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CLINICAL HIGHLIGHTS
1) Elevated plasmin(ogen) is a common feature in people with

underlying medical conditions, including hypertension, diabe-
tes, cardiovascular disease, cerebrovascular disease, and
chronic renal illness, who are susceptible to SARS-CoV-2 infec-
tion.

2) Plasmin enhances the virulence and infectivity of SARS-CoV-2
virus by cleaving its spike proteins.

3) Extremely increased D-dimer in COVID-19 patients results
from plasmin-associated hyperactive fibrinolysis.

4) D-dimer and viral load are independent risk factors of disease
severity and mortality.

5) Antiproteases targeting plasmin(ogen) may be a promising ap-
proach to combat COVID-19.
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doi:10.1152/physrev.00013.2020.—Patients with hypertension, diabetes, coronary heart
disease, cerebrovascular illness, chronic obstructive pulmonary disease, and kidney dysfunc-
tion have worse clinical outcomes when infected with SARS-CoV-2, for unknown reasons. The
purpose of this review is to summarize the evidence for the existence of elevated plasmin(ogen)
in COVID-19 patients with these comorbid conditions. Plasmin, and other proteases, may
cleave a newly inserted furin site in the S protein of SARS-CoV-2, extracellularly, which in-
creases its infectivity and virulence. Hyperfibrinolysis associated with plasmin leads to elevated
D-dimer in severe patients. The plasmin(ogen) system may prove a promising therapeutic
target for combating COVID-19.
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I. INTRODUCTION

Patients with preexisting hypertension, diabetes, coro-
nary heart disease, cerebrovascular disease, chronic ob-
structive pulmonary disease (COPD), and kidney dys-
function (comorbidities) have worse clinical outcomes
when infected with SARS-CoV-2. The only treatment of
COVID-19 is supportive (51), and registered clinical tri-
als are ongoing. The mechanisms for high morbidity and

mortality of patients with comorbidities are unknown.
The existence of significantly increased fibrin degrada-
tion products (FDPs) and reduced platelets in severe
COVID-19 patients is consistent with the presence of
hyperfibrinolysis. This opinion is supported by the pres-
ence of hemorrhage in multiple organs and a positive
correlation between fibrinolysis and mortality. Plasmin,
a key player in fibrinolysis, enhances the virulence and
pathogenicity of viruses containing a furin site in their
envelope proteins, as is the case with the SARS-CoV-2.
The purpose of this review is to summarize the clinical
and preclinical evidence for the existence of elevated
plasmin(ogen) in these comorbid conditions of CO-
VID-19 and to highlight the importance of plasmin-in-
duced proteolytic cleavage of the SARS-COV-2 S protein
and fibrin in the development of COVID-19.

II. CLINICAL, PATHOLOGICAL, AND
EPIDEMIOLOGICAL FEATURES OF
COVID-19

A. Epidemiology

Coronavirus disease 2019 (COVID-19) is caused by a new
�-coronavirus, SARS-CoV-2. Its epicenter was in Wuhan,
China, and it has been spreading globally (103). As of
March 31, 2020, there have been 858,955 cases worldwide

1) Elevated plasmin(ogen) is a common feature in people with un-
derlying medical conditions, including hypertension, diabetes,
cardiovascular disease, cerebrovascular disease, and chronic renal
illness, who are susceptible to SARS-CoV-2 infection.

2) Plasmin enhances the virulence and infectivity of SARS-CoV-2
virus by cleaving its spike proteins.

3) Extremely increased D-dimer in COVID-19 patients results from
plasmin-associated hyperactive fibrinolysis.

4) D-dimer and viral load are independent risk factors of disease
severity and mortality.

5) Antiproteases targeting plasmin(ogen) may be a promising ap-
proach to combat COVID-19.
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resulting in 42,119 deaths.1 This far exceeds the total
deaths caused by both severe acute respiratory syndrome
(SARS) and Middle Eastern respiratory syndrome (MERS)
(91). Persons older than 60 years with hypertension, diabe-
tes, COPD, as well as cardiovascular, cerebrovascular,
liver, kidney, and gastrointestinal diseases are more suscep-
tible to the infection by SARS-CoV-2 and experience higher
mortality when they develop COVID-19 (3, 80, 101). The
contribution of malignant conditions is under debate due to
the small number of patients (43, 92). In total, 19% of
COVID-19 patients develop acute respiratory distress syn-
drome (ARDS) (PaO2/FiO2 �300 mmHg) within 24–48 h
after onset of symptoms.

B. Viral Load

Virus clearance is associated with the severity and survival
of COVID-19. Viral load in the respiratory tract peaks at
day 5–6 after the onset of symptoms (104–107 copies/ml)
(62), and viral RNA can be found in stool and sputum
samples, bronchoalveolar lavage fluid (BAL), and lung epi-
thelial cells. Patients older than 65 years generally have
higher viral load lasting up to 14 days and may develop
severe acute lung injury, requiring hospitalization in the
intensive care unit (ICU) with poor outcome (62). In con-
trast, most younger patients have a much lower viral load
that is undetectable within 1 week after onset (104). Fur-
thermore, an association between viral load and the severity
of COVID-19 has been reported (46).

C. Leading Causes of Death

COVID-19 patients admitted to ICU have higher mortality
(38%) than non-ICU patients (4%) (31). The mortality of
patients who develop ARDS is 49% (45). Many patients
with COVID-19 develop multi-organ failure (MOF). The
leading causes of deaths are ARDS, septic shock with MOF,
hemorrhage/coagulopathy (disseminated intravascular co-
agulopathy, DIC), acute heart/liver/kidney injury, and sec-
ondary bacterial infections (97, 101). Elevated FDPs and
D-dimers were detected predominantly in patients with se-
vere disease (11, 24, 31, 43, 45, 79, 85). Multivariate re-
gression further suggests that age and D-dimer levels (�1
mg/L) are two independent risk factors for mortality (89,
101). This in addition to other factors, such as compro-
mised immune response, may contribute to the increased
morbidity and mortality of patients with COVID-19 who
are older than 60 years.

D. Pathology

The pathological features of COVID-19 resemble those of
SARS and MERS. In the early stages of infection, puncture

lung biopsies reveal the presence of pneumonia, edema,
proteinaceous exudate with globules and focal hyperplasia
of alveolar epithelial cells associated with patchy inflamma-
tory infiltrates, and multinucleated giant cells (81). At the
later stages, diffuse alveolar damage (DAD) is observed in
addition to hemorrhage and some areas of interstitial fibro-
sis (48). Fibrotic clots and gelatinous mucus in the small
airways and disseminated intravascular coagulation are
also present (44, 93). Consistent with clinical observations,
the lungs are the most injured organs, followed by moderate
injury in the heart, liver, kidney, and brain. Systemic micro-
thrombi in the circulatory system and hemorrhage in the
affected organs result from noncoordinated responses be-
tween the coagulation and fibrinolysis systems. Although
COVID-19 is characterized by hyperfibrinolysis, as evi-
denced by elevated levels of D-dimer, studies attempting to
restore fibrinolytic function have not been reported. Ele-
vated plasmin(ogen) in patients with preexisting conditions
may be a mechanism contributing to enhanced susceptibil-
ity to SARS-CoV-2 infection and fatality.

III. CLEAVAGE OF SARS-CoV-2
S PROTEINS BY HOST FURIN
AND PLASMIN

Sequencing of hundreds of SARS-CoV-2 virus isolates re-
veals a close relation to two bat-derived coronaviruses, bat-
SL-CoVZC45 and bat-SL-CoVZXC21. These coronavirus
strains have a similar receptor-binding domain structure in
the Spike (S) protein for host angiotensin converting en-
zyme 2 (ACE2) proteins (47, 90, 102). The S protein of
SARS-CoV-2 bind to human ACE2 receptors with higher
affinity than that of the SARS-CoV virus (88). This may be
due to a furin-like cleavage site (682RRAR/S686) inserted in
the S1/S2 protease cleavage site of the SARS-CoV-2 virus
(FIGURE 1) (13). The S1 region of the Spike protein is re-
sponsible for binding to the host cell ACE2 receptor, where
the S2 region is responsible for fusion of the viral RNA and
cellular membranes. Polybasic furin sites in hemagglutinin
(HA) proteins are often found in highly virulent avian and
human influenza viruses (10). The insertion of the furin site
may augment the ability of this new SARS-CoV-2 to attach
and invade human cells expressing ACE2 and CD147 re-
ceptors (12, 86).

A. Furin Proteolytically Cleaves Other Viral
Proteins

The envelope proteins of numerous viruses, such as human
immunodeficiency virus (HIV), human and avian influenza,
herpes, Epstein-Barr, leukemia, dengue, Ebola, hepatitis B,
measles, West Nile, Zika, respiratory syncytial virus (RSV),
SARS, MERS, and Marburg virus, are cleaved by intracel-
lular furin-like proteases. This increases the ability of the
viruses to enter host cells (13, 34, 56). Proteolysis at a1These numbers are increasing daily now.
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conventional “XXXR/S” motif in the S2 region of the Spike
protein may facilitate the entry of respiratory infectious
viruses (such as RSV and influenza) into airway and alveo-
lar epithelial cells (94). Both SARS and MERS have evolved
an unusual two-step furin activation for fusion, suggestive
of a role during the process of emergence into the human
population (55). Amidst the cluster of the furin-cleaved vi-
ruses, SARS S protein is cleaved by airway proteases (tryp-
sin, plasmin, and TMPRSS11a), expressed in human bron-
chial epithelial cells, subsequently enhancing pseudovirus
entry via binding host ACE2 receptors (37). The protease
cleavage sites are R667 in the S1 fragment and R797 in the
S2 fragment of SARS virus. These two cleavage sites are
preserved in other coronaviruses, HIV, human and avian
influenza virus, human CMV and RSV, yellow fever virus,
and Zika virus (13).

B. Cleavage of Coronavirus by Plasmin and
Other Host Proteases

Single-cell profiling of human lung tissues (the LGEA por-
tal: https://research.cchmc.org/pbge/lunggens/mainportal.
html) reveals that furin is predominately expressed in hu-
man alveolar type II (AT2) cells in the respiratory system,
while plasminogen, kallikrein, and trypsin are expressed in
both airway and alveolar type I and II epithelial cells. Plas-
minogen is also expressed in endothelial cells. Cytosolic
furin is enriched in the Golgi apparatus. The possibility for
non-furin proteases to cleave viral envelope proteins is sup-
ported by the evidence that in furin-defective LoVo cells, the

cleavage-dependent process of HIV gp160 is as efficient as
in normal cell lines (60). We have demonstrated that plas-
min is capable of cleaving furin sites in the � subunit of
human epithelial sodium channels (ENaC) (99).

The S protein of coronaviruses may be cleaved by plasmin,
trypsin, cathepsins, elastase, and TMPRSS family members;
cleavage of S protein may mediate enhancement of virus
entry into bronchial epithelial cells (37). Plasmin also
cleaves the S proteins of SARS-CoV in vitro (37). In addi-
tion, HCoV-HKU1 S proteins are cleaved by kallikrein in
the S1/S2 region and mediate the entry of HCoV-HKU1 to
nonpermissive rhabdomyosarcoma cells (54). The clinical
relevance of non-furin cleavage remains unknown due to
the paucity of in vivo evidence for the role of plasmin cleav-
age of SARS-CoV. Also, it remains to be demonstrated that
the envelope proteins of SARS-CoV-2 strain are cleaved by
plasmin (56).

The cleavage of influenza virus by plasmin is well charac-
terized (5, 23, 42, 57, 73, 83, 96). Proteolysis of influenza
HA proteins enables fusion with the host endosome. Acid-
ification of the endosome promotes viral membrane fusion
and activates the M2 ion channel, which pumps protons
(H1) into the interior of the viral core to initiate uncoating
of the M1 protein. Nuclear replication occurs, and viral
gene products are transported to the plasma membrane for
assembly. The fibrinolytic zymogen plasminogen (activated
by urokinase or tissue-like plasminogen activator to gener-
ate plasmin) has been shown to cleave the influenza HA
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FIGURE 1. Plasmin(ogen) increases the pathogeneticity of COVID-19. Plasmin cleaves the S protein of
SARS-CoV-2 extracellularly, increasing its ability to bind with angiotensin converting enzyme 2 (ACE2) receptors
of host cells, and probably facilitating virus entry and fusion. Plasmin proteolytically breaks down excess fibrin
to elevate D-dimer and other fibrin degradation products in both bronchoalveolar lavage fluid and plasma, which
decreases platelets and results in hemorrhage. Plasmin also cleaves epithelial sodium channel (ENaC) sub-
units, located at the apical membranes of epithelial cells in the airway, lung, and kidney. This increases the
ability of Na� ions to enter epithelial cells resulting in hypertension and dehydration of the fluid lining lung
airways and alveolar cells.
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proteins (40, 75, 83). The HA cleavage site of A/WSN/1933
H1N1 influenza virus governs virus spread in a plasmin-
dependent manner (75). Mini-plasmin, a plasmin fragment,
is distributed predominantly in the epithelial cells of the
bronchioles and potentiates the replication of both plasmin-
sensitive and plasmin-insensitive influenza A virus strains,
suggesting a pivotal role of plasmin in the spread and patho-
genicity of the influenza virus (57). Additionally, kallikreins
cleave and activate HA of the influenza virus H1, H2, and
H3 subtypes (27). Similar to coronavirus and influenza vi-
ruses, plasmin, trypsin, thrombin, and furin enhance RSV-
induced cytopathology (17). Local fibrin and clot formation
are implicated in host defense against influenza virus infec-
tions (5), thus plasminogen may affect lung injury and re-
pair by interfering with these processes (1).

Protease cleavage may enhance or decrease the activities
of various proteins. For example, prostasin increases the
activity (60 – 80%) of ENaC, whereas TMPRSS2 mark-
edly decreases ENaC function and protein levels (15). In
neural tissues, brain-derived neurotrophic factor precur-
sor (proBDNF) is cleaved either intracellularly by furin-
like proteases or extracellularly by plasmin or matrix
metalloproteinases. However, plasmin, but not related
proteases, cleaves proBDNF furin sites extracellularly
(4). The inhibitory effects of TMPRSS2 could be cor-
rected by serine protease inhibitors, such as camostat
mesylate that has been approved for clinical use in Japan
(98). The beneficial effects of camostat mesylate, an an-
tiprotease, may be partially due to the inhibition of plas-
min (98).

C. Proteolytical Cleavage and Pathogenicity

Extracellular cleavage of virus envelope fusion glycopro-
teins by host cellular proteases is a prerequisite for the in-
fectivity of respiratory viruses. The presence of a polybasic
cleavage site that can be cleaved by furin-like proteases is a
signature of several highly pathogenic avian influenza
viruses (82). Similarly, the S protein of SARS-CoV-2 har-
bors a furin cleavage site at the S1/S2 boundary. The
almost ubiquitous and diverse expression of furin-like
proteases could lead to increasing SARS-CoV-2 cell and
tissue tropism and transmissibility, and enhance its
pathogenicity (84).

Four viral proteins are essential for the pathogenesis of
COVID-19. The S proteins bind to ACE2 receptors after
being cleaved by furin-like proteases. The RNA-depen-
dent RNA polymerase (RdRp) is responsible for replicat-
ing SARS-CoV-2 RNA genome. 3C-like and papain-like
proteases cleave two polyproteins that are important for
the packing new virions. Whether plasmin and other host
proteases cleave additional viral proteins is not known.

IV. ELEVATED PLASMIN(OGEN) LEVELS IN
COMORBID DISEASES OF COVID-19

A. Plasmin(ogen) in Hypertensive Patients

Plasmin is generated from the cleavage of plasminogen by
either urokinase (uPA) or tissue-like plasminogen activator
(tPA). In general, uPA is responsible for the plasmin in
body fluid (BAL, urine, tear, pleural effusion, etc.), while
circulating tPA proteolytically cleaves plasminogen in the
plasma. The most frequent comorbidity observed in
COVID-19 patients is hypertension followed by diabetes,
chronic cardiovascular conditions, cerebrovascular dis-
eases, COPD, and chronic kidney illnesses (80, 101). The
plasminogen system is a druggable target in renal hyperten-
sion (76). Plasmin, a potent protease, cleaves up to 16 sites,
including the cleavage sites for trypsin, chymotrypsin, pros-
tasin, and elastases, of the human � ENaC subunit (99).
Elevated renal plasmin results in hypertension by cleaving
ENaC in the collecting tubule, which increases salt reten-
tion, causing expanded circulating volume. Urinary excre-
tion of plasmin(ogen) and urokinase directly correlates with
urine albumin in hypertensive subjects (2). On the other
hand, amiloride, an inhibitor of ENaC, lowers blood pres-
sure and urine plasminogen excretion (61). ENaC proteins
are located in the apical membranes of tight epithelia, and
they are the major pathways for the entry of Na�. As such,
they play an important role in maintaining the proper depth
of airway and alveolar lining fluids, the reabsorption of
edema fluid in injured lungs, and the regulation of salt re-
tention in the collecting tubules (6, 14, 18, 28, 38, 39, 50,
64). Proteolysis is an important regulatory mechanism of
ENaC function (36, 63, 65, 67, 70, 99). Decreased ENaC
function will result in increased fluid in body cavities (e.g.,
lung edema in the airspaces and increased blood volume),
while increased function will cause dehydration of luminal
fluid, as it occurs in cystic fibrosis (CF) and most likely dry
eye syndrome.

B. Plasmin(ogen) in Cardiovascular Diseases

Significantly higher levels of urinary plasminogen and plas-
min are reported in rats (71) and patients with chronic heart
failure (76, 100). In addition, plasmin activity in patients
with coronary artery disease is 1.7-fold greater compared
with healthy subjects (16).

C. Plasmin(ogen) in Diabetes

Both types I and II diabetes are associated with higher plas-
min(ogen) levels in plasma. A 25-year prospective study of
type I diabetes documented an association with increased
urinary plasmin(ogen), particularly in hypertensive subjects
(69). Concentrations of plasmin(ogen) in urine are corre-
lated with the development of preeclampsia late in preg-

JI ET AL.

1068 Physiol Rev • VOL 100 • JULY 2020 • www.prv.org



nancy (58). Aberrant plasmin in preurine may inappropri-
ately activate ENaC in patients with type II diabetes and
microalbuminuria (7). Individuals with high plasma furin
concentration have a pronounced dysmetabolic phenotype
and elevated risk of diabetes mellitus and premature mor-
tality (19).

D. Plasmin(ogen) in Other Comorbid
Diseases

Higher levels of plasmin(ogen) are detected in the urine of
various cancer patients as compared with healthy individu-
als (9). Elevated urine plasmin(ogen) levels, accompanied
by increased exosomal � ENaC fragments, have been de-
tected in pregnant women (59), a population susceptible to
influenza (22). Endogenous channel-activating proteases, as
well as proteases released by inflammatory cells (trypsin,
elastase), activate ENaC either by cleaving critical amino
acids in � and � ENaC subunits, or by activating signaling
pathways (66, 72). Aprotinin, a potent and reversible
Kunitz-type inhibitor of several serine proteases, including
trypsin, plasmin, and kallikreins, has been reported to in-
hibit sodium transport among a variety of epithelial cells
(66). Other Kunitz-type serine protease inhibitors, such as
hepatocyte growth factor activator inhibitor (HAI)-1 and
HAI-2 (placental bikunin), have also been demonstrated to
inhibit prostasin and ENaC activity (77). Finally, a1-anti-
trypsin, an acute-phase glycoprotein and a member of the
serine protease inhibitor (SERPIN) superfamily, inhibits
ENaC in vitro and in vivo by decreasing protease activity
(41). Of note, SARS S protein inhibits ENaC via the
protein kinase C signaling pathway (35). It is worth not-
ing that high plasmin levels may contribute to the devel-
opment of comorbid bacteremia and sepsis (26, 74). In-
terestingly, azithromycin, a common antibiotic for sup-
pressing infection in the CF airways when combined with
hydroxychloroquine, turns COVID-19 to SARS-CoV-2
negative in 5 days (21).

V. PLASMIN(OGEN) IN ARDS

A. Plasmin(ogen) Is Increased in ARDS

ARDS is a life-threatening disorder associated with respira-
tory and systemic infections, trauma, burns, inhalation of
toxic gases, and aspiration of gastric contents injury (52). In
addition to lung injury, patients with ARDS may develop
MOF with a hallmark of excess D-dimer and other FDPs
presenting in both BAL and blood biopsies. Soluble
D-dimer and D-monomer are predominately produced
from the proteolytic cleavage of cross-linked fibrin and fi-
brinogen/non-cross-linked fibrin, respectively, by plasmin
(fibrinolysis). Plasmin activity in BAL is detected in healthy
subjects (71). Both D-dimer and D-monomer levels are sig-
nificantly increased up to 17-fold in undiluted edema fluid

in patients with ARDS (68). Significant increase in both
plasminogen and cleaved plasmin protein in the BAL of
ARDS patients (32) and an animal model of DAD (33) have
been reported. Augmented plasmin activity contributes to
elevated D-dimer in the BAL of infected lungs in a time-
dependent manner during the development of ARDS (20,
87). This is further validated by the observation that plas-
min-mediated fibrinolytic activity could be inhibited by
50% with �2-antiplasmin antibody (32). Kallikrein and
neutrophil elastase may contribute to the residual proteo-
lytic activity in BAL of ARDS (53). Also, radiation-induced
lung injury in mesothelioma patients is accompanied by a
significant elevation in BAL plasminogen and plasmin-asso-
ciated fibrinolytic activity (49).

B. Fibrinolysis in COVID-19

In comparison with patients with mild COVID-19 (such as
those who did not require ICU stays, did not develop ARDS
or pneumonia, and who survived), patients with severe CO-
VID-19 have higher comorbidities, including 56% for hy-
pertension, 21% for heart diseases, 18% for diabetes, 12%
for cerebrovascular diseases, and 7% for cancer (TABLE 1)
(79, 97). Some patients have more than one, even up to
five preexisting conditions. Multivariate regression fur-
ther links hypertension with increased incidence and fa-
tality (85, 89, 101). Hyperfibrinolysis, reflected by ele-
vated serum D-dimer levels, was present in 97% of CO-
VID-19 patients at admission and increased further in all
patients before death (TABLE 2) (97). FDPs were signifi-
cantly increased as well (79). This is accompanied by a
prolonged prothrombin time particularly in non-survi-
vors (31, 79, 97, 101). Platelet counts were decreased
significantly in severe and dead patients (79, 97, 101).
71.4% of non-survivors meet the criteria of the Interna-
tional Society on Thrombosis and Hemostasis (ISTH) for
DIC, suggesting the coexistence of coagulation activation
and hyperfibrinolysis in patients with severe COVID-19
infection (78, 85). In contrast, D-dimer levels decreased
to control levels in survivors or non-ARDS patients.

The mortality rate of patients with COVID-19 who did
not develop ARDS is 9 versus 49% for those who did
develop ARDS (45). Of note, ARDS/respiratory failure
remains the leading cause of death (70%), followed by
sepsis/MOF (28%), heart failure (15%), hemorrhage
(6%), and renal failure (4%) (TABLE 3). Coagulation/
hemorrhage ranks among the top three leading causes of
death (97). Furthermore, multivariate regression analysis
identifies D-dimer and age as independent risk factors for
mortality (TABLE 4) (85, 89, 101). These findings suggest
that the normalization of hyperactive fibrinolysis may be
a therapeutic target.
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C. Uncoordinated Coexistence of
Hypercoagulation and Hyperproteolysis

The specific plasmin inhibitor �2-antiplasmin is elevated by
approximately one order of magnitude in patients with
ARDS, while fibrinolytic activity is reduced approximately
by half, and D-dimer is elevated 50-fold in BAL (25). The
nonproportional change between the expression and activ-
ity level of plasmin(ogen) and anti-plasmin indicates the
stoichiometry of the plasmin-antiplasmin complexes may
not be in a ratio of 1:1. Increased levels of �2-antiplasmin

and other antiproteases may not completely shield the pro-
teolytic triad of plasmin in the complexes, suggesting that
either their efficacy is inadequate or that plasmin is still able
to cut fibrin to produce D-dimers and FDPs in ARDS pa-
tients. The soluble complexes of the plasmin-antiplasmin in
BAL may facilitate physical interactions with the vast depo-
sition of fibrin at the luminal surface of alveoli. Based on the
pathology and laboratory results, dynamic hypercoagula-
tion occurs as evidenced by microthrombi throughout the
blood vessels of multiple organs, accompanied with ex-
tremely reduced platelets in COVID-19 patients (TABLE 2).

Table 1. Comorbidities of COVID-19 patients

Epidemiology
(death%)

(n � 72,314)

Severe/
non-severe
Pneumonia

(n � 38/72)

Severe/
non-severe

(n � 173/926)

ICU/
non-ICU

(n � 13/28)

ARDS/
non-ARDS

(n � 53/56)

Non-survivor/
survivor

(n � 54/137)

Non-survivor/
survivor

(n � 32/20)
Non-survivor

(n � 82)

Hypertension 12.8/6 39.47/29.17c 23.7/13.4 15/14 39.6/28.6 48/23 %c 56.1
Diabetes 5.3/7.3 21.05/9.72 16.2/5.7 8/25 20.8/1.8b 31/14b 22/10 18.3
Coronary heart

diseases 4.2/10.5 5.8/1.8 23/11 5.7/7.1 24/1d 9/10 20.7
Cerebrovascular

diseases 7.89/5.56 2.3/1.2 11.3/0b 22/0 12.2
COPD 2.4/6.3 10.53/2.78a 3.5/0.6 8/0 3.8/3.6 7/1a 6/10 14.6
Kidney diseases 1.7/0.5 15.1/3.6a 4/0a 4.9
Liver diseases 0.6/2.4 0/1 — 2.4
Cancer 0.5/5.6 1.7/0.8 0/1 0/1 3/5 7.3
Secondary infection 0.6/2.4 6.1
Immunodeficiency 0/0.2 17.1
Others 20/8a 3.7 (surgery)
Total 26/� 38.7/21 38/29 67/40c 76.8
Reference no. 80 85 24 31 45 101 95 97

ARDS, acute respiratory distress syndrome; COPD, chronic obstructive pulmonary disease; ICU, intensive care unit. aP � 0.05, bP � 0.01,
cP � 0.001, dP � 0.0001.

Table 2. Coagulation and fibrinolysis in patients with COVID-19

Severe/
non-severe

(n � 173/926)

ARDS/
non-ARDS

(n � 53/56)

ICU/
non-ICU

(n � 13/28)

Severe/
non-severe
Pneumonia

(n � 38/72)

Non-survivor/
survivor

(n � 54/137)

Non-survivor/
survivor

(n � 21/162)

Non-survivor/
survivor

(n � 32/20)
Non-survivor

(n � 82)

D-dimer, �1 mg/L 59.6/43.2
(�0.5 mg/L)

940/370c 2.4/0.5b 1.11/0.37c 5.2/0.6d 2.12/0.61c, 100/ 97.5–100
(�0.55 mg/L)

FDP, mg/L 7.6/4.0c

Fibrinogen, g/L 3.4/2.9c 5.16/4.51,
28.6 (�1 g/L)

—

Platelets,
�100 � 109/L

57.7/31.6
(�150,000/mm3)

8/4 144.5/179.5c

(109/L)
20%/1%d 57.1/ 191/164 63.2

Prothrombin time,
�16 s

12.2/10.7a 13/3a 15.5/13.6c 100 (�12.1)

Antithrombin activity 84/91 12.9/10.9
APTT, s 26.2/27.7 44.8/41.2
ISTH DIC criteria 71.4/-
Reference no. 24 45 31 85 101 79 95 97

APTT, activated partial thromboplastin time; ARDS, acute respiratory distress syndrome; DIC, disseminated intravascular coagulation; FDP,
fibrin degradation products; ICU, intensive care unit; ISTH, International Society on Thrombosis and Hemostasis. aP � 0.05, bP � 0.01,
cP � 0.001, dP � 0.0001.
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On the other hand, hemorrhage and markedly elevated de-
graded fibrin products result from plasmin-associated hy-
perproteolysis. Whether patchy hemorrhage coexists with
areas infected by SARS-CoV-2 is not known. Administra-
tion of anti-proteases may prove beneficial.

VI. CLINICAL RELEVANCE AND
PERSPECTIVE

The cleavage of the new furin sites in the S protein of SARS-
CoV-2 virus by plasmin and other proteases may enhance
its infectivity by expediting entry, fusion, duplication, and
release in respiratory cells. Elevated plasmin(ogen) levels
are a common feature in COVID-19 patients with underly-
ing medical conditions. The elevated plasmin(ogen) could
be an independent factor for risk stratification of patients
with COVID-19. Measurements of plasmin(ogen) levels
and its enzymatic activity may be important biomarkers of
disease severity in addition to resultant D-dimer. The ad-

ministration of antiproteases to suppress plasmin activity in
the respiratory system may prevent, or at least decrease,
SARS-CoV-2 entry into respiratory cells and improve the
clinical outcome of patients with COVID-19. As demon-
strated in vitro, a serine protease inhibitor for TMPRSS2
blocks SARS-CoV-2 S protein-driven entry into cells (30).
Clinical trials conducted in China are testing various pro-
tease inhibitors (29). Currently there are no proper animal
models of COVID-19 with underlying medical conditions
to test new therapeutic agents. Healthy mice and mon-
keys infected with SARS-CoV-2 develop either mild lung
injury or show no symptoms of disease (8). It remains to
be seen whether mice and monkeys with preexisting co-
morbid conditions and higher plasmin levels develop
COVID-19 when infected with SARS-CoV-2. Targeting
hyperfibrinolysis with a broad spectrum or specific anti-
plasmin compounds may prove to be a promising strat-
egy for improving the clinical outcome of patients with
comorbid conditions.

Table 3. Outcomes or complications (%) in patients with COVID-19

Severe/non-severe
(n � 173/926)

ICU/non-ICU
(n � 13/28)

Non-survivor/survivor
(n � 54/137)

Non-survivor/survivor
(n � 32/20)

Injured Organs
(n � 82)

Death Cause
(n � 82)

Sepsis/MOF 100/42d 3/0 28.0e

Respiratory failure 98/36d 100
ARDS 16.5/1.1 85/4d 93/7d 81/45 69.5e

Septic shock 6.4/0.1 23/0a 70/0d

Acute cardiac injury 31/4a 59/1d 28/15 89.0
Heart failure 52/12d 14.6e

Coagulopathy/hemorrhage 50/7d 6.1e 80.5
Acute kidney injury 2.9/0.1 23/0a 50/1d 37.5/15 31.7
Secondary infection 31/0a 50/1d 9/20
Hypoproteinemia 37/1d

Acidosis 30/1d 2.4e

Renal failure 0.6/0 3.7e

Liver failure 1.2e 78.0
GI failure 2.4e 6.1
Reference no. 24 31 101 77 97 97

ARDS, acute respiratory distress syndrome; GI, gastrointestinal; ICU, intensive care unit; MOF, multiple organ failure. aP � 0.05, bP � 0.01,
cP � 0.001, dP � 0.0001. ePercent of contribution to death.

Table 4. Risk factors of COVID-19 associated with mortality computed with multivariate logistic regression

Non-survivor/survivor
(OR, n � 54/137)

Severe/non-severe Pneumonia
(OR, n � 38/72)

ARDS
(HR, n � 201)

Age 1.10 (1.03, 1.17)b 25.314 (1.628, 92.664)c �60 yr 6.17 (3.26, 11.67)c

Lymphocyte 0.19 (0.01, 1.62) 0.322 (0.137, 0.756)b 0.51 (0.22, 1.17)
D-dimer 18.42 (2.64, 128.55)b 17.054 (2.547, 114.171)b 1.02 (1.01, 1.04)b

Reference no. 101 85 89

ARDS, acute respiratory distress syndrome; HR, hazard ratio; OR, odd ratio. aP � 0.05, bP � 0.01, cP � 0.001.
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