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Abstract
The number of new infections per day is a key quantity for effective epi-
demic management. It can be estimated relatively directly by testing of random
population samples. Without such direct epidemiological measurement, other
approaches are required to infer whether the number of new cases is likely to be
increasing or decreasing: for example, estimating the pathogen-effective repro-
duction number, 𝑅, using data gathered from the clinical response to the dis-
ease. For coronavirus disease 2019 (Covid-19/SARS-Cov-2), such 𝑅 estimation
is heavily dependent on modelling assumptions, because the available clinical
case data are opportunistic observational data subject to severe temporal con-
founding. Given this difficulty, it is useful to retrospectively reconstruct the time
course of infections from the least compromised available data, using minimal
prior assumptions. A Bayesian inverse problem approach applied to UK data on
first-wave Covid-19 deaths and the disease duration distribution suggests that
fatal infections were in decline before full UK lockdown (24 March 2020), and
that fatal infections in Sweden started to decline only a day or two later. An anal-
ysis of UK data using the model of Flaxman et al. gives the same result under
relaxation of its prior assumptions on 𝑅, suggesting an enhanced role for non-
pharmaceutical interventions short of full lockdown in the UK context. Similar
patterns appear to have occurred in the subsequent two lockdowns.
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1 INTRODUCTION

Clinical data on the number of cases of coronavirus dis-
ease 2019 (Covid-19/SARS-CoV-2) are subject to severe
temporal confounding, as the rate of testing and criteria
for testing have been changing rapidly on the same time
scale as the infections, particularly in the early weeks and
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months of the epidemic. Because these are samples of con-
venience where the ascertainment fraction is changing
and unknown, the data can clearly not be used to infer
the actual number of infections. Neither, under normal
circumstances, would statisticians recommend attempt-
ing to estimate the effective reproduction number of the
pathogen from such data, because given the data problems,
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the estimates must necessarily be driven strongly by the
modelling assumptions (see, e.g. Levine et al., 2001, §1.6
for general discussion of the problems with inference from
non-random samples). Indeed generically, it is often very
difficult to infer epidemiological parameters from clinical
data, without the results being informed as much by the
prior beliefs encoded in themodel as by the data (e.g.Wood
et al., 2020). Much less problematic are estimates based on
randomized surveillance testing, as now conducted in the
United Kingdom by the office for national statistics (see
Supporting Information for discussion of inferring inci-
dence from testing data).
However, some clinical data directly measure the quan-

tity of epidemiological interest. This is the case for deaths
with Covid-19 and for fatal disease duration. While not
perfect, these data are less compromised than the data on
cases. Deaths are reliably recorded and clinical grounds
for suspecting Covid-19 are relatively clear for fatal cases,
although accurately attributing death to a single cause is
clearly not always possible. Good records are also often
kept for such cases, with the result that there are several
published studies on fatal disease duration (Verity et al.,
2020; Linton et al., 2020; Wu et al., 2020, see Section 2).
Although only possible with a delay of some weeks, it is of
interest to establish what these relatively high-quality data
imply about the time course of infections, without strong
modelling assumptions.
Two types of daily death data are available. Daily

reported deaths (e.g. Worldometer, 2020) typically show
marked weekly fluctuations as a result of weekly pat-
terns in reporting delays, and may exclude deaths in some
locations (such as nursing homes). Registered death data,
such as the ONS data in the United Kingdom (Office
for National Statistics, 2020), contain deaths in all loca-
tions and record exact date of death. NHS (2020) publishes
equivalent data for hospital deaths in England. Theweekly
cycle is less pronounced in these data, but their release is
necessarily delayed relative to the daily reported deaths,
although recent work partially overcomes this delay prob-
lem, by modelling the delays to enable ‘now-casting’ of
deaths by actual death date: see Stoner et al. (2020). The
right column of Figure 2 shows ONS, NHS and Swedish
daily deaths by date of death (without now-casting).
The purpose of this paper is to show how a relatively

straightforward statistical approach can be used to infer
the fatal infection trajectory in the United Kingdom in
a data-driven way that makes the minimum of strong
modelling assumptions. The approach is also applied to
data from Sweden, the western European country offer-
ing the greatest policy contrast to the United Kingdom.
Sweden never implemented full lockdown, sticking to
less restrictive non-pharmaceutical intervention (NPIs)
(broadly aimed at ‘optimal mitigation’ rather than ‘sup-

pression’ in the terms used byWalker et al., 2020, who pro-
jected around 40,000 deaths for this policy). Meaningful
quantification of the aggregate strength of restrictions that
are intrinsically multivariate is difficult, but in terms of
their aggregate economic impact, Swedish GDP dropped
by about 2.9% in 2020 compared to about 9.9% for the
United Kingdom. Particular questions of interest are when
the decline in fatal infections started in the United King-
dom and Sweden, whether UK infections were in substan-
tial decline before full lockdown, whether the pathogen
reproduction number was below 1 before lockdown, and
how the timing of fatal incidence decline relates to the tim-
ing of the easing of lockdown.
Answers to these questions may contribute to judging

the proportionality of lockdown measures in the UK con-
text, where there is strong statistical evidence for very
large preventable life loss being associated with economic
deprivation, and of economic deprivation being increased
by economic shocks. This evidence is reviewed in detail
in Marmot et al. (2020). For example, the deprivation-
related life loss that the current UK population was due
to suffer before the Covid crisis was 140–240 million life
years (or 2–3.5 years per capita, see Marmot et al., 2020,
figure 2.3, for example). The range depends on whether
the life expectancy of the lower decile or the lower half
of the deprivation distribution is used as the reference
for achievable life-expectancy. In examining the effects of
the 2008 financial crisis and its aftermath, Marmot docu-
ments sharp reductions in life expectancy growth in the
United Kingdom, which would imply a life loss burden in
the 10s of millions of years. However, attribution of such
reduction-relative-to-trend is obviously very difficult. Less
problematic is the 9 million life year loss implied by the
increase in life expectancy gap between the more and less
deprived halves of the UK population since 2008 (7 weeks
per capita, seeMarmot et al., 2020, figure 2.5, for example):
given the evidence presented in the review, this ismore dif-
ficult to attribute to causes unrelated to the 2008 economic
shock. The Bank of England estimates the shock to the UK
economy caused by the response to Covid-19 to have been
the largest for over 300 years, so there is a clear danger of
substantial life loss being caused, given the historical data
for theUnited Kingdom. For example, a feature of the 2008
crisis already repeated in 2020 is the reliance on a large pro-
gramme of quantitative easing. Quantitative easing is cred-
ibly argued to directly increase economic inequality via
mechanisms related to asset price inflation (e.g., Domanski
et al., 2016; Fontan et al., 2016). There is some literature
attributing some short-term life-saving to recessions, see,
for example, Anon (2020), but the effects are modest rela-
tive to the long-term effects reviewed byMarmot. For com-
parisonwith the above figures, the life loss that might have
occurred from a minimally mitigated Covid-19 epidemic
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F IGURE 1 Fatal disease duration distributions. Left: onset to death. Dotted (Verity et al., 2020); dashed (Linton et al., 2020); dash-dot
(Wu et al., 2020); continuous blue the log-normal mixture component for community acquired infection from the English hospital data.
Middle: combined Linton–Verity–Wu onset to death model, thick red is mean model, grey are 100 draws from the distribution of the
combined model, thin blue is as left. Right: as middle, but combined infection to death model. This figure appears in colour in the electronic
version of this article, and any mention of colour refers to that version

appears to be in the region of 3 million life years (2.5 weeks
per capita). This is based on Office for National Statistics
(2019) lifetables, ONS Covid-19 fatality by age data, a mid-
range infection fatality rate estimate of 0.006, a somewhat
high herd immunity threshold of 0.7 and a 1-year lower
bound life expectancy adjustment for co-morbidities based
on Hanlon et al. (2020). It is broadly in line with the UK
government estimates (Anon, 2020). Given that 9 million
life years, associated with the substantially smaller eco-
nomic shock of 2008, is not negligible relative to 3 million
life years potentially losable to Covid-19, there is obviously
a delicate balance to be struck in the UK context, and evi-
dence based on assumption light inference should proba-
bly play a role in shaping that balance. Another indicator
of the difficulty of achieving the right balance is that the
usual UK threshold for approving a pharmaceutical inter-
vention is £30,000 per life year saved. On the basis of eco-
nomic costs detailed in OBR (2020) and the preceding life
loss figures, the NPIs used in the United Kingdom appear
to have a cost per life year saved that is an order of magni-
tude higher than this (excess government borrowing is pro-
jected to peak at £660 billion in the OBR central scenario,
for example). This discrepancy in willingness to pay may
lead to a problem of opportunity cost, as the same money
cannot be spent on preventing other life loss, such as that
associated with economic hardship.
The remainder of the paper is structured as follows.

Section 2 discusses the available information on the dis-
tribution of fatal disease durations, and how to combine
it while adequately characterizing the associated uncer-
tainty. Section 3 introduces a simple generalized additive
model for direct modelling of the daily deaths trajectories,
and shows how it can be extended to infer the trajectory
of fatal infections, either directly or by inferring the tra-
jectory of the pathogen effective reproduction number, 𝑅,

in a simple epidemic model. Since the extensions are not
standard models, and are relatively expensive to compute
with using standard Bayesian software, Section 4 outlines
methods allowing computationally efficient inferencewith
the models. Section 5 presents the main results on infec-
tion trajectories, and also the estimation of 𝑅. Section 6
discusses possible problems with the approach, in particu-
lar examining whether smoothness assumptions could be
leading to substantial bias in inferred timings. Replication
code and data are provided in the Supporting Information.

2 FATAL DISEASE DURATION

Data on the incubation period from infection to onset of
symptoms are analysed inmanypapers, for example, Lauer
et al. (2020) found that the period is 2–11 days for 95%
of people, with a median of 5.2 days. A meta-analysis by
McAloon et al. (2020) suggests a log-normal distribution
with log scale mean and standard deviation of 1.63 and
0.50. The uncertainty in this distribution is negligible in
comparison to the uncertainty in the distribution of times
from onset of symptoms to death discussed next.
Several studies estimate the distribution of time from

onset of symptoms to death, while properly controlling
for the right truncation in the fatal duration data. Verity
et al. (2020) found that the distribution of time from onset
of symptoms to death for fatal cases can be modelled by
a gamma density with mean 17.8 and standard deviation
8.44, based on 24 patients from Wuhan. Wu et al. (2020)
suggested a gamma density model with mean 20 and stan-
dard deviation 10 based on 41 patients fromWuhan. Linton
et al. (2020) found that a log normal model offers a slightly
better fit, and estimated a mean of 20.2 days and standard
deviation of 11.6 days from 34 patients internationally.
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These distributions are shown in the left panel of Figure 1.
A simple meta-analysis approach was used to combine the
models. Samples of the correct size were simulated from
each model and a log normal model was estimated by
maximum likelihood for the combined resulting sample
(𝑛 = 99). A further log normal was also fitted (minimizing
Kullback Leibler divergence) to the infection to death dis-
tribution implied by the fitted onset to death distribution
and McAloon et al. (2020) infection to onset distribution
(treated as independent). This process was repeated to
generate replicate distributions. These replicate distri-
butions were treated as draws from the distribution of
infection to death distributions in subsequent analysis.
One hundred such draws are shown in Figure 1. The log
normal was chosen because the careful analysis of Linton
et al. (2020) found it to be a better model than the gamma.
In addition, under strict conditions, I was able to access

data on fatal disease durations for deaths occurring in
English hospitals. Access to data with hospital acquired
infections filtered out was not possible, so is was nec-
essary to treat these data as a mixture of hospital- and
community-acquired infections, as detailed in the Support-
ing Information. The resulting inferred fatal disease dura-
tion distribution for community acquired infection is plot-
ted in blue in Figure 1 (this figure appears in colour in
the electronic version of this article, and any mention of
colour refers to that version), and is consistent with the
published studies.

3 MODELS

This section first introduces a simple generalized additive
model for daily death trajectories, and then shows how
this can be extended to directly infer the trajectory of fatal
infections (fatal incidence), without having to assume any
particular dynamic model for the epidemic. The resulting
model is no longer a generalized additive model and is the
model that this paper advocates using. Its structure is such
that any method for inference with the model can also be
used for inference with the dynamic model of Flaxman
et al. (2020), with appropriate restriction of the incidence
trajectory to one representable with that model. The Flax-
man model is presented to allow comparison of the results
from the infection trajectory model with the apparently
contradictory results of Flaxman et al., but not to advocate
its use.

3.1 Basic deaths series model

Let 𝑦𝑖 denote the deaths or reported deaths on day 𝑖,
assumed to follow a negative binomial distribution with

mean 𝜇𝑖 and variance 𝜇𝑖 + 𝜇2
𝑖
∕𝜃. Let

log(𝜇𝑖) = 𝑓(𝑖) + 𝑓𝑤(𝑖), (1)

where 𝑓 is a smooth function of time measured in days,
and 𝑓𝑤 is a zero mean cyclic smooth function of day of
the week,𝑖 ∈ {1, 2, … , 7}, set up so that 𝑓[𝑘]

𝑤 (0) = 𝑓
[𝑘]
𝑤 (7),

where 𝑘 = 0, 1, or 2 denotes order of derivative. 𝑓(𝑖) repre-
sents the underlying log death rate, whereas 𝑓𝑤 describes
the weekly variation about that rate. The functions 𝑓

and 𝑓𝑤 can be represented using splines with associated
smoothing penalties 𝜆 ∫ 𝑓′′(𝑡)2𝑑𝑡 and 𝜆𝑤 ∫ 𝑓′′

𝑤()2𝑑.
Hyper-parameters 𝜆 and 𝜆𝑤 control the smoothness of
the functions. The model is a straightforward generalized
additive model and (𝜆, 𝜆𝑤) can be estimated as part of
model fitting using a standard empirical Bayes approach
as described in Wood (2017). The model provides a good
fit to both the reported deaths and ONS data. As expected
𝑓𝑤 is greatly attenuated for the ONS data (it vanishes for
Swedish exact death date data).

3.2 Infection trajectory model

To estimate the daily infection trajectory, the model is
extended by expressing 𝑓(𝑖) in terms of the time course
of earlier infections. Let 𝑓𝑐(𝑖) be the function describing
the variation in the number of eventually fatal infec-
tions over time. Let 𝐁 be the square matrix such that
𝐵𝑖𝑗 =𝜋(𝑖 − 𝑗 + 1; 𝜇, 𝜎2) if 𝑖 ≥ 𝑗 and 0 otherwise. 𝜋 denotes
an infection-to-death log normal density as discussed
above. For the moment, its parameters, 𝜇 and 𝜎2, are
treated as fixed but this will be relaxed in Section 4.3.
Given the continuity of the log normal, the given form
for 𝐵𝑖𝑗 can be viewed as approximating an integral of
𝜋 over each day, using the midpoint of the integrand –
it is straightforward to approximate the integral more
accurately, but given that 𝜋 is originally estimated from
durations discretized to whole days, any precision gain is
illusory. If 𝐟𝑐 = [𝑓𝑐(0), 𝑓𝑐(1), …]

𝖳 and 𝜹 = [𝛿(1), 𝛿(2), …]𝖳,
then 𝜹 = 𝐁𝐟 𝑐, where 𝛿(𝑖) is the expected number of deaths
on day 𝑖. log 𝑓𝑐(𝑖) can be represented using a spline basis,
again with a cubic spline penalty. Working on the log scale
ensures that 𝑓𝑐 is positive, but is also appealing because
it means that a cubic spline penalty on log 𝑓𝑐(𝑖) can be
interpreted as a first derivative penalty ∫ 𝑟′(𝑡)2𝑑𝑡, acting
on the epidemiologists ‘intrinsic growth rate’, 𝑟. The final
infection trajectory model is then obtained by simply
substituting 𝑓(𝑖) = log 𝛿(𝑖) into (1). 𝐁 is rank deficient,
so inferring 𝑓𝑐 can be viewed as an inverse problem:
without regularization, multiple solutions that oscillate
from day-to-day are possible. This ambiguity is removed
by the smoothing penalty on log 𝑓𝑐.
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3.3 Relaxed Flaxmanmodel

In the time since this work was originally undertaken in
late April 2020, the work of Flaxman et al. (2020) has
appeared. Flaxman et al.make inferences about the repro-
duction number, 𝑅, and hence incidence rates, based on
death trajectories and the fatal infection duration distri-
bution of Verity et al. (2020), but do so by modelling the
pathogen-effective reproduction number 𝑅𝑡 within a sim-
ple epidemic ‘renewal model’. Flaxman et al. (2020) repre-
sent 𝑅𝑡 as a step function with steps allowed each time the
government announced new containment interventions,
and a sparsity prior promoting a small number of steps.
In the notation of Flaxman et al., the expected number
of infections each day (now total, rather than fatal) are
denoted as 𝑐𝑡. Given an initial 𝑐1, themodel is iterated from
𝑡 = 2 as follows:

𝑐𝑡 =

(
1 −

𝑡−1∑
𝑖=1

𝑐𝑖∕𝑁

)
𝑅𝑡

𝑡−1∑
𝜏=1

𝑐𝜏𝑔𝑡−𝜏 (2)

where 𝑁 is the total initially susceptible population, 𝑔1 =
∫ 1.5

0
𝛾(𝑥)𝑑𝑥 and 𝑔𝑗 = ∫ 𝑗+.5

𝑗−.5
𝛾(𝑥)𝑑𝑥 for 𝑗 > 1. 𝛾 is the p.d.f.

of a Gamma distribution with shape parameter 6.5 × 0.622

and scale parameter 0.62−2. The 𝑐𝑡 values multiplied by
the assumed infection fatality rate give 𝐟𝑐. The level of the
infection fatality rate (IFR) only matters for the damping
term in the first bracket of the expression for 𝑐𝑡 – this has
almost no effect in practice, amid-range value of 0.006was
used. The original assumptions about 𝑅𝑡 can be relaxed
by representing log 𝑅𝑡 using a spline basis, with associ-
ated penalty as for the other models, while log 𝑐1 is also
treated as a free parameter. Hence, 𝑓𝑐 in the infection
trajectory model can simply be replaced by the Flaxman
model with log 𝑅𝑡 represented as a spline function. The
model is otherwise unchanged. This model is presented
only to allow comparison of this paper’s results with those
of Flaxman et al. (2020): its simple single-compartment
structure clearly does not meet the aim of inferring inci-
dence with minimal assumptions.

4 METHODS

The infection trajectory and Flaxman renewal models are
not standard models estimable with standard software.
They can be implemented in Bayesian software, such as
JAGS or STAN, but inference typically takes several hours
if this is done. Dealing adequately with the uncertainty in
the disease duration distributionmultiplies this cost by one
to two orders of magnitude. To avoid these problems, an
empirical Bayes approach can be employed.

4.1 Basic inferential framework

Direct inference about (1) uses the empirical Bayes
approach of Wood et al. (2016) in which the smooth func-
tions are estimated by penalized likelihood maximisa-
tion (e.g. Green and Silverman, 1994), with the smooth-
ing parameters and 𝜃 estimated by Laplace approximate
marginal likelihood maximization. Writing 𝜷 for the com-
bined vector of basis coefficients for 𝑓 and 𝑓𝑤, the penal-
ized version of the log likelihood, 𝑙(𝜷), can be written

𝑙(𝜷) −
𝜆

2 ∫ 𝑓[2](𝑡)2𝑑𝑡 −
𝜆𝑤
2 ∫ 𝑓

[2]
𝑤 ()2𝑑

= 𝑙(𝜷) −
1

2
𝜷𝖳𝐒𝜆𝜷,

where 𝐒𝜆 = 𝜆𝐒𝑓 + 𝜆𝑤𝐒𝑤: 𝐒𝑓 and 𝐒𝑤 are known constant
positive semi-definite matrices. Smoothing parameters, 𝜆
and 𝜆𝑤, control the smoothness of 𝑓 and 𝑓𝑤. Let 𝜷 be the
maximizer of the penalized log likelihood, and 𝐇 its neg-
ative Hessian at 𝜷. Viewing the penalty as being induced
by an improper Gaussian prior, 𝜷 ∼ 𝑁(𝟎, 𝐒−

𝜆
), 𝜷 is also the

maximum a posteriori (MAP) estimate of 𝜷. Furthermore,
in the large sample limit,

𝜷|𝐲 ∼ 𝑁(𝜷, (𝐇 + 𝐒𝜆)
−1). (3)

Writing the density in (3) as 𝜋𝑔, and the joint density
of 𝐲 and 𝜷 as 𝜋(𝐲, 𝜷), the Laplace approximation to the
marginal likelihood for the smoothing parameters 𝝀 and
𝜃 is 𝜋(𝝀, 𝜃) = 𝜋(𝐲, 𝜷)∕𝜋𝑔(𝜷|𝐲). Nested Newton iterations
are used to find the values of log(𝝀), 𝜃 maximizing 𝜋(𝝀, 𝜃)
and the corresponding 𝜷 (for details, see Wood et al.,
2016).
Given (3), credible intervals for 𝑓 are readily computed,

but it is also straightforward to make inferences about
when the peak in 𝑓 occurs. Simply simulate replicate coef-
ficient vectors from (3) and find the day of occurrence
of the peak for each corresponding underlying death rate
function, 𝑓.

4.2 Extension for the infection
and Flaxmanmodels

Although inference about (1) using the preceding frame-
work requires little more than a call to the gam function in
R package mgcv, its application to the other models, which
are not generalized additive models, requires more work.
For the model formulated in terms of 𝑓𝑐, this requires
expressions for the negative binomial deviance (or log like-
lihood) and its derivative vector and Hessian matrix w.r.t.
the model coefficients.
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First, consider the negative binomial deviance for obser-
vation 𝑖,

𝐷𝑖 = 2𝑦𝑖 log{max(1, 𝑦𝑖)∕𝜇𝑖}

− (𝑦𝑖 + 𝜃) log{(𝑦𝑖 + 𝜃)∕(𝜇𝑖 + 𝜃)},

d𝐷𝑖

d𝜇𝑖
= 2

(
𝑦𝑖 + 𝜃

𝜇𝑖 + 𝜃
−

𝑦𝑖
𝜇𝑖

)
and

d2𝐷𝑖

d𝜇2
𝑖

= 2

(
𝑦𝑖

𝜇2
𝑖

−
𝑦𝑖 + 𝜃

(𝜇𝑖 + 𝜃)2

)
.

These need to be transformed into derivatives w.r.t. 𝜷, as
follows:

𝜕𝐷𝑖

𝜕𝛽𝑗
=

d𝐷𝑖

d𝜇𝑖

𝜕𝜇𝑖
𝜕𝛽𝑗

and

𝜕2𝐷𝑖

𝜕𝛽𝑗𝜕𝛽𝑘
=

d2𝐷𝑖

d𝜇2
𝑖

𝜕𝜇𝑖
𝜕𝛽𝑗

𝜕𝜇𝑖
𝜕𝛽𝑘

+
d𝐷𝑖

d𝜇𝑖

𝜕2𝜇𝑖
𝜕𝛽𝑗𝜕𝛽𝑘

.

Writing 𝐗𝑓 and 𝐗𝑤 for the model matrices for the
smooth terms log 𝑓𝑐 and 𝑓𝑤, we have 𝜹 = 𝐁𝐟 𝑐 where 𝐟𝑐 =
exp(𝐗𝑓𝜷𝑓) (here exp(⋅), division and multiplication are
applied element-wise to vectors), and 𝐟𝑤 = 𝐗𝑤𝜷𝑤. Then
𝝁 = exp(log 𝜹 + 𝐟𝑤), whereas

𝜕𝝁

𝜕𝜷𝑓
= diag(𝝁∕𝜹)𝐁

𝜕𝐟𝑐

𝜕𝜷𝑓
,

𝜕𝝁

𝜕𝜷𝑤
= diag(𝝁)𝐗𝑤,

𝜕2𝝁

𝜕𝛽𝑤
𝑗
𝜕𝛽𝑤

𝑘

= 𝝁𝐗𝑤
⋅,𝑗
𝐗𝑤
⋅,𝑘
,

𝜕2𝝁

𝜕𝛽
𝑓

𝑗
𝜕𝛽

𝑓

𝑘

= diag(𝝁∕𝜹)𝐁
𝜕2𝐟𝑐

𝜕𝛽
𝑓

𝑗
𝜕𝛽

𝑓

𝑘

and
𝜕2𝝁

𝜕𝛽
𝑓

𝑗
𝜕𝛽𝑤

𝑘

= diag(𝐗𝑤
⋅,𝑘
𝝁∕𝜹)𝐁

𝜕𝐟𝑐

𝜕𝜷𝑓
.

For the given representation of 𝐟𝑐

𝜕𝐟𝑐

𝜕𝜷𝑓
= diag(𝐟𝑐)𝐗𝑓 and

𝜕2𝐟𝑐

𝜕𝛽
𝑓

𝑗
𝜕𝛽

𝑓

𝑘

= diag(𝐟𝑐)𝐗
𝑓

⋅,𝑗
𝐗
𝑓

⋅,𝑘
.

When using the relaxed Flaxman model, the preceding
derivatives of 𝐟𝑐 have to be replaced with derivatives of 𝐟𝑐
w.r.t. the coefficients of the spline representing log 𝑅𝑡. Rou-
tine application of the chain rule to (2) gives corresponding
iterations for the derivatives of 𝑐𝑡, and hence 𝐟𝑐, w.r.t these
spline coefficients and log 𝑐1.
Given these expressions and the penalties, 𝜷 can be ob-

tained by Newton iteration, given smoothing parameters.

To estimate smoothing parameters, the simplest approach
is to fix the negative binomial 𝜃 at its estimate from model
(1), and use Wood and Fasiolo (2017), alternating general-
ized Fellner Schall updates of the smoothing parameters
with updates of 𝜷 given those smoothing parameters. This
finds the smoothing parameters to approximately max-
imize the model marginal likelihood. The non-linearity
of the renewal equation model means that some effort
is required to get non-absurd starting values. I got these
by a few minutes of experimentation with simple step
functions for the initial log 𝑅𝑡 to get death trajectories of
roughly the shape and amplitude of the true trajectories
(a close initial fit is not required: initial deviances two
orders of magnitude greater than for the final fit were
unproblematic).
Given 𝜃 and the smoothing parameters, the approxi-

mate posterior (3) could be used directly, or as the basis for
the proposal distribution in a simple Metropolis Hastings
sampler. A fairly efficient sampler results from alternating
fixed proposals based on (3) with random walk proposals
based on zero mean Gaussian steps with a shrunken ver-
sion of the posterior covariance matrix. By this method,
effective sample sizes > 5000 for each coefficient took
about 40 s computing on a low specification laptop. This
was the approach used for the infection trajectory model.
The results were indistinguishable from those produced at
the cost of several hours of computing using JAGS (Plum-
mer, 2003; Plummer et al., 2006) to simulate from the
model posterior.

4.3 Disease duration distribution
uncertainty

Themethods so far perform inference conditional on fixed
values for the parameters 𝜇 and 𝜎2 of the log normal den-
sity describing the infection to death duration distribution.
In reality, there is uncertainty about these parameters. To
incorporate this uncertainty into the infection trajectory
model, inference was run for each of the 100 sample distri-
butions shown in grey in the right-hand panel of Figure 1,
and the resulting posterior samples were pooled, to give
a sample from the unconditional posterior distribution of
the model.

5 RESULTS

Figure 2 shows the results of applying the model to the
Office for National Statistics daily Covid-19 death data for
the United Kingdom, to the NHS England hospital data
and to the daily death data for Sweden fromFolkhälsomyn-
digheten (2020). The results include the uncertainty about
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F IGURE 2 In all plots, black curves show the posterior median, while light grey and dark grey regions show, respectively, 95% and 68%
confidence regions, including uncertainty in the fatal disease duration distribution. Day 0 is 13th March 2020, and the vertical red line marks
the first day of UK lockdown. Top left: Inferred daily fatal infection rate, 𝑓𝑐 , for the United Kingdom. The scaled barchart shows the posterior
distribution for day of peak infection with the peak day labelled. NPI start dates are marked by labelled vertical lines. Top right: Consistency
check. In grey are 100 sets of death data simulated forward from the inferred median fatal infection profile. Symbols are the ONS daily death
data for the United Kingdom on which inference is based. The dashed curves are 95% confidence intervals for underlying death rate estimated
by direct fitting of (1). Middle row: As top row, but using the NHS England daily hospital death data. Note that the inferred infection
trajectories are substantially different from time-lagged versions of the deaths trajectories. Bottom row: as the previous rows, but for Sweden.
This figure appears in colour in the electronic version of this article, and any mention of colour refers to that version

the disease duration distribution shape. ONS and NHS
data are up to 27th June – including later data simply nar-
rows the uncertainty, while making negligible difference
to the overall conclusions. The most notable feature of the
results is that fatal infections are inferred to be in sub-
stantial decline before full lockdown (the same result was
obtained by this method in early May 2020, based on the
first 50 days of reported daily death data). Sweden appears
most likely to have peaked only 1 or 2 days later (barring
some systematic difference in fatal disease durations for
Sweden), having introduced NPIs well short of full lock-
down. The results also emphasize the fact that the infection
trajectory is not simply a time-shifted version of the death
trajectory (assuming that itwas,might lead to unwarranted

delay in easing lockdown, for example). The difference in
timing and shape of the inferred profile between the ONS
and NHS data reflects the fact that the latter contain care
home data. There is an argument for preferring hospital
data for inferring community fatal infections, in that the
care home epidemic is now known to have special features
with at least some of the infection not coming from nor-
mal community transmission. See, in particular, Comas-
Herrera et al. (2020) for a discussion of care home deaths
internationally, including the United Kingdom. In addi-
tion, in the United Kingdom, care home deaths were often
attributed to Covid-19 without a test, especially after death
certification guidelines were changed to encourage report-
ing of suspected, rather than confirmed, Covid-19 deaths.
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F IGURE 3 Left: Estimates and confidence bands for the effective reproduction number, 𝑅, from a simple SEIR model given the inferred
infection profile (incidence), 𝑓𝑐 . The assumed mean time to infectivity was 1∕𝛾 = 3 days and the mean infectivity duration was 1∕𝛿 = 5 days.
The labelled vertical bars show policy change dates in March 2020. Given the rapidity of policy change relative to the epidemic’s dynamic
time scale, and government policy sometimes lagging behaviour, casual over interpretation of these timings should be avoided. Right:
sensitivity analysis. Dashed blue: time to infectivity was varied from 1 to 5 days. Grey:- duration of infectivity was varied from 2 to 10 days.
Logs are natural. 𝑅 appears to be below 1 before full lockdown, but fell further after it. This figure appears in colour in the electronic version of
this article, and any mention of colour refers to that version

The care home data therefore have some under-reporting
of Covid deaths, followed by over-reporting (the signal of
this is visible in ONS data in the change in non-Covid
pneumonia deaths being reported, relative to normal, for
example).
Taken together the results for the United Kingdom and

Sweden raise the questions of firstly whether full lock-
down was necessary to bring infections under control, or
whethermore limitedmeasures might have been effective,
and secondly whether the several month duration of full
lockdown was appropriate. These emphasize the desir-
ability of statistically well-founded direct measurement
of epidemic size through randomized testing. Had such
testing being carried out leading up to lockdown it would
have been clearer if the measures preceding lockdown
(see Figures 2 and 3) were working, or whether stronger
restrictions were needed. Similarly, such testing might
have given earlier indication of when lockdown could be
eased. Instead, management was reliant on a complex
modeling synthesis of expert judgement and problematic
clinical case data. Less statistically problematic reconstruc-
tions, like the one presented here, are clearly only possible
weeks after the fact. Note that although it is natural to
interpret these fatal infection trajectories as proportional
to the overall infection trajectories, that will only be the
case if the infection fatality rate is constant over time.
There is evidence for improvements in hospital care from
late March onwards that suggest that this is might not be
the case (see Dennis et al., 2021). The Supporting Informa-
tion includes a sensitivity analysis of this issue: it has the
potential to right shift the peak incidence by up to a day
and to lead to somewhat less rapid decay of the incidence
trajectory.

5.1 Inferring R

Much public debate has focused on the effective reproduc-
tion number, 𝑅, and in theory, it is possible for a decline
in the rate of infections to be only temporary as a result
of 𝑅 dropping but remaining above one. Could it be that
the declines in 𝑓𝑐 seen before lockdown were of this short-
term type, and that renewed increase would therefore have
occurred without full lockdown? The answer appears to be
no. 𝑅 is all but impossible to measure directly, so inference
about it requires assumption of an epidemic model. How-
ever, given an epidemic model, it can be directly inferred
from the reconstructed infection profile. For example, con-
sider a simple susceptible exposed infectious recovered
(SEIR)model: 𝑆̇ = −𝛽𝑆𝐼, 𝐸̇ = 𝛽𝑆𝐼 − 𝛾𝐸, 𝐼̇ = 𝛾𝐸 − 𝛿𝐼 (here
𝛿𝐼 is the rate of recovery or progression to serious dis-
ease).𝑓𝑐 is a direct estimate of 𝛽𝑆𝐼 (to within a constant
of proportionality), so by solving

𝐸̇ = 𝑓𝑐 − 𝛾𝐸, 𝐼̇ = 𝛾𝐸 − 𝛿𝐼

(from 0 initial conditions) the direct estimate 𝑅 = 𝑓𝑐∕(𝐼𝛿)

is readily computed (any constant of proportionality can-
cels in 𝑅). A different epidemic model could be used here
of course: see Diekmann et al. (1990) for calculation of
𝑅 in general from a model. Figure 3 shows the results
using 𝑓𝑐 for the English hospital data for plausible values
of average time to infectivity of 1∕𝛾 = 3 days and mean
duration of infectiousness of 1∕𝛿 = 5 days, along with
sensitivity analysis for these values. The credible inter-
vals shown include the uncertainty about the fatal disease
duration distribution. 𝑅 appears to be below 1 before full
lockdown.
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A useful feature of the 𝑅 estimates is to emphasize
that the analysis in this paper in no way suggests that
lockdown did not have an effect on transmission. Even if 𝑅
was below 1 before lockdown, full lockdown can only have
reduced it further, and the estimates in Figure 3 are obvi-
ously consistentwith this. Note, however, that the recovery
in𝑅 after the post-lockdown dip is to be expected, given the
simple fact that 𝑅 is the number of new infections created
per infection, averaged over the population of infections, not
the population of people. Broadly speaking, at lockdown,
the population of people, and infections, was split into the
locked downpopulation,where infections could create few
new infections, and the ‘unlocked’ population where the
reproductive rate of the pathogen was higher (assuming
lockdown had an effect). An initial average over all infec-
tions is then dominated by those infections in the locked
down population, giving a low𝑅 (especially once the possi-
bilities for infecting locked downhouseholdmembers have
been exhausted). As the infections in the locked down pop-
ulation die out, the proportion of all infections that are in
the unlocked populationmust increase – so that an average
over all infections must yield a higher 𝑅 again.

5.2 The Flaxmanmodel

Asnoted above in Section 3, Flaxman et al. (2020) also anal-
ysed death trajectories, using a simple epidemic model,
but came to conclusions apparently contradicting Figure 3.
They concluded that only after full lockdown did 𝑅 drop
below 1, and that fatal infections continued to increase up
until the eve of full lockdown. Flaxman et al. (2020) used
the Verity et al. (2020) fatal disease duration distribution,
so the difference in results does not lie there. To describe
the epidemic dynamics, Flaxman et al. use the simple sin-
gle compartment discrete renewal model (2). Within that
model, they assume that 𝑅 is constant between the impo-
sition of interventions, but can undergo a step change at
each intervention: the steps are free model parameters.
This model for 𝑅 is quite restrictive. In particular, it does
not allow 𝑅 to change after lockdown, despite the fact that
at lockdown, the population has been stratified in a way
that the renewal model does not represent, so that some
compensating flexibility in 𝑅 is likely to be required to
avoid modelling artefacts. At the same time, the model
is rather underdetermined preceding lockdown, because
of the frequent intervention changes. This indeterminacy
in the model is addressed by using a sparsity promoting
prior on the step changes in 𝑅, which favours few larger
changes, rather than several smaller changes (see the sup-
plementary material for Flaxman et al. for a description of
this prior).Whenusing themodel to simultaneouslymodel
multiple European countries, there is a further assumption
that the intervention effects are the same for all countries

(despite the different order of their implementation) and
that only the lockdown effect varies between countries. It
seems likely to be difficult to pick up effects of the interven-
tions preceding lockdown from such a model structure.
A relaxed version of the Flaxman model in which log 𝑅𝑡

is a continuous function is described in Section 3. The
results from using this model for inference using the NHS
hospital data are shown in Figure 4. The relaxation of the
assumptions on 𝑅 brings the results (for the United King-
dom) into alignment with those in the rest of this paper,
and into broad consistency with developments later in the
year, which are otherwise difficult to square with Flaxman
et al. (2020).

5.3 Later infection waves

Although the initial motivation for this work was to pro-
vide reasonably timely analysis for the first wave, based
on the limited data available by May 2020, the methods
scale readily to the much longer data runs available by
early 2021. The only change is that it makes sense to use
an adaptive smoother (see, e.g. Wood, 2017, §5.3.5) for 𝑓(𝑡),
in which the degree of smoothness is allowed to vary with
time. The longer data runs make it feasible to estimate
themultiple smoothing parameters that this entails. Using
an adaptive smooth guards against artefacts driven by the
smoothness that is appropriate on average, for all the data,
not being appropriate at times of rapid change.
The results of this application are shown in Figure 5.

Note that likely changes in infection fatality rate as a
result of improved hospital treatment mean that the rel-
ative sizes of the fatal infection incidence curves in the
first and subsequentwaves cannot be interpreted as reflect-
ing the relative sizes of total incidence (the later incidence
curves would need to be scaled up somewhat). Causal
over-interpretation of the 𝑅 curves should be avoided,
not least because there is no reason to expect Covid-19
not to display the seasonality in transmission common to
other respiratory illnesses. However, the results are obvi-
ously inconsistent with full lockdowns having caused 𝑅 <

1, because cause should not happen after effect. Further,
the drop in 𝑅 seen after the initial NPIs were introduced,
but before full lockdown, does seem consistent with the
levels of 𝑅 later achieved while measures short of lock-
down were in place. The interesting feature of 𝑅 appar-
ently increasing from quite early in the second lockdown
might relate to the spread of the new variant, but, of
course, also occurs at a time when respiratory infections
generally start to increase. Likewise, the further increase
until mid-December may well be due to the new variant,
but increased activity in the run up to Christmas is also
likely to be a factor – incidence appears to peak over the
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F IGURE 4 Results from the epidemic model of Flaxman et al. (2020), with the assumptions on 𝑅 relaxed: log 𝑅 is assumed smooth and
continuous. Left: the inferred 𝑅 from fitting the NHS hospital data. The inferred 𝑅 trajectory is similar to the one shown in Figure 3, despite
the different model structure. Intervals do not include disease duration distribution uncertainty here. Middle: the corresponding fatal
infection profile. Right: the simple sanity check as in Figure 2. This figure appears in colour in the electronic version of this article, and any
mention of colour refers to that version

F IGURE 5 Inference for the English hospital deaths data up to mid-February 2021, including disease duration uncertainty. Top: inferred
fatal incidence. Grey symbols are the hospital deaths from which incidence is inferred. Red vertical lines mark the start of each of the three
English lockdowns. Note that improvements in medical treatment mean that the IFR is very likely not to be constant between the first and
later waves, so interpreting their relative sizes in terms of total infections is difficult. Bottom: the inferred 𝑅 using the simple SEIR approach.
NPI impositions short of lockdown are marked by dotted vertical lines, and relaxations are marked by dashed lines. This figure appears in
colour in the electronic version of this article, and any mention of colour refers to that version

Christmas to New Year period. Vaccine rollout seems vir-
tually certain to be a major factor in pushing down 𝑅 and
fatal incidence fromDecember. The vaccine has been given
to those most at risk first, so the constant IFR assump-
tion required to interpret fatal incidence as proportional
to total incidence obviously no longer holds. This further
implies that the inferred 𝑅 is in some sense only the 𝑅

relevant to the ‘at serious risk’ population. Of course, it
could be argued that for epidemic management purposes,
the fatal incidence and the corresponding 𝑅 are of primary
interest.

Interestingly, the pattern observed at the second lock-
down and in the preceding months is consistent with
the results reported by Knock et al. (2020) who analysed
regionally stratified death, hospital occupancy and testing
data for 2020 up until December, using a highly detailed
age structured SEIR with added health service compart-
ments. The entire trajectory up until December is also con-
sistent with the results of Wood and Wit (2021), who reim-
plemented the Knock et al.model, but removed some of its
very strong modelling assumptions around the first lock-
down.
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6 MODEL CHECKING

Although standard residual checks indicate no problem
with the model from the point of view of statistical fit,
there are three issues which could potentially undermine
the results, and a further issue relating to interpretation.
The first relates to the infection to death interval dis-

tribution and the fact that the death data contain an
unknown proportion of patients whose infection was hos-
pital acquired. These patients are likely to have had shorter
disease durations, because they were already sufficiently
unwell or frail to be in hospital. This paper has inferred
when the fatal infections would have occurred if they were
all community generated, because it is the community
infections that are of interest with respect to the effects of
lockdown, social distancing, and so on. Without knowing
even the proportion of deaths fromhospital acquired infec-
tion, it is anyway not possible to do otherwise.
The presence of hospital infections in the death data

will bias inference about the dynamics of community
fatal infections if it substantially changes the shape of the
deaths profile, relative to what would have occurred with-
out hospital infection. Broadly, if the trajectory of hospi-
tal acquired infection deaths peaked earlier than the over-
all trajectory, then the community infection peak will be
estimated to be earlier than it should be (because the true
community infection death peak is then later). Conversely,
if the hospital acquired infection deaths peaked later, then
the community infection peak will be estimated as being
later than it should be. The degree of bias will depend
on the proportion of hospital acquired infections and the
degree ofmismatch in timings. It is difficult to judgewhich
alternative is more likely: standard epidemiological mod-
elling assumptions would imply that the more community
acquired cases are hospitalized the more hospital infec-
tionswould occur and that hospital infectionswill lag com-
munity cases. But against this, hospital acquired fatal dis-
ease durations are likely to contain a higher proportion of
shorter durations. In any case, the proportion of hospital
acquired infections in the death series would have to be
quite high for the issue to substantially modify the conclu-
sions.
The second issue is that age dependency in the dura-

tion distribution coupled with shifts in the age structure
of deaths over time could also be problematic. However,
as documented in the Supporting Information, the data
for England and Wales show remarkably little variation
in the age structure of Covid-19 fatalities over the course
of 2020, whereas analysis of English hospital data appar-
ently shows little evidence for age dependence in the dis-
ease duration distribution.
The third issue is whether the smoothing penalty on

log 𝑓𝑐 would lead to systematic mis-timing of the esti-

mated peak under the scenario of a very asymmetric peak
in the true infection profile around lockdown. To inves-
tigate this, data were simulated from a model in which
the underlying infection rate increased geometrically, dou-
bling every 3 days until lockdown, when the rate dropped
immediately to 0.2 of its peak value, shrinking thereafter
by 5% per day. Fatal infections were simulated as Poisson
deviates with the given underlying rate. This model is an
extreme scenario, in which measures prior to full lock-
downhad no effect, and the effect of lockdownwas instant,
as if the locked down population (i.e. those not in essen-
tial work) had isolated alone, rather than increasing their
contact with members of their household while drastically
reducing it with everyone else. However, it is the scenario
implicit inmuch public discussion in theUnitedKingdom,
at least at the time that this workwas originally conducted.
Under this scenario, themethod does indeed tend to incor-
rectly estimate the infection peak as 2–3 days before lock-
down, rather than the day before, as it struggles to accom-
modate the drop.
The naive approach to this issue is to introduce a param-

eter at lockdown representing an instantaneous drop in
infections. However, doing so introduces a very strong
structural assumption into the model, undermining the
aim of avoiding strong assumptions. This approach also
has the serious side effect of introducing non-parametric
smoothing boundary effects on both sides of the break.
These boundary effects severely compromise inference in
the most interesting region of the infection profile, while
simultaneously increasing the importance of the structural
assumption at the expense of the data. Indeed, when such
a model is built, it estimates a large drop even from data
simulated from a smooth infection profile. It also estimates
such a drop if the drop’s location is moved (for simulated
or real data).
A better approach is to use a smooth time dilation to

relax, but not eliminate the model smoothness assump-
tions in the vicinity of lockdown. The dilation is made suf-
ficient that the model can accurately capture the extreme
scenario in the simulation, but without imposing a break
and boundary effects. In particular, 𝑓𝑐 and its smoothing
penalty are computed with respect to a version of time
which makes the day before, of and after lockdown count
as 3.5, 6 and 3.5 days, respectively. Obviously, regular un-
dilated time is used for mapping infections to deaths. For
the extreme simulation, the model then correctly gives
most posterior probability to the day before lockdown as
the peak. In contrast, the same model for the real data has
very low probability of the peak being the day before lock-
down rather than earlier.
Figure 6 shows the results from fitting the time-dilated

model to the extreme simulation scenario and to the
NHS England hospital data. Even this model, deliberately
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F IGURE 6 Model checking plots in which the smoothness assumptions are relaxed around lockdown by a time dilation, in order to
allow accurate capture of any extremely discontinuous infection profile in this region. The top row shows the method reconstructing an
extreme simulation scenario in which there was no reduction in transmission rate up until lockdown, and then an instantaneous drop. Left:
the reconstruction (plot meaning as Figure 2) with the true simulated daily infections shown dashed. Right: forward simulation from the
median profile as in Figure 2. The blue symbols are the simulated death data used for inference. The bottom row is for the NHS England
hospital data under the time-dilated model. Even this model deliberately modified to promote a very abrupt change at lockdown suggests that
the infection rate was probably declining before lockdown. This figure appears in colour in the electronic version of this article, and any
mention of colour refers to that version

modified to favour a very abrupt change at lockdown, sug-
gests that infections started to decline before lockdown,
with the most likely day for the peak only 1 day later
than with the un-dilated model. The Supporting Informa-
tion includes similar checks for the Flaxman et al. (2020)
model, with similar conclusions.
Finally, interpretation of the fatal incidence trajectories

as proportional to the overall incidence trajectories rests
on an assumption that the infection fatality rate is con-
stant over time. There is evidence that the hospitalized
case fatality rate declined in the 2 months or so after the
peak of the first wave of infections (Dennis et al., 2021),
with this effect not explicable by any detectable change in
patient characteristics. However, on the ground changes
in the severity threshold for admission would be very dif-
ficult to detect, seem likely at times when some hospitals
were at or near capacity, and could also contribute to such
a pattern. The Supporting Information includes a check of
the impact that the reported improvements would have on
the shape of inferred overall incidence. The peak incidence
could be shifted by as much as a day later, and there would
be a somewhat slower decline in incidence relative to the
results plotted in Figure 2.

7 DISCUSSION

This paper does not prove that the peak in fatal infections
in the United Kingdom preceded the first full lockdown
by several days. Indeed, the failure to undertake the sam-
pling that could have gathered data to directly measure
infections early in the epidemic means that it will never
be possible to be certain about timings then, given the
substantial biases in clinical data other than deaths and
fatal disease duration. What the results show is that, in the
absence of strong assumptions, the currently most reliable
openly available data strongly suggest that the decline in
infections in theUnitedKingdombegan before the first full
lockdown, suggesting that the measures preceding lock-
downmayhave been sufficient to bring the epidemic under
control, and that community infections, unlike deaths,
were probably at a low level well before the first lockdown
was eased. Such a scenario would be consistent with the
infection profile in Sweden, which began its decline in
fatal infections shortly after the United Kingdom, but did
so on the basis of measures well short of full lockdown.
The analysis does not in itself say what would have

happened without full lockdown, and must obviously be
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weighed against other evidence. No currently available
analysis will conclusively determinewhatwould have hap-
pened without full lockdown, and the state of the art in
causal inference is obviously a very long way from being
able to answer this question. Models based on approxi-
mations to the mechanisms of epidemic transmission do
not allow reliable answers to these causal questions either.
This is particularly so given the paucity of data with which
to validate their component assumptions – a paucity that
only grows more acute as more detail is included in the
models. These are not weather or climate models, based
on the bulk properties of enormous numbers of phys-
ically well-understood interactions of simple molecules,
tested and refined against huge quantities of carefullymea-
sured calibration data collected worldwide over decades.
Rather they are best working approximations constructed
by experts given the limited information that could be
rapidly assembled in a matter of months, and subject to all
the uncertainty this implies. A model does not become a
valid basis for casual inference merely by being described
as mechanistic. As the above reanalysis using the Flaxman
model serves to emphasize: the inclusion of model struc-
ture aiming to represent mechanism is no guarantee of
improved statistical inference, and certainly not a justifica-
tion for treating inference with mechanism-based models
as causal.
In the time since this work was first undertaken, other

lowassumption analyses have appeared, in particular look-
ing for the coincidence of NPI introductions and change-
points in incidence, for example, in Germany and Spain.
The results of this paper are in some alignment with such
analyses for Germany (Wieland, 2020; Küchenhoff et al.,
2021), which also suggest that a decline in incidence pre-
ceded the first full lockdown. Both are based on case data,
which are problematic even in Germany which had mass
(but not randomized) testing in place from the start of the
epidemic. However, it seems likely that the biases in case
data would lead to the start of decline in incidence being
estimated as later than it really was, rather than earlier, so
the qualitative conclusion is likely to be robust. In Spain,
Santamaría and Hortal (2020) also identify substantial
changes in rate of change of incidence before Spanish lock-
down based on death series, but not sufficient to suggest a
decline in incidence before lockdown. Based on pre-print
versions of the current paper, a number of researchers have
also attempted to employ the basic idea of dynamic model-
free inference about incidence profiles, but via a simplified
method. This method tries to impute date of infection by
subtracting a random draw from the fatal duration distri-
bution from each deceased patient’s death date. This pro-
cess is replicated to obtain an expected incidence profile.
The method is invalid, as duration of disease is not inde-
pendent of time of death, and it will tend to incorrectly

show much less steep, or no, decline before lockdown. See
the Supporting Information for a full discussion.
The results of applying the method to data up to mid-

February 2021 provide a picture rather consistent with the
results for the first lockdown. In particular, the results pre-
ceding the first lockdown appear consistent with how the
epidemic progressed under later restrictions short of lock-
down. This is not the case for the published analyses sug-
gesting high 𝑅 and surging incidence on the eve of the
first lockdown. The fact that school re-opening does not
appear to be followed by an increase in 𝑅 is interesting:
whether it relates to people deciding to keep school chil-
dren apart from the vulnerable, which is anecdotally plau-
sible, or to other factors, is unclear. While tempting, it is
difficult to interpret the later patterns in terms of the new,
apparently more infectious, variant that emerged in late
2020: there is confounding with seasonality of transmis-
sion, behavioural changes around the end of year holidays
andwith the roll out of effective vaccines from late Decem-
ber onwards. Greater clarity on these issues may emerge in
future, particularly if the UK ONS Covid surveillance data
eventually becomes public in raw form.
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