leading researchers have 
vigorously studied each. But for all that detailed scrutiny, if the universe is 
infinite there’s a breathtaking conclusion that has received relatively scant 
attention. 
 In the far reaches of an infinite cosmos, there’s a galaxy that looks just 
like the Milky Way, with a solar system that’s the spitting image of ours, with 
a planet that’s a dead ringer for earth, with a house that’s indistinguishable 
from yours, inhabited by someone who looks just like you, who is right now 
reading this very book and imagining you, in a distant galaxy, just reaching the 
end of this sentence. And there’s not just one such copy. In an infinite universe, 
there are infinitely many. In some, your doppelgänger is now reading this 
sentence, along with you. In others, he or she has skipped ahead, or feels in 
need of a snack and has put the book down. In others still, he or she has, well, 
a less than felicitous disposition and is someone you’d rather not meet in a 
dark alley. 
 And you won’t. These copies would inhabit realms so distant that light 
traveling since the big bang wouldn’t have had time to cross the spatial 
expanse that separates us. But even without the capacity to observe these 
realms, we’ll see that basic physical principles establish that if the cosmos is 
infinitely large, it is home to infinitely many parallel worlds—some identical 



to ours, some differing from ours, many bearing no resemblance to our world 
at all. 
 En route to these parallel worlds, we must first develop the essential 
framework of cosmology, the scientific study of the origin and evolution of the 
cosmos as a whole. 
 Let’s head in. 
 
The Father of the Big Bang 
 
 
 “Your mathematics is correct, but your physics is abominable.” The 1927 
Solvay Conference on Physics was in full swing, and this was Albert 
Einstein’s reaction when the Belgian Georges Lemaître informed him that the 
equations of general relativity, which Einstein had published more than a 
decade earlier, entailed a dramatic rewriting of the story of creation. According 
to Lemaître’s calculations, the universe began as a tiny speck of astounding 
density, a “primeval atom” as he would come to call it, which swelled over the 
vastness of time to become the observable cosmos. 
 Lemaître cut an unusual figure among the dozens of renowned physicists, 
in addition to Einstein, who had descended on the Hotel Metropole in Brussels 
for a week of intense debate on quantum theory. By 1923, he had not only 
completed his work for a doctorate, but he’d also finished his studies at the 
Saint-Rombaut seminary and been ordained a Jesuit priest. During a break in 
the conference, Lemaître, clerical collar in place, approached the man whose 
equations, he believed, were the basis for a new scientific theory of cosmic 
origin. Einstein knew of Lemaître’s theory, having read his paper on the 
subject some months earlier, and could find no fault with his manipulations of 
general relativity’s equations. In fact, this was not the first time someone had 
presented Einstein with this result. In 1921, the Russian mathematician and 
meteorologist Alexander Friedmann had come upon a variety of solutions to 
Einstein’s equations in which space would stretch, causing the universe to 
expand. Einstein balked at those solutions, at first suggesting that Friedmann’s 
calculations were marred by errors. In this, Einstein was wrong; he later 
retracted the claim. But Einstein refused to be mathematics’ pawn. He bucked 
the equations in favor of his intuition about how the cosmos should be, his 



deep-seated belief that the universe was eternal and, on the largest of scales, 
fixed and unchanging. The universe, Einstein admonished Lemaître, is not 
now expanding and never was. 
 Six years later, in a seminar room at Mount Wilson Observatory in 
California, Einstein focused intently as Lemaître laid out a more detailed 
version of his theory that the universe began in a primordial flash and that the 
galaxies were burning embers floating on a swelling sea of space. When the 
seminar concluded, Einstein stood up and declared Lemaître’s theory to be 
“the most beautiful and satisfactory explanation of creation to which I have 
ever listened.”1 The world’s most famous physicist had been persuaded to 
change his mind about one of the world’s most challenging mysteries. While 
still largely unknown to the general public, Lemaître would come to be known 
among scientists as the father of the big bang. 
 
General Relativity 
 
 
 The cosmological theories developed by Friedmann and Lemaître relied 
on a manuscript Einstein sent off to the German Annalen der Physik on the 
twenty-fifth of November 1915. The paper was the culmination of a nearly 
ten-year mathematical odyssey, and the results it presented—the general 
theory of relativity—would prove to be the most complete and far-reaching of 
Einstein’s scientific achievements. With general relativity, Einstein invoked an 
elegant geometrical language to thoroughly refashion the understanding of 
gravity. If you already have a good grounding in the theory’s basic features 
and cosmological implications, feel free to skip three sections ahead. But if 
you’d like a brief reminder of the highlights, stay with me. 
 Einstein began work on general relativity around 1907, a time when most 
scientists thought gravity had long since been explained by the work of Isaac 
Newton. As high school students around the world are routinely taught, in the 
late 1600s Newton came up with his so-called Universal Law of Gravity, 
providing the first mathematical description of this most familiar of nature’s 
forces. His law is so accurate that NASA engineers still use it to calculate 
spacecraft trajectories, and astronomers still use it to predict the motion of 
comets, stars, even entire galaxies.2 



 Such demonstrable efficacy makes it all the more remarkable that, in the 
early years of the twentieth century, Einstein realized that Newton’s Law of 
Gravity was deeply flawed. A seemingly simpleminded question revealed this 
starkly: How, Einstein asked, does gravity work? How, for example, does the 
sun reach out across 93 million miles of essentially empty space and affect the 
motion of the earth? There’s no rope tethering them together, no chain tugging 
the earth as it moves, so how does gravity exert its influence? 
 In his Principia, published in 1687, Newton recognized the importance 
of this question but acknowledged that his own law was disturbingly silent 
about the answer. Newton was certain that there had to be something 
communicating gravity from place to place, but he was unable to identify what 
that something might be. In the Principia he gibingly left the question “to the 
consideration of the reader,” and for more than two hundred years, those who 
read this challenge simply read on. That’s something Einstein couldn’t do. 
 For the better part of a decade, Einstein was consumed with finding the 
mechanism underlying gravity; in 1915, he proposed an answer. Although 
grounded in sophisticated mathematics and requiring conceptual leaps 
unheralded in the history of physics, Einstein’s proposal had the same air of 
simplicity as the question it purported to address. By what process does gravity 
exert its influence across empty space? The emptiness of empty space 
seemingly left everyone empty-handed. But, actually, there is something in 
empty space: space. This led Einstein to suggest that space itself might be 
gravity’s medium. 
 Here’s the idea. Imagine rolling a marble across a large metal table. 
Because the table’s surface is flat, the marble will roll in a straight line. But if 
a fire subsequently engulfs the table, causing it to buckle and swell, a rolling 
marble will follow a different trajectory because it will be guided by the 
table’s warped and rutted surface. Einstein argued that a similar idea applies to 
the fabric of space. Completely empty space is much like the flat table, 
allowing objects to roll unimpeded along straight lines. But the presence of 
massive bodies affects the shape of space, somewhat as heat affects the shape 
of the table’s surface. The sun, for example, creates a bulge in its vicinity, 
much like a metal bubble blistering on the hot table. And just as the table’s 
curved surface induces the marble to travel along a curved path, so the curved 
shape of space around the sun guides the earth and other planets into orbit. 



 This brief description glides over important details. It’s not just space 
that curves, but time as well (this is what’s called spacetime curvature); earth’s 
gravity itself facilitates the table’s influence by keeping the marble pressed to 
its surface (Einstein contended that warps in space and time don’t need a 
facilitator since they are gravity); space is three-dimensional, so when it warps 
it does so all around an object, not just “underneath” as the table analogy 
suggests. Nevertheless, the image of a warped table captures the essence of 
Einstein’s proposal. Before Einstein, gravity was a mysterious force that one 
body somehow exerted across space on another. After Einstein, gravity was 
recognized as a distortion of the environment caused by one object and guiding 
the motion of others. Right now, according to these ideas, you are anchored to 
the floor because your body is trying to slide down an indentation in space 
(really, spacetime) caused by the earth.* 
 Einstein spent years developing this idea into a rigorous mathematical 
framework, and the resulting Einstein Field Equations, the heart of his general 
theory of relativity, tell us precisely how space and time will curve as a result 
of the presence of a given quantity of matter (more precisely, matter and 
energy; according to Einstein’s E = mc2, in which E is energy and m is mass, 
the two are interchangeable).3 With equal precision, the theory then shows 
how such spacetime curvature will affect the motion of anything—star, planet, 
comet, light itself—moving through it; this allows physicists to make detailed 
predictions of cosmic motion. 
 Evidence in support of general relativity came quickly. Astronomers had 
long known that Mercury’s orbital motion around the sun deviated slightly 
from what Newton’s mathematics predicted. In 1915, Einstein used his new 
equations to recalculate Mercury’s trajectory and was able to explain the 
discrepancy, a realization he later described to his colleague Adrian Fokker as 
so thrilling that for some hours it gave him heart palpitations. Then, in 1919, 
astronomical observations undertaken by Arthur Eddington and his 
collaborators showed that distant starlight passing by the sun on its way to 
earth follows a curved path, just the one that general relativity predicted.4 With 
that confirmation—and the New York Times headline proclaiming LIGHTS 
ALL ASKEW IN THE HEAVENS, MEN OF SCIENCE MORE OR LESS 
AGOG—Einstein was propelled to international prominence as the world’s 
newfound scientific genius, the heir apparent to Isaac Newton. 



 But the most impressive tests of general relativity were still to come. In 
the 1970s experiments using hydrogen maser clocks (masers are similar to 
lasers, but they operate in the microwave part of the spectrum) confirmed 
general relativity’s prediction of the earth’s warping of spacetime in its 
vicinity to about 1 part in 15,000. In 2003, the Cassini-Huygens spacecraft was 
used for detailed studies of the trajectories of radio waves that passed near the 
sun; the data collected supported the curved spacetime picture predicted by 
general relativity to about 1 part in 50,000. And now, befitting a theory that 
has truly come of age, many of us walk around with general relativity in the 
palm of our hand. The global positioning system you casually access from 
your smartphone communicates with satellites whose internal timing devices 
routinely take account of the spacetime curvature they experience from their 
orbit above earth. If the satellites failed to do so, the position readings they 
generate would rapidly become inaccurate. What in 1916 was a set of abstract 
mathematical equations that Einstein offered as a new description of space, 
time, and gravity is now routinely called upon by devices that fit in our 
pockets. 
 
 The Universe and the Teapot 
 
 
 Einstein breathed life into spacetime. He challenged thousands of years 
of intuition, built up from everyday experience, that treated space and time as 
an unchanging backdrop. Who would ever have imagined that spacetime can 
writhe and flex, providing the invisible master choreographer of motion in the 
cosmos? That’s the revolutionary dance that Einstein envisioned and that 
observations have confirmed. And yet, in short order, Einstein stumbled under 
the weight of age-old but unfounded prejudices. 
 During the year after he published the general theory of relativity, 
Einstein applied it on the grandest of scales: the entire cosmos. You might 
think this a staggering task, but the art of theoretical physics lies in simplifying 
the horrendously complex so as to preserve essential physical features while 
making the theoretical analysis tractable. It’s the art of knowing what to ignore. 
Through the so-called cosmological principle, Einstein established a 



simplifying framework that initiated the art and the science of theoretical 
cosmology. 
 The cosmological principle asserts that if the universe is examined on the 
largest of scales, it will appear uniform. Think of your morning tea. On 
microscopic scales, there is much inhomogeneity. Some H2O molecules over 
here, some empty space, some polyphenol and tannin molecules over there, 
more empty space, and so on. But on macroscopic scales, those accessible to 
the naked eye, the tea is a uniform hazel. Einstein believed that the universe 
was like that cup of tea. The variations we observe—the earth is here, there’s 
some empty space, then the moon, yet more empty space, followed by Venus, 
Mercury, sprinkles of empty space, and then the sun—are small-scale 
inhomogeneities. He suggested that on cosmological scales, these variations 
could be ignored because, like your tea, they’d average out to something 
uniform. 
 In Einstein’s day, evidence in support of the cosmological principle was 
thin at best (even the case for other galaxies was still being made), but he was 
guided by a strong sense that no location in the cosmos was special. He felt 
that, on average, every region of the universe should be on a par with every 
other and so should have essentially identical overall physical attributes. In the 
years since, astronomical observations have provided substantial support for 
the cosmological principle, but only if you examine space on scales at least 
100 million light-years across (which is about a thousand times the end-to-end 
length of the Milky Way). If you take a box that’s a hundred million light-
years on each side and plunk it down here, take another such box and plunk it 
down way over there (say, a billion light-years from here), and then measure 
the average overall properties inside each box—average number of galaxies, 
average amount of matter, average temperature, and so on—you’ll find it 
difficult to distinguish between the two. In short, if you’ve seen one 100-
million-light-year chunk of the cosmos, you’ve pretty much seen them all. 
 Such uniformity proves crucial to using the equations of general 
relativity to study the entire universe. To see why, think of a beautiful, uniform, 
smooth beach and imagine that I’ve asked you to describe its small-scale 
properties—the properties, that is, of each and every grain of sand. You’re 
stymied—the task is just too big. But if I ask you to describe only the overall 
features of the beach (such as the average weight of sand per cubic meter, the 



average reflectivity of the beach’s surface per square meter, and so on), the 
task becomes eminently doable. And what makes it doable is the beach’s 
uniformity. Measure the average sand weight, temperature, and reflectivity 
over here and you’re done. Doing the same measurements over there will give 
essentially identical answers. Likewise with a uniform universe. It would be a 
hopeless task to describe every planet, star, and galaxy. But describing the 
average properties of a uniform cosmos is monumentally easier—and, with the 
advent of general relativity, achievable. 
 Here’s how it goes. The gross overall content of a huge volume of space 
is characterized by how much “stuff” it contains; more precisely, the density of 
matter, or, more precisely still, the density of matter and energy that the 
volume contains. The equations of general relativity describe how this density 
changes over time. But without invoking the cosmological principle, these 
equations are hopelessly difficult to analyze. There are ten of them, and 
because each equation depends intricately on the others, they form a tight 
mathematical Gordian knot. Happily, Einstein found that when the equations 
are applied to a uniform universe, the math simplifies; the ten equations 
become redundant and, in effect, reduce to one. The cosmological principle 
cuts the Gordian knot by reducing the mathematical complexity of studying 
matter and energy spread throughout the cosmos to a single equation (you can 
see it in the notes).5 
 Not so happily, from Einstein’s perspective, when he studied this 
equation he found something unexpected and, to him, unpalatable. The 
prevailing scientific and philosophical stance was not only that on the largest 
of scales the universe was uniform, but that it was also unchanging. Much like 
the rapid molecular motions in your tea average out to a liquid whose 
appearance is static, astronomical motion such as the planets orbiting the sun 
and the sun moving around the galaxy would average out to an overall 
unchanging cosmos. Einstein, who adhered to this cosmic perspective, found 
to his dismay that it was at odds with general relativity. The math showed that 
the density of matter and energy cannot be constant through time. Either the 
density grows or it diminishes, but it can’t stay put. 
 Although the mathematical analysis behind this conclusion is 
sophisticated, the underlying physics is pedestrian. Picture a baseball’s journey 
as it soars from home plate toward the center field fence. At first, the ball 



rockets upward; then it slows, reaches a high point, and finally heads back 
down. The ball doesn’t lazily hover like a blimp because gravity, being an 
attractive force, acts in one direction, pulling the baseball toward earth’s 
surface. A static situation, like a stalemate in a tug-of-war, requires equal and 
opposite forces that cancel. For a blimp, the upward push that counters 
downward gravity is provided by air pressure (since the blimp is filled with 
helium, which is lighter than air); for the ball in midair there is no counter-
gravity force (air resistance does act against a ball in motion, but plays no role 
in a static situation), and so the ball can’t remain at a fixed height. 
 Einstein found that the universe is more like the baseball than the blimp. 
Because there’s no outward force to cancel the attractive pull of gravity, 
general relativity shows that the universe can’t be static. Either the fabric of 
space stretches or it contracts, but its size can’t remain fixed. A volume of 
space 100 million light-years on each side today won’t be 100 million light-
years on each side tomorrow. Either it will be larger, and the density of matter 
within it will diminish (being spread more thinly in a larger volume), or it will 
be smaller, and the density of matter will increase (being packed more tightly 
in a smaller volume).6 
 Einstein recoiled. According to the math of general relativity, the 
universe on the grandest of scales would be changing, because its very 
substrate—space itself—would be changing. The eternal and static cosmos that 
Einstein expected would emerge from his equations was simply not there. He 
had initiated the science of cosmology, but he was deeply distressed by where 
the math had taken him. 
 
Taxing Gravity 
 
 
 It’s often said that Einstein blinked—that he went back to his notebooks 
and in desperation mangled the beautiful equations of general relativity to 
make them compatible with a universe that was not only uniform but also 
unchanging. This is only partly true. Einstein did indeed modify his equations 
so they would support his conviction of a static cosmos, but the change was 
minimal and thoroughly sensible. 



 To get a feel for his mathematical move, think about filling out your tax 
forms. Interspersed among the lines on which you record numbers are others 
you leave blank. Mathematically, a blank line signifies that the entry is zero, 
but psychologically it connotes more. It means you’re ignoring the line 
because you’ve determined that it’s not relevant to your financial situation. 
 If the mathematics of general relativity were arranged like a tax form, it 
would have three lines. One line would describe the geometry of spacetime—
its warps and curves—the embodiment of gravity. Another would describe the 
distribution of matter across space, the source of gravity—the cause of the 
warps and curves. During a decade of ardent research, Einstein had worked out 
the mathematical description of these two features and had thus filled in these 
two lines with great care. But a complete accounting of general relativity 
requires a third line, one that is on an absolutely equal mathematical footing 
with the other two but whose physical meaning is more subtle. When general 
relativity elevated space and time into dynamic participants in the unfolding of 
the cosmos, they shifted from merely providing language to delineate where 
and when things take place to being physical entities with their own intrinsic 
properties. The third line on the general relativity tax form quantifies a 
particular intrinsic feature of spacetime relevant for gravity: the amount of 
energy stitched into the very fabric of space itself. Just as every cubic meter of 
water contains a certain amount of energy, summarized by the water’s 
temperature, every cubic meter of space contains a certain amount of energy, 
summarized by the number on the third line. In his paper announcing the 
general theory of relativity, Einstein didn’t consider this line. Mathematically, 
this is tantamount to having set its value to zero, but much as with blank lines 
on your tax forms, he seems to have simply ignored it. 
 When general relativity proved incompatible with a static universe, 
Einstein reengaged with the mathematics, and this time he took a harder look 
at the third line. He realized that there was no observational or experimental 
justification for setting it to zero. He also realized that it embodied some 
remarkable physics. 
 If instead of zero he entered a positive number on the third line, 
endowing the spatial fabric with a uniform positive energy, he found (for 
reasons I’ll explain in the next chapter) that every region of space would push 
away from every other, producing something most physicists had thought 



impossible: repulsive gravity. Moreover, Einstein found that if he precisely 
adjusted the size of the number he put on the third line, the repulsive 
gravitational force produced across the cosmos would exactly balance the 
usual attractive gravitational force generated by the matter inhabiting space, 
giving rise to a static universe. Like a hovering blimp that neither rises nor 
falls, the universe would be unchanging. 
 Einstein called the entry on the third line the cosmological member or the 
cosmological constant; with it in place, he could rest easy. Or, he could rest 
easier. If the universe had a cosmological constant of the right size—that is, if 
space were endowed with the right amount of intrinsic energy—his theory of 
gravity fell in line with the prevailing belief that the universe on the largest of 
scales was unchanging. He couldn’t explain why space would embody just the 
right amount of energy to ensure this balancing act, but at least he’d shown 
that general relativity, augmented with a cosmological constant of the right 
value, gave rise to the kind of cosmos he and others had expected.7 

 
The Primeval Atom 
 
 
 It was against this backdrop that Lemaître approached Einstein at the 
1927 Solvay Conference in Brussels, with his result that general relativity gave 
rise to a new cosmological paradigm in which space would expand. Having 
already wrestled with the mathematics to ensure a static universe, and having 
already dismissed Friedmann’s similar claims, Einstein had little patience for 
once again considering an expanding cosmos. He thus faulted Lemaître for 
blindly following the mathematics and practicing the “abominable physics” of 
accepting an obviously absurd conclusion. 
 A rebuke by a revered figure is no small setback, but for Lemaître it was 
short-lived. In 1929, using what was then the world’s largest telescope at the 
Mount Wilson Observatory, the American astronomer Edwin Hubble gathered 
convincing evidence that the distant galaxies were all rushing away from the 
Milky Way. The remote photons that Hubble examined had traveled to earth 
with a clear message: The universe is not static. It is expanding. Einstein’s 
reason for introducing the cosmological constant was thus unfounded. The big 
bang model describing a cosmos that began enormously compressed and has 



been expanding ever since became widely heralded as the scientific story of 
creation.8 
 Lemaître and Friedmann were vindicated. Friedmann received credit for 
being the first to explore the expanding universe solutions, and Lemaître for 
independently developing them into robust cosmological scenarios. Their work 
was duly lauded as a triumph of mathematical insight into the workings of the 
cosmos. Einstein, by contrast, was left wishing he’d never meddled with the 
third line of the general relativity tax form. Had he not brought to bear his 
unjustified conviction that the universe is static, he wouldn’t have introduced 
the cosmological constant and so might have predicted cosmic expansion more 
than a decade before it was observed. 
 Nevertheless, the cosmological constant’s story was far from over. 
 
The Models and the Data 
 
 
 The big bang model of cosmology includes a detail that will prove 
essential. The model provides not one but a handful of different cosmological 
scenarios; all of them involve an expanding universe, but they differ with 
respect to the overall shape of space—and, in particular, they differ on the 
question of whether the full extent of space is finite or infinite. Since the finite-
versus-infinite distinction will turn out to be vital in thinking about parallel 
worlds, I’ll lay out the possibilities. 
 The cosmological principle—the assumed homogeneity of the cosmos—
constrains the geometry of space because most shapes are not sufficiently 
uniform to qualify: they bulge here, flatten out there, or twist way over there. 
But the cosmological principle does not imply a unique shape for our three 
dimensions of space; instead, it reduces the possibilities to a sharply culled 
collection of candidates. To visualize them presents a challenge even for 
professionals, but it is a helpful fact that the situation in two dimensions 
provides a mathematically precise analog that we can readily picture. 
 To this end, first consider a perfectly round cue ball. Its surface is two-
dimensional (just as on earth’s surface, you can denote positions on the cue 
ball’s surface with two pieces of data—such as latitude and longitude—which 
is what we mean when we call a shape two-dimensional) and is completely 



uniform in the sense that every location looks like every other. Mathematicians 
call the cue ball’s surface a two-dimensional sphere and say that it has 
constant positive curvature. Loosely speaking, “positive” means that were you 
to view your reflection on a spherical mirror it would bloat outward, while 
“constant” means that regardless of where on the sphere your reflection is, the 
distortion appears the same. 
 Next, picture a perfectly smooth tabletop. As with the cue ball, the 
tabletop’s surface is uniform. Or nearly so. Were you an ant walking on the 
tabletop, the view from every point would indeed look like the view from 
every other, but only if you stayed far from the table’s edge. Even so, complete 
uniformity is not hard to restore. We just need to imagine a tabletop with no 
edges, and there are two ways of doing so. Think of a tabletop that extends 
indefinitely left and right as well as back and forth. This is unusual—it’s an 
infinitely large surface—but it realizes the goal of having no edges since 
there’s now no place to fall off. Alternatively, imagine a tabletop that mimics 
an early video-game screen. When Ms. Pac-Man crosses the left edge, she 
reappears at the right; when she crosses the bottom edge she reappears at the 
top. No ordinary tabletop has this property, but this is a perfectly sensible 
geometrical space called a two-dimensional torus. I discuss this shape more 
fully in the notes,9 but the only features in need of emphasis here are that, like 
the infinite tabletop, the video-game screen shape is uniform and it has no 
edges. The apparent boundaries confronting Ms. Pac-Man are fictitious; she 
can cross through them and remain in the game. 
 Mathematicians say that the infinite tabletop and the video-game screen 
are shapes that have constant zero curvature. “Zero” means that were you to 
examine your reflection on a mirrored tabletop or video-game screen, the 
image wouldn’t suffer any distortion, and as before, “constant” means that 
regardless of where you examine your reflection, the image looks the same. 
The difference between the two shapes becomes apparent only from a global 
perspective. If you took a journey on an infinite tabletop and maintained a 
constant heading, you’d never return home; on a video-game screen, you could 
cycle around the entire shape and find yourself back at the point of departure, 
even though you never turned the steering wheel. 
 Finally—and this is a little more difficult to picture—a Pringles potato 
chip, if extended indefinitely, provides another completely uniform shape, one 



that mathematicians say has constant negative curvature. This means that if 
you view your reflection at any spot on a mirrored Pringles chip, the image 
will appear shrunken inward. 
 Fortunately, these descriptions of two-dimensional uniform shapes 
extend effortlessly to our real interest in the three-dimensional space of the 
cosmos. Positive, negative, and zero curvatures—uniform bloating outward, 
shrinking inward, and no distortion at all—equally well characterize uniform 
three-dimensional shapes. In fact, we are doubly fortunate because although 
three-dimensional shapes are hard to picture (when envisioning shapes, our 
minds invariably place them within an environment—an airplane in space, a 
planet in space—but when it comes to space itself, there isn’t an outside 
environment to contain it); the uniform three-dimensional shapes are such tight 
mathematical analogs of their two-dimensional cousins that you lose little 
precision by doing what most physicists do: use the two-dimensional examples 
for your mental imagery. 
 In the table below, I’ve summarized the possible shapes, emphasizing 
that some are finite in extent (the sphere, the video-game screen) while others 
are infinite (the endless tabletop, the endless Pringles chip). As it stands, Table 
2.1 is incomplete. There are additional possibilities, with wonderful names like 
the binary tetrahedral space and the Poincaré dodecahedral space, that also 
have uniform curvature, but I’ve not included them because they’re harder to 
visualize using everyday objects. By judicious slicing and paring they can be 
sculpted from those that I’ve put in the list, so Table 2.1 provides a good 
representative sampling. But these details are secondary to the main 
conclusion: The uniformity of the cosmos articulated by the cosmological 
principle substantially winnows the possible shapes for the universe. Some of 
the possible shapes have infinite spatial extent, while others do not.10 
  
 
 
 
 
 
 
 



 
 Table 2.1Possible shapes for space consistent with the assumption that 
every location in the universe is on a par with every other (the cosmological 
principle). 
 
 
Our Universe 
 
 
 The expansion of space found mathematically by Friedmann and 
Lemaître applies verbatim to a universe that has any one of these shapes. For 
positive curvature, use the two-dimensional mental imagery to think of a 
balloon’s surface expanding as it is filled with air. For zero curvature, think of 
a flat sheet of rubber that is being stretched uniformly in all directions. For 
negative curvature, mold that rubber sheet into the shape of a Pringles chip and 
then carry on with the stretching. If galaxies are modeled as glitter evenly 
sprinkled on any of these surfaces, the expansion of space results in the 
individual specks of glitter—the galaxies—moving apart from one another, 
just as Hubble’s 1929 observations of distant galaxies revealed. 
 It’s a compelling cosmological template, but if it is to be definitive and 
complete, we need to determine which of the uniform shapes describes our 
universe. We can determine the shape of a familiar object, such as a doughnut, 
a baseball, or a block of ice, by picking it up and turning it this way and that. 
The challenge is that we can’t do so with the universe, and so we must 
determine its shape through indirect means. The equations of general relativity 
provide a mathematical strategy. They show that the curvature of space 
reduces to a single observational quantity: the density of matter (more 



precisely, the density of matter and energy) in space. If there is a lot of matter, 
gravity will cause space to curve back on itself, yielding the spherical shape. If 
there is little matter, space is free to flare outward in the Pringles shape. And if 
there is just the right amount of matter, space will have zero curvature.* 
 The equations of general relativity also provide a precise numerical 
demarcation among the three possibilities. The mathematics shows that “just 
the right amount of matter,” the so-called critical density, weighs in today at 
about 2 × 10–29 grams per cubic centimeter, which is about six hydrogen atoms 
per cubic meter or, in more familiar terms, the equivalent of a single raindrop 
in every earth-sized volume.11 Looking around, it would surely seem that the 
universe exceeds the critical density, but that would be a hasty conclusion. The 
mathematical calculation of the critical density assumes that matter is 
uniformly spread throughout space. So you need to envision taking the earth, 
the moon, the sun, and everything else and evenly dispersing the atoms they 
contain across the cosmos. The question then is whether each cubic meter 
would weigh more or less than six hydrogen atoms. 
 Because of its important cosmological consequences, astronomers have 
been trying for decades to measure the average density of matter in the 
universe. Their method is straightforward. With powerful telescopes, they 
carefully observe large volumes of space and add up the masses of the stars 
they can see as well as the mass of other material whose presence they can 
infer by studying stellar and galactic motion. Until recently, the observations 
indicated that the average density was on the low side, about 27 percent of the 
critical density—the equivalent of about two hydrogen atoms in each cubic 
meter—which would imply a negatively curved universe. 
 But then, in the late 1990s, something extraordinary happened. Through 
some magnificent observations and a chain of reasoning we’ll explore in 
Chapter 6, astronomers realized that they had been leaving out an essential 
component of the tally: a diffuse energy that appears to be spread uniformly 
throughout space. The data came as a shock to most everyone. An energy 
suffusing space? That sounds like the cosmological constant, which, as we’ve 
seen, Einstein introduced and then famously retracted eight decades earlier. 
Had modern observations resurrected the cosmological constant? 
 We still don’t know for sure. Even today, a decade after the initial 
observations, astronomers have yet to establish if the uniform energy is fixed 



or if the amount of energy in a given region of space varies over time. A 
cosmological constant, as its name signifies (and as its mathematical 
representation by a single fixed number on the general relativity tax form 
implies), would be unchanging. To account for the more general possibility 
that the energy evolves, and to also emphasize that the energy does not give 
off light (explaining why it had for so long evaded detection) astronomers have 
coined a new term: dark energy. “Dark” also describes well the many gaps in 
our understanding. No one can explain the dark energy’s origin, fundamental 
composition, or detailed properties—issues currently under intense 
investigation to which we shall return in later chapters. 
 But, even with the numerous open questions, detailed observations using 
the Hubble Space Telescope and other earth-based observatories have reached 
consensus on the amount of dark energy that is now permeating space. The 
result differs from what Einstein long ago proposed (since he posited a value 
that would yield a static universe, whereas our universe is expanding). That’s 
not surprising. Instead, what’s remarkable is that the measurements have 
concluded that the dark energy filling space contributes approximately 73 
percent of the critical density. When added to the 27 percent of criticality 
astronomers had already measured, this brings the total right up to 100 
percent of the critical density, just the right amount of matter and energy for a 
universe with zero spatial curvature. 
 Current data thus favor an ever-expanding universe shaped like the three-
dimensional version of the infinite tabletop or of the finite video-game screen. 
 
Reality in an Infinite Universe 
 
 
 At the beginning of this chapter, I noted that we don’t know whether the 
universe is finite or infinite. The previous sections have laid out the case that 
both possibilities naturally emerge from our theoretical studies, and that both 
possibilities are consistent with the most refined astrophysical measurements 
and observations. How might we one day determine observationally which 
possibility is right? 
 It’s a tough question. If space is finite, then some of the light emitted by 
stars and galaxies might cycle around the entire cosmos multiple times before 



entering our telescopes. Like the repeated images generated when light 
bounces between parallel mirrors, cycling light would give rise to repeated 
images of stars or galaxies. Astronomers have looked for such multiple images 
but as yet haven’t found any. This, in itself, doesn’t prove that space is infinite, 
but it does suggest that if space is finite it may be so large that light hasn’t had 
time to complete multiple laps around the cosmic racetrack. And that reveals 
the observational challenge. Even if the universe is finite, the larger it is the 
better it can masquerade as infinite. 
 For some cosmological questions, such as the age of the universe, the 
distinction between the two possibilities plays no role. Whether the cosmos is 
finite or infinite, at ever-earlier times, the galaxies would have been squeezed 
ever closer together, making the universe denser, hotter, and more extreme. 
We can use today’s observations of the rate of expansion, together with 
theoretical analysis of how that rate has changed over time, to tell us how long 
it’s been since everything we see would have been compressed into a single 
fantastically dense nugget, what we can call the beginning. And for either a 
finite or an infinite universe, state-of-the-art analyses now peg that moment at 
about 13.7 billion years ago. 
 But for other considerations, the finite-infinite distinction matters. In the 
finite case, for example, as we consider the cosmos at ever-earlier times, it’s 
accurate to picture the entirety of space continually shrinking. Although the 
mathematics breaks down at time zero itself, it’s correct to envision that at 
moments ever closer to time zero, the universe is an ever-smaller speck. For 
the infinite case, however, this description is wrong. If space is truly infinite in 
size, then it always has been and always will be. When it shrinks, its contents 
are squeezed ever closer together, making the density of matter ever larger. 
But its overall extent remains infinite. After all, shrink an infinite tabletop by a 
factor of 2 and what do you get? Half of infinity, which is still infinite. Shrink 
by a factor of 1 million and what do you get? Infinity still. The closer to time 
zero you consider an infinite universe, the denser it becomes at every location, 
but its spatial extent remains unending. 
 Although observations leave the finite-versus-infinite issue undecided, 
I’ve found that when pressed, physicists and cosmologists tend to favor the 
proposition that the universe is infinite. Partly, I think this view is rooted in the 
historical happenstance that for many decades researchers paid little heed to 



the finite video-game shape, mostly because it is more mathematically 
complex to analyze. Perhaps the view also reflects a common misconception 
that the difference between an infinite and a huge-but-finite universe is a 
cosmological distinction that’s only of academic interest. After all, if space is 
so large that you will only ever have access to a small portion of its entirety, 
should you care whether it extends for a finite or for an infinite distance 
beyond what you can see? 
 You should. The issue of whether space is finite or infinite has a 
profound impact on the very nature of reality. Which takes us to the heart of 
this chapter. Let’s now consider the possibility of an infinitely big cosmos and 
explore its implications. With minimal effort, we’ll find ourselves inhabiting 
one of an infinite collection of parallel worlds. 
 
Infinite Space and the Patchwork Quilt 
 
 
 Let’s start simply, back here on earth, far from the vast reaches of an 
infinite cosmic expanse. Imagine that your friend Imelda, to satisfy her 
penchant for variety in personal attire, has acquired five hundred richly 
embroidered dresses and a thousand pairs of designer shoes. If each day she 
wears one dress with one pair of shoes, at some point she will exhaust all 
possible combinations and duplicate an earlier outfit. It’s easy to figure out 
when. Five hundred dresses and a thousand pairs of shoes yield 500,000 
different combinations. Five hundred thousand days is about 1,400 years, so if 
she lived long enough Imelda would be seen in an outfit she’d already worn. If 
Imelda, blessed with infinite longevity, continued to cycle through every 
possible combination, she’d necessarily don each of her outfits an infinite 
number of times. An infinite number of appearances with a finite number of 
outfits ensures infinite repetition. 
 Pursuing the same theme, imagine that Randy, an expert card dealer, has 
shuffled a gargantuan number of decks, one by one, and neatly stacked each 
next to the others. Can the order of cards in every shuffled deck be different, or 
must they repeat? The answer depends on the number of decks. Fifty-two 
cards can be arranged indifferent ways (52 possibilities for which card will be 
the first, times 51 remaining possibilities for which will be the second, times 



50 remaining possibilities for the next card, and so on). If the number of decks 
Randy shuffles exceeds the number of different possible card orderings, then 
some of the shuffled decks would match. If Randy were to shuffle an infinite 
number of decks, the orderings of the cards would necessarily repeat an 
infinite number of times. As with Imelda and her outfits, an infinite number of 
occurrences with a finite number of possible configurations ensures that 
outcomes are infinitely repeated. 
 This basic notion is of the essence for cosmology in an infinite universe. 
Two key steps show why. 
 In an infinite universe, most regions lie beyond our ability to see, even 
using the most powerful telescopes possible. Although light travels 
enormously quickly, if an object is sufficiently distant, then the light it emits—
even light that may have been emitted shortly after the big bang—will simply 
not have had sufficient time to reach us. Since the universe is about 13.7 
billion years old, you might think that anything farther away than 13.7 billion 
light-years would fall into this category. The reasoning behind this intuition is 
right on target, but the expansion of space increases the distance to objects 
whose light has long been traveling and has only just been received; so the 
maximum distance we can see is actually longer—about 41 billion light-
years.12 But the exact numbers hardly matter. The important point is that 
regions of the universe beyond a certain distance are regions currently beyond 
our observational reach. Much as ships that have sailed beyond the horizon are 
not visible to someone standing on shore, astronomers say that objects in space 
that are too far away to be seen lie beyond our cosmic horizon. 
 Similarly, the light we’ve been emitting can’t yet have reached those 
distant regions, so we are beyond their cosmic horizon. And it’s not that 
cosmic horizons solely delineate what someone can and cannot see. From 
Einstein’s special relativity, we know that no signal, no disturbance, no 
information, no anything can travel faster than light—which means that 
regions of the universe so far apart that light hasn’t had time to travel between 
them are regions that have never exchanged any influence of any kind, and so 
have evolved completely independently. 
 Using a two-dimensional analogy, we can compare the expanse of space, 
at a given moment of time, to a giant patchwork quilt (with circular patches) in 
which each patch represents a single cosmic horizon. Someone located in the 



center of a patch can have interacted with anything that lies in the same patch, 
but has had no contact with anything lying in a different patch (see Figure 
2.1a), because they’re too far away. Points lying near the border between two 
patches are closer together than their respective centers and so can have 
interacted, but if we consider, say, patches in every other row and every other 
column of the cosmic quilt, all points residing in different patches are now so 
far from one another that no cross-patch interactions of any kind could have 
taken place (see Figure 2.1b). The same idea applies in three dimensions, 
where the cosmic horizons—the patches in the cosmic quilt—are spherical, 
and the same conclusion holds: sufficiently distant patches lie beyond one 
another’s spheres of influence and so are independent realms. 
 If space is large but finite, we can divide it into a large but finite number 
of such independent patches. If space is infinite, then there are an infinite 
number of independent patches. It’s this latter possibility that’s of particular 
allure, and the second part of the argument tells why. As we will now see, in 
any given patch the particles of matter (more precisely, matter and all forms of 
energy) can be arranged in only a finite number of different configurations. 
Using the reasoning rehearsed with Imelda and Randy, this means that 
conditions in the infinity of far-flung patches—in regions of space like the one 
we inhabit but distributed through a limitless cosmos—necessarily repeat. 

 Figure 2.1 (a)Because of light’s finite speed, an observer at the center of 
any patch (called the observer’s cosmic horizon) can have interacted only with 
things lying in that same patch. (b)Sufficiently distant cosmic horizons are too 
far apart to have had any interactions, and so have evolved completely 
independently of one another. 
 



Finite Possibilities 
 
 
 Imagine it’s a hot summer night and there’s an annoying fly buzzing 
around your bedroom. You’ve tried the swatter, you’ve tried the nasty spray. 
Nothing’s worked. In desperation, you try reason. “This is a big bedroom,” 
you tell the fly. “There are so many other places you could be. There’s no 
reason to keep buzzing around my ear.” “Really?” the fly slyly counters. “How 
many places are there?” 
 In a classical universe, the answer is “Infinitely many.” As you tell the 
fly, he (or, more precisely, his center of mass) could move 3 meters to the left, 
or 2.5 meters to the right, or 2.236 meters up, or 1.195829 meters down, 
or ….. you get the idea. Since the fly’s position can vary continuously, there 
are infinitely many places it can be. In fact, as you explain all this to the fly, 
you realize that not only does position present the fly with infinite variety, but 
so does velocity. At one moment the fly can be here, heading to the right at a 
kilometer per hour. Or it might be heading to the left at half a kilometer per 
hour, or heading up at a quarter of a kilometer per hour, or heading down 
at .349283 kilometers per hour, and so on. Although the fly’s speed is 
constrained by a number of factors (including the limited energy it possesses, 
since the faster it flies, the more energy it needs to expend), it can vary 
continuously and hence provides another source of infinite variety. 
 The fly isn’t convinced. “I’m with you when you talk about moving a 
centimeter, or half a centimeter, or even a quarter of a centimeter,” the fly 
responds. “But when you speak of locations that differ by a ten-thousandth or a 
hundred-thousandth of a centimeter, or even less, you’ve lost me. To an 
egghead, those might be different locations, but it flies in the face of 
experience to say that here and a billionth of a centimeter to the left of here are 
really different. I can’t sense such a tiny change in location and so I don’t 
count them as different places. Same goes for speed. I can tell the difference 
between going a kilometer per hour and going at half that rate. But the 
difference between .25 kilometers per hour and .249999999 kilometers per 
hour? Please. Only a wise fly would claim to be able to tell the difference. Fact 
is, none of us can. So as far as I’m concerned, those are the same speeds. 
There’s far less variety available than you’re describing.” 



 The fly has raised an important point. In principle, he can occupy an 
infinite variety of positions and attain an infinite variety of speeds. But in any 
practical sense, there is a limit to how fine the differences in location and 
speed can be before they go completely unnoticed. This is true even if the fly 
employs the best of equipment. There is always a limit on how small an 
increment in position or speed can be and yet still register. And regardless of 
how fine those minimal increments are, if they’re not zero, they radically 
reduce the range of possible experience. 
 For instance, if the smallest increments that can be detected are a 
hundredth of a centimeter, then each centimeter offers not an infinite number 
of detectably different locations, but only a hundred. Each cubic centimeter 
would thus provide 1003 = 1,000,000 different locations, and your average 
bedroom would offer about 100 trillion. Whether the fly would find this array 
of options sufficiently impressive to keep away from your ear is difficult to say. 
The conclusion, though, is that anything but measurements with perfect 
resolution reduces the number of possibilities from infinite to finite. 
 You might counter that the inability to distinguish between tiny spatial 
separations or differences in speed reflects nothing more than a technological 
limitation. With progress, the precision of equipment always improves, so the 
number of discernibly distinct positions and speeds available to a well-funded 
fly will also always increase. Here I must invoke some basic quantum theory. 
According to quantum mechanics, there’s a precise sense in which there is a 
fundamental limit on how accurate particular measurements can be, and this 
limit can’t ever be surpassed, regardless of technological progress—ever. The 
limit arises from a central feature of quantum mechanics, the uncertainty 
principle. 
 The uncertainty principle establishes that regardless of what equipment 
you use or what techniques you employ, if you increase the resolution of your 
measurement of one property, there is an unavoidable cost: you necessarily 
reduce how accurately you can measure a complementary property. As a prime 
example, the uncertainty principle shows that the more accurately you measure 
an object’s position, the less accurately you can measure its speed, and vice 
versa. 
 From the perspective of classical physics, the physics that informs much 
of our intuition about how the world works, this limitation is completely 



foreign. But as a rough analogy, think about photographing that impish fly. If 
your shutter speed is high, you’ll get a sharp image that records the fly’s 
location at the moment you snapped the picture. But because the photo is crisp, 
the fly appears motionless; the image gives no information about the fly’s 
speed. If you set your shutter speed low, the resulting blurry image will convey 
something of the fly’s motion, but because of that blurriness it also provides an 
imprecise measurement of the fly’s location. You can’t take a photo that gives 
sharp information about position and speed simultaneously. 
 Using the mathematics of quantum mechanics, Werner Heisenberg 
provided a precise limit on how imprecise the combined measurements of 
position and speed necessarily are. This inescapable imprecision is what 
quantum physicists mean by uncertainty. For our purpose, there’s a 
particularly useful way of framing his result. Much as a sharper photograph 
requires that you use a higher shutter speed, Heisenberg’s math shows that a 
sharper measurement of an object’s position requires that you use a higher 
energy probe. Turn on your bedside lamp, and the resulting probe—diffuse, 
low-energy light—allows you to make out the general shape of the fly’s legs 
and eyes; illuminate him with higher energy photons, like x-rays (keeping the 
photon bursts short to avoid cooking him), and the finer resolution reveals the 
minuscule muscles that flap the fly’s wings. But perfect resolution, according 
to Heisenberg, requires a probe with infinite energy. That’s unattainable. 
 And so, the essential conclusion is at hand. Classical physics makes clear 
that perfect resolution is unattainable in practice. Quantum physics goes 
further and establishes that perfect resolution is unattainable in principle. If 
you imagine both the speed and the position of an object—be it a fly or an 
electron—changing by sufficiently small amounts, then according to quantum 
mechanics, you are imagining something meaningless. Changes that are too 
small to be measured, even in principle, are not changes at all.13 
 By the same reasoning we used in our pre-quantum analysis of the fly, 
the limit on resolution reduces from infinite to finite the number of distinct 
possibilities for an object’s position and speed. And since the limited 
resolution entailed by quantum mechanics is entwined in the very fibers of 
physical law, this reduction to finite possibilities is unavoidable and 
unassailable. 



Cosmic Repetition 
 
 
 So much for flies in bedrooms. Now consider a larger region of space. 
Consider a region the size of today’s cosmic horizon, a sphere with a radius of 
41 billion light-years. A region, that is, which is the size of a single patch in 
the cosmic quilt. And consider filling it not with a single fly but with particles 
of matter and radiation. Here’s the question: How many different arrangements 
of the particles are possible? 
 Well, as with a box of Legos, the more pieces you have—the more matter 
and radiation you cram into the region—the greater the number of possible 
arrangements. But you can’t cram pieces in indefinitely. Particles carry energy, 
so more particles means more energy. If a region of space contains too much 
energy, it will collapse under its own weight and form a black hole.* And if 
after a black hole forms you try to cram yet more matter and energy into the 
region, the black hole’s boundary (its event horizon) will grow larger, 
encompassing more space. There is thus a limit to how much matter and 
energy can exist fully within a region of space of a given size. For a region of 
space as large as today’s cosmic horizon, the limits involved are huge (about 
1056 grams). But the size of the limit is not central. What’s central is that there 
is a limit. 
 Finite energy within a cosmic horizon entails a finite number of particles, 
be they electrons, protons, neutrons, neutrinos, muons, photons, or any of the 
other known or as yet unidentified species in the particle bestiary. Finite 
energy within a cosmic horizon also entails that each of these particles, like the 
annoying fly in your bedroom, has a finite number of distinct possible 
locations and speeds. Collectively, a finite number of particles, each of which 
can have finitely many distinct positions and velocities, means that within any 
cosmic horizon only a finite number of different particle arrangements are 
available. (In the more refined language of quantum theory proper, which 
we’ll encounter in Chapter 8, we don’t speak of particle positions and 
velocities per se, but rather of the quantum state of these particles. From this 
perspective, we would say there are only a finite number of observably distinct 
quantum states for the particles in the cosmic patch.) Indeed, a short 
calculation—described in the notes, if you’re curious about the details—



reveals that the number of distinct possible particle configurations within a 
cosmic horizon is about 1010122 (a 1 followed by 10122 zeros). This is a huge but 
decidedly finite number.14 
 The limited number of different clothes combinations ensures that with 
enough outings, Imelda’s attire will necessarily repeat. The limited number of 
different card orderings ensures that with enough decks, Randy’s shuffles will 
necessarily repeat. By the same reasoning, the limited number of particle 
arrangements ensures that with enough patches in the cosmic quilt—enough 
independent cosmic horizons—the particle arrangements, when compared 
from patch to patch, must somewhere repeat. Even if you were able to play 
cosmic designer and tried to arrange each patch to be different from the ones 
you’d examined before, with a big enough expanse you’d eventually run out of 
distinct designs and would be forced to repeat a previous arrangement. 
 In an infinitely big universe, the repetition is yet more extreme. There are 
infinitely many patches in an infinite expanse of space; so, with only finitely 
many different particle arrangements, the arrangements of particles within 
patches must be duplicated an infinite number of times. 
 That’s the result we’ve been after. 
 
Nothing but Physics 
 
 
 In interpreting the implications of this statement, I should declare my 
bias. I believe that a physical system is completely determined by the 
arrangement of its particles. Tell me how the particles making up the earth, the 
sun, the galaxy, and everything else are arranged, and you’ve fully articulated 
reality. This reductionist view is common among physicists, but there are 
certainly people who think otherwise. Especially when it comes to life, some 
believe that an essential nonphysical aspect (spirit, soul, life force, chi, and so 
on) is required to animate the physical. Although I remain open to this 
possibility, I’ve never encountered any evidence to support it. The position 
that makes the most sense to me is that one’s physical and mental 
characteristics are nothing but a manifestation of how the particles in one’s 
body are arranged. Specify the particle arrangement and you’ve specified 
everything.15 



 Adhering to this perspective, we conclude that if the particle arrangement 
with which we’re familiar were duplicated in another patch—another cosmic 
horizon—that patch would look and feel like ours in every way. This means 
that if the universe is infinite in extent, you are not alone in whatever reaction 
you are now having to this view of reality. There are many perfect copies of 
you out there in the cosmos, feeling exactly the same way. And there’s no way 
to say which is really you. All versions are physically and hence mentally 
identical. 
 We can even estimate the distance to the nearest copy. If the particle 
arrangements are randomly distributed from patch to patch (an assumption 
that’s compatible with the refined cosmological theory we will encounter in 
the next chapter), then we can expect that the conditions in our patch will be 
duplicated as frequently as those in any other. In every collection of 1010122 
cosmic patches, we thus expect there to be, on average, one patch that looks 
just like ours. That is, in every region of space that’s roughly 1010122 meters 
across, there should be a cosmic patch that replicates ours—one that contains 
you, the earth, the galaxy, and everything else that inhabits our cosmic horizon. 
 If you lower your sights and don’t seek an exact replica of our entire 
cosmic horizon, but would be satisfied with an exact copy of a region a few 
light-years in radius and centered on our sun, the order is more easily filled: on 
average, in every region that’s about 1010100 meters across, you should find one 
such copy. Still easier to find are approximate copies. After all, there is only 
one way to duplicate a region exactly, but many ways to almost duplicate it. 
Were you to visit these inexact copies, you’d find some that are barely 
distinguishable from ours, while in others the differences would range from 
obvious to exhilarating to shocking. Every decision you’ve ever made is 
tantamount to a particular particle arrangement. If you turned left, your 
particles went one way; if you turned right, your particles went the other. If 
you said yes, the particles in your brain, lips, and vocal cords proceeded 
through one pattern; if you said no, they proceeded through a different pattern. 
And so every possible action, every choice you’ve made and every option 
you’ve discarded, will be played out in one patch or another. In some, your 
worst fears about yourself, your family, and life on earth have been realized. In 
others, your wildest dreams have come to pass. In others still, the differences 
arising from the close but distinct particle arrangements have combined to 



yield an unrecognizable environment. And in most patches, the particle 
complexion would not include the highly specialized arrangements we 
recognize as living organisms, so the patches would be lifeless, or at least 
devoid of life as we know it. 
 Over time, the size of the cosmic patches laid out in Figure 2.1b will 
increase; with more time, light can travel farther and so each of the cosmic 
horizons will grow larger. Ultimately, the cosmic horizons will overlap. And 
when they do, the regions can no longer be considered as separate and isolated; 
the parallel universes will no longer be parallel—they will have merged. 
Nevertheless, the result we’ve found will continue to hold. Just lay out a new 
grid of cosmic patches with patch size set by the distance light can have 
traveled since the big bang through this later moment. The patches will be 
bigger, so to fill out a pattern like that in Figure 2.1b their centers will need to 
be farther apart, but with infinite space at our disposal, there’s ample room to 
accommodate this adjustment.16 
 And so we’ve come to a conclusion that’s both general and provocative. 
Reality in an infinite cosmos is not what most of us would expect. At any 
moment in time, the expanse of space contains an infinite number of separate 
realms—constituents of what I’ll call the Quilted Multiverse—with our 
observable universe, all we see in the vast night sky, being but one member. 
Canvassing this infinite collection of separate realms, we find that particle 
arrangements necessarily repeat infinitely many times. The reality that holds in 
any given universe, including ours, is thus replicated in an infinite number of 
other universes across the Quilted Multiverse.17 

 
What to Make of This? 
 
 
 It’s possible that the conclusion we’ve reached strikes you as so 
outlandish that you’re inclined to turn the discussion on its head. You might 
argue that the bizarre nature of where we’ve gotten—infinite copies of you and 
everyone and everything—is evidence of the faulty nature of one or more of 
the assumptions that led us here. 
 Might the assumption that the entire cosmos is inhabited by particles be 
wrong? Perhaps beyond our cosmic horizon is a vast realm containing nothing 



but empty space. It’s possible, but the theoretical contortions required to 
accommodate such a picture render it thoroughly unconvincing. The most 
refined cosmological theories, to be encountered shortly, don’t lead us 
anywhere near this possibility. 
 Might the very laws of physics change beyond our cosmic horizon, 
corrupting our ability to perform any reliable theoretical analyses of those 
distant realms? Again, it’s possible. But as we will see in the next chapter, 
recent developments yield a compelling argument that although the laws can 
vary, that variation doesn’t invalidate our conclusions regarding the Quilted 
Multiverse. 
 Might the universe’s spatial expanse be finite? Sure. Definitely possible. 
If space were finite yet large enough, there could still be some interesting 
patches way out there. But a smallish finite universe could easily fail to have 
adequate space to accommodate substantial numbers of distinct patches, let 
alone any that are duplicates of our own. A finite universe poses the most 
convincing way to upend the Quilted Multiverse. 
 But in the last few decades, physicists working to push the big bang 
theory back to time zero—in search of a deeper understanding of the origin 
and nature of Lemaître’s primeval atom—have developed an approach called 
inflationary cosmology. In the inflationary framework, the argument in support 
of an infinitely large cosmos, not only garners strong observational and 
theoretical support but, as we will see in the next chapter, becomes an almost 
inevitable conclusion. 
 What’s more, inflation brings to the fore another, even more exotic, 
variety of parallel worlds. 
 
 *It’s easier to envision curved space than curved time, and that’s why 
many popularizations of Einsteinian gravity focus solely on the former. 
However, for the gravity generated by familiar objects like the earth and sun, it 
is actually the curvature of time—not space—that exerts the dominant impact. 
For an illustration, think of two clocks, one on the ground, the other on top of 
the Empire State Building. Because the ground clock is closer to the earth’s 
center, it experiences slightly stronger gravity than the clock that’s high above 
Manhattan. General relativity shows that because of this, the rate at which time 
passes on each will be slightly different: the ground clock will run a tiny bit 



slow (billionths of a second per year) compared to the elevated clock. The 
temporal mismatch is an example of what we mean by time being curved or 
warped. General relativity then establishes that objects move toward regions 
where time elapses more slowly; in a sense, all objects “want” to age as slowly 
as possible. From an Einsteinian perspective, that explains why an object falls 
when you let go of it. 
 *Given our earlier discussion of how matter curves the region in which it 
is immersed, you might wonder how there can be no curvature even though 
there’s matter. The explanation is that a uniform presence of matter generally 
curves spacetime; in this particular case, there is zero space curvature but 
nonzero spacetime curvature. 
 *I will discuss black holes more fully in later chapters. Here we’ll stick 
to the familiar notion, by now well ingrained in popular culture, of a spatial 
region—think of it as a ball in space—whose gravitational pull is so strong 
that nothing crossing its edge can escape. The bigger the black hole’s mass, the 
larger its size, so when anything falls in, not only does the black hole’s mass 
increase but its size does too. 
 
 
  



CHAPTER 3 
 
 
Eternity and Infinity 
 
 
The Inflationary Multiverse 
 
 
 A pioneering group of physicists in the mid-1900s realized that if you 
were to shut off the sun, remove the other stars from the Milky Way, and even 
sweep away the more distant galaxies, space would not be black. To the 
human eye it would appear black, but if you could see radiation in the 
microwave part of the spectrum, then every which way you turned you’d see a 
uniform glow. Its origin? The origin. Remarkably, these physicists discovered 
a pervasive sea of microwave radiation filling space that is a present-day relic 
of the universe’s creation. The story of this breakthrough recounts a 
phenomenal achievement of the big bang theory, but in time it also revealed 
one of the theory’s fundamental shortcomings and thus set the stage for the 
next major breakthrough in cosmology after the pioneering works of 
Friedmann and Lemaître: the inflationary theory. 
 Inflationary cosmology modifies the big bang theory by inserting an 
intense burst of enormously fast expansion during the universe’s earliest 
moments. This modification, as we will see, proves essential to explaining 
some otherwise perplexing features of the relic radiation. But more than that, 
inflationary cosmology is a key chapter in our story because scientists have 
gradually realized over the last few decades that the most convincing versions 
of the theory yield a vast collection of parallel universes, radically 
transforming the complexion of reality. 
 
Relics of a Hot Beginning 
 
 George Gamow, a hulking six-foot-three Russian physicist known for 
important contributions to quantum and nuclear physics in the early twentieth 
century, was as quick-witted and fun-loving as he was hard-living (in 1932, he 



and his wife tried to defect from the Soviet Union by paddling across the Black 
Sea in a kayak stocked with a healthy assortment of chocolate and brandy; 
when bad weather sent the two scurrying back to shore, Gamow was able to 
fast-talk the authorities with a tale of the unfortunately failed scientific 
experiments he’d been undertaking at sea). In the 1940s, after having 
successfully slipped past the iron curtain (on dry land, with less chocolate) and 
settled in at Washington University in St. Louis, Gamow turned his attention 
to cosmology. With critical assistance from his phenomenally talented 
graduate student Ralph Alpher, Gamow’s research resulted in a far more 
detailed and vivid picture of the universe’s earliest moments than had been 
revealed by the earlier work of Friedmann (who had been Gamow’s teacher 
back in Leningrad) and Lemaître. With a little modern updating, Gamow and 
Alpher’s picture looks like this. 
 Just after its birth, the stupendously hot and dense universe experienced a 
frenzy of activity. Space rapidly expanded and cooled, allowing a particle stew 
to congeal from the primordial plasma. For the first three minutes, the rapidly 
falling temperature remained sufficiently high for the universe to act like a 
cosmic nuclear furnace, synthesizing the simplest atomic nuclei: hydrogen, 
helium, and trace amounts of lithium. But with the passing of just a few more 
minutes, the temperature dropped to about 108 Kelvin (K), roughly 10,000 
times the surface temperature of the sun. Although immensely high by 
everyday standards, this temperature was too low to support further nuclear 
processes, and so from this time on the particle commotion largely abated. For 
eons that followed, not much happened except that space kept expanding and 
the particle bath kept cooling. 
 Then, some 370,000 years later, when the universe had cooled to about 
3000 K, half the sun’s surface temperature, the cosmic monotony was 
interrupted by a pivotal turn of events. To that point, space had been filled with 
a plasma of particles carrying electric charge, mostly protons and electrons. 
Because electrically charged particles have the unique ability to jostle 
photons—particles of light—the primordial plasma would have appeared 
opaque; the photons, incessantly buffeted by electrons and protons, would 
have provided a diffuse glow similar to a car’s high beams cloaked by a dense 
fog. But when the temperature dropped below 3000 K, the rapidly moving 
electrons and nuclei slowed sufficiently to amalgamate into atoms; electrons 



were captured by the atomic nuclei and drawn into orbit. This was a key 
transformation. Because protons and electrons have equal but opposite charges, 
their atomic unions are electrically neutral. And since a plasma of electrically 
neutral composites allows photons to slip through like a hot knife through 
butter, the formation of atoms allowed the cosmic fog to clear and the 
luminous echo of the big bang to be released. The primordial photons have 
been streaming through space ever since. 
 Well, with one important caveat. Although no longer knocked to and fro 
by electrically charged particles, the photons have been subject to one other 
important influence. As space expands, things dilute and cool, including 
photons. But unlike particles of matter, photons don’t slow down when they 
cool; being particles of light, they always travel at light speed. Instead, when 
photons cool their vibrational frequencies decrease, which means they change 
color. Violet photons will shift to blue, then to green, to yellow, to red, and 
then into the infrared (like those visible with night goggles), the microwave 
(like those that heat food by bouncing around your microwave oven), and 
finally into the domain of radio frequencies. 
 As Gamow first realized and as Alpher and his collaborator Robert 
Herman worked out with greater fidelity, all this means that if the big bang 
theory is correct, then space everywhere should now be filled with remnant 
photons from the creation event, streaming every which way, whose 
vibrational frequencies are determined by how much the universe has 
expanded and cooled during the billions of years since they were released. 
Detailed mathematical calculations showed that the photons should have 
cooled close to absolute zero, placing their frequencies in the microwave part 
of the spectrum. For this reason, they are called the cosmic microwave 
background radiation. 
 I recently reread the papers of Gamow, Alpher, and Herman that in the 
late 1940s announced and explained these conclusions. They are marvels of 
theoretical physics. The technical analyses involved require hardly more than a 
grounding in undergraduate physics, and yet the results are profound. The 
authors concluded that we are all immersed in a bath of photons, a cosmic 
heirloom bequeathed to us by the universe’s fiery birth. 
 With that buildup, you may find it surprising that the papers were ignored. 
This was mostly because they were written during an era dominated by 



quantum and nuclear physics. Cosmology had yet to make its mark as a 
quantitative science, so the physics culture was less receptive to what seemed 
like fringe theoretical studies. To some degree, the papers also languished 
because of Gamow’s unusually playful style (he once modified the authorship 
of a paper he was writing with Alpher to include his friend the future Nobel 
laureate Hans Bethe, just to make the paper’s byline—Alpher, Bethe, 
Gamow—sound like the first three letters of the Greek alphabet), which 
resulted in some physicists taking him less seriously than he deserved. Try as 
they might, Gamow, Alpher, and Herman could not interest anyone in their 
results, let alone persuade astronomers to devote the significant effort required 
to attempt to detect the relic radiation they predicted. The papers were quickly 
forgotten. 
 In the early 1960s, unaware of the earlier work, the Princeton physicists 
Robert Dicke and Jim Peebles went down a similar path and also realized that 
the big bang’s legacy should be the presence of a ubiquitous background 
radiation filling space.1 Unlike the members of Gamow’s team, however, 
Dicke was a renowned experimentalist and so didn’t need to persuade anyone 
to seek the radiation observationally. He could do it himself. Together with his 
students David Wilkinson and Peter Roll, Dicke devised an experimental 
scheme to capture some of the big bang’s vestigial photons. But before the 
Princeton researchers could put their plan to the test, they received one of the 
most famous telephone calls in the history of science. 
 While Dicke and Peebles had been calculating, the physicists Arno 
Penzias and Robert Wilson at Bell Labs, less than thirty miles from Princeton, 
had been struggling with a radio communications antenna (coincidentally, it 
was based on a design Dicke had come up with in the 1940s). No matter what 
adjustments they made, the antenna hissed with a steady, unavoidable 
background noise. Penzias and Wilson were convinced that something was 
wrong with their equipment. But then came a serendipitous chain of 
conversations. It began with a talk Peebles gave in February 1965 at Johns 
Hopkins University, which was attended by the Carnegie Institution radio 
astronomer Kenneth Turner, who mentioned the results he heard Peebles 
present to his MIT colleague Bernard Burke, who happened to be in touch with 
Penzias at Bell Labs. Hearing of the Princeton research, the Bell Labs team 
realized that their antenna was hissing for good reason: it was picking up the 



cosmic microwave background radiation. Penzias and Wilson called Dicke, 
who quickly confirmed that they had unintentionally tapped into the 
reverberation of the big bang. 
 The two groups agreed to publish their papers simultaneously in the 
prestigious Astrophysical Journal. The Princeton group discussed their theory 
of the background radiation’s cosmological origin, while the Bell Labs team 
reported, in the most conservative of language and with no mention of 
cosmology, the detection of uniform microwave radiation permeating space. 
Neither paper mentioned the earlier work of Gamow, Alpher, and Herman. For 
their discovery, Penzias and Wilson were awarded the 1978 Nobel Prize in 
physics. 
 Gamow, Alpher, and Herman were deeply dismayed, and in the years 
that followed struggled mightily to have their work recognized. Only gradually 
and belatedly has the physics community saluted their primary role in this 
monumental discovery. 
 
The Uncanny Uniformity of Ancient Photons 
 
 
 During the decades since it was first observed, the cosmic microwave 
background radiation has become a crucial tool in cosmological investigations. 
The reason is clear. In a great many fields, researchers would give their 
eyeteeth to have an unfettered, direct glimpse of the past. Instead, they 
generally have to piece together a view of remote conditions on the basis of 
evidence from remnants—weathered fossils, decaying parchments, or 
mummified remains. Cosmology is the one field in which we can actually 
witness history. The pinpoints of starlight we can see with the naked eye are 
streams of photons that have been traveling toward us for a few years or a few 
thousand. The light from more distant objects, captured by powerful telescopes, 
has been traveling toward us far longer, sometimes for billions of years. When 
you look at such ancient light, you are seeing—literally—ancient times. Those 
primeval comings and goings transpired far away, but the apparent large-scale 
uniformity of the universe argues strongly that what was happening there was 
also, on average, happening here. In looking up, we are looking back. 



 The cosmic microwave photons allow us to make the most of this 
opportunity. No matter how technology may improve, the microwave photons 
are the oldest we can hope to see, because their elder brethren were trapped by 
the foggy conditions that prevailed during earlier epochs. When we examine 
the cosmic microwave background photons, we are glimpsing how things were 
nearly 14 billion years ago. 
 Calculations show that today there are about 400 million of these cosmic 
microwave photons racing through every cubic meter of space. Although our 
eyes can’t see them, an old-fashioned television set can. About 1 percent of the 
snow on a television that’s been disconnected from the cable signal and tuned 
to a station that’s ceased broadcasting is due to reception of the big bang’s 
photons. It’s a curious thought. The very same airwaves that carry reruns of All 
in the Family and The Honeymooners are infused with some of the universe’s 
oldest fossils, photons communicating a drama that played out when the 
cosmos was but a few hundred thousand years old. 
 The big bang model’s correct prediction that space would be filled with 
microwave background radiation was a triumph. During a mere three hundred 
years of scientific thought and technological progress, our species went from 
peering through rudimentary telescopes and dropping balls from leaning 
towers to grasping physical processes at work just after the universe was born. 
Nevertheless, further investigation of the data raised a pointed challenge. Ever 
more refined measurements of the radiation’s temperature, made not with 
television sets but with some of the most precise astronomical equipment ever 
built, showed that the radiation is thoroughly—uncannily—uniform across 
space. Regardless of where you point your detector, the temperature of the 
radiation is 2.725 degrees above absolute zero. The puzzle is to explain how 
such fantastic uniformity came to be. 
 Given the ideas presented in Chapter 2 (and my comment four 
paragraphs ago), I can imagine your saying, “Well, that’s just the cosmological 
principle at work: no location in the universe is special when compared with 
any other, so the temperature at each should be the same.” Fair enough. But 
remember that the cosmological principle was a simplifying assumption that 
physicists, including Einstein, invoked to make the mathematical analysis of 
the universe’s evolution tractable. Since the microwave background radiation 
is indeed uniform throughout space, it provides convincing observational 



evidence for the cosmological principle, and it strengthens our confidence in 
conclusions the principle helped reveal. But the radiation’s astounding 
uniformity shines a glaring spotlight on the cosmological principle itself. 
Reasonable though the cosmological principle may sound, what mechanism 
established the cosmos-wide uniformity that observations confirm? 
 
Faster Than the Speed of Light 
 
 
 We’ve all had the mildly unsettling sensation of shaking someone’s hand 
and finding it steamy hot (not so bad) or clammy cold (definitely worse). But 
were you to hold on to that hand, you’d find that the modest temperature 
differential would quickly subside. When objects are in contact, heat migrates 
from the hotter to the colder, until their temperatures are equal. You 
experience this all the time. It’s why coffee left on your desk eventually comes 
to room temperature. 
 Similar reasoning would seem to explain the uniformity of the 
microwave background radiation. As with holding hands and standing coffee, 
the uniformity presumably reflects the familiar reversion of an environment to 
an overall common temperature. The sole novelty of the process is that the 
reversion is supposed to have taken place over cosmic distances. 
 In the big bang theory, however, the explanation fails. 
 For places or things to reach a common temperature, an essential 
condition is mutual contact. It may be direct, as with shaking hands, or, 
minimally, through an exchange of information so that conditions at distinct 
locations can become correlated. Only through such mutual influence can a 
shared, communal environment be achieved. A thermos is designed to prevent 
such interactions, thwarting the drive to uniformity and preserving temperature 
differences. 
 This simple observation highlights the problem with the naïve 
explanation of the cosmic temperature uniformity. Locations in space that are 
very far apart—say, one point way off to your right, so deep in the night sky 
that the first light it ever emitted has only just reached you, and a second, 
similar point way off to your left—have never interacted. Although you can 
see both, light from one still has an enormous distance to cover before it 



reaches the other. Thus, hypothetical observers situated at the distant left and 
right locations have yet to see each other, and since the speed of light sets the 
upper limit for how fast anything can travel, they’ve yet to interact in any way. 
To use the language of the previous chapter, they are beyond each other’s 
cosmic horizon. 
 This description makes the mystery manifest. You’d be floored if 
inhabitants of these distant locations spoke the same language and had libraries 
filled with the same books. With no contact, how could a common heritage 
have been established? You should be equally floored to learn that without any 
apparent contact, these widely separated regions share a common temperature, 
one that matches to an accuracy of better than four decimal places. 
 Years ago, when I first learned of this puzzle, I was floored. But on 
further thought, I became puzzled by the puzzle. How could two objects that 
were once close together—as we believe all things in the observable universe 
were at the time of the big bang—have separated so quickly that light emitted 
by one wouldn’t have time to reach the other? Light sets the cosmic speed 
limit, so how could the objects achieve a spatial separation greater than what 
light would have had time to traverse? 
 The answer highlights a point that’s often not adequately stressed. The 
speed limit set by light refers solely to the motion of objects through space. 
But galaxies recede from one another not because they are traveling through 
space—galaxies don’t have jet engines—but rather because space itself is 
swelling and the galaxies are being dragged along by the overall flow.2 And 
the thing is, relativity places no limit on how fast space can swell, so there is 
no limit on how fast galaxies that are being pushed apart by the swell recede 
from one another. The rate of recession between any two galaxies can exceed 
any speed, including the speed of light. 
 Indeed, the mathematics of general relativity shows that in the universe’s 
earliest moments, space would have swelled so fast that regions would have 
been propelled apart at greater than light speed. As a result, they would have 
been unable to exert any influence on one another. The difficulty then is to 
explain how nearly identical temperatures were established in independent 
cosmic domains, a puzzle cosmologists have named the horizon problem. 



Broadening Horizons 
 
 
 In 1979, Alan Guth (then working at the Stanford Linear Accelerator 
Center) came up with an idea that, with subsequent critical refinements made 
by Andrei Linde (then carrying out research at the Lebedev Physical Institute 
in Moscow), and by Paul Steinhardt and Andreas Albrecht (a professor-student 
duo who were then working at the University of Pennsylvania), is widely 
believed to solve the horizon problem. The solution, inflationary cosmology, 
relies on some subtle features of Einstein’s general relativity that I’ll describe 
in a moment, but its broad outline can be readily summarized. 
 The horizon problem afflicts the standard big bang theory because 
regions of space separate too quickly for thermal equality to be established. 
The inflationary theory resolves the problem by slowing the speed with which 
the regions were separating very early on, providing them ample time to come 
to the same temperature. The theory then proposes that after the completion of 
these “cosmic handshakes” there came a brief burst of enormously fast and 
ever-quickening expansion—called inflationary expansion—which more than 
compensated for the sluggish start, rapidly driving the regions to vastly distant 
positions in the sky. The uniform conditions we observe no longer pose a 
mystery, since a common temperature was established before the regions were 
rapidly driven apart.3 In broad strokes, that’s the essence of the inflationary 
proposal.* 
 Bear in mind, however, that physicists don’t dictate how the universe 
expands. As far as we can tell from our most refined observations, Einstein’s 
equations of general relativity do. The viability of the inflationary scenario 
thus depends on whether its proposed modification to the standard big bang 
expansion can emerge from Einstein’s mathematics. At first glance, this is far 
from obvious. 
 For example, I’m pretty sure that if you were to bring Newton up to date 
by giving him a five-minute primer on general relativity, explaining the 
outlines of warped space and the expanding universe, he’d find your 
subsequent description of the inflationary proposal preposterous. Newton 
would sternly maintain that regardless of fancy math and newfangled 
Einsteinian language, gravity is still an attractive force. And so, he would 



emphasize with a pound on the table, gravity acts to pull objects together, 
slowing any cosmic divergence. Expansion that starts out dawdling, then 
sharply quickens for a brief period, might solve the horizon problem, but it’s a 
fiction. Newton would declare that just as gravitational attraction implies that 
the speed of a batted baseball diminishes as the ball moves upward, it similarly 
implies that the cosmic expansion must slow over time. Sure, if the expansion 
drops all the way to zero and then turns into cosmic contraction, the implosion 
can speed up over time, much as the ball’s speed can increase when it starts its 
downward journey. But the speed of the outward spatial expansion can’t 
increase. 
 Newton’s making a mistake, but you can’t blame him. The burden lies 
with the cursory summary you gave him of general relativity. Don’t get me 
wrong. It’s understandable that, given only five minutes (one of which was 
spent explaining baseball), you focused on curved spacetime as the source of 
gravity. Newton himself had called attention to the fact that there was no 
known mechanism for transmitting gravity, and he always viewed that as a 
yawning hole in his own theory. Naturally, you wanted to show him Einstein’s 
resolution. But Einstein’s theory of gravity did much more than merely fill a 
gap in Newtonian physics. Gravity in general relativity differs in its essence 
from gravity in Newton’s physics, and in the present context, there is one 
feature that cries out for emphasis. 
 In Newton’s theory, gravity arises solely from an object’s mass. The 
bigger the mass, the bigger the object’s gravitational pull. In Einstein’s theory, 
gravity arises from an object’s mass (and energy) but also from its pressure. 
Weigh a sealed bag of potato chips. Weigh it again, but this time squeeze the 
bag so that the air inside is under higher pressure. According to Newton, the 
weight will be the same, because there’s been no change in mass. According to 
Einstein, the squeezed bag will weigh slightly more, because although the 
mass is the same there’s been an increase in pressure.4 In everyday 
circumstances we’re not aware of it, because for ordinary objects the effect is 
fantastically tiny. Even so, general relativity, and the experiments that have 
shown it to be correct, makes it perfectly clear that pressure contributes to 
gravity. 
 This deviation from Newton’s theory is critical. Air pressure, whether the 
air is in a bag of potato chips, an inflated balloon, or the room where you’re 



now reading, is positive, meaning that the air pushes outward. In general 
relativity, positive pressure, like positive mass, contributes positively to 
gravity, resulting in increased weight. But whereas mass is always positive, 
there are situations in which pressure can be negative. Think of a stretched 
rubber band. Rather than pushing outward, the rubber band’s straining 
molecules pull inward, exerting what physicists call negative pressure (or, 
equivalently, tension). And much as general relativity shows that positive 
pressure gives rise to attractive gravity, it shows that negative pressure gives 
rise to the opposite: repulsive gravity. 
 
 Repulsive gravity? 
 
 This would blow Newton’s mind. For him, gravity was only attractive. 
But your mind should remain intact: you’ve already encountered this strange 
clause in general relativity’s contract with gravity. Remember Einstein’s 
cosmological constant, discussed in the previous chapter? I declared there that 
by infusing space with a uniform energy, a cosmological constant generates 
repulsive gravity. But in that earlier encounter, I didn’t explain why this 
happens. Now I can. A cosmological constant not only endows the spatial 
fabric with a uniform energy determined by the constant’s value (the number 
on the third line of the apocryphal relativity tax form), but it also fills space 
with a uniform negative pressure (we will see why in a moment). And, as 
above, when it comes to the gravitational force each produces, negative 
pressure does the opposite of positive mass and positive pressure. It yields 
repulsive gravity.* 
 In Einstein’s hands, repulsive gravity was used for a single erroneous 
purpose. He proposed finely adjusting the amount of negative pressure that 
permeates space to ensure that the repulsive gravity produced would exactly 
counter the attractive gravity exerted by the universe’s more familiar material 
contents, yielding a static universe. As we’ve seen, he subsequently renounced 
this move. Six decades later, the developers of the inflationary theory proposed 
a kind of repulsive gravity that differed from Einstein’s version much as the 
finale of Mahler’s Eighth differs from the drone of a tuning fork. Rather than a 
moderate and steady outward push that would stabilize the universe, the 
inflationary theory envisions a gargantuan surge of repulsive gravity that’s 



astoundingly short and thunderingly intense. Regions of space had ample time 
before the burst to come to the same temperature, but then, riding the surge, 
covered the great distances necessary to reach their observed positions in the 
sky. 
 At this point, Newton would surely shoot you another disapproving look. 
Ever the skeptic, he would find another problem with your explanation. After 
catching up on the more intricate details of general relativity by racing through 
one of the standard textbooks, he would accept the strange fact that gravity 
can—in principle—be repulsive. But, he’d ask, what’s all this talk of negative 
pressure permeating space? It’s one thing to use the inward pull of a stretched 
rubber band as an example of negative pressure. It’s another to argue that 
billions of years ago, just around the time of the big bang, space was 
momentarily permeated by an enormous and uniform negative pressure. What 
thing, or process, or entity has the capacity to supply such a fleeting but 
pervasive negative pressure? 
 The genius of inflation’s pioneers was to provide an answer. They 
showed that the negative pressure required for an antigravity burst naturally 
emerges from a novel mechanism involving ingredients known as quantum 
fields. For our story, the details are crucial because the manner in which 
inflationary expansion comes about is central to the version of parallel 
universes it yields. 
 
Quantum Fields 
 
 
 In Newton’s day, physics concerned itself with the motion of objects you 
can see—stones, cannonballs, planets—and the equations he developed closely 
reflected this focus. Newton’s laws of motion are a mathematical embodiment 
of how such tangible bodies move when they’re pushed, pulled, or shot 
through the air. For more than a century, this was a wonderfully fruitful 
approach. But in the early 1800s, the English scientist Michael Faraday 
initiated a transformation in thinking with the elusive but demonstrably 
powerful concept of the field. 
 Take a strong refrigerator magnet and place it an inch above a paper clip. 
You know what happens. The clip jumps up and sticks to the magnet’s surface. 



This demonstration is so commonplace, so thoroughly familiar, that it’s easy to 
overlook how bizarre it is. Without touching the paper clip, the magnet can 
make it move. How is this possible? How can an influence be exerted in the 
absence of any contact with the clip itself? These and a multitude of related 
considerations led Faraday to postulate that though the magnet proper does not 
touch the paper clip, the magnet produces something that does. That something 
is what Faraday called a magnetic field. 
 We can’t see the fields produced by magnets; we can’t hear them; none 
of our senses are attuned to them. But that reflects physiological limitations, 
nothing more. As a flame generates heat, so a magnet generates a magnetic 
field. Lying beyond the physical boundary of the solid magnet, the magnet’s 
field is a “mist” or “essence” that fills space and does the magnet’s bidding. 
 Magnetic fields are but one kind of field. Charged particles give rise to 
another: electric fields, such as those responsible for the shock you sometimes 
receive when you reach for a metal doorknob in a room with wall-to-wall wool 
carpeting. Unexpectedly, Faraday’s experiments showed that electric and 
magnetic fields are intimately related: he found that a changing electric field 
generates a magnetic field, and vice versa. In the late 1800s, James Clerk 
Maxwell put mathematical might behind these insights, describing electric and 
magnetic fields in terms of numbers assigned to each point in space; the 
numbers’ values reflect the field’s ability, at that location, to exert influence. 
Places in space where the magnetic field’s numerical values are large, for 
instance an MRI’s cavity, are places where metal objects will feel a strong 
push or pull. Places in space where the electric field’s numerical values are 
large, for instance the inside of a thundercloud, are places where powerful 
electrical discharges such as lightning may occur. 
 Maxwell discovered equations, which now bear his name, that govern 
how the strength of electric and magnetic fields varies from point to point in 
space and moment to moment in time. These very same equations govern the 
sea of rippling electric and magnetic fields, so-called electromagnetic waves, 
within which we’re all immersed. Turn on a cell phone, a radio, or a wireless 
computer, and the signals received represent a tiny portion of the thicket of 
electromagnetic transmissions silently rushing by and through you every 
second. Most stunning of all, Maxwell’s equations revealed that visible light 



itself is an electromagnetic wave, one whose rippling patterns our eyes have 
evolved to see. 
 In the second half of the twentieth century, physicists united the field 
concept with their burgeoning understanding of the microworld encapsulated 
by quantum mechanics. The result, quantum field theory, provides a 
mathematical framework for our most refined theories of matter and nature’s 
forces. Using it, physicists have established that in addition to electric and 
magnetic fields, there exists a whole panoply of others with names like strong 
and weak nuclear fields and electron, quark, and neutrino fields. One field that 
to date remains wholly hypothetical, the inflaton field, provides a theoretical 
basis for inflationary cosmology.* 

 
Quantum Fields and Inflation 
 
 
 Fields carry energy. Qualitatively, we know this because fields 
accomplish tasks that require energy, such as causing objects (like paper clips) 
to move. Quantitatively, the equations of quantum field theory show us how, 
given the numerical value of a field at a particular location, to calculate the 
amount of energy it contains. Typically, the larger the value, the larger the 
energy. A field’s value can vary from place to place, but should it be constant, 
taking the same value everywhere, it would fill space with the same energy at 
every point. Guth’s critical insight was that such uniform field configurations 
fill space not only with uniform energy but also with uniform negative 
pressure. And with that, he found a physical mechanism to generate repulsive 
gravity. 
 To see why a uniform field yields negative pressure, think first about a 
more ordinary situation that involves positive pressure: the opening of a bottle 
of Dom Pérignon. As you slowly remove the cork, you can feel the positive 
pressure of the champagne’s carbon dioxide pushing outward, driving the cork 
from the bottle and into your hand. A fact you can directly verify is that this 
outward exertion drains a little energy from the champagne. You know those 
vapor tendrils you see near the bottle’s neck when the cork is out? They form 
because the energy expended by the champagne in pushing against the cork 



results in a drop in temperature, which, much as with your breath on a wintry 
day, causes surrounding water vapor to condense. 
 Now imagine replacing the champagne with something less festive but 
more pedagogical—a field whose value is uniform throughout the bottle. 
When you remove the cork this time, your experience will be very different. 
As you slide the cork outward, you make a little extra volume inside the bottle 
available for the field to permeate. Since a uniform field contributes the same 
energy at every location, the larger the volume the field fills, the greater the 
total energy the bottle contains. Which means that, unlike with champagne, the 
act of removing the cork adds energy to the bottle. 
 How could that be? Where would the energy come from? Well, think 
about what happens if the bottle’s contents, rather than pushing the cork 
outward, pull the cork inward. This would require you to pull on the cork to 
remove it, an exertion of effort that in turn would transfer energy from your 
muscles to the contents of the bottle. To explain the increase in the bottle’s 
energy we thus conclude that, unlike champagne, which pushes outward, a 
uniform field sucks inward. That’s what we mean by a uniform field’s 
resulting in a negative—not positive—pressure. 
 Although there’s no sommelier uncorking the cosmos, the same 
conclusion holds: if there’s a field—the hypothetical inflaton field—that has a 
uniform value throughout a region of space, it will fill that region not only 
with energy but also with negative pressure. And, as is now familiar, such 
negative pressure yields repulsive gravity, which drives an ever-quickening 
expansion of space. When Guth slotted into Einstein’s equations the likely 
numerical values for the inflaton’s energy and pressure consonant with the 
extreme environment of the early universe, the mathematics revealed that the 
resulting repulsive gravity would be stupendous. It would easily be many 
orders of magnitude stronger than the repulsive force Einstein envisioned years 
earlier when he dallied with the cosmological constant, and would propel a 
spectacular spatial stretching. That alone was exciting. But Guth realized there 
was an indispensable bonus. 
 The same reasoning that explains why a uniform field has negative 
pressure applies as well to a cosmological constant. (If the bottle contains 
empty space endowed with a cosmological constant, then when you slowly 
remove the cork the extra space you make available within the bottle 



contributes extra energy. The only source for this extra energy is your muscles, 
which therefore must have strained against an inward, negative pressure 
supplied by the cosmological constant.) And, as with a uniform field, a 
cosmological constant’s uniform negative pressure also yields repulsive 
gravity. But the vital point here is not the similarities, per se, but the manner in 
which a cosmological constant and a uniform field differ. 
 A cosmological constant is just that—a constant, a fixed number inserted 
on the third line of general relativity’s tax form that would generate the same 
repulsive gravity today as it would have billions of years ago. By contrast, the 
value of a field can change, and generally will. When you turn on your 
microwave oven, you change the electromagnetic field filling its interior; when 
the technician flips the switch on an MRI machine, he or she changes the 
electromagnetic field threading the cavity. Guth realized that an inflaton field 
filling space could behave similarly—turning on for a burst and then turning 
off—which would allow repulsive gravity to operate during only a brief 
window of time. That’s essential. Observations establish that if the blistering 
growth of space happened at all, it must have happened billions of years ago 
and then sharply dropped off to the statelier-paced expansion evidenced by 
detailed astronomical measurements. So an all-important feature of the 
inflationary proposal is that the era of powerful repulsive gravity be transient. 
 The mechanism for turning on and then shutting off the inflationary burst 
relies on physics that Guth initially developed but that Linde, and Albrecht and 
Steinhardt, refined substantially. To get a feel for their proposal, think of a 
ball—better still, think of nearly round Eric Cartman—perched precariously on 
one of South Park’s snow-covered mountains. A physicist would say that 
because of his position, Cartman embodies energy. More precisely, he 
embodies potential energy, meaning that he has pent-up energy that’s ready to 
be tapped, most easily by his tumbling downward, which would transform the 
potential energy into the energy of motion (kinetic energy). Experience attests, 
and the laws of physics make precise, that this is typical. A system harboring 
potential energy will exploit any opportunity to release that energy. In short, 
things fall. 
 The energy carried by a field’s nonzero value is also potential energy: it, 
too, can be tapped, resulting in an incisive analogy with Cartman. Just as the 
increase in Cartman’s potential energy as he climbs the mountain is 



determined by the shape of the slope—in flatter regions his potential energy 
varies minimally as he walks, because he gets hardly any higher, while in 
steeper regions his potential energy rises sharply—the potential energy of a 
field is described by an analogous shape, called its potential energy curve. 
Such a curve, as in Figure 3.1, determines how a field’s potential energy varies 
with its value. 
 Following inflation’s pioneers, let’s then imagine that in the earliest 
moments of the cosmos, space is uniformly filled with an inflaton field, whose 
value places it high up on its potential energy curve. Imagine further, these 
physicists urge us, that the potential energy curve flattens out into a gentle 
plateau (as in Figure 3.1), allowing the inflaton to linger near the top. Under 
these hypothesized conditions, what will happen? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.1The energy contained in an inflaton field (vertical axis) for 
given values of the field (horizontal axis). 
 



 Two things, both critical. While the inflaton is on the plateau, it fills 
space with a large potential energy and negative pressure, driving a burst of 
inflationary expansion. But, just as Cartman releases his potential energy by 
rolling down the slope, so the inflaton releases its potential energy by its value, 
throughout space, rolling to lower numbers. And as its value decreases, the 
energy and negative pressure it harbors dissipate, bringing an end to the period 
of blistering expansion. Just as important, the energy released by the inflaton 
field isn’t lost—instead, like a cooling vat of steam condensing into water 
droplets, the inflaton’s energy condenses into a uniform bath of particles that 
fill space. This two-step process—brief but rapid expansion, followed by 
energy conversion to particles—results in a huge, uniform spatial expanse 
that’s filled with the raw material of familiar structures like stars and galaxies. 
 Precise details depend on factors that neither theory nor observation has 
as yet determined (the initial value of the inflaton field, the exact shape of the 
potential energy slope, and so on)5 but in typical versions the mathematical 
calculations show that the inflaton’s energy would roll down the slope in a tiny 
fraction of a second, on the order of 10–35 seconds. And yet, during that brief 
span, space would expand by a colossal factor, perhaps 1030 if not more. These 
numbers are so extreme that they defy analogy. They imply that a region of 
space the size of a pea would be stretched larger than the observable universe 
in a time interval so short that the blink of an eye would overestimate it by a 
factor larger than a million billion billion billion. 
 However difficult it is to envision such a scale, what’s essential is that 
the region of space that spawned the observable universe was so small that it 
would easily have come to a uniform temperature before it was stretched into 
our grand cosmic expanse by the rapid burst. The inflationary expansion, and 
billions of years of subsequent cosmological evolution, resulted in this 
temperature cooling substantially, but the uniformity set in place early on 
dictates a uniform result today. This resolves the mystery of how the 
universe’s uniform conditions came to be. In inflation, a uniform temperature 
across space is inevitable.6 

 
  



Eternal Inflation 
 
 
 During the nearly three decades since its discovery, inflation has become 
a fixture of cosmological investigation. But to have an accurate picture of the 
research panorama, you should be aware that inflation is a cosmological 
framework, but it is not a specific theory. Researchers have shown that there 
are many ways to skin an inflationary cat, differing in details such as the 
number of inflaton fields supplying the negative pressure, the particular 
potential energy curves to which each field is subject, and so on. Fortunately, 
the sundry realizations of inflation have some implications in common, so we 
can draw conclusions even in the absence of a definitive version. 
 Among these, one first fully realized by Alexander Vilenkin of Tufts 
University and developed further by others, including most notably Linde, is 
of great importance.7 In fact, it’s the very reason I’ve spent the first half of this 
chapter explaining the inflationary framework. 
 In many versions of the inflationary theory, the burst of spatial expansion 
is not a onetime event. Instead, the process by which our region of the universe 
formed—rapid stretching of space, followed by a transition to a more ordinary, 
slower expansion, together with the production of particles—may happen over 
and over again at various far-flung locations throughout the cosmos. From a 
bird’s-eye view, the cosmos would appear riddled with innumerable widely 
separated regions, each being the aftermath of a portion of space transitioning 
out of the inflationary burst. Our realm, what we have always thought of as the 
universe, would then be but one of these numerous regions, floating within a 
vastly larger spatial expanse. If intelligent life exists in the other regions, those 
beings would just as surely have thought their universe to be the universe, too. 
And so inflationary cosmology steers us headlong into our second variation on 
the theme of parallel universes. 
 To grasp how this Inflationary Multiverse comes about, we need to 
engage two complications that my Cartman analogy glossed over. 
 First, the image of Cartman perched high on a mountaintop offered an 
analogy to an inflaton field harboring significant potential energy and negative 
pressure, poised to roll to lower values. But whereas Cartman is perched on a 
single mountaintop, the inflaton field has a value at each point in space. The 



theory posits that the inflaton field starts off with the same value at each 
location within an initial region. And so we’d achieve a more faithful 
rendering of the science if we imagine something a little odd: numerous 
Cartman clones perched on numerous, closely packed, identical mountaintops 
throughout a spatial expanse. 
 Second, we’ve so far barely touched on the quantum aspect of quantum 
field theory. The inflaton field, like everything else in our quantum universe, is 
subject to quantum uncertainty. This means that its value will undergo random 
quantum jitters, momentarily rising a little here and dropping a little there. In 
everyday situations, quantum jitters are too small to notice. But calculations 
show that the larger the energy an inflaton has, the greater the fluctuations it 
will experience from quantum uncertainty. And since the inflaton’s energy 
content during the inflationary burst was extremely high, the jitters in the early 
universe were big and dominant.8 
 We should thus not only picture a platoon of Cartmans perched high on 
identical mountaintops; we should also imagine that they are all subject to a 
random series of tremors—strong here, weak there, very strong way over there. 
With this setup, we can now determine what will happen. Different Cartman 
clones will stay perched on their mountaintops for different durations. In some 
locations, a strong tremor knocks most Cartmans down their slopes; in other 
locations, a mild tremor coaxes only a few to tumble down; in others still, 
some Cartmans may have started to roll down until a strong tremor knocked 
them back up. After a while, the terrain will be divided into a random 
assortment of domains—much as the United States is divided into states—in 
some of which no Cartmans are left on mountaintops, while in others many 
Cartmans remain securely perched. 
 The random nature of quantum jitters yields a similar conclusion for the 
inflaton field. The field begins high up on its potential energy slope at every 
point in a region of space. The quantum jitters then act like tremors. Because 
of this, as illustrated in Figure 3.2, the expanse of space rapidly divides into 
domains: in some, quantum jitters cause the field to topple down the slope, 
while in others it remains high. 
 So far, so good. But now stay with me closely; here’s where cosmology 
and Cartmans differ. A field that’s perched high up on its energy curve affects 
its environment far more significantly than a similarly perched Cartman does. 



From our familiar refrain—a field’s uniform energy and negative pressure 
generate repulsive gravity—we recognize that the region the field permeates 
expands at a fantastic rate. This means that the inflaton field’s evolution across 
space is driven by two opposing processes. Quantum jitters, by tending to 
knock the field off its perch, decrease the amount of space suffused with high 
field energy. Inflationary expansion, by rapidly enlarging those domains in 
which the field remains perched, increases the volume of space suffused with 
high field energy. 
 Which process wins? 
 In the vast majority of proposed versions of inflationary cosmology, the 
increase occurs at least as quickly as the decrease. The reason is that an 
inflaton field that can be knocked off its perch too quickly typically generates 
too little inflationary expansion to solve the horizon problem; in 
cosmologically successful versions of inflation, the increase thus wins over the 
decrease, ensuring that the total volume of space in which the field’s energy is 
high increases over time. Recognizing that such field configurations yield yet 
further inflationary expansion, we see that once inflation begins it never ends. 
   
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2 Various domains in which the inflaton field has dropped down the 
slope (darker gray) or remains high (lighter gray). 
 
 



 It’s like the spread of a viral pandemic. To eradicate the threat, you need 
to wipe out the virus faster than it can reproduce. The inflationary virus 
“reproduces”—a high field value generates rapid spatial expansion and thus 
infuses a yet larger domain with that same high field value—and it does so 
faster than the competing process eliminates it. The inflationary virus 
effectively resists eradication.9 

 
Swiss Cheese and the Cosmos 
 
 
 Collectively, these insights show that inflationary cosmology leads to a 
vastly new picture of reality’s expanse, one that can be grasped most easily 
with a simple visual aid. Think of the universe as a gigantic block of Swiss 
cheese, with the cheesy parts being regions where the inflaton field’s value is 
high and the holes being regions where it’s low. That is, the holes are regions, 
like ours, that have transitioned out of the superfast expansion and, in the 
process, converted the inflaton field’s energy into a bath of particles, which 
over time may coalesce into galaxies, stars, and planets. In this language, 
we’ve found that the cosmic cheese acquires more and more holes because 
quantum processes knock the inflaton’s value downward at a random 
assortment of locations. At the same time, the cheesy parts stretch ever larger 
because they’re subject to inflationary expansion driven by the high inflaton 
field value they harbor. Taken together, the two processes yield an ever-
expanding block of cosmic cheese riddled with an ever-growing number of 
holes. In the more standard language of cosmology, each hole is called a 
bubble universe (or a pocket universe).10 Each is an opening tucked within the 
superfast stretching cosmic expanse (Figure 3.3). 
 Don’t let the descriptive but diminutive-sounding “bubble universe” fool 
you. Our universe is gigantic. That it may be a single region embedded within 
an even larger cosmic structure—a single bubble in an enormous block of 
cosmic cheese—speaks to the fantastic expanse, in the inflationary paradigm, 
of the cosmos as a whole. And this goes for the other bubbles too. Each would 
be as much a universe—a real, gigantic, dynamic expanse—as ours. 
  
 



 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 The Inflationary Multiverse arises when bubble universes 
continually form within an ever-expanding spatial environment permeated by 
a high-valued inflaton field. 
 
 
 There are versions of the inflationary theory in which inflation is not 
eternal. By fiddling with details such as the number of inflaton fields and their 
potential energy curves, clever theorists can arrange things so that the inflaton 
would, in due course, be knocked off its perch everywhere. But these 
proposals are the exception rather than the rule. Garden-variety inflationary 
models yield a gargantuan number of bubble universes carved into an eternally 
expanding spatial expanse. And so, if the inflationary theory is on the mark, 
and if, as many theoretical investigations conclude, its physically relevant 
realization is eternal, the existence of an Inflationary Multiverse would be an 
inevitable consequence. 
 
  



Changing Perspectives 
 
 
 Back in the 1980s, when Vilenkin realized the eternal nature of 
inflationary expansion and the parallel universes to which it would give rise, 
he excitedly visited Alan Guth at MIT to tell him about it. Midway through the 
explanation, Guth’s head drooped forward: he’d fallen asleep. This was not 
necessarily a bad sign; Guth is famous for nodding off during physics 
seminars—he’s caught a few winks during talks I’ve given—then opening his 
eyes midway through to ask the most insightful of questions. But the broader 
physics community was no more enthusiastic than Guth was, so Vilenkin 
shelved the idea and moved on to other projects. 
 Sentiment today is very different. When Vilenkin was first thinking about 
the Inflationary Multiverse, the evidence in direct support of the inflationary 
theory itself was thin. So, to the few who paid any attention at all, ideas about 
inflationary expansion yielding a vast collection of parallel universes seemed 
like speculation piled upon speculation. But in the years since, the 
observational case for inflation has grown much stronger, once again thanks 
largely to precise measurements of the microwave background radiation. 
 Even though the observed uniformity of the microwave background 
radiation was one of the prime motivations for developing the inflationary 
theory, early proponents realized that rapid spatial expansion would not render 
the radiation perfectly uniform. Instead, they argued that quantum mechanical 
jitters stretched large by the inflationary expansion would overlay the 
uniformity with minuscule temperature variations, like tiny ripples on the 
surface of an otherwise smooth pond. This has proved to be a spectacular and 
enormously influential insight.* Here’s how it goes. 
 Quantum uncertainty would have caused the value of the inflaton field to 
jitter. Indeed, if the inflationary theory is correct, the burst of inflationary 
expansion stopped here because a large and lucky quantum fluctuation, nearly 
14 billion years ago, knocked the inflaton off its perch in our vicinity. Yet 
there’s more to the story. As the inflaton’s value rolled down its slope 
headlong toward the point of bringing inflation in our bubble universe to a 
close, its value would still have been subject to quantum jitters. The jitters, in 
turn, would have made the inflaton’s value a little higher here and a little lower 



there, like the wavy surface of an unfurled sheet as it descends to your mattress. 
This would have produced slight variations in the energy the inflaton harbored 
across space. Normally, such quantum variations are so tiny and happen over 
such minuscule scales that they are irrelevant over cosmological distances. But 
inflationary expansion is anything but normal. 
 The expansion of space is so rapid, even during the transition out of the 
inflationary phase, that the microscopic would have been stretched to the 
macroscopic. And much as a tiny message scribbled on a deflated balloon 
becomes easier to read when air stretches the balloon’s surface, so the 
influence of quantum jitters becomes visible when inflationary expansion 
stretches the cosmic fabric. More particularly, minute energy differences 
caused by quantum jitters are stretched into temperature variations that become 
imprinted in the cosmic microwave background radiation. Calculations show 
that the temperature differences wouldn’t exactly be huge, but could be as 
large as a thousandth of a degree. If the temperature is 2.725 K in one region, 
the stretched-out quantum jitters would result in its being a touch colder, say 
2.7245 K, or a touch hotter, 2.7255 K, at nearby regions. 
 Painstakingly precise astronomical observations have sought these 
temperature variations. They’ve found them. Just as the theory predicted, they 
measure about a thousandth of a degree (see Figure 3.4). More impressive still, 
the tiny temperature differences fit a pattern on the sky that is explained spot-
on by the theoretical calculations. Figure 3.5 compares theoretical predictions 
of how the temperature should vary as a function of the distance between two 
regions (measured by the angle between their respective lines of sight when 
viewed from earth) with the actual measurements. The agreement is stunning. 
 The 2006 Nobel Prize in Physics was awarded to George Smoot and John 
Mather, who led more than a thousand researchers on the Cosmic Background 
Explorer team in the early 1990s to the first detection of these temperature 
differences. During the past decade, every new and more accurate 
measurement, yielding data such as those in Figure 3.5, has resulted in yet 
more precise verification of the predicted temperature variations. 
 These works have capped a thrilling story of discovery that began with 
the insights of Einstein, Friedmann, and Lemaître, was pushed sharply forward 
by the calculations of Gamow, Alpher, and Herman, was reinvigorated by the 
ideas of Dicke and Peebles, was shown relevant by the observations of Penzias 



and Wilson, and has now culminated in the handiwork of armies of 
astronomers, physicists, and engineers whose combined efforts have measured 
a fantastically minute cosmic signature that was set in place billions of years 
ago. 
 On a more qualitative level, we should all be thankful for the blotches in 
Figure 3.4. At the close of inflation in our bubble universe, regions with 
slightly more energy (equivalently, via E = mc2, regions with slightly more 
mass) exerted a slightly stronger gravitational pull, attracting more particles 
from their surroundings and thus growing larger. The larger aggregate, in turn, 
exerted an even stronger gravitational pull, thus attracting yet more matter and 
growing larger still. In time, this snowball effect resulted in the formation of 
clumps of matter and energy that, over billions of years, evolved into galaxies 
and the stars within them. In this way, inflationary theory establishes a 
remarkable link between the largest and smallest structures in the cosmos. The 
very existence of galaxies, stars, planets, and life itself derives from 
microscopic quantum uncertainty amplified by inflationary expansion. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3.4 The enormous spatial expansion in inflationary cosmology 
stretches quantum fluctuations from the microscopic to the macroscopic, 
resulting in observable temperature variations in the cosmic microwave 
background radiation (the darker splotches are slightly colder than the lighter 
ones). 



 
 Figure 3.5 The pattern of temperature differences in the cosmic 
microwave background radiation. Temperature variation is the vertical axis; 
the separation between two locations (measured by the angle between their 
respective lines of sight when viewed from earth—larger angles to the left, 
smaller angles to the right) is the horizontal axis.11 The theoretical curve is 
solid; the observational data are given by the circles. 
 
 Inflation’s theoretical underpinnings may be rather tentative: the inflaton, 
after all, is a hypothetical field whose existence has yet to be demonstrated; its 
potential energy curve is posited by researchers, not revealed by observation; 
the inflaton must somehow start at the top of its energy curve across a region 
of space; and so on. Despite all that, and even if some details of the theory are 
not quite right, the agreement between theory and observation has convinced 
many that the inflationary scheme taps into a deep truth about cosmic 
evolution. And since a great many versions of inflation are eternal, yielding an 
ever-growing number of bubble universes, theory and observation combine to 
make an indirect yet compelling case for this second version of parallel worlds. 
  



Experiencing the Inflationary Multiverse 
 
 
 In a Quilted Multiverse, there’s no sharp divide between one parallel 
universe and another. All are part of a single spatial expanse whose overall 
qualitative features are similar from region to region. The surprise lies in the 
details. Most of us wouldn’t expect worlds to repeat; most of us wouldn’t 
expect, every so often, to encounter versions of ourselves, our friends, our 
families. But if we could journey sufficiently far, that’s what we would find. 
 In an Inflationary Multiverse, the member universes are sharply divided. 
Each is a hole in the cosmic cheese, separated from the others by domains in 
which the inflaton’s value remains high. Since such intervening regions are 
still undergoing inflationary expansion, the bubble universes are rapidly driven 
apart, with a speed of recession proportional to the amount of swelling space 
between them. The farther apart they are, the greater the expansion’s speed; 
the ultimate result is that distant bubbles move apart faster than the speed of 
light. Even with unlimited longevity and technology, there’s no way to cross 
such a divide. There’s no way to even send a signal. 
 All the same, we can still imagine a voyage to one or more of the other 
bubble universes. On such a journey, what would you find? Well, because 
each bubble universe results from the same process—the inflaton is knocked 
from its perch, yielding a region that drops out of the inflationary expansion—
they are all governed by the same physical theory and so are all subject to the 
same set of physical laws. But, much as the behavior of identical twins can 
differ profoundly as a result of environmental differences, identical laws can 
manifest themselves in profoundly different ways in different environments. 
 Imagine, for example, that one of the other bubble universes looks much 
like ours, dotted by galaxies containing stars and planets, but with one 
essential difference. Permeating the universe is a magnetic field, thousands of 
times stronger than that created in our most advanced MRI machines, and one 
that can’t be switched off by a technician. Such a powerful field would affect 
the way a great many things behave. Not only would objects containing iron 
have a nasty habit of flying off in the direction of the field, but even basic 
properties of particles, atoms, and molecules would shift. A sufficiently strong 



magnetic field would so disrupt cellular function that life as we know it 
couldn’t take hold. 
 Yet just as the physical laws operating inside an MRI are the very same 
laws that operate outside, so the fundamental physical laws operating in this 
magnetic universe would be the same as ours. The discrepancies in 
experimental results and observable features would be due solely to an aspect 
of the environment: the strong magnetic field. Talented scientists in the 
magnetic universe would in time tease out this environmental factor and home 
in on the same mathematical laws we’ve discovered. 
 Over the past forty years, researchers have built a case for a similar 
scenario right here in our own universe. The most lauded theory of 
fundamental physics, the Standard Model of particle physics, posits that we 
are immersed in an exotic mist called the Higgs field (named after the English 
physicist Peter Higgs, who with important contributions from Robert Brout, 
François Englert, Gerald Guralnik, Carl Hagen, and Tom Kibble pioneered this 
idea in the 1960s). Both Higgs fields and magnetic fields are invisible and 
hence can fill space without directly revealing their presence. However, 
according to modern particle theory, a Higgs field camouflages itself far more 
fully. As particles move through a uniform, space-filling Higgs field, they 
don’t speed up, they don’t slow down, they are not coaxed to follow particular 
trajectories, as some would in the presence of a strong magnetic field. Instead, 
the theory claims, they’re influenced in ways more subtle and profound. 
 As fundamental particles burrow through a Higgs field, they acquire and 
maintain the mass that experiments have revealed them to possess. According 
to this idea, when you push against an electron or quark in an effort to change 
its speed, the resistance you feel comes from the particle’s “rubbing” against 
the molasses-like Higgs field. It’s this resistance that we call the particle’s 
mass. Were you to remove the Higgs field from some region, particles passing 
through would suddenly become massless. Were you to double the value of the 
Higgs field in another region, particles passing through would suddenly have 
twice their usual mass.* 
 Such human-induced changes are hypothetical, because the energy 
required to substantially modify a Higgs field’s value in even a small region of 
space is enormously beyond what we can muster. (The changes are also 
hypothetical because the existence of the Higgs fields is still up in the air. 



Theorists eagerly anticipate highly energetic collisions between protons at the 
Large Hadron Collider chipping off small chunks of the Higgs field—Higgs 
particles—that may be detected in the coming years.) But in many versions of 
inflationary cosmology, a Higgs field would naturally have different values in 
different bubble universes. 
 A Higgs field, much like an inflaton field, has a curve that records the 
amount of energy it contains for various values it can assume. An essential 
difference from the inflaton field’s energy curve, though, is that the Higgs 
typically settles not at the value 0 (as in Figure 3.1), but rather rolls to one of 
the troughs illustrated in Figure 3.6a. Picture, then, an early stage in each of 
two bubble universes, ours and another. In both, the hot, tempestuous frenzy 
causes the value of the Higgs field to undulate wildly. As each universe 
expands and cools, the Higgs field calms and its value rolls toward one of the 
troughs in Figure 3.6a. In our universe, the Higgs field’s value settles down in, 
say, the left trough, giving rise to the particle properties familiar from 
experimental observation. But in the other universe, the Higgs’ motion may 
result in its value settling down in the right trough. If it did, that universe 
would have properties substantially different from ours. Although the 
underlying laws in both universes would be the same, the masses and various 
other properties of particles would not. 
 Even a modest difference in particle properties would have weighty 
consequences. If the electron mass in another bubble universe were a few 
times larger than it is here, electrons and protons would tend to merge, forming 
neutrons and thus preventing the widespread production of hydrogen. The 
fundamental forces—the electromagnetic force, the nuclear forces, and (we 
believe) gravity—are also communicated by particles. Change the particle 
properties and you drastically change the properties of the forces. The heavier 
a particle, for example, the more sluggish its motion and so the shorter the 
distance over which the corresponding force is transmitted. The formation and 
stability of atoms in our bubble universe rely on the properties of the 
electromagnetic and nuclear forces. If you substantially modify those forces, 
atoms will fall apart or, more likely, not coalesce in the first place. An 
appreciable change to the properties of particles would thus disrupt the very 
processes that give our universe its familiar features. 
 



 



Figure 3.6 (a) A potential energy curve for a Higgs field that has two troughs. 
The familiar features of our universe are associated with the field settling 
down in the left trough; in another universe, however, the field can settle down 
in the right trough, yielding different physical features. (b)A sample potential 
energy curve for a theory with two Higgs fields. 
 
 
 Figure 3.6a illustrates only the simplest case, in which there is a single 
species of Higgs field. But theoretical physicists have explored more 
complicated scenarios involving multiple Higgs fields (we will shortly see that 
such possibilities naturally emerge from string theory), which translate into an 
even richer set of distinct bubble universes. An example with two Higgs fields 
is illustrated in Figure 3.6b. As before, the various troughs represent Higgs 
field values that one or another bubble universe could settle into. 
 Permeated by such unfamiliar values of various Higgs fields, these 
universes would differ from ours considerably, as schematically illustrated in 
Figure 3.7. This would make a journey through the Inflationary Multiverse a 
perilous undertaking. Many of the other universes would not be places you’d 
want high on your itinerary, because the conditions would be incompatible 
with the biological processes essential to survival, giving new meaning to the 
saying that there’s no place like home. In the Inflationary Multiverse, our 
universe could well be an island oasis in a gigantic but largely inhospitable 
cosmic archipelago. 
  
  



 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7 Because fields can settle down to different values in different 
bubbles, the universes in the Inflationary Multiverse can have different 
physical features, even though the universes are all governed by the same 
fundamental physical laws. 
 
 
Universes in a Nutshell 
 
 
 Because of their fundamental differences, the Quilted and Inflationary 
Multiverses might appear unrelated. The quilted variety emerges if the extent 
of space is infinite; the inflationary variety emerges from eternal inflationary 
expansion. Yet, there is a deep and wonderfully satisfying connection between 
them, one that brings the discussion in the previous two chapters full circle. 
The parallel universes arising from inflation generate their quilted cousins. The 
process has to do with time. 
 Of the many strange things Einstein’s work revealed, the fluidity of time 
is the hardest to grasp. Whereas everyday experience convinces us that there is 
an objective concept of time’s passage, relativity shows this to be an artifact of 
life at slow speeds and weak gravity. Move near light speed, or immerse 



yourself in a powerful gravitational field, and the familiar, universal 
conception of time will evaporate. If you’re rushing past me, things I insist 
happened at the same moment will appear to you to have occurred at different 
moments. If you’re hanging out near the edge of a black hole, an hour’s 
passage on your watch will be monumentally longer on mine. This isn’t 
evidence of a magician’s trickery or a hypnotist’s deception. The passage of 
time depends on the particulars—trajectory followed and gravity 
experienced—of the measurer.12 
 When applied to the entire universe, or to our bubble in an inflationary 
setting, this immediately raises a question: How does such malleable, custom-
made time comport with the notion of an absolute cosmological time? We 
freely speak of the “age” of our universe, but given that galaxies are moving 
rapidly relative to one another, at speeds dictated by their various separations, 
doesn’t the relativity of time’s passage create a nightmarish accounting 
problem for any would-be cosmic timekeeper? More pointedly, when we 
speak of our universe being “14 billion years old,” are we using a particular 
clock to measure that duration? 
 We are. And a careful consideration of such cosmic time reveals a direct 
link between parallel universes of the inflationary and quilted varieties. 
 Every method we use to measure time’s passage involves an examination 
of change that occurs to some particular physical system. Using a common 
wall clock, we examine the change in position of its hands. Using the sun, we 
examine the change in its position in the sky. Using carbon 14, we examine the 
percentage of an original sample that’s undergone radioactive decay to 
nitrogen. Historical precedent and general convenience have led us to use the 
rotation and revolution of the earth as physical referents, giving rise to our 
standard notions of “day” and “year.” But when we’re thinking on cosmic 
scales, there is another, more useful, method for keeping time. 
 We’ve seen that inflationary expansion yields vast regions whose 
properties on average are homogeneous. Measure the temperature, pressure, 
and average density of matter in two large but separate regions within a bubble 
universe, and the results will agree. The results can change over time, but the 
large-scale uniformity ensures that, on average, the change here is the same as 
the change there. As an important case in point, the mass density in our bubble 
universe has steadily decreased over our multibillion-year history, thanks to 



the relentless expansion of space, but because the change has occurred 
uniformly, our bubble’s large-scale homogeneity has not been disrupted. 
 This proves important because just as the steadily decreasing amount of 
carbon 14 in organic matter provides a means of measuring time’s passage on 
earth, so the steadily decreasing mass density provides a means of measuring 
time’s passage across space. And because the change has happened uniformly, 
mass density as a marker of time’s passage provides our bubble universe with 
a global standard. If everyone diligently calibrates their watches to the average 
mass density (and recalibrates after trips to black holes, or periods of travel at 
near light speed), the synchronicity of our timepieces across our bubble 
universe will be maintained. When we speak of the age of the universe—the 
age of our bubble, that is—it is on such cosmically calibrated watches that we 
imagine time’s passage being measured; it is only with respect to them that 
cosmic time is a sensible concept. 
 In the earliest era of our bubble universe, the same reasoning would have 
applied with one change of detail. Ordinary matter had yet to form, so we can’t 
speak of the average mass density in space. Instead, the inflaton field carried 
our universe’s storehouse of energy—energy that would shortly be converted 
into familiar particles—so we need to envisage setting our clocks by the 
density of the inflaton field’s energy. 
 Now, the inflaton’s energy is determined by its value, as summarized by 
its energy curve. To determine what time it is at a given location in our bubble, 
we therefore need to determine the value of the inflaton at that location. Then, 
just as two trees are the same age if they have the same number of tree rings, 
and just as two samples of glacial sediment are the same age if they have the 
same percentage of radioactive carbon, two locations in space are passing 
through the same moment in time when they have the same value of the 
inflaton field. That’s how we set and synchronize clocks in our bubble 
universe. 
 The reason I’ve brought all this up is that when applied to the cosmic 
Swiss cheese of the Inflationary Multiverse, these observations yield a 
strikingly counterintuitive implication. Much as Hamlet famously declares, “I 
could be bounded in a nutshell, and count myself a king of infinite space,” 
each of the bubble universes appears to have finite spatial extent when 
examined from the outside, but infinite spatial extent when examined from the 



inside. And that’s a marvelous realization. Infinite spatial extent is just what 
we need for quilted parallel universes. So we can meld the Quilted Multiverse 
into the inflationary story. 
 The extreme disparity between the outsider’s and insider’s perspectives 
arises because they have vastly different conceptions of time. Although the 
point is far from obvious, we’ll now see that what appears as endless time to 
an outsider appears as endless space, at each moment of time, to an insider.13 
 
 
Space in a Bubble Universe 
 
 
 To grasp how this comes about, imagine that Trixie, floating within a 
rapidly expanding inflaton-filled region of space, is observing the formation of 
a nearby bubble universe. Focusing her inflaton-meter on the growing bubble, 
she is able to directly track its changing inflaton field value. Although the 
region—the hole in the cosmic cheese—is three-dimensional, it’s simpler to 
examine the field along a one-dimensional cross section across its diameter, 
and as Trixie does so she records the data in Figure 3.8a. Each higher row 
shows the inflaton’s value at a successive moment in time, from Trixie’s 
perspective. And as is apparent from the figure, Trixie sees the bubble 
universe—represented in the figure by the lighter locations where the 
inflaton’s value has dropped—grow ever larger. 
 Now imagine that Norton is also examining this very same bubble 
universe, but from the inside; he’s hard at work making detailed astronomical 
observations with his own inflaton-meter. Norton, unlike Trixie, adheres to a 
notion of time that’s calibrated by the value of the inflaton. This is key to the 
conclusion we’re chasing, so I need you to buy into it fully. Imagine, if you 
will, that everyone in the bubble universe wears a watch that measures and 
displays the inflaton’s value. When Norton throws a dinner party, he instructs 
the guests to show up at his house when the inflaton’s value is 60. Since 
everyone’s watch is calibrated to the same, uniform standard—the inflaton 
field’s value—the party goes off without a hitch. Everyone shows up at the 
same moment because everyone is attuned to the same concept of 
synchronicity. 



  
 
 Figure 3.8a Each row chronicles the inflaton’s value at one moment of 
time from an outsider’s perspective. Higher rows correspond to later moments. 
The columns denote positions across space. A bubble is a region of space that 
stops inflating because of a drop in the inflaton’s value. The lighter entries 
denote the value of the inflaton field within the bubble. From the perspective of 
the outside observer, the bubble grows ever larger. 
 
 With this understanding, it’s a simple matter for Norton to work out the 
size of the bubble universe at any given moment of his time. In fact, it’s 
child’s play: all Norton has to do is paint by numbers. By connecting all points 
that have the same numerical value for the inflaton field, Norton can delineate 
all locations within the bubble at a single moment of time. His time. Insider’s 
time. 
 Norton’s drawing in Figure 3.8b says it all. Each curve, connecting 
points with the same inflaton-field value, represents all of space at a given 



moment of time. As the figure makes clear, each curve extends indefinitely far, 
which means that the size of the bubble universe, according to its inhabitants, 
is infinite. This reflects that endless outsider time, experienced by Trixie as the 
endless number of rows in Figure 3.8, appears as endless space, at each 
moment of time, according to an insider like Norton. 
 That’s a powerful insight. In Chapter 2, we found that the Quilted 
Multiverse was contingent upon space being infinitely large, something that, as 
we discussed there, might or might not be the case. Now we see that each 
bubble within the Inflationary Multiverse is spatially finite from the outside 
but spatially infinite from the inside. If the Inflationary Multiverse is real, then 
the inhabitants of a bubble—us—would thus be members not only of the 
Inflationary Multiverse but of the Quilted Multiverse, too.14 

 
 Figure 3.8bThe same information as in Figure 3.8a is organized 
differently by someone within the bubble. Inflaton values that agree 
correspond to identical moments, so the curves drawn sweep through all those 
points in space that exist at the same moment in time. Smaller inflaton values 
correspond to later moments. Note that the curves could be extended infinitely 
far, so from an insider’s perspective, space is infinite. 
 



 When I first learned of the Quilted and Inflationary Multiverses, it was 
the inflationary variety that struck me as more plausible. Inflationary 
cosmology resolves a number of long-standing puzzles while yielding 
predictions that match up well with observations. And by the reasoning we’ve 
recounted, inflation is naturally a process that never ends; it produces bubble 
universes upon bubble universes, of which we inhabit but one. The Quilted 
Multiverse, on the other hand, by having its full force when space is not just 
large but truly infinite (you might have repetition in a large universe, but you 
are guaranteed repetition in an infinite one), seemed avoidable: it might be the 
case, after all, that the universe has finite size. But we now see that eternal 
inflation’s bubble universes, when properly analyzed from the viewpoint of 
their inhabitants, are spatially infinite. Inflationary parallel universes beget 
quilted ones. 
 The best available cosmological theory for explaining the best available 
cosmological data leads us to think of ourselves as occupying one of a vast 
inflationary system of parallel universes, each of which harbors its own vast 
collection of quilted parallel universes. Cutting-edge research yields a cosmos 
in which there are not only parallel universes but parallel parallel universes. It 
suggests that reality is not only expansive but abundantly expansive. 
 
 *Equivalently, superfast accelerated expansion means that today’s distant 
regions would have been much closer together in the early universe than is 
suggested by the traditional big bang theory—ensuring that a common 
temperature could be established before the burst separated them. 
 *You might think that negative pressure would pull inward and thus be at 
odds with repulsive—outward-pushing—gravity. Actually, uniform pressure, 
regardless of its sign, doesn’t push or pull at all. Your eardrums pop only when 
there is nonuniform pressure, lower on one side than the other. The repulsive 
push I’m describing here is the gravitational force generated by the presence 
of the uniform negative pressure. This is a difficult but essential point. Again, 
whereas the presence of positive mass or positive pressure generates attractive 
gravity, the presence of negative pressure generates the less familiar repulsive 
gravity. 
 *The rapid expansion of space is called inflation, but following the 
historical pattern of invoking names that end in “on” (electron, proton, neutron, 



muon, etc.), when physicists refer to the field driving inflation, they drop the 
second “i.” Hence, inflaton field. 
 *Among those who played a leading role in this work were Viatcheslav 
Mukhanov, Gennady Chibisov, Stephen Hawking, Alexei Starobinsky, Alan 
Guth, So-Young Pi, James Bardeen, Paul Steinhardt, and Michael Turner. 
 *I stress fundamental particles, like electrons and quarks, because for 
composite particles, like protons and neutrons (each made from 3 quarks), 
much of the mass arises from interactions between the constituents (the energy 
carried by gluons of the strong nuclear force, which bind the quarks inside 
protons and neutrons, contributes most of the mass of these composite 
particles). 
 
 
  



CHAPTER 4 
 
 
Unifying Nature’s Laws 
 
 
On the Road to String Theory 
 
 
 From the big bang to inflation, modern cosmology traces its roots to a 
single scientific nexus: Einstein’s general theory of relativity. With his new 
theory of gravity, Einstein upended the accepted conception of a rigid and 
immutable space and time; science now had to embrace a dynamic cosmos. 
Contributions of this magnitude are rare. Yet, Einstein dreamed of scaling 
even greater heights. With the mathematical arsenal and geometric intuition 
he’d amassed by the 1920s, he set out to develop a unified field theory. 
 By this, Einstein meant a framework that would stitch all of nature’s 
forces into a single, coherent mathematical tapestry. Rather than have one set 
of laws for these physical phenomena and a different set for those, Einstein 
wanted to fuse all the laws into a seamless whole. History has judged 
Einstein’s decades of intense work toward unification as having had little 
lasting impact—the dream was noble, the timing was early—but others have 
taken up the mantle and made substantial strides, the most refined proposal 
being string theory. 
 My previous books The Elegant Universe and The Fabric of the Cosmos 
covered the history and essential features of string theory. In the years since 
they appeared, the theory’s general health and status have faced a spate of 
public questioning. Which is completely reasonable. For all its progress, string 
theory has yet to make definitive predictions whose experimental investigation 
could prove the theory right or wrong. As the next three multiverse varieties 
we will encounter (in Chapters 5 and 6) emerge from a string theoretic 
perspective, it’s important to address the current state of the theory as well as 
the prospects for making contact with experimental and observational data. 
Such is the charge of this chapter. 



A Brief History of Unification 
 
 
 At the time Einstein pursued the goal of unification, the known forces 
were gravity, described by his own general relativity, and electromagnetism, 
described by Maxwell’s equations. Einstein envisioned melding the two into a 
single mathematical sentence that would articulate the workings of all nature’s 
forces. Einstein had high hopes for this unified theory. He considered 
Maxwell’s nineteenth-century work on unification an archetypal contribution 
to human thought—and rightly so. Before Maxwell, the electricity flowing 
through a wire, the force generated by a child’s magnet, and the light 
streaming to earth from the sun were viewed as three separate, unrelated 
phenomena. Maxwell revealed that, in actuality, they formed an intertwined 
scientific trinity. Electric currents produce magnetic fields; magnets moving in 
the vicinity of a wire produce electric currents; and wavelike disturbances 
rippling through electric and magnetic fields produce light. Einstein 
anticipated that his own work would carry forward Maxwell’s program of 
consolidation by making the next and possibly final move toward a fully 
unified description of nature’s laws—a description that would unite 
electromagnetism and gravity. 
 This wasn’t a modest goal, and Einstein didn’t take it lightly. He had an 
unparalleled capacity for single-minded devotion to problems he’d set for 
himself, and during the last thirty years of his life the problem of unification 
became his prime obsession. His personal secretary and gatekeeper, Helen 
Dukas, was with Einstein at the Princeton Hospital during his penultimate day, 
April 17, 1955. She recounts how Einstein, bedridden but feeling a little 
stronger, asked for the pages of equations on which he had been endlessly 
manipulating mathematical symbols in the fading hope that the unified field 
theory would materialize. Einstein didn’t rise with the morning sun. His final 
scribblings shed no further light on unification.1 
 Few of Einstein’s contemporaries shared his passion for unification. 
From the mid-1920s through the mid-1960s, physicists, guided by quantum 
mechanics, were unlocking the secrets of the atom and learning how to harness 
its hidden powers. The lure of prying apart matter’s constituents was 
immediate and powerful. While many agreed that unification was a laudable 



goal, it was of only passing interest in an age when theorists and experimenters 
were working hand in glove to reveal the laws of the microscopic realm. With 
Einstein’s passing, work on unification ground to a halt. 
 His failure was compounded when subsequent research showed that his 
quest for unity had been too narrowly focused. Not only had Einstein 
downplayed the role of quantum physics (he believed the unified theory would 
supersede quantum mechanics and so it needn’t be incorporated from the 
outset), but his work failed to take account of two additional forces revealed by 
experiments: the strong nuclear force and the weak nuclear force. The former 
provides a powerful glue that holds together the nuclei of atoms, while the 
latter is responsible for, among other things, radioactive decay. Unification 
would need to combine not two forces but four; Einstein’s dream seemed all 
the more remote. 
 During the late 1960s and 1970s, the tide turned. Physicists realized that 
the methods of quantum field theory, which had been successfully applied to 
the electromagnetic force, also provided descriptions of the weak and strong 
nuclear forces. All three of the nongravitational forces could thus be described 
using the same mathematical language. Moreover, detailed study of these 
quantum field theories—most notably in the Nobel Prize–winning work of 
Sheldon Glashow, Steven Weinberg, and Abdus Salam, as well as in the 
subsequent insights of Glashow and his Harvard colleague Howard Georgi—
revealed relationships suggesting a potential unity among the electromagnetic, 
weak, and strong nuclear forces. Following Einstein’s nearly half-century-old 
lead, theoreticians argued that these three apparently distinct forces might 
actually be manifestations of a single monolithic force of nature.2 
 These were impressive advances toward unification, but set against the 
encouraging backdrop was a pesky problem. When scientists applied the 
methods of quantum field theory to nature’s fourth force, gravity, the math just 
wouldn’t work. Calculations involving quantum mechanics and Einstein’s 
general relativistic description of the gravitational field yielded jarring results 
that amounted to mathematical gibberish. However successful general 
relativity and quantum mechanics had been in their native domains, the large 
and the small, the nonsensical output from the attempt to unite them spoke to a 
deep fissure in the understanding of nature’s laws. If the laws you have prove 
mutually incompatible, then—clearly—the laws you have are not the right 



laws. Unification had been an aesthetic goal; now it was transformed into a 
logical imperative. 
 The mid-1980s witnessed the next pivotal development. That’s when a 
new approach, superstring theory, captured the attention of the world’s 
physicists. It ameliorated the hostility between general relativity and quantum 
mechanics, and so provided hope that gravity could be brought within a 
unified quantum mechanical fold. The era of superstring unification was born. 
Research proceeded at an intense pace, and thousands of journal pages were 
quickly filled with calculations that fleshed out aspects of the approach and 
laid the groundwork for its systematic formulation. An impressive and intricate 
mathematical structure emerged, but much about superstring theory (string 
theory, for short) remained mysterious.3 
 Then, beginning in the mid-1990s, theorists intent on unraveling those 
mysteries unexpectedly thrust string theory squarely into the multiverse 
narrative. Researchers had long known that the mathematical methods being 
used to analyze string theory invoked a variety of approximations and so were 
ripe for refinement. When some of those refinements were developed, 
researchers realized that the math suggested plainly that our universe might 
belong to a multiverse. In fact, the mathematics of string theory suggested not 
just one but a number of different kinds of multiverses of which we might be a 
part. 
 To fully grasp these compelling and contentious developments, and to 
assess their role in our ongoing search for the deep laws of the cosmos, we 
need to take a step back and first evaluate the state of string theory. 
 
Quantum Fields Redux 
 
 
 Let’s begin by taking a closer look at the traditional, highly successful 
framework of quantum field theory. This will prepare us to string unification 
as well as highlight pivotal connections between these two approaches for 
formulating nature’s laws. 
 Classical physics, as we saw in Chapter 3, describes a field as a kind of 
mist that permeates a region of space and can carry disturbances in the form of 
ripples and waves. Were Maxwell to describe the light that’s now illuminating 



this text, for example, he’d wax enthusiastic about electromagnetic waves, 
produced by the sun or by a nearby lightbulb, undulating across space on their 
way to the printed page. He’d describe the waves’ movement mathematically, 
using numbers to delineate the field’s strength and direction at each point in 
space. An undulating field corresponds to undulating numbers: the field’s 
numerical value at any given location cycles down and up again. 
 When quantum mechanics is brought to bear on the concept of a field, 
the result is quantum field theory, which is characterized by two essential new 
features. We’ve already encountered both, but they’re worth a refresher. First, 
quantum uncertainty causes the value of a field at each point in space to jitter 
randomly—think of the fluctuating inflaton field from inflationary cosmology. 
Second, quantum mechanics establishes that, somewhat as water is composed 
of H2O molecules, a field is composed of infinitesimally small particles known 
as the field’s quanta. For the electromagnetic field, the quanta are photons, and 
so a quantum theorist would modify Maxwell’s classical description of your 
lightbulb by saying that the bulb emits a steady stream comprising 100 billion 
billion photons each second. 
 Decades of research have established that these features of quantum 
mechanics as applied to fields are completely general. Every field is subject to 
quantum jitters. And every field is associated with a species of particle. 
Electrons are quanta of the electron field. Quarks are quanta of the quark field. 
For a (very) rough mental image, physicists sometimes think of particles as 
knots or dense nuggets of their associated field. This visualization 
notwithstanding, the mathematics of quantum field theory describes these 
particles as dots or points that have no spatial extent and no internal structure.4 
 Our confidence in quantum field theory comes from one essential fact: 
there is not a single experimental result that counters its predictions. To the 
contrary, data confirm that the equations of quantum field theory describe the 
behavior of particles with astounding accuracy. The most impressive example 
comes from the quantum field theory of the electromagnetic force, quantum 
electrodynamics. Using it, physicists have undertaken detailed calculations of 
the electron’s magnetic properties. The calculations are not easy, and the most 
refined versions have taken decades to complete. But they’ve been worth the 
effort. The results match actual measurements to a precision of ten decimal 
places, an almost unimaginable agreement between theory and experiment. 



 With such success, you might anticipate that quantum field theory would 
provide the mathematical framework for understanding all of nature’s forces. 
An illustrious coterie of physicists shared this very expectation. By the late 
1970s, the hard work of many of these visionaries had established that, indeed, 
the weak and strong nuclear forces fit squarely within the rubric of quantum 
field theory. Both forces are accurately described in terms of fields—the weak 
and the strong fields—that evolve and interact according to the mathematical 
rules of quantum field theory. 
 But, as I indicated in the historical overview, many of these same 
physicists quickly realized that the story for nature’s remaining force, gravity, 
was far subtler. Whenever the equations of general relativity commingled with 
those of quantum theory, the mathematics balked. Use the combined equations 
to calculate the quantum probability of some physical process—such as the 
chance of two electrons ricocheting off each other, given both their 
electromagnetic repulsion and their gravitational attraction—and you’d 
typically get the answer infinity. While some things in the universe can be 
infinite, such as the extent of space and the quantity of matter that may fill it, 
probabilities are not among them. By definition, the value of a probability 
must be between 0 and 1 (or, in terms of percentages, between 0 and 100). An 
infinite probability does not mean that something is very likely to happen, or is 
certain to happen; rather, it’s meaningless, like speaking of the thirteenth egg 
in an even dozen. An infinite probability sends a clear mathematical message: 
the combined equations are nonsense. 
 Physicists traced the failure to the jitters of quantum uncertainty. 
Mathematical techniques had been developed for analyzing the jitters of the 
strong, weak, and electromagnetic fields, but when the same methods were 
applied to the gravitational field—a field that governs the curvature of 
spacetime itself—they proved ineffective. This left the mathematics saturated 
with inconsistencies such as infinite probabilities. 
 To get a feel for why, imagine you’re the landlord of an old house in San 
Francisco. If you have tenants who throw raucous parties, it might take effort 
to deal with the situation, but you don’t worry that the festivities will 
compromise the building’s structural integrity. However, if there’s an 
earthquake, you’re facing something far more serious. The fluctuations of the 
three nongravitational forces—fields that are tenants within the house of 



spacetime—are like the building’s incessant partyers. It took a generation of 
theoretical physicists to grapple with their raucous jitters, but by the 1970s 
they’d developed mathematical methods capable of describing the quantum 
properties of the nongravitational forces. The fluctuations of the gravitational 
field, however, are qualitatively different. They’re more like an earthquake. 
Because the gravitational field is woven within the very fabric of spacetime, its 
quantum jitters shake the entire structure through and through. When used to 
analyze such pervasive quantum jitters, the mathematical methods collapsed.5 
 For years, physicists turned a blind eye to this problem because it 
surfaces only under the most extreme conditions. Gravity makes its mark when 
things are very massive, quantum mechanics when things are very small. And 
rare is the realm that is both small and massive, so that to describe it you must 
invoke both quantum mechanics and general relativity. Yet, there are such 
realms. When gravity and quantum mechanics are together brought to bear on 
either the big bang or black holes, realms that do involve extremes of 
enormous mass squeezed to small size, the math falls apart at a critical point in 
the analyses, leaving us with unanswered questions regarding how the universe 
began and how, at the crushing center of a black hole, it might end. 
 Moreover—and this is the truly daunting part—beyond the specific 
examples of black holes and the big bang, you can calculate how massive and 
how small a physical system needs to be for both gravity and quantum 
mechanics to play a significant role. The result is about 1019 times the mass of 
a single proton, the so-called Planck mass, squeezed into a fantastically small 
volume of about 10–99 cubic centimeters (roughly a sphere with a radius of 10–

33 centimeters, the so-called Planck length graphically illustrated in Figure 
4.1).6 The dominion of quantum gravity is thus more than a million billion 
times beyond the scales we can probe even with the world’s most powerful 
accelerators. This vast expanse of uncharted territory could easily be rife with 
new fields and their associated particles—and who knows what else. To unify 
gravity and quantum mechanics requires trekking from here to there, grasping 
the known and the unknown across an enormous expanse that, for the most 
part, is experimentally inaccessible. That’s a hugely ambitious task, and many 
scientists concluded that it was beyond reach. 
 You can thus imagine the surprise and skepticism when, in the mid-
1980s, rumors started racing through the physics community that there had 



been a major theoretical breakthrough toward unification with an approach 
called string theory. 
 

  
 
 Figure 4.1 The Planck length, where gravity and quantum mechanics 
confront each other, is some 100 billion billion times smaller than any domain 
that’s been explored experimentally. Reading across the chart, each of the 
equally spaced tick marks represents a decrease in size by a factor of 1,000; 
this allows the chart to fit on a page but visually downplays the huge range of 
scales. For a better feel, note that if an atom were magnified to be as large as 
the observable universe, the same magnification would make the Planck length 
the size of an average tree. 
 
 
String Theory 
 
 
 Although string theory has an intimidating reputation, its basic idea is 
easy to grasp. We’ve seen that the standard view, prior to string theory, 
envisions nature’s fundamental ingredients as point particles—dots with no 
internal structure—governed by the equations of quantum field theory. With 
each distinct species of particle is associated a distinct species of field. String 
theory challenges this picture by suggesting that the particles are not dots. 
Instead, the theory proposes that they’re tiny, stringlike, vibrating filaments, as 
in Figure 4.2. Look closely enough at any particle previously deemed 
elementary and the theory claims you’ll find a minuscule vibrating string. 
Look deep inside an electron, and you’d find a string; look deep inside a quark, 
and you’d find a string. 



 With even more precise observation, the theory argues, you’d notice that 
the strings within different kinds of particles are identical, the leitmotif of 
string unification, but vibrate in different patterns. An electron is less massive 
than a quark, which according to string theory means that the electron’s string 
vibrates less energetically than the quark’s string (reflecting again the 
equivalence of energy and mass embodied in E = mc2). The electron also has 
an electric charge whose magnitude exceeds that of a quark, and this 
difference translates into other, finer differences between the string vibrational 
patterns associated with each. Much as different vibrational patterns of strings 
on a guitar produce different musical notes, different vibrational patterns of the 
filaments in string theory produce different particle properties. 
  
 

 
 Figure 4.2 String theory’s proposal for the nature of physics at the 
Planck scale envisions that the fundamental constituents of matter are string-
like filaments. Because of the limited resolving power of our equipment, the 
strings appear as dots. 
 
 
 In fact, the theory encourages us to think of a vibrating string not merely 
as dictating the properties of its host particle but rather as being the particle. 
Because of the string’s infinitesimal size, on the order of the Planck length—
10–33 centimeters—even today’s most refined experiments cannot resolve the 
string’s extended structure. The Large Hadron Collider, which slams particles 
together with energies just beyond 10 trillion times that embodied by a single 
proton at rest, can probe to scales of about 10–19 centimeters; that’s a millionth 
of a billionth the width of a strand of hair, but still orders of magnitude too 
large to resolve phenomena at the Planck length. And so, just as earth would 



look dotlike if viewed from Pluto, strings would appear dotlike when studied 
even with the most advanced particle accelerator in the world. Nevertheless, 
according to string theory, particles are strings. 
 In a nutshell, that’s string theory. 
 
Strings, Dots, and Quantum Gravity 
 
 
 String theory has many other essential features, and the developments it 
has undergone since it was first proposed have greatly enriched the bare-bones 
description I’ve so far given. In the rest of this chapter (as well as Chapters 5, 
6, and 9), we will encounter some of the most pivotal advances, but I want to 
stress here three overarching points. 
 First, when a physicist proposes a model of nature using quantum field 
theory, he or she needs to choose the particular fields the theory will contain. 
The choice is guided by experimental constraints (each known particle species 
dictates the inclusion of an associated quantum field) as well as theoretical 
concerns (hypothetical particles and their associated fields, like the inflaton 
and Higgs fields, are invoked to address open problems or puzzling issues). 
The Standard Model is the prime example. Considered the crowning 
achievement of twentieth-century particle physics because of its capacity to 
accurately describe the wealth of data collected by particle accelerators 
worldwide, the Standard Model is a quantum field theory containing fifty-
seven distinct quantum fields (the fields corresponding to the electron, the 
neutrino, the photon, and the various kinds of quarks—the up-quark, the down-
quark, the charm-quark, and so on). Undeniably, the Standard Model is 
tremendously successful, but many physicists feel that a truly fundamental 
understanding would not require such an ungainly assortment of ingredients. 
 An exciting feature of string theory is that the particles emerge from the 
theory itself: a distinct species of particle arises from each distinct string 
vibrational pattern. And since the vibrational pattern determines the properties 
of the corresponding particle, if you understood the theory well enough to 
delineate all vibrational patterns, you’d be able to explain all properties of all 
particles. The potential and the promise, then, is that string theory will 
transcend quantum field theory by deriving all particle properties 



mathematically. Not only would this unify everything under the umbrella of 
vibrating strings, it would also establish that future “surprises”—such as the 
discovery of currently unknown particle species—are built into string theory 
from the outset and so would be accessible, in principle, to sufficiently 
industrious calculation. String theory doesn’t build piecemeal toward an ever 
more complete description of nature. It seeks a complete description from the 
get-go. 
 The second point is that among the string’s possible vibrations, there is 
one with just the right properties to be the quantum particle of the gravitational 
field. Even though pre–string theoretic attempts to merge gravity and quantum 
mechanics were unsuccessful, research did reveal the properties that any 
hypothesized particle associated with the quantum gravitational field—dubbed 
the graviton—would necessarily possess. The studies concluded that the 
graviton must be massless and chargeless, and must have the quantum 
mechanical property known as spin-2. (Very roughly, the graviton should spin 
like a top, twice as fast as the spin of a photon.)7 Wonderfully, early string 
theorists—John Schwarz, Joël Scherk, and, independently, Tamiaki Yoneya—
found that right there on the list of the string’s vibrational patterns was one 
whose properties matched those of the graviton. Precisely. When convincing 
arguments were put forward in the mid-1980s that string theory was a 
mathematically consistent quantum mechanical theory (largely due to the work 
of Schwarz and his collaborator Michael Green), the presence of gravitons 
implied that string theory provided a long-sought quantum theory of gravity. 
This is the most important accomplishment on string theory’s résumé and the 
reason it quickly soared to worldwide scientific prominence.*8 
 Third, however radical a proposal string theory may be, it recapitulates a 
revered pattern in the history of physics. Successful new theories usually do 
not render their predecessors obsolete. Instead, successful theories typically 
embrace their predecessors, while greatly extending the range of physical 
phenomena that can be accurately described. Special relativity extends 
understanding into the realm of high speeds; general relativity extends 
understanding further still, to the realm of large masses (the domain of strong 
gravitational fields); quantum mechanics and quantum field theory extend 
understanding into the realm of short distances. The concepts these theories 
invoke and the features they reveal are unlike anything previously envisioned. 



Yet, apply these theories in the familiar domains of everyday speeds, sizes, 
and masses and they reduce to the descriptions developed prior to the twentieth 
century—Newton’s classical mechanics and the classical fields of Faraday, 
Maxwell, and others. 
 String theory is potentially the next and final step in this progression. In a 
single framework, it handles the domains claimed by relativity and the 
quantum. Moreover, and this is worth sitting up straight to hear, string theory 
does so in a manner that fully embraces all the discoveries that preceded it. A 
theory based on vibrating filaments might not seem to have much in common 
with general relativity’s curved spacetime picture of gravity. Nevertheless, 
apply string theory’s mathematics to a situation where gravity matters but 
quantum mechanics doesn’t (to a massive object, like the sun, whose size is 
large) and out pop Einstein’s equations. Vibrating filaments and point particles 
are also quite different. But apply string theory’s mathematics to a situation 
where quantum mechanics matters but gravity doesn’t (to small collections of 
strings that are not vibrating quickly, moving fast, or stretched long; they have 
low energy—equivalently, low mass—so gravity plays virtually no role) and 
the math of string theory morphs into the math of quantum field theory. 
 This is graphically summarized in Figure 4.3, which shows the logical 
connections between the major theories physicists have developed since the 
time of Newton. String theory could have required a sharp break from the past. 
It could have stepped clear off the chart provided in the figure. Remarkably, it 
doesn’t. String theory is sufficiently revolutionary to transcend the barriers that 
hemmed in twentieth-century physics. Yet, the theory is sufficiently 
conservative to allow the past three hundred years of discovery to snuggly fit 
within its mathematics. 
  
  



 
 Figure 4.3A graphical representation of the relationships between the 
major theoretical developments in physics. Historically, successful new 
theories have extended the domain of understanding (to faster speeds, larger 
masses, shorter distances) while reducing to previous theories when applied in 
less extreme physical circumstances. String theory fits this pattern of progress: 
it extends the domain of understanding while, in suitable settings, reducing to 
general relativity and quantum field theory. 
 
 
The Dimensions of Space 
 
 
 Now for something stranger. The passage from dots to filaments is only 
part of the new framework introduced by string theory. In the early days of 
string theory research, physicists encountered pernicious mathematical flaws 
(called quantum anomalies), entailing unacceptable processes like the 
spontaneous creation or destruction of energy. Typically, when problems like 
this afflict a proposed theory, physicists respond swiftly and sharply. They 



discard the theory. Indeed, many in the 1970s thought this the best course of 
action regarding strings. But the few researchers who stayed the course came 
upon an alternative way of proceeding. 
 In a dazzling development, they discovered that the problematic features 
were entwined with the number of dimensions of space. Their calculations 
revealed that were the universe to have more than the three dimensions of 
everyday experience—more than the familiar left/right, back/forth, and 
up/down—then string theory’s equations could be purged of their problematic 
features. Specifically, in a universe with nine dimensions of space and one of 
time, for a total of ten spacetime dimensions, the equations of string theory 
become trouble-free. 
 I’d love to explain in purely nontechnical terms how this comes about, 
but I can’t, and I’ve never encountered anyone who can. I made an attempt in 
The Elegant Universe, but that treatment only describes, in general terms, how 
the number of dimensions affects aspects of string vibrations, and doesn’t 
explain where the specific number ten comes from. So, in one slightly 
technical line, here’s the mathematical skinny. There’s an equation in string 
theory that has a contribution of the form (D — 10) times (Trouble), where D 
represents the number of spacetime dimensions and Trouble is a mathematical 
expression resulting in troublesome physical phenomena, such as the violation 
of energy conservation mentioned above. As to why the equation takes this 
precise form, I can’t offer any intuitive, nontechnical explanation. But if you 
do the calculation, that’s where the math leads. Now, the simple but key 
observation is that if the number of spacetime dimensions is ten, not the four 
we expect, the contribution becomes 0 times Trouble. And since 0 times 
anything is 0, in a universe with ten spacetime dimensions the trouble gets 
wiped away. That’s how the math plays out. Really. And that’s why string 
theorists argue for a universe with more than four spacetime dimensions. 
 Even so, no matter how open you may be to following the trail blazed by 
mathematics, if you’ve never encountered the idea of extra dimensions, the 
possibility may nevertheless sound nutty. Dimensions of space don’t go 
missing like car keys or one member of your favorite pair of socks. If there 
were more to the universe than length, width, and height, surely someone 
would’ve noticed. Well, not necessarily. Even as far back as the early decades 
of the twentieth century, a prescient series of papers by the German 



mathematician Theodor Kaluza and by the Swedish physicist Oskar Klein 
suggested that there might be dimensions that are proficient at evading 
detection. Their work envisioned that unlike the familiar spatial dimensions 
that extend over great, possibly infinite, distances, there might be additional 
dimensions that are tiny and curled up, making them difficult to see. 
 To picture this, think of a common drinking straw. But for the purpose at 
hand, make it decidedly uncommon by imagining it as thin as usual but as tall 
as the Empire State Building. The surface of the tall straw (like that of any 
straw) has two dimensions. The long vertical dimension is one; the short 
circular dimension, which curls around the straw, is the other. Now imagine 
viewing the tall straw from across the Hudson River, as in Figure 4.4a. 
Because the straw is so thin, it looks like a vertical line stretching from ground 
to sky. At this distance, you don’t have the visual acuity to see the straw’s tiny 
circular dimension, even though it exists at every point along the straw’s long 
vertical extent. This leads you to think, incorrectly, that the straw’s surface is 
one-dimensional, not two.9 
 For another visualization, think of a huge carpet blanketing Utah’s salt 
flats. From an airplane, the carpet looks like a flat surface with two dimensions 
that extend north/south and east/west. But after you parachute down and view 
the carpet up close, you realize that its surface is composed of a tight pile: tiny 
cotton loops attached to each point on the flat carpet backing. The carpet has 
two large, easy-to-see dimensions (north/south and east/west), but also one 
small dimension (the circular loops) that is harder to detect (Figure 4.4b). 
 The Kaluza-Klein proposal suggested that a similar distinction, between 
dimensions that are big and easily seen, and others that are tiny and thus more 
difficult to reveal, might apply to the fabric of space itself. The reason we are 
all aware of the familiar three dimensions of space would be that their extent, 
like the vertical dimension of the straw and the north/south and east/west 
dimensions of the carpet, is huge (possibly infinite). However, if an extra 
dimension of space were curled up like the circular part of the straw or carpet, 
but to an extraordinarily small size—millions or even billions of times smaller 
than a single atom—it could be as ubiquitous as the familiar unfurled 
dimensions and yet remain beyond our ability to detect even with today’s most 
powerful magnifying equipment. The dimension would indeed go missing. 
Such was the beginning of Kaluza-Klein theory, the proposition that our 



universe has spatial dimensions beyond the three of everyday experience 
(Figure 4.5). 
 This line of thought establishes that the suggestion of “extra” spatial 
dimensions, however unfamiliar, is not absurd. That’s a good start, but it 
invites an essential question: Why, back in the 1920s, would someone invoke 
such an exotic idea? Kaluza’s motivation came from an insight he had shortly 
after Einstein published the general theory of relativity. He found that with a 
single stroke of the pen—literally—he could modify Einstein’s equations to 
make them apply to a universe with one additional dimension of space. And 
when he analyzed those modified equations, the results were so thrilling that, 
as his son has recounted, Kaluza discarded his normally reserved demeanor, 
pounded his desk with both hands, shot to his feet, and erupted into an aria 
from The Marriage of Figaro.10 Within the modified equations, Kaluza found 
the ones Einstein had already used successfully to describe gravity in the 
familiar three dimensions of space and one of time. But because his new 
formulation included an additional dimension of space, Kaluza found an 
additional equation. Lo and behold, when Kaluza derived this equation he 
recognized it as the very one Maxwell had discovered half a century earlier to 
describe the electromagnetic field. 
  



 
   
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4 (a)The surface of a tall straw has two dimensions; the vertical 
dimension is long and easy to see, while the circular dimension is small and 
harder to detect. (b)A gigantic carpet has three dimensions; the north/south 
and east/west dimensions are big and easy to see, while the circular part, the 
carpet’s pile, is small and therefore harder to detect. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
 
 
 
 
 Figure 4.5 Kaluza-Klein theory posits tiny extra spatial dimensions 
attached to every point in the familiar three large spatial dimensions. If we 
could magnify the spatial fabric sufficiently, the hypothesized extra dimensions 
would become visible. (For the sake of visual clarity, extra dimensions are 
attached only on grid points in the illustration.) 
 
 



 Kaluza revealed that in a universe with an additional dimension of space, 
gravity and electromagnetism can both be described in terms of spatial ripples. 
Gravity ripples through the familiar three spatial dimensions, while 
electromagnetism ripples through the fourth. An outstanding problem with 
Kaluza’s proposal was to explain why we don’t see this fourth spatial 
dimension. It was here that Klein made his mark by suggesting the resolution 
explained above: dimensions beyond those we directly experience can elude 
our senses and our equipment if they’re sufficiently small. 
 In 1919, after learning about the extra dimensional proposal for 
unification, Einstein vacillated. He was impressed by a framework that 
advanced his dream of unification but was hesitant about such an outlandish 
approach. After cogitating for a couple of years, in the process holding up 
publication of Kaluza’s paper, Einstein finally warmed to the idea and in time 
became one of the strongest champions of hidden spatial dimensions. In his 
own research toward a unified theory, he returned to this theme repeatedly. 
 Einstein’s blessing notwithstanding, subsequent research showed that the 
Kaluza-Klein program ran up against a number of hurdles, the most difficult 
being its inability to incorporate the detailed properties of matter particles, 
such as electrons, into its mathematical structure. Clever ways around this 
problem, as well as various generalizations and modifications of the original 
Kaluza-Klein proposal, were pursued on and off for a couple of decades, but as 
no pitfall-free framework emerged, by the mid-1940s the idea of unification 
through extra dimensions was largely dropped. 
 Thirty years later, along came string theory. Rather than allowing for a 
universe with more than three dimensions, the mathematics of string theory 
required it. And so string theory provided a new, ready-made setting for 
invoking the Kaluza-Klein program. In response to the question “If string 
theory is the long-sought unified theory, then why haven’t we seen the extra 
dimensions it needs?” Kaluza-Klein echoed across the decades, answering that 
the dimensions are all around us but are just too small to be seen. String theory 
resurrected the Kaluza-Klein program, and by the mid-1980s researchers 
worldwide were inspired to believe that it was only a matter of time—
according to the most enthusiastic proponents, a short time—before string 
theory would provide a complete theory of all matter and all forces. 



Great Expectations 
 
 
 During the early days of string theory, progress came at such a rapid clip 
that it was nearly impossible to keep up with all the developments. Many 
compared the atmosphere to that of the 1920s, when scientists stormed into the 
newly discovered realm of the quantum. With such excitement it’s 
understandable that some theoreticians spoke of a swift resolution to the major 
problems of fundamental physics: the merger of gravity and quantum 
mechanics; the unification of all of nature’s forces; an explanation of the 
properties of matter; a determination of the number of spatial dimensions; the 
elucidation of black hole singularities; and the unraveling of the origin of the 
universe. As more seasoned researchers anticipated, though, these expectations 
were premature. String theory is so rich, wide ranging, and mathematically 
difficult that research to date, nearly three decades after the initial euphoria, 
has taken us but partway down the road of exploration. And given that the 
realm of quantum gravity is some hundred billion billion times smaller than 
anything we can currently access experimentally, levelheaded assessments 
expect that the road will be long. 
 Where are we along it? In the rest of the chapter, I’ll survey the most 
advanced understanding in a number of key areas (saving those relevant to the 
theme of parallel universes for more detailed discussion in subsequent 
chapters), and I’ll appraise the achievements to date and the challenges still 
looming. 
 
 
String Theory and the Properties of Particles 
 
 
 One of the deepest questions in all of physics is why nature’s particles 
have the properties they do. Why, for example, does the electron have its 
particular mass and the up-quark its particular electric charge? The question 
commands attention not only for its intrinsic interest but also because of a 
tantalizing fact we alluded to earlier. Had the particles’ properties been 
different—had, say, the electron been moderately heavier or lighter, or had the 



electric repulsion between electrons been stronger or weaker—the nuclear 
processes that power stars like our sun would have been disrupted. Without 
stars, the universe would be a very different place.11 Most pointedly, without 
the sun’s heat and light, the complex chain of events that led to life on earth 
would have failed to happen. 
 This leads to a grand challenge: using pen, paper, possibly a computer, 
and one’s best understanding of the laws of physics, calculate the particle 
properties and find results in agreement with the measured values. If we could 
meet this challenge, we’d take one of the most profound steps ever toward 
understanding why the universe is as it is. 
 In quantum field theory, the challenge is insurmountable. Permanently. 
Quantum field theory requires the measured particle properties as input—these 
features are part of the theory’s definition—and so can happily accommodate a 
broad range of values for their masses and charges.12 In an imaginary world 
where the electron’s mass or charge was larger or smaller than it is in ours, 
quantum field theory could cope without blinking an eye; it would simply be a 
matter of adjusting the value of a parameter within the theory’s equations. 
 Can string theory do better? 
 One of the most beautiful features of string theory (and the facet that 
most impressed me when I learned the subject) is that particle properties are 
determined by the size and shape of the extra dimensions. Because strings are 
so tiny, they don’t just vibrate within the three big dimensions of common 
experience; they also vibrate into the tiny, curled-up dimensions. And much as 
air streams flowing through a wind instrument have vibrational patterns 
dictated by the instrument’s geometrical form, the strings in string theory have 
vibrational patterns dictated by the geometrical form of the curled-up 
dimensions. Recalling that string vibrational patterns determine particle 
properties such as mass and electrical charge, we see that these properties are 
determined by the geometry of the extra dimensions. 
 So, if you knew exactly what the extra dimensions of string theory 
looked like, you’d be well on your way to predicting the detailed properties of 
vibrating strings, and hence the detailed properties of the elementary particles 
the strings vibrate into existence. The hurdle is, and has been for some time, 
that no one has been able to figure out the exact geometrical form of the extra 
dimensions. The equations of string theory place mathematical restrictions on 



the geometry of the extra dimensions, requiring them to belong to a particular 
class called Calabi-Yau shapes (or, in mathematical jargon, Calabi-Yau 
manifolds), named after the mathematicians Eugenio Calabi and Shing-Tung 
Yau, who investigated their properties well before their important role in string 
theory was discovered (Figure 4.6). The problem is that there’s not a single, 
unique Calabi-Yau shape. Instead, like musical instruments, the shapes come 
in a wide variety of sizes and contours. And just as different instruments 
generate different sounds, extra dimensions that differ in size and shape (as 
well as with respect to more detailed features we’ll come upon in the next 
chapter) generate different string vibrational patterns and hence different sets 
of particle properties. The lack of a unique specification of the extra 
dimensions is the main stumbling block preventing string theorists from 
making definitive predictions. 

 
  
 Figure 4.6 A close-up of the spatial fabric in string theory, showing an 
example of extra dimensions curled up into a Calabi-Yau shape. Like the pile 
and backing of a carpet, the Calabi-Yau shape would be attached to every 
point in the familiar three large spatial dimensions (represented by the two-
dimensional grid), but for visual clarity the shapes are shown only on grid 
points. 
 
  



 When I started working on string theory, back in the mid-1980s, there 
were only a handful of known Calabi-Yau shapes, so one could imagine 
studying each, looking for a match to known physics. My doctoral dissertation 
was one of the earliest steps in this direction. A few years later, when I was a 
postdoctoral fellow (working for the Yau of Calabi-Yau), the number of 
Calabi-Yau shapes had grown to a few thousand, which presented more of a 
challenge to exhaustive analysis—but that’s what graduate students are for. As 
time passed, however, the pages of the Calabi-Yau catalog continued to 
multiply; as we will see in Chapter 5, they have now grown more numerous 
than grains of sand on a beach. Every beach. Everywhere. By a long shot. To 
analyze mathematically each possibility for the extra dimensions is out of the 
question. String theorists have therefore continued the search for a 
mathematical directive from the theory that might single out a particular 
Calabi-Yau shape as “the one.” To date, no one has succeeded. 
 And so, when it comes to explaining the properties of the fundamental 
particles, string theory has yet to realize its promise. In this regard, it so far 
offers no improvement over quantum field theory.13 
 Bear in mind, however, that string theory’s claim to fame is its ability to 
resolve the central dilemma of twentieth-century theoretical physics: the 
raging hostility between general relativity and quantum mechanics. Within 
string theory, general relativity and quantum mechanics finally join together 
harmoniously. That’s where string theory provides a vital advance, taking us 
beyond a critical obstacle that confounded the standard methods of quantum 
field theory. Should a better understanding of the mathematics of string theory 
enable us to pick out a unique form for the extra dimensions, one that 
furthermore allows us to explain all observed particle properties, that would be 
a phenomenal triumph. But there’s no guarantee that string theory can rise to 
the challenge. There’s also no necessity for it to do so. Quantum field theory 
has been rightly lauded as hugely successful, and yet it can’t explain the 
fundamental particle properties. If string theory also can’t explain the particle 
properties but goes beyond quantum field theory in one key measure, by 
embracing gravity, that alone would be a monumental achievement. 
 Indeed, in Chapter 6 we’ll see that in a cosmos replete with parallel 
worlds—as suggested by one modern reading of string theory—it may be 
plainly wrongheaded to hope that mathematics would pick out a unique form 



for the extra dimensions. Instead, much as the many different forms for DNA 
provide for the abundant variety of life on earth, so the many different forms 
for the extra dimensions may provide for the abundant variety of universes 
populating a string-based multiverse. 
 
String Theory and Experiment 
 
 
 If a typical string is as small as Figure 4.2 suggests, to probe its extended 
structure—the very characteristic that distinguishes it from a point—you’d 
need an accelerator some million billion times more powerful than even the 
Large Hadron Collider. Using known technology, such an accelerator would 
need to be about as large as the galaxy, and would consume enough energy 
each second to power the entire world for a millennium. Barring a spectacular 
technological breakthrough, this ensures that at the comparatively low energies 
our accelerators can reach, strings will appear as though they are point 
particles. This is the experimental version of the theoretical fact I emphasized 
earlier: at low energy, the mathematics of string theory transforms into the 
mathematics of quantum field theory. And so, even if string theory is the true 
fundamental theory, it will impersonate quantum field theory in a wide range 
of accessible experiments. 
 That’s a good thing. Although quantum field theory is not equipped to 
combine general relativity and quantum mechanics, nor to predict the 
fundamental properties of nature’s particles, it can explain a great many other 
experimental results. It does this by taking the measured properties of particles 
as input (input that dictates the choice of fields and energy curves in the 
quantum field theory) and then uses the mathematics of quantum field theory 
to predict how such particles will behave in other experiments, generally 
accelerator-based. The results are extremely accurate, which is why 
generations of particle physicists have made quantum field theory their 
primary approach. 
 The choice of fields and energy curves in quantum field theory is 
tantamount to the choice of the extra dimensional shape in string theory. The 
particular challenge facing string theory, though, is that the mathematics 
linking particle properties (such as their masses and charges) to the shape of 



the extra dimensions is extraordinarily intricate. This makes it difficult to work 
backwards—to use experimental data to guide the choice of the extra 
dimensions, much as such data guide the choices of fields and energy curves in 
quantum field theory. One day we may have the theoretical dexterity to use 
experimental data to fix the form of string theory’s extra dimensions, but not 
yet. 
 For the foreseeable future, then, the most promising avenue for linking 
string theory with data are predictions that, while open to explanations using 
more traditional methods, are far more naturally and convincingly explained 
using string theory. Just as you might theorize that I’m typing these words 
with my toes, a far more natural and convincing hypothesis—and one I can 
attest to as correct—is that I’m using my fingers. Analogous considerations 
applied to the experiments summarized in Table 4.1 have the capacity to build 
a circumstantial case for string theory. 
 The undertakings range from particle physics experiments at the Large 
Hadron Collider (searching for supersymmetric particles and for evidence of 
extra dimensions), to tabletop experiments (measuring the gravitational 
strength of attraction on scales of a millionth of a meter and smaller), to 
astronomical observations (looking for particular kinds of gravitational waves 
and fine temperature variations in the cosmic microwave background 
radiation). The table explains the individual approaches, but the overall 
assessment is readily summarized. A positive signature from any of these 
experiments could be explained without invoking string theory. For example, 
although the mathematical framework of supersymmetry (see the first entry in 
Table 4.1) was initially discovered through theoretical studies of string theory, 
it has since been incorporated into non-string theoretic approaches. 
Discovering supersymmetric particles would thus confirm a piece of string 
theory, but would not constitute a smoking gun. Similarly, although extra 
spatial dimensions have a natural home within string theory, we’ve seen that 
they too can be part of non-string theoretic proposals—Kaluza, as a case in 
point, was not thinking about string theory when he proposed the idea. The 
most favorable outcome from the approaches in Table 4.1, therefore, would be 
a series of positive results that would show pieces of the string theory puzzle 
falling into place. Like touting touch-typing toes, non-string explanations 
would become overwrought when faced with such a collection of positive 



results. 
 
 Table 4.1. Experiments and Observations with the Capacity to Link 
String Theory to Data 
 
 EXPERIMENT/OBSERVATION:Supersymmetry 
 EXPLANATION: The “super” in superstring theory refers to 
supersymmetry, a mathematical feature with a straightforward implication: for 
every known particle species there should be a partner species that has the 
same electrical and nuclear force properties. Theorists surmise that these 
particles have so far evaded detection because they are heavier than their 
known counterparts, and so lie beyond the reach of well-worn accelerators. 
The Large Hadron Collider may have enough energy to produce them, so 
there’s broad anticipation that we may be on the threshold of revealing 
nature’s supersymmetric quality. 
 EXPERIMENT/OBSERVATION:Extra Dimensions and Gravity 
 EXPLANATION: Because space is the medium for gravity, more 
dimensions supply a larger domain within which gravity can spread. And just 
as a drop of ink grows more diluted when it spreads in a vat of water, the 
strength of gravity would become diluted as it spreads through the additional 
dimensions—offering an explanation for why gravity appears weak (when you 
pick up a coffee cup, your muscles beat out the gravitational pull of the entire 
earth). If we could measure gravity’s strength over distances smaller than the 
size of the extra dimensions, we’d catch it before it’s fully spread and so we 
should find its strength to be stronger. To date, measurements on scales as 
short as a micron (10–6 meters) have found no deviation from expectations 
based on a world with three spatial dimensions. Should a deviation be found as 
physicists push these experiments to ever-shorter distances, that would provide 
convincing evidence for additional dimensions. 
 EXPERIMENT/OBSERVATION:Extra Dimensions and Missing 
Energy 
 EXPLANATION: If the extra dimensions exist but are far smaller than a 
micron, they will be inaccessible to experiments that directly measure 
gravity’s strength. But the Large Hadron Collider provides another means of 
revealing their existence. Debris created by head-on collisions between fast-



moving protons can be ejected from our familiar large dimensions and 
squeezed into the others (where, for reasons we’ll get to later, the debris would 
likely be particles of gravity, or gravitons). Were this to happen, the debris 
would carry away energy, and as a result our detectors would register a little 
less energy after the collision than was present before. Such missing energy 
signals could provide strong evidence for the existence of extra dimensions. 
 EXPERIMENT/OBSERVATION:Extra Dimensions and Mini Black 
Holes 
 EXPLANATION: Black holes are usually described as the remains of 
massive stars that have exhausted their nuclear fuel and collapsed under their 
own weight, but this is an unduly limited description. Anything would become 
a black hole if compressed sufficiently. Moreover, if there are extra 
dimensions that result in gravity being stronger when acting over short 
distances, it would be easier to form black holes, since a stronger gravitational 
force implies that it takes less compression to generate the same gravitational 
pull. Even just two protons, if slammed together at the velocities mustered by 
the Large Hadron Collider, may be able to cram enough energy into a 
sufficiently small volume to trigger the formation of a black hole. It would be 
a wisp of a black hole, but it would yield an unmistakable signature. 
Mathematical analysis, going back to the work of Stephen Hawking, shows 
that tiny black holes would quickly disintegrate into a spray of lighter particles 
whose tracks would be picked up by the collider’s detectors. 
 EXPERIMENT/OBSERVATION:Gravitational Waves 
 EXPLANATION: Although strings are tiny, if you could somehow grab 
hold of one, you could stretch it large. You’d need to apply a force in excess of 
1020 tons, but stretching a string is merely a matter of exerting enough energy. 
Theorists have found exotic situations in which the energy for such stretching 
might be provided by astrophysical processes, generating long strings wafting 
through space. Even if they were very distant, these strings might be detectable. 
Calculations show that as a long string vibrates, it creates ripples in 
spacetime—known as gravitational waves—of a highly distinctive shape, and 
hence they offer a clear observational signature. Within the next few decades, 
if not sooner, highly sensitive detectors based on earth and, funding permitting, 
in space, may be able to measure these ripples. 



 EXPERIMENT/OBSERVATION:Cosmic Microwave Background 
Radiation 
 EXPLANATION: The cosmic microwave background radiation has 
already proved itself capable of probing quantum physics: the measured 
temperature differences in the radiation arise from quantum jitters stretched 
large by spatial expansion. (Recall the analogy of a tiny message scribbled on 
a shriveled balloon becoming visible once the balloon is inflated.) In inflation, 
the stretching of space is so enormous that even tinier imprints, perhaps laid 
down by strings, might also be stretched sufficiently to be detectable—perhaps 
by the European Space Agency’s Planck satellite. Success or failure turns on 
details of how strings would have behaved in the earliest moments of the 
universe—the nature of the message they would have imprinted on the 
deflated cosmic balloon. Various ideas have been developed and calculations 
made. Theorists are now waiting for the data to speak for themselves. 
 
 
 Negative experimental results would provide much less useful 
information. The failure to find supersymmetric particles might mean they 
don’t exist, but it also might mean they are too heavy for even the Large 
Hadron Collider to produce; the failure to find evidence for extra dimensions 
might mean they don’t exist, but it also might mean they are too small for our 
technologies to access; the failure to find microscopic black holes might mean 
that gravity does not get stronger on short scales, but it also might mean that 
our accelerators are too weak to burrow deeply enough into the microscopic 
terrain where the increase in strength is substantial; the failure to find stringy 
signatures in observations of gravitational waves or the cosmic microwave 
background radiation might mean string theory is wrong, but it might also 
mean that the signatures are too meager for current equipment to measure. 
 As of today, then, the most promising positive experimental results 
would most likely not be able to definitively prove string theory right, while 
negative results would most likely not be able to prove string theory wrong.14 
Yet, make no mistake. If we find evidence of extra dimensions, 
supersymmetry, mini black holes, or any of the other potential signatures, that 
will be a huge moment in the search for a unified theory. It would bolster 



confidence, and justifiably so, that the mathematical road we’ve been paving is 
headed in the right direction. 
 
 
String Theory, Singularities, and Black Holes 
 
 
 In the vast majority of situations, quantum mechanics and gravity happily 
ignore each other, the former applying to small things like molecules and 
atoms and the latter to big things like stars and galaxies. But the two theories 
are forced to shed their isolation in the realms known as singularities. A 
singularity is any physical setting, real or hypothetical, that is so extreme (huge 
mass, small size, enormous spacetime curvature, punctures or rips in the 
spacetime fabric) that quantum mechanics and general relativity go haywire, 
generating results akin to the error message displayed on a calculator when 
you divide any number by zero. 
 A prize achievement of any purported quantum theory of gravity is to 
meld quantum mechanics and gravity in a manner that cures singularities. The 
resulting mathematics should never break down—even at the moment of the 
big bang or in the center of a black hole,15 thus providing a sensible description 
of situations that have long baffled researchers. It is here that string theory has 
made its most impressive strides, taming a growing list of singularities. 
 In the mid-1980s, the team of Lance Dixon, Jeff Harvey, Cumrun Vafa, 
and Edward Witten realized that certain punctures in the spatial fabric (known 
as orbifold singularities), which leave Einstein’s mathematics in shambles, 
pose no problem for string theory. The key to this success is that whereas point 
particles can fall into punctures, strings can’t. Because strings are extended 
objects, they can bang into a puncture, they can wrap around it, or they can get 
stuck to it, but these mild interactions leave the equations of string theory 
perfectly sound. This is important not because such ruptures in space actually 
happen—they may or may not—but because string theory is delivering just 
what we want from a quantum theory of gravity: a means of making sense of a 
situation that lies beyond what general relativity and quantum mechanics can 
handle on their own. 



 In the 1990s, work I did with Paul Aspinwall and David Morrison, and 
independent results of Edward Witten, established that yet more intense 
singularities (known as flop singularities) in which a spherical portion of space 
is compressed to an infinitesimal size can also be handled by string theory. The 
intuitive reasoning here is that as a string moves it can sweep across the 
compressed chunk of space, like a hula hoop across a soap bubble, and thus act 
as an encircling protective barrier. The calculations showed that such a “string 
shield” nullifies any potentially disastrous consequences, ensuring that string 
theory’s equations suffer no ill effect—no “1 divided by 0” type errors—even 
though the equations of conventional general relativity would fall apart. 
 In the years since, researchers have shown that a variety of other more 
complicated singularities (with names like conifolds, orientifolds, 
enhancons …..) are also under full control within string theory. So there’s a 
growing list of situations that would have left Einstein, Bohr, Heisenberg, 
Wheeler, and Feynman saying, “We just don’t know what’s going on,” and yet 
for which string theory gives a complete and consistent description. 
 This is great progress. But a remaining challenge for string theory is to 
cure the singularities of black holes and the big bang, which are more severe 
than those so far addressed. Theorists have expended much effort trying to 
reach this goal, and they’ve taken significant strides. But the executive 
summary is that there is still a way to go before these most puzzling and most 
relevant of singularities are fully understood. 
 Nevertheless, one major advance has illuminated a related aspect of black 
holes. As I will discuss in Chapter 9, the work of Jacob Bekenstein and 
Stephen Hawking in the 1970s established that black holes contain a very 
particular quantity of disorder, technically known as entropy. According to 
basic physics, much as the disorder within a sock drawer reflects the many 
possible haphazard rearrangements of its contents, the disorder of a black hole 
reflects the many possible haphazard rearrangements of the black hole’s 
innards. But try as they might, physicists were unable to understand black 
holes well enough to identify their innards, let alone analyze the possible ways 
they could be rearranged. The string theorists Andrew Strominger and Cumrun 
Vafa broke through the impasse. Using a mélange of string theory’s 
fundamental ingredients (some of which we will encounter in Chapter 5), they 
created a mathematical model for a black hole’s disorder, a model transparent 



enough to enable them to extract a numerical measure of the entropy. The 
result they found agreed spot-on with the Bekenstein-Hawking answer. While 
the work left open many deep issues (such as explicitly identifying a black 
hole’s microscopic constituents), it provided the first firm quantum mechanical 
accounting of a black hole’s disorder.16 
 The remarkable advances in dealing with both singularities and black 
hole entropy give the community of physicists well-grounded confidence that 
in time the remaining challenges of black holes and the big bang will be 
conquered. 
 
 
String Theory and Mathematics 
 
 
 Making contact with data, experimental or observational, is the only way 
to determine if string theory correctly describes nature. It’s a goal that’s 
proved elusive. String theory, for all its advances, is still a wholly 
mathematical undertaking. But string theory isn’t just a consumer of math. 
Some of its most important contributions have been to mathematics. 
 When he was developing the general theory of relativity in the early 
twentieth century, Einstein famously mined the mathematical archives in 
search of rigorous language for describing curved spacetime. The earlier 
geometrical insights of mathematicians such as Carl Friedrich Gauss, Bernhard 
Riemann, and Nikolai Lobachevsky provided an important foundation for his 
success. In a sense, string theory is now helping to repay Einstein’s intellectual 
debt by driving the development of new mathematics. There are numerous 
examples, but let me give one that captures the flavor of string theory’s 
mathematical achievements. 
 General relativity established a tight link between the geometry of 
spacetime and the physics we observe. Einstein’s equations, together with the 
distribution of matter and energy in a region, tell you the resulting shape of 
spacetime. Different physical environments (different configurations of mass 
and energy) yield differently shaped spacetimes; different spacetimes 
correspond to physically distinct environments. What would it feel like to fall 
into a black hole? Calculate with the spacetime geometry that Karl 



Schwarzschild discovered in his study of spherical solutions to Einstein’s 
equations. And if the black hole is rapidly spinning? Calculate with the 
spacetime geometry found in 1963 by the New Zealand mathematician Roy 
Kerr. In general relativity, geometry is the yin to physics’ yang. 
 String theory provides a twist to this conclusion by establishing that there 
can be different shapes for spacetime that nevertheless yield physically 
indistinguishable descriptions of reality. 
 Here’s one way to think about it. From antiquity to the modern 
mathematical era, we’ve modeled geometrical spaces as collections of points. 
A Ping-Pong ball, for example, is the collection of points that constitute its 
surface. Prior to string theory, the basic constituents making up matter were 
also modeled as points, point particles, and this commonality of basic 
ingredients spoke to an alignment between geometry and physics. But in string 
theory, the basic ingredient is not a point. It’s a string. This suggests that a new 
kind of geometry, based not on points but rather on loops, should be linked to 
string physics. The new geometry is called stringy geometry. 
 To get a feel for stringy geometry, picture a string moving through a 
geometrical space. Notice that the string can behave much like a point particle, 
innocently gliding from here to there, bumping into walls, navigating chutes 
and valleys, and so on. But in certain situations, a string can also do something 
novel. Imagine that space (or a piece of space) is shaped like a cylinder. A 
string can wrap itself around such a piece of space, much like a rubber band 
stretched around a can of soda, realizing a configuration that’s simply 
unavailable to a point particle. Such “wrapped” strings, and their “unwrapped” 
cousins, probe a geometrical space in different ways. Should a cylinder grow 
fatter, a string encircling it will respond by stretching, while an unwrapped 
string sliding on its surface won’t. In this way, wrapped and unwrapped strings 
are sensitive to different features of a shape through which they’re moving. 
 This observation is of great interest because it gives rise to a striking and 
thoroughly unexpected conclusion. String theorists have found special pairs of 
geometrical shapes for space that have completely different features when each 
is probed by unwrapped strings. They also have completely different features 
when each is probed by wrapped strings. But—and this is the punch line—
when probed both ways, with wrapped and unwrapped strings, the shapes 
become indistinguishable. What the unwrapped strings see on one space, the 



wrapped strings see on the other, and vice versa, rendering identical the 
collective picture gleaned from the full physics of string theory. 
 Shapes that form such pairs provide a powerful mathematical tool. In 
general relativity, if you’re interested in one or another physical feature, you 
must complete a mathematical calculation using the unique geometrical space 
relevant to the situation being studied. But in string theory, the existence of 
pairs of physically equivalent geometrical shapes means that you have a 
newfound choice: you can choose to perform the necessary calculation using 
either shape. And the extraordinary thing is that while you’re guaranteed to get 
the same answer using either shape, the mathematical details en route to the 
answer can be vastly different. In a variety of situations, overwhelmingly 
difficult mathematical calculations on one geometrical shape translate into 
exceedingly easy calculations on the other. And any framework that makes 
hard mathematical calculations easy is, clearly, of great value. 
 Over the years, mathematicians and physicists have leveraged this hard-
to-easy dictionary to make headway on a number of outstanding mathematical 
problems. One that I’m particularly fond of has to do with counting the 
number of spheres that can be packed (in a particular mathematical way) 
within a given Calabi-Yau shape. Mathematicians had been interested in this 
question for a long time but found the calculations in all but the simplest cases 
impenetrable. Take the Calabi-Yau shape of Figure 4.6. When a sphere is 
packed into this shape, it can wrap around a portion of the Calabi-Yau multiple 
times, much like a lasso can wrap multiple times around a beer barrel. So, how 
many ways can you pack a sphere into this shape if it wraps around, say, five 
times? When asked a question like this, mathematicians had to clear their 
throats, glance at their shoes, and quickly depart for pressing appointments. 
String theory flattened the hurdles. By translating such calculations into far 
easier ones on a paired Calabi-Yau shape, string theorists produced answers 
that knocked mathematicians back on their heels. The number of five-times-
wrapped spheres packed into the Calabi-Yau in Figure 4.6? 
229,305,888,887,625. And if the spheres wrap around themselves ten times?. 
Twenty times?. These numbers proved to be harbingers for a spectrum of 
results that have opened a whole new chapter in mathematical discovery.17 



 So, whether or not string theory offers a correct approach to describing 
the physical universe, it has already established itself as a potent tool for 
investigating the mathematical one. 
 
The State of String Theory: An Evaluation 
 
 
 Building on the last four sections, Table 4.2 provides a status report for 
string theory, including some additional observations that I didn’t explicitly 
call out in the text above. It paints a picture of a theory in progress, one that 
has produced stunning achievements but has not yet been tested on the most 
important scale: experimental confirmation. The theory will remain 
speculative until a convincing link to experiment or observation is forged. 
Establishing such a link is the great challenge. But it’s not a challenge that’s 
peculiar to string theory. Any attempt to unite gravity and quantum mechanics 
enters a domain that’s far beyond the cutting-edge of experimental research. 
It’s part and parcel of taking on such a supremely ambitious goal. Pushing the 
fundamental boundaries of knowledge, seeking answers to some of the deepest 
questions contemplated during the past few thousand years of human thought, 
is a formidable undertaking, one that won’t likely be completed overnight. Nor 
in a handful of decades. 
 In evaluating the state of the art, many string theorists argue that a crucial 
next step is to articulate the theory’s equations in their most exact, useful, and 
comprehensive form. Much of the research during the theory’s first couple of 
decades, through the mid-1990s, was carried out using approximate equations 
that many were convinced could reveal the theory’s gross features but were too 
coarse to yield refined predictions. Recent advances, to which we will now 
turn, have catapulted understanding far beyond what could be achieved by the 
approximate methods. While definitive predictions have remained elusive, a 
new perspective has emerged. It’s come from a series of breakthroughs that 
has opened grand new vistas on the theory’s potential implications, among 
which are new varieties of parallel worlds. 
 
  



 Table 4.2. A summary status report for string theory. 
 GOAL:Unite gravity and quantum mechanics 
 IS GOAL REQUIRED?:Yes. 
The primary goal is to meld general relativity and quantum mechanics. 
 STATUS:Excellent. 
A wealth of calculations and insights attest to string theory’s successful merger 
of general relativity and quantum mechanics.18 
 GOAL:Unify allforces 
 IS GOAL REQUIRED?:No. 
Unification of gravity and quantum mechanics does not require a further 
unification with the other forces of nature. 
 STATUS:Excellent. 
While not required, a fully unified theory has long been a goal of physics 
research. String theory achieves this goal by describing all forces in the same 
manner—their quanta are strings executing particular vibrational patterns. 
 GOAL:Incorporate keybreakthroughs from past research 
 IS GOAL REQUIRED?:No. 
In principle, a successful theory need bear little resemblance to successful 
theories from the past. 
 STATUS:Excellent. 
Though progress isn’t necessarily incremental, history shows that it usually is; 
successful new theories typically embrace past successes as limiting cases. 
String theory incorporates the essential key breakthroughs from previously 
successful physical frameworks. 
 GOAL:Explain particle properties 
 IS GOAL REQUIRED?:No. 
This is a noble goal, and if achieved would provide a profound level of 
explanation—but it is not required of a successful theory of quantum gravity. 
 STATUS:Indeterminate; no predictions. 
Going beyond quantum field theory, string theory offers a framework for 
explaining particle properties. But to date, this potential remains unrealized; 
the many different possible forms for the extra dimensions imply many 
different possible collections of particle properties. There is no currently 
available means to pick one shape from the many. 
 GOAL:Experimental confirmation 



 IS GOAL REQUIRED?:Yes. 
This is the only way to determine whether a theory is a correct description of 
nature. 
 STATUS:Indeterminate; no predictions. 
This is the most important criterion; to date, string theory has not been tested 
on it. Optimists hope that experiments at the Large Hadron Collider and 
observations by satellite-borne telescopes have the capacity to bring string 
theory much closer to data. But there’s no guarantee that current technology is 
sufficiently refined to reach this goal. 
 GOAL:Cure singularities 
 IS GOAL REQUIRED?:Yes. 
A quantum theory of gravity should make sense of singularities arising in 
situations that are, even just in principle, physically realizable. 
 STATUS:Excellent. 
Tremendous progress; many kinds of singularities have been resolved by string 
theory. The theory still needs to address black hole and big bang singularities. 
 GOAL:Black hole entropy 
 IS GOAL REQUIRED?:Yes. 
A black hole’s entropy provides a hallmark context in which general relativity 
and quantum mechanics interface. 
 STATUS:Excellent. 
String theory has succeeded in explicitly calculating, and confirming, the 
entropy formula proposed in the 1970s. 
 GOAL:Mathematical contributions 
 IS GOAL REQUIRED?:No. 
There’s no requirement that correct theories of nature yield mathematical 
insights. 
 STATUS:Excellent. 
Although mathematical insights aren’t necessary to validate string theory, 
significant ones have emerged from the theory, revealing the profound reach of 
its mathematical underpinnings. 
 
 
 *If you’d like to know how string theory surmounts the problems that 
blocked earlier attempts to join gravity and quantum mechanics, see The 



Elegant Universe, Chapter 6; for a sketch, see note 8. For an even briefer 
summary, note that whereas a point particle exists at a single location, a string, 
because it has length, is slightly spread out. This spreading, in turn, dilutes the 
raucous short-distance quantum jitters that stymied previous attempts. By the 
late 1980s, there was strong evidence that string theory successfully melds 
general relativity and quantum mechanics; more recent developments (Chapter 
9) make the case overwhelming. 
 
 
  



CHAPTER 5 
 
 
Hovering Universes in Nearby Dimensions 
 
 
The Brane and Cyclic Multiverses 
 
 
 Late one night many years ago, I was in my office at Cornell University 
putting together the freshman physics final exam that would be given the 
following morning. Since this was the honors class, I wanted to enliven things 
a little by giving them one somewhat more challenging problem. But it was 
late and I was hungry, so rather than carefully working through various 
possibilities, I quickly modified a standard problem that most of them had 
already encountered, wrote it into the exam, and headed home. (The details 
hardly matter, but the problem had to do with predicting the motion of a ladder, 
leaning against a wall, as it loses its footing and falls. I modified the standard 
problem by having the density of the ladder vary along its length.) During the 
exam the next morning, I sat down to write the solutions, only to find that my 
seemingly modest modification to the problem had made it exceedingly 
difficult. The original problem took perhaps half a page to complete. This one 
took me six pages. I write big. But you get the point. 
 This little episode represents the rule rather than the exception. Textbook 
problems are very special, being carefully designed so that they’re completely 
solvable with reasonable effort. But modify textbook problems just a bit, 
changing this assumption or dropping that simplification, and they can quickly 
become intricate or intractable. That is, they can quickly become as difficult as 
analyzing typical real-world situations. 
 The fact is, the vast majority of phenomena, from the motion of planets 
to the interactions of particles, are just too complex to be described 
mathematically with complete precision. Instead, the task of the theoretical 
physicist is to figure out which complications in a given context can be 
discarded, yielding a manageable mathematical formulation that still captures 
essential details. In predicting the course of the earth you’d better include the 



effects of the sun’s gravity; if you include the moon’s too, all the better, but 
the mathematical complexity rises significantly. (In the nineteenth century, the 
French mathematician Charles-Eugène Delaunay published two 900-page 
volumes related to intricacies of the sun-earth-moon gravitational dance.) If 
you try to go further and account fully for the influence of all the other planets, 
the analysis becomes overwhelming. Luckily, for many applications, you can 
safely disregard all but the sun’s influence, since the effect of other bodies in 
the solar system on earth’s motion is nominal. Such approximations illustrate 
my earlier assertion that the art of physics lies in deciding what to ignore. 
 But as practicing physicists know well, approximation is not just a potent 
means for progress; on occasion it also brings peril. Complications of minimal 
importance for answering one question can sometimes have a surprisingly 
significant impact in answering another. A single drop of rain will hardly 
affect the weight of a boulder. But if the boulder is teetering high on a cliff’s 
edge, that drop of rain could very well coax it to fall, initiating an avalanche. 
An approximation that disregards the raindrop would miss a crucial detail. 
 In the mid-1990s, string theorists discovered something akin to a 
raindrop. They found that various mathematical approximations, widely used 
to analyze string theory, were overlooking some vital physics. As more precise 
mathematical methods were developed and applied, string theorists could 
finally step beyond the approximations; when they did, numerous 
unanticipated features of the theory came into focus. And among these were 
new types of parallel universes; one variety in particular may be the most 
experimentally accessible of all. 
Beyond Approximations 
 
 
 Every major established discipline of theoretical physics—such as 
classical mechanics, electromagnetism, quantum mechanics, and general 
relativity—is defined by a central equation, or set of equations. (You don’t 
need to know these equations, but I’ve listed some of them in the notes.)1 The 
challenge is that in all but the simplest situations, the equations are 
extraordinarily difficult to solve. For this reason, physicists routinely use 
simplifications—like ignoring Pluto’s gravity or treating the sun as perfectly 



round—that make the mathematics easier and bring approximate solutions 
within reach. 
 For a long time, research in string theory has faced even bigger 
challenges. Just finding the central equations proved so difficult that physicists 
could develop only approximate versions. And even the approximate equations 
were so intricate that physicists had to make simplifying assumptions to find 
solutions, thus basing research on approximations of approximations. During 
the 1990s, however, the situation vastly improved. In a series of advances, a 
number of string theorists showed how to go well beyond the approximations, 
offering unmatched clarity and insight. 
 To get a feel for these breakthroughs, imagine that Ralph is planning to 
play the next two rounds of the weekly worldwide lottery, and he’s proudly 
worked out the odds of winning. He tells Alice that since he has a 1 in a billion 
chance each week, if he plays both rounds his chance of winning is 2 in a 
billion, .000000002. Alice smirks. “Well, that’s close, Ralph.” “Really, wise 
guy. What do you mean close?” “Well,” she says, “you’ve overestimated. 
Should you win the first round, playing a second time won’t increase your 
chances of winning; you would already have done so. If you win twice, we’ll 
have more money, sure, but since you’re working out the odds of winning at 
all, winning the second lottery after the first just doesn’t matter. So, to get the 
precise answer you’d need to subtract the odds of winning both rounds—1 in a 
billion times 1 in a billion, or .000000000000000001. That yields a final tally 
of .000000001999999999. Questions, Ralph?” 
 Minus the smugness, Alice’s method is an example of what physicists 
call a perturbative approach. In doing a calculation, it’s often easiest to make 
a first pass that incorporates only the most obvious contributions—that’s 
Ralph’s starting point—and then make a second pass that includes finer details, 
modifying or “perturbing” the first-pass answer, as in Alice’s contribution. The 
approach easily generalizes. If Ralph were planning to play the next ten 
weekly lotteries, the first-pass approach suggests that his chance of winning is 
about 10 in a billion, .00000001. But, as in the previous example, this 
approximation fails to account correctly for multiple wins. When Alice takes 
over, her second pass would properly account for instances in which Ralph 
wins twice—say, on the first and second lotteries, or the first and third, or the 
second and fourth. These corrections, as Alice pointed out above, are 



proportional to 1 in a billion times 1 in a billion. But there’s also an even tinier 
chance that Ralph wins three times; Alice’s third pass takes that, too, into 
account, producing modifications proportional to 1 in a billion multiplied by 
itself three times, .000000000000000000000000001. The fourth pass does the 
same for the even tinier chance of winning four rounds, and so on. Each new 
contribution is far smaller than the previous, so at some point Alice deems the 
answer sufficiently accurate and calls it a day. 
 Calculations in physics, and in many other branches of science too, often 
proceed in an analogous fashion. If you are interested in how likely it is that 
two particles heading in opposite directions around the Large Hadron Collider 
will bang into each other, the first pass imagines they hit once and ricochet 
(where “hit” doesn’t mean they directly touch, but rather that a single force-
carrying “bullet,” such as a photon, flies from one and is absorbed by the 
other). The second pass takes into account the chance that the particles hit each 
other twice (two photons are fired between them); the third pass modifies the 
previous two by accounting for the chance of the particles hitting each other 
three times; and so on (Figure 5.1). As with the lottery, this perturbative 
approach works well if the chance of an ever-greater number of particle 
interactions—like the chance of an ever-greater number of lottery wins—drops 
precipitously. 
 For the lottery, the drop-off is determined by each successive win coming 
with a factor of 1 in a billion; in the physics example, it’s determined by each 
successive hit coming with a numerical factor, called a coupling constant, 
whose value captures the likelihood that one particle will fire a force-carrying 
bullet and that the second particle will receive it. For particles such as 
electrons, governed by the electromagnetic force, experimental measurements 
have determined that the coupling constant, associated with photon bullets, is 
about .0073.2 For neutrinos, governed by the weak nuclear force, the coupling 
constant is about 10–6. For quarks, components of protons, that are racing 
around the Large Hadron Collider and whose interactions are governed by the 
strong nuclear force, the coupling constant is somewhat less than 1. These 
numbers are not as small as the lottery’s .000000001, but if for example we 
multiply .0073 by itself the result quickly becomes minuscule. After one 
iteration it’s about .0000533, after two it’s about .000000389. This explains 
why theorists only rarely go to the trouble of accounting for electrons hitting 



each other numerous times. The calculations involving many hits are 
exceedingly intricate to carry out, and the resulting contributions are so terribly 
tiny that you can stop at just a few photons fired and still get an extraordinarily 
accurate answer. 

 

  
 
 Figure 5.1  Two particles (represented by the two solid lines on the left 
in each diagram) interact by firing various “bullets” at each other (the 
“bullets” are force-carrying particles, represented by the squiggly lines), and 
then ricochet forward (the two solid lines on the right). Each diagram 
contributes to the overall likelihood that the particles bounce off each other. 
The contributions of processes with ever-more bullets are ever smaller. 
 
 
 To be sure, physicists would love to have exact results. But for many 
calculations the mathematics proves too difficult, so the perturbative approach 
is the best we can do. Fortunately, for small enough coupling constants, the 
approximate calculations can yield predictions that agree extremely well with 
experiment. 
 A similar perturbative approach has long been a mainstay of string theory 
research. The theory contains a number, called the string coupling constant 
(string coupling, for short), that governs the chance that one string bumps off 
another. If the theory proves correct, the string coupling may one day also be 
measured, much like the couplings enumerated above. But since such a 
measurement is at present purely hypothetical, the value of the string coupling 
is a complete unknown. Over the past few decades, with no guidance from 
experiment, string theorists have made the key assumption that the string 
coupling is a small number. To some extent, this has been like the drunkard 
looking for his keys under a lamppost, because a small string coupling allows 
physicists to shine the bright lights of perturbative analysis on their 



calculations. Since many successful approaches prior to string theory do have a 
small coupling, a more favorable version of the analogy notes that the 
drunkard has been justifiably emboldened by frequently finding his keys in the 
very location that’s illuminated. Either way, the assumption has made possible 
a vast collection of mathematical calculations that have not only clarified the 
basic processes of how one string interacts with another, but have also 
revealed much about the fundamental equations underlying the subject. 
 If the string coupling is small, these approximate calculations are 
expected to accurately reflect the physics of string theory. But what if it isn’t? 
Unlike what we found with the lottery and with colliding electrons, a large 
string coupling would mean that successive refinements to first-pass 
approximations would yield ever-larger contributions, so you’d never be 
justified in stopping a calculation. The thousands of calculations that have used 
the perturbative scheme would be baseless; years of research would collapse. 
Adding to the concerns, even with a small yet moderate string coupling, you 
might also worry that your approximations, at least in some circumstances, 
were overlooking subtle yet vital physical phenomena, like the raindrop that 
hits the boulder. 
 Through the early 1990s, not much could be said about these vexing 
questions. By the second half of that decade, the silence gave way to a clamor 
of insight. Researchers found new mathematical methods that could outflank 
the perturbative approximations by leveraging something called duality. 
 
Duality 
 
 
 In the 1980s, theorists realized that there was not one string theory but 
rather five different versions, to which they gave the catchy names Type I, 
Type IIA, Type IIB, Heterotic-O, and Heterotic-E. I’ve not yet mentioned this 
complication because although calculations established that the theories differ 
in detail, all five include the same gross features—vibrating strings and extra 
spatial dimensions—on which we’ve so far focused. But we’re now at a point 
where the five variations on the string theory theme come to the fore. 
 For many years, physicists had relied on perturbative methods to analyze 
each of the string theories. When working with the Type I string theory, they 



assumed its coupling was small, and pressed on with multi-pass calculations 
similar to what Ralph and Alice did in the lottery analysis. When working with 
the Heterotic-O, or any of the other string theories, they did the same. But 
outside of this restricted domain of small string couplings, researchers could 
do nothing more than shrug, throw up their hands, and admit that the math they 
were using was too feeble to provide any reliable insight. 
 Until, that is, the spring of 1995, when Edward Witten rocked the string 
theory community with a series of stunning results. Drawing on the insights of 
scientists including Joe Polchinski, Michael Duff, Paul Townsend, Chris Hull, 
John Schwarz, Ashoke Sen, and many others, Witten provided strong evidence 
that string theorists could safely navigate beyond the shores of small couplings. 
The central idea was simple and powerful. Witten argued that when the 
coupling constant in any one formulation of string theory is dialed ever larger, 
the theory—remarkably—steadily morphs into something thoroughly familiar: 
one of the other formulations of string theory, but with a coupling constant 
that’s dialed ever smaller. For example, when the Type I string coupling is 
large, it transforms into the Heterotic-O string theory with a coupling that’s 
small. Which means that the five string theories are not different after all. Each 
appears different when examined in a limited context—small values of its 
particular coupling constant—but when this restriction is lifted, each string 
theory transforms into the others. 
 I recently encountered a splendid graphic that from close up looks like 
Albert Einstein, with a bit more distance becomes ambiguous, and from far 
away resolves into Marilyn Monroe (Figure 5.2). If you saw only the images 
that come into focus at the two extremes, you’d have every reason to think you 
were looking at two separate pictures. But if you steadily examine the image 
through the range of intermediate distances, you unexpectedly find that 
Einstein and Monroe are aspects of a single portrait. Similarly, an examination 
of two string theories, in the extreme case when each has a small coupling, 
reveals that they’re as different as Albert and Marilyn. If you stopped there, as 
for years string theorists did, you’d conclude that you were studying two 
separate theories. But if you examine the theories as their couplings are varied 
over the range of intermediate values, you find that, like Albert turning into 
Marilyn, each gradually morphs into the other. 



 The morphing from Einstein to Monroe is amusing. The morphing of one 
string theory into another is transformative. It implies that if perturbative 
calculations in one string theory can’t be undertaken because that theory’s 
coupling is too large, the calculations can be faithfully translated into the 
language of another formulation of string theory, one in which a perturbative 
approach succeeds because the coupling is small. Physicists call the transition 
between naïvely distinct theories duality. It has become one of the most 
pervasive themes in modern string theory research. By providing two 
mathematical descriptions of one and the same physics, duality doubles our 
calculational arsenal. Calculations that are impossibly difficult from one 
perspective become perfectly doable from another.* 

 
   
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 Figure 5.2 From close up, the image looks like Albert Einstein. From 
farther away, it looks like Marilyn Monroe. (The image was created by Aude 
Oliva of the Massachusetts Institute of Technology.) 
 
 



 Witten argued, and others since have filled in important details, that all 
five string theories are linked through a network of such dualities.3 Their 
overarching union, called M-theory (we’ll see why in a moment), combines 
insights from all five formulations, stitched together through the various 
duality relationships, to gain a far more refined understanding of each. One 
such insight, central to the theme we’re pursuing, showed that there’s much 
more to string theory than strings. 
 
Branes 
 
 
 When I started studying string theory, I asked the very question that 
many in the years since have asked me: Why are strings considered so special? 
Why focus solely on fundamental ingredients that have only length? After all, 
the theory itself requires that the arena within which its ingredients exist—the 
spatial universe—has nine dimensions, so why not consider entities shaped 
like two-dimensional sheets or three-dimensional blobs or their higher-
dimensional cousins? The answer I learned as a graduate student in the 1980s, 
and explained frequently when I lectured on the subject through the mid-1990s, 
was that the mathematics describing fundamental constituents with more than 
one spatial dimension suffered from fatal inconsistencies (such as quantum 
processes that would have negative probabilities, a meaningless mathematical 
result). But when the same mathematics was applied to strings, the 
inconsistencies canceled themselves out, leaving a cogent description.†4 
Strings were definitely in a class of their own. 
 Or so it seemed. 
 Armed with the newfound calculational methods, physicists started 
analyzing their equations much more precisely and produced a range of 
unexpected results. One of the most surprising established that the rationale for 
excluding anything but strings was rickety. Theorists realized that the 
mathematical problems encountered when studying higher-dimensional 
ingredients, such as discs and blobs, were artifacts of the approximations being 
used. Using the more precise methods, a small army of theorists established 
that ingredients with various numbers of spatial dimensions do lurk in string 
theory’s mathematical shadows.5 The perturbative techniques were too coarse 



to expose these ingredients but the new methods finally could. By the late 
1990s, it was abundantly clear that string theory was not just a theory that 
contained strings. 
 The analyses revealed objects, shaped like Frisbees or flying carpets, 
with two spatial dimensions: membranes (one meaning of the “M” of M-
theory), also called two-branes. But there was more. The analyses revealed 
objects with three spatial dimensions, so-called three-branes; objects with four 
spatial dimensions, four-branes, and so on, all the way up to nine-branes. The 
mathematics made clear that all of these entities could vibrate and wiggle, 
much like strings; indeed, in this context, strings are best thought of as one-
branes—a single entry on an unexpectedly long list of the theory’s basic 
building blocks. 
 An allied revelation, just as flabbergasting to those who’d spent the better 
part of their professional lives working on the subject, was that the number of 
spatial dimensions the theory requires is not actually nine. It’s ten. And if we 
fold in the dimension of time, the total number of spacetime dimensions is 
eleven. How could this be? Remember the “(D–10) times Trouble” 
consideration, recounted in Chapter 4, underlying the conclusion that string 
theory needs ten spacetime dimensions. The mathematical analysis that 
produced that equation was, once again, based on a perturbative approximation 
scheme that assumed the string coupling was small. Surprise, surprise, that 
approximation missed one of the theory’s spatial dimensions. The reason, 
Witten showed, is that the size of the string coupling directly controls the size 
of the hitherto unknown tenth spatial dimension. By taking the coupling small, 
researchers had unwittingly made this spatial dimension small, too—so small 
as to be invisible to the mathematics itself. The more precise methods rectified 
this failing, revealing a string/M-theory universe with ten dimensions of space 
and one of time, for a total of eleven spacetime dimensions. 
 I remember well the dazed and wide-eyed looks everywhere at the 
international string theory conference, held at the University of Southern 
California in 1995, at which Witten first announced some of these results, the 
first shot in what is now called the Second String Theory Revolution.* For the 
multiverse story, it is the branes that are central. Using them, researchers have 
been led by the hand to another variety of parallel universes. 



Branes and Parallel Worlds 
 
 
 We typically imagine that strings are ultra-small; that very feature makes 
testing the theory such a challenge. However, I noted in Chapter 4 that strings 
are not necessarily minute. Rather, a string’s length is controlled by its energy. 
The energies associated with the masses of electrons, quarks, and other known 
particles are so tiny that the corresponding strings would indeed be minuscule. 
But inject enough energy into a string, and you could cause it to stretch large. 
We don’t have anywhere near the capacity to do this here on earth, but that’s a 
limitation of our technological development. If string theory is right, an 
advanced civilization would be able to pump strings up to whatever size it 
liked. Natural cosmological phenomena also have the capacity to produce long 
strings; for example, strings can wrap around a portion of space and get caught 
up in the cosmological expansion, stretching long in the process. One of the 
possible experimental signatures outlined in Table 4.1 looks for gravitational 
waves that such long strings may emit as they vibrate far away in space. 
 Like strings, higher-dimensional branes can be big. And this opens up a 
wholly new way in which string theory can describe the cosmos. To grasp 
what I mean, picture first a long string, as long as an overhead electric cable 
that runs as far as the eye can see. Next, picture a large two-brane, like an 
enormous tablecloth or a gargantuan flag, whose surface extends indefinitely. 
These are both easy to visualize because we can picture them located within 
the three dimensions of common experience. 
 If a three-brane is enormous, perhaps infinitely big, the situation changes. 
A three-brane of this sort would fill the space we occupy, like water filling a 
huge fish tank. Such ubiquity suggests that rather than think of the three-brane 
as an object that happens to be situated within our three spatial dimensions, we 
should envision it as the very substrate of space itself. Just as fish inhabit the 
water, we would inhabit a space-filling three-brane. Space, at least the space 
we directly inhabit, would be far more corporeal than generally imagined. 
Space would be a thing, an object, an entity—a three-brane. As we run and 
walk, as we live and breathe, we move in and through a three-brane. String 
theorists call this the braneworld scenario. 
 It is here that parallel universes make their stringy entrance. 



 I’ve been focusing on the relationship between three-branes and three 
spatial dimensions because I wanted to make contact with the familiar domain 
of everyday reality. But in string theory, there are more than just three spatial 
dimensions. And a higher-dimensional expanse offers ample room for 
accommodating more than one three-brane. Starting conservatively, imagine 
that there are two enormous three-branes. You may find it difficult to picture 
this. I certainly do. Evolution has prepared us to identify objects, those 
presenting opportunity as well as danger, that sit squarely within three-
dimensional space. Consequently, although we can easily picture two ordinary 
three-dimensional objects inhabiting a region of space, few of us can picture 
two coexisting but separate three-dimensional entities, each of which could 
fully fill three-dimensional space. For ease in discussing the braneworld 
scenario, then, let’s suppress one spatial dimension in our visualizations and 
think about life on a giant two-brane. And for a definite mental image, think of 
the two-brane as a giant, extraordinarily thin slice of bread.* 
 To use this metaphor effectively, imagine that the slice of bread includes 
the entirety of what we’ve traditionally called the universe—the Orion, 
Horsehead, and Crab nebulae; the entire Milky Way; the Andromeda, 
Sombrero, and Whirlpool Galaxies; and so on—everything within our three-
dimensional spatial expanse, however distant, as sketched in Figure 5.3a. To 
visualize a second three-brane we just need to picture a second enormous slice 
of bread. Where? Place it next to ours, just shifted slightly away in the extra 
dimensions (Figure 5.3b). To visualize three or four or any other number of 
three-branes is equally easy. Just add slices to the cosmic loaf. And while the 
loaf metaphor emphasizes a collection of branes all aligned with one another, 
it’s easy to imagine yet more general possibilities. The branes can be oriented 
any which way, and branes of any other dimensionality, higher or lower, can 
be included just the same. 
  
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Figure 5.3 (a) In the braneworld scenario, what we have traditionally 
thought to be the entire cosmos is imagined to reside within a three-
dimensional brane. For visual ease, we suppress one dimension and show the 
braneworld as having two spatial dimensions; we also show only a finite piece 
of branes that may extend infinitely far. (b)The higher-dimensional expanse of 
string theory can accommodate many parallel braneworlds. 
 



 The same fundamental laws of physics would apply all across the 
collection of branes, since they all emerge from a single theory, string/M-
theory. But, much as with the bubble universes in the Inflationary Multiverse, 
environmental details such as the value of this or that field permeating a brane, 
or even the number of spatial dimensions defining a brane, can profoundly 
affect its physical features. Some braneworlds might be much like our own, 
filled with galaxies, stars, and planets, while others might be very different. On 
one or more of those branes there might be self-aware beings who, like us, 
once thought that their slice—their expanse of space—was the entirety of the 
cosmos. In string theory’s braneworld scenario, we would now recognize this 
as a parochial perspective. In the braneworld scenario, our universe is just one 
of many that populate the Brane Multiverse. 

 When the Brane Multiverse was first floated in the string theory 
community, the immediate response focused on an obvious question. If  
there are giant branes right next door, entire parallel universes hovering nearby 
like slices of rye cozying up to their neighbors, why don’t we see them? 
 
Sticky Branes and Gravity’s Tentacles 
 
 
 Strings come in two shapes, loops and snippets. I haven’t addressed this 
distinction because it’s not essential for understanding many of the theory’s 
overarching features. But for braneworlds the distinction between loops and 
snippets is crucial, and a simple question reveals why. Can strings fly off a 
brane? The answer: A loop can. A snippet can’t. 
 As first realized by renowned string theorist Joe Polchinski, it all has to 
do with the endpoints of a string snippet. The equations that convinced 
physicists that branes were part of string theory also revealed that strings and 
branes have a particularly intimate relationship. Branes are the only locations 
where the endpoints of string snippets can reside, as in Figure 5.4. The math 
showed that if you try to remove a string’s endpoint from a brane, you are 
attempting the impossible, like seeking to make π smaller or the square root of 
2 bigger. Physically, it’s like trying to remove the north or south pole from the 
ends of a bar magnet. It just can’t be done. String snippets can freely move 



within and through a brane, effortlessly gliding from here to there, but they 
can’t leave it. 
 If these ideas are more than just interesting mathematics and we are in 
fact all living on a brane, you’re right now directly experiencing the viselike 
grip our brane exerts on string endpoints. Try to jump off our three-brane. Try 
again, harder. I suspect you’re still here. In a braneworld, the strings that make 
up you, and the rest of ordinary matter, are snippets. While you can jump up 
and down, throw a baseball from first to second, and send a sound wave from 
radio to ear, all with absolutely no resistance from the brane, you can’t depart 
the brane. When you try to jump off, the endpoints of your string snippets 
anchor you to the brane, unalterably. Our reality could be a floating slab in a 
higher-dimensional expanse, but we’d be permanently imprisoned, unable to 
venture out and explore the grander cosmos. 
  
 
 
 
 
 
 
 
  

 Figure 5.4 Branes are the only locations where the endpoints of string 
snippets can reside. 
 
 The same picture holds for the particles that transmit the three 
nongravitational forces. The analysis shows that they, too, arise from string 
snippets. Most notable among these are photons, the purveyors of the 
electromagnetic force. Visible light, which is a stream of photons, can 
therefore travel freely through the brane, from this text to your eyes, or from 
the Andromeda Galaxy to the Wilson Observatory, but it too is unable to 



escape. Another braneworld could be hovering millimeters away, but because 
light can’t travel across the gap, we would never see the slightest hint of its 
presence. 
 The one force that’s different in this regard is gravity. The distinguishing 
feature of gravitons, noted in Chapter 4, is that they have spin-2, twice that of 
the particles arising from string snippets (such as photons) that convey the 
nongravitational forces. That gravitons have twice the spin of an individual 
string snippet means you can think of gravitons as being built of two such 
snippets, the two ends of one melding with those of the other, yielding a loop. 
And since loops have no endpoints, branes can’t trap them. Gravitons can 
therefore leave and reenter a braneworld. In a braneworld scenario, then, 
gravity provides our only means of probing beyond our three-dimensional 
spatial expanse. 
 This realization plays a central role in some of the potential tests of string 
theory mentioned in Chapter 4 (Table 4.1). In the 1980s and 1990s, before 
branes entered the picture, physicists imagined that string theory’s extra 
dimensions were roughly Planck-sized (a radius of about 10–33 centimeters), 
the natural scale for a theory involving gravity and quantum mechanics. But 
the braneworld scenario encourages more expansive thinking. With our only 
probe beyond the three common dimensions being gravity—the feeblest of all 
forces—the extra dimensions can be a good deal larger and have still avoided 
detection. So far. 
 If the extra dimensions exist, and are much larger than previously 
thought—perhaps a billion billion billion times larger (about 10–4 centimeters 
across)—then experiments that measure the strength of gravity, described in 
the second row of Table 4.1, stand a chance of detecting them. When objects 
attract each other gravitationally, they exchange streams of gravitons; the 
gravitons are invisible messengers that communicate gravity’s influence. The 
more gravitons the objects exchange, the stronger the mutual gravitational pull. 
When some of these streaming gravitons leak off our brane and flow into the 
extra dimensions, the gravitational attraction between objects will be diluted. 
The larger the extra dimensions, the more the dilution, and the weaker gravity 
appears. By carefully measuring the gravitational pull between two objects 
brought closer together than the size of the extra dimensions, experimenters 
envision intercepting the gravitons before they leak from our brane; if so, the 



experimenters should measure a strength for gravity that’s proportionately 
larger. Thus, although I didn’t mention it in Chapter 4, this approach for 
unmasking the extra dimensions relies on the braneworld scenario. 
 A more modest increase in the size of the extra dimensions, to only about 
10–18 centimeters across, would still make them potentially accessible to the 
Large Hadron Collider. As discussed in the third entry of Table 4.1, high-
energy collisions between protons can eject debris into the extra dimensions, 
resulting in an apparent loss of energy in our dimensions that might be 
detectable. This experiment, too, relies on the braneworld scenario. Data 
attesting to missing energy would be explained by positing that our universe 
exists on a brane and arguing that debris with the capacity to fly off our 
brane—gravitons—had carried the energy away. 
 The prospect of mini black holes, the fourth entry of Table 4.1, is yet 
another braneworld by-product. The Large Hadron Collider stands a chance of 
producing mini black holes in proton-proton collisions only if the intrinsic 
strength of gravity grows large when probed over short distances. As above, it 
is the braneworld scenario that makes this possible. 
 The details cast these three experiments in a new light. Not only are these 
experiments seeking evidence of exotic structures such as extra dimensions of 
space and tiny black holes, they are also seeking evidence that we’re living on 
a brane. In turn, a positive result would not only build a case for string theory’s 
braneworld scenario, but would also provide indirect evidence for universes 
beyond our own. If we can establish that we’re living on a brane, the 
mathematics gives us no reason to expect that ours is the only one. 
 
Time, Cycles, and the Multiverse 
 
 
 The multiverses we’ve so far encountered, however different in detail, 
share one basic trait. In the Quilted, Inflationary, and Brane Multiverses, the 
other universes are all “out there” in space. For the Quilted Multiverse “out 
there” means far away in the everyday sense; for the Inflationary Multiverse it 
means beyond our bubble universe and across the rapidly expanding 
intervening realm; for the Brane Multiverse it means a possibly short distance 
away but the seperation is through another dimension. Evidence supporting the 



braneworld scenario would lead us to consider seriously another variety of 
multiverse, one that leverages not the opportunities afforded by space but those 
of time.6 
 Since Einstein, we’ve known that space and time can warp, curve, and 
stretch. But we generally don’t envision the whole universe wafting this way 
or that. What would it mean for the entirety of space to move ten feet to the 
“right” or “left”? It’s a good brain-teaser, but it becomes pedestrian when 
considered in the braneworld scenario. Like particles and strings, branes can 
surely move through the surrounding environment they inhabit. And so, if the 
universe we observe and experience is a three-brane, we could very well be 
gliding through a higher-dimensional spatial expanse.* 
 If we are on such a gliding brane, and there are other branes nearby, what 
would happen if we slammed into one of them? Although there are details that 
have not yet been fully worked out, you can be certain that a collision between 
two branes—a collision between two universes—would be violent. The 
simplest possibility would be two parallel three-branes coming closer and 
closer together till finally they collided straight-on, much like two cymbals 
crashing. The tremendous energy harbored in their relative motion would yield 
a fiery rush of particles and radiation that would obliterate any organized 
structures that either brane universe contained. 
 To a group of researchers including Paul Steinhardt, Neil Turok, Burt 
Ovrut, and Justin Khoury, this cataclysm rang not just of an end but of a 
beginning. An intensely hot, thoroughly dense environment in which particles 
stream this way and that sounds much like the conditions just after the big 
bang. Perhaps, then, when two branes collide they wipe out whatever 
structures may have coalesced during either of their histories, from galaxies to 
planets to people, while setting the stage for a cosmic rebirth. Indeed, a three-
brane filled with a blistering plasma of particles and radiation responds just as 
an ordinary three-dimensional spatial expanse would: it expands. And as it 
does, the environment cools, allowing particles to clump, ultimately yielding 
the next generation of stars and galaxies. Some have suggested that an apt 
name for this reprocessing of universes would be the big splat. 
 Evocative though it may be, “splat” misses a central feature of brane 
collisions. Steinhardt and his collaborators have argued that when branes 
collide, they don’t stick together. They bounce apart. The gravitational force 



they exert on each other then gradually slows their relative motion; eventually, 
they reach a maximum separation from which they start approaching once 
again. As the branes fall back together, each builds up speed, they collide, and 
through the ensuing firestorm the conditions on each brane are reset once again, 
initiating a new era of cosmological evolution. The essence of this cosmology 
thus involves worlds that repeatedly cycle through time, generating a new 
variety of parallel universes called the Cyclic Multiverse. 
 If we are living on a brane in the Cyclic Multiverse, the other member 
universes (in addition to the partner brane with which we periodically collide) 
are in our past and future. Steinhardt and his co-workers estimated the time 
scale for a full cycle of the colliding cosmic tango—birth, evolution, and 
death—and came up with about a trillion years. In this scenario, the universe 
as we know it would merely be the latest in a temporal series, some of which 
may have contained intelligent life and the culture they created, but are now 
long ago extinguished. In due course, all of our contributions and those of any 
other life-forms our universe supports would be similarly erased. 
 
The Past and Future of Cyclic Universes 
 
 
 Although the braneworld approach is its most refined incarnation, 
cyclical cosmologies have enjoyed a long history. Earth’s rotation, yielding the 
predictable pattern of day and night, as well as its orbit, yielding the repetitive 
sequence of passing seasons, presages the cyclical approaches developed by 
many traditions in their attempt to explain the cosmos. One of the oldest 
prescientific cosmologies, the Hindu tradition, envisions a nested complex of 
cosmological cycles within cycles, which, according to some interpretations, 
stretch from millions to trillions of years. Western thinkers, from as far back as 
the pre-Socratic philosopher Heraclitus and the Roman statesman Cicero, also 
developed various cyclic cosmological theories. A universe consumed by fire 
and emerging anew from the smoldering embers was a popular scenario 
among those who considered lofty issues such as cosmic origins. With the 
spread of Christianity, the concept of genesis as a unique, onetime event 
gradually gained the upper hand, but cyclic theories continued to sporadically 
attract attention. 



 In the modern scientific era, cyclical models have been pursued since the 
earliest cosmological investigations invoking general relativity. Alexander 
Friedmann, in a popular book published in Russia in 1923, noted that some of 
his cosmological solutions to Einstein’s gravitational equations suggested an 
oscillating universe that would expand, reach a maximal size, contract, shrink 
to a “point,” and then might begin expanding anew.7 In 1931, Einstein himself, 
having by then dropped his proposal for a static universe, also investigated the 
possibility of an oscillatory universe. Most detailed of all was a series of 
papers published from 1931 to 1934 by Richard Tolman at the California 
Institute of Technology. Tolman undertook thorough mathematical 
investigations of cyclical cosmological models, initiating a stream of such 
studies—often swirling in the backwaters of physics but sometimes bubbling 
up to broader prominence—that have continued to this day. 
 Part of the appeal of a cyclical cosmology is its apparent ability to avoid 
the knotty issue of how the universe began. If the universe goes through cycle 
after cycle, and if the cycles have always happened (and perhaps always will), 
then the problem of an ultimate beginning is sidestepped. Each cycle has its 
own beginning, but the theory provides a concrete physical cause: the 
termination of the previous cycle. And if you ask about the beginning of the 
entire cycle of universes, the answer is simply that there was no such 
beginning, because the cycles have been repeating for eternity. 
 In a sense, then, cyclical models are an attempt to have your 
cosmological cake and eat it too. Back in the early days of scientific 
cosmology, the steady state theory provided its own end run around the 
question of cosmic origin by suggesting that although the universe is 
expanding, it did not have a beginning: as the universe expands, new matter is 
continually created to fill the additional space, ensuring that constant 
conditions are maintained throughout the cosmos for all eternity. But the 
steady state theory ran afoul of astronomical observations pointing strongly 
toward earlier epochs whose conditions differed markedly from those we 
experience today. Most pointed of all were observations zeroing in on an 
earliest cosmological phase that was far from steady and stately, being instead 
chaotic and combustible. A big bang undermines dreams of steady state, 
bringing the question of origin back to center stage. It’s here that cyclical 
cosmologies offer a compelling alternative. Each cycle can incorporate a big-



bang-like past, in alignment with the astronomical data. But by stringing 
together an infinite number of cycles the theory still avoids having to supply 
an ultimate beginning. Cyclical cosmologies, so it would seem, thereby meld 
the most attractive features of the steady state and big bang models. 
 Then in the 1950s, the Dutch astrophysicist Herman Zanstra called 
attention to a problematic feature of cyclical models, one that was implicit in 
Tolman’s analysis a couple of decades earlier. Zanstra showed that there 
couldn’t have been an infinite number of cycles preceding our own. The 
wrench in the cosmological works was the Second Law of Thermodynamics. 
This law, which we’ll discuss more fully in Chapter 9, establishes that 
disorder—entropy—increases over time. It’s something we routinely 
experience. Kitchens, however ordered in the morning, have a way of 
becoming disordered by nightfall; the same goes for laundry bins, desktops, 
and playrooms. In these everyday settings, the increase in entropy is a mere 
nuisance; in cyclic cosmology, the increase in entropy is pivotal. As Tolman 
himself had realized, the equations of general relativity link the entropy 
content of the universe with the duration of a given cycle. More entropy means 
more disordered particles squeezed together when the universe shrinks; that 
generates a more powerful rebound, space expands further, and so the cycle 
lasts longer. Looking back from today, the Second Law then implies that ever-
earlier cycles would have had ever-less entropy (because the Second Law says 
that entropy increases toward the future, it must decrease toward the past),* 
and would thus have had ever-shorter durations. Working this out 
mathematically, Zanstra showed that sufficiently far back in time the cycles 
would have been so short that they would have ceased. They would have had a 
beginning. 
 Steinhardt and company claim that their new version of cyclical 
cosmology avoids this pitfall. In their approach, the cycles arise not from a 
universe expanding, contracting, and expanding again but rather from the 
separation between braneworlds expanding, contracting, and expanding again. 
The branes themselves continually expand—and they do so throughout each 
and every cycle. Entropy builds from one cycle to the next, just as the Second 
Law requires, but because the branes expand the entropy is spread over ever-
larger spatial volumes. The total entropy goes up, but the entropy density goes 
down. By the end of each cycle, the entropy is so diluted that its density is 



driven very nearly to zero—a full reset. And so, unlike what happens in the 
analysis of Tolman and Zanstra, the cycles can continue indefinitely toward 
the future as well as the past. The braneworld Cyclic Multiverse has no need 
for a beginning to time.8 
 Sidestepping an age-old conundrum is a feather in the Cyclic 
Multiverse’s cap. But as its proponents note, the Cyclic Multiverse goes 
beyond offering resolution to cosmological conundra—it makes a specific 
prediction that distinguishes it from the widely accepted inflationary paradigm. 
In inflationary cosmology, the violent burst of expansion in the early universe 
would have so thoroughly disturbed the spatial fabric that substantial 
gravitational waves would have been produced. These ripples would have left 
trace imprints on the cosmic microwave background radiation, and highly 
sensitive observations are now seeking them out. A brane collision, by contrast, 
creates a momentary maelstrom—but without the spectacular inflationary 
stretching of space, any gravitational waves produced would almost certainly 
be too weak to create a lasting signal. So evidence of gravitational waves 
produced in the early universe would be strong evidence against the Cyclic 
Multiverse. On the other hand, failure to observe any evidence of these 
gravitational waves would severely challenge a great many inflationary models 
and make the cyclic framework all the more attractive. 
 The Cyclic Multiverse is widely known within the physics community 
but is viewed, almost as widely, with much skepticism. Observations have the 
capacity to change this. If evidence for braneworlds emerges from the Large 
Hadron Collider, and if signs of gravitational waves from the early universe 
remain elusive, the Cyclic Multiverse will likely garner increased support. 
 
In Flux 
 
 
 The mathematical realization that string theory is not just a theory of 
strings but also includes branes has had a major impact on research in the field. 
The braneworld scenario, and the multiverses to which it gives rise, is one 
resulting area of investigation with the capacity to profoundly remake our 
perspective on reality. Without the more exact mathematical methods 
developed over the last decade and a half, most of these insights would have 



remained beyond reach. Nevertheless, the main problem physicists hoped the 
more exact methods would address—the need to pick one form for the extra 
dimensions out of the many candidates that theoretical analyses have 
uncovered—has not yet been solved. Far from it. The new methods have 
actually made the problem all the more challenging. They’ve resulted in the 
discovery of vast new troves of possible forms for the extra dimensions, 
increasing the candidate pool enormously while not providing an iota of 
insight into how to single out one as ours. 
 Pivotal to these developments is a property of branes called flux. Just as 
an electron gives rise to an electric field, an electric “mist” that permeates the 
area around it, and a magnet gives rise to a magnetic field, a magnetic “mist” 
that permeates its region, so a brane gives rise to a brane field, a brane “mist” 
that permeates its region, as in Figure 5.5. When Faraday was performing the 
first experiments with electric and magnetic fields, in the early 1800s, he 
imagined quantifying their strength by delineating the density of field lines at a 
given distance from the source, a measure he called the field’s flux. The word 
has since become ensconced in the physics lexicon. The strength of a brane’s 
field is also delineated by the flux it generates. 
 String theorists, including Raphael Bousso, Polchinski, Steven Giddings, 
Shamit Kachru, and many others realized that a full description of string 
theory’s extra dimensions requires not only specifying their shape and size—
which researchers in this area, including me, had focused on more or less 
exclusively in the 1980s and early 1990s—but also specifying the brane fluxes 
that permeate them. Let me take a moment to flesh this out. 
  



 
 Figure 5.5 Electric flux produced by an electron; magnetic flux produced 
by a bar magnet; brane flux produced by a brane. 
 
 Since the earliest mathematical work investigating string theory’s extra 
dimensions, researchers have known that Calabi-Yau shapes typically contain 
a great many open regions, like the space inside a beach ball, a doughnut’s 
hole, or within a blown glass sculpture. But it wasn’t until the early years of 
the new millennium that theorists realized that these open regions needn’t be 
completely empty. They can be wrapped by one or another brane, and threaded 
by flux piercing through them, as in Figure 5.6. Previous research (as 
summarized, for instance, in The ElegantUniverse) had for the most part 
considered only “naked” Calabi-Yau shapes, from which all such adornments 
were absent. When researchers realized that a given Calabi-Yau shape could 
be “dressed up” with these additional features, they uncovered a gargantuan 
collection of modified forms for the extra dimensions. 
  
  



 
 
 
 
 
 
 
 
 
 
 
  
 
 Figure 5.6 Parts of the extra dimensions in string theory can be wrapped 
by branes and threaded by fluxes, yielding “dressed-up” Calabi-Yau shapes. 
(The figure uses a simplified version of a Calabi-Yau shape—a “three-hole 
doughnut”—and represents wrapped branes and flux lines schematically with 
glowing bands encircling portions of the space.) 
 
 
 A rough count gives a sense of scale. Focus on fluxes. Just as quantum 
mechanics establishes that photons and electrons come in discrete units—you 
can have 3 photons and 7 electrons, but not 1.2 photons or 6.4 electrons—so 
quantum mechanics shows that flux lines also come in discrete bundles. They 
can penetrate a surrounding surface once, twice, three times, and so on. But 
apart from this restriction to whole numbers, there’s in principle no other limit. 
In practice, when the amount of flux is large, it tends to distort the surrounding 
Calabi-Yau shape, rendering previously reliable mathematical methods 
inaccurate. To avoid venturing into these more turbulent mathematical waters, 
researchers typically consider only flux numbers that are about 10 or less.9 
 This means that if a given Calabi-Yau shape contains one open region, 
we can dress it up with flux in ten different ways, yielding ten new forms for 
the extra dimensions. If a given Calabi-Yau has two such regions, there are 10 
× 10 = 100 different flux dressings (10 possible fluxes through the first paired 
with 10 through the second); with three open regions there are 103 different 



flux dressings, and so on. How large can the number of these dressings get? 
Some Calabi-Yau shapes have on the order of five hundred open regions. The 
same reasoning yields on the order of 10500 different forms for the extra 
dimensions. 
 In this way, rather then winnowing the candidates to a few specific 
shapes for the extra dimensions, the more refined mathematical methods have 
led to a cornucopia of new possibilities. All of a sudden, Calabi-Yau spaces 
can clothe themselves with far more outfits than there are particles in the 
observable universe. For some string theorists, this caused great distress. As 
emphasized in the previous chapter, without a means of choosing the exact 
form for the extra dimensions—which we now realize means also selecting the 
flux outfit that shape wears—the mathematics of string theory loses its 
predictive power. Much hope had been placed on mathematical methods that 
could go beyond the limitations of perturbation theory. Yet, when some of 
those methods materialized, the problem of fixing the form for the extra 
dimensions only got worse. Some string theorists lost heart. 
 Others, more sanguine, believe it’s too early to give up hope. One day—
perhaps a day that’s just around the corner, perhaps a day that’s far off—we 
will discover the missing principle that determines what the extra dimensions 
look like, including the fluxes the shape may be sporting. 
 Others still have taken a more radical tack. Maybe, they suggest, the 
decades of fruitless attempts to pin down the form for the extra dimensions are 
telling us something. Maybe, these radicals brazenly continue, we need to take 
seriously all of the possible shapes and fluxes emerging from string theory’s 
mathematics. Maybe, they urge, the reason the mathematics contains all these 
possibilities is that they’re all real, each shape being the extra-dimensional 
part of its own separate universe. And maybe, grounding a seemingly wild 
flight of fancy in observational data, this is just what’s needed to address 
perhaps the thorniest problem of all: the cosmological constant. 
 
 *You can think of this as a grand generalization of the results touched on 
in Chapter 4, in which different forms for the extra dimensions can give rise to 
identical physical models. 
 †This wasn’t the result of a mysterious mathematical coincidence. 
Instead, in a precise mathematical sense, strings are highly symmetric shapes, 



and it was this symmetry that wiped away the inconsistencies. See note 4 for 
details. 
 *The first revolution was the 1984 results of John Schwarz and Michael 
Green, which launched the modern version of the subject. 
 *If you’re being careful, you’ll note that a slice of bread is really three-
dimensional (width and height on the slice’s surface, but also depth from the 
slice’s thickness), but don’t let that trouble you. The thickness of the bread will 
remind us that our slices are visual stand-ins for large three-branes. 
 *You could still ask whether the entire higher-dimensional spatial 
expanse can move, but however interesting to contemplate, it’s not relevant to 
the discussion here. 
 *For readers familiar with the puzzle of time’s arrow, note that I am 
assuming, in keeping with observations, that entropy decreases toward the past. 
See The Fabric of the Cosmos, Chapter 6, for a detailed discussion. 
 
 
  



CHAPTER 6 
 
 
New Thinking About an Old Constant 
 
 
The Landscape Multiverse 
 
 
 The difference between 0 and .might not seem like much. And by any 
familiar measure it’s not. Yet there’s growing suspicion that this tiny 
difference may be responsible for a radical shift in how we envision the 
landscape of reality. 
 The tiny number printed above was first measured in 1998 by two teams 
of astronomers making meticulous observations of exploding stars in distant 
galaxies. Since then, the work of many has corroborated the teams’ result. 
What is the number, and why such a fuss? Evidence is mounting that it’s what 
I referred to earlier as the entry on the third line of the general relativity tax 
form: Einstein’s cosmological constant, which specifies the amount of 
invisible dark energy permeating the fabric of space. 
 As the result continues to hold up under intense scrutiny, physicists are 
becoming increasingly confident that decades of previous observations and 
theoretical deductions, which had convinced the vast majority of researchers 
that the cosmological constant was 0, have been overthrown. Theorists 
scurried to figure out where they’d gone wrong. But not all had. Years earlier, 
a contentious line of thought had suggested that a nonzero cosmological 
constant might one day be found. The key supposition? We’re living in one of 
many universes. Many universes. 
 
The Return of the Cosmological Constant 
 
 
 Remember that the cosmological constant, if it exists, fills space with a 
uniform invisible energy—dark energy—whose iconic feature would be its 
repulsive gravitational force. Einstein latched on to the idea in 1917, invoking 



the cosmological constant’s antigravity to balance the otherwise attractive 
gravitational pull of the universe’s ordinary matter, and thus allow for a 
cosmos that neither expanded nor contracted.* 
 Many have reported that upon learning of Hubble’s 1929 observations, 
which established that space is expanding, Einstein called the cosmological 
constant his “greatest blunder.” George Gamow recounted a conversation in 
which Einstein is purported to have said this, but given Gamow’s penchant for 
playful hyperbole, some have questioned the accuracy of the story.1 What’s 
certain is that Einstein dropped the cosmological constant from his equations 
when the observations showed that his belief in a static universe was 
misguided, noting years later that had “Hubble’s expansion been discovered at 
the time of the creation of the general theory of relativity, the cosmological 
constant would never have been introduced.”2 But hindsight is not always 20–
20; it can sometimes blur earlier clarity. In 1917, in a letter he wrote to the 
physicist Willem de Sitter, Einstein expressed a more nuanced perspective: 
 
 In any case, one thing stands. The general theory of relativity allows the 
inclusion of the cosmological constant in the field equations. One day, our 
actual knowledge of the composition of the fixed star sky, the apparent 
motions of fixed stars, and the position of spectral lines as a function of 
distance, will probably have come far enough for us to be able to decide 
empirically the question of whether or not the cosmological constant vanishes. 
Conviction is a good motive, but a bad judge.3 
 
 
 Some eight decades later, the Supernova Cosmology Project, led by Saul 
Perlmutter, and the High-Z Supernova Search Team, led by Brian Schmidt, 
took this very approach. They carefully studied an abundance of spectral 
lines—light emitted by distant stars—and, just as Einstein had anticipated, 
they were able to address empirically the question of whether the cosmological 
constant vanishes. 
 To the shock of many, they found strong evidence that it doesn’t. 
  



Cosmic Destiny 
 
 
 When these astronomers began their work, neither group was focused on 
measuring the cosmological constant. Instead, the teams had set their sights on 
measuring another cosmological feature, the rate at which the expansion of 
space is slowing. Ordinary attractive gravity acts to pull every object closer to 
every other, so it causes the expansion speed to decrease. The precise rate of 
slowdown is central to predicting what the universe will be like in the far 
future. A big slowdown would mean that the expansion of space would 
diminish all the way to zero and then reverse its motion, leading to a period of 
spatial contraction. Unabated, this might result in a big crunch—a reverse of 
the big bang—or perhaps a bounce, as in the cyclical models introduced in the 
previous chapter. A small slowdown would yield a very different outcome. 
Much as a ball with a high speed can escape the earth’s gravity and head ever 
farther outward, if the speed of spatial expansion were high enough, and the 
rate of its slowdown sufficiently meager, space could expand forever. By 
measuring the cosmic slowdown, the two groups sought the ultimate fate of 
the cosmos. 
 The approach of each team was straightforward: measure how fast space 
was expanding at various times in the past, and by comparing those speeds 
determine the rate at which the expansion has been slowing over the course of 
cosmic history. Okay. But how would you do this? As with many questions in 
astronomy, the answer comes down to careful measurements of light. Galaxies 
are luminous beacons whose motion traces the spatial expansion. If we could 
determine how fast galaxies at a range of distances were receding from us 
when, long ago, they emitted the light we now see, we could determine how 
fast space was expanding at a variety of moments in the past. By comparing 
those speeds, we’d learn the rate of cosmic slowdown. That’s the essential idea. 
 To fill in the details, we need to address two primary questions. From 
today’s observations of faraway galaxies, how can we determine their 
distances, and how can we determine their speeds? Begin with distance. 
  



Distance and Brightness 
 
 
 One of the oldest and most important problems in astronomy is to 
determine the distances to celestial objects. And one of the first techniques for 
doing so, parallax, is an approach with which five-year-olds routinely 
experiment. Children can be fascinated (momentarily) by looking at an object 
while alternately closing their left and right eyes because the object appears to 
jump from side to side. If you haven’t been five for some time, try the 
experiment by holding up this book and looking at one of its corners. The 
jump occurs because your left and right eyes, being spaced apart, have to point 
at different angles to focus on the same spot. For objects that are farther away, 
the jumping is less noticeable, because the difference in angle gets smaller. 
This simple observation can be made quantitative, providing a precise 
correlation between the difference in angle between the lines of sight of your 
two eyes—the parallax—and the distance of the object you’re viewing. But 
don’t worry about working out the details; your visual system does it 
automatically. It’s why you see the world in 3D.* 
 When you look at stars in the night sky, the parallax is too small to be 
reliably measured; your eyes are just too close together to yield a significant 
difference in angle. But there’s a clever way around this: measure the position 
of a star on two occasions, some six months apart, thus using the two locations 
of the earth in place of the two locations of your eyes. The larger separation of 
the observing locations increases the parallax; it’s still small, but in some cases 
is big enough to be measured. Back in the early 1800s there was an intense 
competition among a group of scientists to be the first to measure such stellar 
parallax; in 1838, the German astronomer and mathematician Friedrich Bessel 
won the bragging rights, successfully measuring the parallax to a star called 61 
Cygni, in the constellation Cygnus. The angular difference turned out to 
be .000084 degrees, placing the star about 10 light-years away. 
 Since then, the technique has been steadily refined and is now undertaken 
by satellites that can measure parallax angles far smaller than what Bessel 
achieved. Such advances have allowed for accurate distance measurements of 
stars that are up to a few thousand light-years away, but much beyond that the 
angular differences again become too small, and the method is thwarted. 



 Another approach, which has the capacity to measure yet greater celestial 
distances, is based on an even simpler idea: the farther away you move a light-
emitting object, be it a car’s headlights or a blazing star, the more the emitted 
light will spread out during its journey toward you, and so the dimmer it will 
appear. By comparing an object’s apparent brightness (how bright it appears 
when observed from earth) with its intrinsic brightness (how bright it would 
appear if observed from close by), you can thus work out its distance. 
 The hitch, and it’s not a small one, lies in establishing the intrinsic 
brightness of astrophysical objects. Is a star dim because it’s especially distant 
or because it just doesn’t give off much light? This makes clear why a long-
standing effort has been to find a relatively common astronomical species 
whose intrinsic brightness can be reliably determined without the need to stand 
right next to it. If you could find such so-called standard candles, you’d have a 
uniform benchmark for judging distances. The degree to which one standard 
candle appeared dimmer than another would tell you directly how much 
farther away it is. 
 For over a century, a variety of standard candles have been proposed and 
used, with varying success. In recent times, the most fruitful method has made 
use of a kind of stellar explosion called a Type Ia supernova. A Type Ia 
supernova occurs when a white dwarf star pulls material from the surface of a 
companion, typically a nearby red giant that it’s orbiting. Well-developed 
physics of stellar structure establishes that if the white dwarf pulls away 
enough material (so that its total mass increases to about 1.4 times that of the 
sun), it can no longer support its own weight. The bloated dwarf star collapses, 
setting off an explosion so violent that the light generated rivals the combined 
output of the other 100 billion or so stars residing in the galaxy it inhabits. 
 These supernovae are ideal standard candles. Because the explosions are 
so powerful, we can see them out to fantastically large distances. And, 
crucially, because the explosions are all the result of the same physical 
process—a white dwarf’s mass increasing to about 1.4 times that of the sun’s, 
resulting in stellar collapse—the ensuing supernovae flare to a very similar 
peak intrinsic brightness. The challenge in using Type Ia supernovae, however, 
is that in a typical galaxy they take place only once every few hundred years: 
How do you catch them in the act? Both the Supernova Cosmology Project 
and the High-Z Supernova Search Team tackled this obstacle in a manner 



reminiscent of epidemiological studies: accurate information about even 
relatively rare conditions can be gained if you study large populations. 
Similarly, by using telescopes equipped with wide-field-of-view detectors 
capable of simultaneously examining thousands of galaxies, the researchers 
were able to locate dozens of Type Ia supernovae, which could then be closely 
observed with more conventional telescopes. On the basis of how bright each 
appeared, the teams were able to calculate the distance to dozens of galaxies 
situated billions of light-years away—thus accomplishing the first step in the 
task they’d set for themselves. 
 
Whose Distance Is It, Anyway? 
 
 
 Before moving on to the next step, the determination of how fast the 
universe was expanding when each of these distant supernovae happened, let 
me briefly untangle a potential knot of confusion. When we’re talking about 
distances on such fantastically large scales, and in the context of a universe 
that’s continually expanding, the question inevitably arises of which distance 
the astronomers are actually measuring. Is it the distance between the locations 
we and a given galaxy each occupied eons ago, when the galaxy emitted the 
light we’re just now seeing? Is it the distance between our current location and 
the location the galaxy occupied eons ago, when it emitted the light we’re just 
now seeing? Or is it the distance between our current location and the galaxy’s 
current location? 
 Here’s what I consider the most insightful way of thinking about these 
and a whole slew of similarly confusing cosmological questions. 
 Imagine you want to know the distances, as the crow flies, among three 
cities, New York, Los Angeles, and Austin, so you measure their separation on 
a map of the United States. You find that New York is 39 centimeters from 
Los Angeles; Los Angeles is 19 centimeters from Austin; and Austin is 24 
centimeters from New York. You then convert these measurements into real-
world distances by looking at the map’s legend, which provides a conversion 
factor—1 centimeter = 100 kilometers—which allows you to conclude that the 
three cities are about 3,900 kilometers, 1,900 kilometers, and 2,400 kilometers 
apart, respectively. 



 Now imagine that the earth’s surface swells uniformly, doubling all 
separations. This would certainly be a radical transformation, but even so your 
map of the United States would continue to be perfectly valid as long as you 
made one important change. You’d need to modify the legend so that the 
conversion factor read “1 centimeter = 200 kilometers.” Thirty-nine 
centimeters, 19 centimeters, and 24 centimeters on the map would now 
correspond to 7,800 kilometers, 3,800 kilometers, and 4,800 kilometers across 
the expanded United States. Were the expansion of the earth to continue, your 
static, unchanging map would remain accurate, as long as you continually 
updated its legend with the conversion factor relevant at each moment—1 
centimeter = 200 kilometers at noon; 1 centimeter = 300 kilometers at two 
p.m.; 1 centimeter = 400 kilometers at four p.m.—to reflect how locations 
were being dragged apart by the expanding surface. 
 The expanding earth proves a useful conceit because similar 
considerations apply to the expanding cosmos. Galaxies don’t move under 
their own power. Rather, like the cities on our expanding earth, they race apart 
because the substrate in which they’re embedded—space itself—is swelling. 
This means that had some cosmic cartographer mapped galaxy locations 
billions of years ago, the map would be as valid today as it was then.4 But, like 
the legend for the map of an expanding earth, the cosmic map’s legend must 
be updated to ensure that the conversion factor, from map distances to real 
distances, remains accurate. The cosmological conversion factor is called the 
universe’s scale factor; in an expanding universe, the scale factor increases 
with time. 
 Whenever you think about the expanding universe, I urge you to picture 
an unchanging cosmic map. Think of it as if it were any ordinary map lying 
flat on a table, and account for the cosmic expansion by updating the map’s 
legend over time. With a little practice, you’ll see that this approach vastly 
simplifies conceptual hurdles. 
 As a case in point, consider light from a supernova explosion in the 
distant Noa Galaxy. When we compare the supernova’s apparent brightness 
with its intrinsic brightness, we are measuring the dilution of the light’s 
intensity between emission (Figure 6.1a) and reception (Figure 6.1c), arising 
from its having spread out on a large sphere (drawn as a circle in Figure 6.1d) 
during the journey. By measuring the dilution, we determine the size of the 



sphere—its surface area—and then, with a little high school geometry, we can 
determine the sphere’s radius. This radius traces the light’s entire trajectory, 
and so its length equals the distance the light has traveled. Now the question 
that initiated this section pops up: To which of the three candidate distances, if 
any, does the measurement correspond? 
 During the light’s journey, space has continually expanded. But the only 
change this requires to the static cosmic map is a regular updating of the scale 
factor recorded in the legend. And since we have just now received the 
supernova’s light, since it has just now completed its journey, we must use the 
scale factor that’s just now written in the map’s legend to translate the 
separation on the map—the trajectory from the supernova to us, traced in 
Figure 6.1d—into the physical distance traveled. The procedure makes clear 
that the result is the distance now between us and the current location of the 
Noa Galaxy: the third of our multiple-choice options. 
  
  



 
 Figure 6.1 (a) Light from a distant supernova spreads as it travels 
toward us (we are situated in the galaxy on the map’s right-hand side). 
(b)During the light’s journey, the universe expands, which is reflected in the 
map’s legend. (c)When we receive the light, its intensity has been diluted 
through the spreading. (d)When we compare the supernova’s apparent 
brightness to its intrinsic brightness, we are measuring the area of the sphere 
on which it has spread (drawn as a circle), and hence also its radius. The 
radius of the sphere traces the light’s trajectory. Its length is the distance now 
between us and the galaxy that contained the supernova, so that’s what the 
observations determine. 
 
 Notice, too, that because the universe is continually expanding, earlier 
segments of a photon’s journey continue to stretch long after the photon has 
sped past. If a photo painted a line on space that traced its path, the length of 
that line would increase as space expanded. By applying the map’s scale factor 
at the time of reception to the light’s entire journey, the third answer directly 



incorporates all such expansion. This is the right approach, because the amount 
by which the light’s intensity is diluted depends on the size of the sphere over 
which the light now spreads—and this sphere’s radius is the length of the 
light’s trajectory now, including all post facto stretching.5 
 When we compare the intrinsic brightness of a supernova with its 
apparent brightness, we are therefore determining the distance now between us 
and the galaxy it occupied. Those are the distances the two groups of 
astronomers measured.6 

 
The Colors of Cosmology 
 
 
 So much for measuring distances to faraway galaxies containing brilliant 
Type Ia supernovae. How do we learn about the rate of the universe’s 
expansion ages ago, when each of those cosmic beacons momentarily ignited? 
The physics involved isn’t much more complex than that at work in neon signs. 
 A neon sign glows red because when a current runs through the sign’s 
gaseous interior, orbiting electrons in the neon atoms are momentarily knocked 
into higher-energy states. Then, as the neon atoms calm, the excited electrons 
jump down to their normal state of motion, relinquishing the extra energy by 
emitting photons. The color of the photons—their wavelength—is determined 
by the energy they carry. A key discovery, fully established by quantum 
mechanics in the early decades of the twentieth century, is that atoms of a 
given element have a unique collection of possible electron energy jumps; this 
translates into a unique collection of colors for released photons. For neon 
atoms, a dominant color is red (or, really, reddish orange), which accounts for 
the appearance of neon signs. Other elements—helium, oxygen, chlorine, and 
so on—exhibit similar behavior, the main difference being the wavelengths of 
the photons emitted. A “neon” sign of a color other than red is more than likely 
filled with mercury (if it’s blue) or helium (if it’s gold), or is made from glass 
tubes coated with substances, typically phosphors, whose atoms can emit light 
of yet other wavelengths. 
 Much of observational astronomy relies on the very same considerations. 
Astronomers use telescopes to gather light from distant objects, and from the 
colors they find—the particular wavelengths of light they measure—they can 



identify the chemical composition of the sources. An early demonstration 
occurred during the solar eclipse of 1868, when the French astronomer Pierre 
Janssen and, independently, the English astronomer Joseph Norman Lockyer 
examined light from the outermost shell of the sun, peeking just beyond the 
moon’s rim, and found a mysterious bright emission with a wavelength that no 
one could reproduce in the laboratory using known substances. This led to the 
bold—and correct—suggestion that the light was emitted by a new, hitherto 
unknown element. The unknown substance was helium, which thus claims the 
singular distinction of being the only element discovered in the sun before it 
was found on earth. Such work established convincingly that, much as you can 
be uniquely identified by the pattern of lines making up your fingerprint, so an 
atomic species is uniquely identified by the pattern of wavelengths of the light 
it emits (and also absorbs). 
 In the decades that followed, astronomers who examined the wavelengths 
of light gathered from more and more distant astrophysical sources became 
aware of a peculiar feature. Although the collection of wavelengths resembled 
those familiar from laboratory experiments with well-known atoms such as 
hydrogen and helium, they were all somewhat longer. From one distant source, 
the wavelengths might be 3 percent longer; from another source, 12 percent 
longer; from a third 21 percent longer. Astronomers named this effect redshift, 
in recognition that ever longer wavelengths of light, at least in the visible part 
of the spectrum, become ever redder. 
 Naming is a good start, but what causes the wavelengths to stretch? The 
well-known answer, which emerged most clearly from the observations of 
Vesto Slipher and Edwin Hubble, is that the universe is expanding. The static 
map framework introduced earlier is tailor-made for providing an intuitive 
explanation. 
 Picture a light wave undulating its way from the Noa Galaxy toward 
earth. As we plot the light’s progress across our unchanging map, we see a 
uniform succession of wave crests, one following another, as the undisturbed 
wave train heads toward our telescope. The uniformity of the waves might lead 
you to think that the wavelength of the light when emitted (the distance 
between successive wave crests) will be the same as when it’s received. But 
the delightfully interesting part of the story comes into focus when we use the 
map’s legend to convert map distances into real distances. Because the 



universe is expanding, the map’s conversion factor is larger when the light 
concludes its journey than it was at inception. The implication is that although 
the light’s wavelength as measured on the map is unchanging, when converted 
to real distances, the wavelength grows. When we finally receive the light, its 
wavelength is longer than when it was emitted. It’s as if light waves are 
threads stitched through a piece of spandex. Just as stretching the spandex 
stretches the stitching, so expanding the spatial fabric stretches the light waves. 
 We can be quantitative. If the wavelength appears stretched by 3 percent, 
then the universe is 3 percent larger now than it was when the light was 
emitted; if the light appears 21 percent longer, then the universe has stretched 
21 percent since the light began its journey. Redshift measurements thus tell us 
about the size of the universe when the light we’re now examining was emitted, 
as compared with the size of the universe today.* It’s a straightforward final 
step to parlay a series of such redshift measurements into a determination of 
the universe’s expansion profile over time. 
 A pencil mark drawn long ago on your child’s wall records how tall she 
was at the date specified. A series of pencil marks gives her height at a series 
of dates. Given enough marks, you can determine how quickly she was 
growing at various times in the past. A growth spurt at nine, a slower period 
until eleven, another rapid spurt at thirteen, and so on. When astronomers 
measure a Type Ia supernova’s redshift, they’re determining an analogous 
“pencil mark” for space. Much like your child’s height marks, a series of such 
redshift measurements of various Type Ia supernovae would enable them to 
calculate how quickly the universe was growing over various intervals in the 
past. With those data, in turn, the astronomers could determine the rate at 
which the expansion of space has been slowing. That was the plan of attack 
laid out by the research teams. 
 To execute it, they would have to complete one remaining step: dating 
the universe’s pencil marks. The teams needed to determine when the light 
from a given supernova was emitted. This is a straightforward task. Since the 
difference between a supernova’s apparent and intrinsic brightness reveals its 
distance, and since we know light’s speed, we should be able to immediately 
calculate how long ago the supernova’s light was emitted. The reasoning is 
right, but there is one essential subtlety, to do with the “post-facto” stretching 
of light’s trajectory mentioned above, that’s worth emphasizing. 



 When light travels in an expanding universe, it covers a given distance 
partly because of its intrinsic speed through space, but partly also because of 
the stretching of space itself. You can compare this with what happens on an 
airport’s moving walkway. Without increasing your intrinsic speed, you travel 
farther than you otherwise would because the moving walkway augments your 
motion. Similarly, without increasing its intrinsic speed, light from a distant 
supernova travels farther than it otherwise would because during its journey 
the stretching space augments its motion. To judge correctly when the light we 
now see was emitted, we must take account of both contributions to the 
distance it covers. The math gets a little involved (see the notes if you are 
curious), but it is by now thoroughly understood.7 
 Being careful about this point, as well as numerous other theoretical and 
observational details, both groups were able to work out the size of the 
universe’s scale factor at various identifiable times in the past. They were able, 
that is, to find a series of dated pencil marks delineating the universe’s size, 
and therefore to determine how the expansion rate has been changing over the 
history of the cosmos. 
 
Cosmic Acceleration 
 
 
 After checking, and rechecking, and checking again, both teams released 
their conclusions. For the last 7 billion years, contrary to long-held 
expectations, the expansion of space has not been slowing down. It’s been 
speeding up. 
 A summary of this pioneering work, together with subsequent 
observations that cinched the case even more tightly, is given in Figure 6.2. 
The observations revealed that until about 7 billion years ago, the scale factor 
did indeed behave as expected: its growth gradually slowed down. Had this 
continued, the graph would have leveled off or even turned downward. But the 
data show that at about the 7-billion-year mark, something dramatic happened. 
The graph turned upward, which means that the growth rate of the scale factor 
began to increase. The universe kicked into high gear as the expansion of 
space started to accelerate. 
  



 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 Figure 6.2 The scale factor of the universe over time, showing that 
cosmic expansion slowed down until about 7 billion years ago, when it began 
to speed up. 
 
 
 Our cosmic destiny turns on the shape of this graph. With accelerated 
expansion, space will continue to spread indefinitely, dragging away distant 
galaxies ever farther and ever faster. A hundred billion years from now, any 
galaxies not now resident in our neighborhood (a gravitationally bound cluster 
of about a dozen galaxies called our “local group”) will exit our cosmic 
horizon and enter a realm permanently beyond our capacity to see. Unless 
future astronomers have records handed down to them from an earlier era, 
their cosmological theories will seek explanations for an island universe, with 
galaxies numbering no more than students in a backwoods school, floating in a 
static sea of darkness. We live in a privileged age. Insights the universe giveth, 
accelerated expansion will taketh away. 
 As we will see in the pages that follow, the limited view on offer for 
future astronomers is all the more striking when compared with the enormity 



of the cosmic expanse to which our generation has been led in attempting to 
explain the accelerated expansion. 
 
The Cosmological Constant 
 
 
 If you saw a ball’s speed increase after someone threw it upward, you’d 
conclude that something was pushing it away from the earth’s surface. The 
supernova researchers similarly concluded that the unexpected speeding up of 
the cosmic exodus required something to push outward, something to 
overwhelm the inward pull of attractive gravity. As we’re now amply familiar, 
this is the very job description which makes the cosmological constant, and the 
repulsive gravity to which it gives rise, the ideal candidate. The supernova 
observations thus ushered the cosmological constant back into the limelight, 
not through the “bad judgment of conviction” to which Einstein had alluded in 
his letter decades earlier, but through the raw power of data. 
 The data also allowed the researchers to fix the numerical value of the 
cosmological constant—the amount of dark energy suffusing space. 
Expressing the result in terms of an equivalent amount of mass, as is 
conventional among physicists (using E = mc2 in the less familiar form, 
m = E/c2), the researchers showed that the supernova data required a 
cosmological constant of just under 10–29 grams in every cubic centimeter.8 
The outward push of such a small cosmological constant would have been 
trumped for the first 7 billion years by the inward pull of ordinary matter and 
energy, in keeping with the observational data. But the expansion of space 
would have diluted ordinary matter and energy, ultimately allowing the 
cosmological constant to gain the upper hand. Remember, the cosmological 
constant does not dilute; the repulsive gravity supplied by a cosmological 
constant is an intrinsic feature of space—every cubic meter of space 
contributes the same outward push, dictated by the cosmological constant’s 
value. And so the more space there is between any two objects, arising from 
cosmic expansion, the stronger the force driving them apart. By about the 7-
billion-year mark, the cosmological contant’s repulsive gravity would have 
carried the day; the universe’s expansion has been speeding up ever since, just 
as the data in Figure 6.2 attest. 



 To conform more fully to convention, I should re-express the 
cosmological constant’s value in the units physicists more typically use. Much 
as it would be strange to ask a grocer for 1015 picograms of potatoes (instead, 
you’d ask for 1 kilogram, an equivalent measure in more sensible units), or tell 
a waiting friend that you’ll be with her in 109 nanoseconds (instead, you’d say 
1 second, an equivalent measure in more sensible units); it is similarly odd for 
a physicist to quote the energy of the cosmological constant in grams per cubic 
centimeter. Instead, for reasons that will shortly become apparent, the natural 
choice is to express the cosmological constant’s value as a multiple of the so-
called Planck mass (about 10–5 grams) per cubic Planck length (a cube that 
measures about 10–33 centimeters on each side and so has a volume of 10–99 
cubic centimeters). In these units, the cosmological constant’s measured value 
is about 10–123, the tiny number that opened this chapter.9 
 How sure are we of this result? The data establishing accelerated 
expansion have only become more conclusive in the years since the first 
measurements were made. Moreover, complementary measurements (focusing 
on, for example, detailed features of the microwave background radiation; see 
Fabric of the Cosmos, Chapter 14) dovetail spectacularly well with the 
supernova results. If there’s room for maneuvering, it lies in what we accept as 
an explanation for the accelerated expansion. Taking general relativity as the 
mathematical description of gravity, the only option is indeed the antigravity 
of a cosmological constant. Other explanations emerge if we modify this 
picture by including additional exotic quantum fields (which, much as we 
found in inflationary cosmology, can for periods of time masquerade as a 
cosmological constant),10 or alter the equations of general relativity (so that 
attractive gravity drops off in strength with separation more precipitously than 
it does according to Newton’s or Einstein’s mathematics, thus allowing distant 
regions to rush away more quickly, without requiring a cosmological constant). 
But to date, the simplest and most convincing explanation for the observations 
of accelerated expansion is that the cosmological constant doesn’t vanish, and 
so space is suffused with dark energy. 
 To many researchers, the discovery of a nonzero cosmological constant is 
the single most surprising observational result to have emerged in their 
lifetimes. 



Explaining Zero 
 
 
 When I first caught wind of the supernova results suggesting a nonzero 
cosmological constant, my reaction was typical of many physicists. “It just 
can’t be.” Most (but not all) theoreticians had concluded decades before that 
the value of the cosmological constant was zero. This view initially arose from 
the “Einstein’s greatest blunder” lore, but, over time, a variety of compelling 
arguments emerged to support it. The most potent came from considerations of 
quantum uncertainty. 
 Because of quantum uncertainty and the attendant jitters experienced by 
all quantum fields, even empty space is home to frenetic microscopic activity. 
And much like atoms bouncing around a box or kids jumping around a 
playground, quantum jitters harbor energy. But unlike atoms or kids, quantum 
jitters are ubiquitous and inevitable. You can’t declare a region of space closed 
and send the quantum jitters home; the energy supplied by quantum jitters 
permeates space and can’t be removed. Since the cosmological constant is 
nothing but energy that permeates space, quantum field jitters provide a 
microscopic mechanism that generates a cosmological constant. That’s a 
pivotal insight. You’ll recall that when Einstein introduced the notion of a 
cosmological constant, he did so abstractly—he didn’t specify what it might be, 
where it might come from, or how it might arise. The link to quantum jitters 
makes it inevitable that had Einstein not dreamed up the cosmological constant, 
someone engaged with quantum physics subsequently would have. Once 
quantum mechanics is taken into account, you are forced to confront an energy 
contribution provided by fields that’s uniformly spread through space, and so 
you are led directly to the notion of a cosmological constant. 
 The question this raises is one of numerical detail. How much energy 
iscontained in these omnipresent quantum jitters? When theorists calculated 
the answer, they got a well-nigh ridiculous result: there should be an infinite 
amount of energy in every volume of space. To see why, think of a field 
jittering inside an empty box of any size. Figure 6.3 shows some sample 
shapes the jitters can assume. Every such jitter contributes to the field’s energy 
content (in fact, the shorter the wavelength, the more rapid the jitter and hence 
the greater the energy). And since there are infinitely many possible wave 



shapes, each with a shorter wavelength than the previous, the total energy 
contained in the jitters is infinite.11 
 Although clearly unacceptable, the result did not engender fits of 
apoplexy because researchers recognized it as a symptom of the larger, well-
recognized problem that we discussed earlier: the hostility between gravity and 
quantum mechanics. Everyone knew that you can’t trust quantum field theory 
on super-small distance scales. Jitters with wavelengths as small as the Planck 
scale, 10–33 centimeters, and smaller, have energy (and from m = E/c2, mass 
equivalent) so large that the gravitational force matters. To describe them 
properly requires a framework that melds quantum mechanics and general 
relativity. Conceptually, this shifts the discussion to string theory, or to any 
other proposed quantum theory that includes gravity. But the immediate and 
more pragmatic response among researchers was simply to declare that the 
calculations should disregard jitters on scales smaller than the Planck length. 
Failure to implement this exclusion would extend a quantum field theory 
calculation into a realm clearly beyond its range of validity. The expectation 
was that we will one day understand string theory or quantum gravity well 
enough to deal with the super-small jitters quantitatively, but the interim 
stopgap was to mathematically quarantine the most pernicious fluctuations. 
The import of the directive is clear: if you ignore jitters shorter than the Planck 
length, you’re left with only a finite number, so the total energy they 
contribute to a region of empty space is also finite. 
  
  



 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 Figure 6.3There are infinitely many wave shapes in any volume and 
hence infinitely many distinct quantum jitters. This yields the problematic 
result of an infinite energy contribution. 
 
 
 That’s progress. Or, at the very least, it shifts the burden to future 
insights that would, fingers crossed, tame the super-small-wavelength quantum 
fluctuations. But even so, researchers found that the resulting answer for the 
energy jitters, while finite, was still gargantuan, about 1094 grams per cubic 
centimeter. This is far larger than what you’d get from compressing all the 
stars in all the known galaxies into a thimble. Focusing on an infinitesimal 
cube, one that measures a Planck length on each side, this stupendous density 
amounts to 10–5 grams per cubic Planck length, or 1 Planck mass per Planck 
volume (which is why these units, like kilos for potatoes and seconds for 
waiting, are the natural and sensible choice). A cosmological constant of this 
magnitude would drive such an enormously fast outward burst that everything 
from galaxies to atoms would be ripped apart. More quantitatively, 
astronomical observations had established a tight limit on how large a 



cosmological constant could be, if there were one at all, and the theoretical 
results exceeded the limit by a staggering factor of more than a hundred orders 
of magnitude. While a large finite number for the energy that suffuses space is 
better than an infinite one, physicists realized the dire need for dramatically 
reducing the result from their calculations. 
 Here’s where theoretical prejudice came to the fore. Assume for the 
moment that the cosmological constant is not just small. Assume it’s zero. 
Zero is a favorite number of theoreticians because there’s a tried and true way 
for it to emerge from calculations: symmetry. For example, imagine that 
Archie has enrolled in a continuing education course and for homework has to 
add together the sixty-third power of each of the first ten positive numbers, 163 
+ 263 + 363 + 463 + 563 + 663 + 763 + 863 + 963 + 1063, and then add the result to 
the sum of the sixty-third power of each of the first ten negative numbers, (–
1)63 + (–2)63 + (–3)63 + (–4)63 + (–5)63 + (–6)63 + (–7)63 + (–8)63 + (–9)63 + (–
10)63. What’s the final tally? As he laboriously calculates, getting ever-more 
frustrated, multiplying and then adding together numbers with more than five 
dozen digits, Edith chimes in: “Use symmetry, Archie.” “Huh?” What she 
means is that each term in the first collection has a symmetric balancing term 
in the second: 163 and (–1)63 sum to 0 (a negative raised to an odd power 
remains negative); 263 and (–2)63 sum to 0, and so on. The symmetry between 
the expressions results in a total cancellation, as if they were children of equal 
weight balancing on opposite sides of a seesaw. Needing no calculations at all, 
Edith shows that the answer is 0. 
 Many physicists believed—or, I should really say, hoped—that a similar 
total cancellation due to an as yet unidentified symmetry in the laws of physics 
would rescue the calculation of the energy contained in quantum jitters. 
Physicists surmised that the huge energies from quantum jitters would cancel 
against some as yet unidentified huge balancing contributions, once the 
physics was sufficiently well understood. This was about the only strategy 
physicists could come up with for tamping down the unruly results of the 
rough calculations. And that’s why many theorists concluded that the 
cosmological constant had to be zero. 
 Supersymmetry provides a concrete example of how this could play out. 
Recall from Chapter 4 (Table 4.1) that supersymmetry entails a pairing of 
species of particles, and hence species of fields: electrons are paired with 



species of particles called supersymmetric electrons, or selectrons for short; 
quarks with squarks; neutrinos with sneutrinos, and so on. All of these 
“sparticle” species are currently hypothetical, but experiments in the next few 
years at the Large Hadron Collider may change that. In any event, an 
intriguing fact came to light when theoreticians examined mathematically the 
quantum jitters associated with each of the paired fields. For every jitter of the 
first field, there’s a corresponding jitter of its partner that has the same size but 
opposite sign, much as in Archie’s math homework. And just as in that 
example, when we add together all such contributions pair by pair, they cancel 
out, yielding a final result of zero.12 
 The catch, and it’s a big one, is that the total cancellation occurs only if 
both members of a pair have not only the same electric and nuclear charges 
(which they do), but also the same mass. Experimental data have ruled this out. 
Even if nature makes use of supersymmetry, the data show that it can’t be 
realized in its most potent form. The as yet unknown particles (selectrons, 
squarks, sneutrinos, and so on) must be much heavier than their known 
counterparts—only this can explain why they haven’t been seen in accelerator 
experiments. When the different particle masses are accounted for, the 
symmetry is disturbed, the balancing is unbalanced, and the cancellations are 
imperfect; the result is once again huge. 
 Over the years, many analogous proposals were put forward, invoking a 
range of additional symmetry principles and cancellation mechanisms, but 
none achieved the goal of establishing theoretically that the cosmological 
constant should vanish. Even so, most researchers took this merely as a sign of 
our incomplete understanding of physics, not as a clue that belief in a 
vanishing cosmological constant was misguided. 
 One physicist who challenged the orthodoxy was the Nobel laureate 
Steven Weinberg.* In a paper published in 1987, more than a decade before the 
revolutionary supernova measurements, Weinberg suggested an alternative 
theoretical scheme that yielded a decidedly different outcome: a cosmological 
constant that is small but not zero. Weinberg’s calculations were based on one 
of the most polarizing concepts to have gripped the physics community in 
decades—a principle some revere and others vilify, a principle some call 
profound and others call silly. Its official, if misleading, name is the anthropic 
principle. 



Cosmological Anthropics 
 
 
 Nicolaus Copernicus’ heliocentric model of the solar system is 
acknowledged as the first convincing scientific demonstration that we humans 
are not the focal point of the cosmos. Modern discoveries have reinforced the 
lesson with a vengeance. We now realize that Copernicus’ result is but one of 
a series of nested demotions overthrowing long-held assumptions regarding 
humanity’s special status: we’re not located at the center of the solar system, 
we’re not located at the center of the galaxy, we’re not located at the center of 
the universe, we’re not even made of the dark ingredients constituting the vast 
majority of the universe’s mass. Such cosmic downgrading, from headliner to 
extra, exemplifies what scientists now call the Copernican principle: in the 
grand scheme of things, everything we know points toward human beings not 
occupying a privileged position. 
 Nearly five hundred years after Copernicus’ work, at a commemorative 
conference in Kraków, one presentation in particular—given by the Australian 
physicist Brandon Carter—provided a tantalizing twist to the Copernican 
principle. Carter expounded his belief that an overadherence to the Copernican 
perspective might, in certain circumstances, divert researchers from significant 
opportunities for making progress. Yes, Carter agreed, we humans are not 
central to the cosmic order. Yet, he continued, aligning with similar insights 
articulated by scientists such as Alfred Russel Wallace, Abraham Zelmanov, 
and Robert Dicke, there is one arena in which we do play an absolutely 
indispensable role: our own observations. However far we have been demoted 
by Copernicus and his legacy, we top the bill when credits are conferred for 
the gathering and analyzing of the data that mold our beliefs. Because of this 
unavoidable position, we must take account of what statisticians call selection 
bias. 
 It’s a simple and widely applicable idea. If you are investigating trout 
populations but only canvass the Sahara Desert, your data will be biased by 
your focusing on an environment particularly inhospitable to your subject. If 
you are studying the general public’s interest in opera, but send your survey 
solely to the database collected by the journal Can’t Live Without Opera, your 
results won’t be accurate because the respondents are not representative of the 



population as a whole. If you are interviewing a group of refugees who have 
endured astoundingly harsh conditions during their trek to safety, you might 
conclude that they are among the hardiest ethnicities on the planet. Yet, when 
you learn the devastating fact that you are speaking with less than 1 percent of 
those who started out, you realize that such a deduction is biased because only 
the phenomenally strong survived the journey. 
 Addressing these biases is vital for getting meaningful results and for 
avoiding the futile search to explain conclusions based on unrepresentative 
data. Why are trout extinct? What’s the cause of the public’s surging interest in 
opera? Why is it that a particular ethnicity is so astoundingly resilient? Biased 
observations can launch you on meaningless quests to explain things that a 
broader, more representative view renders moot. 
 In most cases, these types of biases are easily identified and corrected. 
But there’s a related variety of bias that’s more subtle, one so basic it can 
easily be overlooked. It’s the kind in which limitations on when and where we 
are able to live can have a profound impact on what we are able to see. If we 
fail to take proper account of the impact such intrinsic limitations have on our 
observations, then, as in the examples above, we can draw wildly erroneous 
conclusions, including some that may impel us on fruitless journeys to explain 
meaningless MacGuffins. 
 For instance, imagine that you’re intent on understanding (as was the 
great scientist Johannes Kepler) why the earth is 93 million miles from the sun. 
You want to find, deep within the laws of physics, something that will explain 
this observational fact. For years you struggle mightily but are unable to 
synthesize a convincing explanation. Should you keep trying? Well, if you 
reflect on your efforts, taking account of selection bias, you will soon realize 
that you’re on a wild goose chase. 
 The laws of gravity, Newton’s as well as Einstein’s, allow a planet to 
orbit a star at any distance. If you were to grab hold of the earth, move it to 
some arbitrary distance from the sun, and then set it in motion again at the 
right velocity (a velocity easy to work out with basic physics), it would happily 
go into orbit. The only thing special about being 93 million miles from the sun 
is that it yields a temperature range on earth conducive to our being here. If 
earth were much closer or much farther away from the sun, the temperature 
would be much hotter or colder, eliminating an essential ingredient for our 



form of life: liquid water. This reveals the inbuilt bias. The very fact that we 
measure the distance from our planet to the sun mandates that the result we 
find must be within the limited range compatible with our own existence. 
Otherwise, we wouldn’t be here to contemplate the earth’s distance from the 
sun. 
 If earth were the only planet in the solar system, or the only planet in the 
universe, you still might feel compelled to carry your investigations further. 
Yes, you might say, I understand that my own existence is tied to the earth’s 
distance from the sun, yet this only heightens my urge to explain why the earth 
happens to be situated at such a cozy, life-compatible position. Is it just a lucky 
coincidence? Is there a deeper explanation? 
 But the earth is not the only planet in the universe, let alone in the solar 
system. There are many others. And this fact casts such questions in a very 
different light. To see what I mean, imagine that you mistakenly think a 
particular shop carries only a single shoe size, and so are gleefully surprised 
when the salesman brings you a pair that fits perfectly. “Of all possible shoe 
sizes,” you reflect, “it’s amazing that the single one they carry is mine. Is that 
just a lucky coincidence? Is there a deeper explanation?” But when you learn 
that the shop actually carries a wide range of sizes, the questions evaporate. A 
universe with many planets, situated at a range of distances from their host 
stars, provides a similar situation. Just as it’s no big surprise that among all the 
shoes in the shop there’s at least one pair that fits, so it’s no big surprise that 
among all the planets in all the solar systems in all the galaxies there’s at least 
one at the right distance from its host star to yield a climate conducive to our 
form of life. And it’s on one of those planets, of course, that we live. We 
simply couldn’t evolve or survive on the others. 
 So there is no fundamental reason why the earth is 93 million miles from 
the sun. A planet’s orbital distance from its host star is due to the vagaries of 
historical happenstance, the innumerable detailed features of the swirling gas 
cloud from which a particular solar system coalesced; it’s a contingent fact 
that’s unavailable for fundamental explanation. Indeed, these astrophysical 
processes have produced planets throughout the cosmos, orbiting their 
respective suns at a vast assortment of distances. We find ourselves on one 
such planet situated 93 million miles from our sun because that’s a planet on 



which our form of life could evolve. Failure to take account of this selection 
bias would lead one to search for a deeper answer. But that’s a fool’s errand. 
 Carter’s paper emphasized the importance of paying heed to such bias, an 
accounting he called the anthropic principle (an unfortunate name, because the 
idea would apply equally well to any form of intelligent life that makes and 
analyzes observations, not just to humans). No one took exception to this 
element of Carter’s argument. The controversial part was his suggestion that 
the anthropic principle might cast its net not just over things in the universe, 
like planetary distances, but over the universe itself. 
 What would that mean? 
 Imagine you’re puzzling over some fundamental feature of the universe, 
say the mass of an electron, .00054 (expressed as a fraction of the proton’s 
mass), or the strength of the electromagnetic force, .0073 (expressed by its 
coupling constant), or, of primary interest to us here, the value of the 
cosmological constant, 1.38 × 10–123 (expressed in Planck units). Your 
intention is to explain why these constants have the particular values they do. 
You try and try but come up emptyhanded. Take a step back, Carter says. 
Maybe you’re failing for the same reason you’d fail to explain the earth-sun 
distance: there is no fundamental explanation. Just as there are many planets at 
many distances and we necessarily inhabit one whose orbit yields hospitable 
conditions, maybe there are many universes with many different values for the 
“constants” and we necessarily inhabit the one in which the values are 
conducive to our existence. 
 In this way of thinking, to ask why the constants have their particular 
values is to ask the wrong kind of question. There is no law dictating their 
values; their values can and do vary across the multiverse. Our intrinsic 
selection bias ensures that we find ourselves in that part of the multiverse in 
which the constants have the values with which we’re familiar simply because 
we’re unable to exist in the parts of the multiverse where the values are 
different. 
 Note that the reasoning would fall flat if our universe were unique 
because you could still ask the “lucky coincidence” or “deeper explanation” 
questions. Much as a potent explanation for why the shop has your shoe size 
requires that the shelves be stocked with many different sizes, and much as a 
potent explanation for why there’s a planet situated at a bio-friendly distance 



from its host star requires planets orbiting their stars at many different 
distances, so a potent explanation of nature’s constants requires a vast 
assortment of universes endowed with many different values for those 
constants. Only in this setting—a multiverse, and a robust one at that—does 
anthropic reasoning have the capacity to make the mysterious mundane.* 
 Clearly, then, the degree to which you are swayed by the anthropic 
approach depends on the degree to which you are convinced of its three 
essential assumptions: (1) our universe is part of a multiverse; (2) from 
universe to universe in the multiverse, the constants take on a broad range of 
possible values; and (3) for most variations of the constants away from the 
values we measure, life as we know it would fail to take hold. 
 In the 1970s, when Carter put forward these ideas, the notion of parallel 
universes was anathema to many physicists. Certainly, there’s still ample 
reason to be skeptical. But we’ve seen in the previous chapters that although 
the case for any particular version of the multiverse is surely tentative, there’s 
reason for giving this new view of reality serious consideration, Assumption 1. 
Many scientists now are. Regarding Assumption 2, we’ve also seen that, for 
example, in the Inflationary and Brane Multiverses, we would indeed expect 
physical features, such as the constants of nature, to vary from universe to 
universe. Later in this chapter we’ll look at this point more closely. 
 But what about Assumption 3, concerning life and the constants? 
 
Life, Galaxies, and Nature’s Numbers 
 
 
 For many of nature’s constants, even modest variations would render life 
as we know it impossible. Make the gravitational constant stronger, and stars 
burn up too quickly for life on nearby planets to evolve. Make it weaker and 
galaxies don’t hold together. Make the electromagnetic force stronger, and 
hydrogen atoms repel each other too strongly to fuse and supply power to 
stars.13 But what about the cosmological constant? Does life’s existence 
depend on its value? This is the issue Steven Weinberg took up in his 1987 
paper. 
 Because the formation of life is a complex process about which our 
understanding is in its earliest stages, Weinberg recognized that it was 



hopeless to determine how one or another value of the cosmological constant 
directly impacts the myriad steps that breathe life into matter. But rather than 
give up, Weinberg introduced a clever proxy for the formation of life: the 
formation of galaxies. Without galaxies, he reasoned, the formation of stars 
and planets would be thoroughly compromised, with a devastating impact on 
the chance that life might emerge. This approach was not only eminently 
reasonable but also useful: it shifted the focus to determining the impact that 
cosmological constants of various sizes would have on galaxy formation, and 
that was a problem Weinberg could solve. 
 The essential physics is elementary. While precise details of galaxy 
formation are an active area of research, the broad-brush process involves a 
kind of astrophysical snowball effect. A clump of matter forms here or there, 
and by virtue of being more dense than its surroundings, it exerts a greater 
gravitational pull on nearby matter and thus grows larger still. The cycle 
continues feeding on itself to ultimately produce a swirling mass of gas and 
dust, from which stars and planets coalesce. Weinberg’s realization was that a 
cosmological constant with a value large enough would disrupt the clumping 
process. The repulsive gravity it would generate, if sufficiently strong, would 
thwart galactic formation by making the initial clumps—which were small and 
fragile—stream apart before they had time to become robust by attracting 
surrounding matter. 
 Weinberg worked out the idea mathematically and found that a 
cosmological constant any larger than a few hundred times the current 
cosmological density of matter, a few protons per cubic meter, would disrupt 
the formation of galaxies. (Weinberg also considered the impact of a negative 
cosmological constant. The constraints in that case are even tighter, because a 
negative value increases the attractive pull of gravity and makes the whole 
universe collapse before stars even have time to ignite.). If you imagine, then, 
that we’re part of a multiverse and that the cosmological constant’s value 
varies over a wide range from universe to universe, much as planet-star 
distances vary over a wide range from solar system to solar system—the only 
universes that could have galaxies, and hence the only universes we could 
inhabit, are ones in which the cosmological constant is no larger than 
Weinberg’s limit, which in Planck units is about 10–121. 



 After years of failed efforts by the community of physicists, this was the 
first theoretical calculation to result in a value for the cosmological constant 
that was not absurdly larger than limits inferred from observational astronomy. 
Nor did it contradict a belief widely held at the time of Weinberg’s work, that 
the cosmological constant vanished. Weinberg took this apparent progress one 
step further by encouraging an even more aggressive interpretation of his 
result. He suggested that we should expect to find ourselves in a universe with 
a cosmological constant whose value is as small as it needs to be for us to exist, 
but not a whole lot smaller. A much smaller constant, he reasoned, would call 
for an explanation that goes beyond mere compatibility with our existence. 
That is, it would require precisely the kind of explanation that physics had 
valiantly sought but so far failed to find. This led Weinberg to suggest that 
more refined measurements might one day reveal that the cosmological 
constant doesn’t vanish but, instead, has a value near or at the upper limit that 
he’d calculated. As we’ve seen, within a decade of Weinberg’s paper, the 
observations of the Supernova Cosmology Project and the High-Z Supernova 
Search Team proved this suggestion prophetic. 
 But to assess fully this unconventional explanatory framework, we need 
to examine Weinberg’s reasoning more closely. Weinberg is imagining a 
sprawling multiverse so diverse in population that it just has to contain at least 
one universe with the cosmological constant we’ve observed. But what kind of 
multiverse will guarantee, or at least make it highly likely, that this is the case? 
 To think this through, consider first an analogous problem with simpler 
numbers. Imagine you work for the notorious film producer Harvey W. 
Einstein, who has asked you to put out a casting call for the lead in his new 
indie, Pulp Friction. “How tall do you want him?” you ask. “I dunno. Taller 
than a meter, less than two. But you better make sure whatever height I decide, 
there’s someone who fits the bill.” You’re tempted to correct your boss, noting 
that because of quantum uncertainty he really doesn’t need to have every 
height represented but, thinking back on what happened to the surly little 
talking fly who tried that, you refrain. 
 Now you face a decision. How many actors should you have at the 
audition? You reason: If W. measures heights to a centimeter’s accuracy, there 
are a hundred different possibilities between one and two meters. So you need 
at least a hundred actors. But since some actors who show up may have the 



same height, leaving other heights unrepresented, you’d better gather more 
than a hundred. To be safe, maybe you should put out a call for a few hundred 
actors. That’s a lot, but fewer than what you’d need if W. measured heights to 
a millimeter’s accuracy. In that case, there’d be a thousand different heights 
between one and two meters, so to be safe you’d need to gather a few thousand 
actors. 
 The same reasoning is relevant for the case of universes with different 
cosmological constants. Assume that all the universes in a multiverse have 
cosmological constant values between zero and one (in the usual Planck units); 
smaller values lead to universes that collapse, larger values would strain the 
applicability of our mathematical formulations, compromising all 
understanding. So just as the actors’ heights had a range of one (in meters), the 
universes’ cosmological constants have a range of one (in Planck units). As for 
accuracy, the analog of W. using centimeter ticks, or millimeter ticks, is the 
precision with which we can measure the cosmological constant. Today’s 
accuracy is about 10–124 (in Planck units). In the future, our accuracy will no 
doubt improve, but as we’ll see, that will hardly affect our conclusions. Then 
just as there are 102 different possible heights spaced at least 10–2 meters apart 
(1 centimeter) in a one-meter range, and 103 different possible heights spaced 
at least 10–3 meters apart (1 millimeter), so there are 10124 different values of 
the cosmological constant spaced at least 10–124 apart between the values 0 and 
1. 
 To ensure that every possible cosmological constant is realized, we’d 
therefore need a multiverse with at least 10124 different universes. But as with 
the actors, we need to account for possible duplicates, universes that may have 
the same cosmological constant value. And so to play it safe and make it 
highly likely that every possible cosmological constant value is realized, we 
should have a multiverse with far more than 10124 universes, say a million 
times more, bringing it to a nice even 10130 universes. I’m being cavalier 
because when we’re talking about numbers this large, the exact values hardly 
matter. No familiar example of anything—not the number of cells in your 
body (1013); not the number of seconds since the big bang (1018); not the 
number of photons in the observable part of the universe (1088)—comes even 
remotely close to the number of universes we’re contemplating. The bottom 
line is that Weinberg’s approach for explaining the cosmological constant 



works only if we’re part of a multiverse in which there are a huge number of 
different universes; their cosmological constants must fill out some 10124 
distinct values. Only with that many different universes is there a high 
likelihood that there’s one with a cosmological constant that matches ours. 
 Are there theoretical frameworks that naturally yield such a spectacular 
profusion of universes with different cosmological constants?14 

 
From Vice to Virtue 
 
 
 There are. We encountered such a framework in the previous chapter. A 
count of the different possible forms for the extra dimensions in string theory, 
when including fluxes that can thread through them, came to about 10500. This 
dwarfs 10124. Multiply 10124 by a few hundred orders of magnitude and 10500 
still dwarfs it. Subtract 10124 from 10500, and then subtract it again, and again, 
and do so a billion times over, and you’d barely make a dent. The result would 
still be nearly 10500. 
 Critically, the cosmological constant does indeed vary from one such 
universe to another. Just as magnetic flux carries energy (it can move things), 
so the fluxes threading holes in Calabi-Yau shapes also have energy, whose 
quantity is quite sensitive to the shape’s geometrical details. If you have two 
different Calabi-Yau shapes with different fluxes penetrating different holes, 
their energies will generally be different too. And since a given Calabi-Yau 
shape is attached to every point in the familiar three large dimensions of space, 
much as circular loops of pile attach to every point on the large extended base 
of a carpet, the energy the shape contains would uniformly fill the three large 
dimensions, much as soaking the individual fibers in a carpet’s pile would 
make the entire carpet backing uniformly heavy. Thus, should one or another 
of the 10500 different dressed-up Calabi-Yau shapes constitute the requisite 
extra dimensions, the energy it contains would contribute to the cosmological 
constant. Results obtained by Raphael Bousso and Joe Polchinski made this 
observation quantitative. They argued that the various cosmological constants 
supplied by the 10500 or so different possible forms for the extra dimensions 
are distributed uniformly across a broad range of values. 



 This is just what the doctor ordered. Having 10500 tick marks distributed 
across a range from 0 to 1 ensures that many of them lie extremely close to the 
value of the cosmological constant astronomers have measured during the past 
decade. It may be hard to find the explicit examples among the 10500 
possibilities, because even if today’s fastest computers took a single second to 
analyze each form for the extra dimensions, after a billion years only a paltry 
1032 examples would have been examined. But this reasoning suggests 
strongly that they exist. 
 Certainly, a collection of 10500 different possible forms for the extra 
dimensions is about as far from a unique universe as anyone imagined string 
theory research would ever take us. And for those who’ve held strongly to 
Einstein’s dream of finding a unified theory describing one single universe—
ours—these developments came with significant discomfort. But analysis of 
the cosmological constant casts the situation in a different light. Rather than 
despair because a unique universe seems not to emerge, we are encouraged to 
celebrate: string theory makes the least plausible part of Weinberg’s 
explanation of the cosmological constant—the requirement that there be many 
more than 10124 different universes—suddenly seem plausible. 
 
The Final Step, in Brief 
 
 
 The elements of a tantalizing story seem to be coming together. But a gap 
remains in the reasoning. It’s one thing for string theory to allow for a huge 
number of possible distinct universes. It’s another to claim that string theory 
ensures that all of the possible universes to which it can give rise are actually 
out there, parallel worlds populating a vast multiverse. As emphasized most 
emphatically by Leonard Susskind—who was inspired by the pioneering work 
of Shamit Kachru, Renata Kallosh, Andrei Linde, and Sandip Trivedi—if we 
weave eternal inflation into the tapestry, the gap can be filled.15 
 I’ll now explain this final step, but in case you’re reaching saturation and 
just want the punch line, here’s a three-sentence summary. The Inflationary 
Multiverse—the ever-expanding Swiss cheese cosmos—contains a vast, ever-
increasing number of bubble universes. The idea is that when inflationary 
cosmology and string theory are melded, the process of eternal inflation 



sprinkles string theory’s 10500 possible forms for the extra dimensions across 
the bubbles—one form for the extra dimensions per bubble universe—
providing a cosmological framework that realizes all possibilities. By this 
reasoning, we live in that bubble whose extra dimensions yield a universe, 
cosmological constant and all, that’s hospitable to our form of life and whose 
properties agree with observations. 
 In the remainder of the chapter, I will flesh out the details, but if you’re 
ready to move on, feel free to jump ahead to the chapter’s last section. 
 
The String Landscape 
 
 
 In explaining inflationary cosmology back in Chapter 3, I used a 
variation on a common metaphor. A mountain’s peak represents the highest 
value of energy contained in an inflaton field suffusing space. The act of 
rolling down the mountain and coming to rest at a low point in the terrain 
represents the inflaton shedding this energy, which in the process is converted 
to particles of matter and radiation. 
 Let’s revisit three aspects of the metaphor, updating them with insights 
we’ve since acquired. First, we’ve learned that the inflaton is only one source 
of the energy that may fill space; other contributions come from the quantum 
jitters of any and all fields—electromagnetic, nuclear, and so on. To revise the 
metaphor accordingly, altitude will now reflect the combined energy uniformly 
suffusing space contributed by all sources. 
 Second, the original metaphor envisioned the base of the mountain, 
where the inflaton finally comes to rest, as being at “sea level,” altitude zero, 
meaning the inflaton has shed all its energy (and pressure). But with our 
revised metaphor, the height of the mountain’s base should represent the 
combined energy suffusing space from all sources after inflation has drawn to 
a close. This is another name for that bubble universe’s cosmological constant. 
The mystery in explaining our cosmological constant thus translates into the 
mystery of explaining the altitude of our mountain’s base—why is it so close 
to, but not exactly at, sea level? 
 Finally, we initially considered the simplest of mountainous terrains, a 
peak leading smoothly to a base, where the inflaton would ultimately settle 



(see Figure 3.1). We then went a step further, taking account of other 
ingredients (Higgs fields) whose evolution and final resting places would 
influence the physical features manifest in the bubble universes (see Figure 
3.6). In string theory, the range of possible universes is richer still. The shape 
of the extra dimensions determines the physical features within a given bubble 
universe, and so the possible “resting places,” the various valleys in Figure 
3.6b, now represent the possible shapes the extra dimensions can take. To 
accommodate the 10500 possible forms for these dimensions, the mountain 
terrain therefore needs a lush assortment of valleys, ledges, and outcroppings, 
as represented in Figure 6.4. Any such feature in the terrain where a ball could 
come to rest represents a possible shape into which the extra dimensions could 
relax; the altitude at that location represents the cosmological constant of the 
corresponding bubble universe. Figure 6.4 illustrates what’s called the string 
landscape. 
 With this more refined understanding of the mountain—or landscape—
metaphor, we now consider how quantum processes affect the form of the 
extra dimensions in this setting. As we will see, quantum mechanics lights up 
the landscape. 
  
  



 
 
 Figure 6.4 The string landscape can be visualized schematically as a 
mountainous terrain in which different valleys represent different forms for the 
extra dimensions, and altitude represents the cosmological constant’s value. 
 
 
Quantum Tunneling in the Landscape 
 
 
 While Figure 6.4 is necessarily schematic (each of the different Higgs 
fields in Figure 3.6 has its own axis; similarly each of the roughly 500 
different field fluxes that can thread a Calabi-Yau shape should also have its 
own axis—but sketching mountains in a 500-dimensional space is a challenge), 
it correctly suggests that universes with different forms for the extra 
dimensions are part of a connected terrain.16 And when quantum physics is 
taken into account, using results discovered independently of string theory by 



the legendary physicist Sidney Coleman in collaboration with Frank De Luccia, 
the connections between the universes allow for dramatic transmutations. 
 The core physics relies on a process known as quantum tunneling. 
Imagine a particle, an electron for instance, encountering a solid barrier, say a 
slab of steel ten feet thick, that classical physics predicts it can’t penetrate. A 
hallmark of quantum mechanics is that the rigid classical notion of “can’t 
penetrate” often translates into the softer quantum declaration of “has a small 
but nonzero probability of penetrating.” The reason is that the quantum jitters 
of a particle allow it, every so often, to suddenly materialize on the other side 
of an otherwise impervious barrier. The moment at which such quantum 
tunneling happens is random; the best we can do is predict the likelihood that it 
will take place during one interval or another. But the math says that if you 
wait long enough, penetration through just about any barrier will happen. And 
it does happen. If it didn’t, the sun wouldn’t shine: for hydrogen nuclei to get 
close enough to fuse, they must tunnel through the barrier created by the 
electromagnetic repulsion of their protons. 
 Coleman and De Luccia, and many who have since followed their lead, 
scaled quantum tunneling up from single particles to an entire universe that’s 
faced with a similar “impenetrable” barrier separating its current configuration 
from another that’s possible. To get a feel for their result, imagine two possible 
universes that are otherwise identical save for a field, uniformly suffusing each, 
whose energy is higher in one, lower in the other. In the absence of a barrier, 
the higher energy-field value rolls to the lower, like a ball rolling down a hill 
as we’ve seen in the discussion of inflationary cosmology. But what happens if 
the field’s energy curve has a “mountainous bump” separating its current value 
from the one it seeks, as in Figure 6.5? Coleman and De Luccia found that 
much as is the case for a single particle, a universe can do what classical 
physics forbids: it can jitter its way—it can quantum tunnel—through the 
barrier and reach the lower energy configuration. 
  
 
  



 
 Figure 6.5 An example of a field’s energy curve that has two values—two 
troughs or valleys—where the field naturally comes to rest. A universe 
suffused with the higher-energy field value can quantum tunnel to the lower 
value. The process involves a small randomly located region of space in the 
original universe acquiring the lower field value; the region then expands, 
converting an ever-wider domain from the higher to the lower energy. 
 
 But because we are talking about a universe and not just a single particle, 
the tunneling process is more involved. It’s not that the field’s value 
throughout all of space tunnels simultaneously through the barrier, Coleman 
and De Luccia argued; rather, a “seed” tunneling event would create a small, 
randomly located bubble suffused with the smaller field energy. The bubble 
would then grow, much like Vonnegut’s ice-nine, ever enlarging the domain in 
which the field had tunneled to the lower energy. 
 These ideas can be applied directly to the string landscape. Imagine that 
the universe has a particular form for the extra dimensions, which corresponds 
to the left valley in Figure 6.6a. Because of this valley’s high altitude, the three 
familiar spatial dimensions are permeated by a large cosmological constant—
yielding strong repulsive gravity—and so are rapidly inflating. This expanding 
universe, together with its extra dimensions, is illustrated on the left side of 



Figure 6.6b. Then, at some random location and moment, a tiny region of 
space tunnels through the intervening mountain to the valley on the right side 
of Figure 6.6a. Not that the tiny region of space moves (whatever that would 
mean); rather, the form of the extra dimensions (its shape, size, fluxes it carries) 
in this little region changes. The extra dimensions in the tiny region transmute, 
acquiring the form associated to the right valley in Figure 6.6a. This new 
bubble universe lies within the original, as illustrated in Figure 6.6b. 
 The new universe will rapidly expand and continue to transform the extra 
dimensions as it spreads. But since the new universe’s cosmological constant 
has decreased—its altitude in the landscape is lower than the original—the 
repulsive gravity it experiences is weaker, and so it won’t expand as fast as the 
original universe. We thus have an expanding bubble universe, with the new 
form for the extra dimensions, contained in even faster expanding bubble 
universe, with the original form for the extra dimensions.17 
 The process can repeat. At other locations inside the original universe as 
well as inside the new one, further tunneling events cause additional bubbles to 
open up, creating regions with yet different forms for the extra dimensions 
(Figure 6.7). In due course, the expanse of space will be riddled with bubbles 
inside of bubbles inside of bubbles—each undergoing inflationary expansion, 
each with a different form for the extra dimensions, and each with a smaller 
cosmological constant than the larger bubble universe within which it formed. 
 The result is a more intricate version of the Swiss cheese multiverse we 
found in our earlier encounter with eternal inflation. In that version, we had 
two types of regions: the “cheesy” ones that were undergoing inflationary 
expansion and the “holes” that weren’t. This was a direct reflection of the 
simplified landscape with a single mountain whose base we assumed to be at 
sea level. The richer string theory landscape, with its sundry peaks and valleys 
corresponding to different values of the cosmological constant, gives rise to 
the many different regions in Figure 6.7—bubbles inside of bubbles inside of 
bubbles, like a sequence of Matryosta dolls, each painted by a different artist. 
Ultimately, the relentless series of quantum tunnelings through the 
mountainous string landscape realizes every possible form for the extra 
dimensions in one or another bubble universe. This is the Landscape 
Multiverse. 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 Figure 6.6 (a) A quantum tunneling event, within the string landscape. 
(b)The tunneling creates a small region of space—represented by the smaller 
and darker bubble—within which the form of the extra dimensions has 
changed. 
 



 
 
 
 
 
 
 
 
 
 
 
  
  

 Figure 6.7 The tunneling process can repeat, yielding a vast nested 
sequence of expanding bubble universes, each with a different form for the 
extra dimensions. 
 
 
 The Landscape Multiverse is just what we need for Weinberg’s 
explanation of the cosmological constant. We’ve argued that the string 
landscape ensures that there are, in principle, possible forms for the extra 
dimensions that would have a cosmological constant in the ballpark of the 
observed value: there are valleys in the string landscape whose tiny altitude is 
on par with the tiny but nonzero cosmological constant that the supernovae 
observations revealed. When the string landscape combines with eternal 
inflation, all possible forms for the extra dimensions, including those with such 
a small cosmological constant, are brought to life. Somewhere within the vast 
nested sequence of bubbles constituting the Landscape Multiverse, there are 
universes whose cosmological constant is about 10–123, the minuscule number 
that launched this chapter. And according to this line of thought, it is in one of 
those bubbles that we live. 



The Rest of Physics? 
 
 
 The cosmological constant is but one feature of the universe we inhabit. 
It is arguably among the most puzzling, since its small measured value is so 
famously at odds with the numbers that emerge from the most straightforward 
estimates using established theory. This chasm draws singular focus to the 
cosmological constant and underlies the urgency of finding a framework, 
however exotic, with the capacity to explain it. Proponents of the interlocking 
set of ideas laid out above argue that the string multiverse does just that. 
 But what about all the other features of our universe—the existence of 
three kinds of neutrinos, the particular mass of the electron, the strength of the 
weak nuclear force, and so on? While we can at least imagine calculating these 
numbers, no one has as yet managed to do so. You might wonder whether their 
values, too, are ripe for a multiverse-based explanation. Indeed, researchers 
surveying the string landscape have found that these numbers, like the 
cosmological constant, also vary from place to place, and hence—at least in 
our current understanding of string theory—are not uniquely determined. This 
leads to a perspective very different from what dominated in the early days of 
research on the subject. It suggests that trying to calculate the properties of the 
fundamental particles, like trying to explain the distance between the earth and 
the sun, may be misguided. Like planetary distances, some or all of the 
properties would vary from one universe to the next. 
 For this line of thinking to be credible, though, we need at a bare 
minimum to know not only that there are bubble universes in which the 
cosmological constant has the right value, but also that in at least one such 
bubble the forces and the particles agree with what scientists in our universe 
have measured. We need to be sure that our universe, in all its detail, is 
somewhere in the landscape. This is the goal of a vibrant field called string 
model building. The research program amounts to hunting around the string 
landscape and examining possible forms for the extra dimensions 
mathematically, in search of universes that most resemble ours. It’s a 
formidable challenge, because the landscape is too large and intricate to be 
fully studied in any systematic way. Progress requires sharp calculational skills 
as well as intuition regarding which pieces to assemble—the extra-dimensional 



shape, its size, the field fluxes cycling its holes, the presence of various branes, 
and so on. Those who lead this charge combine the best of rigorous science 
with an artistic sensibility. To date, no one has found an example that 
reproduces the features of our universe exactly. But with some 10500 
possibilities awaiting exploration, the consensus is that our universe has a 
home somewhere in the landscape. 
 
Is This Science? 
 
 
 In this chapter we’ve turned a logical corner. Until now, we’ve been 
exploring the implications for reality, writ large, of various developments in 
fundamental physics and cosmology research. I delight in the possibility that 
copies of the earth exist in the far reaches of space, or that our universe is one 
of many bubbles in an inflating cosmos, or that we live on one of many 
braneworlds constituting a giant cosmic loaf. These are undeniably 
provocative and alluring ideas. 
 But with the Landscape Multiverse, we’ve invoked parallel universes in a 
different way. In the approach we’ve just followed, the Landscape Multiverse 
is not merely broadening our view of what might be out there. Instead, an array 
of parallel universes, worlds that may be beyond our ability to visit or see or 
test or influence, now and perhaps always, are directly invoked to provide 
insight into observations we make here, in this universe. 
 Which raises an essential question: Is this science? 
 
 *One point of language. For the most part, I use the terms “cosmological 
constant” and “dark energy” interchangeably. When I need a little more 
precision, I take the value of the cosmological constant to denote the amount 
of dark energy suffusing space. As noted earlier, physicists often use the term 
“dark energy” a bit more liberally, to mean anything that can look like or 
masquerade as a cosmological constant over reasonably long time scales, but 
might slowly change and hence not truly be constant. 
 *It’s also how 3D movie technology works: by suitably choosing the 
spatial offsets on the screen of nearly duplicate images, the filmmaker causes 



your brain to interpret the resulting parallaxes as different distances, creating 
the illusion of a 3D environment. 
 *If space is infinitely big, you might wonder what it means to say that the 
universe is larger now than it was in the past. The answer is that “larger” refers 
to the distances between galaxies today compared with the distances between 
those same galaxies in the past. The expansion of the universe means the 
galaxies are now farther apart, which is reflected mathematically in the 
universe’s scale factor being larger. In the case of an infinite universe, “larger” 
does not refer to the overall size of space, since once infinite always infinite. 
But for ease of language, I will continue to refer to the changing size of the 
universe, even in the case of infinite space, with the understanding that I’m 
referring to the changing distances between galaxies. 
 *The Cambridge astrophysicist George Efstathiou was also one of the 
early pioneers who argued strongly and convincingly for a nonzero 
cosmological constant. 
 *In Chapter 7, we will examine more thoroughly and more generally the 
challenges of testing theories that involve a multiverse; we will also more 
closely analyze the role of anthropic reasoning in yielding potentially testable 
outcomes. 
 
 
  



CHAPTER 7 
 
 
Science and the Multiverse 
 
 
On Inference, Explanation, and Prediction 
 
 
 When David Gross, co-recipient of the 2004 Nobel Prize in physics, 
inveighs against string theory’s Landscape Multiverse, there’s a fair chance 
he’ll quote Winston Churchill’s speech of October 29, 1941: “Never give 
in.….. Never, never, never, never—in nothing, great or small, large or petty—
never give in.” When Paul Steinhardt, the Albert Einstein Professor in Science 
at Princeton University and co-discoverer of the modern form of inflationary 
cosmology, speaks of his distaste for the Landscape Multiverse, the rhetorical 
flourishes are more subdued, but you can be pretty sure a comparison to 
religion, an unfavorable one at that, will at some point appear. Martin Rees, 
the United Kingdom’s Astronomer Royal, sees the multiverse as the natural 
next step in our deepening grasp of all there is. Leonard Susskind says those 
who ignore the possibility that we’re part of a multiverse are merely averting 
their eyes from a vision they find overwhelming. And these are just a few 
examples. There are many others on both sides, vehement naysayers and 
enthusiastic devotees, and they don’t always express their opinions in terms so 
lofty. 
 In the quarter century I’ve been working on string theory, I’ve never seen 
passions run quite so high, or language turn quite so sharp, as in discussions of 
string theory’s landscape and the multiverse to which it may give rise. And it’s 
clear why. Many see these developments as a battleground for the very soul of 
science. 
 
  



The Soul of Science 
 
 
 While the Landscape Multiverse has been the catalyst, the arguments turn 
on issues central to any theory in which a multiverse plays a role. Is it 
scientifically justifiable to speak of a multiverse, an approach that invokes 
realms inaccessible not just in practice but, in many cases, even in principle? Is 
the notion of a multiverse testable or falsifiable? Can invoking a multiverse 
provide explanatory power of which we’d otherwise be deprived? 
 If the answer to these questions is no, as detractors insist is the case, then 
multiverse proponents are assuming an unusual stance. Nontestable, 
nonfalsifiable proposals, invoking hidden realms beyond our capacity to 
access—these seem a far cry from what most of us would want to call science. 
And therein lies the spark that makes passions flare. Proponents counter that 
although the manner in which a given multiverse connects with observation 
may be different from what we’re used to—it may be more indirect; it may be 
less explicit; it may require fortune to shine favorably on future experiments—
in respectable proposals, such connections are not fundamentally absent. 
Unapologetically, this line of argument takes an expansive view of what our 
theories and observations can reveal, and how the insights can be verified. 
 Where you come down on the multiverse also depends on your view of 
science’s core mandate. General summaries often emphasize that science is 
about finding regularities in the workings of the universe, explaining how the 
regularities both illuminate and reflect underlying laws of nature, and testing 
the purported laws by making predictions that can be verified or refuted 
through further experiment and observation. Reasonable though the 
description may be, it glosses over the fact that the actual process of science is 
a much messier business, one in which asking the right questions is often as 
important as finding and testing the proposed answers. And the questions 
aren’t floating in some preexisting realm in which the role of science is to pick 
them off, one by one. Instead, today’s questions are very often shaped by 
yesterday’s insights. Breakthroughs generally answer some questions but then 
give rise to a host of others that previously could not even be imagined. In 
judging any development, including multiverse theories, we must take account 
not only of its capacity for revealing hidden truths but also of its impact on the 



questions we are led to address. The impact, that is, on the very practice of 
science. As will become clear, multiverse theories have the capacity to reshape 
some of the deepest questions scientists have wrestled with for decades. That 
prospect invigorates some and infuriates others. 
 Having set the scene, let’s now systematically think through the 
legitimacy, testability, and utility of frameworks that imagine ours to be one of 
many universes. 
 
Accessible Multiverses 
 
 
 It’s hard to achieve consensus on these issues partly because the 
multiverse concept isn’t monolithic. We’ve already come upon five versions—
Quilted, Inflationary, Brane, Cyclic, and Landscape—and in the chapters that 
follow we will encounter four more. Understandably, the generic notion of a 
multiverse has a reputation for lying beyond testability. After all, the typical 
assessment goes, we’re considering universes other than our own, but since we 
have access only to this one, we might as well be talking about ghosts or the 
tooth fairy. Indeed, this is the central problem, with which we’ll shortly 
grapple, but note first that some multiverses do allow for interactions between 
member universes. We’ve seen that in the Brane Multiverse untethered string 
loops can travel from one brane to another. And in the Inflationary Multiverse, 
bubble universes can find themselves in even more direct contact. 
 Recall that the space between two bubble universes in the Inflationary 
Multiverse is permeated by an inflaton field whose energy and negative 
pressure remain high and which therefore undergoes inflationary expansion. 
This expansion drives the bubble universes apart. Even so, if the rate at which 
the bubbles themselves expand exceeds the rate at which the swelling space 
propels them to separate, the bubbles will collide. Bearing in mind that 
inflationary expansion is cumulative—the more swelling space there is 
between two bubbles, the faster they’re driven apart—we come to an 
interesting realization. If two bubbles form really close together, there will be 
so little intervening space that their rate of separation will be slower than their 
rate of expansion. That puts the bubbles on a collision course. 



 This reasoning is borne out by the mathematics. In the Inflationary 
Multiverse, universes can collide. Moreover, a number of research groups 
(including Jaume Garriga, Alan Guth, and Alexander Vilenkin; Ben Freivogel, 
Matthew Kleban, Alberto Nicolis, and Kris Sigurdson; as well as Anthony 
Aguirre and Matthew Johnson) have established that whereas some collisions 
may violently disrupt each bubble universe’s internal structure—not good for 
possible bubble dwellers like us—gentler brush-ups may also occur, avoiding 
disastrous consequences yet still yielding observable signatures. The 
calculations show that if we had such a fender-bender with another universe, 
the impact would send shock waves rippling through space, generating 
modifications to the pattern of hot and cold regions in the microwave 
background radiation.1 Researchers are now working out the detailed 
fingerprint such a disruption would leave, laying the groundwork for 
observations that could one day provide evidence that our universe has 
collided with others—evidence that other universes are out there. 
 But, however exciting the prospect may be, what if no test seeking 
evidence of an interaction or an encounter with another universe proves 
successful? Taking a hardheaded perspective, where does the concept of a 
multiverse stand if we never find any experimental or observational signatures 
of other universes? 
 
Science and the Inaccessible I: 
Can it be scientifically justifiable to invoke unobservable universes? 
 
 
 Every theoretical framework comes with an assumed architecture—the 
theory’s fundamental ingredients, and the mathematical laws that govern them. 
Besides defining the theory, this architecture also establishes the kinds of 
questions we can ask within the theory. Isaac Newton’s architecture was 
tangible. His mathematics dealt with the positions and velocities of objects we 
directly encounter or can easily see, from rocks and balls to the moon and sun. 
A great many observations confirmed Newton’s predictions, giving us 
confidence that his mathematics did indeed describe how familiar objects 
move. James Clerk Maxwell’s architecture introduced a significant step of 
abstraction. Vibrating electric and magnetic fields are not the kinds of things 



for which our senses have evolved a direct affinity. Although we see “light”—
electromagnetic undulations whose wavelengths lie in the range our eyes can 
detect—our visual experiences don’t directly trace the undulating fields the 
theory posits. Even so, we can build sophisticated equipment that measures 
these vibrations and that, together with the theory’s abundance of confirmed 
predictions, builds an overwhelming case that we’re immersed in a pulsating 
ocean of electromagnetic fields. 
 In the twentieth century, fundamental science came to increasingly rely 
on inaccessible features. Space and time, through their melded union, provide 
the scaffolding for special relativity. When subsequently endowed with 
Einsteinian malleability, they become the flexible backdrop of the general 
theory of relativity. Now, I’ve seen watches tick and I’ve used rulers to 
measure, yet I’ve never grasped spacetime in the same way I grasp the arms of 
my chair. I feel the effects of gravity, but if you pressed me on whether I can 
directly affirm that I’m immersed in curved spacetime, I find myself back in 
the Maxwellian situation. I’m convinced that the theories of special and 
general relativity are correct not because I have tangible access to their core 
ingredients but rather because when I accept their assumed frameworks, the 
mathematics makes predictions about things I can measure. And the 
predictions turn out to be extraordinarily accurate. 
 Quantum mechanics takes such inaccessibility still further. The central 
ingredient of quantum mechanics is the probability wave, governed by an 
equation discovered in the mid-1920s by Erwin Schrödinger. Even though 
such waves are its hallmark feature, we will see in Chapter 8 that the 
architecture of quantum physics ensures that they’re permanently and 
completely unobservable. Probability waves give rise to predictions for where 
this or that particle is likely to be found, but the waves themselves slither 
outside the arena of everyday reality.2 Nevertheless, because the predictions 
succeed so well, generations of scientists have accepted such an odd situation: 
a theory introduces a radically new and vital construct that, according to the 
theory itself, is unobservable. 
 The common theme running through these examples is that a theory’s 
success can be used as an after-the-fact justification for its basic architecture, 
even when that architecture remains beyond our ability to access directly. This 
is so thoroughly part of the daily experience of theoretical physicists that the 



language used and the questions formulated regularly refer, without the 
slightest hesitation, to things that are at the very least far less accessible than 
tables and chairs and some of which lie permanently outside the bounds of 
direct experience.* 
 When we go further and use a theory’s architecture to learn about the 
phenomena it entails, yet other kinds of inaccessibility present themselves. 
Black holes emerge from the mathematics of general relativity, and 
astronomical observations have provided substantial evidence that they’re not 
only real but commonplace. Even so, the interior of a black hole is an exotic 
environment. According to Einstein’s equations, the black hole’s edge, its 
event horizon, is a surface of no return. You can cross in, but you can’t cross 
out. We committed exterior dwellers will never observe a black hole’s interior, 
not just because of practical considerations but as a consequence of the very 
laws of general relativity. Yet, there’s full consensus that the region on the 
other side of a black hole’s event horizon is real. 
 The application of general relativity to cosmology provides even more 
extreme instances of inaccessibility. If you don’t mind a one-way journey, the 
interior of a black hole is at least a possible destination. But realms lying 
beyond our cosmic horizon are unreachable, even if we were able to travel at 
nearly light speed. In an accelerating universe such as ours, this point becomes 
forcefully evident. Given the measured value of the cosmological speedup 
(and assuming it will never change), any object more distant from us than 
about 20 billion light-years lies permanently outside what we can see, visit, 
measure, or influence. Farther than that distance, space will always be receding 
from us so quickly that any attempt to breach the separation would be as 
fruitless as a kayaker navigating against a current flowing faster than she can 
paddle. 
 Objects that have always been beyond our cosmic horizon are objects 
that we have never observed and never will observe; conversely, they have 
never observed us, and never will. Objects that at some time in the past were 
within our cosmic horizon but have been dragged beyond it by spatial 
expansion are objects that we once could see but never will again. Yet I think 
we can agree that such objects are as real as anything tangible, and so are the 
realms they inhabit. It would surely be peculiar to argue that a galaxy that we 
could once see but that has since slipped over our cosmic horizon has entered a 



realm that’s nonexistent, a realm that because of its permanent inaccessibility 
needs to be wiped off reality’s map. Even though we can’t observe or 
influence such realms, nor they us, they are properly included in our picture of 
what exists.3 
 These examples make clear that science is no stranger to theories that 
include elements, from basic ingredients to derived consequences, that are 
inaccessible. Our confidence in such intangibles relies on our confidence in the 
theory. When quantum mechanics invokes probability waves, its impressive 
ability to describe things we can measure, such as the behavior of atoms and 
subatomic particles, compels us to embrace the ethereal reality it posits. When 
general relativity predicts the existence of places we can’t observe, its 
phenomenal successes in describing those things we can observe, such as the 
motion of planets and the trajectory of light, compels us to take the predictions 
seriously. 
 So for confidence in a theory to grow we don’t require that all of its 
features be verifiable; a robust and varied assortment of confirmed predictions 
is enough. Scientific work going back well over a century has accepted that a 
theory may invoke hidden, inaccessible elements—provided it also makes 
interesting, novel, and testable predictions about an abundance of observable 
phenomena. 
 This suggests that it’s possible to mount a convincing argument for a 
theory involving a multiverse even if we can’t obtain any direct evidence for 
universes beyond our own. If the experimental and observational evidence 
supporting a theory compels you to embrace it, and if the theory is founded on 
such a tight mathematical structure that there’s no room for cherry-picking 
among its features, then you have to embrace all of it. And if the theory 
implies the existence of other universes, then that’s the reality the theory 
requires you to take on board. 
 In principle, then—and make no mistake, my point here is one of 
principle—the mere invocation of inaccessible universes does not consign a 
proposal to stand outside science. To amplify this, imagine that one day we 
assemble a convincing experimental and observational case for string theory. 
Perhaps a future accelerator is able to detect sequences of string vibrational 
patterns and evidence for extra dimensions, while astronomical observations 
detect stringy features in the microwave background radiation, as well as the 



signatures of long stretched strings undulating through space. Suppose further 
that our understanding of string theory has progressed substantially, and we’ve 
learned that the theory absolutely, positively, incontrovertibly generates the 
Landscape Multiverse. Notwithstanding calls to the contrary, a theory with 
strong experimental and observational support, whose internal structure 
requires a multiverse, would lead us to conclude inexorably that the time for 
“giving in” had arrived.* 
 So to address the question heading this section, in the right scientific 
context it would not merely be respectable to invoke a multiverse; failing to do 
so would evidence nonscientific prejudice. 
 
Science and the Inaccessible II: 
So much for principle; where do we stand in practice? 
 
 
 The skeptic will rightly respond that it’s one thing to make a point of 
principle about how the case for a given multiverse theory might be fashioned. 
It’s another to assess whether any of the multiverse proposals we’ve described 
qualify as experimentally confirmed theories that come equipped with an 
absolute prediction of other universes. Do they? 
 The Quilted Multiverse arises from an infinite spatial expanse, a 
possibility that fits squarely within general relativity. The snag is that general 
relativity allows for an infinite spatial expanse but doesn’t require it, which in 
turn explains why, even though general relativity is an accepted framework, 
the Quilted Multiverse remains tentative. An infinite spatial expanse does 
emerge directly from eternal inflation—recall that each bubble universe when 
viewed from the inside appears infinitely large—but in this setting the Quilted 
Multiverse is rendered uncertain because the underlying proposal, eternal 
inflation, remains hypothetical. 
 The same consideration affects the Inflationary Multiverse, which also 
emerges from eternal inflation. Astronomical observations over the past 
decade have bolstered the physics community’s confidence in inflationary 
cosmology but have nothing to say about whether the inflationary expansion is 
eternal. Theoretical studies show that although many versions are eternal, 



yielding bubble universe upon bubble universe, some entail but a single 
ballooning spatial expanse. 
 The Brane, Cyclic, and Landscape Multiverses are based on string theory, 
so they suffer multiple uncertainties. Remarkable as string theory may be, rich 
as its mathematical structure may have become, the dearth of testable 
predictions, and the concomitant absence of contact with observations or 
experiments, relegates it to the realm of scientific speculation. Moreover, with 
the theory still very much a work in progress, it’s unclear which features will 
continue to play a primary role in future refinements. Will branes, the basis of 
the Brane and Cyclic Multiverses, remain central? Will the copious choices for 
the extra dimensions, the basis for the Landscape Multiverse, persist, or will 
we eventually find a mathematical principle that picks out one particular shape? 
We just don’t know. 
 So, although it’s conceivable that we could fashion a convincing 
argument for a multiverse theory that made little or no reference to its 
prediction of other universes, for the multiverse scenarios we’ve encountered 
that approach won’t fly. At least not yet. To assess any of them, we will need 
to tackle their prediction of a multiverse head-on. 
 Can we? Can a theory’s invocation of other universes yield testable 
predictions even if those universes lie beyond the reach of experiments and 
observations? Let’s address this key question through a number of steps. We’ll 
follow the pattern above, progressing from an “in principle” to an “in practice” 
perspective. 
 
Predictions in a Multiverse I: 
If the universes constituting a multiverse are inaccessible, can they 
nevertheless meaningfully contribute to making predictions? 
 
 
 Some scientists who resist multiverse theories see the enterprise as an 
admission of failure, a full-fledged retreat from the long-sought goal of 
understanding why the universe we see has the properties it does. I empathize, 
being one of many who have worked for decades to realize string theory’s 
tantalizing promise of calculating every fundamental observable feature of the 
universe, including the values of nature’s constants. If we accept that we’re 



part of a multiverse in which some or perhaps even all of the constants vary 
from one universe to another, then we accept that this goal is misguided. If the 
fundamental laws allow, say, the strength of the electromagnetic force to have 
many different values across the multiverse, then the very notion of calculating 
the strength is meaningless, like asking a pianist to pick out the note. 
 But here’s the question: Does variation in features mean that we lose all 
power to predict (or postdict) those intrinsic to our own universe? Not 
necessarily. Even though a multiverse precludes uniqueness, it’s possible that a 
degree of predictive capability can be retained. It comes down to statistics. 
 Consider dogs. They don’t have a unique weight. There are very light 
dogs, such as Chihuahuas, that can weigh under two pounds; there are very 
heavy dogs, such as Old English mastiffs, that can tip the scales at over two 
hundred pounds. Were I to challenge you to predict the weight of the next dog 
you pass in the street, it might seem that the best you could do would be to 
pick a random number within the range I’ve given. Yet, with a little 
information, you can make a more refined guess. If you get ahold of the dog 
population data in your neighborhood, such as the number of people who have 
this or that breed, the distribution of weights within each breed, and perhaps 
even information on the number of times per day different breeds typically 
need to be taken for a walk, you can figure out the weight of the dog you are 
most likely to encounter. 
 This wouldn’t be a sharp prediction; statistical insights often aren’t. But 
depending on the distribution of dogs, you may be able to do much better than 
just pulling a number out of a hat. If your neighborhood has a highly skewed 
distribution, with 80 percent of the dogs being Labrador retrievers whose 
average weight is sixty pounds, and the other 20 percent composed of a range 
of breeds from Scottish terriers to poodles whose average weight is thirty 
pounds, then something in the fifty-five- to sixty-five-pound range would be a 
good bet. The dog you next encounter may be a fluffy shih tzu, but odds are it 
won’t be. For distributions that are even more skewed, your predictions can be 
more precise. If 95 percent of the dogs in your area were sixty-two-pound 
Labrador retrievers, then you’d be on firmer ground in predicting that the next 
dog you pass will be one of these. 
 A similar statistical approach can be applied to a multiverse. Imagine we 
are investigating a multiverse theory that allows for a wide range of different 



universes—different values of force strengths, particle properties, 
cosmological constant values, and so on. Imagine further that the cosmological 
process by which these universes form (such as the creation of bubble 
universes in the Landscape Multiverse) is sufficiently well understood that we 
can determine the distribution of universes, with various properties, across the 
multiverse. This information has the capacity to yield significant insights. 
 To illustrate the possibilities, suppose our calculations yield a particularly 
simple distribution: some physical features vary widely from universe to 
universe, but others are unchanging. For example, imagine the math reveals 
that there’s a collection of particles, common to all the universes in the 
multiverse, whose masses and charges have the same values in each universe. 
A distribution like this generates absolutely firm predictions. If experiments 
undertaken in our single lone universe don’t find the predicted collection of 
particles, we’d rule out the theory, multiverse and all. Knowledge of the 
distribution thus makes this multiverse proposal falsifiable. Conversely, if our 
experiments were to find the predicted particles, that would increase our 
confidence that the theory is right.4 
 For another example, imagine a multiverse in which the cosmological 
constant varies across a huge range of values, but it does so in a highly 
nonuniform manner, as illustrated schematically in Figure 7.1. The graph 
denotes the fraction of universes within the multiverse (vertical axis) that have 
a given value of the cosmological constant (horizontal axis). If we were part of 
such a multiverse, the mystery of the cosmological constant would take on a 
decidedly different character. Most universes in this scenario have a 
cosmological constant close to what we’ve measured in our universe, so while 
the range of possible values would be huge, the skewed distribution implies 
that the value we’ve observed is nothing special. For such a multiverse, you 
should be no more mystified by our universe’s having a cosmological constant 
value 10–123 than you should be surprised by encountering a sixty-two-pound 
Labrador retriever during your next stroll around the neighborhood. Given the 
relevant distributions, each is the most likely thing that could happen. 
  
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 Figure 7.1 A possible distribution of cosmological constant values 
across a hypothetical multiverse, illustrating that highly skewed distributions 
can make otherwise puzzling observations understandable. 
 
 
 Here’s a variation on the theme. Imagine that, in a given multiverse 
proposal, the cosmological constant’s value varies widely, but unlike in the 
previous example, it varies uniformly; the number of universes that have a 
given value of the cosmological constant is on a par with the number of 
universes that have any other value of the cosmological constant. But imagine 
further that a close mathematical study of the proposed multiverse theory 
reveals an unexpected feature in the distribution. For those universes in which 
the cosmological constant is in the range we’ve observed, the math shows 
there’s always a species of particle whose mass is, say, five thousand times 
that of the proton—too heavy to have been observed in accelerators built in the 
twentieth century, but right within the range of those built in the twenty-first. 
Because of the tight correlation between these two physical features, this 
multiverse theory is also falsifiable. If we fail to find the predicted heavy 
species of particle we would disprove this proposed multiverse; discovery of 
the particle would strengthen our confidence that the proposal is correct. 



 Let me underscore that these scenarios are hypothetical. I invoke them 
because they illuminate a possible profile for scientific insight and verification 
in the context of a multiverse. I suggested earlier that if a multiverse theory 
gives rise to testable features beyond the prediction of other universes, it’s 
possible—in principle—to assemble a supporting case even if the other 
universes are inaccessible. The examples just given make this suggestion 
explicit. For these kinds of multiverse proposals, the answer to the question 
heading this section would unequivocally be yes. 
 The essential feature of such “predictive multiverses” is that they’re not 
composed from a grab-bag of constituent universes. Instead, the capacity to 
make predictions emerges from the multiverse evincing an underlying 
mathematical pattern: physical properties are distributed across the constituent 
universes in a sharply skewed or highly correlated manner. 
 How might this happen? And, leaving the realm of “in principle,” does it 
happen in the multiverse theories we’ve encountered? 
 
Predictions in a Multiverse II: 
So much for principle; where do we stand in practice? 
 
 
 The distribution of dogs in a given area depends on a range of influences, 
among them cultural and financial factors and plain old happenstance. Because 
of this complexity, if you were intent on making statistical predictions your 
best bet would be to bypass considerations of how a given dog distribution 
came to be and simply use the relevant data from the local dog licensing 
authority. Unfortunately, multiverse scenarios don’t have comparable census 
bureaus, so the analogous option isn’t available. We’re forced to rely on our 
theoretical understanding of how a given multiverse might arise to determine 
the distribution of the universes it would contain. 
 The Landscape Multiverse, relying on eternal inflation and string theory, 
provides a good case study. In this scenario, the twin engines driving the 
production of new universes are inflationary expansion and quantum tunneling. 
Remember how this goes: An inflating universe, corresponding to one or 
another valley in the string landscape, quantum-tunnels through one of the 
surrounding mountains and settles down in another valley. The first universe—



with definite features such as force strengths, particle properties, value of the 
cosmological constant, and so forth—acquires an expanding bubble of the new 
universe (see Figure 6.7), with a new set of physical features, and the process 
continues. 
 Now, being a quantum process, such tunneling events have a 
probabilistic character. You can’t predict when or where they will happen. But 
you can predict the probability that a tunneling event will happen in any given 
interval of time and burrow in any given direction—probabilities that depend 
on detailed features of the string landscape, such as the altitude of the various 
mountain peaks and valleys (the value, that is, of their respective cosmological 
constants). The more probable tunneling events will happen more often, and 
the resulting distribution of universes will reflect this. The strategy, then, is to 
use the mathematics of inflationary cosmology and string theory to calculate 
the distribution of universes, with various physical features, across the 
Landscape Multiverse. 
 The rub is that so far no one has been able to do so. Our current 
understanding suggests a lush string landscape with a gargantuan number of 
mountains and valleys, which makes it a ferociously difficult mathematical 
challenge to work out the details of the resulting multiverse. Pioneering work 
by cosmologists and string theorists have contributed significantly to our 
understanding, but the investigations are still rudimentary.5 
 To go further, multiverse proponents advocate introducing one more 
important element into the mix. Consideration of the selection effects 
introduced in the previous chapter: anthropic reasoning. 
 
Predictions in a Multiverse III: 
Anthropic reasoning 
 
 
 Many of the universes in a given multiverse are bound to be lifeless. The 
reason, as we’ve seen, is that changes to nature’s fundamental parameters from 
their known values tend to disrupt the conditions favorable for life to emerge.6 
Our very existence implies that we could never find ourselves in any of the 
lifeless domains, and so there’s nothing further to explain about why we don’t 
see their particular combination of properties. If a given multiverse proposal 



implied a unique life-supporting universe, we’d be golden. We would work out 
that special universe’s properties mathematically; if they differed from what 
we’ve measured in our own universe, we could rule out that multiverse 
proposal. If the properties agreed with ours, we’d have an impressive 
vindication of anthropic multiverse theorizing—and reason to vastly expand 
our picture of reality. 
 In the more plausible case that there is not a unique life-supporting 
universe, a number of theorists (they include Steven Weinberg, Andrei Linde, 
Alex Vilenkin, George Efstathiou, and many others) have advocated an 
enhanced statistical approach. Rather than calculate the relative preponderance, 
within the multiverse, of various kinds of universes, they propose that we 
calculate the number of inhabitants—physicists usually call them observers—
who would find themselves in various kinds of universes. In some universes, 
conditions might barely be compatible with life, so observers would be rare, 
like the occasional cactus in a harsh desert; other universes, with more 
hospitable conditions, would teem with observers. The idea is that, just as 
canine census data let us predict what kinds of dogs we can expect to 
encounter, so observer census data let us predict the properties that a typical 
inhabitant living somewhere in the multiverse—you and I, according to the 
reasoning of this approach—should expect to see. 
 A concrete example was worked out in 1997 by Weinberg and his 
collaborators Hugo Martel and Paul Shapiro. For a multiverse in which the 
cosmological constant varies from universe to universe, they calculated how 
abundant life would be in each. This difficult task was made feasible by 
invoking the Weinberg proxy (Chapter 6): instead of life proper, they 
considered the formation of galaxies. More galaxies means more planetary 
systems and hence, the underlying assumption goes, a greater likelihood of life, 
intelligent life in particular. Now, as Weinberg had found in 1987, even a 
modest cosmological constant generates enough repulsive gravity to disrupt 
galaxy formation so only domains of the multiverse that have sufficiently 
small cosmological constants need be considered. A cosmological constant 
that’s negative results in a universe that collapses well before galaxies form, so 
these realms of the multiverse can be omitted from the analysis, too. Anthropic 
reasoning thus focuses our attention on the portion of the multiverse in which 
the cosmological constant lies in a narrow window; as discussed in Chapter 6, 



the calculations show that for a given universe to contain galaxies, its 
cosmological constant needs to be less than about 200 times the critical density 
(a mass equivalent of about 10–27 grams in each cubic centimeter of space, or 
about 10–121 in Planck units).7 
 For universes whose cosmological constant is in this range, Weinberg, 
Martel, and Shapiro then undertook a more refined calculation. They 
determined the fraction of matter in each such universe that would clump 
together over the course of cosmological evolution, a pivotal step on the road 
to galaxy formation. They found that if the cosmological constant is very near 
the window’s upper limit, relatively few clumps would form, because the 
outward push of the cosmological constant acts like a strong wind, blowing 
most dust accumulations apart. If the cosmological constant’s value is near the 
window’s lower limit, zero, they found that many clumps form, because the 
disrupting influence of the cosmological constant is minimized. Which means 
there’s a large chance you’ll be in a universe whose cosmological constant is 
near zero, since such universes have an abundance of galaxies and, by the 
reasoning of this approach, life. There’s a small chance you’ll be in a universe 
whose cosmological constant is near the window’s upper limit, about 10–121, 
because such universes are endowed with far fewer galaxies. And there’s a 
modest chance you’ll be in a universe whose cosmological constant lies at a 
value between these extremes. 
 Using the quantitative version of these results, Weinberg and his 
collaborators calculated the cosmic analog of encountering a sixty-two-pound 
Labrador on an average walk around the neighborhood—the cosmological 
constant value, that is, witnessed by an average observer in the multiverse. The 
answer? Somewhat larger than what the subsequent supernova measurements 
revealed, but definitely in the same ballpark. They found that roughly 1 in 10 
to 1 in 20 inhabitants of the multiverse would have an experience comparable 
to ours, measuring the cosmological constant’s value in their universe to be 
about 10–123. 
 While a higher percentage would be more satisfying, the result is 
impressive, nonetheless. Prior to this calculation, physics faced a mismatch 
between theory and observation of more than 120 orders of magnitude, 
suggesting strongly that something was profoundly amiss with our 
understanding. The multiverse approach of Weinberg and his collaborators, 



however, showed that finding yourself in a universe whose cosmological 
constant is on a par with the value we’ve measured is roughly as surprising as 
running into that shih tzu in a neighborhood dominated by Labs. Which is to 
say, not that surprising at all. Certainly, when viewed from this multiverse 
perspective, the observed value of the cosmological constant doesn’t suggest a 
profound lack of understanding, and that’s an encouraging step forward. 
 Subsequent analyses, though, emphasized an interesting facet that some 
interpret as weakening the result. For simplicity’s sake, Weinberg and his 
collaborators imagined that across their multiverse only the cosmological 
constant’s value varied from universe to universe; other physical parameters 
were assumed fixed. Max Tegmark and Martin Rees noted that if both the 
cosmological constant’s value and, say, the size of the early universe quantum 
jitters were imagined to vary from universe to universe, the conclusion would 
change. Recall that the jitters are the primordial seeds of galaxy formation: 
tiny quantum fluctuations, stretched by inflationary expansion, yield a random 
assortment of regions where the density of matter is a little higher or a little 
lower than average. The higher-density regions exert a greater gravitational 
pull on nearby matter and so grow yet larger, ultimately coalescing into 
galaxies. Tegmark and Rees pointed out that much as bigger piles of leaves 
can better withstand a brisk breeze, so larger primordial seeds can better 
withstand the disruptive outward push of a cosmological constant. A 
multiverse in which both the seed size and the value of the cosmological 
constant vary would therefore contain universes where larger cosmological 
constants were offset by larger seeds; that combination would be compatible 
with galaxy formation—and hence with life. A multiverse of this sort increases 
the cosmological constant value that a typical observer would see and so 
results in a decrease—potentially a sharp one—of the fraction of observers 
who would find their cosmological constant to have as small a value as we’ve 
measured. 
 Staunch multiverse proponents are fond of pointing to the analysis of 
Weinberg and his collaborators as a success of anthropic reasoning. Detractors 
are fond of pointing to the issues raised by Tegmark and Rees as making the 
anthropic result less convincing. In reality, the debate is premature. These are 
all highly exploratory, first-pass calculations, best viewed as providing insight 
into the general domain of anthropic reasoning. Under certain restrictive 



assumptions, they show that the anthropic framework can take us within the 
ballpark of the measured cosmological constant; relax those assumptions 
somewhat, and the calculations show that the size of the ballpark grows 
substantially. Such sensitivity implies that a refined multiverse calculation will 
require a precise understanding of the detailed properties that characterize the 
constituent universes, and how they vary, thus replacing arbitrary assumptions 
with theoretical directives. This is essential if a multiverse is to stand a chance 
of yielding definitive conclusions. 
 Researchers are working hard to achieve this goal, but as of today, they 
have yet to reach it.8 

 
Prediction in a Multiverse IV: 
What will it take? 
 
 
 What hurdles, then, will we need to clear before we can extract 
predictions from a given multiverse? There are three that figure most 
prominently. 
 First, as pointedly illustrated by the example just discussed, a multiverse 
proposal must allow us to determine which physical features vary from 
universe to universe, and for those features that do vary, we must be able to 
calculate their statistical distribution across the multiverse. Essential for doing 
so is an understanding of the cosmological mechanism by which the proposed 
multiverse is populated by universes (such as the creation of bubble universes 
in the Landscape Multiverse). It is this mechanism that determines how 
prevalent one kind of universe is relative to another, and so it is this 
mechanism that determines the statistical distribution of physical features. If 
we’re fortunate, the resulting distributions, either across the entire multiverse 
or across those universes supporting life, will be sufficiently skewed to yield 
definitive predictions. 
 A second challenge, if we do need to invoke anthropic reasoning, comes 
from the central assumption that we humans are garden-variety average. Life 
might be rare in the multiverse; intelligent life might be rarer still. But among 
all intelligent beings, the anthropic assumption goes, we are so thoroughly 
typical that our observations should be the average of what intelligent beings 



inhabiting the multiverse would see. (Alexander Vilenkin has called this the 
principle of mediocrity). If we know the distribution of physical features across 
life-supporting universes, we can calculate such averages. But typicality is a 
thorny assumption. If future work shows that our observations fall into the 
range of calculated averages in a particular multiverse, confidence in our 
typicality—and in the multiverse proposal—would grow. That would be 
exciting. But if our observations fall outside the averages that could be 
evidence that the multiverse proposal is wrong, or it could mean that we are 
just not typical. Even in a neighborhood that has 99 percent Labs, you can still 
run into Dobermans, an atypical dog. Distinguishing between a failed 
multiverse proposal and a successful one in which our universe is atypical may 
prove difficult.9 
 Progress on this issue will likely require a better understanding of how 
intelligent life arises in a given multiverse; with that knowledge, we could at 
least clarify how typical our own evolutionary history has so far been. This, of 
course, is a major challenge. To date, most anthropic reasoning has completely 
skirted the issue by invoking Weinberg’s assumption—that the number of 
intelligent life-forms in a given universe is proportional to the number of 
galaxies it contains. As far as we know, intelligent life needs a warm planet, 
which requires a star, which is generally part of a galaxy, and so there’s reason 
to believe Weinberg’s approach holds water. But since we have only the most 
rudimentary understanding of even our own genesis, the assumption remains 
tentative. To refine our calculations, the development of intelligent life needs 
to be far better understood. 
 The third hurdle is simple to explain but in the long run may well be the 
one that’s last standing. It has to do with dividing up infinity. 
 
Dividing Up Infinity 
 
 
 To understand the problem, return to dogs. If you live in a neighborhood 
populated with three Labs and one dachshund, then, ignoring complications 
such as how often the dogs are walked, you’re three times more likely to run 
into a Lab. The same would apply if there were 300 Labs and 100 dachshunds; 
3,000 Labs and 1,000 dachshunds; 3 million Labs and 1 million dachshunds, 



and so on. But what if these numbers were infinitely large? How do you 
compare an infinity of dachshunds to three times infinity of Labradors? 
Although this sounds like the tortured math of one-upping seven-year-olds, 
there’s a real question here. Is three times infinity larger than plain old infinity? 
If so, is it three times as large? 
 Comparisons involving infinitely large numbers are notoriously tricky. 
For dogs on earth, of course, the difficulty doesn’t arise, because the 
populations are finite. But for universes constituting particular multiverses, the 
problem can be very real. Take the Inflationary Multiverse. Looking at the 
entire block of Swiss cheese from an imaginary outsider’s perspective, we 
would see it continue to grow and produce new universes endlessly. That’s 
what the “eternal” in “eternal inflation” means. Moreover, taking an insider’s 
perspective, we’ve seen that each bubble universe itself harbors an infinite 
number of separate domains, filling out a Quilted Multiverse. In making 
predictions we necessarily confront an infinity of universes. 
 To grasp the mathematical challenge, imagine that you’re a contestant on 
Let’s Make a Deal and you’ve won an unusual prize: an infinite collection of 
envelopes, the first containing $1, the second $2, the third $3, and so on. As 
the crowd cheers, Monty chimes in to make you an offer. Either keep your 
prize as is, or elect to have him double the contents of each envelope. At first it 
seems obvious that you should take the deal. “Each envelope will contain more 
money than it previously did,” you think, “so this has to be the right move.” 
And if you had only a finite number of envelopes, it would be the right move. 
To exchange five envelopes containing $1, $2, $3, $4, and $5 for envelopes 
with $2, $4, $6, $8, and $10 makes unassailable sense. But after another 
moment’s thought, you start to waver, because you realize that the infinite case 
is less clear-cut. “If I take the deal,” you think, “I’ll wind up with envelopes 
containing $2, $4, $6, and so on, running through all the even numbers. But as 
things currently stand, my envelopes run through all whole numbers, the evens 
as well as the odds. So it seems that by taking the deal I’ll be removing the odd 
dollar amounts from my total tally. That doesn’t sound like a smart thing to do.” 
Your head starts to spin. Compared envelope by envelope, the deal looks good. 
Compared collection to collection, the deal looks bad. 
 Your dilemma illustrates the kind of mathematical pitfall that makes it so 
hard to compare infinite collections. The crowd is growing antsy, you have to 



make a decision, but your assessment of the deal depends on the way you 
compare the two outcomes. 
 A similar ambiguity afflicts comparisons of a yet more basic 
characteristic of such collections: the number of members each contains. The 
Let’s Make a Deal example illustrates this, too. Which are more plentiful, 
whole numbers or even numbers? Most people would say whole numbers, 
since only half of the whole numbers are even. But your experience with 
Monty gives you sharper insight. Imagine that you take Monty’s deal and wind 
up with all even dollar amounts. In doing so, you wouldn’t return any 
envelopes nor would you require any new ones, since Monty would simply 
double the amount of money in each. You conclude, therefore, that the number 
of envelopes required to accommodate all whole numbers is the same as the 
number of envelopes required to accommodate all even numbers—which 
suggests that the populations of each category are equal (Table 7.1). And that’s 
weird. By one method of comparison—considering the even numbers as a 
subset of the whole numbers—you conclude that there are more whole 
numbers. By a different method of comparison—considering how many 
envelopes are needed to contain the members of each group—you conclude 
that the set of whole numbers and the set of even numbers have equal 
populations. 
  

 
 Table 7.1 Every whole number is paired with an even number, and vice 
versa, suggesting that the quantity of each is the same. 
 
 
 You can even convince yourself that there are more even numbers than 
there are whole numbers. Imagine that Monty offered to quadruple the money 
in each of the envelopes you initially had, so there would be $4 in the first, $8 
in the second, $12 in the third, and so on. Since, again, the number of 
envelopes involved in the deal stays the same, this suggests that the quantity of 



whole numbers, where the deal began, is equal to that of numbers divisible by 
four (Table 7.2), where the deal wound up. But such a pairing, marrying off 
each whole number to a number that’s divisible by 4, leaves an infinite set of 
even bachelors—the numbers 2, 6, 10, and so on—and thus seems to imply 
that the evens are more plentiful than the wholes. 
  

  
 Table 7.2 Every whole number is paired with every other even number, 
leaving an infinite set of even bachelors, suggesting that there are more evens 
than wholes. 
 
 From one perspective, the population of even numbers is less than that of 
whole numbers. From another, the populations are equal. From another still, 
the population of even numbers is greater than that of the whole numbers. And 
it’s not that one conclusion is right and the others wrong. There simply is no 
absolute answer to the question of which of these kinds of infinite collections 
are larger. The result you find depends on the manner in which you do the 
comparison.10 
 That raises a puzzle for multiverse theories. How do we determine 
whether galaxies and life are more abundant in one or another type of universe 
when the number of universes involved is infinite? The very same ambiguity 
we’ve just encountered will afflict us just as severely, unless physics picks out 
a precise basis on which to make the comparisons. Theorists have put forward 
proposals, various analogs of the pairings given in the tables, that emerge from 
one or another physical consideration—but a definitive procedure has yet to be 
derived and agreed upon. And, just as in the case of infinite collections of 
numbers, different approaches yield different results. According to one way of 
comparing, universes with one array of properties preponderate; according to 
an alternative way, universes with different properties do. 
 The ambiguity has a dramatic impact on what we conclude are typical or 
average properties in a given multiverse. Physicists call this the measure 



problem, a mathematical term whose meaning is well suggested by its name. 
We need a means for measuring the sizes of different infinite collections of 
universes. It is this information that we need in order to make predictions. It is 
this information that we need in order to work out how likely it is that we 
reside in one type of universe rather than another. Until we find a fundamental 
dictum for how we should compare infinite collections of universes, we won’t 
be able to foretell mathematically what typical multiverse dwellers—us—
should see in experiments and observations. Solving the measure problem is 
imperative. 
 
A Further Contrarian Concern 
 
 
 I’ve called out the measure problem in its own section not only because it 
is a formidable impediment to prediction, but also because it may entail 
another, disquieting consequence. In Chapter 3, I explained why the 
inflationary theory has become the de facto cosmological paradigm. A brief 
burst of rapid expansion during our universe’s first moments would have 
allowed today’s distant regions to have communicated early on, which 
explains the common temperature that measurements have found; rapid 
expansion also irons out any spatial curvature, rendering the shape of space 
flat, in line with observations; and finally, such expansion turns quantum jitters 
into tiny temperature variations across space that are both measurable in the 
microwave background radiation and essential to galaxy formation. These 
successes yield a strong case.11 But the eternal version of inflation has the 
capacity to undermine the conclusion. 
 Whenever quantum processes are relevant, the best you can do is predict 
the likelihood of one outcome relative to another. Experimental physicists, 
taking this to heart, perform experiments over and over again, acquiring reams 
of data on which statistical analyses can be run. If quantum mechanics predicts 
that one outcome is ten times as likely as another, then the data should very 
nearly reflect this ratio. The cosmic microwave background calculations, 
whose match to observations is the most convincing evidence for the 
inflationary theory, rely on quantum field jitters, so they are also probabilistic. 



But, unlike laboratory experiments, they can’t be checked by running the big 
bang over and over again. So how are they interpreted? 
 Well, if theoretical considerations conclude, say, that there’s a 99 percent 
probability that the microwave data should take one form and not another, and 
if the more probable outcome is what we observers see, the data are taken as 
strongly supporting the theory. The rationale is that if a collection of universes 
were all produced by this same underlying physics, the theory predicts that 
about 99 percent of them should look much like what we observe and about 1 
percent to deviate significantly. 
 Now, if the Inflationary Multiverse had a finite population of universes, 
we could straightforwardly conclude that the number of oddball universes 
where quantum processes result in data not matching expectations remains, 
comparatively speaking, very small. But if, as in the Inflationary Multiverse, 
the population of universes is not finite, it is far more challenging to interpret 
the numbers. What’s 99 percent of infinity? Infinity. What’s 1 percent of 
infinity? Infinity. Which is bigger? The answer requires us to compare two 
infinite collections. And as we’ve seen, even when it seems plain that one 
infinite collection is larger than another, the conclusion you reach depends on 
your method of comparison. 
 The contrarian concludes that when inflation is eternal, the very 
predictions that we use to build our confidence in the theory are compromised. 
Every possible outcome allowed by the quantum calculations, however 
unlikely—a .1 percent quantum probability, a .0001 percent quantum 
probability, a .0000000001 percent quantum probability—would be realized in 
infinitely many universes simply because any of these numbers times infinity 
equals infinity. Without a fundamental prescription for comparing infinite 
collections, we can’t possibly say that one collection of universes is larger than 
the rest and is thus the most likely kind of universe for us to witness, we lose 
the capacity to make definite predictions. 
 The optimist concludes that the spectacular agreement between quantum 
calculations in inflationary cosmology and data, as in Figure 3.5, must reflect a 
deep truth. With a finite number of universes and observers, the deep truth is 
that universes in which the data deviate from quantum predictions—those with 
a .1 percent quantum probability, or a .0001 percent quantum probability, or 
a .0000000001 percent quantum probability—are indeed rare, and that’s why 



garden-variety multiverse inhabitants like us don’t find ourselves living inside 
one of them. With an infinite number of universes, the optimist concludes, the 
deep truth must be that the rarity of anomalous universes, in some yet to be 
established manner, still holds. The expectation is that we will one day derive 
a measure, a definite means for comparing the various infinite collections of 
universes, and that those universes emerging from rare quantum aberrations 
will have a tiny measure compared with those emerging from the likely 
quantum outcomes. To accomplish this remains an immense challenge, but the 
majority of researchers in the field are convinced that the agreement in Figure 
3.5 means that we will one day succeed.12 

 
Mysteries and Multiverses: 
Can a multiverse provide explanatory power of which we’d otherwise be 
deprived? 
 
 
 No doubt you’ve noticed that even the most sanguine projections suggest 
that predictions emerging from a multiverse framework will have a different 
character from those we traditionally expect from physics. The precession of 
the perihelion of Mercury, the magnetic dipole moment of the electron, the 
energy released when a nucleus of uranium splits into barium and krypton: 
these are predictions. They result from detailed mathematical calculations 
based on solid physical theory and produce precise, testable numbers. And the 
numbers have been verified experimentally. For example, calculations 
establish that the electron’s magnetic moment is 2.0023193043628; 
measurements reveal it to be 2.0023193043622. Within the tiny margins of 
error inherent to each, experiment thus confirms theory to better than 1 part in 
10 billion. 
 From where we now stand, it seems that multiverse predictions will 
never reach this standard of precision. In the most refined scenarios, we might 
be able to predict that it’s “highly likely” that the cosmological constant, or the 
strength of the electromagnetic force, or the mass of the up-quark lies within 
some range of values. But to do better, we’ll need extraordinarily good fortune. 
In addition to solving the measure problem, we’ll need to discover a 
convincing multiverse theory with profoundly skewed probabilities (such as a 



99.9999 percent probability that an observer will find himself in a universe 
with a cosmological constant equal to the value we measure) or astonishingly 
tight correlations (such as that electrons exist only in universes with a 
cosmological constant equal to 10–123). If a multiverse proposal doesn’t have 
such favorable features, it will lack the precision that for so long has 
distinguished physics from other disciplines. To some researchers, that’s an 
unacceptable price to pay. 
 For quite a while, I took that position too, but my view has gradually 
shifted. Like every other physicist, I prefer sharp, precise, and unequivocal 
predictions. But I and many others have come to realize that although some 
fundamental features of the universe are suited for such precise mathematical 
predictions, others are not—or, at the very least, it’s logically possible that 
there may be features that stand beyond precise prediction. From the mid-
1980s, when I was a young graduate student working on string theory, there 
was broad expectation that the theory would one day explain the values of 
particle masses, force strengths, the number of spatial dimensions, and just 
about every other fundamental physical feature. I remain hopeful that this is a 
goal we will one day reach. But I also recognize that it is a tall order for a 
theory’s equations to churn away and produce a number like the electron’s 
mass (.000000000000000000000091095 in units of the Planck mass) or the 
top quark’s mass (.0000000000000000632, in units of the Planck mass). And 
when it comes to the cosmological constant, the challenge appears herculean. 
A calculation that after pages of manipulations and megawatts of computer-
crunching results in the very number that highlights the first paragraph of 
Chapter 6—well, it’s not impossible but it does strain even the optimist’s 
optimism. Certainly, string theory seems no closer to calculating any of these 
numbers today than it did when I first started working on it. This doesn’t mean 
that it, or some future theory, won’t one day succeed. Maybe the optimist 
needs to be yet more imaginative. But given the physics of today, it makes 
sense to consider new approaches. That’s what the multiverse does. 
 In a well-developed multiverse proposal, there’s a clear delineation of the 
physical features that need to be approached differently from standard practice: 
those that vary from universe to universe. And that’s the power of the 
approach. What you can absolutely count on from a multiverse theory is a 



sharp vetting of which single-universe mysteries persist in the many-universe 
setting, and which do not. 
 The cosmological constant is a prime example. If the cosmological 
constant’s value varies across a given multiverse, and does so in sufficiently 
fine increments, what was once mysterious—its value—would now be prosaic. 
Just as a well-stocked shoe store surely has your shoe size, an expansive 
multiverse surely has universes with the value of the cosmological constant 
we’ve measured. What generations of scientists might have struggled valiantly 
to explain, the multiverse would have explained away. The multiverse would 
have shown that a seemingly deep and perplexing issue emerged from the 
misguided assumption that the cosmological constant has a unique value. It is 
in this sense that a multiverse theory has the capacity to offer significant 
explanatory power, and it has the potential to profoundly influence the course 
of scientific inquiry. 
 Such reasoning must be wielded with care. What if Newton, after the 
apple fell, reasoned that we’re part of a multiverse in which apples fall down 
in some universes, up in others, and so the falling apple simply tells us which 
kind of universe we inhabit, with no need for further investigation? Or, what if 
he’d concluded that in each universe some apples fall down while others fall 
up, and the reason we see the falling-down variety is simply the environmental 
fact that, in our universe, apples that fall up have already done so and have 
thus long since departed for deep space? This is a fatuous example, of 
course—there’s never been any reason, theoretical or otherwise, for such 
thinking—but the point is serious. By invoking a multiverse, science could 
weaken the impetus to clarify particular mysteries, even though some of those 
mysteries might be ripe for standard, nonmultiverse explanations. When all 
that was really called for was harder work and deeper thinking, we might 
instead fail to resist the lure of multiverse temptation and prematurely abandon 
conventional approaches. 
 This potential danger explains why some scientists shudder at multiverse 
reasoning. It’s why a multiverse proposal that’s taken seriously needs to be 
strongly motivated from theoretical results, and it must articulate with 
precision the universes of which it’s composed. We must tread carefully and 
systematically. But to turn away from a multiverse because it could lead us 
down a blind alley is equally dangerous. In doing so, we might well be turning 



a blind eye to reality. 
 
 *Because there are differing perspectives regarding the role of scientific 
theory in the quest to understand nature, the points I’m making are subject to a 
range of interpretations. Two prominent positions are realists, who hold that 
mathematical theories can provide direct insight into the nature of reality, and 
instrumentalists, who believe that theory provides a means for predicting what 
our measuring devices should register but tells us nothing about an underlying 
reality. Over decades of exacting argument, philosophers of science have 
developed numerous refinements of these and related positions. As no doubt is 
clear, my perspective, and the approach I take in this book, is decidedly in the 
realist camp. This chapter in particular, examining the scientific validity of 
certain types of theories, and assessing what those theories might imply for the 
nature of reality, is one in which various philosophical orientations would 
approach the topic with considerable differences. 
 *In a multiverse containing an enormous number of different universes, a 
reasonable concern is that regardless of what experiments and observations 
reveal, there is some universe in the theory’s gargantuan collection that’s 
compatible with the results. If so, there’d be no experimental evidence that 
could prove the theory wrong; in turn, no data could be properly interpreted as 
evidence supporting the theory. I will consider this issue shortly. 
 
 
  



CHAPTER 8 
 
 
The Many Worlds of Quantum Measurement 
 
 
The Quantum Multiverse 
 
 
 The most reasonable assessment of the parallel universe theories we’ve 
so far encountered is that the jury is out. An infinite spatial expanse, eternal 
inflation, braneworlds, cyclical cosmology, string theory’s landscape—these 
intriguing ideas have emerged from a range of scientific developments. But 
each remains tentative, as do the multiverse proposals each has spawned. 
While many physicists are willing to offer their opinions, pro and con, 
regarding these multiverse schemes, most recognize that future insights—
theoretical, experimental, and observational—will determine whether any 
become part of the scientific canon. 
 The multiverse we’ll now take up, emerging from quantum mechanics, is 
viewed very differently. Many physicists have already reached a final verdict 
on this particular multiverse. The thing is, they haven’t all reached the same 
verdict. The differences come down to the deep and as yet unresolved problem 
of navigating from the probabilistic framework of quantum mechanics to the 
definite reality of common experience. 
 
Quantum Reality 
 
 
 In 1954, nearly thirty years after the foundations of quantum theory had 
been set down by luminaries like Niels Bohr, Werner Heisenberg, and Erwin 
Schrödinger, an unknown graduate student from Princeton University named 
Hugh Everett III came to a startling realization. His analysis, which focused on 
a gaping hole that Bohr, the grand master of quantum mechanics, had danced 
around but failed to fill, revealed that a proper understanding of the theory 
might require a vast network of parallel universes. Everett’s was one of the 



earliest mathematically motivated insights suggesting that we might be part of 
a multiverse. 
 Everett’s approach, which in time would be called the Many Worlds 
interpretation of quantum mechanics, has had a checkered history. In January 
1956, having worked out the mathematical consequences of his new proposal, 
Everett submitted a draft of his thesis to John Wheeler, his doctoral adviser. 
Wheeler, one of twentieth-century physics’ most celebrated thinkers, was 
thoroughly impressed. But that May, when Wheeler visited Bohr in 
Copenhagen and discussed Everett’s ideas, the reception was icy. Bohr and his 
followers had spent decades refining their view of quantum mechanics. To 
them, the questions Everett raised, and the outlandish ways in which he 
thought they should be addressed, were of little merit. 
 Wheeler held Bohr in the highest regard, and so placed particular value 
on appeasing his elder colleague. In response to the criticisms, Wheeler 
delayed granting Everett his Ph.D. and compelled him to modify the thesis 
substantially. Everett was to cut out those parts blatantly critical of Bohr’s 
methodology and emphasize that his results were meant to clarify and extend 
the conventional formulation of quantum theory. Everett resisted, but he had 
already accepted a job in the Defense Department (where he would soon play 
an important behind-the-scenes role in the Eisenhower and Kennedy 
administrations’ nuclear-weapons policy) that required a doctorate, so he 
reluctantly acquiesced. In March of 1957, Everett submitted a substantially 
trimmed-down version of his original thesis; by April it was accepted by 
Princeton as fulfilling his remaining requirements, and in July it was published 
in the Reviews of Modern Physics.1 But with Everett’s approach to quantum 
theory having already been dismissed by Bohr and his entourage, and with the 
muting of the grander vision articulated in the original thesis, the paper was 
ignored.2 
 Ten years later, the renowned physicist Bryce DeWitt plucked Everett’s 
work from obscurity. DeWitt, who was inspired by the results of his graduate 
student Neill Graham that further developed Everett’s mathematics, became a 
vocal proponent of the Everettian rethinking of quantum theory. Besides 
publishing a number of technical papers that brought Everett’s insights to a 
small but influential community of specialists, in 1970 DeWitt wrote a general 
level summary for Physics Today that reached a much broader scientific 



audience. And unlike Everett’s 1957 paper, which shied away from talk of 
other worlds, DeWitt underscored this feature, highlighting it with an 
unusually candid reflection regarding his “shock” on learning Everett’s 
conclusion that we are part of an enormous “multiworld.” The article 
generated a significant response in a physics community that had become more 
receptive to tampering with orthodox quantum ideology and ignited a debate, 
still going on, that concerns the nature of reality when, as we believe they do, 
quantum laws hold sway. 
 Let me set the stage. 
 The upheaval in understanding that took place between roughly 1900 and 
1930 resulted in a ferocious assault on intuition, common sense, and the well-
accepted laws that the new vanguard soon began calling “classical physics”—a 
term that carries the weight and respect given to a picture of reality that is at 
once venerable, immediate, satisfying, and predictive. Tell me how things are 
now, and I’ll use the laws of classical physics to predict how things will be at 
any moment in the future, or how they were at any moment in the past. 
Subtleties such as chaos (in the technical sense: slight changes in how things 
are now can result in huge errors in the predictions) and the complexity of the 
equations challenge the practicality of this program in all but the simplest 
situations, but the laws themselves are unwavering in their viselike grip on a 
definitive past and future. 
 The quantum revolution required that we give up the classical 
perspective because new results established that it was demonstrably wrong. 
For the motion of big objects like the earth and the moon, or of everyday 
objects like rocks and balls, the classical laws do a fine job of prediction and 
description. But pass into the microworld of molecules, atoms, and subatomic 
particles and the classical laws fail. In contradiction of the very heart of 
classical reasoning, if you run identical experiments on identical particles that 
have been set up identically, you will generally not get identical results. 
 Imagine, for example, that you have 100 identical boxes, each containing 
one electron, set up according to an identical laboratory procedure. After 
exactly 10 minutes, you and 99 cohorts measure the positions of each of the 
100 electrons. Despite what Newton, Maxwell, or even a young Einstein 
would have anticipated—would likely have been willing to bet their lives on—
the 100 measurements won’t yield the same result. In fact, at first blush the 



results will look random, with some electrons found near their box’s front 
lower left corner, some near the back upper right, some around the middle, and 
so on. 
 The regularities and patterns that make physics a rigorous and predictive 
discipline become apparent only if you run this same experiment, with 100 
boxed electrons, over and over again. Were you to do so, here’s what you’d 
find. If your first batch of 100 measurements found 27 percent of the electrons 
near the lower left corner, 48 percent near the upper right corner, and 25 
percent near the middle, then the second batch will yield a very similar 
distribution. So will the third batch, the fourth, and those that follow. The 
regularity, therefore, isn’t evident in any single measurement; you can’t predict 
where any given electron will be. Instead, the regularity is found in the 
statistical distribution of many measurements. The regularity, that is, speaks to 
the likelihood, or probability, of finding an electron at any particular location. 
 The breathtaking achievement of quantum mechanics’ founders was to 
develop a mathematical formalism that dispensed with the absolute predictions 
intrinsic to classical physics and instead predicted such probabilities. Working 
from an equation Schrödinger published in 1926 (and an equivalent though 
somewhat more awkward equation Heisenberg wrote down in 1925), 
physicists can input the details of how things are now, and then calculate the 
probability that they will be one way, or another, or another still, at any 
moment in the future. 
 But don’t be misled by the simplicity of my little electron example. 
Quantum mechanics applies not just to electrons but to all types of particles, 
and it tells us not only about their positions but about also their velocities, their 
angular momenta, their energies, and how they behave in a wide range of 
situations, from the barrage of neutrinos now wafting through your body, to 
the frenzied atomic fusions taking place in the cores of distant stars. Across 
such a broad sweep, the probabilistic predictions of quantum mechanics match 
experimental data. Always. In the more than eighty years since these ideas 
were developed, there has not been a single verifiable experiment or 
astrophysical observation whose results conflict with quantum mechanical 
predictions. 
 For a generation of physicists to have confronted such a radical departure 
from the intuitions formed out of thousands of years of collective experience, 



and in response to have recast reality within a wholly new framework based on 
probabilities, is a virtually unmatched intellectual achievement. Yet one 
uncomfortable detail has been hovering over quantum mechanics since its 
inception—a detail that eventually opened a pathway to parallel universes. To 
understand it, we need to look a little more closely at the quantum formalism. 
 
The Puzzle of Alternatives 
 
 
 In April 1925, during an experiment at Bell Labs undertaken by two 
American physicists, Clinton Davisson and Lester Germer, a glass tube 
containing a hot chunk of nickel suddenly exploded. Davisson and Germer had 
been spending their days firing beams of electrons at specimens of nickel to 
investigate various aspects of the metal’s atomic properties; the equipment 
failure was a nuisance, albeit one all too familiar in experimental work. On 
cleaning up the glass shards, Davisson and Germer noticed that the nickel had 
been tarnished during the explosion. Not a big deal, of course. All they had to 
do was heat the sample, vaporize the contaminant, and start again. And so they 
did. But that choice, to clean the sample instead of opting for a new one, 
proved fortuitous. When they directed the electron beam at the newly cleaned 
nickel, the results were completely different from any they or anyone else had 
ever encountered. By 1927, it was clear that Davisson and Germer had 
established a vital feature of the rapidly developing quantum theory. And 
within a decade, their serendipitous discovery would be honored with the 
Nobel Prize. 
 Although Davisson and Germer’s demonstration predates talking movies 
and the Great Depression, it’s still the most widely used method for 
introducing quantum theory’s essential ideas. Here’s how to think about it. 
When Davisson and Germer heated the tarnished sample, they caused 
numerous small nickel crystals to meld into fewer larger ones. In turn, their 
electron beam no longer reflected off a highly uniform surface of nickel but 
instead bounced back from a few concentrated locations where the larger 
nickel crystals were centered. A simplified version of their experiment, the 
setup of Figure 8.1, in which electrons are fired at a barrier containing two 
narrow slits, highlights the essential physics. Electrons emanating from one slit 



or the other are like electrons bouncing back from one nickel crystal or its 
neighbor. Modeled in this way, Davisson and Germer were carrying out the 
first version of what’s now called the double-slit experiment. 
 To grasp Davisson and Germer’s startling result, imagine closing off 
either the left or the right slit and capturing the electrons that pass through, one 
by one, on a detector screen. After many such electrons are fired, the detector 
screens will look like those in Figure 8.2a and Figure 8.2b. A rational, 
nonquantum trained mind would therefore expect that when both slits are open, 
the data would be an amalgam of these two results. But the astounding fact is 
that this is not what happens. Instead, Davisson and Germer found data, much 
like those illustrated in Figure 8.2c, consisting of light and dark bands 
indicating a series of positions where electrons do and do not land. 

 
 Figure 8.1 The essence of the Davisson and Germer experiment is 
captured by the “double-slit” setup in which electrons are fired at a barrier 
that has two narrow slits. In the Davisson and Germer experiment, two 
streams of electrons are produced when incident electrons bounce off 
neighboring nickel crystals; in the double-slit experiment, two similar streams 
are produced by electrons that pass through the neighboring slits. 
 
 
 These results deviate from expectations in a way that’s particularly 
peculiar. The dark bands are locations where electrons are copiously detected 



if only the left slit or only the right slit is open (the corresponding regions in 
Figures 8.2a and 8.2b are bright), but which are apparently unreachable when 
both slits are available. The presence of the left slit thus changes the possible 
landing locations of electrons passing through the right slit, and vice versa. 
Which is thoroughly perplexing. On the scale of a tiny particle like an electron, 
the distance between the slits is huge. So when the electron passes through one 
slit, how could the presence or absence of the other have any effect, let alone 
the dramatic influence evident in the data? It’s as if for many years you 
happily enter an office building using one door, but when the management 
finally adds a second door on the building’s other side, you can no longer 
reach your office. 
 What are we to make of this? The double-slit experiment leads us 
inescapably to a conclusion hard to fathom. Regardless of which slit it passes 
through, each individual electron somehow “knows” about both. There’s 
something associated with, or connected to, or part of each individual electron 
that is affected by both slits. 
 But what could that something be? 
  
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 Figure 8.2 (a)The data obtained when electrons are fired and only the 
left slit is open. (b)The data obtained when electrons are fired and only the 
right slit is open. (c)The data obtained when electrons are fired and both slits 
are open. 



 
Quantum Waves 
 
 For a clue as to how an electron traveling through one slit “knows” about 
the other, look more closely at the data in Figure 8.2c. The light-dark-light-
dark pattern is as recognizable to a physicist as a mother’s face is to her baby. 
The pattern says—no, it screams—waves. If you’ve ever dropped two pebbles 
into a pond and watched as the resulting ripples spread and overlap, you know 
what I mean. Where the peak of one wave crosses the peak of another, the 
combined wave height is big; where the trough of one crosses the trough of 
another, the combined wave depression is deep; and most important of all, 
where the peak of one crosses the trough of the other, the waves cancel and the 
water remains level. This is illustrated in Figure 8.3. If you were to insert a 
detector screen across the top of the figure that recorded the water’s agitation 
at each location—the larger the agitation, the brighter the reading—the result 
would be a series of alternating bright and dark regions on the screen. Bright 
regions would be where the waves reinforce each other, yielding much 
agitation; dark regions would be where the waves cancel, yielding no agitation. 
Physicists say the overlapping waves interfere with one another, and call the 
bright-dark-bright data they produce an interference pattern. 
 The similarity to Figure 8.2c is unmistakable, so in trying to explain the 
electron data we’re led to think about waves. Good. That’s a start. But the 
details are still murky. What kind of waves? Where are they? And what have 
they to do with particles such as electrons? 
 The next clue comes from the experimental fact I emphasized at the 
outset. Reams of data on the motion of particles show that regularities emerge 
only statistically. The same measurements performed on identically prepared 
particles will generally reveal them to be in different places; yet many such 
measurements establish that, on average, the particles have the same 
probability of being found at any given location. In 1926, the German physicist 
Max Born joined these two clues together and with them made a leap that 
nearly three decades later would earn him a Nobel Prize. You’ve got 
experimental evidence that waves play a role. You’ve got experimental 
evidence that probabilities play a role. Perhaps, Born suggested, the wave 
associated with a particle is a probability wave. 



  
 
 
 
 
 
 
  
 
 
 Figure 8.3 When two water waves overlap, they “interfere,” creating 
alternating regions of more or less agitation called an interference pattern. 
 
 
 It was an unprecedented and spectacularly original contribution. The idea 
is that in analyzing the motion of a particle we shouldn’t think of it as a rock 
hurtling from here to there. Instead, we should think of it as a wave undulating 
from here to there. Locations where the wave’s values are large, near its peaks 
and troughs, are locations where the particle is likely to be found. Locations 
where the probability wave’s values are small are locations where the particle 
is unlikely to be found. Locations where the wave’s values vanish are places 
where the particle won’t be found. As the wave rolls onward, the values evolve, 
going up in some locations, down in others. And since we’re interpreting the 
undulating values as undulating probabilities, the wave is justly called a 
probability wave. 
 To flesh out the picture, consider how it explains the double-slit data. As 
an electron travels toward the barrier in Figure 8.2c, quantum mechanics tells 
us to think of it as an undulating wave, as in Figure 8.4. When the wave 
encounters the barrier, two wave fragments make it through the slits and 
undulate onward toward the detector screen. What happens next is key. Much 
like overlapping water waves, the probability waves emerging from the two 
slits overlap and interfere, yielding a combined form that looks much like that 
in Figure 8.3: a pattern of high and low values that, according to quantum 
mechanics, corresponds with a pattern of high and low probabilities for where 
the electron will land. When electron after electron is fired, the cumulative 



landing positions conform to this probability profile. Many electrons land 
where the probability is high, few where it’s low, and none where the 
probability vanishes. The result is the bright and dark bands of Figure 8.2c.3 
 And that’s how quantum theory explains the data. The description makes 
manifest that each electron does “know” about both slits, since each electron’s 
probability wave passes through both. It’s the union of these two partial waves 
that dictates the probabilities for where the electrons land. That’s why the mere 
presence of a second slit affects the results. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 Figure 8.4 When we describe the motion of an electron in terms of an 
undulating probability wave, the puzzling interference data are explained. 
 
 
Not So Fast 
 
 
 Although I’ve focused on electrons, similar experiments have established 
the same probability-wave picture for all of nature’s basic constituents. 
Photons, neutrinos, muons, quarks—every fundamental particle—all are 



described by waves of probability. But before we declare victory, three 
questions immediately present themselves. Two are straightforward. One is a 
bear. It’s the latter that Everett sought to answer back in the 1950s, and it led 
him to a quantum version of parallel worlds. 
 First, if quantum theory is right and the world unfolds probabilistically, 
why is Newton’s nonprobabilistic framework so good at predicting the motion 
of things from baseballs to planets to stars? The answer is that probability 
waves for big things usually (but not always, as we will shortly see) have a 
very particular shape. They’re extraordinarily narrow, as in Figure 8.5a, 
meaning there’s a huge probability, just shy of 100 percent, that the object is 
located where the wave is peaked and a minuscule probability, just a shade 
above 0 percent, that it’s located anywhere else.4 Moreover, the quantum laws 
show that the peaks of such narrow waves move along the very same 
trajectories that emerge from Newton’s equations. And so, while Newton’s 
laws predict precisely the trajectory of a baseball, quantum theory offers only 
the most minimal refinement, saying there’s a nearly 100 percent probability 
that the ball will land where Newton says it should, and a nearly 0 percent 
probability that it won’t. 
  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 Figure 8.5 (a)The probability wave for a macroscopic object is generally 
narrowly peaked. (b)The probability wave for a microscopic object, say, a 
single particle, is typically widely spread. 
 
 
 In fact, the words “just shy” and “nearly” don’t do the physics justice. 
The chance of a macroscopic body deviating from Newton’s predictions is so 
fantastically tiny that if you’d been keeping tabs on the cosmos for the last few 
billion years, the odds are overwhelming that you’d have never seen it happen. 
But according to quantum theory, the smaller an object, the more spread-out its 
probability wave typically is. For example, a typical electron’s wave might 



look like that in Figure 8.5b, with substantial probabilities of being at a variety 
of locations, a totally foreign concept in a Newtonian world. And that’s why 
it’s the microrealm where the probabilistic nature of reality comes to the fore. 
 Second, can we see the probability waves on which quantum mechanics 
relies? Is there any way to directly access the unfamiliar probabilistic haze, 
such as that illustrated schematically in Figure 8.5b, in which a single particle 
has a chance of being found in a variety of locations? No. The standard 
approach to quantum mechanics, developed by Bohr and his group, and called 
the Copenhagen interpretation in their honor, envisions that whenever you try 
to see a probability wave, the very act of observation thwarts your attempt. 
When you look at an electron’s probability wave, where “look” means 
“measure its position,” the electron responds by snapping to attention and 
coalescing at one definite location. Correspondingly, the probability wave 
surges to 100 percent at that spot, while collapsing to 0 percent everywhere 
else, as in Figure 8.6. Look away, and the needle-thin probability wave rapidly 
spreads, indicating that once again there’s a reasonable chance of finding the 
electron at a variety of locations. Look back, and the electron’s wave collapses 
anew, eliminating the range of possible places the electron might be found in 
favor of its occupying a single definite spot. In short, every time you attempt to 
see the probabilistic haze it disappears—it collapses—and is supplanted by 
familiar reality. The detector screen in Figure 8.2c provides a case in point: it 
measures the impinging probability wave of an electron and thus immediately 
causes it to collapse. The detector forces the electron to relinquish the many 
available options for where it could hit and settle upon a definite landing 
location, which is then evidenced by a tiny dot on the screen. 
  
 
 
  



 
 
 Figure 8.6 The Copenhagen approach to quantum mechanics envisions 
that when measured or observed, a particle’s probability wave instantaneously 
collapses at all but one location. The range of possible positions for the 
particle transforms into one definite outcome. 
 
 I understand full well if this explanation leaves you shaking your head. 
There’s no denying that quantum dogma sounds a lot like snake oil. I mean, 
along comes a theory that proposes a startling new picture of reality founded 
on waves of probability and then, in the very next breath, announces that the 
waves can’t be seen. Imagine Lucille claiming she’s a blonde—until someone 
looks, when she immediately transforms into a redhead. Why would physicists 
accept an approach that’s not only strange but that seems so downright 
slippery? 
 Fortunately, for all its mysterious and hidden features, quantum 
mechanics is testable. According to the Copenhagenists, the larger a 
probability wave is at a particular location, the greater the chance that when 
the wave collapses, its sole remaining spike—and hence the electron itself—
will be situated there. That statement yields predictions. Run a given 
experiment over and over again, count how often you find the particle at 
various locations, and assess whether the frequencies you observe agree with 
the probabilities dictated by the probability wave. If the wave is 2.874 times as 
big here as it is there, do you find the particle here 2.874 times as often as you 
find it there? Predictions like these have been enormously successful. Wily as 



the quantum perspective may seem, it’s hard to argue with such phenomenal 
results. 
 But not impossible. 
 Which takes us to the third and most difficult question. The collapsing of 
probability waves upon measurement, Figure 8.6, is a centerpiece of the 
Copenhagen approach to quantum theory. The confluence of its successful 
predictions and Bohr’s forceful proselytizing led most physicists to accept it, 
but even polite prodding quickly reveals an uncomfortable feature. 
Schrödinger’s equation, the mathematical engine of quantum mechanics, 
dictates how the shape of a probability wave evolves in time. Give me an 
initial wave shape, say, that of Figure 8.5b, and I can use Schrödinger’s 
equation to draw a picture of what the wave will look like in a minute, or an 
hour, or at any other moment. But straightforward analysis of the equation 
reveals that the evolution depicted in Figure 8.6—the instantaneous collapse of 
a wave at all but one point, like a lone parishioner in a megachurch 
accidentally standing while everyone else kneels—can’t possibly emerge from 
Schrödinger’s math. Waves surely can have a needle-thin spiked shape; we’ll 
make ample use of some spiked waves shortly. But they can’t become spiked 
in the manner envisioned by the Copenhagen approach. The math simply 
doesn’t allow it. (We’ll see why in just a moment.) 
 Bohr advanced a heavyhanded remedy: evolve probability waves 
according to Schrödinger’s equation whenever you’re not looking or 
performing any kind of measurement. But when you do look, Bohr continued, 
you should throw Schrödinger’s equation aside and declare that your 
observation has caused the wave to collapse. 
 Now, not only is this prescription ungainly, not only is it arbitrary, not 
only does it lack a mathematical underpinning, it’s not even clear. For instance, 
it doesn’t precisely define “looking” or “measuring.” Must a human be 
involved? Or, as Einstein once asked, will a sidelong glance from a mouse 
suffice? How about a computer’s probe, or even a nudge from a bacterium or 
virus? Do these “measurements” cause probability waves to collapse? Bohr 
announced that he was drawing a line in the sand separating small things, such 
as atoms and their constituents, to which Schrödinger’s equation would apply, 
and big things, such as experimenters and their equipment, to which it 
wouldn’t. But he never said where exactly that line would be. The reality is, he 



couldn’t. With each passing year, experimenters confirm that Schrödinger’s 
equation works, without modification, for increasingly large collections of 
particles, and there’s every reason to believe that it works for collections as 
hefty as those making up you and me and everything else. Like floodwaters 
slowly rising from your basement, rushing into your living room, and 
threatening to engulf your attic, the mathematics of quantum mechanics has 
steadily spilled beyond the atomic domain and has succeeded on ever-larger 
scales. 
 So the way to think about the problem is this. You and I and computers 
and bacteria and viruses and everything else material are made of molecules 
and atoms, which are themselves composed of particles like electrons and 
quarks. Schrödinger’s equation works for electrons and quarks, and all 
evidence points to its working for things made of these constituents, regardless 
of the number of particles involved. This means that Schrödinger’s equation 
should continue to apply during a measurement. After all, a measurement is 
just one collection of particles (the person, the equipment, the computer …..) 
coming into contact with another (the particle or particles being measured). 
But if that’s the case, if Schrödinger’s math refuses to bow down, then Bohr is 
in trouble. Schrödinger’s equation doesn’t allow waves to collapse. An 
essential element of the Copenhagen approach would therefore be undermined. 
 So the third question is this: If the reasoning just recounted is right and 
probability waves don’t collapse, how do we pass from the range of possible 
outcomes that exist before a measurement to the single outcome the 
measurement reveals? Or to put it in more general terms, what happens to a 
probability wave during a measurement that allows a familiar, definite, unique 
reality to take hold? 
 Everett pursued this question in his Princeton doctoral dissertation and 
came to an unforeseen conclusion. 
 
Linearity and Its Discontents 
 
 
 To understand Everett’s path of discovery, you need to know a little more 
about Schrödinger’s equation. I’ve emphasized that it doesn’t allow probability 
waves to suddenly collapse. But why not? And what does it allow? Let’s get a 



feel for how Schrödinger’s math guides a probability wave as it evolves 
through time. 
 This is fairly straightforward, because Schrödinger’s is one of the 
simplest kinds of mathematical equations, characterized by a property known 
as linearity—a mathematical embodiment of the whole being the sum of its 
parts. To see what this means, imagine that the shape in Figure 8.7a is the 
probability wave at noon for a given electron (for visual clarity, I will use a 
probability wave that depends on location in the one dimension represented by 
the horizontal axis, but the ideas are general). We can use Schrödinger’s 
equation to follow the evolution of this wave forward in time, yielding its 
shape at, say, one p.m., schematically illustrated in Figure 8.7b. Now notice 
the following. You can decompose the initial wave shape in Figure 8.7a into 
two simpler pieces, as in Figure 8.8a; if you combine the two waves in the 
figure, adding their values point by point, you recover the original wave shape. 
The linearity of Schrödinger’s equation means that you can use it on each 
piece in Figure 8.8a separately, determining what each wave fragment will 
look like at one p.m., and then combine the results as in Figure 8.8b to recover 
the full result shown in Figure 8.7b. And there’s nothing sacred about 
decomposition into two pieces; you can break the initial shape up into any 
number of pieces, evolve each separately, and combine the results to get the 
final wave shape. 

 
 Figure 8.7 (a)An initial probability wave shape at one moment evolves 
via Schrödinger’s equation to a different shape(b)at a later time. 



 
 This may sound like a mere technical nicety, but linearity is an 
extraordinarily powerful mathematical feature. It allows for an all-important 
divide-and-conquer strategy. If an initial wave shape is complicated, you are 
free to divide it up into simpler pieces and analyze each separately. At the end, 
you just put the individual results back together. We’ve actually already seen 
an important application of linearity through our analysis of the double-slit 
experiment in Figure 8.4. To determine how the electron’s probability wave 
evolves, we divided the task: we noted how the piece passing through the left 
slit evolves, we noted how the piece passing through the right slit evolves, and 
we then added the two waves together. That’s how we found the famous 
interference pattern. Look at a quantum theorist’s blackboard, and it is this 
very approach you’ll see underlying a great many of the mathematical 
manipulations. 
 

  
 
 Figure 8.8 (a)An initial probability wave shape can be decomposed as 
the union of two simpler shapes. (b)The evolution of the initial probability 
wave can be reproduced by evolving the simpler pieces and combining the 
results. 
 



 
 Figure 8.9 An electron’s probability wave, at a given moment, is spiked 
at Thirty-fourth Street and Broadway. A measurement of the electron’s 
position, at that moment, confirms that it is located where its wave is spiked. 
 
 But linearity not only makes quantum calculations manageable; it’s also 
at the heart of the theory’s difficulty in explaining what happens during a 
measurement. This is best understood by applying linearity to the act of 
measurement itself. 
 Imagine you’re an experimentalist with great nostalgia for your 
childhood in New York, so you’re measuring the positions of electrons that 
you inject into a miniature tabletop model of the city. You start your 
experiments with one electron whose probability wave has a particularly 
simple shape—it’s nice and spiked, as in Figure 8.9, indicating that with 
essentially 100 percent probability the electron is momentarily sitting at the 
corner of Thirty-fourth Street and Broadway. (Don’t worry about how the 
electron got this wave shape; just take it as a given.)* If at that very moment 
you measure the electron’s position with a well-made piece of equipment, the 



result should be accurate—the device’s readout should say “Thirty-fourth 
Street and Broadway.” Indeed, if you do this experiment, that’s just what 
happens, as in Figure 8.9. 
 It would be extraordinarily complicated to work out how Schrödinger’s 
equation entwines the probability wave of the electron with that of the trillion 
trillion or so atoms that make up the measuring device, coaxing a collection of 
the latter to arrange themselves in the readout to spell “Thirty-fourth Street and 
Broadway,” but whoever designed the device has done the heavy lifting for us. 
It’s been engineered so that its interaction with such an electron causes the 
readout to display the single definite position where, at that moment, the 
electron is located. If the device did anything else in this situation, we’d be 
wise to exchange it for a new one that functions properly. And, of course, 
Macy’s notwithstanding, there’s nothing special about Thirty-fourth and 
Broadway; if we do the same experiment with the electron’s probability wave 
spiked at the Hayden Planetarium near Eighty-first and Central Park West, or 
at Bill Clinton’s office on 125th near Lenox Avenue, the device’s readout will 
return these locations. 
 Let’s now consider a slightly more complicated wave shape, as in Figure 
8.10. This probability wave indicates that, at the given moment, there are two 
places the electron might be found—Strawberry Fields, the John Lennon 
memorial in Central Park, and Grant’s Tomb in Riverside Park. (The 
electron’s in one of its dark moods.) If we measure the electron’s position but, 
in opposition to Bohr and in keeping with the most refined experiments, 
assume that Schrödinger’s equation continues to apply—to the electron, to the 
particles in the measuring device, to everything—what will the device’s output 
read? Linearity is the key to the answer. We know what happens when we 
measure spiked waves individually. Schrödinger’s equation causes the 
device’s display to spell out the spike’s location, as in Figure 8.9. Linearity 
then tells us that to find the answer for two spikes, we combine the results of 
measuring each spike separately. 
 Here’s where things get weird. At first blush, the combined results 
suggest that the display should simultaneously register the locations of both 
spikes. As in Figure 8.10, the words “Strawberry Fields” and “Grant’s Tomb” 
should flash simultaneously, one location commingled with the other, like the 
confused monitor of a computer that’s about to crash. Schrödinger’s equation 



also dictates how the probability waves of the photons emitted by the 
measuring device’s display entangle with those of the particles in your rods 
and cones, and subsequently those rushing through your neurons, creating a 
mental state reflecting what you see. Assuming unlimited Schrödinger 
hegemony, linearity applies here too, so not only will the device 
simultaneously display both locations but also your brain will be caught up in 
the confusion, thinking that the electron is simultaneously positioned at both. 
  
 

 
 
 Figure 8.10 An electron’s probability wave is spiked at two locations. 
The linearity of Schrödinger’s equation suggests that a measurement of the 
electron’s position would yield a confusing amalgam of both locations. 
 
 For yet more complicated wave shapes, the confusion becomes yet wilder. 
A shape with four spikes doubles the dizziness. With six, it triples. Notice that 
if you keep on going, putting wave spikes of various heights at every location 
in the model Manhattan, their combined shape fills out an ordinary, more 



gradually varying quantum wave shape, as schematically illustrated in Figure 
8.11. Linearity still holds, and this implies that the final device reading, as well 
as your final brain state and mental impression, are dictated by the union of the 
results for each spike individually. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 Figure 8.11 A general probability wave is the union of many spiked 
waves, each representing a possible position of the electron. 
 
 The device should simultaneously register the location of each and every 
spike—each and every location in Manhattan—as your mind becomes 
profoundly puzzled, being unable to settle on a single definite location for the 
electron.5 
 But, of course, this seems grossly at odds with experience. No properly 
functioning device, when taking a measurement, displays conflicting results. 
No properly functioning person, on performing a measurement, has the mental 
impression of a dizzying mélange of simultaneous yet distinct outcomes. 
 You can now see the appeal of Bohr’s prescription. Hold the Dramamine, 
he’d declare. According to Bohr, we don’t see ambiguous meter readings 



because they don’t happen. He’d argue that we’ve come to an incorrect 
conclusion because we’ve overextended the reach of Schrödinger’s equation 
into the domain of big things: laboratory equipment that takes measurements, 
and scientists who read the results. Although Schrödinger’s equation and its 
feature of linearity dictate that we should combine the results from distinct 
possible outcomes—nothing collapses—Bohr tells us that this is wrong 
because the act of measurement tosses Schrödinger’s math out the window. 
Instead, he’d pronounce, the measurement causes all but one of the spikes in 
Figure 8.10 or Figure 8.11 to collapse to zero; the probability that a particular 
spike will be the sole survivor is proportional to the spike’s height. That 
unique remaining spike determines the device’s unique reading, as well as 
your mind’s recognition of a unique result. Dizziness done. 
 But for Everett, and later DeWitt, the cost of Bohr’s approach was too 
high. Schrödinger’s equation is meant to describe particles. All particles. Why 
would it somehow not apply to particular configurations of particles—those 
constituting the equipment that takes measurements, and those in the 
experimenters who monitor the equipment? This just didn’t make sense. 
Everett therefore suggested that we not dispense with Schrödinger so quickly. 
Instead, he advocated that we analyze where Schrödinger’s equation takes us 
from a decidedly different perspective. 
 
Many Worlds 
 
 
 The challenge we’ve encountered is that it’s bewildering to think of a 
measuring device or a mind as simultaneously experiencing distinct realities. 
We can have conflicting opinions on this or that issue, mixed emotions 
regarding this or that person, but when it comes to the facts that constitute 
reality, everything we know attests to there being an unambiguous objective 
description. Everything we know attests that one device and one measurement 
will yield one reading; one reading and one mind will yield one mental 
impression. 
 Everett’s idea was that Schrödinger’s math, the core of quantum 
mechanics, is compatible with such basic experiences. The source of the 
supposed ambiguity in device readings and mental impressions is the manner 



in which we’ve executed that math—the manner, that is, in which we’ve 
combined the results of the measurements illustrated in Figure 8.10 and Figure 
8.11. Let’s think it through. 
 When you measure a single spiked wave, such as that in Figure 8.9, the 
device registers the spike’s location. If it’s spiked at Strawberry Fields, that’s 
what the device reads; if you look at the result, your brain registers that 
location and you become aware of it. If it’s spiked at Grant’s Tomb, that’s 
what the device registers; if you look, your brain registers that location and 
you become aware of it. When you measure the double spiked wave in Figure 
8.10, Schrödinger’s math tells you to combine the two results you just found. 
But, says Everett, be careful and precise when you combine them. The 
combined result, he argued, does not yield a meter and a mind each 
simultaneously registering two locations. That’s sloppy thinking. 
 Instead, proceeding slowly and literally, we find that the combined result 
is a device and a mind registering Strawberry Fields, and a device and a mind 
registering Grant’s Tomb. And what does that mean? I’ll use broad strokes in 
painting the general picture, which I’ll refine shortly. To accommodate 
Everett’s suggested outcome, the device and you and everything else must split 
upon measurement, yielding two devices, two yous, and two everything 
elses—the only difference between the two being that one device and one you 
registers Strawberry Fields, while the other device and the other you registers 
Grant’s Tomb. As in Figure 8.12, this implies that we now have two parallel 
realities, two parallel worlds. To the you occupying each, the measurement and 
your mental impression of the result are sharp and unique and thus feel like life 
as usual. The peculiarity, of course, is that there are two of you who feel this 
way. 
 To keep the discussion accessible, I’ve focused on the position 
measurement of a single particle, and one that has a particularly simple 
probability wave. But Everett’s proposal applies generally. If you measured 
the position of a particle whose probability wave has any number of spikes, 
say, five, the result, according to Everett, would be five parallel realities 
differing only by the location registered on each reality’s device, and within 
the mind of each reality’s you. If one of these yous then measured the position 
of another particle whose wave had seven spikes, that you and that world 
would split again, into seven more, one for each possible outcome. And if you 



measured a wave like that of Figure 8.11, which can be partitioned into a great 
many tightly packed spikes, the result would be a great many parallel realities 
in which each possible particle location would be recorded on a device and 
read by a copy of you. In Everett’s approach, everything that is possible, 
quantum-mechanically speaking (that is, all those outcomes to which quantum 
mechanics assigns a nonzero probability), is realized in its own separate world. 
These are the “many worlds” of the Many Worlds approach to quantum 
mechanics. 

  
 Figure 8.12 In Everett’s approach, the measurement of a particle whose 
probability wave has two spikes yields both outcomes. In one world, the 
particle is found at the first location; in another world, it is found at the 
second. 
 



 If we apply the terminology we’ve been using in earlier chapters, these 
many worlds would properly be described as many universes, composing a 
multiverse, the sixth we’ve encountered. I’ll call it the Quantum Multiverse. 
 
A Tale of Two Tales 
 
 
 In describing how quantum mechanics may generate many realities, I 
used the word “split.” Everett used it. So did DeWitt. Nevertheless, in this 
context it’s a loaded verb with the potential to grossly mislead, and I’d 
intended not to invoke it. But I gave in to temptation. In my defense, it’s 
sometimes more effective to use a sledgehammer to break down a barrier 
separating us from an unfamiliar proposal about the workings of reality, and to 
subsequently repair the damage, than it is to delicately carve a pristine window 
that directly reveals the new vista. I’ve been using that sledgehammer; in this 
and the next section I’ll undertake the necessary repairs. Some of the ideas are 
a touch more difficult than those we’ve so far encountered, and the 
explanatory chains are a bit longer as well, but I encourage you to stay with me. 
I’ve found that all too often, people who learn about, or are even somewhat 
familiar with, the Many Worlds idea have the impression that it emerged from 
speculation of the most extravagant sort. But nothing could be further from the 
truth. As I will explain, the Many Worlds approach is, in some ways, the most 
conservative framework for defining quantum physics, and it’s important to 
understand why. 
 The essential point is that physicists must always tell two kinds of stories. 
One is the mathematical story of how the universe evolves according to a 
given theory. The other, also essential, is the physical story, which translates 
the abstract mathematics into experiential language. This second story 
describes how the mathematical evolution will appear to observers like you 
and me, and more generally, what the theory’s mathematical symbols tell us 
about the nature of reality.6 In the time of Newton, the two stories were 
essentially identical, as I suggested with my remarks in Chapter 7 about 
Newtonian “architecture” being immediate and palpable. Every mathematical 
symbol in Newton’s equations has a direct and transparent physical correlate. 
The symbol x? Oh, that’s the ball’s position. The symbol v? The ball’s velocity. 



By the time we get to quantum mechanics, however, translation between the 
mathematical symbols and what we can see in the world around us becomes 
far more subtle. In turn, the language used and the concepts deemed relevant to 
each of the two stories become so different that you need both to acquire a full 
understanding. But it’s important to keep straight which story is which: to 
understand fully which ideas and descriptions are invoked as part of the 
theory’s fundamental mathematical structure and which are used to build a 
bridge to human experience. 
 Let’s tell the two stories for the Many Worlds approach to quantum 
mechanics. Here’s the first. 
 The mathematics of Many Worlds, unlike that of Copenhagen, is pure, 
simple, and constant. Schrödinger’s equation determines how probability 
waves evolve over time, and it is never set aside; it is always in effect. 
Schrödinger’s math guides the shape of probability waves, causing them to 
shift, morph, and undulate over time. Whether it’s addressing the probability 
wave for a particle, or for a collection of particles, or for the various 
assemblages of particles that constitute you and your measuring equipment, 
Schrödinger’s equation takes the particles’ initial probability wave shape as 
input and then, like the graphics program driving an elaborate screen saver, 
provides the wave’s shape at any future time as output. And that, according to 
this approach, is how the universe evolves. Period. End of story. Or, more 
precisely, end of first story. 
 Notice that in telling the first story I did not need the word “split” nor the 
terms “many worlds,” “parallel universes,” or “Quantum Multiverse.” The 
Many Worlds approach does not hypothesize these features. They play no role 
in the theory’s fundamental mathematical structure. Rather, as we will now see, 
these ideas are called upon in the theory’s second story, when, following 
Everett and others who’ve since extended his pioneering work, we investigate 
what the mathematics tells us about our observations and measurements. 
 Let’s start simply—or, as simply as we can. Consider measuring an 
electron that has a spiked probability wave, as in Figure 8.9. (Again, don’t 
worry about how it got this wave shape; just take it as a given.) As noted 
earlier, to tell the first story of even this measurement process in detail is 
beyond what we can do. We’d need to use Schrödinger’s math to figure out 
how the probability wave describing the positions of the huge number of 



particles that constitute you and your measuring device joins with the 
probability wave of the electron, and how their union evolves forward in time. 
My undergraduate students, many of whom are quite able, often struggle to 
solve Schrödinger’s equation for even a single particle. Between you and the 
device, there are something like 1027 particles. Working out Schrödinger’s 
math for that many constituents is virtually impossible. Even so, we 
understand qualitatively what the math entails. When we measure the 
electron’s position, we cause a mass particle migration. Some 1024 or so 
particles in the device’s display, like performers in a crisply choreographed 
halftime show, race to the appropriate spot so that they collectively spell out 
“Thirty-fourth Street and Broadway,” while a similar number in my eyes and 
brain do whatever’s required for me to develop a firm mental grasp of the 
result. Schrödinger’s math—however impenetrable explicit analysis of it might 
be when faced with so many particles—describes such a particle shift. 
 To visualize this transformation at the level of a probability wave is also 
far beyond reach. In Figure 8.9 and others in that sequence, I used two axes, 
the north-south and east-west street grid of our model Manhattan, to denote the 
possible positions of a single particle. The probability wave’s value at each 
location was denoted by the wave’s height. This already simplifies things 
because I’ve left out the third axis, the particle’s vertical position (whether it’s 
on the second floor of Macy’s, or the fifth). Including the vertical would have 
been awkward, because if I’d used it to denote position, I’d have no axis left 
for recording the size of the wave. Such are the limitations of a brain and a 
visual system that evolution has firmly rooted in three spatial dimensions. To 
properly visualize the probability wave for roughly 1027 particles, I’d need to 
include three axes for each, allowing me to account mathematically for every 
possible position each particle could occupy.* Adding even a single vertical 
axis to Figure 8.9 would have made it difficult to visualize; to contemplate 
adding a billion billion billion more is, well, silly. 
 But a mental image of the key ideas is important; so, however imperfect 
the result, let’s give it a try. In sketching the probability wave for the particles 
making up you and your device, I’ll abide by the two-axis flat-page limit but 
will use an unconventional interpretation of what the axes mean. Roughly 
speaking, I’ll think of each axis as comprising an enormous bundle of axes, 
tightly grouped together, which will symbolically delineate the possible 



positions of a similarly enormous number of particles. A wave drawn using 
these bundled axes will therefore lay out the probabilities for the positions of a 
huge group of particles. To emphasize the distinction between the many-
particle and single-particle situations, I’ll use a glowing outline for the many-
particle probability wave, as in Figure 8.13. 
  
 

 
 Figure 8.13 A schematic depiction of the combined probability wave for 
all the particles making up you and your measuring device. 
 
 
 The many-particle and single-particle illustrations have some features in 
common. Just as the spiked wave shape in Figure 8.6 indicates probabilities 
that are sharply skewed (being almost 100 percent at the spike’s location and 
almost 0 percent everywhere else), so the peaked wave in Figure 8.13 also 
denotes sharply skewed probabilities. But you need to exercise care, because 
understanding based on the single-particle illustrations can take you only so far. 
For example, based on Figure 8.6 it is natural to think that Figure 8.13 
represents particles that are all clustered around the same location. Yet, that’s 
not right. The peaked shape in Figure 8.13 symbolizes that each of the 
particles making up you and each of the particles making up the device starts 
out in the ordinary, familiar state of having a position that is nearly 100 
percent definite. But they are not all positioned at the same location. The 
particles constituting your hand, shoulder, and brain are, with near certainty, 



clustered within the location of your hand, shoulder, and brain; the particles 
constituting the measuring device are, with near certainty, clustered within the 
location of the device. The peaked wave shape in Figure 8.13 denotes that each 
of these particles has only the most remote chance of being found anywhere 
else. 
 If you now perform the measurement illustrated in Figure 8.14, the 
many-particle probability wave (for the particles inside you and the device), by 
virtue of the interaction with the electron, evolves (as illustrated schematically 
in Figure 8.14a). All the particles involved still have nearly definite positions 
(within you; within the device), which is why the wave in Figure 8.14a 
maintains a spiked shape. But a mass particle rearrangement occurs that results 
in the words “Strawberry Fields” forming in the device’s readout and also in 
your brain (as in Figure 8.14b). Figure 8.14a represents the mathematical 
transformation dictated by Schrödinger’s equation, the first kind of story. 
Figure 8.14b illustrates the physical description of such mathematical 
evolution, the second kind of story. Similarly, if we perform the experiment in 
Figure 8.15, an analogous wave shift takes place (Figure 8.15a). This shift 
corresponds to a mass particle rearrangement that spells out “Grant’s Tomb” in 
the display and generates within you the associated mental impression (Figure 
8.15b). 
 Now use linearity to put the two together. If you measure the position of 
an electron whose probability wave is spiked at two locations, the probability 
wave for you and your device commingles with that of the electron, resulting 
in the evolution shown in Figure 8.16a—the combined evolutions depicted in 
Figure 8.14a and Figure 8.15a. So far, this is nothing but an illustrated and 
annotated version of the first type of quantum story. We start with a 
probability wave of a given shape, Schrödinger’s equation evolves it forward 
in time, and we end up with a probability wave of a new shape. But the details 
we’ve overlaid now let us tell this mathematical story in more qualitative, 
type-two story language. 
 Physically, each spike in Figure 8.16a represents a configuration of an 
enormous number of particles that results in a device having a particular 
reading and your mind acquiring that information. In the left spike, the reading 
is Strawberry Fields; in the right, it’s Grant’s Tomb. Besides that difference, 
nothing distinguishes one spike from the other. I emphasize this because it’s 



essential to realize that neither is somehow more real than the other. Nothing 
but the device’s particular reading, and your reading of that reading, 
distinguishes the two multiparticle wave spikes. 
 Which means that our type-two story, as illustrated in Figure 8.16b, 
involves two realities. 
 In fact, the focus on the device and your mind is merely another 
simplification. I could also have included the particles that make up the 
laboratory and everything therein, as well as those of the earth, the sun, and so 
on, and the whole discussion would have been the same, essentially verbatim. 
The only difference would have been that the glowing probability wave in 
Figure 8.16a would now have information about all those other particles, too. 
But because the measurement we’re discussing has essentially no impact on 
them, they’d just come along for the ride. It’s useful to include those particles, 
though, because our second story can now be augmented to comprise not only 
a copy of you examining a device that’s undertaken a measurement, but also 
copies of the surrounding laboratory, the rest of the earth in orbit around the 
sun, and so on. This means that each spike, in story-two language, corresponds 
to what we’d traditionally call a bona fide universe. In one such universe, you 
see “Strawberry Fields” on the display’s reading; in the other, “Grant’s Tomb.” 
  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 Figure 8.14 (a)A schematic illustration of the evolution, dictated by 
Schrödinger’s equation, of the combined probability wave for all the particles 
making up you and the measuring device, when you measure the position of an 
electron. The electron’s own probability wave is spiked at Strawberry Fields. 
 
 
  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 Figure 8.14 (b)The corresponding physical, or experiential, story. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 Figure 8.15 (a)The same type of mathematical evolution as in Figure 
8.14a, but with the electron’s probability wave spiked at Grant’s Tomb. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
  
 
 
 Figure 8.15 (b)The corresponding physical, or experiential, story. 
 
 
  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 Figure 8.16 (a)A schematic illustration of the evolution of the combined 
probability wave of all the particles making up you and your device, when 
measuring the position of an electron whose probability wave is spiked at two 
locations. 
 
 
  



 
 
 Figure 8.16 (b)The corresponding physical, or experiential, story. 
 
 If the electron’s original probability wave had, say, four spikes, or five, 
or a hundred, or any number, the same would follow: the wave evolution 
would result in four, or five, or a hundred, or any number of universes. In the 
most general case, as in Figure 8.11, a spread-out wave is composed of spikes 
at every location, and so the wave evolution would yield a vast collection of 
universes, one for each possible position.7 
 As advertised, though, the only thing that happens in any of these 
scenarios is that a probability wave enters Schrödinger’s equation, his math 



goes to work, and out comes a wave with a modified shape. There’s no 
“cloning machine.” There’s no “splitting machine.” This is why I said earlier 
that such words can give a misleading impression. There’s nothing but a 
probability-wave-evolution “machine” driven by the lean mathematical law of 
quantum mechanics. When the resulting waves have a particular shape, as in 
Figure 8.16a, we retell the mathematical story in type-two language, and 
conclude that in each spike there’s a sentient being, situated within a normal-
looking universe, certain he sees one and only one definite result for the given 
experiment, as in Figure 8.16b. If I could somehow interview all these sentient 
beings, I’d find each to be an exact replica of the others. Their only point of 
departure would be that each would attest to a different definite result. 
 And so, whereas Bohr and the Copenhagen gang would argue that only 
one of these universes would exist (because the act of measurement, which 
they claim lies outside of Schrödinger’s purview, would collapse away all the 
others), and whereas a first-pass attempt to go beyond Bohr and extend 
Schrödinger’s math to all particles, including those constituting equipment and 
brains, yielded dizzying confusion (because a given machine or mind seemed 
to internalize all possible outcomes simultaneously), Everett found that a more 
careful reading of Schrödinger’s math leads somewhere else: to a plentiful 
reality populated by an ever-growing collection of universes. 
 Prior to the publication of Everett’s 1957 paper, a preliminary version 
was circulated to a number of physicists around the world. Under Wheeler’s 
guidance, the paper’s language had been abbreviated so aggressively that 
many who read it were unsure as to whether Everett was arguing that all the 
universes in the mathematics were real. Everett became aware of this 
confusion and decided to clarify it. In a “note added in proof” that he seems to 
have slipped in just before publication, and apparently without Wheeler’s 
notice, Everett sharply articulated his stance on the reality of the different 
outcomes: “From the viewpoint of the theory, all ….. are ‘actual,’ none any 
more ‘real’ than the rest.”8 

 

 

  



When Is an Alternative a Universe? 
 
 
 Besides the loaded words “splitting” and “cloning,” we’ve freely invoked 
two other grand terms in our type-two stories—“world” and, interchangeably 
in this context, “universe.” Are there guidelines for determining when this 
usage is appropriate? When we consider a probability wave for a single 
electron that has two (or more) spikes, we don’t speak of two (or more) worlds. 
Instead, we speak of one world—ours—containing an electron whose position 
is ambiguous. Yet, in Everett’s approach, when we measure or observe that 
electron, we speak in terms of multiple worlds. What is it that distinguishes the 
unmeasured and the measured particle, yielding descriptions that sound so 
radically different? 
 One quick answer is that for a single isolated electron, we don’t tell a 
type-two story because without a measurement or an observation there’s no 
link to human experience that’s in need of articulation. The type-one story of a 
probability wave evolving via Schrödinger’s math is all that’s needed. And 
without a type-two story, there’s no opportunity to invoke multiple realities. 
Although this explanation is adequate, it proves worthwhile to delve a little 
deeper, revealing a special feature of quantum waves that comes into play 
when many particles are involved. 
 To grasp the essential idea, it’s easiest to look back at the double-slit 
experiment of Figures 8.2 and 8.4. Recall that an electron’s probability wave 
encounters the barrier, and two wave fragments make it through the slits and 
travel onward to the detector screen. Inspired by our Many Worlds discussion, 
you might be tempted to think of the two racing waves as representing separate 
realities. In one, an electron whisks through the left slit; in the other, an 
electron whisks through the right slit. But you promptly realize that the 
intermingling of these supposedly “distinct realities” profoundly affects the 
experiment’s outcome; the intermingling is why an interference pattern is 
produced. So it doesn’t make much sense, nor does it yield any particular 
insight, to consider the two wave trajectories as existing in separate universes. 
 If we change the experiment, however, by placing a meter behind each 
slit that records whether or not an electron passes through it, the situation is 
radically different. Because macroscopic equipment is now involved, the two 



distinct trajectories of an electron generate differences in a huge number of 
particles—the huge number of particles in the meters’ displays that register 
“electron passed through left slit” or “electron passed through right slit.” And 
because of this, the respective probability waves for each possibility become 
so disparate that it’s virtually impossible for them to have any subsequent 
influence on each other. Much as in Figure 8.16a, the differences between the 
billions and billions of particles in the meters cause the waves for the two 
outcomes to shift away from each other, leaving negligible overlap. With no 
overlap, the waves don’t engage in any of the hallmark interference 
phenomena of quantum physics. Indeed, with the meters in place, the electrons 
no longer yield the striped pattern of Figure 8.2c; instead, they generate a 
simple, non-interfering amalgam of the results in Figure 8.2a and Figure 8.2b. 
Physicists say that the probability waves have decohered (something you can 
read about in more detail, for example, in Chapter 7 of The Fabric of the 
Cosmos). 
 The point, then, is that once decoherence sets in, the waves for each 
outcome evolve independently—there’s no intermingling between the distinct 
possible outcomes—and each can thus be called a world or a universe of its 
own. For the case at hand, in one such universe the electron goes through the 
left slit, and the meter displays left; in another universe the electron goes 
through the right slit, and the meter records right. 
 In this sense, and only in this sense, there’s resonance with Bohr. 
According to the Many Worlds approach, big things made of many particles 
do differ from small things made from one particle or a mere handful. Big 
things don’t stand outside the basic mathematical law of quantum mechanics, 
as Bohr thought, but they do allow probability waves to acquire enough 
variations that their capacity to interfere with one another becomes negligible. 
And once two or more waves can’t affect one another, they become mutually 
invisible; each “thinks” the others have disappeared. So, whereas Bohr argued 
away by fiat all but one outcome in a measurement, the Many Worlds 
approach, combined with decoherence, ensures that within each universe it 
appears as though the other outcomes have vanished. Within each universe, 
that is, it’s as if the probability wave has collapsed. But, compared with the 
Copenhagen approach, the “as if” provides for a very different picture of the 



expanse of reality. In the Many Worlds view, all outcomes, not just one, are 
realized. 
 
Uncertainty at the Cutting Edge 
 
 
 This might seem like a good place to end the chapter. We’ve seen how 
the bare-bones mathematical structure of quantum mechanics leads us by the 
nose to a new conception of parallel universes. Yet you’ll note that the chapter 
still has a fair way to go. In those pages I’ll explain why the Many Worlds 
approach to quantum physics remains controversial; we will see that the 
resistance goes well beyond the queasiness some feel about the conceptual 
leap into such an unfamiliar perspective on reality. But in case you’ve reached 
saturation and feel compelled to skip ahead to the next chapter, here is a short 
summary. 
 In day-to-day life, probability enters our thinking when we face a range 
of possible outcomes, but for one reason or another we’re unable to figure out 
which will actually happen. Sometimes we have enough information to 
determine which outcomes are more or less likely to occur, and probability is 
the tool that makes such insights quantitative. Our confidence in a probabilistic 
approach grows when we find that the outcomes deemed likely happen often 
and those deemed unlikely happen rarely. The challenge facing the Many 
Worlds approach is that it needs to make sense of probability—quantum 
mechanics’ probabilistic predictions—in a wholly different context, one that 
envisions all possible outcomes happening. The dilemma is simple to state: 
How can we speak of some outcomes being likely and others being unlikely 
when all take place? 
 In the remaining sections, I’ll explain the issue more fully and discuss 
attempts to address it. Be warned: we are now deep into cutting-edge research, 
so opinions vary widely on where we currently stand. 
 
A Probable Problem 
 
 



 A frequent criticism of the Many Worlds approach is that it’s just too 
baroque to be true. The history of physics teaches us that successful theories 
are simple and elegant; they explain data with a minimum of assumptions and 
provide an understanding that’s precise and economical. A theory that 
introduces an ever-growing cornucopia of universes falls way short of this 
ideal. 
 Proponents of the Many Worlds approach argue, credibly, that in 
assessing the complexity of a scientific proposal, you shouldn’t focus on its 
implications. What matters is the fundamental features of the proposal itself. 
The Many Worlds approach assumes that a single equation—Schrödinger’s—
governs all probability waves all the time, so for simplicity of formulation and 
economy of assumptions, it’s hard to beat. The Copenhagen approach is surely 
no simpler. It, too, invokes Schrödinger’s equation, but it also includes a vague, 
ill-defined prescription for when Schrödinger’s equation should be turned off, 
and then an even less detailed prescription regarding the process of wave 
collapse that is meant to take its place. That the Many Worlds approach leads 
to an exceptionally rich picture of reality is no more a black mark against it 
than the rich diversity of life on earth is a black mark against Darwinian 
natural selection. Mechanisms that are fundamentally simple can give rise to 
complicated consequences. 
 Nevertheless, while this establishes that Occam’s razor isn’t sharp 
enough to pare away the Many Worlds approach, the proposal’s surfeit of 
universes does yield a potential problem. Earlier I said that in applying a 
theory, physicists need to tell two kinds of stories—the story describing how 
the world evolves mathematically and the story that links the math to our 
experiences. But there’s actually a third story, related to these two, that the 
physicist must also tell. It’s the story of how we’ve come to have confidence in 
a given theory. For quantum mechanics, the third story generally goes like this: 
our confidence in quantum mechanics comes from its phenomenal success in 
explaining data. If a quantum expert uses the theory to calculate that in 
repeating a given experiment we expect one outcome to happen, say, 9.62 
times more often than another, that’s what experimenters invariably see. 
Turning this around, had results not agreed with the quantum predictions, 
experimenters would have concluded that quantum mechanics wasn’t right. 
Actually, being careful scientists, they would have been more cautious. They 



would have called it doubtful that quantum mechanics was right but would 
have noted that their results didn’t rule out the theory definitively. Even a fair 
coin tossed 1,000 times can have surprising runs that defy the odds. But the 
larger the deviation, the more one suspects the coin is not fair; the larger the 
experimental deviations from those predicted by quantum mechanics, the more 
strongly the experimenters would have suspected that quantum theory was 
mistaken. 
 That confidence in quantum mechanics could have been undermined by 
data is essential; with any proposed scientific theory that has been suitably 
developed and understood, we should be able to say, at least in principle, that 
if upon doing such and such an experiment we don’t find such and such results, 
our belief in the theory should diminish. And the more that observations 
deviate from predictions, the greater the loss of credibility should be. 
 The potential problem with the Many Worlds approach, and the reason it 
remains controversial, is that it may undercut this means for assessing the 
credibility of quantum mechanics. Here’s why. When I flip a coin, I know 
there’s a 50 percent chance that it will land heads and a 50 percent chance that 
it will land tails. But that conclusion rests on the usual assumption that a coin 
toss yields a unique result. If a coin toss yields heads in one world and tails in 
another, and moreover, if there’s a copy of me in each world who witnesses 
the outcome, what sense can we make of the usual odds? There’ll be someone 
who looks just like me, has all my memories, and emphatically claims to be 
me who sees heads, and another being, equally convinced that he’s me, who 
sees tails. Since both outcomes happen—there’s a Brian Greene who sees 
heads and a Brian Greene who sees tails—the familiar probability of there 
being an equal chance that Brian Greene will see either heads or tails seems 
nowhere to be found. 
 The same concern applies to an electron whose probability wave is 
hovering near Strawberry Fields and Grant’s Tomb, as in Figure 8.16b. 
Traditional quantum reasoning says that you, the experimenter, have a 50 
percent chance of finding the electron at either location. But in the Many 
Worlds approach, both outcomes happen. There’s a you who will find the 
electron at Strawberry Fields and another you who will find the electron at 
Grant’s Tomb. So, how can we make sense of the traditional probabilistic 



predictions, which in this case say that with equal odds you’ll see one result or 
the other? 
 The natural inclination of many people when they first encounter this 
issue is to think that among the various yous in the Many Worlds approach, 
there’s one who’s somehow more real than the others. Even though each you 
in each world looks identical and has the same memories, the common thought 
is that only one of these beings is really you. And, this line of thought 
continues, it’s that you, who sees one and only one outcome, to whom the 
probabilistic predictions apply. I appreciate this response. Years ago, when I 
first learned about these ideas, I had it too. But the reasoning runs completely 
counter to the Many Worlds approach. Many Worlds practices minimalist 
architecture. Probability waves simply evolve by Schrödinger’s equation. 
That’s it. To imagine that one of the copies of you is the “real” you is to slip in 
through the back door something closely akin to Copenhagen. Wave collapse 
in the Copenhagen approach is a brutish means for making one and only one of 
the possible outcomes real. If in the Many Worlds approach you imagine that 
one and only one of the yous is really you, you’re doing the same thing, just a 
little more quietly. Such a move would erase the very reason for introducing 
the Many Worlds scheme. Many Worlds emerged from Everett’s attempt to 
address the failings of Copenhagen, and his strategy was to invoke nothing 
beyond the battle-tested Schrödinger equation. 
 This realization shines an uncomfortable light on the Many Worlds 
approach. We have confidence in quantum mechanics because experiments 
confirm its probabilistic predictions. Yet, in the Many Worlds approach, it’s 
hard to see how probability even plays a role. How, then, can we tell the third 
kind of story, the one that should provide the basis of our confidence in the 
Many Worlds scheme? That’s the quandary. 
 On reflection, it’s not surprising that we’ve bumped into this wall. 
There’s nothing at all chancy in the Many Worlds approach. Waves simply 
evolve from one shape to another in a manner described fully and 
deterministically by Schrödinger’s equation. No dice are thrown; no roulette 
wheels are spun. By contrast, in the Copenhagen approach, probability enters 
through the hazily defined measurement-induced wave collapse (again, the 
larger the wave’s value at a given location, the larger the probability that the 
collapse will put the particle there). That’s the point in the Copenhagen 



approach where “dice throwing” makes an appearance. But since the Many 
Worlds approach abandons collapse, it abandons the traditional entry point for 
probability. 
 So, is there a place for probability in the Many Worlds approach? 
 
Probability and Many Worlds 
 
 
 Everett surely thought there was. The bulk of his 1956 draft dissertation, 
as well as the truncated 1957 version, was devoted to explaining how to 
incorporate probability in the Many Worlds approach. But a half century later, 
the debate still rages. Among those physicists and philosophers who spend 
their professional lives puzzling over the issue, there is a wide range of 
opinions on how, and whether, Many Worlds and probability come together. 
Some have argued that the problem is insoluble, and so the Many Worlds 
approach should be discarded. Others have argued that probability, or at least 
something that masquerades as probability, can indeed be incorporated. 
 Everett’s original proposal provides a good example of the difficult 
points that arise. In everyday settings, we invoke probability because we 
generally have incomplete knowledge. If, when a coin is tossed, we know 
enough details (the coin’s precise dimensions and weight, precisely how the 
coin was thrown, and so on), we’d be able to predict the outcome. But since 
we generally don’t have that information, we resort to probability. Similar 
reasoning applies to the weather, the lottery, and every other familiar example 
where probability plays a role: we deem the outcomes chancy only because our 
knowledge of each situation is limited. Everett argued that probabilities find 
their way into the Many Worlds approach because an analogous ignorance, 
from a thoroughly different source, necessarily creeps in. Inhabitants of the 
Many Worlds only have access to their own single world; they do not 
experience the others. Everett argued that with such a limited perspective 
comes an infusion of probability. 
 To get a feel for how, leave quantum mechanics for a moment and 
consider an imperfect but helpful analogy. Imagine that aliens from the planet 
Zaxtar have succeeded in building a cloning machine that can make identical 
copies of you, me, or anyone. Were you to step into the cloning machine, and 



were two of you then to step out, both would be absolutely convinced that they 
were the real you, and both would be right. The Zaxtarians delight in 
subjecting less intelligent life-forms to existential dilemmas, so they swoop 
down to earth and make you the following offer. Tonight, when you go to 
sleep, you’ll be carefully wheeled into the cloning machine; five minutes later 
two of you will be wheeled out. When one of you awakes, life will be 
normal—except that you will have been granted any wish of your choosing. 
When the other you awakes, life won’t be normal; you will be escorted to a 
torture chamber back on Zaxtar, never to leave. And no, your lucky clone is 
not allowed to wish for your release. Do you accept the offer? 
 For most people, the answer is no. Since each of the clones really, truly is 
you, in accepting the offer you’d be guaranteeing that there will be a you who 
awakens to a lifetime of torment. Sure, there will also be a you who awakens 
to your usual life, augmented by the unlimited power of an arbitrary wish, but 
for the you on Zaxtar there’ll be nothing but torture. The price is too high. 
 Anticipating your reluctance, the Zaxtarians up the ante. Same deal, but 
now they’ll make a million and one copies of you. A million will wake up on a 
million identical-looking earths, with the power to fulfill any wish; one will 
get the Zaxtarian torture. Do you accept? At this point, you begin to waver. 
“Heck,” you think, “the odds seem pretty good that I won’t end up on Zaxtar 
but instead will wake up right here at home, wish in hand.” 
 This last intuition is particularly relevant to the Many Worlds approach. 
If odds entered your thinking because you imagine that only one of the million 
and one clones is the “real” you, then you’ve not taken in the scenario fully. 
Each copy is you. There’s a 100 percent certainty that one of you will wake up 
to an unbearable future. If this was indeed what led you to think in terms of 
odds, you need to let it go. However, probability may have entered your 
thinking in a more refined way. Imagine that you just agreed to the Zaxtarian 
offer and are now contemplating what it will be like to wake up tomorrow 
morning. Curled up under a warm duvet, just regaining consciousness but not 
yet having opened your eyes, you’ll remember the Zaxtarian deal. At first it 
will seem like an unusually vivid nightmare, but as your heart starts to pound 
you’ll recognize that it is real—that a million and one copies of you are in the 
process of waking up, with one of you destined for Zaxtar and the others about 



to be granted extraordinary power. “What are the odds,” you’ll ask yourself 
nervously, “that when I open my eyes I’ll be shipping out to Zaxtar?” 
 Before the cloning there was no sensible way to speak of whether it was 
or wasn’t likely that you’d be Zaxtar bound—it is absolutely certain that there 
will be such a you, so how could it be unlikely? But after the cloning, the 
situation seems different. Each clone experiences itself as the real you; indeed, 
each is the real you. But each copy is also a separate and distinct individual 
who can inquire about his or her own future. Each of the million and one 
copies can ask for the probability that they will go to Zaxtar. And since each 
knows that only one of the million and one will wake up to that outcome, each 
reckons that the odds of being that unlucky individual are low. Upon waking, a 
million will find their cheery expectation confirmed, and only one will not. So 
although there’s nothing uncertain, nothing chancy, nothing probabilistic in the 
Zaxtarian scenario—again, no dice are rolled and no roulette wheels spun—
probability nevertheless seems to enter. It does so through the subjective 
ignorance experienced by each individual clone regarding which outcome he 
or she will witness. 
 This suggests a tack for injecting probabilities into the Many Worlds 
approach. Before you undertake a given experiment, you are much like your 
precloned self. You contemplate all outcomes allowed by quantum mechanics 
and know that there’s a 100 percent certainty that a copy of you will see each. 
Nothing at all chancy has made an appearance. You then undertake the 
experiment. At that point, as with the Zaxtarian scenario, a notion of 
probability presents itself. Each copy of you is an independent sentient being 
capable of wondering about which world he or she happens to inhabit—the 
likelihood, that is, that when the experiment’s results are revealed, he or she 
will see this or that particular outcome. Probability enters through each 
inhabitant’s subjective experience. 
 Everett’s approach, which he described as “objectively deterministic” 
with probability “reappearing at the subjective level,” resonated with this 
strategy. And he was thrilled by the direction. As he noted in the 1956 draft of 
his dissertation, the framework offered to bridge the position of Einstein (who 
famously believed that a fundamental theory of physics should not involve 
probability) and the position of Bohr (who was perfectly happy with a 
fundamental theory that did). According to Everett, the Many Worlds approach 



accommodated both positions, the difference between them merely being one 
of perspective. Einstein’s perspective is the mathematical one in which the 
grand probability wave of all particles relentlessly evolves by the Schrödinger 
equation, with chance playing absolutely no role.* I like to picture Einstein 
soaring high above the many worlds of Many Worlds, watching as 
Schrödinger’s equation fully dictates how the entire panorama unfolds, and 
happily concluding that even though quantum mechanics is correct, God 
doesn’t play dice. Bohr’s perspective is that of an inhabitant in one of the 
worlds, also happy, using probabilities to explain, with stupendous precision, 
those observations to which his limited perspective gives him access. 
 It’s a captivating vision—Einstein and Bohr agreeing on quantum 
mechanics. But there are pesky details that for more than half a century have 
convinced many that it’s still too early to sign on. Those who have studied 
Everett’s thesis generally agree that while his intent was clear—a deterministic 
theory that to its inhabitants nevertheless appears probabilistic—he didn’t 
convincingly spell out how to achieve it. For example, much in the spirit of 
material covered in Chapter 7, Everett sought to determine what a “typical” 
inhabitant of the many worlds would observe in any given experiment. But 
(unlike our focus in Chapter 7) in the Many Worlds approach, the inhabitants 
we need to contend with are all the same person; if you’re the experimenter, 
they are all you, and collectively they will see a range of different outcomes. 
So who is the “typical” you? 
 Inspired by the Zaxtarian scenario, a natural suggestion is to count the 
number of yous who will see a given result; the outcome seen by the greatest 
number of yous would then qualify as typical. Or, more quantitatively, define 
the probability of a result to be proportional to the number of yous who see it. 
For simple examples, this works: in Figure 8.16, there’s one of you who sees 
each outcome, and so you peg the odds at 50:50 for seeing one result or the 
other. That’s good; the usual quantum mechanical prediction is also 50:50, 
because the probability wave heights at the two locations are equal. 
  
  



 
 Figure 8.17 The combined probability wave for you and your device 
encounters a probability wave that has multiple spikes of different magnitudes. 
 
 
 However, consider a more general situation, such as that in Figure 8.17, 
in which the probability wave heights are unequal. If the wave is a hundred 
times larger at Strawberry Fields than at Grant’s Tomb, then quantum 
mechanics predicts that you are a hundred times more likely to find the 
electron at Strawberry Fields. But in the Many Worlds approach, your 
measurement still generates one you who sees Strawberry Fields and another 
you who sees Grant’s Tomb; the odds based on counting the number of yous is 
thus still 50:50—the wrong result. The origin of the mismatch is clear. The 
number of yous who see one result or another is determined by the number of 
spikes in the probability wave. But the quantum mechanical probabilities are 
determined by something else—not by the number of spikes but by their 
relative heights. And it’s these predictions, the quantum mechanical 
predictions, which have been convincingly confirmed by experiments. 



 Everett developed a mathematical argument that was meant to address 
this mismatch; many others have since pushed it further.9 In broad strokes, the 
idea is that in calculating the odds of seeing one or another outcome, we 
should place ever-less weight on universes whose wave heights are ever 
smaller, as depicted symbolically in Figure 8.18. But this is perplexing. And 
controversial. Is the universe in which you find the electron at Strawberry 
Fields somehow a hundred times as genuine, or a hundred times as likely, or a 
hundred times as relevant as the one in which you find it at Grant’s Tomb? 
These suggestions would surely create tension with the belief that every world 
is just as real as every other. 
 After more than fifty years, during which distinguished scientists have 
revisited, revised, and extended Everett’s arguments, many agree that the 
puzzles persist. Yet it remains seductive to imagine that the mathematically 
simple, totally bare-bones, profoundly revolutionary Many Worlds approach 
yields the probabilistic predictions that form the foundation of belief in 
quantum theory. This has inspired many other ideas, beyond the Zaxtarian-
type reasoning, for joining probability and Many Worlds.10 
 A prominent proprosal comes from a leading group of researchers at 
Oxford, including, among others, David Deutsch, Simon Saunders, David 
Wallace, and Hilary Greaves. They’ve developed a sophisticated line of attack 
that focuses on a seemingly boorish question. If you’re a gambler, and you 
believe in the Many Worlds approach, what’s the optimum strategy for placing 
bets on quantum mechanical experiments? Their answer, which they argue for 
mathematically, is that you’d bet just as Neils Bohr would. When speaking of 
maximizing your return, these authors have in mind something that would 
have sent Bohr into a tizzy—they’re considering an average over the many 
inhabitants of the multiverse who claim to be you. But even so, their 
conclusion is that the numbers that Bohr and everyone since have been 
calculating and calling probabilities are the very numbers that should guide 
how you wager. That is, even though quantum theory is fully deterministic, 
you should treat the numbers as if they were probabilities. 
 Some are convinced that this completes Everett’s program. Some are not. 
 The lack of consensus on the crucial question of how to treat probability 
in the Many Worlds approach is not all that unexpected. The analyses are 
highly technical and also deal with a topic—probability—that is notoriously 



tricky even outside its application to quantum theory. When you roll a die, we 
all agree that you have a 1 in 6 chance of getting a 3, and so we’d predict that 
over the course of, say, 1,200 rolls the number 3 will turn up about 200 times. 
But since it’s possible, in fact likely, that the number of 3s will deviate from 
200, what does the prediction mean? We want to say that it’s highly probable 
that ⅙/6 th of the outcomes will be 3s, but if we do that, then we’ve defined the 
probability of getting a 3 by invoking the concept of probability. We’ve gone 
circular. That’s just a small taste of how the issues, beyond their intrinsic 
mathematical complexity, are conceptually slippery. Throw into the mix the 
added Many Worlds intricacy of “you” no longer referring to a single person, 
and it’s no wonder researchers find ample points of contention. I have little 
doubt that full clarity will one day emerge, but not yet, and perhaps not for 
some time. 
  
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 Figure 8.18 (a)A schematic illustration of the evolution, dictated by 
Schrödinger’s equation, of the combined probability wave for all the particles 
making up you and the measuring device, when you measure the position of an 
electron. The electron’s own probability wave is spiked at two locations, but 
with unequal wave heights. 
 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 Figure 8.18 (b) Some proposals suggest that in the Many Worlds 
approach, unequal wave heights imply that some worlds are less genuine, or 
less relevant, than others. There is controversy over what, if anything, this 
means. 
 
 
  



Predictions and Understanding 
 
 
 For all these controversies, quantum mechanics itself remains as 
successful as any theory in the history of ideas. The reason, as we’ve seen, is 
that for the kinds of experiments we can do in the laboratory, and for many of 
the observations we can make of astrophysical processes, we have a “quantum 
algorithm” that produces testable predictions. Use Schrödinger’s equation to 
calculate the evolution of the relevant probability waves and use the results—
the various wave heights—to predict the probability that you’ll find one 
outcome or another. As far as predictions are concerned, why this algorithm 
works—whether the wave collapses upon measurement, whether all 
possibilities are realized in their own universes, whether some other process is 
at work—is secondary. 
 Some physicists argue that even calling the issue secondary accords it 
more status than it deserves. In their view, physics is only about making 
predictions, and as long as different approaches don’t affect those predictions, 
why should we care which is ultimately correct? I offer three thoughts. 
 First, beyond making predictions, physical theories need to be 
mathematically coherent. The Copenhagen approach is a valiant effort, but it 
fails to meet this standard: at the critical moment of observation, it retreats into 
mathematical silence. That’s a substantial gap. The Many Worlds approach 
attempts to fill it.11 
 Second, in some situations, the predictions of the Many Worlds approach 
would differ from those of the Copenhagen approach. In Copenhagen, the 
process of collapse would revise Figure 8.16a to have a single spike. So if you 
could cause the two waves depicted in the figure—representing 
macroscopically distinct situations—to interfere, generating a pattern similar 
to that in Figure 8.2c, it would establish that Copenhagen’s hypothesized wave 
collapse didn’t happen. Because of decoherence, as discussed earlier, it is an 
extraordinarily formidable task to do this, but, at least theoretically speaking, 
the Copenhagen and Many Worlds approaches yield different predictions.12 It 
is an important point of principle. The Copanhagen and Many Worlds 
approaches are often referred to as different “interpretations” of quantum 
mechanics. This is an abuse of language. If two approaches can yield different 



predictions, you can’t call them mere interpretations. Well, you can. And 
people do. But the terminology is off the mark. 
 Third, physics is not just about making predictions. If one day we were to 
find a black box that always and accurately predicted the outcome of our 
particle physics experiments and our astronomical observations, the existence 
of the box would not bring inquiry in these fields to a close. There’s a 
difference between making predictions and understanding them. The beauty of 
physics, its raison d’être, is that it offers insights into why things in the 
universe behave the way they do. The ability to predict behavior is a big part 
of physics’ power, but the heart of physics would be lost if it didn’t give us a 
deep understanding of the hidden reality underlying what we observe. And 
should the Many Worlds approach be right, what a spectacular reality our 
unwavering commitment to understanding predictions will have uncovered. 
 I don’t expect theoretical or experimental consensus to come in my 
lifetime concerning which version of reality—a single universe, a multiverse, 
something else entirely—quantum mechanics embodies. But I have little doubt 
that future generations will look back upon our work in the twentieth and 
twenty-first centuries as having nobly laid the basis for whatever picture 
finally emerges. 
 
 *For simplicity, we won’t consider the electron’s position in the vertical 
direction—we focus solely on its position on a map of Manhattan. Also, let me 
re-emphasize that while this section will make clear that Schrödinger’s 
equation doesn’t allow waves to undergo an instantaneous collapse as in 
Figure 8.6, waves can be carefully prepared by the experimenter in a spiked 
shape (or, more precisely, very close to a spiked shape). 
 *For a mathematical depiction, see note 4. 
 *This non-chancy perspective would argue strongly for abandoning the 
colloquial terminology that I’ve used, “probability wave,” in favor of the 
technical name, “wavefunction.” 
 
 
  



CHAPTER 9 
 
 
Black Holes and Holograms 
 
 
The Holographic Multiverse 
 
 
 Plato likened our view of the world to that of an ancient forebear 
watching shadows meander across a dimly lit cave wall. He imagined our 
perceptions to be but a faint inkling of a far richer reality that flickers beyond 
reach. Two millennia later, it seems that Plato’s cave may be more than a 
metaphor. To turn his suggestion on its head, reality—not its mere shadow—
may take place on a distant boundary surface, while everything we witness in 
the three common spatial dimensions is a projection of that faraway unfolding. 
Reality, that is, may be akin to a hologram. Or, really, a holographic movie. 
 Arguably the strangest parallel world entrant, the holographic principle 
envisions that all we experience may be fully and equivalently described as the 
comings and goings that take place at a thin and remote locus. It says that if we 
could understand the laws that govern physics on that distant surface, and the 
way phenomena there link to experience here, we would grasp all there is to 
know about reality. A version of Plato’s shadow world—a parallel but 
thoroughly unfamiliar encapsulation of everyday phenomena—would be 
reality. 
 The journey to this peculiar possibility combines developments deep and 
far flung—insights from general relativity; from research on black holes; from 
thermodynamics; quantum mechanics; and, most recently, string theory. The 
thread linking these diverse areas is the nature of information in a quantum 
universe. 
 
  



Information 
 
 
 Beyond John Wheeler’s knack for finding and mentoring the world’s 
most gifted young scientists (besides Hugh Everett, Wheeler’s students 
included Richard Feynman, Kip Thorne, and, as we will shortly see, Jacob 
Bekenstein), he had an uncanny ability to identify issues whose exploration 
could change our fundamental paradigm of nature’s workings. During a lunch 
we had at Princeton in 1998, I asked him what he thought the dominant theme 
in physics would be in the decades going forward. As he had already done 
frequently that day, he put his head down, as if his aging frame had grown 
weary of supporting such a massive intellect. But now the length of his silence 
left me wondering, briefly, whether he didn’t want to answer or whether, 
perhaps, he had forgotten the question. He then slowly looked up and said a 
single word: “Information.” 
 I wasn’t surprised. For some time, Wheeler had been advocating a view 
of physical law quite unlike what a fledgling physicist learns in the standard 
academic curriculum. Traditionally, physics focuses on things—planets, rocks, 
atoms, particles, fields—and investigates the forces that affect their behavior 
and govern their interactions. Wheeler was suggesting that things—matter and 
radiation—should be viewed as secondary, as carriers of a more abstract and 
fundamental entity: information. It’s not that Wheeler was claiming that matter 
and radiation were somehow illusory; rather, he argued that they should be 
viewed as the material manifestations of something more basic. He believed 
that information—where a particle is, whether it is spinning one way or 
another, whether its charge is positive or negative, and so on—forms an 
irreducible kernel at the heart of reality. That such information is instantiated 
in real particles, occupying real positions, having definite spins and charges, is 
something like an architect’s drawings being realized as a skyscraper. The 
fundamental information is in the blueprints. The skyscraper is but a physical 
realization of the information contained in the architect’s design. 
 From this perspective, the universe can be thought of as an information 
processor. It takes information regarding how things are now and produces 
information delineating how things will be at the next now, and the now after 
that. Our senses become aware of such processing by detecting how the 



physical environment changes over time. But the physical environment itself is 
emergent; it arises from the fundamental ingredient, information, and evolves 
according to the fundamental rules, the laws of physics. 
 I don’t know whether such an information-theoretic stance will reach the 
dominance in physics that Wheeler envisioned. But recently, driven largely by 
the work of physicists Gerard ’t Hooft and Leonard Susskind, a major shift in 
thinking has resulted from puzzling questions regarding information in one 
particularly exotic context: black holes. 
 
Black Holes 
 
 Within a year of general relativity’s publication, the German astronomer 
Karl Schwarzschild found the first exact solution to Einstein’s equations, a 
result that determined the shape of space and time in the vicinity of a massive 
spherical object such as a star or a planet. Remarkably, not only had 
Schwarzschild found his solution while calculating artillery trajectories on the 
Russian front during World War I, but also he had beaten the master at his own 
game: to that point, Einstein had found only approximate solutions to the 
equations of general relativity. Impressed, Einstein publicized Schwarzschild’s 
achievement, presenting the work before the Prussian Academy, but even so 
he failed to appreciate a point that would become Schwarzschild’s most 
tantalizing legacy. 
 Schwarszchild’s solution shows that familiar bodies like the sun and the 
earth produce a modest curvature, a gentle depression in the otherwise flat 
spacetime trampoline. This matched well the approximate results Einstein had 
managed to work out earlier, but by dispensing with approximations, 
Schwarzschild could go further. His exact solution revealed something 
startling: if enough mass were crammed into a small enough ball, a 
gravitational abyss would form. The spacetime curvature would become so 
extreme that anything venturing too close would be trapped. And because 
“anything” includes light, such regions would fade to black, a characteristic 
that inspired the early term “dark stars.” The extreme warping would also 
bring time to a grinding halt at the star’s edge; hence another early label, 
“frozen stars.” Half a century later, Wheeler, who was nearly as adept at 
marketing as he was at physics, popularized such stars both within and beyond 



the scientific community with a new and more memorable name: black holes. 
It stuck. 
 When Einstein read Schwarzschild’s paper, he agreed with the 
mathematics as applied to ordinary stars or planets. But as to what we now call 
black holes? Einstein scoffed. In those early days it was a challenge, even for 
Einstein, to fully understand the intricate mathematics of general relativity. 
While the modern understanding of black holes was still decades away, the 
intense folding of space and time already apparent in the equations was, in 
Einstein’s view, too radical to be real. Much as he would resist cosmic 
expansion a few years later, Einstein refused to believe that such extreme 
configurations of matter were anything more than mathematical 
manipulations—based on his own equations—run amok.1 
 When you see the numbers that are involved, it’s easy to come to a 
similar conclusion. For a star as massive as the sun to be a black hole, it would 
need to be squeezed into a ball about three kilometers across; a body as 
massive as the earth would become a black hole only if squeezed to a 
centimetor across. The idea that there might be such extreme arrangements of 
matter seems nothing short of ludicrous. Yet, in the decades since, astronomers 
have gathered overwhelming observational evidence that black holes are both 
real and plentiful. There is wide agreement that a great many galaxies are 
powered by an enormous black hole at their center; our very own Milky Way 
galaxy is believed to revolve around a black hole whose mass is about three 
million times that of the sun. There’s even a chance, as discussed in Chapter 4, 
that the Large Hadron Collider may produce tiny black holes in the laboratory 
by packing the mass (and energy) of violently colliding protons into such a 
minuscule volume that Schwarzschild’s result again applies, though on 
microscopic scales. Extraordinary emblems of math’s ability to illuminate the 
dark corners of the cosmos, black holes have become the cynosures of modern 
physics. 
 Besides serving as a boon for observational astronomy, black holes have 
also been a fertile source of inspiration for theoretical research by providing a 
mathematical playground in which physicists can push ideas to their limits, 
conducting pen-and-paper explorations of one of nature’s most extreme 
environments. As a weighty case in point, in the early 1970s Wheeler realized 
that when the venerable Second Law of Thermodynamics—a guiding light for 



over a century in understanding the interplay between energy, work, and 
heat—was considered in the vicinity of a black hole, it seemed to flounder. 
The fresh thinking of Wheeler’s young graduate student Jacob Bekenstein 
came to the rescue, and in doing so planted the seeds of the holographic 
proposal. 
 
The Second Law 
 
 
 The aphorism “less is more” takes many forms. “Let’s have the executive 
summary.” “Just the facts.” “TMI.” “You had me at hello.” These idioms are 
so common because every moment of every day we’re bombarded with 
information. Thankfully, in most cases our senses pare down the details to 
those that really matter. If I’m out on the savanna and encounter a lion, I don’t 
care about the motion of every photon reflecting off his body. Way TMI. I just 
want particular overall features of those photons, the very ones our eyes have 
evolved to sense and our brains to rapidly decode. Is the lion coming toward 
me? Is he crouched and stalking? Provide me with a moment-to-moment 
catalog of every reflected photon and, sure, I’ll be in possession of all the 
details. What I won’t have is any understanding. Less would indeed be very 
much more. 
 Similar considerations play a central role in theoretical physics. 
Sometimes we want to know every microscopic detail of a system we’re 
studying. At the locations along the Large Hadron Collider’s seventeen-mile-
long tunnel where particles are steered into head-on collisions, physicists have 
placed mammoth detectors capable of tracking, with extreme precision, the 
motion of the particle fragments produced. Essential for gaining insight into 
the fundamental laws of particle physics, the data are so detailed that a year’s 
worth would fill a stack of DVDs about fifty times as tall as the Empire State 
Building. But, as in that impromptu meeting with a lion, there are other 
situations in physics where that level of detail would obscure, not clarify. A 
nineteenth-century branch of physics called thermodynamics or, in its more 
modern incarnation, statistical mechanics, focuses on such systems. The steam 
engine, the technological innovation that initially drove thermodynamics—as 
well as the Industrial Revolution—provides a good illustration. 



 The core of a steam engine is a vat of water vapor that expands when 
heated, driving the engine’s piston forward, and contracts when cooled, 
returning the piston to its initial position, ready to drive forward once again. In 
the late nineteenth and early twentieth centuries, physicists worked out the 
molecular underpinnings of matter, which among other things provided a 
microscopic picture of the steam’s action. As steam is heated, its H2O 
molecules pick up increasing speed and career into the underside of the piston. 
The hotter they are, the faster they go and the bigger the push. A simple insight, 
but one essential to thermodynamics, is that to understand the steam’s force we 
don’t need the details of which particular molecules happen to have this or that 
velocity or which happen to hit the piston precisely here or there. Provide me 
with a list of billions and billions of molecular trajectories, and I’ll look at you 
just as blankly as I would if you listed the photons bouncing off the lion. To 
figure out the piston’s push, I need only the average number of molecules that 
will hit it in a given time interval, and the average speed they’ll have when 
they do. These are much coarser data, but it’s exactly such pared-down 
information that’s useful. 
 In crafting mathematical methods for systematically sacrificing detail in 
favor of such higher-level aggregate understanding, physicists honed a wide 
range of techniques and developed a number of powerful concepts. One such 
concept, encountered briefly in earlier chapters, is entropy. Initially introduced 
in the mid-nineteenth century to quantify energy dissipation in combustion 
engines, the modern view, emerging from Ludwig Boltzmann’s work in the 
1870s, is that entropy provides a characterization of how finely arranged—or 
not—the constituents of a given system need to be for it to have the overall 
appearance that it does. 
 To get a feel for this, imagine that Felix is frantic because he believes the 
apartment he shares with Oscar has been broken into. “They’ve ransacked us!” 
he tells Oscar. Oscar brushes him off—surely Felix is having one of his 
moments. To make his point, Oscar throws open the door to his bedroom, 
revealing clothing, empty pizza boxes, and crushed beer cans strewn 
everywhere. “It looks just like it always does,” Oscar barks. Felix isn’t swayed. 
“Of course it looks the same—ransack a pigsty and you get a pigsty. But look 
at my room.” And he throws open his own door. “Ransacked,” mocks Oscar; 
“it’s neater than a straight whiskey.” “Neat, yes. But the intruders have left 



their mark. My vitamin bottles? Not lined up in order of size. My collected 
works of Shakespeare? Out of alphabetical order. And my sock drawer? Look 
at this—some black pairs are in the blue bin! Ransacked, I tell you. Obviously 
ransacked.” 
 Putting Felix’s hysteria aside, the scenario makes plain a simple but 
essential point. When something is highly disordered, like Oscar’s room, a 
great many possible rearrangements of its constituents leave its overall 
appearance intact. Grab the twenty-six crumpled shirts that were scattered 
across the bed, floor, and dresser, and toss them this way and that, fling the 
forty-two crushed beer cans randomly here and there, and the room will look 
the same. But when something is highly ordered, like Felix’s room, even small 
rearrangements are easily detected. 
 This distinction underlies Boltzmann’s mathematical definition of 
entropy. Take any system and count the number of ways its constituents can be 
rearranged without affecting its gross, overall, macroscopic appearance. That 
number is the system’s entropy.* If there’s a large number of such 
rearrangements, then entropy is high: the system is highly disordered. If the 
number of such rearrangements is small, entropy is low: the system is highly 
ordered (or, equivalently, has low disorder). 
 For more conventional examples, consider a vat of steam and a cube of 
ice. Focus only on their overall macroscopic properties, those you can measure 
or observe without accessing the detailed state of either’s molecular 
constituents. When you wave your hand through the steam, you rearrange the 
positions of billions upon billions of H2O molecules, and yet the vat’s uniform 
haze looks undisturbed. But randomly change the positions and speeds of that 
many molecules in a piece of ice, and you’ll immediately see the impact—the 
ice’s crystalline structure will be disrupted. Fissures and fractures will appear. 
The steam, with H2O molecules randomly flitting through the container, is 
highly disordered; the ice, with H2O molecules arranged in a regular, 
crystalline pattern, is highly ordered. The entropy of the steam is high (many 
rearrangements will leave it looking the same); the entropy of the ice is low 
(few rearrangements will leave it looking the same). 
 By assessing the sensitivity of a system’s macroscopic appearance to its 
microscopic details, entropy is a natural concept in a mathematical formalism 
that focuses on aggregate physical properties. The Second Law of 



Thermodynamics developed this line of insight quantitatively. The law states 
that, over time, the total entropy of a system will increase.2 Understanding why 
requires only the most elementary grasp of chance and statistics. By definition, 
a higher-entropy configuration can be realized through many more 
microscopic arrangements than a lower-entropy configuration. As a system 
evolves, it’s overwhelmingly likely to pass through higher-entropy states since, 
simply put, there are more of them. Many more. When bread is baking, you 
smell it throughout the house because there are trillions more arrangements of 
the molecules streaming from the bread that are spread out, yielding a uniform 
aroma, than there are arrangements in which the molecules are all tightly 
packed in a corner of the kitchen. The random motions of the hot molecules 
will, with near certainty, drive them toward one of the numerous spread-out 
arrangements, and not toward one of the few clustered configurations. The 
collection of molecules evolves, that is, from lower to higher entropy, and 
that’s the Second Law in action. 
 The idea is general. Glass shattering, a candle burning, ink spilling, 
perfume pervading: these are different processes, but the statistical 
considerations are the same. In each, order degrades to disorder and does so 
because there are so many ways to be disordered. The beauty of this kind of 
analysis—the insight provided one of the most potent “Aha!” moments in my 
physics education—is that, without getting lost in the microscopic details, we 
have a guiding principle to explain why a great many phenomena unfold the 
way they do. 
 Notice, too, that, being statistical, the Second Law does not say that 
entropy can’t decrease, only that it is extremely unlikely to do so. The milk 
molecules you just poured into your coffee might, as a result of their random 
motions, coalesce into a floating figurine of Santa Claus. But don’t hold your 
breath. A floating milk Santa has very low entropy. If you move around a few 
billion of his molecules, you’ll notice the result—Santa will lose his head or an 
arm, or he’ll disperse into abstract white tendrils. By comparison, a 
configuration in which the milk molecules are uniformly spread around has 
enormously more entropy: a vast number of rearrangements continue to look 
like ordinary coffee with milk. With a huge likelihood, then, the milk poured 
into your dark coffee will turn it a uniform tan, with nary a Santa in sight. 



Similar considerations hold for the vast majority of high-to-low-entropy 
evolutions, making the Second Law appear inviolable. 
 
The Second Law and Black Holes 
 
 
 Now to Wheeler’s point about black holes. Back in the early 1970s, 
Wheeler noticed that when black holes amble onto the scene, the Second Law 
appears compromised. A nearby black hole seems to provide a ready-made and 
reliable means for reducing overall entropy. Throw whatever system you’re 
studying—smashed glass, burned candles, spilled ink—into the hole. Since 
nothing escapes from a black hole, the system’s disorder would appear 
permanently gone. Crude the approach may be, but it seems easy to lower total 
entropy if you have a black hole to work with. The Second Law, many thought, 
had met its match. 
 Wheeler’s student Bekenstein was not convinced. Perhaps, Bekenstein 
suggested, entropy is not lost to the black hole but merely transferred to it. 
After all, no one claimed that, in gorging themselves on dust and stars, black 
holes provide a mechanism for violating the First Law of Thermodynamics, 
the conservation of energy. Instead, Einstein’s equations show that when a 
black hole gorges, it gets bigger and heftier. The energy in a region can be 
redistributed, with some falling into the hole and some remaining outside, but 
the total is preserved. Maybe, Bekenstein suggested, the same idea applies to 
entropy. Some entropy stays outside a given black hole and some entropy falls 
in, but none gets lost. 
 This sounds reasonable, but experts shot Bekenstein down. 
Schwarzschild’s solution, and much work that followed, seemed to establish 
that black holes are the epitome of order. Infalling matter and radiation, 
however messy and disordered, are crushed to infinitesimal size at a black 
hole’s center: a black hole is the ultimate in orderly trash compaction. True, no 
one knows exactly what happens during such powerful compression, because 
the extremes of curvature and density disrupt Einstein’s equations; but there 
just doesn’t seem to be any capacity for a black hole’s center to harbor 
disorder. And outside the center, a black hole is nothing but an empty region of 
spacetime extending to the boundary of no return—the event horizon—as in 



Figure 9.1. With no atoms or molecules wafting this way and that, and thus no 
constituents to rearrange, a black hole would seem to be entropy-free. 

  
 Figure 9.1 A black hole comprises a region of spacetime surrounded by 
a surface of no return, the event horizon. 
 
 
 In the 1970s, this view was reinforced by the so-called no hair theorems, 
which established mathematically that black holes, much like the bald 
performers of Blue Man Group, have a dearth of distinguishing characteristics. 
According to the theorems, any two black holes that have the same mass, 
charge, and angular momentum (rate of rotation) are identical. Lacking any 
other intrinsic traits—as the Blue Men lack bangs, mullets, or dreads—black 
holes seemed to lack the underlying differences that would harbor entropy. 
 By itself, this was a fairly convincing argument, but there was a yet more 
damning consideration that seemed to definitively undercut Bekenstein’s idea. 
According to basic thermodynamics, there’s a close association between 
entropy and temperature. Temperature is a measure of the average motion of 
an object’s constituents: hot objects have fast-moving constituents, cold 



objects have slow-moving constituents. Entropy is a measure of the possible 
rearrangements of these constituents that, from a macroscopic viewpoint, 
would go unnoticed. Both entropy and temperature thus depend on aggregate 
features of an object’s constituents; they go hand in hand. When worked out 
mathematically, it became clear that if Bekenstein was right and black holes 
carried entropy, they should also have a temperature.3That idea set off alarm 
bells. Any object with a nonzero temperature radiates. Hot coal radiates visible 
light; we humans, typically, radiate in the infrared. If a black hole has a 
nonzero temperature, the very laws of thermodynamics that Bekenstein was 
seeking to preserve state that it too should radiate. But that conflicts blatantly 
with the established understanding that nothing can escape a black hole’s 
gravitational grip. Most everyone concluded that Bekenstein was wrong. Black 
holes do not have a temperature. Black holes do not harbor entropy. Black 
holes are entropy sinkholes. In their presence, the Second Law of 
Thermodynamics fails. 
 Despite the evidence mounting against him, Bekenstein had one 
tantalizing result on his side. In 1971, Stephen Hawking realized that black 
holes obey a curious law. If you have a collection of black holes with various 
masses and sizes, some engaged in stately orbital waltzes, others pulling in 
nearby matter and radiation, and still others crashing into each other, the total 
surface area of the black holes increases over time. By “surface area,” 
Hawking meant the area of each black hole’s event horizon. Now, there are 
many results in physics that ensure quantities don’t change over time 
(conservation of energy, conservation of charge, conservation of momentum, 
and so on), but there are very few that require quantities to increase. It was 
natural, then, to consider a possible relation between Hawking’s result and the 
Second Law. If we envision that, somehow, the surface area of a black hole is 
a measure of the entropy it contains, then the increase in total surface area 
could be read as an increase in total entropy. 
 It was an enticing analogy, but no one bought it. The similarity between 
Hawking’s area theorem and the Second Law was, in almost everyone’s view, 
nothing more than a coincidence. Until, that is, a few years later, when 
Hawking completed one of the most influential calculations in modern 
theoretical physics. 
  



Hawking Radiation 
 
 
 Because quantum mechanics plays no role in Einstein’s general relativity, 
Schwarzschild’s black hole solution is based purely in classical physics. But 
proper treatment of matter and radiation—of particles like photons, neutrinos, 
and electrons that can carry mass, energy, and entropy from one location to 
another—requires quantum physics. To fully assess the nature of black holes 
and understand how they interact with matter and radiation, we must update 
Schwarzschild’s work to include quantum considerations. This isn’t easy. 
Notwithstanding advances in string theory (as well as in other approaches we 
haven’t discussed, such as loop quantum gravity, twistors, and topos theory), 
we are still at an early stage in our attempt to meld quantum physics and 
general relativity. Back in the 1970s, there was still less theoretical basis for 
understanding how quantum mechanics would affect gravity. 
 Even so, a number of early researchers developed a partial union of 
quantum mechanics and general relativity by considering quantum fields (the 
quantum part) evolving in a fixed but curved spacetime environment (the 
general relativity part). As I pointed out in Chapter 4, a full union would, at the 
very least, consider not only the quantum jitters of fields within spacetime but 
the jitters of spacetime itself. To facilitate progress, the early work steadfastly 
avoided this complication. Hawking embraced the partial union and studied 
how quantum fields would behave in a very particular spacetime arena: that 
created by the presence of a black hole. What he found knocked physicists 
clear off their seats. 
 A well-known feature of quantum fields in ordinary, empty, uncurved 
spacetime is that their jitters allow pairs of particles, for instance an electron 
and its antiparticle the positron, to momentarily erupt out of the nothingness, 
live briefly, and then smash into each other, with mutual annihilation the result. 
This process, quantum pair production, has been intensively studied both 
theoretically and experimentally, and is thoroughly understood. 
 A novel characteristic of quantum pair production is that while one 
member of the pair has positive energy, the law of energy conservation 
dictates that the other must have an equal amount of negative energy—a 
concept that would be meaningless in a classical universe.* But the uncertainty 



principle provides a window of weirdness whereby negative-energy particles 
are allowed as long as they don’t overstay their welcome. If a particle exists 
only fleetingly, quantum uncertainty establishes that no experiment will have 
adequate time, even in principle, to determine the sign of its energy. This is the 
very reason why the particle pair is condemned by quantum laws to swift 
annihilation. So, over and over again, quantum jitters result in particle pairs 
being created and annihilated, created and annihilated, as the unavoidable 
rumbling of quantum uncertainty plays itself out in otherwise empty space. 
 Hawking reconsidered such ubiquitous quantum jitters not in the setting 
of empty space but near the event horizon of a black hole. He found that 
sometimes events look much as they ordinarily do. Pairs of particles are 
randomly created; they quickly find each other; they are destroyed. But every 
so often something new happens. If the particles are formed sufficiently close 
to the black hole’s edge, one can get sucked in while the other careens into 
space. In the absence of a black hole this never happens, because if the 
particles failed to annihilate each other then the one with negative energy 
would outlive the protective haze of quantum uncertainty. Hawking realized 
that the black hole’s radical twisting of space and time can cause particles that 
have negative energy, as determined by anyone outside the hole, to appear to 
have positive energy to any unfortunate observer inside the hole. In this way, a 
black hole provides the negative energy particles a safe haven, and so 
eliminates the need for a quantum cloak. The erupting particles can forgo 
mutual annihilation and blaze their own separate trails.4 
 The positive-energy particles shoot outward from just above the black 
hole’s event horizon, so to someone watching from afar they look like 
radiation, a form since named Hawking radiation. The negative-energy 
particles are not directly seen, because they fall into the black hole, but they 
nevertheless have a detectable impact. Much as a black hole’s mass increases 
when it absorbs anything that carries positive energy, so its mass decreases 
when it absorbs anything that carries negative energy. In tandem, these two 
processes make the black hole resemble a piece of burning coal: the black hole 
emits a steady outward stream of radiation as its mass gets ever smaller.5 
When quantum considerations are included, black holes are thus not 
completely black. This was Hawking’s bolt from the blue. 



 Which is not to say that your average black hole is red hot, either. As 
particles stream from just outside the black hole, they fight an uphill battle to 
escape the strong gravitational pull. In doing so, they expend energy and, 
because of this, cool down substantially. Hawking calculated that an observer 
far from the black hole would find that the temperature for the resulting “tired” 
radiation was inversely proportional to the black hole’s mass. A huge black 
hole, like the one at the center of our galaxy, has a temperature that’s less than 
a trillionth of a degree above absolute zero. A black hole with the mass of the 
sun would have a temperature less than a millionth of a degree, minuscule 
even compared with the 2.7-degree cosmic background radiation left to us by 
the big bang. For a black hole’s temperature to be high enough to barbecue the 
family dinner, its mass would need to be about a ten-thousandth of the earth’s, 
extraordinarily small by astrophysical standards. 
 But the magnitude of a black hole’s temperature is secondary. Although 
the radiation coming from distant astrophysical black holes won’t light up the 
night sky, the fact that they do have a temperature, that they do emit radiation, 
suggests that the experts had too quickly rejected Bekenstein’s suggestion that 
black holes do have entropy. Hawking then nailed the case. His theoretical 
calculations determining a given black hole’s temperature and the radiation it 
emits gave him all the data he needed to determine the amount of entropy the 
black hole should contain, according to the standard laws of thermodynamics. 
And the answer he found is proportional to the surface area of the black hole, 
just as Bekenstein had proposed. 
 So by the end of 1974, the Second Law was law once again. The insights 
of Bekenstein and Hawking established that in any situation, total entropy 
increases, as long as you account for not only the entropy of ordinary matter 
and radiation but also that contained within black holes, as measured by their 
total surface area. Rather than being entropy sinks that subvert the Second Law, 
black holes play an active part in upholding the law’s pronouncement of a 
universe with ever-increasing disorder. 
 The conclusion provided a welcome relief. To many physicists, the 
Second Law, emerging from seemingly unassailable statistical considerations, 
came as close to sacred as just about anything in science. Its restoration meant 
that, once again, all was right with the world. But, in time, a vital little detail in 
the entropy accounting made it clear that the Second Law’s balance sheet was 



not the deepest issue in play. That honor went to identifying where entropy is 
stored, a matter whose importance becomes clear when we recognize the deep 
link between entropy and the central theme of this chapter: information. 
 
Entropy and Hidden Information 
 
 
 So far, I’ve described entropy, loosely, as a measure of disorder and, 
more quantitatively, as the number of rearrangements of a system’s 
microscopic constituents that leave its overall macroscopic features unchanged. 
I’ve left implicit, but will now make explicit, that you can think of entropy as 
measuring the gap in information between the data you have (those overall 
macroscopic features) and the data you don’t (the system’s particular 
microscopic arrangement). Entropy measures the additional information 
hidden within the microscopic details of the system, which, should you have 
access to it, would distinguish the configuration at a micro level from all the 
macro look-alikes. 
 To illustrate, imagine that Oscar has straightened up his room, except that 
the thousand silver dollars he won in last week’s poker game remain scattered 
across the floor. Even after he gathers them in a neat cluster, Oscar sees only a 
haphazard assortment of dollar coins, some heads and others tails. Were you to 
randomly change some heads to tails and other tails to heads, he’d never 
notice—evidence that the thousand-dropped-silver-dollar system has high 
entropy. Indeed, this example is so explicit that we can do the entropy 
counting. If there were only two coins, there’d be four possible configurations: 
(heads, heads), (heads, tails), (tails, heads), and (tails, tails)—two possibilities 
for the first dollar, times two for the second. With three coins, there’d be eight 
possible arrangements: (heads, heads, heads), (heads, heads, tails), (heads, tails, 
heads), (heads, tails, tails), (tails, heads, heads), (tails, heads, tails), (tails, tails, 
heads), (tails, tails, tails), arising from two possibilities for the first, times two 
for the second, times two for the third. With a thousand coins, the number of 
possibilities follows exactly the same pattern—a factor of 2 for each coin—
yielding a total of 21000.   The vast majority of these heads-tails arrangements 
would have no distinguishing features, so they would not stand out in any way. 
Some would, for instance, if all 1,000 coins were heads or all were tails, or if 



999 were heads, or 999 tails. But the number of such unusual configurations is 
so extraordinarily small, compared with the huge total number of possibilities, 
that removing them from the count would hardly make a difference.* 

 From our earlier discussion, you’d deduce that the number 21000 is the 
entropy of the coins. And, for some purposes, that conclusion would be fine. 
But to draw the strongest link between entropy and information, I need to 
sharpen up the description I gave earlier. The entropy of a system is related to 
the number of indistinguishable rearrangements of its constituents, but 
properly speaking is not equal to the number itself. The relationship is 
expressed by a mathematical operation called a logarithm; don’t be put off if 
this brings back bad memories of high school math class. In our coin example, 
it simply means that you pick out the exponent in the number of 
rearrangements—that is, the entropy is defined as 1,000 rather than 21000. 
 Using logarithms has the advantage of allowing us to work with more 
manageable numbers, but there’s a more important motivation. Imagine I ask 
you how much information you’d need to supply in order to describe one 
particular heads-tails arrangement of the 1,000 coins. The simplest response is 
that you’d need to provide the list—heads, heads, tails, heads, tails, tails ….—
that specifies the disposition of each of the 1,000 coins. Sure, I respond, that 
would tell me the details of the configuration, but that wasn’t my question. I 
asked how much information is contained in that list. 
 So, you start to ponder. What actually is information, and what does it do? 
Your response is simple and direct. Information answers questions. Years of 
research by mathematicians, physicists, and computer scientists have made this 
precise. Their investigations have established that the most useful measure of 
information content is the number of distinct yes-no questions the information 
can answer. The coins’ information answers 1,000 such questions: Is the first 
dollar heads? Yes. Is the second dollar heads? Yes. Is the third dollar heads? 
No. Is the fourth dollar heads? No. And so on. A datum that can answer a 
single yes-no question is called a bit—a familiar computer-age term that is 
short for binary digit, meaning a 0 or a 1, which you can think of as a 
numerical representation of yes or no. The heads-tails arrangement of the 
1,000 coins thus contains 1,000 bits’ worth of information. Equivalently, if 
you take Oscar’s macroscopic perspective and focus only on the coins’ overall 



haphazard appearance while eschewing the “microscopic” details of the heads-
tails arrangement, the coins’ “hidden” information content is 1,000 bits. 
 Notice that the value of the entropy and the amount of hidden 
information are equal. That’s no accident. The number of possible heads-tails 
rearrangements is the number of possible answers to the 1,000 questions—(yes, 
yes, no, no, yes, ….) or (yes, no, yes, yes, no, ….) or (no, yes, no, no, no, ….), 
and so on—namely, 21000. With entropy defined as the logarithm of the number 
of such rearrangements—1,000 in this case—entropy is the number of yes-no 
questions any one such sequence answers. 
 I’ve focused on the 1,000 coins so as to offer a specific example, but the 
link between entropy and information is general. The microscopic details of 
any system contain information that’s hidden when we take account of only 
macroscopic, overall features. For instance, you know the temperature, 
pressure, and volume of a vat of steam, but did an H2O molecule just hit the 
upper right-hand corner of the box? Did another just hit the midpoint of the 
lower left edge? As with the dropped dollars, a system’s entropy is the number 
of yes-no questions that its microscopic details have the capacity to answer, 
and so the entropy is a measure of the system’s hidden information content.6 

 
Entropy, Hidden Information, and Black Holes 
 
 
 How does this notion of entropy, and its relation to hidden information, 
apply to black holes? When Hawking worked out the detailed quantum 
mechanical argument linking a black hole’s entropy to its surface area, he not 
only brought quantitative precision to Bekenstein’s original suggestion, he also 
provided an algorithm for calculating it. Take the event horizon of a black hole, 
Hawking instructed, and divide it into a gridlike pattern in which the sides of 
each cell are one Planck length (10–33 centimeters) long. Hawking proved 
mathematically that the black hole’s entropy is the number of such cells 
needed to cover its event horizon—the black hole’s surface area, that is, as 
measured in square Planck units (10–66 square centimeters per cell). In the 
language of hidden information, it’s as if each such cell secretly carries a 
single bit, a 0 or a 1, that provides the answer to a single yes-no question 



delineating some aspect of the black hole’s microscopic makeup.7 This is 
schematically illustrated in Figure 9.2. 
   
 
 
 
 
 
 
 
 
 
  
 
 
 Figure 9.2 Stephen Hawking showed mathematically that the entropy of 
a black hole equals the number of Planck-sized cells that it takes to cover its 
event horizon. It’s as if each cell carries one bit, one basic unit of information. 
 
 Einstein’s general relativity, as well as the black hole no-hair theorems, 
ignores quantum mechanics and so completely misses this information. 
Choose values for its mass, its charge, and its angular momentum, and you’ve 
uniquely specified a black hole, says general relativity. But the most 
straightforward reading of Bekenstein and Hawking tells us you haven’t. Their 
work established that there must be many different black holes with the same 
macroscopic features that, nevertheless, differ microscopically. And much as is 
the case in more commonplace settings—coins on the floor, steam in a vat—
the black hole’s entropy reflects information hidden within the finer details. 
 Exotic as black holes may be, these developments suggested that, when it 
comes to entropy, black holes behave much like everything else. But the 
results also raised puzzles. Although Bekenstein and Hawking tell us how 
much information is hidden within a black hole, they don’t tell us what that 
information is. They don’t tell us the specific yes-no questions the information 
answers, nor do they even specify the microscopic constituents that the 
information is meant to describe. The mathematical analyses pinned down the 



quantity of information a given black hole contains, without providing insight 
into the information itself.8 
 These were—and remain—perplexing issues. But there’s yet another 
puzzle, one that seems even more basic: Why would the amount of 
information be dictated by the area of the black hole’s surface? I mean, if you 
asked me how much information was stored in the Library of Congress, I’d 
want to know about the available space inside the Library of Congress. I’d 
want to know the capacity, within the library’s cavernous interior, for shelving 
books, filing microfiche, and stacking maps, photographs, and documents. The 
same goes for the information in my head, which seems tied to the volume of 
my brain, the available space for neural interconnections. And it goes for the 
information in a vat of steam, which is stored in the properties of the particles 
that fill the container. But, surprisingly, Bekenstein and Hawking established 
that for a black hole, the information storage capacity is determined not by the 
volume of its interior but by the area of its surface. 
 Prior to these results, physicists had reasoned that since the Planck length 
(10–33 centimeters) was apparently the shortest length for which the notion of 
“distance” continues to have meaning, the smallest meaningful volume would 
be a tiny cube whose edges were each one Planck length long (a volume of 10–

99 cubic centimeters). A reasonable conjecture, widely believed, was that 
irrespective of future technological breakthroughs, the smallest possible 
volume could store no more than the smallest unit of information—one bit. 
And so the expectation was that a region of space would max out its 
information storage capacity when the number of bits it contained equaled the 
number of Planck cubes that could fit inside it. That Hawking’s result involved 
the Planck length was therefore not surprising. The surprise was that the black 
hole’s storehouse of hidden information was determined by the number of 
Planck-sized squares covering its surface and not by the number of Planck-
sized cubes filling its volume. 
 This was the first hint of holography—information storage capacity 
determined by the area of a bounding surface and not by the volume interior to 
that surface. Through twists and turns across three subsequent decades, this 
hint would evolve into a dramatic new way of thinking about the laws of 
physics. 



Locating a Black Hole’s Hidden Information 
 
 
 The Planckian chessboard with 0s and 1s scattered across the event 
horizon, Figure 9.2, is a symbolic illustration of Hawking’s result for the 
amount of information harbored by a black hole. But how literally can we take 
the imagery? When the math says that a black hole’s store of information is 
measured by its surface area, does that merely reflect a numerical accounting, 
or does it mean that the black hole’s surface is where the information is 
actually stored? 
 It’s a deep issue and has been pursued for decades by some of the most 
renowned physicists.* The answer depends sensitively on whether you view 
the black hole from the outside or from the inside—and from the outside, 
there’s good reason to believe that information is indeed stored at the horizon. 
 To anyone familiar with the finer details of how general relativity depicts 
black holes, this is an astoundingly odd claim. General relativity makes clear 
that were you to fall through a black hole’s event horizon, you would 
encounter nothing—no material surface, no signposts, no flashing lights—that 
would in any way mark your crossing the boundary of no return. It’s a 
conclusion that derives from one of Einstein’s simplest but most pivotal 
insights. Einstein realized that when you (or any object) assume free-fall 
motion, you become weightless; jump from a high diving board, and a scale 
strapped to your feet falls with you and so its reading drops to zero. In effect, 
you cancel gravity by giving in to it fully. From this, Einstein leaped to an 
immediate consequence. Based on what you experience in your immediate 
environment, there’s no way for you to distinguish between freely falling 
toward a massive object and freely floating in the depths of empty space: in 
both situations you are perfectly weightless. Sure, if you look beyond your 
immediate environment and see, say, the earth’s surface rapidly getting closer, 
that’s a pretty good clue that it’s time to pull your parachute cord. But if you 
are confined to a small, windowless capsule, the experiences of free fall and 
free float are indistinguishable.9 
 In the early years of the twentieth century, Einstein seized on this simple 
but profound interconnection between motion and gravity; after a decade of 
development, he leveraged it into his general theory of relativity. Our 



application here is more modest. Suppose you are in that capsule and are freely 
falling not toward the earth but toward a black hole. The very same reasoning 
ensures that there’s no way for your experience to be any different from 
floating in empty space. And that means that nothing special or unusual will 
happen as you freely fall through the black hole’s horizon. When you 
eventually hit the black hole’s center, you’ll no longer be in free fall, and that 
experience will certainly distinguish itself. And spectacularly so. But until then, 
you could just as well be aimlessly floating in the dark depths of outer space. 
 This realization renders the black hole’s entropy all the more puzzling. If 
as you pass through the horizon of a black hole you find nothing there, nothing 
at all to distinguish it from empty space, how can it store information? 
 An answer that has gained traction over the last decade resonates with the 
duality theme encountered in early chapters. Recall that duality refers to a 
situation in which there are complementary perspectives that seem completely 
different, and yet are intimately connected through a shared physical anchor. 
The Albert-Marilyn image of Figure 5.2 provides a good visual metaphor; 
mathematical examples come from the mirror shapes of string theory’s extra 
dimensions (Chapter 4) and the naïvely distinct yet dual string theories 
(Chapter 5). In recent years, researchers, led by Susskind, have realized that 
black holes present another context in which complementary yet widely 
divergent perspectives yield fundamental insight. 
 One essential perspective is yours, as you freely fall toward a black hole. 
Another is that of a distant observer, watching your journey through a 
powerful telescope. The remarkable thing is that as you pass uneventfully 
through a black hole’s horizon, the distant observer perceives a very different 
sequence of events. The discrepancy has to do with the black hole’s Hawking 
radiation.* When the distant observer measures the Hawking radiation’s 
temperature, she finds it to be tiny; let’s say it’s 10–13 K, indicating that the 
black hole is roughly the size of the one at the center of our galaxy. But the 
distant observer knows that the radiation is cold only because the photons, 
traveling to her from just outside the horizon, have expended their energy 
valiantly fighting against the black hole’s gravitational pull; in the description 
I gave earlier, the photons are tired. She deduces that as you get ever closer to 
the black hole’s horizon, you’ll encounter ever-fresher photons, ones that have 
only just begun their journey and so are ever more energetic and ever hotter. 



Indeed, as she watches you approach to within a hair’s breadth of the horizon, 
she sees your body bombarded by increasingly intense Hawking radiation, 
until finally all that’s left is your charred remains. 
 Happily, however, what you experience is much more pleasant. You 
don’t see or feel or otherwise obtain any evidence of this hot radiation. Again, 
because your free-fall motion cancels the effects of gravity,10 your experience 
is indistinguishable from that of floating in empty space. And one thing we 
know for sure is that when you float in empty space, you don’t suddenly burst 
into flames. So the conclusion is that from your perspective, you pass 
seamlessly through the horizon and (less happily) hurtle on toward the black 
hole’s singularity, while from the distant observer’s perspective, you are 
immolated by a scorching corona that surrounds the horizon. 
 Which perspective is right? The claim advanced by Susskind and others 
is that both are. Granted, this is hard to square with ordinary logic—the logic 
by which you are either alive or not alive. But this is no ordinary situation. 
Most saliently, the wildly different perspectives can never confront each other. 
You can’t climb out of the black hole and prove to the distant observer that 
you are alive. And, as it turns out, the distant observer can’t jump into the 
black hole and confront you with evidence that you’re not. When I said that 
the distant observer “sees” you immolated by the black hole’s Hawking 
radiation, that was a simplification. The distant observer, by closely examining 
the tired radiation that reaches her, can piece together the story of your fiery 
demise. But for the information to reach her takes time. And the math shows 
that by the time she can conclude you’ve burned, she won’t have enough time 
left to then hop into the black hole and catch up with you before you’re 
destroyed by the singularity. Perspectives can differ, but physics has a built-in 
fail-safe against paradoxes. 
 What about information? From your perspective, all your information, 
stored in your body and brain and in the laptop you’re holding, passes with 
you through the black hole’s horizon. From the perspective of the distant 
observer, all the information you carry is absorbed by the layer of radiation 
incessantly bubbling just above the horizon. The bits contained in your body, 
brain, and laptop would be preserved, but would become thoroughly scrambled 
as they joined, jostled, and intermingled with the sizzling hot horizon. Which 
means that to the distant observer, the event horizon is a real place, populated 



by real things that give physical expression to the information symbolically 
depicted in the chessboard, Figure 9.2. 
 The conclusion is that the distant observer—us—infers that a black 
hole’s entropy is determined by the area of its horizon because the horizon is 
where the entropy is stored. Said that way, it seems utterly sensible. But don’t 
lose sight of how unexpected it is that the storage capacity isn’t set by the 
black hole’s volume. And, as we will now see, this result doesn’t merely 
highlight a peculiar feature of black holes. Black holes don’t just tell us about 
how black holes store information. Black holes inform us about information 
storage in any context. This paves a direct path to the holographic perspective. 
 
Beyond Black Holes 
 
 
 Consider any object or collection of objects—the collections of the 
Library of Congress, all of Google’s computers, the CIA’s archives—situated 
in some region of space. For ease, imagine that we highlight the region by 
surrounding it with an imaginary sphere, as in Figure 9.3a. Assume further that 
the total mass of the objects, compared with the volume they fill, is of such an 
ordinary run-of-the-mill magnitude that it’s nowhere near what it takes to 
create a black hole. That’s the setup. Now for the pivotal question: What is the 
maximum amount of information that can be stored within the region of space? 
  
 
  



 
 Figure 9.3 (a) A variety of objects that store information, situated within 
a well-marked region of space. (b)We augment the region’s capacity for 
storing information. (c)When the amount of matter crosses a threshold (whose 
value can be calculated from general relativity),11 the region becomes a black 
hole. 
 
 Those unlikely bedfellows, the Second Law and black holes, provide the 
answer. Imagine adding matter to the region, with the aim of augmenting its 
information storage capacity. You might insert high-capacity memory chips or 
voluminous hard drives into the bank of Google’s computers; you might 
provide books or jam-packed Kindles to augment the Library of Congress 
collection. Since even raw matter carries information—Are the steam’s 
molecules here or there? Are they moving at this speed or that?—you also 
cram every nook and cranny of the region with as much matter as you can get 
your hands on. Until you reach a critical juncture. At some point, the region 
will be so thoroughly stuffed that were you to add even a single grain of sand, 
the interior would go dark as the region turned into a black hole. When that 
happens, game over. A black hole’s size is determined by its mass, so if you 
try to increase the information storage capacity by adding yet more matter, the 
black hole will respond by growing larger. And since we want to focus on the 
information that can inhabit a given fixed volume of space, this result falls 
afoul of the basic setup. You can’t increase the black hole’s information 
capacity without forcing the black hole to enlarge.12 
 Two observations take us across the finish line. The Second Law ensures 
that entropy increases throughout the entire process, and so the information 



hidden within the hard drives, Kindles, old-fashioned paper books, and 
everything else you packed into the region is less than that hidden in the black 
hole. From the results of Bekenstein and Hawking, we know that the black 
hole’s hidden information content is given by the area of its event horizon. 
Moreover, because you were careful not to overspill the original region of 
space, the black hole’s event horizon coincides with the region’s boundary, so 
the black hole’s entropy equals the area of this surrounding surface. We thus 
learn an important lesson. The amount of information contained within a 
region of space, stored in any objects of any design, is always less than the 
area of the surface that surrounds the region (measured in square Planck 
units). 
 This is the conclusion we’ve been chasing. Notice that although black 
holes are central to the reasoning, the analysis applies to any region of space, 
whether or not a black hole is actually present. If you max out a region’s 
storage capacity, you’ll create a black hole, but as long as you stay under the 
limit, no black hole will form. 
 I hasten to add that in any practical sense, the information storage limit is 
of no concern. Compared with today’s rudimentary storage devices, the 
potential storage capacity on the surface of a spatial region is humongous. A 
stack of five off-the-shelf terabyte hard drives fits comfortably within a sphere 
of radius 50 centimeters, whose surface is covered by about 1070 Planck cells. 
The surface’s storage capacity is thus about 1070 bits, which is about a billion, 
trillion, trillion, trillion, trillion terabytes, and so enormously exceeds anything 
you can buy. No one in Silicon Valley cares much about these theoretical 
constraints. 
 Yet, as a guide to how the universe works, the storage limitations are 
telling. Think of any region of space, such as the room in which I’m writing or 
the one in which you’re reading. Take a Wheelerian perspective and imagine 
that whatever happens in the region amounts to information processing—
information regarding how things are right now is transformed by the laws of 
physics into information regarding how they will be in a second or a minute or 
an hour. Since the physical processes we witness, as well as those by which 
we’re governed, seemingly take place within the region, it’s natural to expect 
that the information those processes carry is also found within the region. But 
the results just derived suggest an alternative view. For black holes, we found 



that the link between information and surface area goes beyond mere 
numerical accounting; there’s a concrete sense in which information is stored 
on their surfaces. Susskind and ’t Hooft stressed that the lesson should be 
general: since the information required to describe physical phenomena within 
any given region of space can be fully encoded by data on a surface that 
surrounds the region, then there’s reason to think that the surface is where the 
fundamental physical processes actually happen. Our familiar three-
dimensional reality, these bold thinkers suggested, would then be likened to a 
holographic projection of those distant two-dimensional physical processes. 
 If this line of reasoning is correct, then there are physical processes 
taking place on some distant surface that, much like a puppeteer pulls strings, 
are fully linked to the processes taking place in my fingers, arms, and brain as 
I type these words at my desk. Our experiences here, and that distant reality 
there, would form the most interlocked of parallel worlds. Phenomena in the 
two—I’ll call them Holographic Parallel Universes—would be so fully joined 
that their respective evolutions would be as connected as me and my shadow. 
 
The Fine Print 
 
 
 That familiar reality may be mirrored, or perhaps even produced, by 
phenomena taking place on a faraway, lower-dimensional surface ranks among 
the most unexpected developments in all of theoretical physics. But how 
confident should we be that the holographic principle is right? We are 
navigating a realm deep in theoretical territory, and relying almost exclusively 
on developments that have not been experimentally tested, so there is surely 
grounds for skepticism. There are many places where the argument could be 
forced off course. Do black holes really have nonzero entropy and nonzero 
temperature, and, if so, do the values conform to theoretical predictions? Is the 
information capacity of a region of space really determined by the amount of 
information that can be stored on a surface that surrounds it? And on such a 
surface, is one bit per Planck area really the limit? We think the answer to each 
of these questions is yes because of the coherent, consistent, and carefully 
constructed theoretical edifice into which the conclusions perfectly fit. But 
since none of these ideas has been subject to the experimenter’s scalpel, it is 



certainly possible (though in my view highly unlikely) that future advances 
will convince us that one or more of these essential intermediate steps are 
wrong. That could lay to waste the holographic idea. 
 Another important point is that throughout the discussion, we’ve spoken 
of a region of space, of a surface that surrounds it, and of the information 
content of each. But since our focus has been on entropy and the Second 
Law—both of which concern themselves primarily with the quantity of 
information in a given context—we’ve not elaborated on the details of how 
that information is physically realized or stored. When we talk about 
information residing on a sphere surrounding a region of space, what does that 
really mean? How does the information manifest itself? What form does it take? 
To what extent can we develop an explicit dictionary that translates from 
phenomena taking place on the boundary to those taking place in the interior? 
 Physicists have yet to articulate a general framework for addressing these 
questions. Given that gravity and quantum mechanics are both central to the 
reasoning, you might expect that string theory would provide a potent context 
for theoretical explorations. But when ’t Hooft first formulated the holographic 
concept, he doubted that string theory would be able to advance the subject, 
noting, “Nature is much more crazy at the Planck scale than even string 
theorists could have imagined.”13 Less than a decade later, string theory 
proved ’t Hooft wrong by proving him right. In a landmark paper, a young 
theorist showed that string theory provides an explicit realization of the 
holographic principle. 
 
String Theory and Holography 
 
 
 When I was called to the stage at the University of California, Santa 
Barbara, to give my talk at the annual international string theory conference in 
1998, I did something I’d never done before and suspect will never do again. I 
faced the audience, threw my right hand to my left shoulder and my left to my 
right shoulder, and then with both hands in succession grabbed the seat of my 
pants, bunny-hopped, and made a quarter turn, followed, thankfully, by 
audience laughter, which covered the three remaining steps necessary to reach 
the podium, where I began my talk. The crowd got the joke. At the banquet the 



night before, the conference participants had performed a song-and-dance 
celebrating—as only physicists can—a spectacular result of the Argentinian 
string theorist Juan Maldacena. With lyrics like “Black holes used to be a great 
mystery; / Now we use D-branes to compute D-entropy,” the crowd had 
reveled in a string theory version of the 1990s momentary dance craze, the 
Macarena—a touch more animated than Al Gore’s version at the Democratic 
National Convention, a touch less mellifluous than Los del Rio’s original one-
hit wonder, but second to none in passion. I was one of the few at the 
conference whose talk was not focused on Maldacena’s breakthrough, so when 
I took the stage the next morning I felt it only appropriate to preface my 
remarks with a personal gesture of appreciation. 
 Now, more than a decade later, many would agree that no work in string 
theory since is of comparable magnitude and influence. Of the numerous 
ramifications of Maldacena’s result, one is directly relevant to the line we’ve 
been following. In a particular hypothetical setting, Maldacena’s result 
realized explicitly the holographic principle, and in doing so provided the first 
mathematical example of Holographic Parallel Universes. Maldacena 
achieved this by considering string theory in a universe whose shape differs 
from ours but for the purpose at hand proves easier to analyze. In a precise 
mathematical sense, the shape has a boundary, an impenetrable surface that 
completely surrounds its interior. By zeroing in on this surface, Maldacena 
argued convincingly that everything taking place within the specified universe 
is a reflection of laws and processes acting themselves out on the boundary. 
 Although Maldacena’s method may not seem directly applicable to a 
universe with the shape of ours, his results are decisive because they 
established a mathematical proving ground in which ideas regarding 
holographic universes could be made explicit and investigated quantitatively. 
The results of such studies won over a great many physicists who had 
previously eyed the holographic principle with much misgiving, and thus set 
off an avalanche of research that has yielded thousands of articles and 
considerably deeper understanding. Most exciting of all, there’s now evidence 
that a link between these theoretical insights and physics in our universe can 
be forged. In the next few years, that link may very well allow the holographic 
ideas to be experimentally tested. 



 The rest of this and the next section will be devoted to explaining how 
Maldacena achieved this breakthrough; the material is the most difficult we 
will cover. I’ll begin with a short summary, a CliffsNotes version that doubles 
as a guilt-free pass to jump to the last section should, at any point, the material 
overwhelm your appetite for detail. 
 Maldacena’s inspired move was to invoke a new version of the duality 
arguments discussed in Chapter 5. Recall the branes—the “slice of bread” 
universes—introduced there. Maldacena considered, from two complementary 
perspectives, the properties of a tightly stacked collection of three-dimensional 
branes, as in Figure 9.4. One perspective, an “intrinsic” perspective, focused 
on strings that move, vibrate, and wiggle along the branes themselves. The 
other perspective, an “extrinsic” perspective, focused on how the branes 
influence their immediate environment gravitationally, much as the sun and 
the earth influence theirs. Maldacena argued that both perspectives describe 
one and the same physical situation, just from different vantage points. The 
intrinsic perspective involves strings moving on a stack of branes, while the 
extrinsic perspective involves strings moving through a region of curved 
spacetime that’s bounded by the stack of branes. By equating the two, 
Maldacena found an explicit link between physics taking place in a region and 
physics taking place on that region’s boundary; he found an explicit realization 
of holography. That’s the basic idea. 
 With more color, the story goes like this. 
 Consider, Maldacena says, a stack of three-branes, so closely spaced that 
they appear as a single monolithic slab—Figure 9.4—and study the behavior 
of strings moving in this environment. You’ll recall that there are two types of 
strings—open snippets and closed loops—and that the endpoints of open 
strings can move within and through branes but not off them, while closed 
strings have no ends and so can move freely through the entire spatial expanse. 
In the jargon of the field, we say that while open strings are confined to the 
branes, closed strings can move through the bulk of space. 
 Maldacena’s first step was to confine his mathematical attention to 
strings that have low energy—that is, ones that vibrate relatively slowly. 
Here’s why: the force of gravity between any two objects is proportional to the 
mass of each; the same is true for the force of gravity acting between any two 
strings. Strings that have low energy have small mass, and so they hardly 



respond to gravity at all. By focusing on low energy strings, Maldacena was 
thus suppressing gravity’s influence. That yielded a substantial simplification. 
In string theory, as we’ve seen (Chapter 5), gravity is transmitted from place to 
place by closed loops. Suppressing the force of gravity was therefore 
tantamount to suppressing the influence of closed strings on anything they 
might encounter—most notably, the open string snippets living on the brane 
stack. By ensuring that the two kinds of strings, open snippets and closed loops, 
wouldn’t affect each other, Maldacena was ensuring that they could be 
analyzed independently. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 Figure 9.4 A collection of closely spaced three-branes with open strings 
confined to the brane surfaces, and closed strings moving through the “bulk.” 
 
 Maldacena then changed gears and suggested thinking about the very 
same situation from a different perspective. Rather than treat the three-branes 
as a substrate that supports the motion of open strings, he encouraged viewing 
them as a single object, which has its own intrinsic mass and hence warps 
space and time in its vicinity. Maldacena was fortunate that previous research, 
by a number of physicists, had laid the groundwork for this alternative 



perspective. The earlier works had established that as you stack more and more 
branes together, their collective gravitational field grows ever stronger. 
Ultimately, the slab of branes behaves much like a black hole, but one that’s 
brane-shaped, and so is called a black brane. As with a more ordinary black 
hole, if you get too close to a black brane, you can’t escape. And, as is also the 
case with an ordinary black hole, if you stay far away but are watching 
something approach a black brane, the light you’ll receive will be exhausted 
from its having fought against the black brane’s gravity. This will make the 
object appear to have ever less energy and to be moving ever slower.14 
 From this second perspective, Maldacena again focused on the low-
energy features of a universe containing such a black slab. Much as he had 
when working on the first perspective, he realized that the low-energy physics 
involved two components that could be analyzed independently. Slowly 
vibrating closed strings, moving anywhere in the bulk of space, are the most 
obvious low-energy carriers. The second component relies on the presence of 
the black brane. Imagine you are far from the black brane and have in your 
possession a closed string that’s vibrating with an arbitrarily large amount of 
energy. Then, imagine lowering the string toward the event horizon while you 
maintain a safe distance. As recalled above, the black brane will make the 
string’s energy appear ever lower; the light you’ll receive will make the string 
look as though it’s in a slow-motion movie. The second low-energy carriers 
are thus any and all vibrating strings that are sufficiently close to the black 
brane’s event horizon. 
 Maldacena’s final move was to compare the two perspectives. He noted 
that because they describe the same brane stack, only from different points of 
view, they must agree. Each description involves low-energy closed strings 
moving through the bulk of space, so this part of the agreement is manifest. 
But the remaining part of each description must also agree. 
 And that proves astonishing. 
 The remaining part of the first description consists of low-energy open 
strings moving on the three-branes. We recall from Chapter 4 that low-energy 
strings are well described by point particle quantum field theory, and that is the 
case here. The particular kind of quantum field theory involves a number of 
sophisticated mathematical ingredients (and it has an ungainly characterization: 
conformally invariant supersymmetric quantum gauge field theory), but two 



vital characteristics are readily understood. The absence of closed strings 
ensures the absence of the gravitational field. And, because the strings can 
move only on the tightly sandwiched three-dimensional branes, the quantum 
field theory lives in three spatial dimensions (in addition to the one dimension 
of time, for a total of four spacetime dimensions). 
 The remaining part of the second description consists of closed strings, 
executing any vibrational pattern, as long as they are close enough to the black 
branes’ event horizon to appear lethargic—that is, to appear to have low 
energy. Such strings, although limited in how far they stray from the black 
stack, still vibrate and move through nine dimensions of space (in addition to 
one dimension of time, for a total of ten spacetime dimensions). And because 
this sector is built from closed strings, it contains the force of gravity. 
 However different the two perspectives might seem, they’re describing 
one and the same physical situation, so they must agree. This leads to a 
thoroughly bizarre conclusion. A particular nongravitational, point particle 
quantum field theory in four spacetime dimensions (the first perspective) 
describes the same physics as strings, including gravity, moving through a 
particular swath of ten spacetime dimensions (the second perspective). This 
would seem as far-fetched as claiming ….. Well, honestly, I’ve tried, and I 
can’t come up with any two things in the real world more dissimilar than these 
two theories. But Maldacena followed the math, in the manner we’ve outlined, 
and ran smack into this conclusion. 
 The sheer strangeness of the result—and the audacity of the claim—isn’t 
lessened by the fact that it takes but a moment to place it within the line of 
thought developed earlier in this chapter. As schematically illustrated in Figure 
9.5, the gravity of the black brane slab imparts a curved shape to the ten-
dimensional spacetime swath in its vicinity (the details are secondary, but the 
curved spacetime is called anti–De Sitter five-space times the five sphere); the 
black brane slab is itself the boundary of this space. And so, Maldacena’s 
result is that string theory within the bulk of this spacetime shape is identical to 
a quantum field theory living on its boundary.15 
 This is holography come to life. 
 Maldacena had built a self-contained mathematical laboratory in which, 
among other things, physicists could explore in concrete detail a holographic 
realization of physical law. Within a few months, two papers, one by Edward 



Witten and one by Steven Gubser, Igor Klebanov, and Alexander Polyakov, 
supplied the next level of understanding. They established a precise 
mathematical dictionary for translating between the two perspectives: given a 
physical process on the brane boundary, the dictionary showed how it would 
appear in the bulk interior, and vice versa. In a hypothetical universe, then, the 
dictionary rendered the holographic principle explicit. On the boundary of this 
universe, information is embodied by quantum fields. When the information is 
translated by the mathematical dictionary, it reads as a story of stringy 
phenomena happening in the universe’s interior. 
  

 
 
 Figure 9.5A schematic illustration of the duality between string theory 
operating in the interior of a particular spacetime and quantum field theory 
operating on the boundary of that spacetime. 
 
 
  
 



 
 Figure 9.6 The holographic equivalence applied to a black hole in the 
bulk of spacetime yields a hot bath of particles and radiation on the region’s 
boundary. 
 
 
 The dictionary itself renders the holographic metaphor all the more 
appropriate. An everyday hologram bears no resemblance to the three-
dimensional image it produces. On its surface appear only various lines, arcs, 
and swirls etched into the plastic. Yet a complex transformation, carried out 
operationally by shining a laser through the plastic, turns those markings into a 
recognizable three-dimensional image. Which means that the plastic hologram 
and the three-dimensional image embody the same data, even though the 
information in one is unrecognizable from the perspective of the other. 
Similarly, examination of the quantum field theory on the boundary of 
Maldacena’s universe shows that it bears no obvious resemblance to the string 
theory inhabiting the interior. If a physicist were presented with both theories, 
not being told of the connections we’ve now laid out, he or she would more 



than likely conclude that they were unrelated. Nevertheless, the mathematical 
dictionary linking the two—functioning as a laser does for ordinary 
holograms—makes explicit that anything taking place in one has an 
incarnation in the other. At the same time, examination of the dictionary 
reveals that just as with a real hologram, the information in each appears 
scrambled on translation into the other’s language. 
 As a particularly impressive example, Witten investigated what an 
ordinary black hole in the interior of Maldacena’s universe would look like 
from the perspective of the boundary theory. Remember, the boundary theory 
does not include gravity, and so a black hole necessarily translates into 
something very unlike a black hole. Witten’s result showed that much as the 
Wizard of Oz’s frightening visage was produced by an ordinary man, a 
rapacious black hole is the holographic projection of something equally 
ordinary: a bath of hot particles in the boundary theory (Figure 9.6). Like a real 
hologram and the image it generates, the two theories—a black hole in the 
interior and a hot quantum field theory on the boundary—bear no apparent 
resemblance to each other, and yet they embody identical information.* 
 In Plato’s parable of the cave, our senses are privy only to a flattened, 
diminished version of the true, more richly textured, reality. Maldacena’s 
flattened world is very different. Far from being diminished, it tells the full 
story. It’s a profoundly different story from the one we’re used to. But his 
flattened world may well be the primary narrator. 
 
Parallel Universes or Parallel Mathematics? 
 
 
 Maldacena’s result, and the many others it has spawned in the years since, 
is deemed conjectural. Because the mathematics is tremendously difficult, 
fashioning an airtight argument remains elusive. But the holographic ideas 
have been subject to a great many stringent mathematical tests; having come 
through unscathed, they’ve been propelled into mainstream thought among 
physicists searching for the deep roots of natural laws. 
 One factor contributing to the difficulty of rigorously proving that the 
boundary and bulk worlds are disguised versions of one another highlights 
why the result, if true, is so powerful. I described in Chapter 5 how physicists 



more often than not rely on approximation techniques, the perturbative 
methods that I outlined (recall the lottery example with Ralph and Alice). I 
also emphasized that such methods are accurate only if the relevant coupling 
constant is a small number. In analyzing the relationship between quantum 
field theory on the boundary and string theory in the bulk, Maldacena realized 
that when the coupling of one theory was small, that of the other was large, 
and vice versa. The natural test, and a possible means of proving that the two 
theories are secretly identical, is to perform independent calculations in each 
theory and then check for equality. But this is difficult to do, since when 
perturbative methods work for one, they fail for the other.16 
 However, if you accept Maldacena’s more abstract argument, as outlined 
in the previous section, the perturbative vice becomes a calculational virtue. 
Much as we found with the string dualities in Chapter 5, the bulk-boundary 
dictionary translates daunting calculations, beset by a large coupling, in one 
framework into straightforward calculations, with a small coupling in the other. 
In recent years, this has been parlayed into results that may be experimentally 
testable. 
 At the Relativistic Heavy Ion Collider (RHIC) in Brookhaven, New York, 
gold nuclei are slammed into each other at just shy of light speed. Because the 
nuclei contain many protons and neutrons, the collisions create a commotion 
of particles that can be more than 200,000 times as hot as the sun’s core. 
That’s hot enough to melt the protons and neutrons into a fluid of quarks and 
the gluons that act between them. Physicists have exerted great effort to 
understand this fluidlike phase, called the quark gluon plasma, because it’s 
likely that matter briefly assumed this form soon after the big bang. 
 The challenge is that the quantum field theory (quantum 
chromodynamics) describing the hot soup of quarks and gluons has a large 
value for its coupling constant, and that compromises the accuracy of 
perturbative methods. Ingenious techniques have been developed to skirt this 
hurdle, but experimental measurements continue to controvert some of the 
theoretical results. For example, as any fluid flows—be it water, molasses, or 
the quark gluon plasma—each layer of the fluid exerts a drag force on the 
layers flowing above and below. The drag force is known as shear viscosity. 
Experiments at RHIC measured the shear viscosity of the quark gluon plasma, 



and the results are far smaller than those predicted by the perturbative quantum 
field theory calculations. 
 Here’s a possible way forward. In introducing the holographic principle, 
the perspective I’ve taken is to imagine that everything we experience lies in 
the interior of spacetime, with the unexpected twist being processes, mirroring 
those experiences, which take place on a distant boundary. Let’s reverse that 
perspective. Imagine that our universe—or, more precisely, the quarks and 
gluons in our universe—lives on the boundary, and so that’s where the RHIC 
experiments take place. Now invoke Maldacena. His result shows that the 
RHIC experiments (described by quantum field theory) have an alternative 
mathematical description in terms of strings moving in the bulk. The details 
are involved but the power of the rephrasing is immediate: difficult 
calculations in the boundary description (where the coupling is large) are 
translated into easier calculations in the bulk description (where the coupling is 
small).17 
 Pavel Kovtun, Andrei Starinets, and Dam Son did the math, and the 
results they found come impressively close to the experimental data. This 
pioneering work has motivated an army of theoreticians to undertake many 
other string theory calculations in an effort to make contact with RHIC 
observations, driving forward a vigorous interplay between theory and 
experiment—a welcome novelty for string theorists. 
 Bear in mind that the boundary theory doesn’t model our universe fully 
since, for example, it doesn’t contain the gravitational force. This doesn’t 
compromise contact with RHIC data because in those experiments the particles 
have such small mass (even when traveling near light speed) that the 
gravitational force plays virtually no role. But it does make clear that in this 
application string theory is not being used as a “theory of everything”; instead, 
string theory provides a new calculational tool for breaking through obstacles 
that have impeded more traditional methods. Conservatively, analyzing quarks 
and gluons by using a higher dimensional theory of strings can be viewed as a 
potent string-based mathematical trick. Less conservatively, one can imagine 
that the higher dimensional string description is, in some yet to be understood 
way, physically real. 
 Regardless of perspective, conservative or not, the resulting confluence 
of mathematical results with experimental observations is extremely 



impressive. I am not a fan of hyperbole, but I view these developments as 
among the most exciting advances in decades. Mathematical manipulations 
that utilize strings moving through a particular ten-dimensional spacetime tell 
us something about quarks and gluons living in a four-dimensional 
spacetime—and the “something” the calculations tell us seems to be borne out 
by experiments. 
 
Coda: The Future of String Theory 
 
 
 The developments we’ve covered in this chapter transcend evaluations of 
string theory. From Wheeler’s emphasis on analyzing the universe in terms of 
information, to the recognition that entropy is a measure of hidden information, 
to the reconciliation between the Second Law of Thermodynamics and black 
holes, to the realization that black holes store entropy on their surface, to the 
understanding that black holes set a maximum for the amount of information 
that can occupy a given region of space, we’ve followed a winding road across 
many decades and traversed an intricate web of results. The journey has been 
full of remarkable insights, and has led us to a new unifying idea—the 
holographic principle. The principle, as we’ve seen, suggests that the 
phenomena we witness are mirrored on a thin, distant bounding surface. 
Looking to the future, I suspect that the holographic principle will be a beacon 
for physicists well into the twenty-first century. 
 That string theory embraces the holographic principle, and provides 
concrete examples of holographic parallel worlds, is a testament to how 
cutting-edge developments are coming together in a powerful synthesis. That 
these examples have provided the basis for explicit calculations, some of 
whose results can be compared with results from real-world experiments, is a 
gratifying step toward making contact with observable reality. But within 
string theory itself, there’s a broader frame within which these developments 
should be seen. 
 For nearly thirty years after the initial discovery of string theory, 
physicists lacked a full mathematical definition of the theory. Early string 
theorists laid out the essential ideas of vibrating strings and extra dimensions, 
but even after decades of further work, the mathematical foundations of the 



theory remained approximate and thus incomplete. Maldacena’s insight 
represents major progress. The species of quantum field theory Maldacena 
identified as living on the boundary is among the mathematically best 
understood of those particle physicists have studied since the middle of the 
twentieth century. It does not include gravity, and that’s a big plus since, as 
we’ve seen, trying to bring general relativity directly into quantum field theory 
is like setting a campfire in a gunpowder factory. We’ve now learned that this 
mathematically friendly, nongravitational quantum field theory generates 
string theory—a theory that contains gravity—holographically. Operating way 
out on the boundary of a universe with the specific shape schematically 
illustrated in Figure 9.5, this quantum field theory embodies all physical 
features, processes, and interactions of strings that move within the interior, a 
link made explicit through the dictionary translating phenomena between the 
two. And since we have a sure-footed mathematical definition of the boundary 
quantum field theory, we can use it as a mathematical definition of string 
theory, at least for strings moving within this spacetime shape. The 
holographic parallel universes may thus be more than a potential outgrowth of 
fundamental laws; they may be part of the very definition of the fundamental 
laws.18 
 When I introduced string theory in Chapter 4, I noted that it fit the 
venerable pattern of providing a new approach to nature’s laws that, 
nevertheless, did not erase past theories. The results we’ve now described take 
this observation to a whole different level. String theory doesn’t just reduce to 
quantum field theory in certain circumstances. Maldacena’s result suggests 
that string theory and quantum field theory are equivalent approaches 
expressed in different languages. The translation between them is complicated, 
which is why it took more than forty years for this connection to come to light. 
But if Maldacena’s insights are fully valid, as all available evidence attests, 
string theory and quantum field theory may very well be two sides of the same 
coin. 
 Physicists are working hard to generalize the methods so they might 
apply to a universe with any shape; if string theory is right, that would include 
ours. But even with the current limitations, finally having a firm formulation of 
a theory we’ve worked on for many years is an essential foundation for future 



progress. It is surely enough to make many a physicist sing and dance. 
 
 *This loose definition will suffice for now; in a moment, I’ll be more 
precise. 
 *In Chapter 3, we discussed how the energy embodied by a gravitational 
field can be negative; this energy, however, is potential energy. The energy 
we’re discussing here, kinetic energy, comes from the electron’s mass and its 
motion. In classical physics this has to be positive. 
 *Besides flipping the coins, you could also swap around their locations, 
but for the purpose of illustrating the main ideas, we can safely ignore this 
complication. 
 *If you’re interested in the full story, I highly recommend Leonard 
Susskind’s excellent book The Black Hole Wars. 
 *The reader familiar with black holes will note that even without the 
quantum considerations that lead to Hawking radiation, the two perspectives 
would differ with regards to the rate of time’s passage. Hawking radiation 
makes the perspectives yet more distinct. 
 *There is a related story that I’ve not told in this chapter, to do with a 
long-standing debate regarding whether black holes require a modification of 
quantum mechanics—whether, by swallowing information, they upend the 
ability to fully evolve probability waves forward in time. A one-sentence 
summary is that Witten’s result, by establishing an equivalence between a 
black hole and a physical situation that does not destroy information (a hot 
quantum field theory), supplied conclusive evidence that all information that 
falls into a black hole is ultimately available to the outside world. Quantum 
mechanics needs no modification. This application of Maldacena’s discovery 
also establishes that the boundary theory provides a full description of the 
information (entropy) stored on a black hole’s surface. 
 
 
  



CHAPTER 10 
 
 
Universes, Computers, and Mathematical Reality 
 
 
The Simulated and the Ultimate Multiverses 
 
 
 The parallel universe theories we considered in previous chapters 
emerged from mathematical laws developed by physicists in their pursuit of 
nature’s deepest workings. The credence accorded one set of laws or another 
varies widely—quantum mechanics is viewed as established fact; inflationary 
cosmology has observational support; string theory is thoroughly 
speculative—as does the type and logical necessity of the parallel worlds 
associated with each. But the pattern is clear. When we hand over the steering 
wheel to the mathematical underpinnings of the major proposed physical laws, 
we’re driven time and again to some version of parallel worlds. 
 Let’s now change tack. What happens if we seize the wheel? Can we 
humans manipulate the cosmic unfolding to volitionally create universes 
parallel to our own? If you believe, as I do, that the behavior of living beings is 
dictated by nature’s laws, then you may see this as no change of tack at all but 
simply as a narrowing of perspective, to the impact of physical law when 
funneled through human activity. This line of thought quickly engages thorny 
issues such as the age-old debate about determinism and free will, but that’s 
not a direction in which I want to head. Rather, my question is this: With the 
same sense of intent and control you feel when you choose a movie or a meal, 
might you create a universe? 
 The question sounds outlandish. And it is. I’ll tip you off now that in 
addressing it we will find ourselves in territory even more speculative than 
what we’ve already covered, and considering where we’ve been, that says a lot. 
But let’s have a little fun and see where it takes us. Let me lay out the 
perspective I’ll take. In contemplating universe creation, I’m less interested in 
practical constraints than in the possibilities made available by the laws of 
physics. So, when I speak of “you” creating a universe, what I really mean is 



you, or a distant descendant, or an army of such descendants possibly 
millennia down the road. These present or future humans will still be subject to 
the laws of physics, but I will imagine that they’re in possession of arbitrarily 
advanced technologies. I will also consider the creation of two distinct types of 
universes. The first type comprises the usual universes, ones that encompass 
an expanse of space and are filled with various forms of matter and energy. 
The second kind is less tangible: virtual computer-generated universes. The 
discussion will also naturally forge a link to a third multiverse proposal. This 
variety does not originate from thinking about universe creation, per se, but 
instead addresses the question of whether mathematics is “real” or is instead 
created by the mind. 
 
To Create a Universe 
 
 
 Despite uncertainties in delineating the composition of the universe—
What is the dark energy? What is the full list of fundamental particulate 
ingredients?—scientists are confident that were you to weigh everything that’s 
within our cosmic horizon, the tally would come in at about 10 billion billion 
billion billion billion billion grams. If the contents weighed significantly more 
or less than this, their gravitational influence on the cosmic microwave 
background radiation would cause the splotches in Figure 3.4 to be much 
larger or smaller, and that would conflict with refined measurements of their 
angular size. But the precise weight of the observable universe is secondary; 
my point is that it’s huge. So huge that the notion of us humans creating 
another such realm seems utterly fatuous. 
 Using big bang cosmology as our blueprint for universe formation, we 
find no guidance on how to clear this hurdle. In the standard big bang theory, 
the observable universe was ever-smaller at ever-earlier times, but the 
stupendous quantities of matter and energy we now measure were always 
present; they were just squeezed into an ever-smaller volume. If you want a 
universe like the one we see today, you have to start with raw material whose 
mass and energy are those we see today. The big bang theory takes such raw 
material as an unexplained given.1 



 In broad strokes, then, the big bang’s instructions for creating a universe 
like ours require that we gather a gargantuan amount of mass and compress it 
to a fantastically small size. But having achieved that, however improbable, we 
would face another challenge. How do we ignite the bang? It’s an obstacle that 
becomes only more daunting when we recall that the big bang is not an 
explosion that takes place within a static region of space; the big bang propels 
the expansion of space itself. 
 If the big bang theory were the pinnacle of cosmological thought, the 
scientific pursuit of universe creation would stop here. But it’s not. We’ve seen 
that the big bang theory has given way to the more robust inflationary 
cosmology, and inflation offers a strategy for going forward. With a powerful 
outward burst of spatial expansion being its trademark, the inflationary theory 
puts a bang in the big bang, and a big one at that; according to inflation, an 
anti-gravity blast is what set the outward expansion of space in motion. Of 
equal importance, as we’ll now see, inflation establishes that vast amounts of 
matter can be created from the most modest of seeds. 
 Recall from Chapter 3 that in the inflationary approach, a universe like 
ours—a hole in the cosmic Swiss cheese—formed when the inflaton’s value 
rolled down its potential energy curve, bringing to a close the phenomenal 
outward surge in our vicinity. As the inflaton’s value dropped, the energy it 
contained was transformed into a bath of particles uniformly filling our bubble. 
That’s where the matter we see originated. Progress, for sure, but the insight 
raises the next question: What’s the source of the inflaton’s energy? 
 It comes from gravity. Remember that inflationary expansion is much 
like viral replication: a high-valued inflaton field drives the region it inhabits 
to rapidly grow, and in doing so creates an increasingly large spatial volume 
that is itself infused with a high-valued inflaton field. And because a uniform 
inflaton field contributes a constant energy per unit volume, the larger the 
volume it fills, the more energy it embodies. The driving force behind the 
expansion is gravity—in its repulsive guise—and so gravity is the source of 
the ever-larger energy the region contains. 
 Inflationary cosmology can thus be thought of as creating a sustained 
energy flow from the gravitational field to the inflaton field. This might seem 
like one more passing of the energy buck—where does gravity get its 
energy?—but the situation is a good deal better than that. Gravity is different 



from the other forces because where there’s gravity, there’s a virtually 
unlimited reservoir of energy. It’s a familiar idea expressed in unfamiliar 
language. When you jump off a cliff, your kinetic energy—the energy of your 
motion—gets ever larger. Gravity, the force driving your motion, is the 
energy’s source. In any realistic situation, you will hit the ground, but in 
principle you could fall arbitrarily far, tumbling down an increasingly long 
rabbit hole, while your kinetic energy grows ever larger. The reason gravity 
can supply such unlimited quantities of energy is that, much like the U.S. 
Treasury, it has no fear of debt. As you fall and your energy gets ever more 
positive, gravity compensates by its energy becoming ever more negative. You 
know intuitively that the gravitational energy is negative because to climb out 
of the rabbit hole, you need to exert positive energy—pushing with your legs, 
pulling with your arms; that’s how you repay the energy debt gravity incurred 
on your behalf.2 
 The essential conclusion is that as an inflaton-filled region rapidly grows, 
the inflaton extracts energy from the gravitational field’s inexhaustible 
resources, resulting in the region’s energy rapidly growing too. And because 
the inflaton field supplies the energy that’s converted into ordinary matter, 
inflationary cosmology—unlike the big bang model—does not need to posit 
the raw material for generating planets, stars, and galaxies. Gravity is matter’s 
sugar daddy. 
 The only independent energy budget required by inflationary cosmology 
is what’s needed to create an initial inflationary seed, a small spherical nugget 
of space filled with a high-valued inflaton field that gets the inflationary 
expansion rolling in the first place. When you put in numbers, the equations 
show that the nugget need be only about 10–26 centimeters across and filled 
with an inflaton field whose energy, when converted to mass, would weigh 
less than ten grams.3 Such a tiny seed would, faster than a flash, undergo 
spectacular expansion, growing far larger than the observable universe while 
harboring ever-increasing energy. The inflaton’s total energy would quickly 
soar beyond what’s necessary to generate all the stars in all the galaxies we 
observe. And so, with inflation in the cosmological driver’s seat, the 
impossible starting point of the big bang’s recipe—gather more than 1055 
grams and squeeze the whole lot into an infinitesimally small speck—is 
radically transformed. Gather ten grams of inflaton field and squeeze it into a 



lump that’s about 10–26 centimeters across. That’s a lump you could put in 
your wallet. 
 This approach, nevertheless, presents daunting challenges. For one thing, 
the inflaton remains a purely hypothetical field. Cosmologists freely 
incorporate the inflaton field into their equations, but unlike with electron and 
quark fields, there is as yet no evidence that the inflaton field exists. For 
another, even if the inflaton proves real, and even if we one day develop the 
means to manipulate it much as we do the electromagnetic field, still the 
density of the requisite inflaton seed would be enormous: about 1067 times that 
of an atomic nucleus. Although the seed would weigh less than a handful of 
popcorn, the compressive force we would need to apply is trillions and trillions 
of times beyond what we can now muster. 
 But this is just the kind of technological hurdle that we’re imagining an 
arbitrarily advanced civilization might one day overcome. So, if our distant 
descendants one day harness the inflaton field and develop extraordinary 
compressors capable of producing such dense nuggets, will we have attained 
the status of universe creators? And, as we contemplate such a step toward 
Olympus, should we worry that if we artificially set off new inflationary 
realms, our own corner of space may be swallowed by the ballooning expanse? 
Alan Guth and a number of collaborators investigated these questions in a 
series of papers, and found both good news and bad. Start with the last 
question, as that’s where we’ll find the good news. 
 Guth, together with Steven Blau and Eduardo Guendelman, showed that 
there’s no need to be concerned about an artificial phase of inflationary 
expansion ripping through our existing environment. The reason has to do with 
pressure. If an inflationary seed were created in the laboratory, it would harbor 
the inflaton field’s characteristic positive energy and negative pressure, but it 
would be surrounded by ordinary space in which the inflaton field’s value, and 
its pressure, would be zero (or nearly so). 
 We usually don’t ascribe much power to zero, but in this case zero makes 
all the difference. Zero pressure is larger than negative pressure, and so the 
pressure outside the seed would be larger than the pressure inside. This would 
subject the seed to a net external force pressing upon it, much like what your 
eardrums experience when deep-sea diving. It is the pressure differential is 



powerful enough to prevent the seed from expanding into the surrounding 
environment. 
 But this does not prevent the inflaton’s drive to expand. If you blow air 
into a balloon while tightly clasping its surface, the balloon will bubble out 
from between your hands. The inflaton seed can behave similarly. The seed 
can generate a new expanding spatial realm that sprouts from the original 
spatial environment, as illustrated by the little growing sphere in Figure 10.1. 
The calculations show that once the new expanding realm reaches a critical 
size, its umbilical cord to the parent space severs, as in the final image of 
Figure 10.1, and an independent inflating universe is born. 
 As enticing as the process might be—the artificial creation of a new 
universe—the view from the laboratory wouldn’t live up to the advance billing. 
It’s a relief that the inflationary bubble would not gobble up the surrounding 
environment, but the flip side is that there would be little evidence of the 
creation itself. A universe that expands by generating new space, which then 
detaches from ours, is a universe we can’t see. Indeed, as the new universe 
pinches off, its sole residue would be a deep gravitational well—you can see 
this in the last image of Figure 10.1—which would appear to us as a black hole. 
And since we have no capacity to see beyond a black hole’s edge, we wouldn’t 
even be assured that our experiment had been a success; without access to the 
new universe, we would have no means of establishing observationally that the 
universe had been created at all. 
  
  



 Figure 10.1 Because of the greater pressure in the ambient environment, 
an inflationary seed is forced to expand into newly formed space. As the 
bubble universe grows, it detaches from the parent environment, yielding a 
separate, expanding spatial domain. To someone in the ambient environment, 
the process looks like the formation of a black hole. 
 
 Physics protects us, but the price for safety is total separation from our 
handiwork. And that’s the good news. 
 The bad news for aspiring universe creators is a more sobering result 
derived by Guth and his MIT colleague Edward Farhi. Their careful 
mathematical treatment showed that the sequence depicted in Figure 10.1 
requires an additional ingredient. Much as some balloons require that you give 
a strong initial burst of air, after which they more easily inflate, Guth and Farhi 
found that the nascent universe in Figure 10.1 needs a strong kick-start to get 
the inflationary expansion off and running. So strong that there’s only one 
entity that can provide it: a white hole. A white hole, the opposite of a black 
hole, is a hypothetical object that spews matter out rather than drawing it in. 
This requires conditions so extreme that known mathematical methods break 
down (much as is the case at the center of a black hole); suffice it to say, no 
one anticipates generating white holes in the laboratory. Ever. Guth and Farhi 
found a fundamental wrench in the universe-creation works. 
 A number of research groups have since suggested possible ways of 
skirting the problem. Guth and Farhi, joined by Jemal Guven, found that by 
creating the inflationary seed through a quantum tunneling process (similar to 
what we discussed in the context of the Landscape Multiverse) the white hole 
singularity can be avoided; but the probability for the quantum tunneling 
process to happen is so fantastically small that there’s essentially no chance of 



its happening over timescales that anyone would consider worth contemplating. 
A group of Japanese physicists, Nobuyuki Sakai, Ken-ichi Nakao, Hideki 
Ishihara, and Makoto Kobayashi, showed that a magnetic monopole—a 
hypothetical particle that has either the north pole or the south pole of a 
standard bar magnet—might catalyze inflationary expansion, also avoiding 
singularities; but after nearly forty years of intense searching, no one has yet 
found a single one of these particles.* 
 As of today, then, the summary is that the door to creating new universes 
remains open, but only barely. Given the proposals’ heavy reliance on 
hypothetical elements, future developments may well shut this door 
permanently. But if they don’t—or, perhaps, if subsequent work makes a 
stronger case for the possibility of universe creation—would there be 
motivation to proceed? Why create a universe if there’s no way to see it, or 
interact with it, or even know for sure that it was created? Andrei Linde, 
famous not just for his deep cosmological insights but also for his flair for 
mock drama, has noted that the allure of playing god would simply prove 
irresistible. 
 I don’t know that it would. Admittedly, it would be thrilling to have so 
thoroughly grasped nature’s laws that we could reenact the most pivotal of all 
events. I suspect, however, that by the time we can seriously consider universe 
creation—if that time ever comes—our scientific and technical advancements 
would have made available so many other spectacular undertakings, whose 
results we could not just imagine but truly experience, that the intangible 
nature of universe creation would make it much less interesting. 
 The appeal would surely be stronger were we to learn how to 
manufacture universes that we could see or even interact with. For “real” 
universes, in the usual sense of a universe constituted from the standard 
ingredients of space, time, matter and energy, we don’t yet have any strategy 
for doing so that’s compatible with the laws of physics as we currently 
understand them. 
 But what if we set aside real universes and consider virtual ones? 
 
  



The Stuff of Thought 
 
 
 A couple of years ago, I had a bout of feverish flu that came with 
hallucinations far more vivid than any ordinary dream or nightmare. In one 
that has stayed with me, I’d find myself with a group of people sitting in a 
sparse hotel room, locked in a hallucination within the hallucination. I was 
absolutely certain that days and weeks went by—until I was thrust back into 
the primary hallucination, where I’d learn, shockingly, that hardly any time 
had passed at all. Each time I felt myself drifting back to the room, I resisted 
strenuously, since I knew from previous iterations that once there I’d be 
swallowed whole, unable to recognize the realm as false until I found myself 
back in the primary hallucination, where I’d again be distraught to learn that 
what I’d thought real was illusory. Periodically, when the fever subsided, I’d 
pull out one level further, back to ordinary life, and realize that all those 
translocations had been taking place within my own swirling mind. 
 I don’t usually learn much from having a fever. But this experience 
added immediacy to something which, to that point, I’d largely understood 
only in the abstract. Our grip on reality is more tenuous than day-today life can 
lead us to believe. Modify normal brain function just a bit, and the bedrock of 
reality may suddenly shift; though the outside world remains stable, our 
perception of it does not. This raises a classic philosophical question. Since all 
of our experiences are filtered and analyzed by our respective brains, how sure 
are we that our experiences reflect what’s real? In the framing philosophers 
like to use: How do you know you’re reading this sentence, and not floating in 
a vat on a distant planet, with alien scientists stimulating your brain to produce 
the thoughts and experiences you deem real? 
 These issues are central to epistemology, a philosophical subfield that 
asks what constitutes knowledge, how we acquire it, and how sure we are that 
we have it. Popular culture has brought these scholarly pursuits to a wide 
audience in films such as The Matrix, The Thirteenth Floor, and Vanilla Sky, 
tussling with them in entertaining and thought-provoking ways. So, in looser 
language, the question we’re asking is: How do you know you’re not hooked 
into the Matrix? 



 The bottom line is that you can’t know for sure. You engage the world 
through your senses, which stimulate your brain in ways your neural circuitry 
has evolved to interpret. If someone artificially stimulates your brain so as to 
elicit electrical crackles exactly like those produced by eating pizza, reading 
this sentence, or skydiving, the experience will be indistinguishable from the 
real thing. Experience is dictated by brain processes, not by what activates 
those processes. 
 Going a step further, we can consider dispensing with the sloppiness of 
biological material altogether. Might all your thoughts and experiences be 
nothing more than a simulation that leverages software and circuitry 
sufficiently elaborate to mimic ordinary brain function? Are you convinced of 
the reality of flesh, blood, and the physical world, when actually your 
experience is only a crowd of electrical impulses firing through a hyper-
advanced supercomputer? 
 An immediate challenge in considering such scenarios is that they easily 
set off a spiraling skeptical collapse; we wind up trusting nothing, not even our 
powers of deductive reasoning. My first response to questions like the ones 
just posed is to work out how much computer power you’d need to stand a 
chance of simulating a human brain. But if I am indeed part of such a 
simulation, why should I believe anything I read in neurobiology texts? The 
books would be simulations too, written by simulated biologists, whose 
findings would be dictated by the software running the simulation and thus 
could easily be irrelevant to the workings of “real” brains. The very notion of a 
“real” brain might itself be computer-generated artifice. Once you can’t trust 
your knowledge base, reality quickly sails to sea. 
 We’ll return to these concerns, but I don’t want them to sink us—at least, 
not yet. So, for the time being, let’s drop anchor. Imagine that you are real 
flesh and blood, and so am I, and that everything you and I take to be real, in 
the everyday sense of the term, is real. With all that assumed, let’s take up the 
question of computers and brainpower. What, roughly, is the processing speed 
of the human brain, and how does it compare with the capacity of computers? 
 Even if we are not stuck in a skeptical morass, this is a difficult question. 
Brain function is largely an uncharted territory. But just to get a glimpse of the 
terrain, however foggy, consider some numbers. The human retina, a thin slab 
of 100 million neurons that’s smaller than a dime and about as thick as a few 



sheets of paper, is one of the best-studied neuronal clusters. The robotics 
researcher Hans Moravec has estimated that for a computer-based retinal 
system to be on a par with that of humans, it would need to execute about a 
billion operations each second. To scale up from the retina’s volume to that of 
the entire brain requires a factor of roughly 100,000; Moravec suggests that 
effectively simulating a brain would require a comparable increase in 
processing power, for a total of about 100 million million (1014) operations per 
second.4 Independent estimates based on the number of synapses in the brain 
and their typical firing rates yield processing speeds within a few orders of 
magnitude of this result, about 1017 operations per second. Although it’s 
difficult to be more precise, this gives a sense of the numbers that come into 
play. The computer I’m now using has a speed that’s about a billion operations 
per second; today’s fastest supercomputers have a peak speed of about 1015 
operations per second (a statistic that no doubt will quickly date this book). If 
we use the faster estimate for brain speed, we find that a hundred million 
laptops, or a hundred supercomputers, approach the processing power of a 
human brain. 
 Such comparisons are likely naïve: the mysteries of the brain are 
manifold, and speed is only one gross measure of function. But most everyone 
agrees that one day we will have raw computing capacity equal to, and likely 
far in excess of, what biology has provided. Futurists contend that such 
technological leaps will yield a world so far beyond familiar experience that 
we lack the capacity to imagine what it will be like. Invoking an analogy with 
phenomena that lie outside the bounds of our most refined physical theories, 
they call this visionary roadblock a singularity. One broad-brush prognosis 
holds that the surpassing of brainpower by computers will completely blur the 
boundary between humans and technology. Some anticipate a world run 
rampant with thinking and feeling machines, while those of us still based in 
old-fashioned biology routinely upload our brain content, safely storing 
knowledge and personalities in silico, complete with backup drives, for 
unlimited durations. 
 This vision may well be hyperbolic. There’s little dispute regarding 
projections of computer power, but the obvious unknown is whether we will 
ever leverage such power into a radical fusion of mind and machine. It’s a 
modern-day question with ancient roots; we’ve been thinking about thinking 



for thousands of years. How is it that the external world generates our internal 
responses? Is your sensation of color the same as mine? How about your 
sensations of sound and touch? What exactly is that voice we hear in our heads, 
the stream of internal chatter we call our conscious selves? Does it derive from 
purely physical processes? Or does consciousness arise from a layer of reality 
that transcends the physical? Penetrating thinkers through the ages, Plato and 
Aristotle, Hobbes and Descartes, Hume and Kant, Kierkegaard and Nietzsche, 
James and Freud, Wittgenstein and Turing, among countless others, have tried 
to illuminate (or debunk) processes that animate the mind and create the 
singular inner life available through introspection. 
 A great many theories of mind have emerged, differing in ways 
significant and subtle. We won’t need the finer points, but just to get a feel for 
where the trails have led, here are a few: dualist theories, of which there are 
many varieties, maintain that there’s an essential nonphysical component vital 
to mind. Physicalist theories of mind, of which there are also many varieties, 
deny this, emphasizing instead that underlying each unique subjective 
experience is a unique brain state. Functionalist theories go further in this 
direction, suggesting that what really matters to making a mind are the 
processes and functions—the circuits, their interconnections, their 
relationships—and not the particulars of the physical medium within which 
these processes take place. 
 Physicalists would largely agree that were you to faithfully replicate my 
brain by whatever means—molecule by molecule, atom by atom—the end 
product would indeed think and feel as I do. Functionalists would largely agree 
that were you to focus on higher-level structures—replicating all my brain 
connections, preserving all brain processes while changing only the physical 
substrate through which they occur—the same conclusion would hold. Dualists 
would largely disagree on both counts. 
 The possibility of artificial sentience clearly relies on a functionalist 
viewpoint. A central assumption of this perspective is that conscious thought is 
not overlaid on a brain but rather is the very sensation generated by a particular 
kind of information processing. Whether that processing happens within a 
three-pound biological mass or within the circuits of a computer is irrelevant. 
The assumption could be wrong. Maybe a bundle of connections needs a 
substrate of wrinkled wet matter if it’s to gain self-awareness. Maybe you need 



the actual physical molecules that constitute a brain, not just the processes and 
connections those molecules facilitate, if conscious thought is to animate the 
inanimate. Maybe the kinds of information processing that computers carry out 
will always differ in some essential way from brain functioning, preventing the 
leap to sentience. Maybe conscious thought is fundamentally nonphysical, as 
claimed by various traditions, and so lies permanently beyond the reach of 
technological innovation. 
 With the rise of ever more sophisticated technologies, the questions have 
become sharper and the pathway toward answers more tangible. A number of 
research groups have already taken the initial steps toward simulating a 
biological brain on a computer. For example, the Blue Brain Project, a joint 
venture between IBM and the École Polytechnique Fédérale in Lausanne, 
Switzerland, is dedicated to modeling brain function on IBM’s fastest 
supercomputer. Blue Gene, as the supercomputer is called, is a more powerful 
version of Deep Blue, the computer that triumphed in 1997 over the world 
chess champion Garry Kasparov. Blue Brain’s approach is not all that different 
from the scenarios I just described. Through painstaking anatomical studies of 
real brains, researchers are gathering ever more precise insight into the cellular, 
genetic, and molecular structure of neurons and their interconnections. The 
project aims to encode such understanding, for now mostly at the cellular level, 
in digital models simulated by the Blue Gene computer. To date, researchers 
have drawn on results from tens of thousands of experiments focused on a 
pinhead-sized section of a rat brain, the neocortical column, to develop a three-
dimensional computer simulation of roughly 10,000 neurons communicating 
through some 10 million interconnections. Comparisons between the response 
of a real rat’s neocortical column and the computer simulation to the same 
stimuli show an encouraging fidelity of the synthetic model. This is far from 
the 100 billion neurons firing away in a typical human head, but the project’s 
leader, the neuroscientist Henry Markram, anticipates that before 2020 the 
Blue Brain Project, leveraging processing speeds that are projected to increase 
by a factor of more than a million, will achieve a full simulated model of the 
human brain. Blue Brain’s goal is not to produce artificial sentience, but rather 
to have a new investigative tool for developing treatments for various forms of 
mental illness; still, Markram has gone out on a limb to speculate that, when 
completed, Blue Brain may very well have the capacity to speak and to feel. 



 Regardless of the outcome, such hands-on explorations are pivotal to our 
theories of mind; I’m quite certain that the issue of which, if any, of the 
competing perspectives are on target cannot be settled through purely 
hypothetical speculation. In practice, too, challenges are immediately evident. 
Suppose a computer one day professes to be sentient—how would we know 
whether it really is? I can’t even verify such claims of sentience when made by 
my wife. Nor she with me. That’s a burden arising from consciousness being a 
private affair. But because our human interactions yield abundant 
circumstantial evidence supporting the sentience of others, solipsism quickly 
becomes absurd. Computer interactions may one day reach a similar point. 
Conversing with computers, consoling and cajoling them, may one day 
convince us that the simplest explanation for their apparent conscious self-
awareness is that they are indeed conscious and self-aware. 
 Let’s take a functionalist viewpoint, and see where it leads. 
 
Simulated Universes 
 
 
 If we ever create computer-based sentience, some would likely implant 
the thinking machines in artificial human bodies, creating a mechanical 
species—robots—that would be integrated into conventional reality. But my 
interest here is in those who would be drawn by the purity of electrical 
impulses to program simulated environments populated by simulated beings 
that would exist within a computer’s hardware; instead of C-3PO or Data, 
think Sims or Second Life, but with inhabitants who have self-aware and 
responsive minds. The history of technological innovation suggests that 
iteration by iteration, the simulations would gain verisimilitude, allowing the 
physical and experiential characteristics of the artificial worlds to reach 
convincing levels of nuance and realism. Whoever was running a given 
simulation would decide whether the simulated beings knew that they existed 
within a computer; simulated humans who surmised that their world was an 
elaborate computer program might find themselves taken away by simulated 
technicians in white coats and confined to simulated locked wards. But 
probably the vast majority of simulated beings would consider the possibility 
that they’re in a computer simulation too silly to warrant attention. 



 You may well be having that very reaction right now. Even if you accept 
the possibility of artificial sentience, you may be persuaded that the 
overwhelming complexity of simulating an entire civilization, or just a smaller 
community, renders such feats beyond computational reach. On this point, it’s 
worth looking at some more numbers. Our distant descendants will likely 
fashion ever-larger quantities of matter into vast computing networks. So 
allow imagination free rein. Think big. Scientists have estimated that a 
present-day high-speed computer the size of the earth could perform anywhere 
from 1033 to 1042 operations per second. By comparison, if we assume that our 
earlier estimate of 1017 operations per second for a human brain is on target, 
then an average brain performs about 1024 total operations in a single hundred-
year life span. Multiply that by the roughly 100 billion people who have ever 
walked the planet, and the total number of operations performed by every 
human brain since Lucy (my archaeology friends tell me I should say “Ardi”) 
is about 1035. Using the conservative estimate of 1033 operations per second, 
we see that the collective computational capacity of the human species could 
be achieved with a run of less than two minutes on an earth-sized computer. 
 And that’s with today’s technology. Quantum computing—harnessing all 
the distinct possibilities represented in a quantum probability wave so as to do 
many different calculations simultaneously—has the capacity to increase 
processing speeds by spectacular factors. Although we are still very far from 
mastering this application of quantum mechanics, researchers have estimated 
that a quantum computer no bigger than a laptop has the potential to perform 
the equivalent of all human thought since the dawn of our species in a tiny 
fraction of a second. 
 To simulate not just individual minds but also their interactions among 
themselves and with an evolving environment, the computational load would 
grow orders of magnitude larger. But a sophisticated simulation could cut 
computational corners with minimal impact on quality. Simulated humans on a 
simulated earth won’t be bothered if the computer simulates only things lying 
within the cosmic horizon. We can’t see beyond that range, so the computer 
can safely ignore it. More boldly, the simulation might simulate stars beyond 
the sun only during simulated nights, and then only when the simulated local 
weather resulted in clear skies. When no one’s looking, the computer’s 
celestial simulator routines could take a break from working out the 



appropriate stimulus to provide each and every person who could look 
skyward. A sufficiently well-structured program would keep track of the 
mental states and intentions of its simulated inhabitants, and so would 
anticipate, and appropriately respond to, any impending stargazing. The same 
goes for simulating cells, molecules, and atoms. For the most part, they’d be 
necessary only for simulated specialists of one scientific persuasion or another, 
and then only when such specialists were in the act of studying these exotic 
realms. A computationally cheaper replica of familiar reality that adjusts the 
simulation’s degree of detail on an as-needed basis would be adequate. 
 Such simulated worlds would forcefully realize Wheeler’s vision of 
information’s primacy. Generate circuits that carry the right information and 
you’ve generated parallel realities that are as real to their inhabitants as this 
one is to us. These simulations constitute our eighth variety of multiverse, 
which I’ll call the Simulated Multiverse. 
 
Are You Living in a Simulation? 
 
 
 The idea that universes might be simulated on computers has a long 
history, dating as far back as suggestions made in the 1960s by the computer 
pioneer Konrad Zuse and the digital guru Edward Fredkin. I worked at IBM 
during five summers spanning college and graduate school; my boss, the late 
John Cocke, himself a revered computer specialist, spoke frequently of 
Fredkin’s view that the universe was nothing but a giant computer chugging 
along, executing something akin to cosmic Fortran. The idea struck me as 
taking the digital paradigm to a ridiculous extreme. Through the years, I hardly 
gave it a thought—until I encountered, much more recently, a simple but 
curious conclusion by the Oxford philosopher Nick Bostrom. 
 To appreciate Bostrom’s point (one that Moravec had also hinted at), 
begin with a straightforward comparison: the difficulty of creating a real 
universe versus the difficulty of creating a simulated universe. To create a real 
one, as we’ve discussed, presents enormous obstacles. And if we succeeded, 
the resulting universe would be beyond our ability to see, which invites the 
question of what motivated us to create it in the first place. 



 The creation of a simulated universe is a wholly different enterprise. The 
march toward increasingly powerful computers, running ever more 
sophisticated programs, is inexorable. Even with today’s rudimentary 
technology, the fascination of creating simulated environments is strong; with 
more capability it’s hard to imagine anything but more intense interest. The 
question is not whether our descendants will create simulated computer worlds. 
We’re already doing it. The unknown is how realistic the worlds will become. 
Should there be an inherent obstacle to generating artificial sentience, all bets 
are off. But Bostrom, assuming that realistic simulations prove possible, makes 
a simple observation. 
 Our descendants are bound to create an immense number of simulated 
universes, filled with a great many self-aware, conscious inhabitants. If 
someone can come home at night, kick back, and fire up the create-a-universe 
software, it’s easy to envision that they’ll not only do so, but do so often. 
Think about what this scenario might entail. One future day, a cosmic census 
that takes account of all sentient beings might find that the number of flesh-
and-blood humans pales in comparison with those made of chips and bytes, or 
their future equivalents. And, Bostrom reasons, if the ratio of simulated 
humans to real humans were colossal, then brute statistics suggests that we are 
not in a real universe. The odds would overwhelmingly favor the conclusion 
that you and I and everyone else are living within a simulation, perhaps one 
created by future historians with a fascination for what life was like back on 
twenty-first-century earth. 
 You may object that we have now run headlong into the skeptical 
quicksand we planned at the outset to avoid. Once we conclude that there’s a 
high likelihood that we’re living in a computer simulation, how do we trust 
anything, including the very reasoning that led to the conclusion? Well, our 
confidence in a great many things might diminish. Will the sun rise tomorrow? 
Maybe, as long as whoever is running the simulation doesn’t pull the plug. Are 
all our memories trustworthy? They seem so, but whoever is at the keyboard 
may have a penchant for adjusting them from time to time. 
 Nevertheless, Bostrom notes, the conclusion that we’re in a simulation 
does not fully sever our grasp on the true underlying reality. Even if we 
believe that we’re in a simulation, we can still identify one feature that the 
underlying reality definitely possesses: it allows for realistic computer 



simulations. After all, according to our belief, we’re in one. The unbridled 
skepticism generated by the suspicion that we’re simulated aligns with that 
very knowledge and so fails to undermine it. While it was useful when we 
began to weigh anchor and declare the reality of all that seems real, it wasn’t 
necessary. Logic alone can’t ensure that we’re not in a computer simulation. 
 The only way to dodge the conclusion that we’re likely living in a 
simulation is to leverage intrinsic weaknesses in the reasoning. Maybe 
sentience can’t be simulated, full stop. Or maybe, as Bostrom also suggests, 
civilizations en route to the technological mastery necessary to create sentient 
simulations will inevitably turn that technology inward and destroy themselves. 
Or maybe when our distant descendants gain the capacity to create simulated 
universes they choose not to do so, perhaps for moral reasons or simply 
because other currently inconceivable pursuits prove so much more interesting 
that, much as we noted with universe creation, universe simulation falls by the 
wayside. 
 These are among numerous loopholes, but whether they’re large enough 
for the proverbial truck to drive through, who knows?* If not, you might want 
to spice up your life a bit, make your mark. Whoever is running the simulation 
is bound to get tired of wallflowers. Being a cynosure would seem a likely 
path toward longevity.5 

 
Seeing Beyond a Simulation 
 
 
 If you were living in a simulation, could you figure that out? The answer 
depends in no small part on who is running your simulation—call him or her 
the Simulator—and the manner in which your simulation was programmed. 
The Simulator, for instance, might choose to let you in on the secret. One day 
while taking a shower you might hear a gentle “dingding,” and when you’d 
cleared the shampoo from your eyes you’d see a floating window in which 
your smiling Simulator would appear and introduce herself. Or maybe this 
revelation would happen on a worldwide scale, with giant windows and a 
booming voice surrounding the planet, announcing that there is in fact an All 
Powerful Programmer up in the heavens. But even if your Simulator shied 
away from exhibitionism, less obvious clues might turn up. 



 Simulations allowing for sentient beings would certainly have reached a 
minimum fidelity threshold, but as they do with designer clothes and cheap 
knockoffs, quality and consistency would likely vary. For example, one 
approach to programming simulations—call it the “emergent strategy”—
would draw on the accumulated mass of human knowledge, judiciously 
invoking relevant perspectives as dictated by context. Collisions between 
protons in particle accelerators would be simulated using quantum field theory. 
The trajectory of a batted ball would be simulated using Newton’s laws. The 
reactions of a mother watching her child’s first steps would be simulated by 
melding insights from biochemistry, physiology, and psychology. The actions 
of governmental leaders would fold in political theory, history, and economics. 
Being a patchwork of approaches focused on different aspects of simulated 
reality, the emergent strategy would need to maintain internal consistency as 
processes nominally construed to lie in one realm spilled over into another. A 
psychiatrist needn’t fully grasp the cellular, chemical, molecular, atomic, and 
subatomic processes underlying brain function—which is a good thing for 
psychiatry. But in simulating a person, the challenge for the emergent strategy 
would be to consistently meld coarse and fine levels of information, ensuring 
for example that emotional and cognitive functions interface sensibly with 
physiochemical data. This kind of cross-border meshing takes place in all 
phenomena and has always compelled science to seek deeper, more unified 
explanations. 
 Simulators employing emergent strategies would have to iron out 
mismatches arising from the disparate methods, and they’d need to ensure that 
the meshing was smooth. This would require fiddles and tweaks which, to an 
inhabitant, might appear as sudden, baffling changes to the environment with 
no apparent cause or explanation. And the meshing might fail to be fully 
effective; the resulting inconsistencies could build over time, perhaps 
becoming so severe that the world became incoherent, and the simulation 
crashed. 
 A possible way to obviate such challenges would be to use a different 
approach—call it the “ultra-reductionist strategy”—in which the simulation 
would proceed by a single set of fundamental equations, much as physicists 
imagine is the case for the real universe. Such simulations would take as input 
a mathematical theory of matter and the fundamental forces and a choice of 



“initial conditions” (how things were at the starting point of the simulation); 
the computer would then evolve everything forward in time, thereby avoiding 
the meshing issues of the emergent approach. But simulations of this kind 
would encounter their own computational problems, even beyond the 
staggering computational burden of simulating “everything,” right down to the 
behavior of individual particles. If the equations our descendants have in their 
possession are similar to those we work with today—involving numbers that 
can vary continuously—then the simulations would necessarily invoke 
approximations. To exactly follow a number as it varies continuously, we 
would need to track its value to an infinite number of decimal places (for 
instance, as such a quantity varies, say, from .9 to 1, it would pass through 
numbers like .9, .95, .958, .9583, .95831, .958317, and on and on, with an 
arbitrarily large number of digits required for full accuracy). That’s something 
a computer with finite resources can’t manage: it will run out of time and 
memory. So, even if the deepest equations were used, it’s still possible that 
computer-based calculations would inevitably be approximate, allowing errors 
to build up over time.* 
 Of course, by “error” I mean a deviation between what occurs in the 
simulation and the description inherent in the most refined physical theories 
the simulator has at his or her disposal. But to those like you who are within 
the simulation, the mathematical rules driving the computer would be your 
laws of nature. The issue, then, is not how closely the mathematical laws used 
by the computer model the external world; we’re imagining that you don’t 
observe the external world from within the simulation. Rather, the problem for 
a simulated universe is that when a computer’s necessary approximations 
permeate otherwise exact mathematical equations, calculations easily lose their 
stability. Round-off errors, when accumulated over a great many computations, 
can yield inconsistencies. You and other simulated scientists might witness 
anomalous results from experiments; cherished laws might start yielding 
inaccurate predictions; measurements that had long since converged on a 
single widely confirmed result might start producing different answers. For 
long stretches, you and your simulated colleagues would think that you’d 
encountered evidence, much as your forebears had throughout the previous 
centuries and millennia, that your final theory wasn’t so final after all. 
Collectively, you’d closely reexamine the theory, perhaps coming up with new 



ideas, equations, and principles that better described the data. But, assuming 
the inaccuracies didn’t result in contradictions that crashed the program, at 
some point you’d hit a wall. 
 After an exhaustive search through possible explanations, none of which 
was able to fully explain what was happening, an iconoclastic thinker might 
suggest a radically different idea. If the continuum laws that physicists had 
developed over many millennia were input to a powerful digital computer and 
used to generate a simulated universe, the errors built up from the inherent 
approximations would yield anomalies of the very kind being observed. “Are 
you suggesting that we’re in a computer simulation?” you’d ask. “Yes,” your 
colleague would answer. “Well, that’s nutty,” you’d say. “Really?” she’d reply. 
“Take a look.” And she’d produce a monitor showing a simulated world, 
which she had programmed using those very same deep laws of physics, and—
catching your breath after the shock of encountering a simulated world at all—
you would see that the simulated scientists were indeed puzzling over the very 
same kind of strange data that troubled you.6 
 A Simulator who sought more assiduously to conceal herself could, of 
course, use more aggressive tactics. As inconsistencies started to build, she 
might reset the program and erase the inhabitants’ memory of the anomalies. 
So it would seem a stretch to claim that a simulated reality would reveal its 
true nature through glitches and irregularities. And certainly I’d be hard 
pressed to argue that inconsistencies, anomalies, unanswered questions, and 
stalled progress would reflect anything more than our own scientific failings. 
The sensible interpretation of such evidence would be that we scientists need 
to work harder and be more creative in seeking explanations. However, there is 
one serious conclusion that emerges from the fanciful scenario I’ve told. If and 
when we do generate simulated worlds, with apparently sentient inhabitants, 
an essential question will arise: Is it reasonable to believe that we occupy a 
rarefied place in the history of scientific-technological development—that we 
have become the very first creators of sentient simulations? We may have—
but if we’re keen to go with the odds, we must consider alternative 
explanations that, in the grand scheme of things, don’t require us to be so 
extraordinary. And there is a ready-made explanation that fits the bill. Once 
our own work convinces us that sentient simulations are possible, the guiding 
principle of “garden variety,” discussed in Chapter 7, suggests that there’s not 



just one such simulation out there but a swarming ocean of simulations, which 
constitute a Simulated Multiverse. While the simulation we’ve created might 
be a landmark feat in the limited domain to which we have access, within the 
context of the entire Simulated Multiverse it’s nothing special, having been 
achieved a gazillion times over. Once we accept that idea, we’re led to 
consider that we too may be in a simulation, since that’s the status of the vast 
majority of sentient beings in a Simulated Multiverse. 
 Evidence for artificial sentience and for simulated worlds is grounds for 
rethinking the nature of your own reality. 
 
The Library of Babel 
 
 
 During my first semester in college, I enrolled in an introductory 
philosophy course taught by the late Robert Nozick. From the very first lecture, 
it was a wild ride. Nozick was completing his voluminous Philosophical 
Explanations; he used the course as a dress rehearsal for many of the book’s 
central arguments. Just about every class shook my grasp on the world, 
sometimes vigorously. This was an unexpected experience—I’d thought that 
upending reality would be the purview solely of my physics courses. Yet, there 
was an essential difference between the two. The physics lectures challenged 
comfortable views by exposing strange phenomena that arise in wholly 
unfamiliar realms where things move fast, are extremely heavy, or are 
fantastically tiny. The philosophy lectures shook comfortable views by 
challenging the foundations of everyday experience. How do we know there’s 
a real world out there? Should we trust our perceptions? What thread binds our 
molecules and atoms to preserve our personal identity through time? 
 While I was hanging around after class one day, Nozick asked me what I 
was interested in, and I brazenly told him that I wanted to work on quantum 
gravity and unified theories. This was generally a conversation stopper, but for 
Nozick it presented a chance to educate a young mind by revealing a new 
perspective. “What drives your interest?” he asked. I told him that I wanted to 
find eternal truths, to help understand why things are the way they are. Naïve 
and blustery, for sure. But Nozick listened graciously and then took the idea 
further. “Let’s say you find the unified theory,” he said. “Would that really 



provide the answers you’re looking for? Wouldn’t you still be left asking why 
that particular theory, and not another, was the correct theory of the universe?” 
He was right, of course, but I replied that in the search for explanations there 
might come a point when we would just have to accept certain things as given. 
That was just where Nozick wanted me to go; in writing Philosophical 
Explanations he had developed an alternative to this view. It’s based on what 
he called the principle of fecundity and is an attempt to frame explanations 
without “accepting certain things as given”; without, as Nozick explains it, 
accepting anything as brute-force truth. 
 The philosophical maneuver behind this trick is straightforward: defang 
the question. If you want to avoid explaining why one particular theory should 
be singled out over another, then don’t single it out. Nozick suggests that we 
imagine we’re part of a multiverse that comprises every possible universe.7 
The multiverse would include not only the alternative evolutions emerging 
from the Quantum Multiverse, or the many bubble universes of the 
Inflationary Multiverse, or the possible stringy worlds of the Brane or 
Landscape Multiverse. These multiverses wouldn’t, on their own, fulfill 
Nozick’s proposal, because you’d still be left wondering: Why quantum 
mechanics? Or why inflation? Or why string theory? Instead, come up with 
any possible universe whatsoever—it could be made of the usual atomic 
species, but a universe made solely of melted mozzarella would serve just as 
well—and it has a place in Nozick’s scheme. 
 This is the last multiverse we will consider, since it’s the most expansive 
of all—the most expansive possible. Any multiverse that’s ever been or ever 
will be proposed is itself composed of possible universes, and will therefore be 
part of this mega-conglomerate, which I’ll call the Ultimate Multiverse. Within 
this framework, if you ask why our universe is governed by the laws our 
research reveals, the answer harks back to anthropics: there are other universes 
out there, all possible universes in fact, and we inhabit the one we do because 
it’s among those that support our form of life. In the other universes where we 
could live—of which there are many since, among other things, we can 
certainly survive sufficiently tiny changes to the various fundamental 
parameters of physics—there are people, much like us, asking the same 
question. And the same answer applies equally well to them. The point is that 
the attribute of existence affords a universe no special status, because in the 



Ultimate Multiverse all possible universes do exist. The question of why one 
set of laws describes a real universe—ours—while all others are sterile 
abstractions evaporates. There are no sterile laws. All sets of laws describe real 
universes. 
 Curiously, Nozick noted that within his multiverse there’d be a universe 
that consists of nothing. Absolutely nothing. Not empty space, but the nothing 
that Gottfried Leibniz referred to in his famous query “Why is there something 
rather than nothing?” Not that Nozick could have known, but for me this was 
an observation of particular resonance. When I was ten or eleven, I came upon 
Leibniz’s question and found it deeply troubling. I’d pace my room, trying to 
grasp what nothing would be, often with one hand hovering behind the back of 
my head, thinking that the struggle to do the impossible—see my hand—
would help me grasp the meaning of total absence. Even now, to focus on 
absolute true nothingness makes my heart sink. Total nothingness, from our 
familiar vantage point of somethingness, entails the most profound loss. But 
because nothing also seems so vastly simpler than something—no laws at 
work, no matter at play, no space to inhabit, no time to unfurl—Leibniz’s 
question strikes many as right on the mark. Why isn’t there nothingness? 
Nothingness would have been decidedly elegant. 
 In the Ultimate Multiverse, a universe consisting of nothing does exist. 
As far as we can tell, nothingness is a perfectly logical possibility and so must 
be included in a multiverse that embraces all universes. Nozick’s answer to 
Leibniz, then, is that in the Ultimate Multiverse there is no imbalance between 
something and nothing that calls out for explanation. Universes of both types 
are part of this multiverse. A nothing universe is nothing to get exercised about. 
It’s only because we humans are something that the nothing universe eludes us. 
 A theoretician, trained to speak in mathematics, understands Nozick’s 
all-encompassing multiverse as one where all possible mathematical equations 
are realized physically. It’s a version of Jorge Luis Borges’ story “La 
Biblioteca de Babel,” in which the books of Babel are written in the language 
of mathematics, and so contain all possible sensible, non-self-contradictory 
strings of mathematical symbols.* Some of the books would spell out familiar 
formulae, such as the equations of general relativity and those of quantum 
mechanics, as applied to the known particles of nature. But such recognizable 
strings of mathematical characters would be extremely rare. Most books would 



contain equations no one has previously written down, equations that would 
normally be deemed pure abstractions. The idea of the Ultimate Multiverse is 
to shed this familiar perspective. No longer do most equations lie dormant, 
with only the lucky few mysteriously coaxed to life through physical 
instantiation. Instead, every book in the Library of Mathematical Babel is a 
real universe. 
 Nozick’s suggestion, in this mathematical framing, provides a concrete 
answer to a long-debated question. For centuries, mathematicians and 
philosophers have wondered whether mathematics is discovered or invented. 
Are mathematical concepts and truths “out there,” waiting for an intrepid 
explorer to stumble upon them? Or, since that explorer is more than likely 
sitting at a desk, pencil in hand, scribbling arcane symbols furiously across a 
page, are the resulting mathematical concepts and truths invented as part of the 
mind’s search for order and pattern? 
 At first sight, the uncanny way that a great many mathematical insights 
find application to physical phenomena provides compelling evidence that 
math is real. Examples abound. From general relativity to quantum mechanics, 
physicists have found that various mathematical discoveries are tailor-made 
for physical applications. Paul Dirac’s prediction of the positron (the anti-
particle of the electron) provides a simple but impressive case in point. In 1931, 
upon solving his quantum equations for the motion of electrons, Dirac found 
that the math provided an “extraneous” solution—apparently describing the 
motion of a particle just like the electron except that it carried a positive 
electric charge (whereas the electron’s charge is negative). In 1932, that very 
particle was discovered by Carl Anderson through a close study of cosmic rays 
bombarding earth from space. What began as Dirac’s manipulation of 
mathematical symbols in his notebooks concluded in the laboratory with the 
experimental discovery of the first species of antimatter. 
 The skeptic can counter, however, that mathematics still emanates from 
us. We were shaped by evolution to find patterns in the environment; the better 
we could do that, the better we could predict how to find the next meal. 
Mathematics, the language of pattern, emerged from our biological fitness. 
And with that language, we’ve been able to systematize the search for new 
patterns, going well beyond those relevant for mere survival. But mathematics, 



like any of the tools we developed and utilized through the ages, is a human 
invention. 
 My view on mathematics periodically changes. When I’m in the throes of 
a mathematical investigation that’s going well, I often feel that the process is 
one of discovery, not invention. I know of no more exciting experience than 
watching the disparate pieces of a mathematical puzzle suddenly coalesce into 
a single coherent picture. When it happens, there’s a feeling that the picture 
was there all along, like a grand vista hidden by the morning fog. On the other 
hand, when I more objectively survey mathematics, I’m less convinced. 
Mathematical knowledge is the literary output of humans conversant in the 
unusually precise language of mathematics. And as is surely the case with 
literature produced in one of the world’s natural languages, mathematical 
literature is the product of human ingenuity and creativity. That’s not to say 
that other intelligent life-forms wouldn’t come upon the same mathematical 
results we’ve found; they very well might. But that could easily reflect 
similarities in our experiences (such as the need to count, the need to trade, the 
need to survey, and so on) and so would provide minimal evidence that math 
has a transcendent existence. 
 A number of years ago, in a public debate on the subject, I said that I 
could imagine an alien encounter during which, in response to learning of our 
scientific theories, the aliens remark, “Oh, math. Yeah, we tried that for a 
while. At first it seemed promising, but ultimately it was a dead end. Here, let 
us show you how it really works.” But, to continue with my own vacillation, I 
don’t know how the aliens would actually finish the sentence, and with a broad 
enough definition of mathematics (e.g., logical deductions following from a set 
of assumptions), I’m not even sure what kind of answers wouldn’t amount to 
math. 
 The Ultimate Multiverse is unequivocal on the issue. All math is real in 
the sense that all math describes some real universe. Across the multiverse, all 
math gets its due. A universe governed by Newton’s equations and populated 
solely by solid billiard balls (with no additional internal structure) is a real 
universe; an empty universe with 666 spatial dimensions governed by a 
higher-dimensional version of Einstein’s equations is a universe too. If the 
aliens happened to be right, there would also be universes whose description 
would stand outside mathematics. But let’s hold that possibility off to the side. 



A multiverse realizing all mathematical equations will be enough to keep us 
occupied; that’s what the Ultimate Multiverse gives us. 
 
Multiverse Rationalization 
 
 
 Where the Ultimate Multiverse differs from the other parallel universe 
proposals we’ve encountered is in the reasoning that leads to its consideration. 
The multiverse theories in previous chapters were not dreamed up to solve a 
problem or answer a question. Some of them do, or at least claim to, but they 
weren’t developed for that purpose. We’ve seen that some theorists believe the 
Quantum Multiverse resolves the quantum measurement problem; some 
believe the Cyclic Multiverse addresses the question of time’s beginning; some 
believe the Brane Multiverse clarifies why gravity is so much weaker than the 
other forces; some believe the Landscape Multiverse gives insight into the 
observed value of dark energy; some believe the Holographic Multiverse 
explains data emerging from the collision of heavy atomic nuclei. But such 
applications are secondary. Quantum mechanics was developed to describe the 
microrealm; inflationary cosmology was developed to make sense of observed 
properties of the cosmos; string theory was developed to mediate between 
quantum mechanics and general relativity. The possibility that these theories 
generate various multiverses is a by-product. 
 The Ultimate Multiverse, by contrast, carries no explanatory weight apart 
from its assumption of a multiverse. It achieves precisely one goal: cleaving 
from our to-do list the project of finding an explanation for why our universe 
adheres to one set of mathematical laws and not another, and it accomplishes 
this singular feat precisely by introducing a multiverse. Cooked up specifically 
to address one issue, the Ultimate Multiverse lacks the independent rationale 
characterizing the multiverses discussed in earlier chapters. 
 That’s my view, but not everyone agrees. There’s a philosophical 
perspective (coming from the structural realist school of thought) that 
suggests physicists may have fallen prey to a false dichotomy between 
mathematics and physics. It’s common for theoretical physicists to speak of 
mathematics providing a quantitative language for describing physical reality; 



I’ve done so on most every page of this book. But maybe, this perspective 
suggests, math is more than just a description of reality. Maybe math is reality. 
 It’s a peculiar idea. We are not used to thinking of solid reality as being 
constructed from intangible mathematics. The simulated universes of the 
previous section provide a concrete and enlightening way to think about it. 
Consider that most celebrated of knee-jerk reactions, in which Samuel Johnson 
responded to Bishop Berkeley’s claim that matter is a figment of the mind’s 
conjuring by kicking a large stone. Imagine, however, that unbeknownst to Dr. 
Johnson, his kick happened within a hypothetical, high-fidelity computer 
simulation. In that simulated world, Dr. Johnson’s experience of the stone 
would be just as convincing as in the historical version. Yet, the computer 
simulation is nothing but a chain of mathematical manipulations that take the 
computer’s state at one moment—a complex arrangement of bits—and, 
according to specified mathematical rules, evolve those bits through 
subsequent arrangements. 
 Which means that were you to intently study the mathematical 
transformations the computer carried out during Dr. Johnson’s demonstration, 
you’d see, right there in the math, the kick and the rebound of his foot, as well 
as the thought and the famous articulation “I refute it thus.” Hook the 
computer to a monitor (or some futuristic interface), and you would see that 
the mathematically choreographed dancing bits yield Dr. Johnson and his kick. 
But don’t let the simulation’s bells and whistles—the computer’s hardware, 
the fancy interface, and so on—obscure the essential fact: underneath the hood, 
there’d be nothing but math. Change the mathematical rules, and the dancing 
bits would tap out a different reality. 
 Now, why stop there? I put Dr. Johnson in a simulation only because that 
context provides an instructive bridge between mathematics and Dr. Johnson’s 
reality. But the deeper point of this perspective is that the computer simulation 
is an inessential intermediate step, a mere mental stepping-stone between the 
experience of a tangible world and the abstraction of mathematical equations. 
The mathematics itself—through the relationships it creates, the connections it 
establishes, and the transformations it embodies—contains Dr. Johnson, both 
his actions and his thoughts. You don’t need the computer. You don’t need the 
dancing bits. Dr. Johnson is in the mathematics.8 



 And once you take on board the idea that mathematics itself can, through 
its inherent structure, embody any and all aspects of reality—sentient minds, 
heavy rocks, vigorous kicks, stubbed toes—you’re led to envision that our 
reality is nothing but math. In this way of thinking, everything you’re aware 
of—the sensation of holding this book, the thoughts you’re now having, the 
plans you’re making for dinner—is the experience of mathematics. Reality is 
how math feels. 
 To be sure, this perspective requires a conceptual leap not everyone will 
be persuaded to take; personally, it’s a leap I’ve not taken. But for those who 
do, the worldview sees math as not just “out there,” but as the only thing that’s 
“out there.” A body of mathematics, be it Newton’s equations, those of 
Einstein, or any others, doesn’t become real when physical entities arise that 
instantiate it. Mathematics—all mathematics—already is real; it doesn’t 
require instantiation. Different collections of mathematical equations are 
different universes. The Ultimate Multiverse is thus the by-product of this 
perspective on mathematics. 
 Max Tegmark of the Massachusetts Institute of Technology, who has 
been a strong promoter of the Ultimate Multiverse (which he has called the 
Mathematical Universe Hypothesis), justifies this view through a related 
consideration. The deepest description of the universe should not require 
concepts whose meaning relies on human experience or interpretation. Reality 
transcends our existence and so shouldn’t, in any fundamental way, depend on 
ideas of our making. Tegmark’s view is that mathematics—thought of as 
collections of operations (like addition) that act on abstract sets of objects (like 
the integers), yielding various relations between them (like 1 + 2 = 3)—is 
precisely the language for expressing statements that shed human contagion. 
But what, then, could possibly distinguish a body of mathematics from the 
universe it depicts? Tegmark argues that the answer is nothing. Were there 
some feature that did distinguish math from the universe, it would have to be 
non-mathematical; otherwise it could be absorbed into the mathematical 
depiction, erasing the purported distinction. But, according to this line of 
thought, if the feature were non-mathematical, it must bear a human imprint, 
and so can’t be fundamental. Thus, there’s no distinguishing what we 
conventionally call the mathematical description of reality from its physical 
embodiment. They are the same. There’s no switch that turns math “on.” 



Mathematical existence is synonymous with physical existence. And since this 
would be true for any and all math, this provides another road leading us to the 
Ultimate Multiverse. 
 While all these arguments are curious to contemplate, I remain skeptical. 
In evaluating a given multiverse proposal, I’m partial to there being a process, 
however tentative—a fluctuating inflaton field, collisions between braneworlds, 
quantum tunneling through the string theory landscape, a wave evolving via 
the Schrödinger equation—that we can imagine generating the multiverse. I 
prefer to ground my thinking in a sequence of events that can, at least in 
principle, result in the given multiverse unfolding. For the Ultimate Multiverse, 
it’s hard to imagine what such a process could be; the process would need to 
yield different mathematical laws in different domains. In the Inflationary and 
Landscape Multiverses, we’ve seen that the details of how the laws of physics 
manifest themselves can vary from universe to universe, but this is because of 
environmental differences, such as the values of certain Higgs fields or the 
shape of the extra dimensions. The underlying mathematical equations, 
operating across all the universes, are the same. So what process, operating 
within a given set of mathematical laws, can change those mathematical laws? 
Like the number five desperately trying to be six, it seems plainly impossible. 
 However, before settling on that conclusion, consider this: there can be 
domains that appear as though they are governed by different mathematical 
rules. Think again about simulated worlds. In discussing Dr. Johnson above, I 
invoked a computer simulation as a pedagogical device to explain how 
mathematics may embody the essence of experience. But if we consider such 
simulations in their own right, as we do in the Simulated Multiverse, we see 
that they offer just the process we need: although the computer hardware on 
which a simulation is run is subject to the usual laws of physics, the simulated 
world itself will be founded on the mathematical equations the user happens to 
choose. From simulation to simulation, the mathematical laws can and 
generally will vary. 
 As we will now see, this provides a mechanism for generating a 
particular privileged part of the Ultimate Multiverse. 
  



Simulating Babel 
 
 
 Earlier, I noted that for the kinds of equations we typically study in 
physics, computer simulations yield only approximations to the mathematics. 
Such is generally the case when continuous numbers confront a digital 
computer. For example, in classical physics (assuming, as we do in classical 
physics, that spacetime is continuous) a batted ball passes through an infinite 
number of different points as it travels from home plate to left field.9 Keeping 
track of a ball through an infinity of locations, and of an infinity of possible 
speeds at those locations, will always remain beyond reach. At best, computers 
can perform highly refined but still approximate calculations, tracking a ball 
every millionth or billionth or trillionth of a centimeter, for instance. That’s 
fine for many purposes, but it’s still an approximation. Quantum mechanics 
and quantum field theory, by introducing various forms of discreteness, help in 
some ways. But both make extensive use of continuously varying numbers 
(values of probability waves, values of fields, and so on). The same reasoning 
holds for all the other standard equations of physics. A computer can 
approximate the math, but it can’t simulate the equations exactly.* 
 There are other types of mathematical functions, however, for which a 
computer simulation can be absolutely precise. They’re part of a class called 
computable functions, which are functions that can be evaluated by a computer 
running through a finite set of discrete instructions. The computer may need to 
cycle through the collection of steps repeatedly but sooner or later it will 
produce the exact answer. No originality or novelty is needed at any step; it’s 
just a matter of grinding out the result. In practice, then, to simulate the motion 
of a batted ball, computers are programmed with equations that are computable 
approximations to the laws of physics that you learned in high school. 
(Typically, continuous space and time are approximated on a computer by a 
fine grid.) 
 By contrast, a computer trying to calculate a noncomputable function will 
churn away indefinitely without coming to an answer, regardless of its speed 
or memory capacity. Such would be the case for a computer seeking the exact 
continuous trajectory of that batted ball. For a more qualitative example, 
imagine a simulated universe in which a computer is programmed to provide a 



wonderfully efficient simulated chef who provides meals for all those 
simulated inhabitants—and only those simulated inhabitants—who don’t cook 
for themselves. As the chef furiously bakes, fries, and broils, he works up quite 
an appetite. The question is: Whom does the computer charge with feeding the 
chef?10 Think about it, and it makes your head hurt. The chef can’t cook for 
himself as he only cooks for those who don’t cook for themselves, but if the 
chef doesn’t cook for himself, he is among those for whom he is meant to cook. 
Rest assured, the computer’s head would hardly fare better than yours. 
Noncomputable functions are much like this example: they stymie a 
computer’s ability to complete its calculations, and so the simulation being run 
by the computer would hang. The successful universes constituting the 
Simulated Multiverse would therefore be based on computable functions. 
 The discussion suggests an overlap between the Simulated and Ultimate 
Multiverses. Consider a scaled-down version of the Ultimate Multiverse that 
includes only universes arising from computable functions. Then, rather than 
merely being posited as a resolution to one particular question—Why is this 
universe real, while other possible universes are not?—the scaled-down 
version of the Ultimate Multiverse can emerge from a process. An army of 
future computer users, perhaps not much different in temperament from 
today’s Second Life enthusiasts, could spawn this multiverse through their 
insatiable fascination with running simulations based on ever-different 
equations. These users wouldn’t generate all universes contained in the 
Mathematical Library of Babel, because the ones based on noncomputable 
functions wouldn’t get off the ground. But the users would continually work 
their way through the library’s computable wing. 
 The computer scientist Jürgen Schmidhuber, extending earlier ideas of 
Zuse, has come to a similar conclusion from a different angle. Schmidhuber 
realized that it’s actually easier to program a computer to generate all possible 
computable universes than it is to program individual computers to generate 
them one by one. To see why, imagine programming a computer to simulate 
baseball games. For each game, the amount of information you’d need to 
supply is vast: every detail about every player, physical and mental, every 
detail about the stadium, the umpires, the weather, and so on. And each new 
game you simulate requires you to specify yet another mountain of data. 
However, if you decide to simulate not one or a few games, but every game 



imaginable, your programming job would be far easier. You’d just need to set 
up one master program that systematically makes its way through every 
possible variable—those that affect players, the environment, and all other 
relevant features—and let the program run. Finding any one particular game in 
the resulting voluminous output would be a challenge, but you’d be assured 
that sooner or later every possible game would appear. 
 The point is that whereas specifying one member of a large collection 
requires a great deal of information, specifying the entire collection can often 
be much easier. Schmidhuber found that this conclusion applies to simulated 
universes. A programmer hired to simulate a collection of universes based on 
specific sets of mathematical equations could take the easy way out: much like 
the baseball enthusiast, he could opt to write a single, relatively short program 
that would generate all computable universes, and turn the computer loose. 
Somewhere among the resulting gargantuan collection of simulated universes, 
the programmer would find those he’d been hired to simulate. I wouldn’t want 
to be paying for computer usage by the hour as the turnaround time for 
generating these simulations would similarly be gargantuan. But I’d happily 
pay the programmer by the hour since the instruction set to generate all 
computable universes would be much less intensive than that required to yield 
any one universe in particular.11 
 Either of these scenarios—a great many users simulating a great many 
universes, or a master program that simulates them all—is how the Simulated 
Multiverse might be generated. And because the resulting universes would be 
based on a wide variety of different mathematical laws, we can equivalently 
think of these scenarios as generating part of the Ultimate Multiverse: the part 
encompassing universes based on computable mathematical functions.* 
 The drawback of generating only part of the Ultimate Multiverse is that 
this downsized version less effectively addresses the issue that inspired 
Nozick’s principle of fecundity in the first place. If all possible universes don’t 
exist, if the entire Ultimate Multiverse is not generated, the question resurfaces 
of why some equations come to life and others don’t. Specifically, we’re left 
wondering why universes based on computable equations hog the spotlight. 
 To continue along this chapter’s highly speculative path, maybe the 
computable/noncomputable division is telling us something. Computable 
mathematical equations avoid the prickly issues raised in the middle of the last 



century by penetrating thinkers like Kurt Gödel, Alan Turing, and Alonzo 
Church. Gödel’s famous incompleteness theorem shows that certain 
mathematical systems necessarily admit true statements that can’t be proved 
within the mathematical system itself. Physicists have long wondered about 
the possible implications of Gödel’s insights for their own work. Might 
physics, too, necessarily be incomplete, in the sense that some features of the 
natural world would forever elude our mathematical descriptions? In the 
context of the downsized Ultimate Multiverse, the answer is no. Computable 
mathematical functions, by definition, lie squarely within the bounds of 
calculation. They are the very functions that admit a procedure by which a 
computer can successfully evaluate them. And so, if all the universes in a 
multiverse were based on computable functions, they all would also do an end 
run around Gödel’s theorem; this wing of the Library of Mathematical Babel, 
this version of the Ultimate Multiverse, would be free of Gödel’s ghost. Maybe 
that’s what singles out computable functions. 
 Would our universe find a place in this multiverse? That is, if and when 
we put our hands on the final laws of physics, will those laws describe the 
cosmos using mathematical functions that are computable? Not just 
approximately computable functions, as is the case with the physical laws we 
work with today. But exactly computable? No one knows. If so, developments 
in physics should drive us toward theories in which the continuum plays no 
role. Discreteness, the core of the computational paradigm, should prevail. 
Space surely seems continuous, but we’ve only probed it down to a billionth of 
a billionth of a meter. It’s possible that with more refined probes we will one 
day establish that space is fundamentally discrete; for now, the question is 
open. A similar limited understanding applies to intervals of time. The 
discoveries recounted in Chapter 9, which yield information capacity of one bit 
per Planck area in any region of space, constitute a major step in the direction 
of discreteness. But the issue of how far the digital paradigm can be taken 
remains far from settled.12 My guess is that whether or not sentient simulations 
ever come to be, we will indeed find that the world is fundamentally discrete. 
  



The Roots of Reality 
 
 
 In the Simulated Multiverse, there’s no ambiguity regarding which 
universe is “real”—that is, which universe lies at the root of the branching tree 
of simulated worlds. It’s the one that houses those computers which, should 
they crash, would bring down the entire multiverse. A simulated inhabitant 
might simulate his or her own set of universes on simulated computers, as 
might the inhabitants of those simulations, but there are still real computers on 
which all these layered simulations appear as an avalanche of electrical 
impulses. There’s no uncertainty about what facts, patterns, and laws are, in 
the traditional sense, real: they’re the ones at work in the root universe. 
 However, typical simulated scientists across the Simulated Multiverse 
may have a different perspective. If these scientists are allowed sufficient 
autonomy—if the simulants rarely if ever tinker with inhabitants’ memories or 
disrupt the natural flow of events—then, to judge by our own experiences, we 
can anticipate that they will make great progress in uncovering the 
mathematical code that propels their world. And they will treat that code as 
their laws of nature. Nevertheless, their laws won’t necessarily be identical to 
the laws governing the real universe. Their laws merely need to be good 
enough, in the sense that when they’re simulated on a computer they yield a 
universe with sentient inhabitants. If there are many distinct sets of 
mathematical laws that qualify as good enough, there could well be an ever-
growing population of simulated scientists convinced of mathematical laws 
that, far from being fundamental, were simply chosen by whoever has 
programmed their simulation. If we are typical inhabitants in such a multiverse, 
this reasoning suggests that what we normally think of as science, a discipline 
charged with revealing fundamental truths about reality—the root reality 
operating at the base of the tree—would be undermined. 
 It’s an uncomfortable possibility, but not one that keeps me up at night. 
Until I get my breath taken away by seeing a sentient simulation, I won’t 
consider seriously the proposition that I am now in one. And, taking the long 
view, even if sentient simulations are achieved one day—itself a big if—I can 
well imagine that when a civilization’s technical capabilities first enable such 
simulations, their appeal would be tremendous. But would that appeal be long-



lived? I suspect the novelty of creating artificial worlds whose inhabitants are 
kept unaware of their simulated status would wear thin; there’s just so much 
reality TV you can watch. 
 Instead, if I allow my imagination to run free within this speculative 
territory, my sense is that staying power would reside with applications that 
developed interactions between the simulated and the real worlds. Perhaps 
simulated inhabitants would be able to migrate into the real world or be joined 
in the simulated world by their real biological counterparts. In time, the 
distinction between real and simulated beings might become anachronistic. 
Such seamless unions strike me as a more probable outcome. In that case, the 
Simulated Multiverse would contribute to the expanse of reality—our expanse 
of reality, our real reality—in the most tangible way. It would become an 
intrinsic part of what we mean by “reality.” 
 
 *Ironically, an explanation for why magnetic monopoles have not been 
found (even though they are predicted by many approaches to unified theories) 
is that their population was diluted by the rapid expansion of space that takes 
place in inflationary cosmology. The suggestion now being made is that 
magnetic monopoles may themselves play a role in initiating future 
inflationary episodes. 
 *Another loophole arises from an incarnation of the measure problem 
from Chapter 7. If the number of real (nonvirtual) universes is infinite (if we’re 
part of, say, the Quilted Multiverse), then there will be an infinite collection of 
worlds like ours in which descendants run simulations, yielding an infinite 
number of simulated worlds. Even though it would still seem that the number 
of simulated worlds would vastly outnumber the real ones, we saw in Chapter 
7 that comparing infinities is a treacherous business. 
 *A theory that allows for only a finite number of distinct states within a 
finite spatial volume (in accord, for example, with the entropy bounds 
discussed in the previous chapter) can still involve continuous quantities as 
part of its mathematical formalism. This is the case, for instance, with quantum 
mechanics: the probability wave’s value can vary continuously even when 
only finitely many different outcomes are possible. 
 *Borges allows for books with all possible character strings, without 
regard to meaning. 



 *When we discussed the Quilted Multiverse (Chapter 2), I stressed that 
quantum physics assures us that in any finite region of space there are only 
finitely many different ways in which matter can arrange itself. Nevertheless, 
the mathematical formalism of quantum mechanics involves features that are 
continuous and that hence can assume infinitely many values. These features 
are things we can’t directly observe (such as the height of a probability wave at 
a given point); it’s with respect to the distinct results that measurements can 
acquire that there are only finitely many possibilities. 
 *Max Tegmark has noted that the entirety of a simulation, run from start 
to finish, is itself a collection of mathematical relations. Thus, if one believes 
that all mathematics is real, so is this collection. In turn, from this perspective 
there’s no need to actually run any computer simulations since the 
mathematical relations each would produce are already real. Also, note that the 
focus on evolving a simulation forward in time, however intuitive, is overly 
restrictive. The computability of a universe should be evaluated by examining 
the computability of the mathematical relations that define its entire history, 
whether or not these relations describe the unfolding of the simulation through 
time. 
 
 
  



CHAPTER 11 
 
 
The Limits of Inquiry 
 
 
Multiverses and the Future 
 
 
 Isaac Newton cracked the scientific enterprise wide open. He discovered 
that a few mathematical equations could describe the way things move, both 
here on earth and up in space. Considering the power and simplicity of his 
results, one could easily have imagined that Newton’s equations reflected 
eternal truths etched into the bedrock of the cosmos. But Newton himself 
didn’t think so. He believed that the universe was far more rich and mysterious 
than his laws implied; later in life he famously reflected, “I do not know what I 
may appear to the world, but to myself I seem to have only been a boy playing 
on the seashore, diverting myself in now and then finding a smoother pebble or 
prettier shell than ordinary, whilst the great ocean of truth lay before me all 
undiscovered.” The centuries since have abundantly affirmed this. 
 I’m glad. Had Newton’s equations enjoyed unlimited reach, accurately 
describing phenomena in any context however big or small, heavy or light, fast 
or slow, the subsequent scientific odyssey would have taken on a distinctly 
different character. Newton’s equations teach us much about the world, but 
their unlimited validity would have meant that the cosmic flavor was vanilla 
through and through. Once you understood physics on everyday scales, you’d 
be done. The same story would have held all the way up and all the way down. 
 In continuing Newton’s explorations, scientists have ventured into realms 
far beyond the reach of his equations. What we’ve learned has required 
sweeping changes in our understanding of the nature of reality. Such changes 
are not made lightly. They are closely examined by the community of 
scientists, and they are often sharply resisted; only when the evidence reaches 
a critical abundance is the new view embraced. Which is just as it should be. 
There’s no need to rush to judgment. Reality will wait. 



 The central fact, most forcefully emphasized by the last hundred years of 
theoretical and experimental progress, is that common experience fails to be a 
trustworthy guide for excursions that wander beyond everyday circumstances. 
But for all the radically new physics encountered in extreme conditions—
described by general relativity, quantum mechanics, and, should it prove 
correct, string theory—the fact that radically new ideas would be required is 
not surprising. The basic assumption of science is that regularities and patterns 
exist on all scales, but as Newton himself anticipated, there’s no reason to 
expect the patterns we directly encounter to be recapitulated on all scales. 
 The surprise would have been to find no surprises. 
 The same is undoubtedly true regarding what physics will reveal in the 
future. A given generation of scientists can never know whether the long view 
of history will judge their work as a diversion, as passing fascination, as a 
stepping-stone, or as having revealed insights that will stand the test of time. 
Such local uncertainty is balanced by one of physics’ most gratifying 
features—global stability—that is, new theories generally do not erase those 
they supplant. As we’ve discussed, while new theories may require 
acclimation to new perspectives on the nature of reality, they almost never 
render past discoveries irrelevant. Instead, they incorporate and extend them. 
Because of this, the story of physics has maintained an impressive coherence. 
 In this book we’ve explored a candidate for the next major development 
in this story: the possibility that our universe is part of a multiverse. The 
journey has taken us through nine variations on the multiverse theme, which 
are summarized in Table 11.1. Although the various proposals differ widely in 
detail, they all suggest that our commonsense picture of reality is only part of a 
grander whole. And they all bear the indelible mark of human ingenuity and 
creativity. But determining whether any of these ideas goes beyond 
mathematical musings of the human mind will require more insight, 
knowledge, calculation, experiment, and observation than we’ve so far 
achieved. A final reckoning on whether parallel universes will be written into 
the next chapter of physics’ story must therefore also await the perspective that 
only the future can bring. 
 
  



 Table 11.1Summary of Various Versions of Parallel Universes 
 PARALLEL UNIVERSE PROPOSAL: Quilted Multiverse 
 DESCRIPTION: Conditions in an infinite universe necessarily repeat 
across space, yielding parallel worlds. 
 PARALLEL UNIVERSE PROPOSAL: Inflationary Multiverse 
 EXPLANATION: Eternal cosmological inflation yields an enormous 
network of bubble universes, of which our universe would be one. 
 PARALLEL UNIVERSE PROPOSAL: Brane Multiverse 
 EXPLANATION: In string/M-theory’s braneworld scenario, our 
universe exists on one three-dimensional brane, which floats in a higher-
dimensional expanse potentially populated by other branes—other parallel 
universes. 
 PARALLEL UNIVERSE PROPOSAL: Cyclic Multiverse 
 EXPLANATION: Collisions between braneworlds can manifest as big 
bang-like beginnings, yielding universes that are parallel in time. 
 PARALLEL UNIVERSE PROPOSAL: Landscape Multiverse 
 EXPLANATION: By combing inflationary cosmology and string theory, 
the many different shapes for string theory’s extra dimensions give rise to 
many different bubble universes. 
 PARALLEL UNIVERSE PROPOSAL: Quantum Multiverse 
 EXPLANATION: Quantum mechanics suggests that every possibility 
embodied in its probability waves is realized in one of a vast ensemble of 
parallel universes. 
 PARALLEL UNIVERSE PROPOSAL: Holographic Multiverse 
 EXPLANATION: The holographic principle asserts that our universe is 
exactly mirrored by phenomena taking place on a distant bounding surface, a 
physically equivalent parallel universe. 
 PARALLEL UNIVERSE PROPOSAL: Simulated Multiverse 
 EXPLANATION: Technological leaps suggest that simulated universes 
may one day be possible. 
 PARALLEL UNIVERSE PROPOSAL: Ultimate Multiverse 
 EXPLANATION: The principle of fecundity asserts that every possible 
universe is a real universe, thereby obviating the question of why one 
possibility—ours—is special. These universes instantiate all possible 
mathematical equations. 



 
 As with the metaphorical book of nature, so with the book you’re reading. 
In this last chapter, I’d be delighted to pull all the pieces together and answer 
the subject’s most essential question: Universe or multiverse? But I can’t. 
That’s the nature of explorations that brush the edge of knowledge. Instead, to 
catch a glimpse of where the multiverse concept might be headed, as well as to 
emphasize the essential highlights of where it now stands, here are five central 
questions with which physicists will continue to grapple in the years ahead. 
 
Is the Copernican Pattern Fundamental? 
 
 
 Regularities and patterns, evident in observations and in mathematics, are 
essential to formulating physical laws. Patterns of a different sort, in the nature 
of the physical laws accepted by each successive generation, are also revealing. 
Such patterns reflect how scientific discovery has shifted humankind’s 
perspective on its place in the cosmic order. Over the course of nearly five 
centuries, the Copernican progression has been a dominant theme. From the 
rising and setting of the sun to the motion of constellations across the night sky 
to the leading role we each play in our mind’s inner world, experience abounds 
with clues suggesting that we’re a central hub around which the cosmos 
revolves. But the objective methods of scientific discovery have steadily 
corrected this perspective. At nearly every turn, we’ve found that were we not 
here, the cosmic order would hardly differ. We’ve had to give up our belief in 
earth’s centrality among our cosmic neighbors, the sun’s centrality in the 
galaxy, the Milky Way’s centrality among the galaxies, and even the centrality 
of protons, neutrons, and electrons—the stuff of which we’re made—in the 
cosmic recipe. There was a time when evidence contrary to long-held 
collective delusions of grandeur was viewed as a frontal assault on human 
worth. With practice, we’ve gotten better at valuing enlightenment. 
 The trek in this book has been toward what may be the capstone 
Copernican correction. Our universe itself may not be central to any cosmic 
order. Much as with our planet, star, and galaxy, our universe may merely be 
one among a great many. The idea that reality based on a multiverse extends 
the Copernican pattern and perhaps completes it is cause for curiosity. But 



what elevates the multiverse concept above idle speculation is a key fact that 
we’ve now repeatedly encountered. Scientists have not been on a hunt for 
ways to extend the Copernican revolution. They’ve not been plotting in 
darkened laboratories for ways to complete the Copernican pattern. Instead, 
scientists have been doing what they always do: using data and observations as 
a guide, they’ve been formulating mathematical theories to describe the 
fundamental constituents of matter and the forces that govern how those 
constituents behave, interact, and evolve. Remarkably, when diligently 
following the trail these theories blaze, scientists have run smack into one 
potential multiverse after another. Take a trip along a great many of the most 
traveled scientific highways, stay moderately attentive, and you’ll encounter a 
diverse assortment of multiverse candidates. They’re harder to avoid than they 
are to find. 
 Perhaps future discoveries will cast a different light on the series of 
Copernican corrections. But from our current vantage point, the more we 
understand, the less central we appear. Should the scientific considerations 
we’ve discussed in earlier chapters continue to push us toward multiverse-
based explanations, it would be the natural step toward completing the 
Copernican revolution, five hundred years in the making. 
 
Can Scientific Theories that Invoke a Multiverse Be Tested? 
 
 
 Although the multiverse concept fits snugly within the Copernican 
template, it differs qualitatively from our earlier migrations from center stage. 
By invoking realms that may be forever beyond our ability to examine—either 
with any degree of precision or, in some cases, even at all—multiverses 
seemingly erect substantial barriers to scientific knowledge. Regardless of 
one’s view of humanity’s place in the cosmic arrangement, a widely held 
assumption has been that through conscientious experimentation, observation, 
and mathematical calculation, the capacity for gaining deeper understanding is 
boundless. But if we’re part of a multiverse, a reasonable expectation is that at 
best we can learn about our universe, our little corner of the cosmos. More 
distressing is the worry that by invoking a multiverse, we enter the domain of 



theories that can’t be tested—theories that rely on “just so” stories, relegating 
everything we observe to “the way things just happen to be here.” 
 As I’ve argued, however, the multiverse concept is more nuanced. We’ve 
seen various ways in which a theory that involves a multiverse might offer 
testable predictions. For instance, while the particular universes constituting a 
given multiverse may differ considerably, because they emerge from a 
common theory there may be features they all share. Failure to find those 
features, through measurements we undertake here in the one universe to 
which we have access, would prove that multiverse proposal wrong. 
Confirmation of those features, especially if they’re novel, would build 
confidence that the proposal was right. 
 Or, if there aren’t features common to all universes, correlations between 
physical features can provide another class of testable predictions. For 
example, we’ve seen that if all universes whose particle roster includes an 
electron also include an as-yet-undetected particle species, failure to find the 
particle through experiments undertaken here in our universe would rule out 
the multiverse proposal. Confirmation would build confidence. More 
complicated correlations—such as, those universes whose particle roster 
includes, say, all the known particles (electrons, muons, up-quarks, down-
quarks, etc.) necessarily contain a new particle species—would similarly yield 
testable, falsifiable predictions. 
 In the absence of such tight correlations, the manner in which physical 
features vary from universe to universe can also provide predictions. Across a 
given multiverse, for example, the cosmological constant might take on a wide 
range of values. But if the vast majority of universes have a cosmological 
constant whose value agrees with what measurements have found here (as 
illustrated in Figure 7.1), confidence in that multiverse would deservedly grow. 
 Finally, even if most universes in a given multiverse have properties that 
differ from ours, there’s one more diagnostic we can bring into play. We can 
invoke anthropic reasoning by considering only those universes in the 
multiverse hospitable to our form of life. If the vast majority of this subclass of 
universes has properties that agree with ours—if our universe is typical among 
those in which the conditions allow us to live—confidence in the multiverse 
would build. If we’re atypical, we can’t rule the theory out, but that’s a 
familiar limitation of statistical reasoning. Unlikely outcomes can and 



sometimes do happen. Even so, the less typical we are, the less compelling the 
given multiverse proposal would be. If among all life-supporting universes in a 
given multiverse our universe would stick out like a sore thumb, that would 
provide a strong argument to deem that multiverse proposal irrelevant. 
 To probe a multiverse proposal quantitatively, therefore, we must 
determine the demographics of the universes that populate it. It’s not enough 
to know the possible universes the multiverse proposal allows; we must 
determine the detailed features of the actual universes to which the proposal 
gives rise. This requires understanding the cosmological processes that bring 
the various universes of a given multiverse proposal into existence. Testable 
predictions can then emerge from the way physical features vary from universe 
to universe across the multiverse. 
 Whether this sequence of evaluations yields sharp results is something 
that can only be assessed multiverse by multiverse. But the conclusion is that 
theories that involve other universes—realms we can’t access now or perhaps 
ever—can still provide testable, and hence falsifiable, predictions. 
 
Can We Test the Multiverse Theories We’ve Encountered? 
 
 
 In the course of theoretical research, physical intuition is vital. Theorists 
need to navigate a bewildering array of possibilities. Should I try this equation 
or that, invoke that pattern or this? The best physicists have sharp and 
wonderfully accurate hunches or gut feelings about which directions are 
promising and which are likely to be fruitless. But that happens behind the 
scenes. When scientific proposals are brought forward, they are not judged by 
hunches or gut feelings. Only one standard is relevant: a proposal’s ability to 
explain or predict experimental data and astronomical observations. 
 Therein lies the singular beauty of science. As we struggle toward deeper 
understanding, we must give our creative imagination ample room to explore. 
We must be willing to step outside conventional ideas and established 
frameworks. But unlike the wealth of other human activities through which the 
creative impulse is channeled, science supplies a final reckoning, a built-in 
assessment of what’s right and what’s not. 



 A complication of scientific life in the late twentieth and early twenty-
first centuries is that some of our theoretical ideas have soared past our ability 
to test or observe. String theory has for some time been the poster child for this 
situation; the possibility that we’re part of a multiverse provides an even more 
sprawling example. I’ve laid out a general prescription for how a multiverse 
proposal might be testable, but at our current level of understanding none of 
the multiverse theories we’ve encountered yet meet the criteria. With ongoing 
research, this situation could greatly improve. 
 Our investigations of the Landscape Multiverse, for example, are in their 
earliest stages. The collection of possible string theory universes—the string 
landscape—is schematically illustrated in Figure 6.4, but detailed maps of this 
mountainous terrain have yet to be drawn. Like ancient seafarers, we have a 
rough sense of what’s out there, but it will require extensive mathematical 
explorations to map the lay of the land. With such knowledge in hand, the next 
step will be to determine how these potential universes are distributed across 
the corresponding Landscape Multiverse. The essential physical process, the 
creation of bubble universes through quantum tunneling (illustrated in Figure 
6.6 and Figure 6.7), is well understood in principle but has yet to be examined 
with quantitative depth in string theory. Various research groups (including my 
own) have undertaken initial reconnaissance, but there is vast terrain yet to 
scout. As we’ve seen in earlier chapters, a variety of similar uncertainties 
afflict the other multiverse proposals too. 
 No one knows whether it will take years, decades, or even longer for 
observational and theoretical progress to extract detailed predictions from any 
given multiverse. Should the current situation persist, we’ll face a choice. Do 
we define science—“respectable science”—as including only those ideas, 
realms, and possibilities that fall within the capacity of contemporary human 
beings on Planet Earth to test or observe? Or do we take a more expansive 
view and consider as “scientific” ideas that might be testable with 
technological advances we can imagine achieving in the next hundred years? 
The next two hundred years? Longer? Or do we take a still more expansive 
view? Do we allow science to follow any and all paths it reveals, to travel in 
directions that radiate from experimentally confirmed concepts but that may 
lead our theorizing into hidden realms that lie, perhaps permanently, beyond 
human reach? 



 There’s no clear-cut answer. It is here that personal scientific taste comes 
to the fore. I understand well the impulse to tether scientific investigations to 
those propositions that can be tested now, or in the near future; this is, after all, 
how we built the scientific edifice. But I find it parochial to bound our thinking 
by the arbitrary limits imposed by where we are, when we are, and who we are. 
Reality transcends these limits, so it’s to be expected that sooner or later the 
search for deep truths will too. 
 My taste is for the expansive. But I draw the line at ideas that have no 
possibility of being confronted meaningfully by experiment or observation, not 
because of human frailty or technological hurdles, but because of the proposals’ 
inherent nature. Of the multiverses we’ve considered, only the full-blown 
version of the Ultimate Multiverse falls into this netherland. If absolutely 
every possible universe is included, then no matter what we measure or 
observe, the Ultimate Multiverse will nod and embrace our result. The other 
eight multiverses, as summarized in Table 11.1, aviod this pitfall. Each 
emerges from a well-motivated, logical chain of reasoning, and each is open to 
judgment. Should observations provide convincing evidence that the spatial 
expanse is finite, the Quilted Multiverse would drop from consideration. 
Should confidence in inflationary cosmology erode, perhaps because more 
precise cosmic microwave background data can be explained only by 
assuming contorted (and hence unconvincing) inflaton potential energy curves, 
the prominence of the Inflationary Multiverse would diminish too.* Should 
string theory suffer a theoretical setback, perhaps through the discovery of a 
subtle mathematical flaw showing that the theory is inconsistent (as early 
researchers initially thought was the case), the motivation for its various 
multiverses would evaporate. Conversely, observations of patterns in the 
microwave background radiation expected from bubble collisions could 
provide direct supporting evidence for the Inflationary Multiverse. Accelerator 
experiments searching for supersymmetric particles, missing energy signatures, 
and mini black holes could bolster the case for string theory and the Brane 
Multiverse, while evidence for bubble collisions could also provide support for 
the Landscape variety. Detection of gravitational wave imprints from the early 
universe, or lack thereof, could distinguish between cosmology based on the 
inflationary paradigm and that of the Cyclic Multiverse. 



 Quantum mechanics, in its Many Worlds guise, gives rise to the 
Quantum Multiverse. Should future research show that the equations of 
quantum mechanics, however reliable they’ve been so far, require small 
modifications to match more refined data, this type of multiverse could be 
ruled out. A modification of quantum theory that compromises the property of 
linearity (on which we relied extensively in Chapter 8) would do just that. 
We’ve noted as well that there are in-principle tests of the Quantum Multiverse, 
experiments whose results depend on whether or not Everett’s Many Worlds 
picture is correct. The experiments are beyond what we can carry out now and 
perhaps always, but that’s because they’re fantastically difficult, not because 
some inherent feature of the Quantum Multiverse itself renders them 
fundamentally undoable. 
 The Holographic Multiverse emerges from considerations of established 
theories—general relativity and quantum mechanics—and receives its 
strongest theoretical support from string theory. Calculations based on 
holography are already making tentative contact with experimental results at 
the Relativistic Heavy Ion Collider, and all indications are that such 
experimental links will grow more robust in the future. Whether one views the 
Holographic Multiverse merely as a useful mathematical device or as evidence 
for holographic reality is a matter of opinion. We must await future work, 
theoretical and experimental, in order to build a stronger case for the physical 
interpretation. 
 The Simulated Multiverse rests not on any one theoretical structure but 
rather on the relentless rise of computational power. The linchpin assumption 
is that sentience is not fundamentally tied to a particular substrate—the 
brain—but is an emergent characteristic of a certain variety of information 
processing. It’s a highly debatable proposition, with passionate arguments 
advanced on both sides. Maybe future research on the brain and on the nature 
of consciousness will undermine the idea of self-aware thinking machines. 
And maybe not. One means for judging this multiverse proposal, though, is 
clear. Should our descendants one day observe, or interact with, or virtually 
visit, or become part of a convincing simulated world, the issue would for all 
practical purposes be settled. 
 The Simulated Multiverse, at least in theory, might also be linked to a 
pared-down version of the Ultimate Multiverse that includes only universes 



based on computable mathematical structures. Unlike the full-blown version of 
the Ultimate Multiverse, this more limited incarnation has a genesis story that 
lifts it beyond mere assertion. The users, real and simulated, who are behind 
the Simulated Multiverse will, by definition, be simulating computable 
mathematical structures and thus will have the capacity to generate this part of 
the Ultimate Multiverse. 
 Gaining experimental or observational insight into the validity of any of 
the multiverse proposals is surely a long shot. But it’s not an impossibility. 
And with the immensity of the potential payoff, if the exploration of 
multiverses is where the natural course of theoretical research takes us, we 
must follow the trail to see where it leads. 
 
How Does a Multiverse Affect the Nature of Scientific Explanation? 
 
 
 Sometimes science focuses on details. It tells us why planets travel in 
elliptical orbits, why the sky is blue, why water is transparent, why my desk is 
solid. However familiar these facts may be, it is wondrous that we’ve been 
able to explain them. Sometimes science takes a larger view. It reveals that we 
live within a galaxy containing a few hundred billion stars, it establishes that 
ours is but one of hundreds of billions of galaxies, and it provides evidence for 
unseen dark energy permeating every nook and cranny of this vast arena. 
Looking back just a hundred years, to a time when the universe was thought to 
be static and populated solely by the Milky Way galaxy, we can rightly 
celebrate the magnificent picture science has since painted. 
 Sometimes science does something else. Sometimes it challenges us to 
reexamine our views of science itself. The usual centuries-old scientific 
framework envisions that when describing a physical system, a physicist needs 
to specify three things. We’ve seen all three in various contexts, but it’s useful 
to gather them together here. First are the mathematical equations describing 
the relevant physical laws (for example, these might be Newton’s laws of 
motion, Maxwell’s equations of electricity and magnetism, or Schrödinger’s 
equation of quantum mechanics). Second are the numerical values of all 
constants of nature that appear in the mathematical equations (for example, the 
constants determining the intrinsic strength of gravity and the electromagnetic 



forces or those determining the masses of the fundamental particles). Third, 
the physicist must specify the system’s “initial conditions” (such as a baseball 
being hit from home plate at a particular speed in a particular direction, or an 
electron starting out with a 50 percent probability of being found at Grant’s 
Tomb and an equal probability of being found at Strawberry Fields). The 
equations then determine what things will be like at any subsequent time. Both 
classical and quantum physics subscribe to this framework; they differ only in 
that classical physics purports to tell us how things will definitely be at a given 
moment, while quantum physics provides the probability that things will be 
one way or another. 
 When it comes to predicting where a batted ball will land, or how an 
electron will move through a computer chip (or a model Manhattan), this 
three-step process is demonstrably powerful. Yet, when it comes to describing 
the totality of reality, the three steps invite us to ask deeper questions: Can we 
explain the initial conditions—how things were at some purportedly earliest 
moment? Can we explain the values of the constants—the particle masses, 
force strengths, and so on—on which those laws depend? Can we explain why 
a particular set of mathematical equations describes one or another aspect of 
the physical universe? 
 The various multiverse proposals we’ve discussed have the potential to 
profoundly shift our thinking on these questions. In the Quilted Multiverse, the 
physical laws across the constituent universes are the same, but the particle 
arrangements differ; different particle arrangements now reflect different 
initial conditions in the past. In this multiverse, therefore, our perspective on 
the question of why the initial conditions in our universe were one way or 
another shifts. Initial conditions can and generally will vary from universe to 
universe, so there is no fundamental explanation for any particular 
arrangement. Asking for such an explanation is asking the wrong kind of 
question; it’s invoking single-universe mentality in a multiverse setting. 
Instead, the question we should ask is whether somewhere in the multiverse is 
a universe whose particle arrangement, and hence initial conditions, agrees 
with what we see here. Better still, can we show that such universes abound? If 
so, the deep question of initial conditions would be explained with a shrug of 
the shoulders; in such a multiverse, the initial conditions of our universe would 



be in no more need of an explanation than the fact that somewhere in New 
York is a shoe store that carries your size. 
 In the inflationary multiverse, the “constants” of nature can and generally 
will vary from bubble universe to bubble universe. Recall from Chapter 3 that 
environmental differences—the different Higgs field values permeating each 
bubble—give rise to different particle masses and force properties. The same 
holds true in the Brane Multiverse, the Cyclic Multiverse, and the Landscape 
Multiverse, where the form of string theory’s extra dimensions, together with 
various differences in fields and fluxes, result in universes with different 
features—from the electron’s mass to whether there even is an electron to the 
strength of electromagnetism to whether there is an electromagnetic force to 
the value of the cosmological constant, and so on. In the context of these 
multiverses, asking for an explanation of the particle and force properties we 
measure is once again asking the wrong kind of question; it’s a question borne 
of single-universe thinking. Instead, we should ask whether in any of these 
multiverses there’s a universe with the physical properties we measure. Better 
would be to show that universes with our physical features are abundant, or at 
least are abundant among all those universes that support life as we know it. 
But as much as it’s meaningless to ask for the word with which Shakespeare 
wrote Macbeth, so it’s meaningless to ask the equations to pick out the values 
of the particular physical features we see here. 
 The Simulated and Ultimate Multiverses are horses of a different color; 
they don’t emerge from particular physical theories. Yet, they too have the 
potential to shift the nature of our questions. In these multiverses, the 
mathematical laws governing the individual universes vary. Thus, much as 
with varying initial conditions and constants of nature, varying laws suggest 
that it’s as misguided to ask for an explanation of the particular laws in 
operation here. Different universes have different laws; we experience the ones 
we do because these are among the laws compatible with our existence. 
 Collectively, we see that the multiverse proposals summarized in Table 
11.1 render prosaic three primary aspects of the standard scientific framework 
that in a single-universe setting are deeply mysterious. In various multiverses, 
the initial conditions, the constants of nature, and even the mathematical laws 
are no longer in need of explanation. 



Should We Believe Mathematics? 
 
 
 Nobel laureate Steven Weinberg once wrote, “Our mistake is not that we 
take our theories too seriously, but that we do not take them seriously enough. 
It is always hard to realize that these numbers and equations we play with at 
our desks have something to do with the real world.”1 Weinberg was referring 
to the pioneering results of Ralph Alpher, Robert Herman, and George Gamow 
on the cosmic microwave background radiation, which I described in Chapter 
3. Although the predicted radiation is a direct consequence of general relativity 
combined with basic cosmological physics, it rose to prominence only after 
being discovered theoretically twice, a dozen years apart, and then being 
observed through a benevolent act of serendipity. 
 To be sure, Weinberg’s remark has to be applied with care. Although his 
desk has played host to an inordinate amount of mathematics that has proved 
relevant to the real world, far from every equation with which we theorists 
tinker rises to that level. In the absence of compelling experimental or 
observational results, deciding which mathematics should be taken seriously is 
as much art as it is science. 
 Indeed, this issue is central to all we’ve discussed in this book; it has also 
informed the book’s title. The breadth of multiverse proposals in Table 11.1 
might suggest a panorama of hidden realities. But I’ve titled this book in the 
singular to reflect the unique and uniquely powerful theme that underlies them 
all: the capacity of mathematics to reveal secreted truths about the workings of 
the world. Centuries of discovery have made this abundantly evident; 
monumental upheavals in physics have emerged time and again from 
vigorously following mathematics’ lead. Einstein’s own complex dance with 
mathematics provides a revealing case study. 
 In the late 1800s when James Clerk Maxwell realized that light was an 
electromagnetic wave, his equations showed that light’s speed should be about 
300,000 kilometers per second—close to the value experimenters had 
measured. A nagging loose end was that his equations left unanswered the 
question: 300,000 kilometers per second relative to what? Scientists pursued 
the makeshift resolution that an invisible substance permeating space, the 
“aether,” provided the unseen standard of rest. But in the early twentieth 



century, Einstein argued that scientists needed to take Maxwell’s equations 
more seriously. If Maxwell’s equations didn’t refer to a standard of rest, then 
there was no need for a standard of rest; light’s speed, Einstein forcefully 
declared, is 300,000 kilometers per second relative to anything. Although the 
details are of historical interest, I’m describing this episode for the larger point: 
everyone had access to Maxwell’s mathematics, but it took the genius of 
Einstein to embrace the mathematics fully. And with that move, Einstein broke 
through to the special theory of relativity, overturning centuries of thought 
regarding space, time, matter, and energy. 
 During the next decade, in the course of developing the general theory of 
relativity, Einstein became intimately familiar with vast areas of mathematics 
that most physicists of his day knew little or nothing about. As he groped 
toward general relativity’s final equations, Einstein displayed a master’s skill 
in molding these mathematical constructs with the firm hand of physical 
intuition. A few years later, when he received the good news that observations 
of the 1919 solar eclipse confirmed general relativity’s prediction that star 
light should travel along curved trajectories, Einstein confidently noted that 
had the results been different, “he would have been sorry for the dear Lord, 
since the theory is correct.” I’m sure that convincing data contravening general 
relativity would have changed Einstein’s tune, but the remark captures well 
how a set of mathematical equations, through their sleek internal logic, their 
intrinsic beauty, and their potential for wide-ranging applicability, can 
seemingly radiate reality. 
 Nevertheless, there was a limit to how far Einstein was willing to follow 
his own mathematics. Einstein did not take the general theory of relativity 
“seriously enough” to believe its prediction of black holes, or its prediction 
that the universe was expanding. As we’ve seen, others, including Friedmann, 
Lemaître, and Schwarzschild, embraced Einstein’s equations more fully than 
he, and their achievements have set the course of cosmological understanding 
for nearly a century. By contrast, during the last twenty or so years of his life, 
Einstein threw himself into mathematical investigations, passionately striving 
for the prized achievement of a unified theory of physics. In assessing this 
work based on what we know now, one can’t help but conclude that during 
those years Einstein was too heavily guided—some might say blinded—by the 
thicket of equations with which he was constantly surrounded. And so, even 



Einstein, at various times in his life, made the wrong decision regarding which 
equations to take seriously and which to not. 
 The third revolution in modern theoretical physics, quantum mechanics, 
provides another case study, one of direct relevance to the story I’ve told in 
this book. Schrödinger wrote down his equation for how quantum waves 
evolve in 1926. For decades, the equation was viewed as relevant only to the 
domain of small things: molecules, atoms, and particles. But in 1957, Hugh 
Everett echoed Einstein’s Maxwellian charge of a half century earlier: take the 
math seriously. Everett argued that Schrödinger’s equation should apply to 
everything because all things material, regardless of size, are made from 
molecules, atoms, and subatomic particles. And as we’ve seen, this led Everett 
to the Many Worlds approach to quantum mechanics and to the Quantum 
Multiverse. More than fifty years later, we still don’t know if Everett’s 
approach is right. But by taking the mathematics underlying quantum theory 
seriously—fully seriously—he may have discovered one of the most profound 
revelations of scientific exploration. 
 The other multiverse proposals similarly rely on a belief that 
mathematics is tightly stitched into the fabric of reality. The Ultimate 
Multiverse takes this perspective to its furthermost incarnation; mathematics, 
according to the Ultimate Multiverse, is reality. But even with their less 
panoptic view on the connection between mathematics and reality, the other 
multiverse theories in Table 11.1 owe their genesis to numbers and equations 
played with by theorists sitting at desks—and scribbling in notebooks, and 
writing on chalkboards, and programming computers. Whether invoking 
general relativity, quantum mechanics, string theory, or mathematical insight 
more broadly, the entries in Table 11.1 arise only because we assume that 
mathematical theorizing can guide us toward hidden truths. Only time will tell 
if this assumption takes the underlying mathematical theories too seriously, or 
perhaps not seriously enough. 
 If some or all of the mathematics that’s compelled us to think about 
parallel worlds proves relevant to reality, Einstein’s famous query, asking 
whether the universe has the properties it does simply because no other 
universe is possible, would have a definitive answer: no. Our universe is not 
the only one possible. Its properties could have been different. And in many of 
the multiverse proposals, the properties of the other member universes would 



be different. In turn, seeking a fundamental explanation for why certain things 
are the way they are would be pointless. Instead, statistical likelihood or plain 
happenstance would be firmly inserted in our understanding of a cosmos that 
would be profoundly vast. 
 I don’t know if this is how things will turn out. No one does. But it’s only 
through fearless engagement that we can learn our own limits. It’s only 
through the rational pursuit of theories, even those that whisk us into strange 
and unfamiliar domains, that we stand a chance of revealing the expanse of 
reality. 
 
 *Note, as in Chapter 7, that an airtight observational refutation of 
inflation would require the theory’s commitment to a procedure for comparing 
infinite classes of universes—something it has not yet achieved. However, 
most practitioners would agree that if, say, the microwave background data 
had looked different from Figure 3.4, their confidence in inflation would have 
plummeted, even though, according to the theory, there’s a bubble universe in 
the Inflationary Multiverse in which those data would hold. 
 
 
  



Notes 
 
 
Chapter 1: The Bounds of Reality 
 
 
 1. The possibility that our universe is a slab floating in a higher 
dimensional realm goes back to a paper by two renowned Russian physicists—
“Do We Live Inside a Domain Wall?,” V. A. Rubakov and M. E. 
Shaposhnikov, Physics Letters B 125 (May 26, 1983): 136—and does not 
involve string theory. The version I’ll focus on in Chapter 5 emerges from 
advances in string theory in the mid-1990s. 
 
Chapter 2: Endless Doppelgängers 
 
 
 1. The quote comes from the March 1933 issue of The Literary Digest. It 
is worth noting that the precision of this quote has recently been questioned by 
the Danish historian of science Helge Kragh (see his Cosmology and 
Controversy, Princeton: Princeton University Press, 1999), who suggests it 
may be a reinterpretation of a Newsweek report from earlier that year in which 
Einstein was referring to the origin of cosmic rays. What is certain, however, is 
that by this year Einstein had given up his belief that the universe was static 
and accepted the dynamic cosmology that emerged from his original equations 
of general relativity. 
 2. This law tells us the force of gravitational attraction, F, between two 
objects, given the masses, m1 and m2, of each, and the distance, r, between 
them. Mathematically, the law reads: F = Gm1m2/r2, where G stands for 
Newton’s constant—an experimentally measured number that specifies the 
intrinsic strength of the gravitational force. 
 3. For the mathematically inclined reader, Einstein’s equations are Ruv– 

2ݣ  guvR = 8πGTuv where guv is the metric on spacetime, Ruv is the Ricci 
curvature tensor, R is the scalar curvature, G is Newton’s constant, and Tuv is 
the energy-momentum tensor. 



 4. In the decades since this famous confirmation of general relativity, 
questions have been raised regarding the reliability of the results. For distant 
starlight grazing the sun to be visible, the observations had to be carried out 
during a solar eclipse; unfortunately, bad weather made it a challenge to take 
clear photographs of the solar eclipse of 1919. The question is whether 
Eddington and his collaborators might have been biased by foreknowledge of 
the result they were seeking, and so when they culled photographs deemed 
unreliable because of weather interference, they eliminated a disproportionate 
number containing data that appeared not to fit Einstein’s theory. A recent and 
thorough study by Daniel Kennefick (see www.arxiv.org, paper 
arXiv:0709.0685, which, among other considerations, takes account of a 
modern reevaluation of the photograph plates taken in 1919) convincingly 
argues that the 1919 confirmation of general relativity is, indeed, reliable. 
 5. For the mathematically inclined reader, Einstein’s equations of general 
relativity in this context reduce to. The variable a(t) is the scale factor of the 
universe—a number whose value, as the name indicates, sets the distance scale 
between objects (if the value of a(t) at two different times differs, say, by a 
factor of 2, then the distance between any two particular galaxies would differ 
between those times by a factor of 2 as well), G is Newton’s constant,is the 
density of matter/energy, and k is a parameter whose value can be 1, 0, or -1 
according to whether the shape of space is spherical, Euclidean (“flat”), or 
hyperbolic. The form of this equation is usually credited to Alexander 
Friedmann and, as such, is called the Friedmann equation. 
 6. The mathematically inclined reader should note two things. First, in 
general relativity we typically define coordinates that are themselves 
dependent on the matter space contains: we use galaxies as the coordinate 
carriers (acting as if each galaxy has a particular set of coordinates “painted” 
on it—so-called co-moving coordinates). So, to even identify a specific region 
of space, we usually make reference to the matter that occupies it. A more 
precise rephrasing of the text, then, would be: The region of space containing a 
particular group of N galaxies at time t1 will have a larger volume at a later 
time t2. Second, the intuitively sensible statement regarding the density of 
matter and energy changing when space expands or contracts makes an 
implicit assumption regarding the equation of state for matter and energy. 
There are situations, and we will encounter one shortly, where space can 



expand or contract while the density of a particular energy contribution—the 
energy density of the so-called cosmological constant—remains unchanged. 
Indeed, there are even more-exotic scenarios in which space can expand while 
the density of energy increases. This can happen because, in certain 
circumstances, gravity can provide a source of energy. The important point of 
the paragraph is that in their original form the equations of general relativity 
are not compatible with a static universe. 
 7. Shortly we will see that Einstein abandoned his static universe when 
confronted by astronomical data showing that the universe is expanding. It is 
worth noting, though, that his misgivings about the static universe predated the 
data. The physicist Willem de Sitter pointed out to Einstein that his static 
universe was unstable: nudge it a bit bigger, and it would grow; nudge it a bit 
smaller, and it would shrink. Physicists shy away from solutions that require 
perfect, undisturbed conditions for them to persist. 
 8. In the big bang model, the outward expansion of space is viewed much 
like the upward motion of a tossed ball: attractive gravity pulls on the upward-
moving ball and so slows its motion; similarly, attractive gravity pulls on the 
outward-moving galaxies and so slows their motion. In neither case does the 
ongoing motion require a repulsive force. However, you can still ask: Your 
arm launched the ball skyward, so what “launched” the spatial universe on its 
outward expansion? We will return to this question in Chapter 3, where we 
will see that modern theory posits a short burst of repulsive gravity, operating 
during the earliest moments of cosmic history. We will also see that more 
refined data has provided evidence that the expansion of space is not slowing 
over time, which has resulted in a surprising—and as later chapters will make 
clear—potentially profound resurrection of the cosmological constant. 
 The discovery of the spatial expansion was a turning point in modern 
cosmology. In addition to Hubble’s contributions, the achievement relied on 
the work and insights of many others, including Vesto Slipher, Harlow 
Shapley, and Milton Humason. 
 9. A two-dimensional torus is usually depicted as a hollow doughnut. A 
two-step process shows that this picture agrees with the description provided 
in the text. When we declare that crossing the right edge of the screen brings 
you back to the left edge, that’s tantamount to identifying the entire right edge 
with the left edge. Were the screen flexible (made of thin plastic, say) this 



identification could be made explicit by rolling the screen into a cylindrical 
shape and taping the right and left edges together. When we declare that 
crossing the upper edge brings you to the lower edge, that too is tantamount to 
identifying those edges. We can make this explicit by a second manipulation in 
which we bend the cylinder and tape the upper and lower circular edges 
together. The resulting shape has the usual doughnutlike appearance. A 
misleading aspect of these manipulations is that the surface of the doughnut 
looks curved; were it coated with reflective paint, your reflection would be 
distorted. This is an artifact of representing the torus as an object sitting within 
an ambient three-dimensional environment. Intrinsically, as a two-dimensional 
surface, the torus is not curved. It is flat, as is clear when it’s represented as a 
flat video-game screen. That’s why, in the text, I focus on the more 
fundamental description as a shape whose edges are identified in pairs. 
 10. The mathematically inclined reader will note that by “judicious 
slicing and paring” I am referring to taking quotients of simply connected 
covering spaces by various discrete isometry groups. 
 11. The quoted amount is for the current era. In the early universe, the 
critical density was higher. 
 12. If the universe were static, light that had been traveling for the last 
13.7 billion years and has only just reached us would indeed have been emitted 
from a distance of 13.7 billion light-years. In an expanding universe, the object 
that emitted the light has continued to recede during the billions of years the 
light was in transit. When we receive the light, the object is thus farther 
away—much farther—than 13.7 billion light-years. A straightforward 
calculation using general relativity shows that the object (assuming it still 
exists and has been continually riding the swell of space) would now be about 
41 billion light-years away. This means that when we look out into space we 
can, in principle, see light from sources that are now as far as roughly 41 
billion light-years. In this sense, the observable universe has a diameter of 
about 82 billion light-years. The light from objects farther than this distance 
would not yet have had enough time to reach us and so are beyond our cosmic 
horizon. 
 13. In loose language, you can envision that because of quantum 
mechanics, particles always experience what I like to call “quantum jitter”: a 
kind of inescapable random quantum vibration that renders the very notion of 



the particle having a definite position and speed (momentum) approximate. In 
this sense, changes to position/speed that are so small that they’re on par with 
the quantum jitters are within the “noise” of quantum mechanics and hence are 
not meaningful. 
 In more precise language, if you multiply the imprecision in the 
measurement of position by the imprecision in the measurement of momentum, 
the result—the uncertainty—is always larger than a number called Planck’s 
constant, named after Max Planck, one of the pioneers of quantum physics. In 
particular, this implies that fine resolutions in measuring the position of a 
particle (small imprecision in position measurement) necessarily entail large 
uncertainty in the measurement of its momentum and, by association, its 
energy. Since energy is always limited, the resolution in position 
measurements is thus limited too. 
 Also note that we will always apply these concepts in a finite spatial 
domain—generally in regions the size of today’s cosmic horizon (as in the 
next section). A finite-sized region, however large, implies a maximum 
uncertainty in position measurements. If a particle is assumed to be in a given 
region, the uncertainty of its position is surely no larger than the size of the 
region. Such a maximum uncertainty in position then entails, from the 
uncertainty principle, a minimum amount of uncertainty in momentum 
measurements—that is, limited resolution in momentum measurements. 
Together with the limited resolution in position measurements, we see the 
reduction from an infinite to a finite number of possible distinct configurations 
of a particle’s position and speed. 
 You might still wonder about the barrier to building a device capable of 
measuring a particle’s position with ever greater precision. It too is a matter of 
energy. As in the text, if you want to measure a particle’s position with ever 
greater precision, you need to use an ever more refined probe. To determine 
whether a fly is in a room, you can turn on an ordinary, diffuse overhead light. 
To determine if an electron is in a cavity, you need to illuminate it with the 
sharp beam of a powerful laser. And to determine the electron’s position with 
ever greater accuracy you need to make that laser ever more powerful. Now, 
when an ever more powerful laser zaps an electron, it imparts an ever greater 
disturbance to its velocity. Thus, the bottom line is that precision in 
determining particles’ positions comes at the cost of huge changes in the 



particles’ velocities—and hence huge changes in particle energies. If there’s a 
limit to how much energy particles can have, as there always will be, there’s a 
limit to how finely their positions can be resolved. 
 Limited energy in a limited spatial domain thus gives finite resolution on 
both position and velocity measurements. 
 14. The most direct way to make this calculation is by invoking a result I 
will describe in nontechnical terms in Chapter 9: the entropy of a black hole—
the logarithm of the number of distinct quantum states—is proportional to its 
surface area measured in square Planck units. A black hole that fills our 
cosmic horizon would have a radius of about 1028 centimeters, or roughly 1061 
Planck lengths. Its entropy would therefore be about 10122 in square Planck 
units. Hence the total number of distinct states is roughly 10 raised to the 
power 10122, or 1010122. 
 15. You might be wondering why I’m not also incorporating fields. As 
we will see, particles and fields are complementary languages—a field can be 
described in terms of the particles of which it’s composed, much like an ocean 
wave can be described in terms of its constituent water molecules. The choice 
of using a particle or field language is largely one of convenience. 
 16. The distance that light can travel in a given time interval depends 
sensitively on the rate at which space expands. In later chapters we will 
encounter evidence that the rate of spatial expansion is accelerating. If so, 
there is a limit to how far light can travel through space, even if we wait an 
arbitrarily long time. Distant regions of space would be receding from us so 
quickly that light we emit could not reach them; similarly, light they emit 
could not reach us. This would mean that cosmic horizons—the portion of 
space with which we can exchange light signals—would not grow in size 
indefinitely. (For the mathematically inclined reader, the essential formulae are 
in Chapter 6, note 7.) 
 17. G. Ellis and G. Bundrit studied duplicate realms in an infinite 
classical universe; J. Garriga and A. the quantum context. 
  



Chapter 3: Eternity and Infinity 
 
 
 1. One point of departure from the earlier work was Dicke’s perspective, 
which focused on the possibility of an oscillating universe that would 
repeatedly go through a series of cycles—big bang, expansion, contraction, big 
crunch, big bang again. In any given cycle there would be remnant radiation 
suffusing space. 
 2. It is worth noting that even though they don’t have jet engines, 
galaxies generally do exhibit some motion above and beyond that arising from 
the expansion of space—typically the result of large-scale intergalactic 
gravitational forces as well as the intrinsic motion of the swirling gas cloud 
from which stars in the galaxies formed. Such motion is called peculiar 
velocity and is generally small enough that it can be safely ignored for 
cosmological purposes. 
 3. The horizon problem is subtle, and my description of inflationary 
cosmology’s solution slightly nonstandard, so for the interested reader let me 
elaborate here in a little more detail. First the problem, again: Consider two 
regions in the night sky that are so distant from one another that they have 
never communicated. And to be concrete, let’s say each region has an observer 
who controls a thermostat that sets his or her region’s temperature. The 
observers want the two regions to have the same temperature, but because the 
observers have been unable to communicate, they don’t know how to set their 
respective thermostats. The natural thought is that since billions of years ago 
the observers were much closer, it would have been easy for them, way back 
then, to have communicated and thus to have ensured the two regions had 
equal temperatures. However, as noted in the main text, in the standard big 
bang theory this reasoning fails. Here’s more detail on why. In the standard big 
bang theory, the universe is expanding, but because of gravity’s attractive pull, 
the rate of expansion slows over time. It’s much like what happens when you 
toss a ball in the air. During its ascent it first moves away from you quickly, 
but because of the tug of earth’s gravity, it steadily slows. The slowing down 
of spatial expansion has a profound effect. I’ll use the tossed ball analogy to 
explain the essential idea. Imagine a ball that undergoes, say, a six second 
ascent. Since it initially travels quickly (as it leaves your hand), it might cover 



the first half of the journey in only two seconds, but due to its diminishing 
speed it takes four more seconds to cover the second half of the journey. At the 
halfway point in time, three seconds, it was thus beyond the halfway mark in 
distance. Similarly, with spatial expansion that slows over time: at the halfway 
point in cosmic history, our two observers would be separated by more than 
half their current distance. Think about what this means. The two observers 
would be closer together, but they would find it harder—not easier—to have 
communicated. Signals one observer sends would have half the time to reach 
the other, but the distance the signals would need to traverse is more than half 
of what it is today. Being allotted half the time to communicate across more 
than half their current separation only makes communication more difficult. 
 The distance between objects is thus only one consideration when 
analyzing their ability to influence each other. The other essential 
consideration is the amount of time that’s elapsed since the big bang, as this 
constrains how far any purported influence could have traveled. In the standard 
big bang, although everything was indeed closer in the past, the universe was 
also expanding more quickly, resulting in less time, proportionally speaking, 
for influences to be exerted. 
 The resolution offered by inflationary cosmology is to insert a phase in 
the earliest moments of cosmic history in which the expansion rate of space 
doesn’t decrease like the speed of the ball tossed upwards; instead, the spatial 
expansion starts out slow and then continually picks up speed: the expansion 
accelerates. By the same reasoning we just followed, at the halfway point of 
such an inflationary phase our two observers will be separated by less than half 
their distance at the end of that phase. And being allotted half the time to 
communicate across less than half the distance means it is easier at earlier 
times for them to communicate. More generally, at ever earlier times, 
accelerated expansion means there is more time, proportionally speaking—not 
less—for influences to be exerted. This would have allowed today’s distant 
regions to have easily communicated in the early universe, explaining the 
common temperature they now have. 
 Because the accelerated expansion results in a much greater total spatial 
expansion of space than in the standard big bang theory, the two regions would 
have been much closer together at the onset of inflation than at a comparable 
moment in the standard big bang theory. This size disparity in the very early 



universe is an equivalent way of understanding why communication between 
the regions, which would have proved impossible in the standard big bang, can 
be easily accomplished in the inflationary theory. If at a given moment after 
the beginning, the distance between two regions is less, it is easier for them to 
exchange signals. 
 Taking the expansion equations seriously to arbitrarily early times (and 
for definiteness, imagine that space is spherically shaped), we also see that the 
two regions would have initially separated more quickly in the standard big 
bang than in the inflationary model: that’s how they became so much farther 
apart in the standard big bang compared with their separation in the 
inflationary theory. In this sense, the inflationary framework involves a period 
of time during which the rate of separation between these regions is slower 
than in the usual big bang framework. 
 Often, in describing inflationary cosmology, the focus is solely on the 
fantastic increase in expansion speed over the conventional framework, not on 
a decrease in speed. The difference in description derives from which physical 
features between the two frameworks one compares. If one compares the 
trajectories of two regions of a given distance apart in the very early universe, 
then in the inflationary theory those regions separate much faster than in the 
standard big bang theory; by today they are also much farther apart in the 
inflationary theory than in the conventional big bang. But if one considers two 
regions of a given distance apart today (like the two regions on opposite sides 
of the night sky upon which we’ve been focused), the description I’ve given is 
relevant. Namely, at a given moment in time in the very early universe, those 
regions were much closer together, and had been moving apart much more 
slowly, in a theory that invokes inflationary expansion as compared with one 
that doesn’t. The role of inflationary expansion is to make up for the slower 
start by then propelling those regions apart ever more quickly, ensuring that 
they arrive at the same location in the sky that they would have in the standard 
big bang theory. 
 A fuller treatment of the horizon problem would include a more detailed 
specification of the conditions from which the inflationary expansion emerges 
as well as the subsequent processes by which, for example, the cosmic 
microwave background radiation is produced. But this discussion highlights 
the essential distinction between accelerated and decelerated expansion. 



 4. Note that by squeezing the bag, you inject energy into it, and since 
both mass and energy give rise to the resulting gravitational warpage, the 
increase in weight will be partially due to the increase in energy. The point, 
however, is that the increase in pressure itself also contributes to the increase 
in weight. (Also note that to be precise, we should imagine doing this 
“experiment” in a vacuum chamber, so we don’t need to consider the buoyant 
forces due to the air surrounding the bag.) For everyday examples the increase 
is tiny. However, in astrophysical settings the increase can be significant. In 
fact, it plays a role in understanding why, in certain situations, stars necessarily 
collapse to form black holes. Stars generally maintain their equilibrium 
through a balance between outward-pushing pressure, generated by nuclear 
processes in the star’s core, and inward-pulling gravity, generated by the star’s 
mass. As the star exhausts its nuclear fuel, the positive pressure decreases, 
causing the star to contract. This brings all its constituents closer together and 
so increases their gravitational attraction. To avoid further contraction, 
additional outward pressure (what is labeled positive pressure, as in the next 
paragraph in the text) is needed. But the additional positive pressure itself 
generates additional attractive gravity and thus makes the need for additional 
positive pressure all the more urgent. In certain situations, this leads to a 
spiraling instability and the very thing that the star usually relies upon to 
counteract the inward pull of gravity—positive pressure—contributes so 
strongly to that very inward pull that a complete gravitational collapse 
becomes unavoidable. The star will implode and form a black hole. 
 5. In the approach to inflation I have just described, there is no 
fundamental explanation for why the inflaton field’s value would begin high 
up on the potential energy curve, nor why the potential energy curve would 
have the particular shape it has. These are assumptions the theory makes. 
Subsequent versions of inflation, most notably one developed by Andrei Linde 
called chaotic inflation, find that a more “ordinary” potential energy curve (a 
parabolic shape with no flat section that emerges from the simplest 
mathematical equations for the potential energy) can also yield inflationary 
expansion. To initiate the inflationary expansion, the inflaton field’s value 
needs to be high up on this potential energy curve too, but the enormously hot 
conditions expected in the early universe would naturally cause this to happen. 



 6. For the diligent reader, let me note one additional detail. The rapid 
expansion of space in inflationary cosmology entails significant cooling (much 
as a rapid compression of space, or of most anything, causes a surge in 
temperature). But as inflation comes to a close, the inflaton field oscillates 
around the minimum of its potential energy curve, transferring its energy to a 
bath of particles. The process is called “re-heating” because the particles so 
produced will have kinetic energy and thus can be characterized by a 
temperature. As space then continues to undergo more ordinary (non-
inflationary) big bang expansion, the temperature of the particle bath steadily 
decreases. The important point, though, is that the uniformity set down by 
inflation provides uniform conditions for these processes, and so results in 
uniform outcomes. 
 7. Alan Guth was aware of the eternal nature of inflation; Paul Steinhardt 
wrote about its mathematical realization in certain contexts; Alexander 
Vilenkin brought it to light in the most general terms. 
 8. The value of the inflaton field determines the amount of energy and 
negative pressure it suffuses through space. The larger the energy, the greater 
the expansion rate of space. The rapid expansion of space, in turn, has a back 
reaction on the inflaton field itself: the faster the expansion of space, the more 
violently the inflaton field’s value jitters. 
 9. Let me address a question that may have occurred to you, one we will 
return to in Chapter 10. As space undergoes inflationary expansion, its overall 
energy increases: the greater the volume of space filled with an inflaton field, 
the greater the total energy (if space is infinitely large, energy is infinite too—
in this case we should speak of the energy contained in a finite region of space 
as the region grows larger). Which naturally leads one to ask: What is the 
source of this energy? For the analogous situation with the champagne bottle, 
the source of additional energy in the bottle came from the force exerted by 
your muscles. What plays the role of your muscles in the expanding cosmos? 
The answer is gravity. Whereas your muscles were the agent that allowed the 
available space inside the bottle to expand (by pulling out the cork), gravity is 
the agent that allows the available space in the cosmos to expand. What’s vital 
to realize is that the gravitational field’s energy can be arbitrarily negative. 
Consider two particles falling toward each other under their mutual 
gravitational attraction. Gravity coaxes the particles to approach each other 



faster and faster, and as they do, their kinetic energy gets ever more positive. 
The gravitational field can supply the particles with such positive energy 
because gravity can draw down its own energy reserve, which becomes 
arbitrarily negative in the process: the closer the particles approach each other, 
the more negative the gravitational energy becomes (equivalently, the more 
positive the energy you’d need to inject to overcome the force of gravity and 
separate the particles once again). Gravity is thus like a bank that has a 
bottomless credit line and so can lend endless amounts of money; the 
gravitational field can supply endless amounts of energy because its own 
energy can become ever more negative. And that’s the energy source that 
inflationary expansion taps. 
 10. I will use the term “bubble universe,” although the imagery of a 
“pocket universe” that opens up within the ambient inflaton-filled environment 
is a good one too (that term was coined by Alan Guth). 
 11. For the mathematically inclined reader, a more precise description of 
the horizontal axis in Figure 3.5 is as follows: consider the two-dimensional 
sphere comprising the points in space at the time the cosmic microwave 
background photons began to stream freely. As with any two-sphere, a 
convenient set of coordinates on this locus are the angular coordinates from a 
spherical polar coordinate system. The temperature of the cosmic microwave 
background radiation can then be viewed as a function of these angular 
coordinates and, as such, can be decomposed in a Fourier series using as a 
basis the standard spherical harmonics,. The vertical axis in Figure 3.5 is 
related to the size of the coefficients for each mode in this expansion—farther 
to the right on the horizontal axis corresponds to smaller angular separation. 
For technical details, see for example Scott Dodelson’s excellent book Modern 
Cosmology (San Diego, Calif.: Academic Press, 2003). 
 12. A little more precisely, it is not the strength of the gravitational field, 
per se, that determines the slowing of time, but rather the strength of the 
gravitational potential. For instance, if you were to hang out inside a spherical 
cavity at the center of a massive star, you wouldn’t feel a gravitational force at 
all, but because you were deep inside a gravitational-potential well, time for 
you would run slower than time for someone far outside the star. 



 13. This result (and closely related ideas) was found by a number of 
researchers in different contexts, and was most explicitly articulated by 
Alexander Vilenkin and also by Sidney Coleman and Frank De Luccia. 
 14. In our discussion of the Quilted Multiverse, you may recall that we 
assumed particle arrangements would vary randomly from patch to patch. The 
connection between the Quilted and Inflationary Mulitverses also allows us to 
make good on that assumption. A bubble universe forms in a given region 
when the inflaton field’s value drops; as it does, the energy the inflaton 
contained is converted into particles. The precise arrangement of these 
particles at any moment is determined by the precise value of the inflaton 
during the conversion process. But because the inflaton field is subject to 
quantum jitters, as its value drops it will be subject to random variations—the 
same random variations that give rise to the pattern of slightly hotter and 
slightly colder spots in Figure 3.4. When considered across the patches in a 
bubble universe, these jitters thus imply that the inflaton’s value will display 
random quantum variations. And this randomness ensures randomness of the 
resulting particle distributions. That’s why we expect any particle arrangement, 
such as the one responsible for all we see right now, to be replicated as often 
as any other. 
  



Chapter 4: Unifying Nature’s Laws 
 
 
 1. I thank Walter Isaacson for personal communications on this and a 
number of other historical issues related to Einstein. 
 2. In a little more detail, the insights of Glashow, Salam, and Weinberg 
suggested that the electromagnetic and weak forces were aspects of a 
combined electroweak force, a theory that was confirmed by accelerator 
experiments in the late 1970s and early 1980s. Glashow and Georgi went a 
step further and suggested that the electroweak and the strong forces were 
aspects of a yet more fundamental force, an approach that’s called grand 
unification. The simplest version of grand unification, however, was ruled out 
when scientists failed to observe one of its predictions—that protons should, 
every so often, decay. Nevertheless, there are many other versions of grand 
unification that remain experimentally viable since, for example, the rate of 
proton decay they predict is so slow that existing experiments would not yet 
have the sensitivity to detect it. However, even if grand unification is not borne 
out by data, it is already beyond doubt that the three nongravitational forces 
can be described using the same mathematical language of quantum field 
theory. 
 3. The discovery of superstring theory spawned other, closely related, 
theoretical approaches seeking a unified theory of nature’s forces. In particular, 
supersymmetric quantum field theory, and its gravitational extension 
supergravity, have been vigorously pursued since the mid-1970s. 
Supersymmetric quantum field theory and supergravity are based on the new 
principle of supersymmetry, which was discovered within superstring theory, 
but these approaches incorporate supersymmetry in conventional point-particle 
theories. We will briefly discuss supersymmetry later in the chapter, but for the 
mathematically inclined reader, I’ll note here that supersymmetry is the last 
available symmetry (beyond rotational symmetry, translational symmetry, 
Lorentz symmetry, and, more generally, Poincaré symmetry) of a nontrivial 
theory of elementary particles. It relates particles of different quantum 
mechanical spin, establishing a deep mathematical kinship between particles 
that communicate forces and the particles making up matter. Supergravity is an 
extension of supersymmetry that includes the gravitational force. In the early 



days of string theory research, scientists realized that the frameworks of 
supersymmetry and supergravity emerged from a low-energy analysis of string 
theory. At low energies, the extended nature of a string generally cannot be 
discerned, so it appears to be a point particle. Correspondingly, as we will 
discuss in this chapter, when applied to low energy processes, the mathematics 
of string theory transforms into that of quantum field theory. Scientists found 
that because both supersymmetry and gravity survive the transformation, low 
energy string theory gives rise to supersymmetric quantum field theory and to 
supergravity. In more recent times, as we will discuss in Chapter 9, the link 
between supersymmetric field theory and string theory has grown yet more 
profound. 
 4. The informed reader may take exception to my statement that every 
field is associated to a particle. So, more precisely, the small fluctuations of a 
field about a local minimum of its potential are generally interpretable as 
particle excitations. That’s all we need for the discussion at hand. Additionally, 
the informed reader will note that localizing a particle at a point is itself an 
idealization, because it would take—from the uncertainty principle—infinite 
momentum and energy to do so. Again, the essence is that in quantum field 
theory there is, in principle, no limit to how finally localized a particle can be. 
 5. Historically speaking, a mathematical technique known as 
renormalization was developed to grapple with the quantitative implications of 
severe, small-scale (high-energy) quantum field jitters. When applied to the 
quantum field theories of the three nongravitational forces, renormalization 
cured the infinite quantities that had emerged in various calculations, allowing 
physicists to generate fantastically accurate predictions. However, when 
renormalization was brought to bear on the quantum jitters of the gravitational 
field, it proved ineffective: the method failed to cure infinities that arose in 
performing quantum calculations involving gravity. 
 From a more modern vantage point, these infinities are now viewed 
rather differently. Physicists have come to realize that en route to an ever-
deeper understanding of nature’s laws, a sensible attitude to take is that any 
given proposal is provisional, and—if relevant at all—is likely capable of 
describing physics only down to some particular length scale (or only up to 
some particular energy scale). Beyond that are phenomena that lie outside the 
reach of the given proposal. Adopting this perspective, it would be foolhardy 



to extend the theory to distances smaller than those within its arena of 
applicability (or to energies above its arena of applicability). And with such 
inbuilt cutoffs (much as described in the main text), no infinities ever arise. 
Instead, calculations are undertaken within a theory whose range of 
applicability is circumscribed from the outset. This means that the ability to 
make predictions is limited to phenomena that lie within the theory’s limits—
at very short distances (or at very high energies) the theory offers no insight. 
The ultimate goal of a complete theory of quantum gravity would be to lift the 
inbuilt limits, unleashing quantitative, predictive capacities on arbitrary scales. 
 6. To get a feel for where these particular numbers come from, note that 
quantum mechanics (discussed in Chapter 8) associates a wave to a particle, 
with the heavier the particle the shorter its wavelength (the distance between 
successive wave crests). Einstein’s general relativity also associates a length to 
any object—the size to which the object would need to be squeezed to become 
a black hole. The heavier the object, the larger that size. Imagine, then, starting 
with a particle described by quantum mechanics and then slowly increasing its 
mass. As you do, the particle’s quantum wave gets shorter, while its “black 
hole size” gets larger. At some mass, the quantum wavelength and the black 
hole size will be equal—establishing a baseline mass and size at which 
quantum mechanical and general relativistic considerations are both important. 
When one makes this thought experiment quantitative, the mass and size are 
found to be those quoted in the text—the Planck mass and Planck length, 
respectively. To foreshadow later developments, in Chapter 9 I will discuss the 
holographic principle. This principle uses general relativity and black hole 
physics to argue for a very particular limit on the number of physical degrees 
of freedom that can reside in any volume of space (a more refined version of 
the discussion in Chapter 2 regarding the number of distinct particle 
arrangements within a volume of space; also mentioned in note 14 of Chapter 
2). If this principle is correct, then the conflict between general relativity and 
quantum mechanics can arise before distances are small and curvatures large. 
A huge volume containing even a low density gas of particles would be 
predicted by quantum field theory to have many more degrees of freedom than 
the holographic principle (which relies on general relativity) would allow. 
 7. Quantum mechanical spin is a subtle concept. Especially in quantum 
field theory, where particles are viewed as dots, it is hard to fathom what 



“spinning” would even mean. What really happens is that experiments show 
that particles can possess an intrinsic property that behaves much like an 
immutable quantity of angular momentum. Moreover, quantum theory shows, 
and experiments confirm, that particles will generally only have angular 
momentum that is an integer multiple of a fundamental quantity (Planck’s 
constant divided by 2). Since classical spinning objects possess an intrinsic 
angular momentum (one, however, that is not immutable—it changes as the 
object’s rotational speed changes), theoreticians have borrowed the name “spin” 
and applied it to this analogous quantum situation. Hence the name “spin 
angular momentum.” While “spinning like a top” provides a reasonable mental 
image, it’s more accurate to imagine that particles are defined not only by their 
mass, their electric charge, and their nuclear charges, but also by the intrinsic 
and immuatable spin angular momentum they possess. Just as we accept a 
particle’s electric charge as one of its fundamental defining features, 
experiments establish that the same is true of its spin angular momentum. 
 8. Recall that the tension between general relativity and quantum 
mechanics arises from the powerful quantum jitters of the gravitational field 
that shake spacetime so violently that the traditional mathematical methods 
can’t cope. Quantum uncertainty tells us that these jitters become ever stronger 
when space is examined on ever-smaller distances (which is why we don’t see 
these jitters in everyday life). Specifically, the calculations show that it is the 
wildly energetic jitters over distances shorter than the Planck scale that make 
the math go haywire (the shorter the distance, the greater the jitters’ energy). 
Since quantum field theory describes particles as points with no spatial extent, 
the distances these particles probe can be arbitrarily small, and hence the 
quantum jitters they feel can be arbitrarily energetic. String theory changes this. 
Strings are not points—they have spatial extent. This implies that there is a 
limit to how small a distance can be accessed, even in principle, since a string 
can’t probe a distance smaller than its own size. In turn, a limit to how small a 
scale can be probed translates into a limit on how energetic the jitters can 
become. This limit proves sufficient to tame the unruly mathematics, allowing 
string theory to merge quantum mechanics and general relativity. 
 9. If an object were truly one-dimensional, we wouldn’t be able to see it 
directly since it would offer no surface from which photons could reflect and 
would have no capacity to produce photons of its own through atomic 



transitions. So, when I say “see” in the text, that’s a stand-in for any means of 
observation or experimentation you might use to seek evidence of an object’s 
spatial extent. The point, then, is that any spatial extent smaller than the 
resolving power of your experimental procedure will escape your experiment’s 
notice. 
 10. “What Einstein Never Knew,” NOVA documentary, 1985. 
 11. More precisely, the component of the universe most relevant to our 
existence would be completely different. Since the familiar particles and the 
objects they compose—stars, planets, people, etc.—amount to less than 5 
percent of the mass of the universe, such a disruption would not affect the vast 
majority of the universe, at least as measured by mass. However, as measured 
by its effect on life as we know it, the change would be profound. 
 12. There are some mild restrictions that quantum field theories place on 
their internal parameters. To avoid certain classes of unacceptable physical 
behavior (violations of critical conservation laws, violations of certain 
symmetry transformations, and so on), there can be constraints on the charges 
(electric and also nuclear) of the theory’s particles. Additionally, to ensure that 
in all physical processes, probabilities add to 1, there can also be constraints on 
particle masses. But even with these constraints, there is wide latitude in the 
allowed values of particle properties. 
 13. Some researchers will note that even though neither quantum field 
nor our current understanding of string theory provides an explanation of the 
particle properties, the issue is more urgent in string theory. The point is a bit 
involved, but for the technically minded here’s the summary. In quantum field 
theory, the properties of particles—say their masses, to be definite—are 
controlled by numbers that are inserted into the theory’s equations. The fact 
that quantum field theory’s equations allow such numbers to be varied is the 
mathematical way of saying that quantum field theory does not determine 
particle masses but instead takes them as input. In string theory, the flexibility 
in the masses of particles has a similar mathematical origin—the equations 
allow particular numbers to vary freely—but the manifestation of this 
flexibility is more significant. The freely varying numbers—numbers, that is, 
that can be varied with no cost in energy—correspond to the existence of 
particles with no mass. (Using the language of potential energy curves 
introduced in Chapter 3, envision a potential energy curve that’s completely 



flat, a horizontal line. Just as walking on a perfectly flat terrain would have no 
impact on your potential energy, changing the value of such a field would have 
no cost in energy. Since a particle’s mass corresponds to the curvature of its 
quantum field’s potential energy curve around its minimum, the quanta of such 
fields are massless.) Excessive numbers of massless particles are a particularly 
awkward feature of any proposed theory since there are tight limits on such 
particles coming from both accelerator data and cosmological observations. 
For string theory to be viable it is imperative that these particles acquire mass. 
In recent years, various discoveries have revealed ways in which this might 
happen, having to do with fluxes that can thread through holes in the extra-
dimensional Calabi-Yau shapes. I will discuss aspects of these developments 
in Chapter 5. 
 14. It is not impossible for experiments to provide evidence that would 
strongly disfavor string theory. The structure of string theory ensures that 
certain basic principles should be respected by all physical phenomena. 
Among these are unitarity (the sum of all probabilities of all possible outcomes 
in a given experiment must be 1) and local Lorentz invariance (in a small 
enough domain the laws of special relativity hold), as well as more technical 
features such as analyticity and crossing symmetry (the result of particle 
collisions must depend on the particles’ momentum in a manner that respects a 
particular collection of mathematical criteria). Should evidence be found—
perhaps at the Large Hadron Collider—that any of these principles are violated, 
it would be a challenge to reconcile those data with string theory. (It would 
also be a challenge to reconcile those data with the standard model of particle 
physics, which incorporates these principles too, but the underlying 
assumption is that the standard model must give way to some kind of new 
physics at a high enough energy scale since the theory does not incorporate 
gravity. Data conflicting with any of the principles enumerated would argue 
that the new physics is not string theory.) 
 15. It is common to speak of the center of a black hole as if it were a 
position in space. But it’s not. It is a moment in time. When crossing the event 
horizon of a black hole, time and space (the radial direction) interchange roles. 
If you fall into a black hole, for example, your radial motion represents 
progress through time. You are thus pulled toward the black hole’s center in 



the same way you are pulled to the next moment in time. The center of the 
black hole is, in this sense, akin to a last moment in time. 
 16. For many reasons, entropy is a key concept in physics. In the case 
discussed, entropy is being used as a diagnostic tool to determine if string 
theory is leaving out any essential physics in its description of black holes. If it 
was, the black hole disorder that the string mathematics is being used to 
calculate would be inaccurate. The fact that the answer agrees exactly with 
what Bekenstein and Hawking found using very different considerations is a 
sign that string theory has successfully captured the fundamental physical 
description. This is a very encouraging result. For more details, see The 
Elegant Universe, Chapter 13. 
 17. The first hint of this pairing between Calabi-Yau shapes came from 
the work of Lance Dixon, as well as independently from Wolfgang Lerche, 
Nicholas Warner, and Cumrun Vafa. My work with Ronen Plesser found a 
method for producing the first concrete examples of such pairs, which we 
named mirror pairs, and the relationship between them mirror symmetry. 
Plesser and I also showed that difficult calculations on one member of a mirror 
pair, involving seemingly impenetrable details such as the number of spheres 
that can be packed into the shape, could be translated into far more 
manageable calculations on the mirror shape. This result was picked up by 
Philip Candelas, Xenia de la Ossa, Paul Green, and Linda Parkes and put into 
action—they developed techniques for explicitly evaluating the equality 
Plesser and I had established between the “difficult” and “easy” formulas. 
Using the easy formula, they then extracted information about its difficult 
partner, including the numbers associated with the sphere packing given in the 
text. In the years since, mirror symmetry has become its own field of research, 
with a great many important results being established. For a detailed history, 
see Shing-Tung Yau and Steve Nadis, The Shape of Inner Space (New York: 
Basic Books, 2010). 
 18. String theory’s claim to have successfully melded quantum 
mechanics and general relativity rests on a wealth of supporting calculations, 
made yet more convincing by results we will cover in Chapter 9. 
  



Chapter 5: Hovering Universes in Nearby Dimensions 
 
 
 1. Classical Mechanics:. Electromagnetism: d*F = *J;dF = 0. Quantum 
mechanics:. General relativity:. 
 2. I am referring here to the fine structure constant, e2/hc, whose 
numerical value (at typical energies for electromagnetic processes) is about 
1/137, which is roughly .0073. 
 3. Witten argued that when the Type I string coupling is dialed large, the 
theory morphs into the Heterotic-O theory with a coupling that’s dialed small, 
and vice versa; the Type IIB at large coupling morphs into itself, the Type IIB 
theory but with small coupling. The cases of the Heterotic-E and Type IIA 
theories are a little more subtle (see The Elegant Universe, Chapter 12, for 
details), but the overall picture is that all five theories participate in a web of 
interrelations. 
 4. For the mathematically inclined reader, the special thing about strings, 
one-dimensional ingredients, is that the physics describing their motion 
respects an infinite dimensional symmetry group. That is, as a string moves, it 
sweeps out a two-dimensional surface, and so the action functional from which 
its equations of motion are derived is a two-dimensional quantum field theory. 
Classically, such two-dimensional actions are conformally invariant (invariant 
under angle-preserving rescalings of the two-dimensional surface), and such 
symmetry can be preserved quantum mechanically by imposing various 
restrictions (such as on the number of spacetime dimensions through which the 
string moves—the dimension, that is, of spacetime). The conformal group of 
symmetry transformations is infinite-dimensional, and this proves essential to 
ensuring that the perturbative quantum analysis of a moving string is 
mathematically consistent. For example, the infinite number of excitations of a 
moving string that would otherwise have negative norm (arising from the 
negative signature of the time component of the spacetime metric) can be 
systematically “rotated” away using the infinite-dimensional symmetry group. 
For details, the reader can consult M. Green, J. Schwarz, and E. Witten, 
Superstring Theory, vol. 1 (Cambridge: Cambridge University Press, 1988). 
 5. As with many major discoveries, credit deserves to be given to those 
whose insights laid its groundwork as well as to those whose work established 



its importance. Among those who played such a role for the discovery of 
branes in string theory are: Michael Duff, Paul Howe, Takeo Inami, Kelley 
Stelle, Eric Bergshoeff, Ergin Szegin, Paul Townsend, Chris Hull, Chris Pope, 
John Schwarz, Ashoke Sen, Andrew Strominger, Curtis Callan, Joe Polchinski, 
Petr Hořava, J. Dai, Robert Leigh, Hermann Nicolai, and Bernard DeWitt. 
 6. The diligent reader might argue that the Inflationary Multiverse also 
entwines time in a fundamental way, since, after all, our bubble’s boundary 
marks the beginning of time in our universe; beyond our bubble is thus beyond 
our time. While true, my point here is meant more generally—the multiverses 
discussed so far all emerge from analyses that focus fundamentally on 
processes occurring throughout space. In the multiverse we will now discuss, 
time is central from the outset. 
 7. Alexander Friedmann, The World as Space and Time, 1923, published 
in Russian, as referenced by H. Kragh, in “Continual Fascination: The 
Oscillating Universe in Modem Cosmology,” Science in Context 22, no. 4 
(2009): 587–612. 
 8. As an interesting point of detail, the authors of the braneworld cyclic 
model invoke an especially utilitarian application of dark energy (dark energy 
will be discussed fully in Chapter 6). In the last phase of each cycle, the 
presence of dark energy in the braneworlds ensures agreement with today’s 
observations of accelerated expansion; this accelerated expansion, in turn, 
dilutes the entropy density, setting the stage for the next cosmological cycle. 
 9. Large flux values also tend to destabilize a given Calabi-Yau shape for 
the extra dimensions. That is, the fluxes tend to push the Calabi-Yau shape to 
grow large, quickly running into conflict with the criterion that extra 
dimensions not be visible. 
  



Chapter 6: New Thinking About an Old Constant 
 
 
 1. George Gamow, My World Line (New York: Viking Adult, 1970); J. C. 
Pecker, Letter to the Editor, Physics Today, May 1990, p. 117. 
 2. Albert Einstein, The Meaning of Relativity (Princeton: Princeton 
University Press, 2004), p. 127. Note that Einstein used the term “cosmologic 
member” for what we now call the “cosmological constant”; for clarity, I have 
made this substitution in the text. 
 3.The Collected Papers of Albert Einstein, edited by Robert Schulmann 
et al. (Princeton: Princeton University Press, 1998), p. 316. 
 4. Of course, some things do change. As pointed out in the notes to 
Chapter 3, galaxies generally have small velocities beyond the spatial swelling. 
Over the course of cosmological timescales, such additional motion can alter 
position relationships; such motion can also result in a variety of interesting 
astrophysical events such as galaxy collisions and mergers. For the purpose of 
explaining cosmic distances, however, these complications can be safely 
ignored. 
 5. There is one complication that does not affect the essential idea I’ve 
explained but which does come into play when undertaking the scientific 
analyses described. As photons travel to us from a given supernova, their 
number density gets diluted in the manner I’ve described. However, there is 
another diminishment to which they are subject. In the next section, I’ll 
describe how the stretching of space causes the wavelength of photons to 
stretch too, and, correspondingly, their energy to decrease—an effect, as we 
will see, called redshift. As explained there, astronomers use redshift data to 
learn about the size of the universe when the photons were emitted—an 
important step toward determining how the expansion of space has varied 
through time. But the stretching of photons—the diminishment of their 
energy—has another effect: It accentuates the dimming of a distant source. 
And so, to properly determine the distance of a supernova by comparing its 
apparent and intrinsic brightness, astronomers must take account not just of the 
dilution of photon number density (as I’ve described in the text), but also the 
additional diminishment of energy coming from redshift. (More precisely still, 
this additional dilution factor must be applied twice; the second red shift factor 



accounts for the rate at which photons arrive being similarly stretched by the 
cosmic expansion.) 
 6. Properly interpreted, the second proposed answer for the meaning of 
the distance being measured may also be construed as correct. In the example 
of earth’s expanding surface, New York, Austin, and Los Angeles all rush 
away from one another, yet each continues to occupy the same location on 
earth it always has. The cities separate because the surface swells, not because 
someone digs them up, puts them on a flatbed, and transports them to a new 
site. Similarly, because galaxies separate due to the cosmic swelling, they too 
occupy the same location in space they always have. You can think of them as 
being stitched to the spatial fabric. When the fabric stretches, the galaxies 
move apart, yet each remains tethered to the very same point it has always 
occupied. And so, even though the second and third answers appear 
different—the former focusing on the distance between us and the location a 
distant galaxy had eons ago, when the supernova emitted the light we now see; 
the latter focusing on the distance now between us and that galaxy’s current 
location—they’re not. The distant galaxy is now, and has been for billions of 
years, positioned at one and the same spatial location. Only if it moved 
through space rather than solely ride the wave of swelling space would its 
location change. In this sense, the second and third answers are actually the 
same. 
 7. For the mathematically inclined reader, here is how you do the 
calculation of the distance—now, at time tnow—that light has traveled since 
being emitted at time temitted. We will work in the context of an example in 
which the spatial part of spacetime is flat, and so the metric can be written as 
ds2 = c2dt2 – a2(t)dx2, where a(t) is the scale factor of the universe at time t, 
and c is the speed of light. The coordinates we are using are called co-moving. 
In the language developed in this chapter, such coordinates can be thought of 
as labeling points on the static map; the scale factor supplies the information 
contained in the map’s legend. 
 The special characteristic of the trajectory followed by light is that 
ds2 = 0 (equivalent to the speed of light always being c) along the path, which 
implies that, or, over a finite time interval such as that between. The left side 
of this equation gives the distance light travels across the static map between 
emission and now. To turn this into the distance through real space, we must 



rescale the formula by today’s scale factor; therefore, the total distance the 
light traveled equals. If space were not stretching, the total travel distance 
would be, as expected. When calculating the distance traveled in an expanding 
universe, we thus see that each segment of the light’s trajectory is multiplied 
by the factor, which is the amount by which that segment has stretched, since 
the moment the light traversed it, until today. 
 8. More precisely, about 7.12 × 10–30 grams per cubic centimeter. 
 9. The conversion is 7.12 × 10–30 grams/cubic centimeter = (7.12 × 10–30 
grams/cubic centimeter) × (4.6 × 104 Planck mass/gram) × (1.62 × 10–33 
centimeter/Planck length)3 = 1.38 × 10–123 Planck mass/cubic Planck volume. 
 10. For inflation, the repulsive gravity we considered was intense and 
brief. This is explained by the enormous energy and negative pressure supplied 
by the inflaton field. However, by modifying a quantum field’s potential 
energy curve, the amount of energy and negative pressure it supplies can be 
diminished, thus yielding a mild accelerated expansion. Additionally, a 
suitable adjustment of the potential energy curve can prolong this period of 
accelerated expansion. A mild and prolonged period of accelerated expansion 
is what’s required to explain the supernova data. Nevertheless, the small non-
zero value for the cosmological constant remains the most convincing 
explanation to have emerged in the more than ten years since the accelerated 
expansion was first observed. 
 11. The mathematically inclined reader should note that each such jitter 
contributes an energy that’s inversely proportional to its wavelength, ensuring 
that the sum over all possible wavelengths yields an infinite energy. 
 12. For the mathematically inclined reader, the cancellation occurs 
because supersymmetry pairs bosons (particles with an integral spin value) and 
fermions (particles with a half [odd] integral spin value). This results in bosons 
being described by commuting variables, fermions by anticommuting variables, 
and that is the source of the relative minus sign in their quantum fluctuations. 
 13. While the assertion that changes to the physical features of our 
universe would be inhospitable to life as we know it is widely accepted in the 
scientific community, some have suggested that the range of features 
compatible with life might be larger than once thought. These issues have been 
widely written about. See, for example: John Barrow and Frank Tipler, The 
Anthropic Cosmological Principle (New York: Oxford University Press, 1986); 



John Barrow, The Constants of Nature (New York: Pantheon Books, 2003); 
Paul Davies, The Cosmic Jackpot (New York: Houghton Mifflin Harcourt, 
2007); Victor Stenger, Has Science Found God? (Amherst, N.Y.: Prometheus 
Books, 2003); and references therein. 
 14. Based on the material covered in earlier chapters, you might 
immediately think the answer is a resounding yes. Consider, you say, the 
Quilted Multiverse, whose infinite spatial expanse contains infinitely many 
universes. But you need to be careful. Even with infinitely many universes, the 
list of different cosmological constants represented might not be long. If, for 
example, the underlying laws don’t allow for many different cosmological 
constant values, then regardless of the number of universes, only the small 
collection of possible cosmological constants would be realized. So, the 
question we’re asking is whether (a) there are candidate laws of physics that 
give rise to a multiverse, (b) the multiverse so generated contains far more than 
10124 different universes, and (c) the laws ensure that the cosmological 
constant’s value varies from universe to universe. 
 15. These four authors were the first to show fully that by judicious 
choices of Calabi-Yau shapes, and the fluxes threading their holes, they could 
realize string models with small, positive cosmological constants, like those 
found by observations. Together with Juan Maldacena and Liam McAllister, 
this group subsequently wrote a highly influential paper on how to combine 
inflationary cosmology with string theory. 
 16. More precisely, this mountainous terrain would inhabit a roughly 
500-dimensional space, whose independent directions—axes—would 
correspond to different field fluxes. Figure 6.4 is a rough pictorial depiction 
but gives a feel for the relationships between the various forms for the extra 
dimensions. Additionally, when speaking of the string landscape, physicists 
generally envision that the mountainous terrain encompasses, in addition to the 
possible flux values, all the possible sizes and shapes (the different topologies 
and geometries) of the extra dimensions. The valleys in the string landscape 
are locations (specific forms for the extra dimensions and the fluxes they carry) 
where a bubble universe naturally settles, much as a ball would settle in such a 
spot in a real mountain terrain. When described mathematically, valleys are 
(local) minima of the potential energy associated with the extra dimensions. 
Classically, once a bubble universe acquired an extra dimensional form 



corresponding to a valley that feature would never change. Quantum 
mechanically, however, we will see that tunneling events can result in the form 
of the extra dimensions changing. 
 17. Quantum tunneling to a higher peak is possible but substantially less 
likely according to quantum calculations. 
 
Chapter 7: Science and the Multiverse 
 
 
 1. The duration of the bubble’s expansion prior to collision determines 
the impact, and attendant disruption, of the ensuing crash. Such collisions also 
raise an interesting point to do with time, harking back to the example with 
Trixie and Norton in Chapter 3. When two bubbles collide, their outer edges—
where the inflaton field’s energy is high—come into contact. From the 
perspective of someone within either one of the colliding bubbles, high 
inflaton energy value corresponds to early moments in time, near that bubble’s 
big bang. And so, bubble collisions happen at the inception of each universe, 
which is why the ripples created can affect another early universe process, the 
formation of the microwave background radiation. 
 2. We will take up quantum mechanics more systematically in Chapter 8. 
As we will see there, the statement I’ve made, “slither outside the arena of 
everyday reality” can be interpreted on a number of levels. What I have in 
mind here is the conceptually simplest: the equation of quantum mechanics 
assumes that probability waves generally don’t inhabit the spatial dimensions 
of common experience. Instead, the waves reside in a different environment 
that takes account not only of the everyday spatial dimensions but also of the 
number of particles being described. It is called configuration space and is 
explained for the mathematically inclined reader in note 4 of Chapter 8. 
 3. If the accelerated expansion of space that we’ve observed is not 
permanent, then at some time in the future the expansion of space will slow 
down. The slowing would allow light from objects that are now beyond our 
cosmic horizon to reach us; our cosmic horizon would grow. It would then be 
yet more peculiar to suggest that realms now beyond our horizon are not real 
since in the future we would have access to those very realms. (You may recall 
that toward the end of Chapter 2, I noted that the cosmic horizons illustrated in 



Figure 2.1 will grow larger as time passes. That’s true in a universe in which 
the pace of spatial expansion is not quickening. However, if the expansion is 
accelerating, there is distance beyond that we can never see, regardless of how 
long we wait. In an accelerating universe, the cosmic horizons can’t grow 
larger than a size determined mathematically by the rate of acceleration.) 
 4. Here is a concrete example of a feature that can be common to all 
universes in a particular multiverse. In Chapter 2, we noted that current data 
point strongly toward the curvature of space being zero. Yet, for reasons that 
are mathematically technical, calculations establish that all bubble universes in 
the Inflationary Multiverse have negative curvature. Roughly speaking, the 
spatial shapes swept out by equal inflaton values—shapes determined by 
connecting equal numbers in Figure 3.8b—are more like potato chips than like 
flat tabletops. Even so, the Inflationary Multiverse remains compatible with 
observation, because as any shape expands its curvature drops; the curvature of 
a marble is obvious, while that of the earth’s surface escaped notice for 
millennia. If our bubble universe has undergone sufficient expansion, its 
curvature could be negative yet so exceedingly small that today’s 
measurements can’t distinguish it from zero. That gives rise to a potential test. 
Should more precise observations in the future determine that the curvature of 
space is very small but positive that would provide evidence against our being 
part of an Inflationary Multiverse as argued by B. Freivogel, M. Kleban, M. 
Rodríguez Martínez, and L. Susskind, (see “Observational Consequences of a 
Landscape,” Journal of High Energy Physics 0603, 039 [2006]), measurement 
of positive curvature of 1 part in 105 would make a strong case against the kind 
of quantum tunneling transitions (Chapter 6) envisioned to populate the string 
landscape. 
 5. The many cosmologists and string theorists who have advanced this 
subject include Alan Guth, Andrei Linde, Alexander Vilenkin, Jaume Garriga, 
Don Page, Sergei Winitzki, Richard Easther, Eugene Lim, Matthew Martin, 
Michael Douglas, Frederik Denef, Raphael Bousso, Ben Freivogel, I-Sheng 
Yang, Delia Schwartz-Perlov, among many others. 
 6. An important caveat is that while the impact of modest changes to a 
few constants can reliably be deduced, more significant changes to a larger 
number of constants make the task far more difficult. It is at least possible that 
such significant changes to a variety of nature’s constants cancel out one 



another’s effects, or work together in novel ways, and are thus compatible with 
life as we know it. 
 7. A little more precisely, if the cosmological constant is negative, but 
sufficiently tiny, the collapse time would be long enough to allow galaxy 
formation. For ease, I am glossing over this subtlety. 
 8. Another point worthy of note is that the calculations I’ve described 
were undertaken without making a specific choice for the multiverse. Instead, 
Weinberg and his collaborators proceeded by positing a multiverse in which 
features could vary and calculated the abundance of galaxies in each of their 
constituent universes. The more galaxies a universe had, the more weight 
Weinberg and collaborators gave to its properties in their calculation of the 
average features a typical observer would encounter. But because they didn’t 
commit to an underlying multiverse theory, the calculations necessarily failed 
to account for the probability that a universe with this or that property would 
actually be found in the multiverse (the probabilities, that is, that we discussed 
in the previous section). Universes with cosmological constants and primordial 
fluctuations in certain ranges might be ripe for galaxy formation, but if such 
universes are rarely created in a given multiverse, it would nevertheless be 
highly unlikely for us to find ourselves in one of them. 
 To make the calculations manageable, Weinberg and collaborators 
argued that since the range of cosmological constant values they were 
considering was so narrow (between 0 and about 10–120), the intrinsic 
probabilities that such universes would exist in a given multiverse were not 
likely to vary wildly, much as the probabilities that you’ll encounter a 
59.99997-pound dog or one weighing 59.99999 pounds also don’t differ 
substantially. They thus assumed that every value for the cosmological 
constant in the small range consistent with the formation of galaxies is as 
intrinsically probable as any other. With our rudimentary understanding of 
multiverse formation, this might seem like a reasonable first pass. But 
subsequent work has questioned the validity of this assumption, emphasizing 
that a full calculation needs to go further: committing to a definite multiverse 
proposal and determining the actual distribution of universes with various 
properties. A self-contained anthropic calculation that relies on a bare 
minimum of assumptions is the only way to judge whether this approach will 
ultimately bear explanatory fruit. 



 9. The very meaning of “typical” is also burdened, as it depends on how 
it’s defined and measured. If we use numbers of kids and cars as our delimeter, 
we arrive at one kind of “typical” American family. If we use different scales 
such as interest in physics, love of opera, or immersion in politics, the 
characterization of a “typical” family will change. And what’s true for the 
“typical” American family is likely true for “typical” observers in the 
multiverse: consideration of features beyond just population size would yield a 
different notion of who is “typical.” In turn, this would affect the predictions 
for how likely it is that we will see this or that property in our universe. For an 
anthropic calculation to be truly convincing, it would have to address this issue. 
Alternatively, as indicated in the text, the distributions would need to be so 
sharply peaked that there would be minimal variation from one life-supporting 
universe to another. 
 10. The mathematical study of sets with an infinite number of members is 
rich and well developed. The mathematically inclined reader may be familiar 
with the fact that research going back to the nineteenth century established 
there are different “sizes” or, more commonly, “levels” of infinity. That is, one 
infinite quantity can be larger than another. The level of infinity that gives the 
size of the set containing all the whole numbers is called N0. This infinity was 
shown by Georg Cantor to be smaller than that giving the number of members 
contained in the set of real numbers. Roughly speaking, if you try to match up 
whole numbers and real numbers, you necessarily exhaust the former before 
the latter. And if you consider the set of all subsets of real numbers, the level 
of infinity grows larger still. 
 Now, in all of the examples we discuss in the main text, the relevant 
infinity is N0. since we are dealing with infinite collections of discrete, or 
“countable,” objects—various collections, that is, of whole numbers. In the 
mathematical sense, then, all of the examples have the same size; their total 
membership is described by the same level of infinity. However, for physics, 
as we will shortly see, a conclusion of this sort would not be particularly useful. 
The goal instead is to find a physically motivated scheme for comparing 
infinite collections of universes that would yield a more refined hierarchy, one 
that reflects the relative abundance across the multiverse of one set of physical 
features compared with another. A typical physics approach to a challenge of 
this sort is to first make comparisons between finite subsets of the relevant 



infinite collections (since in the finite case, all of the puzzling issues 
evaporate), and then allow the subsets to include ever more members, 
ultimately embracing the full infinite collections. The hurdle is finding a 
physically justifiable way of picking out the finite subsets for comparison, and 
then also establishing that comparisons remain sensible as the subsets grow 
larger. 
 11. Inflation is credited with other successes too, including the solution to 
the magnetic monopole problem. In attempts to meld the three nongravitational 
forces into a unified theoretical structure (known as grand unification) 
researchers found that the resulting mathematics implied that just after the big 
bang a great many magnetic monopoles would have been formed. These 
particles would be, in effect, the north pole of a bar magnet without the usual 
pairing with a south pole (or vice versa). But no such particles have ever been 
found. Inflationary cosmology explains the absence of monopoles by noting 
that the brief but stupendous expansion of space just after the big bang would 
have diluted their presence in our universe to nearly zero. 
 12. Currently, there are differing views on how great a challenge this 
presents. Some view the measure problem as a knotty technical issue that once 
solved will provide inflationary cosmology with an important additional detail. 
Others (for example, Paul Steinhardt) have expressed the belief that solving 
the measure problem will require stepping so far outside the mathematical 
formulation of inflationary cosmology that the resulting framework will need 
to be interpreted as a completely new cosmological theory. My view, one held 
by a small but growing number of researchers, is that the measure problem is 
tapping into a deep problem at the very root of physics, one that may require a 
substantial overhaul of foundational ideas. 
 
Chapter 8: The Many Worlds of Quantum Measurement 
 
 
 1. Both Everett’s original 1956 thesis and the shortened 1957 version can 
be found in The Many-Worlds Interpretation of Quantum Mechanics, edited by 
Bryce S. DeWitt and Neill Graham (Princeton: Princeton University Press, 
1973). 



 2. On January 27, 1998, I had a conversation with John Wheeler to 
discuss aspects of quantum mechanics and general relativity that I would be 
writing about in The Elegant Universe. Before getting into the science proper, 
Wheeler noted how important it was, especially for young theoreticians, to 
find the right language for expressing their results. At the time, I took this as 
nothing more than sagely advice, perhaps inspired by his speaking with me, a 
“young theoretician” who’d expressed interest in using ordinary language to 
describe mathematical insights. On reading the illuminating history laid out in 
The Many Worlds of Hugh Everett III by Peter Byrne (New York: Oxford 
University Press, 2010), I was struck by Wheeler’s emphasis of the same 
theme some forty years earlier in his dealings with Everett, but in a context 
whose stakes were far higher. In response to Everett’s first draft of his thesis, 
Wheeler told Everett that he needed to “get the bugs out of the words, not the 
formalism” and warned him of “the difficulty of expressing in everyday words 
the goings-on in a mathematical scheme that is about as far removed as it 
could be from the everyday description; the contradictions and 
misunderstandings that will arise; the very very heavy burden and 
responsibility you have to state everything in such a way that these 
misunderstandings can’t arise.” Byrne makes a compelling case that Wheeler 
was walking a delicate line between his admiration for Everett’s work and his 
respect for the quantum mechanical framework that Bohr and many other 
renowned physicists had labored to build. On the one hand, he didn’t want 
Everett’s insights to be summarily dismissed by the old guard because the 
presentation was deemed overreaching, or because of hot-button words (like 
universes “splitting”) that could appear fanciful. On the other hand, Wheeler 
didn’t want the established community of physicists to conclude that he was 
abandoning the demonstrably successful quantum formalism by spearheading 
an unjustified assault. The compromise Wheeler was imposing on Everett and 
his dissertation was to keep the mathematics he’d developed but frame its 
meaning and utility in a softer, more conciliatory tone. At the same time, 
Wheeler strongly encouraged Everett to visit Bohr and make his case in person, 
at a blackboard. In 1959 Everett did just that, but what Everett thought would 
be a two-week showdown amounted to a few unproductive conversations. No 
minds changed; no positions altered. 



 3. Let me clarify one imprecision. Schrödinger’s equation shows that the 
values attained by a quantum wave (or, in the language of the field, the 
wavefunction) can be positive or negative; more generally, the values can be 
complex numbers. Such values cannot be interpreted directly as 
probabilities—what would a negative or complex probability mean? Instead, 
probabilities are associated with the squared magnitude of the quantum wave 
at a given location. Mathematically, this means that to determine the 
probability that a particle will be found at a given location, we take the product 
of wave’s value at that point and its complex conjugate. This clarification also 
addresses an important related issue. Cancellations between overlapping waves 
are vital to creating an interference pattern. But if the waves themselves were 
properly described as probability waves, such cancellation couldn’t happen 
because probabilities are positive numbers. As we now see, however, quantum 
waves do not only have positive values; this allows cancellations to take place 
between positive and negative numbers, as well as, more generally, between 
complex numbers. Because we will only need qualitative features of such 
waves, for ease of discussion in the main text I will not distinguish between a 
quantum wave and the associated probability wave (derived from its squared 
magnitude). 
 4. For the mathematically inclined reader, note that the quantum wave 
(wavefunction) for a single particle with large mass would conform to the 
description I’ve given in the text. However, very massive objects are generally 
composed of many particles, not one. In such a situation, the quantum 
mechanical description is more involved. In particular, you might have thought 
that all of the particles could be described by a quantum wave defined on the 
same coordinate grid we employ for a single particle—using the same three 
spatial axes. But that’s not right. The probability wave takes as input the 
possible position of each particle and produces the probability that the particles 
occupy those positions. Consequently, the probability wave lives in a space 
with three axes for each particle—that is, in total three times as many axes as 
there are particles (or ten times as many, if you embrace string theory’s extra 
spatial dimensions). This means that the wavefunction for a composite system 
made of n fundamental particles is a complex-valued function whose domain 
is not ordinary three-dimensional space but rather 3n-dimensional space; if the 
number of spatial dimensions is not 3 but rather m, the number 3 in these 



expressions would be replaced by m. This space is called configuration space. 
That is, in the general setting, the wavefunction would be a map. When we 
speak of such a wavefunction as being sharply peaked, we mean that this map 
would have support in a small mn-dimensional ball within its domain. Note, in 
particular, that wavefunctions don’t generally reside in the spatial dimensions 
of common experience. It is only in the idealized case of the wavefunction for 
a completely isolated single particle that its configuration space coincides with 
the familiar spatial environment. Note as well that when I say that the quantum 
laws show that the sharply peaked wavefunction for a massive object traces the 
same trajectory that Newton’s equations imply for the object itself, you can 
think of the wavefunction describing the object’s center of mass motion. 
 5. From this description, you might conclude that there are infinitely 
many locations that the electron could be found: to properly fill out the 
gradually varying quantum wave you would need an infinite number of spiked 
shapes, each associated with a possible position of the electron. How does this 
relate to Chapter 2 in which we discussed there being finitely many distinct 
configurations for particles? To avoid constant qualifications that would be of 
minimal relevance to the major points I am explaining in this chapter, I have 
not emphasized the fact, encountered in Chapter 2, that to pinpoint the 
electron’s location with ever-greater accuracy your device would need to exert 
ever-greater energy. As physically realistic situations have access to finite 
energy, resolution is thus imperfect. For the spiked quantum waves, this means 
that in any finite energy context, the spikes have nonzero width. In turn, this 
implies that in any bounded domain (such as a cosmic horizon) there are 
finitely many measurably distinct electron locations. Moreover, the thinner the 
spikes are (the more refined the resolution of the particle’s position) the wider 
are the quantum waves describing the particle’s energy, illustrating the trade-
off necessitated by the uncertainty principle. 
 6. For the philosophically inclined reader, I’ll note that the two-tiered 
story for scientific explanation which I’ve outlined has been the subject of 
philosophical discussion and debate. For related ideas and discussions see 
Frederick Suppe, The Semantic Conception of Theories and Scientific Realism 
(Chicago: University of Illinois Press, 1989); James Ladyman, Don Ross, 
David Spurrett, and John Collier, Every Thing Must Go (Oxford: Oxford 
University Press, 2007). 



 7. Physicists often speak loosely of there being infinitely many universes 
associated with the Many Worlds approach to quantum mechanics. Certainly, 
there are infinitely many possible probability wave shapes. Even at a single 
location in space you can continuously vary the value of a probability wave, 
and so there are infinitely many different values it can have. However, 
probability waves are not the physical attribute of a system to which we have 
direct access. Instead, probability waves contain information about the 
possible distinct outcomes in a given situation, and these need not have infinite 
variety. Specifically, the mathematically inclined reader will note that a 
quantum wave (a wavefunction) lies in a Hilbert space. If that Hilbert space is 
finite-dimensional, then there are finitely many distinct possible outcomes for 
measurements on the physical system described by that wavefunction (that is, 
any Hermitian operator has finitely many distinct eigenvalues). This would 
entail finitely many worlds for a finite number of observations or 
measurements. It is believed that the Hilbert space associated with physics 
taking place within any finite volume of space, and limited to having a finite 
amount of energy, is necessarily finite dimensional (a point we will take up 
more generally in Chapter 9), which suggests that the number of worlds would 
similarly be finite. 
 8. See Peter Byrne, The Many Worlds of Hugh Everett III (New York: 
Oxford University Press, 2010), p. 177. 
 9. Over the years, a number of researchers including Neill Graham; 
Bryce DeWitt; James Hartle; Edward Farhi, Jeffrey Goldstone, and Sam 
Gutmann; David Deutsch; Sidney Coleman; David Albert; and others, 
including me, have independently come upon a striking mathematical fact that 
seems central to understanding the nature of probability in quantum mechanics. 
For the mathematically inclined reader, here’s what it says: Letbe the 
wavefunction for a quantum mechanical system, a vector that’s an element of 
the Hilbert space H. The wavefunction for n-identical copies of the system is 
thus. Let A be any Hermitian operator with eigenvalues αk, and eigenfunctions. 
Let Fk(A) be the “frequency” operator that counts the number of timesappears 
in a given state lying in. The mathematical result is that lim. That is, as the 
number of identical copies of the system grows without bound, the 
wavefunction of the composite system approaches an eigenfunction of the 
frequency operator, with eigenvalue. This is a remarkable result. Being an 



eigenfunction of the frequency operator means that, in the stated limit, the 
fractional number of times an observer measuring A will find αk is—which 
looks like the most straightforward derivation of the famous Born rule for 
quantum mechanical probability. From the Many Worlds perspective, it 
suggests that those worlds in which the fractional number of times that αk is 
observed fails to agree with the Born rule have zero Hilbert space norm in the 
limit of arbitrarily large n. In this sense, it seems as though quantum 
mechanical probability has a direct interpretation in the Many Worlds 
approach. All observers in the Many Worlds will see results with frequencies 
that match those of standard quantum mechanics, except for a set of observers 
whose Hilbert space norm becomes vanishingly small as n goes to infinity. As 
promising as this seems, on reflection it is less convincing. In what sense can 
we say that an observer with a small Hilbert space norm, or a norm that goes to 
zero as n goes to infinity, is unimportant or doesn’t exist? We want to say that 
such observers are anomalous or “unlikely,” but how do we draw a link 
between a vector’s Hilbert space norm and these characterizations? An 
example makes the issue manifest. In a two-dimensional Hilbert space, say 
with states spin-up, and spin-down, consider a state. This state yields the 
probability for measuring spin-up of about .98 and for measuring spin-down to 
be about .02. If we consider n copies of this spin system,, then as n goes to 
infinity, the vast majority of terms in the expansion of this vector have roughly 
equal numbers of spin-up and spin-down states. So from the standpoint of 
observers (copies of the experimenter) the vast majority would see spin-ups 
and spin-downs in a ratio that does not agree with the quantum mechanical 
predictions. Only the very few terms in the expansion ofthat have 98 percent 
spin-ups and 2 percent spin-downs are consistent with the quantum mechanical 
expectation; the result above tells us that these states are the only ones with 
nonzero Hilbert space norm as n goes to infinity. In some sense, then, the vast 
majority of terms in the expansion of(the vast majority of copies of the 
experimenter) need to be considered as “non existent.” The challenge lies in 
understanding what, if anything, that means. 
 I also independently found the mathematical result described above, 
while preparing lectures for a course on quantum mechanics I was teaching. It 
was a notable thrill to have the probabilistic interpretation of quantum 
mechanics seemingly fall out directly from the mathematical formalism—I 



would imagine the list of physicists (on this page) who found this result before 
me had the same experience. I’m surprised at how little known the result is 
among mainstream physics. For instance, I don’t know of any standard 
quantum physics textbook that includes it. My take on the result is that it is 
best thought of as (1) a strong mathematical motivation for the Born 
probability interpretation of the wavefunction—had Born not “guessed” this 
interpretation, the math would have led someone there eventually; (2) a 
consistency check on the probability interpretation—had this mathematical 
result not held, it would have challenged the internal sensibility of the 
probability interpretation of the wavefunction. 
 10. I’ve been using the phrase “Zaxtarian-type reasoning” to denote a 
framework in which probability enters through the ignorance of each 
inhabitant of the Many Worlds as to which particular world he or she inhabits. 
Lev Vaidman has suggested taking more of the particulars of the Zaxtarian 
scenario to heart. He argues that probability enters the Many Worlds approach 
in the temporal window between an experimenter completing a measurement 
and reading the result. But, skeptics counter, this is too late in the game: it’s 
incumbent on quantum mechanics, and science more generally, to make 
predictions about what will happen in an experiment, not what did happen. 
What’s more, it seems precarious for the bedrock of quantum probability to 
rely on what seems to be an avoidable time delay: if a scientist gains 
immediate access to the result of his or her experiment, quantum probability 
seems in danger of being squeezed out of the picture. (For a detailed 
discussion see David Albert, “Probability in the Everett Picture” in Many 
Worlds: Everett, Quantum Theory, and Reality, eds. Simon Saunders, Jonathan 
Barrett, Adrian Kent, and David Wallace (Oxford: Oxford University Press, 
2010) and “Uncertainty and Probability for Branching Selves,” Peter Lewis, 
philsciarchive.pitt.edu/archive/00002636.) A final issue of relevance to 
Vaidman’s suggestion and also to this type of ignorance probability is this: 
when I flip a fair coin in the familiar context of a single universe, the reason I 
say there’s a 50 percent chance the coin will land heads is that while I’ll 
experience only one outcome, there are two outcomes that I could have 
experienced. But let me now close my eyes and imagine I’ve just measured the 
position of the somber electron. I know that my detector display says either 
Strawberry Fields or Grant’s Tomb, but I don’t know which. You then 



confront me. “Brian,” you say, “what’s the probability that your screen says 
Grant’s Tomb?” To answer, I think back on the coin toss, and just as I’m about 
to follow the same reasoning, I hesitate. “Hmmm,” I think. “Are there really 
two outcomes that I could have experienced? The only detail that differentiates 
me from the other Brian is the reading on my screen. To imagine that my 
screen could have returned a different reading is to imagine that I’m not me. 
It’s to imagine I’m the other Brian.” So even though I don’t know what my 
screen says, I—this guy talking in my head right now—couldn’t have 
experienced any other outcome; that suggests that my ignorance doesn’t lend 
itself to probabilistic thinking. 
 11. Scientists are meant to be objective in their judgments. But I feel 
comfortable admitting that because of its mathematical economy and far-
reaching implications for reality, I’d like the Many Worlds approach to be 
right. At the same time, I maintain a healthy skepticism, fueled by the 
difficulties of integrating probability into the framework, so I’m fully open to 
alternative lines of attack. Two of these provide good bookends for the 
discussion in the text. One tries to develop the incomplete Copenhagen 
approach into a full theory; the other can be viewed as Many Worlds without 
the many worlds. 
 The first direction, spearheaded by Giancarlo Ghirardi, Alberto Rimini, 
and Tullio Weber, tries to make sense of the Copenhagen scheme by changing 
Schrödinger’s math so that it does allow probability waves to collapse. This is 
easier said than done. The modified math should barely affect the probability 
waves for small things like individual particles or atoms, since we don’t want 
to change the theory’s successful descriptions in this domain. But the 
modifications must kick in with a vengeance when a large object like a piece 
of laboratory equipment comes into play, causing the commingled probability 
wave to collapse. Ghirardi, Rimini, and Weber developed math that does just 
that. The upshot is that with their modified equations, measuring does indeed 
make a probability wave collapse; it sets in motion the evolution pictured in 
Figure 8.6. 
 The second approach, initially developed by Prince Louis de Broglie 
back in the 1920s, and then more fully decades later by David Bohm, starts 
from a mathematical premise that resonates with Everett. Schrödinger’s 
equation should always, in every circumstance, govern the evolution of 



quantum waves. So, in the de Broglie–Bohm theory, probability waves evolve 
just as they do in the Many Worlds approach. The de Broglie–Bohm theory 
goes on, however, to propose the very idea I emphasized earlier as being 
wrongheaded: in the de Broglie–Bohm approach, all but one of the many 
worlds encapsulated in a probability wave are merely possible worlds; only 
one world is singled out as real. 
 To accomplish this, the approach jettisons the traditional quantum haiku 
of wave or particle (an electron is a wave until it’s measured, whereupon it 
reverts to being a particle) and instead advocates a picture that embraces waves 
and particles. Contrary to the standard quantum view, de Broglie and Bohm 
envision particles as tiny, localized entities that travel along definite 
trajectories, yielding an ordinary, unambiguous reality, much as in the classical 
tradition. The only “real” world is the one in which the particles inhabit their 
unique, definite positions. Quantum waves then play a very different role. 
Rather than embodying a multitude of realities, a quantum wave acts to guide 
the motion of particles. The quantum wave pushes particles toward locations 
where the wave is large, making it likely that particles will be found at such 
locations, and away from locations where the wave is small, making it unlikely 
that particles will be found at those. To account for the process, de Broglie and 
Bohm needed an additional equation describing the effect of a quantum wave 
on a particle, so in their approach, Schrödinger’s equation, while not 
superseded, shares the stage with another mathematical player. (The 
mathematically inclined reader can see these equations below.) 
 For many years, the word on the street was that the de Broglie–Bohm 
approach was not worth considering, laden as it was with unnecessary 
baggage—not only a second equation but also, since it involves both particles 
and waves, a doubly long list of ingredients. More recently, there has been a 
growing recognition that these criticisms need context. As the Ghirardi-
Rimini-Weber work makes explicit, even a sensible version of the standard-
bearer Copenhagen approach requires a second equation. Additionally, the 
inclusion of both waves and particles yields an enormous benefit: it restores 
the notion of objects moving from here to there along definite trajectories, a 
return to a basic and familiar feature of reality that the Copenhagenists may 
have persuaded everyone to relinquish a little too quickly. More technical 
criticisms are that the approach is nonlocal (the new equation shows that 



influences exerted at one location appear to instantaneously affect distant 
locations) and that it is difficult to reconcile the approach with special 
relativity. The potency of the former criticism is diminished by the recognition 
that even the Copenhagen approach has non-local features that, moreover, 
have been confirmed experimentally. The latter point regarding relativity, 
though, is certainly an important one that has yet to be fully resolved. 
 Part of the resistance to the de Broglie–Bohm theory arose because the 
theory’s mathematical formalism has not always been presented in its most 
straightforward form. Here, for the mathematically inclined reader, is the most 
direct derivation of the theory. 
 Begin with Schrödinger’s equation for the wavefunction of a particle:, 
where the probability density for the particle to be at position x, p(x), is given 
by the standard equation. Then, imagine assigning a definite trajectory to the 
particle, with velocity at x given by a function v(x). What physical condition 
should this velocity function satisfy? Certainly, it should ensure conservation 
of probability: if the particle is moving with velocity v(x) from one region into 
another, the probability density should adjust accordingly:. It is now 
straightforward to solve for v(x) and find, where m is the particle’s mass. 
 Together with Schrödinger’s equation, this latter equation defines the de 
Broglie–Bohm theory. Note that this latter equation is nonlinear, but this has 
no bearing on Schrödinger’s equation, which retains its full linearity. The 
proper interpretation, then, is that this approach to filling in the gaps left by the 
Copenhagen approach adds a new equation, which depends nonlinearly on the 
wavefunction. All of the power and beauty of the underlying wave equation, 
that of Schrödinger, is fully preserved. 
 I might also add that the generalization to many particles is immediate: 
on the right-hand side of the new equation, we substitute the wavefunction of 
the multiparticle system: ψ(x1, x2, x3, …. xn), and in calculating the velocity of 
the kth particle, we take the derivative with respect to the k-th coordinate 
(working, for ease, in a one-dimensional space; for higher dimensions, we 
suitably increase the number of coordinates). This generalized equation 
manifests the nonlocality of this approach: the velocity of the kth particle 
depends, instantaneously, on the positions of all other particles (as the particles’ 
coordinate locations are the arguments of the wavefunction). 



 12. Here is a concrete in-principle experiment for distinguishing the 
Copenhagen and Many Worlds approaches. An electron, like all other 
elementary particles, has a property known as spin. Somewhat as a top can 
spin about an axis, an electron can too, with one significant difference being 
that the rate of this spin—regardless of the direction of the axis—is always the 
same. It is an intrinsic property of the electron, like its mass or its electrical 
charge. The only variable is whether the spin is clockwise or counterclockwise 
about a given axis. If it is counterclockwise, we say the electron’s spin about 
that axis is up; if it is clockwise, we say the electron’s spin is down. Because 
of quantum mechanical uncertainty, if the electron’s spin about a given axis is 
definite—say, with 100 percent certainty its spin is up about the z-axis—then 
its spin about the x- or y-axis is uncertain: about the x-axis the spin would be 
50 percent up and 50 percent down; and similarly for the y-axis. 
 Imagine, then, starting with an electron whose spin about the z-axis is 
100 percent up and then measuring its spin about the x-axis. According to the 
Copenhagen approach, if you find spin-down, that means the probability wave 
for the electron’s spin has collapsed: the spin-up possibility has been erased 
from reality, leaving the sole spike at spin-down. In the Many Worlds 
approach, by contrast, both the spin-up and spin-down outcomes occur, so, in 
particular, the spin-up possibility survives fully intact. 
 To adjudicate between these two pictures, imagine the following. After 
you measure the electron’s spin about the x-axis, have someone fully reverse 
the physical evolution. (The fundamental equations of physics, including that 
of Schrödinger, are time-reversal invariant, which means, in particular, that, at 
least in principle, any evolution can be undone. See The Fabric of the Cosmos 
for an in-depth discussion of this point.) Such reversal would be applied to 
everything: the electron, the equipment, and anything else that’s part of the 
experiment. Now, if the Many Worlds approach is correct, a subsequent 
measurement of the electron’s spin about the z-axis should yield, with 100 
percent certainty, the value with which we began: spin-up. However, if the 
Copenhagen approach is correct (by which I mean a mathematically coherent 
version of it, such as the Ghirardi-Rimini-Weber formulation), we would find 
a different answer. Copenhagen says that upon measurement of the electron’s 
spin about the x-axis, in which we found spin-down, the spin-up possibility 
was annihilated. It was wiped off reality’s ledger. And so, upon reversing the 



measurement we don’t get back to our starting point because we’ve 
permanently lost part of the probability wave. Upon subsequent measurement 
of the electron’s spin about the z-axis, then, there is not 100 percent certainty 
that we will get the same answer we started with. Instead, it turns out that 
there’s a 50 percent chance that we will and a 50 percent chance that we won’t. 
If you were to undertake this experiment repeatedly, and if the Copenhagen 
approach is correct, on average, half the time you would not recover the same 
answer you initially did for the electron’s spin about the z-axis. The challenge, 
of course, is in carrying out the full reversal of a physical evolution. But, in 
principle, this is an experiment that would provide insight into which of the 
two theories is correct. 
 
Chapter 9: Black Holes and Holograms 
 
 
 1. Einstein undertook calculations within general relativity to prove 
mathematically that Schwarzschild’s extreme configurations—what we would 
now call a black hole—could not exist. The mathematics underlying his 
calculations was invariably correct. But he made additional assumptions that, 
given the intense folding of space and time that would be caused by a black 
hole, turn out to be too restrictive; in essence, the assumption left out the 
possibility of matter imploding. The assumptions meant that Einstein’s 
mathematical formulation did not have the latitude to reveal black holes as 
possibly real. But this was an artifact of Einstein’s approach, not an indication 
of whether black holes might actually form. The modern understanding makes 
clear that general relativity allows for black hole solutions. 
 2. Once a system reaches a maximal entropy configuration (such as 
steam, at a fixed temperature, that is uniformly spread throughout a vat), it will 
have exhausted its capacity for yet further entropic increase. So, the more 
precise statement is that entropy tends to increase, until it reaches the largest 
value the system can support. 
 3. In 1972, James Bardeen, Brandon Carter, and Stephen Hawking 
worked out the mathematical laws underlying the evolution of black holes, and 
found that the equations looked just like those of thermodynamics. To translate 
between the two sets of laws, all one needed to do was substitute “area of 



black hole’s horizon” for “entropy” (and vice versa), and “gravity at the 
surface of the black hole” for “temperature.” So, for Bekenstein’s idea to 
hold—for this similarity to not just be a coincidence, but to reflect the fact that 
black holes have entropy—black holes would also need to have a nonzero 
temperature. 
 4. The reason for the apparent change in energy is far from obvious; it 
relies on an intimate connection between energy and time. You can think of a 
particle’s energy as the vibrational speed of its quantum field. Noting that the 
very meaning of speed invokes the concept of time, a relationship between 
energy and time becomes apparent. Now, black holes have a profound effect 
on time. From a distant vantage point, time appears to slow for an object 
approaching the horizon of a black hole, and comes to a stop at the horizon 
itself. Upon crossing the horizon, time and space interchange roles—inside the 
black hole, the radial direction becomes the time direction. This implies that 
within the black hole, the notion of positive energy coincides with motion in 
the radial direction toward the black hole’s singularity. When the negative 
energy member of a particle pair crosses the horizon, it does indeed fall toward 
the black hole’s center. Thus the negative energy it had from the perspective of 
someone watching from afar becomes positive energy from the perspective of 
someone situated within the black hole itself. This makes the interior of the 
black hole a place where such particles can exist. 
 5. When a black hole shrinks, the surface area of its event horizon shrinks 
too, conflicting with Hawking’s pronouncement that total surface area 
increases. Remember, however, that Hawking’s area theorem is based on 
classical general relativity. We are now taking account of quantum processes 
and coming to a more refined conclusion. 
 6. To be a little more precise, it’s the minimum number of yes-no 
questions whose answers uniquely specify the microscopic details of the 
system. 
 7. Hawking found that the entropy is the area of the event horizon in 
Planck units, divided by four. 
 8. For all the insights that will be described as this chapter unfolds, the 
issue of a black hole’s microscopic makeup has yet to be fully resolved. As I 
mentioned in Chapter 4, in 1996, Andrew Strominger and Cumrun Vafa 
discovered that if one (mathematically) gradually turns down the strength of 



gravity, then certain black holes morph into particular collections of strings 
and branes. By counting the possible rearrangements of these ingredients, 
Strominger and Vafa recovered, in the most explicit manner ever achieved, 
Hawking’s famous black hole entropy formula. Even so, they were not able to 
describe these ingredients at stronger gravitational strength, i.e., when the 
black hole actually forms. Other authors, such as Samir Mathur and various of 
his collaborators, have put forward other ideas, such as the possibility that 
black holes are what they call “fuzz balls,” accumulations of vibrating strings 
strewn throughout the black hole’s interior. These ideas remain tentative. The 
results we discuss later in this chapter (in the section “String Theory and 
Holography”) provide some of the sharpest insight into this question. 
 9. More precisely, gravity can be canceled in a region of space by going 
into a freely falling state of motion. The size of the region depends on the 
scales over which the gravitational field varies. If the gravitational field varies 
only over large scales (that is, if the gravitational field is uniform, or nearly so), 
your free-fall motion will cancel gravity over a large region of space. But if the 
gravitational field varies over short-distance scales—the scales of your body, 
say—then you might cancel gravity at your feet and yet still feel it at your 
head. This becomes particularly relevant later in your fall because the 
gravitational field gets ever stronger ever closer to the black hole’s singularity; 
its strength rises sharply as your distance from the singularity decreases. The 
rapid variation means there is no way to cancel the effects of the singularity, 
which will ultimately stretch your body to its breaking point since the 
gravitational pull on your feet, if you jump in feetfirst, will be ever stronger 
than the pull on your head. 
 10. This discussion exemplifies the discovery, made in 1976 by William 
Unruh, that links one’s motion and the particles one encounters. Unruh found 
that if you accelerate through otherwise empty space, you will encounter a 
bath of particles at a temperature determined by your motion. General 
relativity instructs us to determine one’s rate of acceleration by comparing 
with the benchmark set by free-fall observers (see Fabric of the Cosmos, 
Chapter 3). A distant, non-free-fall observer thereby sees radiation emerging 
from a black hole; a free-fall observer does not. 
 11. A black hole forms if the mass M within a sphere of radius R exceeds 
c2R/2G, where c is the speed of light and G is Newton’s constant. 



 12. In actuality, as the matter collapsed under its own weight and a black 
hole formed, the event horizon would generally be located within the boundary 
of the region we’ve been discussing. This means that we would not have so far 
maxed out the entropy that the region itself could contain. This is easily 
remedied. Throw more material into the black hole, causing the event horizon 
to swell out to the region’s original boundary. Since entropy would again 
increase throughout this somewhat more elaborate process, the entropy of the 
material we put within the region would be less than that of the black hole that 
fills the region, i.e., the surface area of the region in Planck units. 
 13. G. ’t Hooft, “Dimensional Reduction in Quantum Gravity.” In Salam 
Festschrift, edited by A. Ali, J. Ellis, and S. Randjbar-Daemi (River Edge, N.J.: 
World Scientific, 1993), pp. 284–96 (QCD161:C512:1993). 
 14. We’ve discussed that “tired” or “exhausted” light is light whose 
wavelength is stretched (redshifted) and vibrational frequency reduced by 
virtue of its having expended energy climbing away from a black hole (or 
climbing away from any source of gravity). Like more familiar cyclical 
processes (the earth’s orbit around the sun; the earth’s rotation on its axis, etc.), 
the vibrations of light can be used to define elapsed time. In fact, the vibrations 
of light emitted by excited Cesium-133 atoms are now used by scientists to 
define the second. The tired light’s slower vibrational frequency thus implies 
that the passage of time near the black hole—as viewed by the faraway 
observer—is slower too. 
 15. With most important discoveries in science, the pinnacle result relies 
on a collection of earlier works. Such is the case here. In addition to ’t Hooft, 
Susskind, and Maldacena, the researchers who helped blaze the trail to this 
result and develop its consequences include Steve Gubser, Joe Polchinski, 
Alexander Polyakov, Ashoke Sen, Andy Strominger, Cumrun Vafa, Edward 
Witten, and many others. 
 For the mathematically inclined reader, the more precise statement of 
Maldacena’s result is the following. Let N be the number of three-branes in the 
brane stack, and let g be the value of the coupling constant in the Type IIB 
string theory. When gN is a small number, much less than one, the physics is 
well described by low-energy strings moving on the brane stack. In turn, such 
strings are well described by a particular four-dimensional supersymmetric 
conformally invariant quantum field theory. But when gN is a large number, 



this field theory is strongly coupled, making its analytical treatment difficult. 
However, in this regime, Maldacena’s result is that we can use the description 
of strings moving on the near horizon geometry of the brane stack, which is 
AdS5 × S5 (anti-de Sitter five-space times the five sphere). The radius of these 
spaces is controlled by gN (specifically, the radius is proportional to (gN) 4ݙ ), 
and thus for large gN, the curvature of AdS5 × S5 is small, ensuring that string 
theory calculations are tractable (in particular, they are well approximated by 
calculations in a particular modification of Einsteinian gravity). Therefore, as 
the value of gN varies from small to large values, the physics morphs from 
being described by four-dimensional supersymmetric conformally invariant 
quantum field theory to being described by ten-dimensional string theory on 
AdS5 × S5. This is the so-called AdS/CFT (anti-de Sitter space/conformal field 
theory) correspondence. 
 16. Although a full proof of Maldacena’s argument remains beyond reach, 
in recent years the link between the bulk and boundary descriptions has 
become increasingly well understood. For example, a class of calculations has 
been identified whose results are accurate for any value of the coupling 
constant. The results can therefore be explicitly tracked from small to large 
values. This provides a window onto the “morphing” process by which a 
description of physics from the bulk perspective transforms into a description 
in the boundary perspective, and vice versa. Such calculations have shown, for 
instance, how chains of interacting particles from the boundary perspective can 
transform into strings in the bulk perspective—a particularly convincing 
interpolation between the two descriptions. 
 17. More precisely, this is a variation on Maldacena’s result, modified so 
that the quantum field theory on the boundary is not the one that originally 
arose in his investigations, but instead closely approximates quantum 
chromodynamics. This variation also entails parallel modifications to the bulk 
theory. Specifically, following the work of Witten, the high temperature of the 
boundary theory translates into a black hole in the interior description. In turn, 
the dictionary between the two descriptions shows that the difficult viscosity 
calculations of the quark-gluon plasma translate into the response of the black 
hole’s event horizon to particular deformations—a technical but tractable 
calculation. 



 18. Another approach to providing a full definition of string theory 
emerged from earlier work in an area called Matrix theory (another possible 
meaning of the “M” in M-theory), developed by Tom Banks, Willy Fischler, 
Steve Shenker, and Leonard Susskind. 
 
Chapter 10: Universes, Computers, and Mathematical Reality 
 
 
 1. The number I quoted, 1055 grams, accounts for the contents of the 
observable universe today, but at ever-earlier times, the temperature of these 
constituents would be larger and so they would contain higher energy. The 
number 1065 grams is a better estimate of what you’d need to gather into a tiny 
speck to recapitulate the evolution of our universe from when it was roughly 
one second old. 
 2. You might think that because your speed is constrained to be less than 
the speed of light, your kinetic energy will also be limited. But that’s not the 
case. As your speed gets ever closer to that of light, your energy grows ever 
larger; according to special relativity, it has no bounds. Mathematically, the 
formula for your energy is:, where c is the speed of light and v is your speed. 
As you can see, as v approaches c, E grows arbitrarily large. Note too that the 
discussion is from the perspective of someone watching you fall, say someone 
stationary on the surface of the earth. From your perspective, while you are in 
free fall, you are stationary and all the surrounding matter is acquiring 
increasing speed. 
 3. With our current level of understanding, there is significant flexibility 
in such estimates. The number “10 grams” comes from the following 
consideration: the energy scale at which inflation takes place is thought to be 
about 10–5 or so times the Planck energy scale, where the latter is about 1019 
times the energy equivalent of the mass of a proton. (If inflation happened at a 
higher energy scale, models suggest that evidence for gravitational waves 
produced in the early universe should already have been seen.) In more 
conventional units, the Planck scale is about 10–5 grams (small by everyday 
standards, but enormous by the scales of elementary particle physics, where 
such energies would be carried by individual particles). The energy density of 
an inflaton field would therefore have been about 10–5 grams packed in every 



cubic volume whose linear dimension is set by roughly 105 times the Planck 
length (recall, from quantum uncertainty, that energies and lengths scale 
inversely proportional to each other), which is about 10–28 centimeters. The 
total mass-energy carried by such an inflaton field in a volume that is 10–26 
centimeters on a side is thus: 10–5 grams/(10–28 centimeters)3 × (10–26 
centimeters)3, which is about 10 grams. Readers of The Fabric of the Cosmos 
may recall that there I used a slightly different value. The difference came 
from the assumption that the energy scale of the inflaton was slightly higher. 
 4. Hans Moravec, Robot: Mere Machine to Transcendent Mind (New 
York: Oxford University Press, 2000). See also Ray Kurzweil, The Singularity 
Is Near: When Humans Transcend Biology (New York: Penguin, 2006). 
 5. See, for example, Robin Hanson, “How to Live in a Simulation,” 
Journal of Evolution and Technology 7, no. 1 (2001). 
 6. The Church-Turing thesis argues that any computer of the so-called 
universal Turing type can simulate the actions of another, and so it’s perfectly 
reasonable for a computer that’s within the simulation—and hence is itself 
simulated by the parent computer running the whole simulated world—to 
perform particular tasks equivalent to those undertaken by the parent computer. 
 7. Philosopher David Lewis developed a similar idea through what he 
called Modal Realism. See. On the Plurality of Worlds (Malden, Mass.: Wiley-
Blackwell, 2001). However, Lewis’s motivation in introducing all possible 
universes differs from Nozick’s. Lewis wanted a context where, for example, 
counterfactual statements (such as, “If Hitler had won the war, the world today 
would be very different”) would be instantiated. 
 8. John Barrow has made a similar point in Pi in the Sky (New York: 
Little, Brown, 1992). 
 9. As explained in endnote 10 of Chapter 7, the size of this infinity 
exceeds that of the infinite collection of whole numbers 1, 2, 3, ….. and so on. 
 10. This is a variation on the famous Barber of Seville paradox, in which 
a barber shaves all those who don’t shave themselves. The question then is: 
Who shaves the barber? The barber is usually stipulated to be male, to avoid 
the easy answer—the barber is a woman and so doesn’t need to shave. 
 11. Schmidhuber notes that an efficient strategy would be to have the 
computer evolve each simulated universe forward in time in a “dovetailed” 
manner: the first universe would be updated on every other time-step of the 



computer, the second universe would be updated on every other of the 
remaining time-steps, the third universe would be updated on every other time-
step not already devoted to the first two universes, and so on. In due course, 
every computable universe would be evolved forward by an arbitrarily large 
number of time-steps. 
 12. A more refined discussion of computable and noncomputable 
functions would also include limit computable functions. These are functions 
for which there is a finite algorithm that evaluates them to ever greater 
precision. For instance, such is the case for producing the digits of ψ: a 
computer can produce each successive digit of ψ, even though it will never 
reach the end of the computation. So, while ψ is strictly speaking 
noncomputable, it is limit computable. Most real numbers, however, are not 
like ψ. They are not just noncomputable, they are also not limit computable. 
 When we consider “successful” simulations, we should include those 
based on limit computable functions. In principle, a convincing reality could 
be generated by the partial output of a computer evaluating limit computable 
functions. 
 For the laws of physics to be computable, or even limit computable, the 
traditional reliance on real numbers would have to be abandoned. This would 
apply not just to space and time, usually described using coordinates whose 
values can range over the real numbers, but also for all other mathematical 
ingredients the laws use. The strength of an electromagnetic field, for example, 
could not vary over real numbers, but only over a discrete set of values. 
Similarly for the probability that an electron is here or there. Schmidhuber has 
emphasized that all calculations that physicists have ever carried out have 
involved the manipulation of discrete symbols (written on paper, on a 
blackboard, or input to a computer). And so, even though this body of 
scientific work has always been viewed as invoking the real numbers, in 
practice it doesn’t. Similarly for all quantities ever measured. No device has 
infinite accuracy and so our measurements always involve discrete numerical 
outputs. In that sense, all the successes of physics can be read as successes for 
a digital paradigm. Perhaps, then, the true laws themselves are, in fact, 
computable (or limit computable). 
 There are many different perspectives on the possibility of “digital 
physics.” See, for example, Stephen Wolfram’s A New Kind of Science 



(Champaign, Ill.: Wolfram Media, 2002) and Seth Lloyd’s Programming the 
Universe (New York: Alfred A. Knopf, 2006). The mathematician Roger 
Penrose believes that the human mind is based on noncomputable processes 
and hence the universe we inhabit must involve noncomputable mathematical 
functions. From this perspective, our universe does not fall into the digital 
paradigm. See, for instance, The Emperor’s New Mind (New York: Oxford 
University Press, 1989) and Shadows of the Mind (New York: Oxford 
University Press, 1994). 
 
Chapter 11: The Limits of Inquiry 
 
 
 1. Steven Weinberg, The First Three Minutes (New York: Basic Books, 
1973), p. 131. 
 
 
  



Suggestions for Further Reading 
 
 
 The subject of parallel universes draws on a broad range of scientific 
material. There is a growing literature that focuses on various aspects of such 
material, mostly intended for the nonexpert, but often well-suited for those 
with more background. In addition to the references called out in the notes, 
here is a collection of books, from the many wonderful ones that have been 
written, through which the reader can continue exploring topics discussed in 
The Hidden Reality. 
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