TODO - source based routing

Note: we could use ipt ROUTE's support of the -tee option (or
ULOG) to copy all traffic into the virtual tunnel...)

TBD — The preferred way to impl. pinhole/ VIP to subnet mappings.

e Do nothing, just support mission defined specific pinholes and map based on FT ID

con: requires more extensive mission config managment.
route -net 192.168.1.0/24 will only work for one FT tunnel on the proxy server

route -net 10.1.2.0/24 only works if the FT supports -} NETMAP or for a single dest. IP
note: 10.X.X.0 could be defined by FT id in CT database.

Idea: translate 10.X.X.0/24 to correct IP before placing in the tunnel? Note that this approach
assumes a class C(24 bit) ipv4 subnet...

How to support a non 24 bit subnet: specify the subnet in the mission so that the client can
create the correct VIP to local IP network translation.

Have mm generate a DNAT rule for each client on the subnet? - e.g. every LAN entry in
/proc/net/arp? No, only works if the host was previously active... Generate an entry on the fly?
e.g. send a telnet cmd over the tunnel to telnetd? Security?

Proxy & Pinhole production technical hurdles:

l.

selectively bypass or override filter table
solution: ipt_pfilter

source based routing on FT -

iptables ROUTE table is an option... and we can ad it to a pmangle table to avoid any other
system routes conflicts... perhaps we want to impl. other route commands this way too?
See ipt_ROUTE target impl. - this must be performed in the mangle table:

Ideas on integration of ipt_ ROUTE iptables_mangle.c - without configuring from iptables:
1 requires registration of mangle hooks with the same priority as the mangle table in each hook:

a) we would have to either expose a function from gf module so that we could determine a
match
or

b) we could mark the packet

2 requires configuration of a “struct ipt_route_target_info” that is normally recieved from
iptables as part of the target options

a) we could hardcode a static config and expose a set__ipt_route_target_info accessor

b) we could provide the config as part of the target action lookup (see opt 1a)

c) we're REALLY just dependent on openvpn configuring tunQ

EXPORT SYMBOL(ipt do table);

on Linux: the standard solution is iproute2/iproute
-/sbin/ip ~ 173K on FCS5 iproute-2.6.15-1.2
-/sbin/tc ~ 216K, On WRT45G /usr/sbin/tc is 228.2k

from man iptables:

We have one classifier rule:
tc filter add dev eth3 parent 1:0 protocol ip fw
Earlier we had many rules just like below:

iptables -t mangle -A POSTROUTING -o eth3 -d 192.168.5.2 -j
MARK --set-mark 0x10502

iptables -t mangle -A POSTROUTING -o eth3 -d 192.168.5.3 -j
MARK --set-mark 0x10503

Using IPMARK target we can replace all the mangle/mark rules with only
one:

iptables -t mangle -A POSTROUTING -o eth3 -j IPMARK
--addr=dst --and-mask=0xffff --or-
mask=0x10000

Best solution: just manipulate the kernel's routing table directly...

ipt_pfilter — allows for bypass of rules around filter table
A selective higher priority bypass of the filter table with a higher priority table
Concept: walk the packet around the filter table

1. disable filter hook by replacing hook function registration with dummy (debug funcs)

2. re-enable the filter table. find the filter table by iterating over pfilter's packet_filter.list and
searching for the name

3. call the table's rules directly after processing local pfilter table

forward pinhole over a openvpn or socat tun interface.

Create a virtual IP mapping VIP to pinhole mapping (does not need to be known to the end user)
e.g. 10.1.2.3

#on the server

#route traffic to the IP through the tun interface

route add -host 10.1.2.3 dev tun@

#idea may need to rout to tun ip endpoint, note that both are sent through
tunnel...

route add -host 10.1.2.3 gw 10.129.129.1

#on the client

#DEST NAT traffic to that IP to the PIN IP:PIN PORT

#note: it should be possible to leave out the protocol option

iptables -t nat -A PREROUTING -p tcp -d 10.1.2.3 -j DNAT --to ${PIN IP}

#note: don't forget to masq output to FT's LAN IP

this step seems to work for inbound requests, but might be what is breaking
initial outbound connections from the PIN IP. e.g. 192.168.1.128

on 2.6 kernels/margarita

iptables -t nat -A POSTROUTING -o ethl -s 10.129.66.1 -j SNAT --to-source
192.168.1.12

on 2.4 FT(s)

iptables -t nat -A POSTROUTING -p tcp -s 10.129.66.1 -j MASQUERADE

iptables -t nat -A POSTROUTING -p udp -s 10.129.66.1 -j MASQUERADE

iptables -t nat -A POSTROUTING -p udp -s 10.129.66.1 -o br0 -j MASQUERADE
iptables -t nat -A POSTROUTING -p tcp -s 10.129.66.1 -o br@ -j MASQUERADE
example of outbound
client based rule
iptables -t nat -A POSTROUTING -p tcp -s 192.168.1.128 -o tun0 - MASQUERADE

iptables -t nat -A POSTROUTING -p udp -s 192.168.1.128 -o tun0 - MASQUERADE

#make sure the traffic isn't dropped by any other firewall rules
#TODO add interface or src criteria to rule to further lock down
iptables -t filter -I FORWARD 1 -d 192.168.1.128 -j ACCEPT

Access to FT local interface, from the proxy server

on 2.6 kernels/margarita
iptables -t filter -I RH-Firewall-1-INPUT 1 -s 10.129.66.1 -j ACCEPT

on 2.4 FT(s)
iptables -t filter -I INPUT 1 -s 10.129.66.1 -j ACCEPT

#the following is an alternative strategy that doesn't work yet

route add -host 10.1.2.1 gw 10.129.129.1

on the FT

this rule is not getting any packets, even without the -i tun® option
iptables -t filter -I INPUT -i tun@ -s 10.129.66.1 -d 127.0.0.1 -j ACCEPT
#this rule is being applied, but packet lost

iptables -t nat -A PREROUTING -d 10.1.2.1 -j DNAT --to 127.0.0.1

#this rule doesn't quite work yet either
iptables -t nat -A PREROUTING -d 10.1.2.1 -j REDIRECT

Forward Pinhole Requirements and Options

Forwards an inbound packet sent to a configurable port on the WAN interface of the FT to an internal
address and port.

This could be impl. as a network address translation (NAT) function mapping between a FT's
{external address, external port} tuple and a specified {internal address, internal port} tuple.

As an alternative, TCP and UDP support could be implemented as a proxy socket that accepts
connections on a FT's WAN interface:port and connects to a specified internal address, internal port.

Options, for each option letter we must choose at least one # to provide a working impl:

A) packet IP source validation

1. forward all inbound packets regardless of source IP
or
2. only forward inbound packets that match a specific IP address/mask or range

B) NAT of inbound packet source IP

1. none (straight port forward does not hide source IP) — this is a more pure form
or
2. change the source IP to the FT's LAN IP (essentially a dual NAT translation on the packet)
e N/A to non-router AP's

C) pinhole duration

1. mission
or

2. mission start + timeout
or

3. window

e connection timeout (device/linux/impl. Specific keep alive workarounds?)

D) kernel (netfilter based) or application layer pinhole impl

1. netfilter based impl.
Pros
impl. could be as simple as applying current proxy code to inbound connections

Cons
?

2. Application layer impl:
Pros
- Could be as simple as mission cmd exec support. €.g2. exec netcat —args
-simple impl. leads to control of alternative tools that may be available on some FTs

Cons
- not as reliable and as good of performance as NAT translation (marginal considering use
cases)

» may be easier to provide an application layer impl on some devices

» even application layer impl. still requires firewall rule checking/override

« Note: we must override existing firewall config specified by a user on the FT-- which means
that we'd have to either modify IP tables periodically or place our hooks in before iptables can
filter out/drop the packets.

E) Support to forward to FT LAN IP or localhost
1. Required
2. If it works for a FT without effort, great.
3. No support to forward to FT LAN IP or FT localhost

Assumptions:

« 1o validation or security on pinhole
i.e. a packet from ANY IP would be forwarded through the firewall (option A-1)
or
the 'right' IP (option A-2)

» must be able to configure a FT's firewall to open up the hole without interfering with the FT's
normal firewall configuration.

Reverse Pinhole

Note: We already have a form of reverse pinhole, but is for all outbound traffic for a specific IP. |
don't think that it will be difficult to perform a NAT translation from a outbound destination IP, that
corresponds to one of the following options, to a translated outside IP and port. Where the destination
IP is:
1. the FT's LAN IP
or
2. an arbitrary IP/network mask
or
3. adomain, (requires looking into DNS requests).

Hole punching:

Technique of establishing and outbound TCP connection or UDP packet (or UDP handshake) in order
to open up a hole in Firewalls between a non public addressable FT and an outside destination IP. This
is useful in order to

Pinhole Estimate of Work

This estimate is for kernel/netfilter based impl (Option D-1) on FT's that already support HTTP
Proxy (i.e. outbound NAT dest IP translation)

Firewall Manipulation:
We will have to open up the firewall to allow for inbound or outbound pinhole (packet with
original IP destination must be allowed, regardless of user configured firewall).
As simple as programatically (preferred) or via an exec on the cmd line, adding an accept rule to
every IP table. This estimate is for support on one device FT, FT's with a similar kernel would
also likely be supported with little or no effort.

netfilter firewall configuration:
1-2 weeks

static/hardwired pinhole test for forward and reverse pinhole assuming options A-1, B-1, C-1:
2-5 days

UDP support (depends on previous TCP test working)
1 day

mission protocol configuration/support:
1-2 days

CW support:
target action/activated pinhole: + 5-10 days
static mission FW pinhole: 2-4 days if added to generic MissionProperties page

Note: sponsor has not requested Reverse Pinhole (RP)
domain-> IP pinholing / redirection (option RP-3): + 3-5 days
global/mission (option RP-1,2) : +2 days

Testing:
1 week minimum

Windex Connection Negotiation over HTTPS

Main Requirement: application layer proxy app (hereto referred as 'wxpx') that servers as a HTTP
connection proxy and can hand off a connection to windex. See white board for pseudo code impl.
stages.

Significant Development tasks:

. HTTP request and response inspection and domain lookup (already have kernel level functions
for HTTP request and response inspection)
or

Including destination IP (port optional) in packet before sending over local interface or over
NETLINK. If forwarding multiple connections from gf, local interface is preferred.

SSL support (many libs available, we need to choose a small footprint one that is portable to
most Fts)

- use libtomnet ... not mature enough...
- netcat SSL patch... good example of patch to netcat that adds SSL support:

patch_netcat_ssl-20040224.diff, based on OpenSSL support
#include <openssl/err.h>
#include <openssl/x509v3.h>

-see http://xyssl.org/docs/ for alternative SSL impl.s, e.g.: peersec SOK

. WXpX app communication IO with gf:

- wxpx notify ready (after starting from signal to mm from gf after target acquisition)

- wxpx notify success/failure (we could restrict gf to only forward one connection per client
until success)

Transparent (TCP / UDP) Proxy

Proxy traffic from a client to remote proxy server.

TODO Research using tun interface to setup a forward pinhole

A) Traffic Types to proxy
Exclusions: Do not proxy TCP established connections and ICMP inbound (TTL traceroute replys)

I.

All protocols

2. Mission configurable protocols and TCP or UDP ports

Proxy all ports or a finite number of ports

B) Proxy transport
Assumption: There is no need to encrypt the traffic, it will only raise a red flag.

1.

Application Layer/User Space Tunnel

Pros: unencrypted ppp tunnel over TCP 80 shouldn't raise too many flags, and avoid FW issues
between the FT and the proxy server/router.

Note: unencrypted ppp can run over a telnet tty, see

Cons: why not just use something like a app layer PPP proxy?
http://www.tldp.org/HOWTO/ppp-ssh/forwarding.html
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO-6.html#ss6. 1

Q: General Problem: How should DNS requests be handled?

A: We may have to map or translate all outbound DNS request dest IPs to the proxy server's
nameserver.

Q: What about DHCP requests from the client?

A: We should try to prevent them from being sent through the VPN. From the openvpn howto:

“Many OpenVPN client machines connecting to the internet will periodically interact with a
DHCP server to renew their IP address leases. The redirect-gateway option might prevent the
client from reaching the local DHCP server (because DHCP messages would be routed over the
VPN), causing it to lose its IP address lease.”

On FT/ProxyServer (note: socat generally has support for TCP4, SSL, or UDP channels...)
telnet and pppd / telnetd and pppd

http://www.imonk.com/jason/hacks/

socat and pppd / socat and pppd

socat and pppd / socat and slirp

http://www.unix-tutorials.com/go.php?1d=466

ssh and pppd / sshd and pppd

socat (requires kernel support for TUN socket/network interface, deps: openssl)

openvpn (deps: 1zo openssl)

SErver..

http://www.dest-unreach.org/socat/doc/socat-tun.html

binary sizes:
openvpn on 1386 358k, 1zo 63k
socat 261 k

Note: if we roll our own client and server we could auth with CT protocols, and support either
clear text or encrypted comms. e.g. CT accepts connection, authenticates, determines proxy
type (socat, openvpn), and then pipes data to protected proxy server (either local or remote).

Note: openvpn doesn't allow —ifconfig-pool option on server without --mode server -> --tls-
.. could try —ifconfig-push

Socat build:
http://www.openembedded.org/repo/org.openembedded.dev/packages/socat/socat_1.3.2.1.bb

From http://www.linuxjournal.com/article/1174

“However, although both are available under Linux, I highly recommend using PPP instead of
SLIP, for the following reasons:

PPP is an Internet Standard Protocol—this means that it has undergone a standardization
process approved by the Internet Architecture Board (IAB) and is an official part of the Internet
Protocol Suite. SLIP, by contrast, is an “Internet non-standard” and is not on the standard track.

PPP will work over some connections that are not 8-bit-transparent; SLIP will not.

PPP can support authentication, peer address negotiation, packet header compression, and point-
to-point error correction; SLIP can support none of these (although Compressed SLIP, or
CSLIP, does support packet header compression).

(13

VPN tunnels (e.g. route all outbound client traffic through a IPSEC, authenticated header
tunnel)

VPN kernel support likely limited on some FTs, may require a significant amount of image
space.

IPSEC - requires pre-shared key or cert, or radius server auth

PPTP — sends regular PPP session with GRE, requires two network sessions

“The system uses TCP (i.e., port 1723) to send the PPTP control channel packets. On the data
channel, PPTP uses a protocol called Generic Routing Encapsulation (GRE—IP protocol
number 47) to securely encapsulate the Point-to-Point Protocol (PPP) packets in an IP packet.”

pptpclient.sourceforge.net

OpenWRT notes

Allow PPTP control connections from WAN

iptables -t nat -A prerouting rule -i $WAN -p tcp --dport 1723 -j
ACCEPT

iptables -A input rule -1 $WAN -p tcp --dport 1723 -j

ACCEPT

Allow GRE protocol (used by PPTP data stream)

iptables -A output rule -p 47 -j
ACCEPT

iptables -A input rule -p 47 -3
ACCEPT

Note: we need to do IP src bassed routing, i.e. Iptables support for the ROUTE target in order to
direct traffic to the pptpd localip. Note: any firewall between the FT and the proxy server must allow
GRE packets (protocol 47).

General Problem:
1) any protocol that embeds the client's IP or negotiates subsequent connections on a new port will
require a special proxy server impl. (and firewall reconfiguration on the FT) or it will fail.
2) True IP Transparency can only be achieved when the proxy server is a MITM between the
client and the destination server (the FT is, but the remote proxy server likely isn't).

Protocols that would break under a simple proxy:
FTP, SIP (most VOIP) requires a specialized proxy

Best solution: allow for configurable ports to proxy out and in (inbound ports require altering firewall)
allow for ability to save port configs and name: e.g. FTP proxy, VOIP proxy, etc. One way of looking
at this is as a control message sent from the proxy server to the FT that registers pinouts on the fly.

Therefore, the best temporary solution might be to only proxy specific types of traffic or ports in a
static mission configuration (pinouts).

route
Kernel IP routing table
Destination ~ Gateway Genmask Flags Metric Ref Use Iface

10.129.66.1 * 255.255.255255UH 0 O 0 tunO
192.168.1.0 * 2552552550 U O O 0 br0
10.1.1.0 * 2552552550 U O O 0 vlanl
192.12.16.0 10.1.1.1 255.255.255.0 UG 0 O 0 vlanl
127.0.00 * 255000 U 0 O 0lo

default 10.129.66.1 0.0.0.0 uGg 0 O 0 tun0

VPN Testing Barebone Notes/Howto:

#on client/FT

#5.4.16.104 is the IP of the proxy / VPN server

#10.129.66.0/24 is an arbitrary virtual IP for the server, but chosen to hopefully not conflict with any
other private network

insmod tun.o

openvpn --proto tcp-client --remote 5.4.16.104 8080 --dev tunO --ifconfig 10.129.129.1 10.129.66.1
--verb 5 --ping 30

#setup up client to use tunnel as default gw
route add -net 5.4.16.0 netmask 255.255.255.0 gw 10.1.1.1
route add default gw 10.129.66.1

#note: iptables v1.2.7a doesn't support SNAT and MASQ only works for tcp or udp

udp entry will forward DNS requests

#this doesn't work since MASQ only takes the —to-ports arg and not a dest IP

iptables -t nat -A POSTROUTING -o tun0O -j SNAT --to 10.129.129.1

#or for a single target on a FT

iptables -t nat - POSTROUTING 1 -s 192.168.1.128 -0 tun0 - MASQUERADE

#TBD does this work? Yes... but if not applied before a client creates an existing ct_contrack entry then
it won't work!

#therefore, this rule must be applied before ipt_ ROUTE_gfint module loads and starts forwarding
connections

iptables -t nat - POSTROUTING 1 -o tun0 -j MASQUERADE

1-2-08 testing: (simplified)
iptables -t nat -A POSTROUTING -s 10.129.66.1 -0 brO -} MASQUERADE
iptables -t nat - POSTROUTING 1 -s 192.168.1.128 -0 tun0 -} MASQUERADE

#Troubleshooting: make sure that your firewall allows the traffic (this is typically not a problem on
FTs since they are setup to route anyway)

e.g. where 128 is your client/target

#note: do not confuse this example of a desktop that normally doesn't forward with a FT that does not
normally need such a rule (should already be allowed)

#iptables -t filter - FORWARD 1 -s 192.168.1.128 -j ACCEPT

#on proxy server (5.4.16.104)

#note —remote required since we aren't in multi-client mode... --mode=server requires TLS
sudo /usr/sbin/openvpn --remote 5.4.16.62 --proto tcp-server --port 8080 --dev tun --ifconfig
10.129.66.1 10.129.129.1 --ping 30 --user cbuser --group cbgroup --persist-key --verb 4

#enable forwarding
echo "1" > /proc/sys/net/ipv4/ip_forward

enable NAT for TUN traffic
iptables -t nat -A POSTROUTING -s 10.129.0.0/16 -0 ethO -j SNAT --to 5.4.16.104

12-26-07 notes:

I had to apply the routing rules and then restart openvpn before I could ping both VIPs from the FT's
cmd line. I can only ping 10.129.66.1 from 5.4.16.104 (the server).

Since “-) MASQUERADE” doesn't support icmp, outbound pings do not have their SRC IP altered on
the server, and a reply will never be returned. Ideally, we would just use a -j DNAT rule with newer
versions of iptables.

#socat notes

#client/FT, note: add up to 4 -d's for more debug
insmod tun.o
Jsocat -d tcp:5.4.16.104:11443 tun:10.0.0.2/24,up &

#server
Jsocat -d -d TCP-LISTEN:11443,reuseaddr TUN:10.0.0.1/24,up &

Proxy Tunnel Uses

1. proxy target traffic
2. provide forward pinhole from server

3. provides a routable virtual IP or port to FT from the proxy server (in the case where the FT does
not have a public IP.

4. provide means to access FT web interface to reflash

5. provide means to access telnetd (if started from mm and there is a iptables rule that only allows
access to port 23 from the localhost traffic)

6. provide a means to transfer additional tools and libraries to the FT. e.g. libssl, dropbear,
Jeremy's routing app.

MM enhancements

1. add mission exec capability

2. add attachement capability
allows mm to exec attachement after written

Post test dump to iptables on FT2:

iptables -t nat -L -n
Chain PREROUTING (policy ACCEPT)

target prot opt
DROP all --
DNAT icmp --

TRIGGER all --
match:0 relate:0
DNAT tcp --

source
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0

0.0.0.0/0

Chain POSTROUTING (policy ACCEPT)

target prot opt
MASQUERADE all --
MASQUERADE all --
MASQUERADE tcp --
MASQUERADE wudp --
MASQUERADE udp --
MASQUERADE tcp --

source
0.0.0.0/0
192.168.1.0/24
192.168.1.128
192.168.1.128
10.129.66.1
10.129.66.1

Chain OUTPUT (policy ACCEPT)

target prot opt

source

iptables -t filter -L -n
Chain INPUT (policy ACCEPT)

target prot opt source
ACCEPT all -- 10.129.66.1
DROP all -- 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0
RELATED, ESTABLISHED

ACCEPT all -- 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0
DROP icmp -- 0.0.0.0/0
DROP 2 -- 0.0.0.0/0
DROP all -- 0.0.0.0/0
Chain FORWARD (policy ACCEPT)
target prot opt source
ACCEPT all -- 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0
DROP all -- 0.0.0.0/0
TCPMSS tcp -- 0.0.0.0/0
tcpmss match 1461:65535TCPMSS set 1460
TRIGGER all -- 0.0.0.0/0
match:0 relate:0

trigger out all - 0.0.0.0/0
lan2wan all -- 0.0.0.0/0
ACCEPT all -- 0.0.0.0/0
RELATED, ESTABLISHED

ACCEPT all -- 0.0.0.0/0
DROP all -- 0.0.0.0/0

Chain OUTPUT (policy ACCEPT)

target prot opt

source

Chain advgrp 1 (0 references)

target prot opt

source

destination
192.168.1.0/24
10.1.1.123
10.1.1.123

10.1.2.3

destination
0.0.0.0/0
92.168.1.0/24
.0.0/0
.0.0/0
.0.0/0
.0.0/0

[cNoNoNoN T}
[cNoONONOHN]

destination

estination
0.0.0/0

.0.0.0/0
0.0.0/0

.0/0
.0/0
.0/0
.0/0
.0/0

[cNoNoNoNO]
[cNoNoNoNO]
[cNoNoNoNO]

destination
192.168.1.128
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0

0.0.0.0/0
0.0.0.0/0
0.0.0.0/0
0.0.0/0
0.0.0.0/0
0.0.0.0/0

destination

destination

t0:192.168.1.2
TRIGGER type:dnat

t0:192.168.1.128

state INVALID
state

state NEW
state NEW

state INVALID
tcp flags:0x06/0x02

TRIGGER type:in

state

state NEW

Chain advgrp 10 (0 references)
target prot opt source destination

Chain advgrp 2 (0 references)
target prot opt source destination

Chain advgrp 3 (0 references)
target prot opt source destination

Chain advgrp 4 (0 references)
target prot opt source destination

Chain advgrp 5 (0 references)
target prot opt source destination

Chain advgrp 6 (0 references)
target prot opt source destination

Chain advgrp 7 (0 references)
target prot opt source destination

Chain advgrp 8 (0 references)
target prot opt source destination

Chain advgrp 9 (0 references)
target prot opt source destination

Chain grp 1 (0 references)
target prot opt source destination

Chain grp 10 (0 references)
target prot opt source destination

Chain grp 2 (0 references)
target prot opt source destination

Chain grp 3 (0 references)
target prot opt source destination

Chain grp 4 (0 references)
target prot opt source destination

Chain grp 5 (0 references)
target prot opt source destination

Chain grp 6 (0 references)
target prot opt source destination

Chain grp 7 (0 references)
target prot opt source destination

Chain grp 8 (0 references)
target prot opt source destination

Chain grp 9 (0 references)
target prot opt source destination

Chain lan2wan (1 references)

target prot opt source destination
Chain logaccept (0 references)

target prot opt source destination
LOG all -- 0.0.0.0/0 0.0.0.0/0
level 4 prefix “ACCEPT '

ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
Chain logdrop (0 references)

target prot opt source destination
LOG all -- 0.0.0.0/0 0.0.0.0/0
level 4 prefix "DROP '

DROP all -- 0.0.0.0/0 0.0.0.0/0
Chain logreject (0 references)

target prot opt source destination
LOG all -- 0.0.0.0/0 0.0.0.0/0
prefix “WEBDROP '

REJECT tcp -- 0.0.0.0/0 0.0.0.0/0
reset

Chain trigger out (1 references)

target prot opt source destination

1-2-08 test results:

Post test dump of iptables on marg:

-bash-3.1# iptables -t nat -L -n -v
Chain PREROUTING (policy ACCEPT 423K packets, 35M bytes)

pkts bytes target prot opt in out source

20 1200 LOG alt -- «* * 0.0.0.0/0
LOG flags 0 level 7 prefix “cb'

2 120 DNAT tcp -- ¥ * 0.0.0.0/0

t0:192.168.1.128

Chain POSTROUTING (policy ACCEPT 17230 packets, 1035K bytes)

pkts bytes target prot opt in out source
0 0 LOG alt -- «* * 0.0.0.0/0
LOG flags 0 level 7 prefix “cb'

38 2270 SNAT alt -- * tun® 192.168.1.128

t0:10.129.129.1

2 120 SNAT alt -- * ethl 10.129.66.1

t0:192.168.1.12

Chain OUTPUT (policy ACCEPT 17446 packets, 1051K bytes)
pkts bytes target prot opt in out source
0 0 LOG all -- * * 0.0.0.0/0
LOG flags O level 7 prefix “cb'
-bash-3.1# iptables -t filter -L -n -v

state NEW LOG flags 7

state NEW LOG flags 7

LOG flags 7 level 4

tcp reject-with tcp-

destination
10.1.2.3

10.1.2.3

destination
10.1.2.3

0.0.0.0/0

0.0.0.0/0

destination
10.1.2.3

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target prot opt in out

4 204 LOG tcp -- * *
tcp dpt:8443 LOG flags 0 level 4

0 0 LOG all -- *
LOG flags 0 level 4

0 0 LOG all -- *
LOG flags 0 level 4

41 6407 LOG all -- * *
LOG flags O level 7 prefix “cb'

0 0 ACCEPT all -- tuno *

0 0 LOG all -- *

LOG flags 0 level 7 prefix “cb'

4352K 1089M RH-Firewall-1-INPUT

0.0.0.0/0

all --

source
0.0.0.0/0

0.0.0.0/0
10.129.66.1
10.129.66.1

10.129.66.1
0.0.0.0/0

* 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target
120 9648 ACCEPT
11584 8414K LOG

prot opt in out
alt -- * *
alt -- * *

LOG flags 0 level 7 prefix “cb'

5487 898K LOG

alt -- * *

LOG flags O level 7 prefix “cb'

0 0 LOG

alt -- * *

LOG flags O level 7 prefix “cb'

524 42932 ACCEPT

alt -- * *

16660 9284K RH-Firewall-1-INPUT all --

0.0.0.0/0

Chain OUTPUT (policy ACCEPT

pkts bytes target
0 0 LOG

prot opt in out
alt -- *

LOG flags O level 7 prefix “cb'

Chain RH-Firewall-1-INPUT (2 references)

pkts bytes target

0 0 LOG
LOG flags 0 level 4

2 120 LOG
LOG flags 0 level 4

5 300 LOG
LOG flags 0 level 4

42 6431 ACCEPT
tcp dpt:8443
2570K 825M ACCEPT
1275K 107M ACCEPT
icmp type 255

0 0 ACCEPT

0 0 ACCEPT

97 21668 ACCEPT
udp dpt:5353

0 0 ACCEPT
udp dpt:161

0 0 ACCEPT
udp dpt:631

0 0 ACCEPT
tcp dpt:631
489K 165M ACCEPT

prot opt in out
alt -- * *
all -- * *
alt -- * *
tcp -- * *
all -- 1o *
icmp -- % *
esp — kS ES
ah -- K *
udp -- * *
udp -- * *
udp - - *x *
tcp - *x *
allt -- * *

source
10.129.66.1
192.168.1.128
0.0.0.0/0
0.0.0.0/0

192.168.1.128
* 0.0.0.0/0

4317K packets, 1162M bytes)

source
0.0.0.0/0

source
10.129.66.1

10.129.66.1
0.0.0.0/0
0.0.0.0/0

0.0.0.0/0
0.0.0.0/0

0.0.0/0
0.0.0.0/0

0.0.0/0
10.1.1.0/24
0.0.0.0/0
0.0.0.0/0

0.0.0.0/0

destination
127.0.0.1

10.1.2.1
127.0.0.1
0.0.0.0/0

127.0.0.1
10.1.2.3

destination
0.0.0.0/0
0.0.0.0/0
192.168.1.128
10.1.2.3

0.0.0.0/0

destination
10.1.2.3

destination
127.0.0.1

10.1.2.1
10.1.2.1
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0
224.0.0.251
0.0.0.0/0
0.0.0.0/0
0.0.0.0/0

0.0.0.0/0

state
60
state
0
state
0
state
0
state
201
state
77
state
0
state
0
state
2820
state
0
state
28
state
212
state
0
state
0
state
22
state
290
state
0
state
1172
state
0
state
0
state
0
state
28923

RELATED, ESTABLISHED

3592 ACCEPT
NEW tcp dpt:22
0 ACCEPT
NEW tcp dpt:8086
0 ACCEPT
NEW tcp dpt:8086
0 REJECT
NEW tcp dpt:9443
12060 ACCEPT
NEW tcp dpt:9443
3696 ACCEPT
NEW tcp dpt:9443
0 ACCEPT
NEW tcp dpt:9443
0 ACCEPT
NEW tcp dpt:9443
135K ACCEPT
NEW tcp dpt:9443
0 ACCEPT
NEW tcp dpt:9443
1680 ACCEPT
NEW tcp dpt:9443
12778 ACCEPT
NEW tcp dpt:9443
0 REJECT
NEW tcp dpt:3690
0 REJECT
NEW tcp dpt:3690
1320 ACCEPT
NEW tcp dpt:3690
17400 ACCEPT
NEW tcp dpt:8180
0 ACCEPT
NEW tcp dpt:8080
70440 ACCEPT
NEW tcp dpt:8443
0 ACCEPT
NEW tcp dpt:3306
0 ACCEPT
NEW tcp dpt:3306
0 ACCEPT
NEW udp dpt:500
1011K REJECT

tcp -- % * 0.0.0.0/0
tcp -- ¥ * 10.1.1.14
tcp -- ¥ * 10.1.1.15
tcp -- % * 10.1.1.3
reject- w1th icmp-port-unreachable
tcp -- * 192.12.16.26
tcp -- % * 192.12.16.47
tcp -- % * 192.12.16.48
tcp -- ¥ * 192.12.16.74
tcp -- % * 192.12.16.77
tcp -- % * 192.12.16.81
tcp -- ¥ * 192.12.16.104
tcp -- % * 10.1.1.0/24
tcp -- % * 10.1.1.1
reject-with icmp-port-unreachable
tcp -- ¥ * 10.1.1.3
reject- w1th icmp-port-unreachable
tcp -- * 10.1.1.0/24
tcp -- % * 10.1.1.0/24
tcp -- % * 10.1.1.14
tcp -- % * 10.1.1.0/24
tcp -- % * 10.1.1.104
tecp -- % * 10.1.1.12
udp -- * * 0.0.0.0/0
alt -- « * 0.0.0.0/0

reject-with icmp-host-prohibited

You can create a new table for your specific purpose if you wish.

do this, “ipt register table()'

[Im4.2.1.3.

you call

New Tables[Om

which has the following fields:

’

with a

To

“struct ipt table',

.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0
.0/0

.0/0

[Imlist[Om
This field is set to any junk, say “{ NULL, NULL }'.

[Imname[Om
This field is the name of the table function, as referred to by
userspace. The name should match the name of the module (i.e.,
if the name is "nat", the module must be "iptable nat.o") for
auto-loading to work.

[Imtable[Om
This is a fully-populated “struct ipt replace', as used by
userspace to replace a table. The “counters' pointer should be
set to NULL. This data structure can be declared ° initdata'
so it is discarded after boot.

[Imvalid hooks[Om
This is a bitmask of the IPv4 netfilter hooks you will enter the
table with: this is used to check that those entry points are
valid, and to calculate the possible hooks for ipt match and
ipt target “checkentry()' functions.

[Imlock[Om
This is the read-write spinlock for the entire table; initialize
it to RW _LOCK UNLOCKED.

[Imprivate[Om
This is used internally by the ip tables code.

