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How can an algorithm even be unfair?
Aren't algorithms beautiful neutral pieces of mathematics?

Scholium,
- It may be observed that the foregoing The Euclidean algorithm (first discovered in 300
s includes the arithmetical rule for BCE) as described in Geometry, plane, solid and
nding the greatest common factor of spherical, Pierce Morton, 1847.

two numbers: which is to divide the
greater number by the lesser, and find
the remainder ; the lesser by the remain-
der, and find the second remainder, if
there be one; the preceding remainder
by this, and find the third remainder ;
and so on, unlil a remainder be found
which is contained an exact number of
times in the next preceding ; this lust
remainder will be the greatest common

Sactor required. _ B



"Classic" non-ML problem: implicit cultural assumptions

My Name |First Name ||Last Name



Example: names are complex.

1. People have exactly one canonical full name.

2. People have exactly one full name which they go by.

3.
L
5.
6.
7
8.
9.

10.

37.

38.

39.

40.

People have, at this point in time, exactly one canonical full name.
People have, at this point in time, one full name which they go by.
People have exactly N names, for any value of N.

People’s names fit within a certain defined amount of space.

People’s names do not change.

People’s names change, but only at a certain enumerated set of events.
People’s names are written in ASCII.

People’s names are written in any single character set.

Two different systems containing data about the same person will use the
same name for that person.

Two different data entry operators, given a person’s name, will by necessity
enter bitwise equivalent strings on any single system, if the system is well-
designed.

People whose names break my system are weird outliers. They should have
had solid, acceptable names, like FH=&KER.

People have names.

Kalzumeus Archive GreatestHits  Standing Invitation  Start Here

Falsehoods Programmers Believe About
Names

June 17, 2010 in Uncategorized

[This post has been translated into Japanese by one of our readers: fliREH Y F
.1

John Graham-Cumming wrote an article today complaining about how a
computer system he was working with described his last name as having invalid
characters. It of course does not, because anything someone tells you is their
name is — by definition — an appropriate identifier for them. John was
understandably vexed about this situation, and he has every right to be, because
names are central to our identities, virtually by definition.

About me

WHO AM I?

My name is Patrick McKenzie (better
known as patio11 on the Internets.)
Twitter: @patio11 HN: patio11

1 ALSO EMAIL ESSAYS.
Get essays via email on marketing and
selling software.

Brilliant, fun article.
Read it! )

Patrick McKenzie

http://www.kalzumeus.com/2010/06/17/
falsehoods-programmers-believe-about-na
mes/




What's different with machine learning?

Algorithm, 300 BCE

Scholium,
It may be observed that the foregoing
s includes the arithmetical rule for
" finding the greatest common factor of
two numbers: which is to divide the
greater n:drzber thl:y k(he lezcetr};e and find
the remainder ; sser by the remain- . . ,
der, and.find the second remainder, if <— (lassical algorithms don't rely on data
there be one; the preceding remainder
by this, and find the third remainder ;
and so on, until a remainder be found
which is contained an exact number of
times in the next preceding ; this last
remainder will be the greatest common
Jfactor required. i



What's different with machine learning?

Algorithm, 300 BCE

Scholium.
It may be observed that the foregoing
s includes the arithmetical rule for
" finding the greatest common factor of
two numbers: which is to divide the
greater n:drzber thl:y kthe lelf‘et'};e and find
the remainder ; sser remain- 4_ : : '
der, and find the second. remainder, if Classical algorithms don't rely on data
there be one; the preceding remainder
by this, and find the third remainder ;
and so on, until a remainder be found
which is contained an exact number of
times in the next preceding ; this last
remainder will be the greatest common
Jfactor required.

Algorithm, 2017 CE

with tf.Session() as sess:
# Restore variables from disk.

saver.restore(sess, "/tmp/model.ckpt") ——qj——— ML SYStemS rely on real-world data and
print(“Model restored.") . .
can pick up biases from data

# Do some work with the model



Sometimes bias starts before an algorithm ever runs...
It can start with the data



Sometimes bias starts before an algorithm ever runs...
It can start with the data

A real-world example
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How can this lead to unfairness?









Word embeddings
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Can we "de-bias" embeddings?



Can we "de-bias" embeddings?

Bolukbasi et al.: this may be possible.

|dea: "collapse” dimensions corresponding
to key attributes, such as gender.

1607.06520v1 [cs.CL] 21 Jul 2016

arxXiv

Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings

Tolga Bolukbasi®, Kai-Wei Chang?, James Zou?, Venkatesh Saligramal?, Adam Kalai®
1Boston University, 8 Saint Mary’s Street, Boston, MA
?Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang, net, jamesyzou@gmail.com, srv@bu.edu, adam. kalai@microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a
danger is facing us with word embedding, a popular framework to represent text data as vectors which
has been used in many machine learning and natural language processing tasks. We show that even
word embeddings trained on Google News articles exhibit female/male gender stereotypes to a disturbing
extent. This raises concerns because their widespread use, as we describe, often tends to amplify these
biases. Geometrically, gender bias is first shown to be captured by a direction in the word embedding.
Second, gender neutral words are shown to be linearly separable from gender definition words in the word
embedding. Using these properties, we provide a methodology for modifying an embedding to remove
gender stereotypes, such as the association between between the words receptionist and female, while
maintaining desired associations such as between the words queen and female. We define metrics to
quantify both direct and indirect gender biases in embeddings, and develop algorithms to “debias” the
embedding. Using crowd-worker evaluation as well as standard benchmarks, we empirically demonstrate
that our algorithms significantly reduce gender bias in embeddings while preserving the its useful properties
such as the ability to cluster related concepts and to solve analogy tasks. The resulting embeddings can
be used in applications without amplifying gender bias.

1 Introduction

There have been hundreds or thousands of papers written about word embeddings and their applications,
from Web search [27] to parsing Curriculum Vitae [16]. However, none of these papers have recognized how
blatantly sexist the embeddings are and hence risk introducing biases of various types into real-world systems.

A word embedding that represent each word (or common phrase) w as a d-dimensional word vector
7 € RY. Word embeddings, trained only on word co-occurrence in text corpora, serve as a dictionary of sorts
for computer programs that would like to use word meaning. First, words with similar semantic meanings
tend to have vectors that are close together. Second, the vector differences between words in embeddings
have been shown to represent relationships between words [32, 26]. For example given an analogy puzzle,
“man is to king as woman is to z” (denoted as man:king :: woman:z), simple arithmetic of the embedding
vectors finds that z=queen is the best answer because:

—
TMan — woman ~ king — queen

Similarly, z=Japan is returned for Paris: France :: Tokyo:z. It is surprising that a simple vector arithmetic
can simultaneously capture a variety of relationships. It has also excited practitioners because such a tool
could be useful across applications involving natural language. Indeed, they are being studied and used
in a variety of downstream applications (e.g., document ranking [27], sentiment analysis [18], and question
retrieval (22]).

However, the embeddings also pinpoint sexism implicit in text. For instance, it is also the case that:

nat — womaf ~ computer programmer — homemaker.




How can we build systems that are fair?

First, we need to decide what we mean by “fair"...



Interesting fact:
You can't always get what you want in terms of “fairness’!



Fairness: you can't always get what you want!

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

COMPAS (from company called Northpointe)
e Estimates chances a defendant will be re-arrested
o Issue: "rearrest" = "committed crime"
e Meant to be used for bail decisions
o Issue: also used for sentencing


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

These contingency tables reveal that the algorithm is more likely to misclassify a black
defendant as higher risk than a white defendant. Black defendants who do not recidivate
were nearly twice as likely to be classified by COMPAS as higher risk compared to their
white counterparts (45 percent vs. 23 percent). However, black defendants who scored
higher did recidivate slightly more often than white defendants (63 percent vs. 59

percent).

This conclusion came from applying COMPAS to historical arrest records.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm



https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Enter the computer scientists

Fair prediction with disparate impact:

A study of bias in recidivism prediction instruments

Alexandra Chouldechova

Heinz College, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA, USA
achould@cmu. edu

Abstract

prediction instruments (RPI's) provide
docision makers with an sssessment ofthe cihood
that a criminal defendant will reoffend at a future
point in time. While such instruments are gaining
increasing popularity across the country, their use
is attracting tremendous controversy. Much of the
controversy concerns potential discriminatory bias in
the risk assessments that are produced. This paper
discusses a fairness criterion originating in the field
of educational and psychological testing that has ro-
cently been applied to assess the fairness of reci
vism prediction instruments. We demonstrate how
adherence to the criterion may lead to considerable
disparate impact when recidivism prevalence differs
across groups.

1 Introduction

Risk assessment instruments are gaining increasing
popularity within the criminal justice system, with
versions of such instruments being used or consid-
ered for use in pre-trial decision-making, parole de-
cisions, and in some states even sentencing [1, 2].
Tn cach of these cases, a high-risk classification—
pnnlculszly a hxgh risk misclassification—may have

rse impact on a criminal defendant’s

oumomc lf RPLs aro to sontmue to bo used, 1 s
important to ensure that they do not result in uncth-
ical practices that disparately affect different groups.

Within the psychometrics literature, there exist
widely accepted and adopted standards for assessing
whether an instrument s fair in the sense of being
free of predictive bias. These standards have recently
been applied to the COMPAS [3] and PCRA [4] in-
struments, with initial findings suggesting that there

is ovidenco of predictive bias when it comes to gon-
der, but not when it comes to race [5, 6,

i rocont widely popularizd investigation of the
COMPAS RPI conducted by a team at ProPublica,
a different approach to asscssing instrument bias told
what appears to be a contradictory story [8]. The au-

Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg * Sendhil Mullainathan Manish Raghavan *

Abstract

Recent discussion in betweer
competing notions of what it means for a probabilistic classification to b: i o diferont groups. Ve

consirained special cases, there s 10 method that can satisfy these three conditions simultancously
Moreover, even equires that the data lic in an

version of one of the constrained special cases identified by our theorem. These results suggest some
of the ways in which key notions of faimess are incompatible with cach other, and hence provide a
framerwork for thinking about the trade-offs between them.

1 Introduction

There are many seftings in which a sequence of people comes before a decision-maker, who must make a
judgment about each based on some observable set of features. Across a range of applications, these judg-
ments are being carried out by an increasingly wide spectrum of approaches ranging from human expertise

thors found that the likelihood of a
Black defendant being assessed as high-risk is nearly
twvice that of White defendants. While this analysis
has met with much criticism, it has also made head-
lines. There is no doubt that it is now embedded in
the national conversation on the use of RPTs.

In this paper we show that the differences in false
positive and false negative rates cited as evidence of
racial bias in the ProPublica article are a direct con-
sequence of applying an instrument that is free from
‘predictive bias' to a population in which recidivism
prevalence differs across groups. Our main contri-
bution is twofold. (1) First, we make precise the
connection betwveen the psychometric notion of test
fairness and error rates in classification. (2) Next,
we demonstrate how using an RPI that has differ-
ent false postive and false negative rates between
groups can lead to disparate impact when individ-
uals assessed as high risk receive stricter penalties.
Throughout our discussion we use the term disparate
impact to refer to settings where a penalty policy
has unintended disproportionate adverse impact on
a particular group,

It is important to bear in mind that fairness
itsclf—along with the notion of disparate impact—
is a social and ethical concept, not a statistical one.
An instrument that is free from predictive bias may
nevertheless result in disparate impact depending on
how and where it is used. In this paper we consider

in the peychometric sense

to algorithmic and statistical as well as various of these approaches.

Along with these developments, a growing line of work has asked how we should reason about issues of bias
and discrimination in settings where these algorithmic and statistical techniques, trained on large datasets
of past instances, play a significant role in the outcome. Let us consider three examples where such issues
arise, both to illustrate the range of relevant contexts, and to surface some of the challenges.

A set of example domains. First, at various points in the criminal justice system, including decisions
about bail, sentencing, or parole, an officer of the court may use quantitative risk fools to assess a defendant’s
pmbabllny of recidivism — future arrest — based on their past history and other attributes. Several recent
d whether such tools are mitigating or exacerbating the sources of bias in the criminal

Jusllcc system; in one widely-publicized report, Angwin et al. analyzed a commonly used slansncal method
for assigning risk scores in the criminal justice system — the COMPAS risk tool — and argued that it was
biased against African-American defendants [2, 23). One of their main contentions was that i ol s
were asymmeric: African-American defendants were more likely to be incorrectly labeled as higher-risk
than they actually were, while white defendants were more likely to be incorrectly labeled as lower-risk than
they actually were. Subsequent analyses raised methodological objections to this report, and also observed
that despite the COMPAS risk tools errors, its estimates of the probability of recidivism are equally well
calibrated to the true outcomes for both African-American and white defendants [1, 10, 13, 17].
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Equality of Opportunity in Supervised Learning

Moritz Hardt Eric Price Nathan Srebro

October 11, 2016

Abstract

ropose a criterion for discrimination against a specified sensitive attribute in su-
pervised learning, where the goal is to predict some target based on available features.
Assuming data about the predictor, target, and membership in the protected group are avail-
able, we show how to optimally adjust any learned predictor so as to remove discrimination
according to our definition. Our framework also improves incentives by shifting the cost of
poor classification from disadvantaged groups to the decision maker, who can respond by
improving the classification accuracy.

Tn Tine with other studies, our notion is oblivious: it depends only on the joint statistics of
the predictor, the target and the protected attribute, but not on interpretation of individual
features. We study the inherent limits of defining and identifying biases based on such
oblivious measures, outlining what can and cannot be inferred from different oblivious tests.

We illustrate our notion using a case study of FICO credit scores.

1 Introduction

As machine learning increasingly affects decisions in domains protected by anti-discrimination
law, there is much interest in algorithmically measuring and ensuring fairness in machine
learning. In domains such as advertising, credit, employment, education, and criminal justice,
machine learning could help obtain more accurate predictions, but its effect on existing biases
is not well understood. Although reliance on data and quantitative measures can help quantify
and eliminate existing biases, some scholars caution that algorithms can also introduce new

Algorithmic decision making and the cost of fairness

Sam Corbett-Davies Emma Pierson Avi Feller
Stanford University Stanford University Univ. of California, Berkeley
d afeller@berkeley.edu
Sharad Goel Aziz Hug
Stanford University University of Chicago
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criminal history. For example, defendants with scores of 7 reoffend

twice the rate as those with scores of 3. Accordingly, defendants
classified as high risk are much more likely to be detained while
awaiting trial than those classified as low risk.

Never-
theless, an anlysis of defendants in Broward County, Florida [2]
be
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2 BACKGROUND
2.1 Defining algorithmic fairness
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two steps. First, a formal erterion of fairness is defineds then, &
et e s devioped o sty that .l sty

biases or perpetuate existing ones [BS16]. In May 2014, lhe Obama 's Big Data
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toward “the potential of encoding discrimination in automated decisions”. A White
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House report [Whil6] calls for “equal opportunity by design” as a guiding principle in domains
such as credit scoring.

Despite the demand, a vetted for avoiding against protected
attributes in machine learning is lacking. A naive approach might require that the algorithm
should ignore all protected attributes such as race, color, religion, gender, disability, or family
status. However, this idea of “fairness through unawareness” is ineffective due to the existence
of redundant encodings, ways of predicting pmtec!ed aunbutes from olher features [PRTUB]
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Fair prediction with disparate impact:

A study of bias in recidivism prediction instruments

Alexandra Chouldechova
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A computer program used for bail and sentencing
decisions was labeled biased against blacks. It’s

actually not that clear.
The Washington Post

Democracy Dies in Darkness

By Sam Corbett-Davies, Emma Pierson, Avi Feller and Sharad Goel October 17,2016
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Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg *

Sendhil Mullainathan f

Manish Raghavan

When the two groups have equal base rates, then the risk assignment that gives the same score to everyone
in the population achieves statistical parity along with conditions (A), (B), and (C). But when the two
groups do not have equal base rates, it is immediate to show that statistical parity is inconsistent with both
the calibration condition (A) and with the conjunction of the two balance conditions (B) and (C). To scc
the inconsistency of statistical parity with the calibration condition, we take Equation (1) from the proof
above, sum the coordinates of the vectors on both sides, and divide by NV, the number of people in group t.
Statistical parity requires that the right-hand sides of the resulting equation be the same for ¢ = 1,2, while
the assumption that the two groups have unequal base rates implies that the left-hand sides of the equation
must be different for ¢ = 1, 2. To see the inconsistency of statistical parity with the two balance conditions
(BY and (C), we simply observe that if the average score assigned to the positive class and to the negative
class are the same in the two groups, then the average of the scores over all members of the two groups
cannot be the same provided they do not contain the same proportion of positive-class and negative-class
members.

3 The Approximate Theorem

In this section we prove Theorem 1.2. First, we must first give a precise specification of the approximate
faimess conditi
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For (B") and (C’), we also require that these hold when 11 and g2 are interchanged.

We also specify the approximate versions of perfect prediction and equal base rates in terms of f (&), which
is a function that goes to 0 as £ goes to 0

s Approximate perfect prediction. 1 > 1 — f(g) and v, 2 1 — f(g)

» Approximately equal base rates. |ju1 /Ny — a2/ Na| < f()
A brief overview of the proof of Theorem 1.2 is as follows. It proceeds by first establishing an approximate
form of Equation (1) above, which implies that the total expected score assigned in each group is approxi-
mately equal to the total size of the positive class. This in turn makes it possible to formulate approximate
forms of Equations (3) and (4). When the base rates are close together, the approximation is too loose to
derive bounds on the predictive power; but this is okay since in this case we have approximately equal base
rates. Otherwise, when the base rates differ significantly, we show that most of the expected score must be
assigned to the positive class, giving us approximately perfect prediction.

The remainder of this section provides the full details of the proof.

Total scores and the number of people in the positive class. First, we will show that the total score for
cach group is approximately ¢, the mumber of people in the positive class. Define jis = n] X v. Using (A"),

‘we have
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Similarly, we can lower bound fi; as
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Comibining these, we have
(L—e)pe < fie < (1+ &)pe. (O]

‘The portion of the score reccived by the positive elass. We can use (C*) to show that 7, & ~. Recall
that 7,, the average of the expected scores assigned to members of the positive class in group ¢, is defined as
7 = fn,PXv. Then, it follows trivially from (C") that
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‘The relationship between the base rates. We can apply this o (B") to relate 41, and s, using the obser-
vation that the score not received by people of the positive class must fall instead to people of the negative
class. Examining the left inequality of (B), we have
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Thus, the left inequality of (B’) becomes
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By definition, ji; = J’l;rXiJ and yep = n:!’Xv, so this becomes
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If the base rates differ. Let p; and po be the respective base rates, i.e. p1 = p /N and ps = ps/No.
Assume that g1 < pg (otherwise we can switch y; and uo in the above analysis), and assume towards
contradiction that the base rates differ by at least /%, meaning p: + +/Z < py. Using (10),

rarets) (125)

<
(p1+ VR = p)(l =264+ =) < pu(l— p1 — VE) (1 + 6 — 1)
(o1 +VE)L = p1)(1 = 26) — (1 = p1 —vE)(1+E) Sy
(1= p)(1 = 26) = (1 — p1 = VENL +&)] + vE(L — p1)(1 — 2¢) < m[VE(L — 1) + VEPI]
pi(=2¢ +2epy — € +epy + VE+eVE) +VE(L - 26— py + 2ep)) Ve
pi(—32 + 3epy + VE+EvE —vE+25VE) +/E(1 - 26) <y
£p1(=3+3p1 +3vE) +E(1 - 2) <
Bepr(—1+p1) + Vel - 2¢) <y
-

)
1-2 - 3epm(l—p)
1—VG(2VE+%) =

Recall that 7y, > = (1 — £), so
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Let f(£) = \/Emax(1,3,/E + 3/4). Note that we assumed that p; and p; differ by an additive /& < f(g).
Therefore if the e-fairness conditions are met and the base rates are not within an additive f (), then v >
1— f(g)and~2 > 1 — f(). This completes the proof of Theorem 1.2.

1 [(o1 + VENL — 1) — p1(1 — oy — VE)]



Machine Bias

Bias in Criminal Risk Scores Is Mathematically
Inevitable, Researchers Say

ProPublica’s analysis of bias against black defendants in criminal risk scores has prompted research showing that the
disparity can be addressed — if the algorithms focus on the fairness of outcomes.

by Julia Angwin and Jeff Larson
ProPublica, Dec. 30, 2016, 4:44 p.m. 2


https://www.propublica.org/article/bias-in-criminal-risk-scores-is-mathematically-inevitable-researchers-say

Lessons learned

e Faimess of an algorithm depends in part on how it's used

e Infairness, you can't always get (everything) you want

o Must make a careful choice of quantitative metrics
o Thisinvolves case-by-case policy decisions
o These tradeoffs affect human decisions too!
e |Improvements to fairness may come with their own costs to other values we want to
retain (privacy, performance, etc.)



an computer scientists do anything besides depress us?

Equality of Opportunity in Supervised Learning

Moritz Hardt Eric Price Nathan Srebro

October 11, 2016

Abstract

‘We propose a criterion for discrimination against a specified sensitive attribute in su-
pervised learning, where the goal is to predict some target based on available features.
Assuming data about the predictor, target, and membership in the protected group are avail-
able, we show how to optimally adjust any learned predictor so as to remove discrimination
according to our definition. Our framework also improves incentives by shifting the cost of
poor classification from disadvantaged groups to the decision maker, who can respond by
improving the classification accuracy.

In line with other studies, our notion is oblivious: it depends only on the joint statistics of
the predictor, the target and the protected attribute, but not on interpretation of individual
features. We study the inherent limits of defining and identifying biases based on such
oblivious measures, outlining what can and cannot be inferred from different oblivious tests.

We illustrate our notion using a case study of FICO credit scores.

1 Introduction

As machine learning increasingly affects decisions in domains protected by anti-discrimination
law, there is much interest in algorithmically measuring and ensuring fairness in machine
learning. In domains such as advertising, credit, employment, education, and criminal justice,
machine learning could help obtain more accurate predictions, but its effect on existing biases
is not well understood. Although reliance on data and quantitative measures can help quantify
and eliminate existing biases, some scholars caution that algorithms can also introduce new
biases or perpetuate existing ones [BS16]. In May 2014, the Obama Administration’s Big Data
Working Group released a report [PPM*14] arguing that discrimination can sometimes “be the
inadvertent outcome of the way big data technologies are structured and used” and pointed
toward “the potential of encoding discrimination in automated decisions”. A subsequent White
House report [Whil6] calls for “equal opportunity by design” as a guiding principle in domains
such as credit scoring.

Despite the demand, a vetted methodology for avoiding discrimination against protected
attributes in machine learning is lacking. A naive approach might require that the algorithm
should ignore all protected attributes such as race, color, religion, gender, disability, or family
status. However, this idea of “fairness through unawareness” is ineffective due to the existence
of redundant encodings, ways of predicting protected attributes from other features [PRT08].

Another common conception of non-discrimination is demographic parity. Demographic
parity requires that a decision—such as accepting or denying a loan application—be independent
of the protected attribute. In the case of a binary decision Y € {0,1} and a binary protected
attribute A € {0, 1}, this constraint can be formalized by asking that PriY=1|A=0}=Pr{¥ =

Hardt, Price, Srebro (2016)
On forcing a threshold classifier to be "fair" by various
definitions:

e (roup-unaware
Same threshold for each group

e [emographic Parity
Same proportion of positive classifications

e "Equal opportunity”
Same proportion of true positives
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Attacking discrimination in ML mathematically

Threshold Decision Profit: 1.2800
0 10 20 3 40 5 60 70 80 90 100 Correct 84% Incorrect 16%
loan threshold: 48 loans granted to paying loans denied to paying
applicants and denied applicants and granted
to defaulters to defaulters
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Attacking discrimination in ML mathematically

Threshold Decision Profit:
0O 10 20 30 40 5 60 70 80 90 100 True Positive Rate 88% Positive Rate 54%
loan threshold: 48 percentage of paying percentage of all

applications getting loans  applications getting loans

: ¥. i

denied loan / would default granted loan / defaults
denied loan / would pay back .. granted loan / pays back




Multiple groups and multiple distributions

Blue Population

0 0 20 30 40 50 60 70 8 90 100
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Multiple groups and multiple distributions
Blue Population Orange Population

0 10 20 30 40 o0 60 /0 80 90 100 0 10 20 30 40 o0 60 /0 80 90 100

loan threshold: 61 loan threshold: 50

denied loan / would default granted loan / defaults denied loan / would default granted loan / defaults
denied loan / would pay back .. granted loan / pays back denied loan / would pay back .. granted loan / pays back





https://research.google.com/bigpicture/attacking-discrimination-in-ml/

Case Study
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Conversation Al /
Perspective AP

’ Experiments Partners Developers

What if technology could
help improve
conversations online?

;sin things you care about can be diffic NOWANYONE GAN DEPLOY
oo e v e GOOGLE'S TROLL-FIGHTING Al

and give up on seeking different opinions

lynn cyrin S
@lynncyrin -
smh, | quite enjoyed the pears #actually

W 61% similar to comments people said were "loxic SEEM WRONG?

Black Trans Woman Eats Can of Pears, Really Enjoys It

7 0 2 OHEBAR@ENAE

7:53 PM - 23 Feb 2017




False "toxic” positives

Comment Toxicity score
The Gay and Lesbian Film Festival starts today. 82%
Being transgender is independent of sexual orientation. b2%

A Muslim is someone who follows or practices Islam. 46%



How did this happen?

term fraction
labeled toxic
(overall) 22%
"queer” 70%
"gay" 67%
"transgender” 55%
"lesbian” 54%
"homosexual” 51%
"feminist" 39%
"black" 34%
"white" 29%

"heterosexual" 24%
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One possible fix

term fraction
labeled toxic
(overall) 22%
"queer” 70%
"gay" 67%
"transgender" 55%
"lesbian” 54%
"homosexual” 51%
"feminist" 39%
"black" 34%
"white" 29%

"heterosexual" 24%
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False positives - some improvement

Comment

The Gay and Lesbian Film Festival starts today.

Being transgender is independent of sexual orientation.
A Muslim is someone who follows or practices Islam.

Overall AUC for old and new classifiers was very close.

Old

82%
52%
46%

New
1%
5%
13%



A common objection...

e (ur algorithms are just mirrors of the world. Not our fault if they reflect bias!



A common objection...

e (ur algorithms are just mirrors of the world. Not our fault if they reflect bias!
Some replies:

e |[f the effect is unjust, why shouldn't we fix it?
e Would you apply this same standard to raising a child?



Another objection

e (bjection: People are biased and opaque.
e Why should ML systems be any different?

o True: this won't be easy
o  We have a chance to do better with ML
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e (bjection: People are biased and opaque.
e Why should ML systems be any different?

o True: this won't be easy
o  We have a chance to do better with ML

[-] geoffhinton |Google Brain | [S] 20 points 2 years ago

I suspect that in the end, understanding how big artificial neural networks work after they have learned will be quite
like trying to understand how the brain works but with some very important differences:

1. We know exactly what each neuron computes.

2. We know the learning algorithm they are using.

3. We know exactly how they are connected.

4. We can control the input and observe the behaviour of any subset of the neurons for as long as we like.
5. We can interfere in all sorts of ways without filling in forms.



What can you do?

Include diverse perspectives in design and development
Train ML models on comprehensive data sets

Test products with diverse users

> W

Periodically re-evaluate and be alert to errors



Fairness In Machine Learning

Fernanda Viégas
Martin Wattenberg
Google Brain



